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.ABST.RACT

The mathematical equations- describing trahéient ﬁheét
transfer between the fluid fiowing thfough a fixed bed and a
moving bed of packing were formulated. The resistance to
heat transfer within thé packing due to its finite thermal
conductivity was taken into account.

An approximate integral method was applied to obtain an
analytical solution to transient response of the bed
packing.Results for two cases of fixed and moving bed were
.obtained. The validity of the approximate method waé checked
against the more exact method employed by Handley and Heggs
who obtained the results for a fixed bed of packing with a
step change in fluid 1inlet temperature. It was concluded
that the approximate mehod gives results that agree well
with the more exact methods.

The method considered here provids a quick
determination of the packing mean temperature in order to
obtain the effectiveness.The other peculiarity of this
method 1is that the effect of packing thermal conductivity
can be examined very quickly since the solution 1is 1in
analytical form. The analysis of the results revealed that
as the thermal conductivity of the packing decreases the
difference between its surface and mean temperature
increases.A series of charts showing the comparison between
the packing surface and mean temperatures for different

thermal conductivities are presented.

ii



The-approxihate méthod’waé"then abpliedvtozthe.casé of
a movingbbed éf'packing; It was concluded that the effect of
'paéking the;mal conducti§ity is moré severe than_expected. A
series of charts.representing_the moving bed'effectiveness
versus dimensionless length for 'different thermal

conductivities are presented.
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Nomenclature

A = Solid surface area per unit'bed_vbiume m2/m3
. Ab‘= Bed croés—sectignal area . o _m2
‘B = Porosity . - _ -
.Bi = Biot numbe_r=hR/KS ' | : -
C = Fluid specific heat capacity at constant
pressure .. : | J/kg K
CS = Solid specific heat capacity . | J/kg K
d = Matrix semi-thickness m
Dev='Equivalent spherical diameter ' m
F = Normalised fluid temperature (Tf-Ti )/(Tfi*Ti)
f(6)= Prescribed heat flux at the solid surface W/m2
h = Convective heat transfer coefficient w/mzK
i = Number of time steps -
Ks = Matrix thermal conductivity W/m K
y = Distance from the bed entrance ' m
L = Bed length
MS'= Bed density kg/m3
m = fluid mass flow rate / area kg/mzs
&s = Solid mass flow rate / area kg/mzs
n = Number of length steps along the bed -
Nu = Nusselt number=hd/KS -
P = Period of fluid flow s
Pr = Prandtl number o -
Q = Heat transfer J
r = Distance from the centre of sphere m
R = Radius of sphere m



Re

Z

Reynolds number |

Solid
Solid
Fluid
Fluid

Solid

temperature
surface temperature
temperature

velocity

velocity

Bed volume

Distance from the surface of the slab

Dimensionless thickness or radius

Thermal diffusivity

Penetration depth

Dimensionless penetration depth

Effectiveness

Dimensionless time=hA(6-y/u)/MSCS

Time from the start of the operation

Dimensionless bed length = ¢

y=L

Kinematic viscosity

Dimensionless distance along the bed=hAy/ﬁC

Dimensionless period = P

Fluid

Solid

=P
mass density

mass density

m/s

m/s

kg/m3

kg/m3

Normalised solid temperature=(T—Ti)/(Tfi-Ti) -
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Subscripts

f = Fluid

i o= Inlet or .initial
m = Mean

0 = Outlet

s = surface
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-1, INTRODUCTION

1.1 GENERAL

Heat exchange between two fldid streams at different
temperaturés represents an important technological process
in many branches of industry.. | |

There are essentially two types of heat exchangers [1],'

1. Recuperators or conductance heat exchangers,in which the.
thermal conditions are assumed to be invariant with
time.Thus the rates of heat flow are steady,with the
convection from the hotter fluid continuously equal to
the convegtion to the colder fluid and both equal to the
steady rate of conduction through the sepérating heat

transfer surface (Fig.1).

2. Capacitance heat exchangers or regenerators which make
use of the thermal «capacity of the heat transfer

surface.

Regenerators are used extensively as air heaters.As an
example consider MHD (Magnetohydrodynamic) power generation
which uses the interaction of an -electrically conducting
fluid with a magnetic field to convert part of the energy of

the fluid directly into electricity (Fig.2)[2].

' numbers in square bracket refer to the Bibiliography

1
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In the fossil firea;MHD sYstem,;the-temperaturé’bf'the
fluid (combustion air) at the magnetic_-fieldv.iniet, ‘which.
détermines _the :conductivity.and heﬁce the'powér déﬁsity a£
that poiht,'depehds on thé' perfofhancei of the combUstion
chamber.vFor optimum performance ,it is essential to preheat
the éombustion air-toia temperature greater than 1200 -OC.
"This is achieved by utilizing regenerative air‘prehéaters.

Another area in which ‘regenerators afe finding
increasing application is as exhaust heat exchanger in small
gas turbines [3].In these engines ,it is essential to obtain
a large heat transfer area within the smallest possible
volume.This requires passages of small diameter and the
large number of these can be very conveniently incorporated
in a regenerator.

The peculiarity of a regenerator 1is that the heat
transfer media (called the matrix) is alternatively heated
by one gas and cooled by the other.This means that either
the matrix must be moved periodically in and out of the
gases or that the matrix be alternatively swept by the
hotter fluid, when it absorbs heat, and then by the colder
fluid to which the heat absorbed is then returned.The former
is called a continiuously operating and the latter is called
an intermittent regenerator, respectively.

There are two main problems associated with the

mechanical design of these two types of regenerators [1]:



1. Providing means for changing either the gas flow or the
matrix periodically to enable the latter to be heated
and cooled by contact with both géses in turn and thus
to éxchange heat between them.

2. Séaling the two gas flows before,during and after the
exchahge of heat to prevent excessive leakage.

Problem 1'is easily solved in the case of continuously
operatihg regénerators, but problem 2 is more difficult to
solve.In the case of intermittent regenerators both problems
can be easily avoided.

One of the major problems associated with the thermal
design of regenerators is the transient response of the
matrix.This problem arises when the regenerator is made up
of matrices with low thermal conductivity. If the thermal
conductivity of the matrix ié sufficiently 1low then
allowance must be made for the thermal gradient within the
matrix; this is called the intraconduction effect.
Conseqguently there is a combined coﬁvection—
conduction(within the matrix) heat transfef in relation to
uniquely convective heat transfer.The inclusion of the
matrix conductivity makes the thermal design of the
regenerator more complicated .There are a number of
solutions to this problem.For example it 1is a common
practice to adopt different numerical schemes (such as
trapezoidal approximation, central difference approximation
or Crank- Nicholson method) to solve the transient response

of the regenerator matrix. However,these numerical schemes



involve substantial expenditure of computational time and
computer storage [4].Heggs and Carpenter [5] predicted that
the pfoérams which vnegleét_ the intraconduction typically
require a sixth of-the‘computing time of those including'it.

The purpose of the preéent -study 1s to propose an

alternative solution to the problem of determining transient
‘reponse  of the matrix. The‘ proposed method utilizes an
approximate integral technique to obtain a solution 1n an
analytical form.This avoids the use of numerical schemes and
thereby enables the 'designer to take account of the
intraconduction effect more efficiently.

The central features of the regenerator.heat exchanger
are regenerator matrices.The choice of the matrix is mainly
affected by the way in which the periodic heating and
cooling of this matrix 1is performed.It may consist of
plates, wires ,spheres or broken solids éf irregular shape
[1]. |

Ideally the matrix material selected should possess
high wvalues of specific heat,density and melting point,good
strength at elevated temperatures;also it should be easily
available and cheap.It should not react chemically with the
impurities present in the heating gases(usually combustion
gas). In some cases the aerodynamic drag properties of the
matrix are of great importance.Thus it is obvious that all
these points should be considered before a decision to

select the appropriate matrix is made.
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The matrix can be brought 'into contact with the ‘heat
exchanging fluids (both hot and cold) in different ways.The
following types . bfv régenerators - may therefore ‘be

distinguished (refer to Fig.3).

1.1.1 STATIONARY MATRIX

In this type of regenerator, the matrix 1is
stationary while the change over from the heating to the
cooling period of the matrix is performed by alternately
changing the flow of the two fluids.

The rate of heat transfer to or from a surface 1is
directly proportional to the area available for heat
transfer.The overall dimension of the regenerator is
related to the heat transfer area; increasing the
surface area per unit bed volume decreases the overall
dimension required for a prescribed amount of heat
transfer.In the case of a stationary matrix, the two
heat exchanging fluids flow alternately through one and
the same matrix.Consequently the overall dimension is
the same for both the heating and the «cooling side
(Fig.4).

Regenerators of this type are subdivided into
different groups depending on the type of the matrix
used.The pebble bed for example (Fig.4a) is one type
whose matrix elements can be of any shape and may

consist of light, inexpensive ceramic materials capable
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of'withstandiﬁg high témperatures[1].These matrices can
be easily rémoved' frdm their_contaihers to be cleaned
and if nec;esSafy repiaced.Possible kinds of eiements
.-afe sphéres or other irregular.shapes.The elements éan
be supported by the walls of their = container.For this
type of regenerator, porosity (the ratio of empty volume
to the tofal-volume) is an impbrtant facfor which comes
into analysis.The porosity for a fixed bed is usually
about 0.37 to 0.38.

The Cowper - stove is an alternative type in which
the matrix is made of refractory brick [6].The brick
regenerator is wused extensively 1in glass making and
steel making industries, for preheating air to

temperatures of the order of 900 to 1200 C (Fig.4b).

1.1.2 MOVING MATRIX

The characteristic of this type of regenerator is
that the switch over from the heating to the «cooling
period and vice-versa is due to the matrix movement.This
type of regenerator is subdivided into different groups
depending on the matrix and the movement of the matrix
(Fig.3).The four common types are rotary matrix,moving
pebble bed, falling 1liquid slag and falling solid
particles [2].

The operation of a rotary regenerator relies on the

thermal storage of a slowly rotating matrix.With each
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revolution of the matrix a cyéle of héating by hot  air
and cooling ,by  cold aif'isgcompleted.Axial éhd radiai
flow ére the Ewo;basic' forms of matrix configuration
(Fig;S)." One  of the vmajbr' design problems with
Vregeneratofé',of‘ this type 'is to prevent the high
pressure gas leaking to the low pressure air.This is
controlled with the aid of appropriate seals.

The second type of regénerator which incorporates a
moving matrix is a falling cloud regenerator(Fig.6).This
type of regenerator has two' chambers,nominally a
superior chambef in which the matrix is heated by the
fluid and an inferior chamber in which the fluid is
heated by the matrix. The matrix consists of small solid
particles of a suitable heat transfer medium,such as
potassium sulphate,which are continuously melted in the.
upper chamber .The molten material must then be
presshrized by a slag pump (not shown in Fig.6) before
injection to the 1lower chamber where it is atomized
before falling through the rising cold fluid.In this
chamber the mo}ten droplets are solidified and then
-returned externally to the top of wupper chamber for
recycling.There are technical problems with the design
of liquid slag regenerators such as development of the
slag pump and atomization of the molten material [7].

An alternative to falling liquid slag 1is falling
solid wparticles (Fig.7). The matrix consists of broken

solid particles either of regular or irregular shape.The
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-extensioh of this tybe is a’ mdving pebble ‘bed
régeneratdr.One of the fundamental - requifemehts is to
ensure theiuniform mévement of the particles through the
system , especially at inlet and outlet, to prévent the
v formation of dead sections. A new cbncept in the design
of these'regenerators is the use of a divergent bed in
the diréction of gas passage;lt has been proven that
such a design cdntributes to the- uniforh 'tehperature

profile in the gas behind the bed [8].

1.2 REVIEW OF PREVIOUS WORK

Regenerétive heat exchange 1is one of the most common
industrial processes.It is therefore of some importance to
formulate the ‘laws governing the rate Qf heat transfer in
such a case,and 1if ©possible, to obtain a mathematical
expression for the temperature distribution throughout such
a system.

Much work has been done on developing mathematical
models of regenerators [4-14].The theoretical considerations
of the fundamental physics of heat transfer are complicated
and certain simplifying assumptions must be made in order to
obtain a useful mathematical model.

Mathematical analyses of regenerators are divided into

three groups which are explained in the following sections.


http://passage.lt
http://processes.lt
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1.2.1 SCHUMANN MODEL

The»simpieét mathematical model of a regenerator
was ‘fifsf developed by Schumann .in 1929 [13]. He.
suggested a model in thch a fluid stréam»wés allowed to-
flow through a packed bed of brokeﬁ»soiids (Fig.4a).
However his model can be employed for the case of fluid-
passing through_'the_‘channels of brick matrix (often
called chequer work) (Fig .4b).

Schumann’s method of developing an exact
mathematical treatment to the heat transfer problem in a
regenerator assumes a bed consisting of crushed material
at a uniform temperature; a fluid 1is allowed to pass
lengthwise through the prism at a wuniform rate of
flow.The problem 1is to findl the distribution of
temperature in the bed and in the fluid for all time,

assuming that

1. The thermal properties of the system are independent
of the temperature.

2. The axial conduction in either the fluid phase or
the solid phase 1is negligible compared to the
transfer of heat from solid to fluid.

3. The fluid flow rate does not vary along the bed.

4. There 1is no transverse thermal gradient within the

particles at any instant.
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Based on these assumptioﬁs ,Schumann derived avvpair of
coUpIed differential ° equations‘ (given in'.chaptervzf,*
-.which determine the .tfansfer4 of heat. Wifh an .
appfépriate set of boundary conditions the problem is
solved completely. |
Willmot [6] has pfesented'a computer solution for
the Schumann model.In an order of magnitude analysis ,he
has shown that the axial conduction within the matrix is
negligible provided that d/L2 is small;where d 1is the
semi-thickness of the . matrix and L 1is the bed

length.This ratio is negligible in most praétical cases.

1.2.,2 INTRACONDUCTION MODEL

One of the major disadvantages of the Scﬁumann.
model is that it neglects the thermal gradient within
the matrix.This simplifying assumption is justified
provided that the matrix has a very high thermal
conductivity. In many cases this is not so. Glass and
ceramic (from which regenerator matrices are often made
[12]) have a sufficiently low thermal conductivity that
allowance must be made for the thermal gradient within
the particles. The matrix thermal conductivity is taken
into consideration in terms of a dimensionless parameter

called Biot number which is defined as
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Bi=hR/KS (spherical geometry) ,

;hd/KS'(planar geometry) ,

where h=convective heat transfer coefficient .,
R=radius of sphere ,
d=semi-thickness of matrix ,

Ks=matrix thermal conductivity .

A model which includés the effect of matrix thermal
conductivity is called an intraconduction model.Figure.8
shows the effect of conductivity (or Bi number)on the
matrix temperature profile.

Previous studies have shown that intraconduction
may have a significént effect on the thermal behavior of
regenerators [4-13],although the inclusion of this
effect makes the model ' more complicated.- Different
mathematical models have been proposed and have been
solved either numerically or analytically.

Handely and Heggs [12] applied the Crank-Nicholson
method in order to obtain a solution to transient
response of the matrix in a fixed bed regenerator.Their
theoretical results were in good agreement with their
experimental observation.The authors also proposed a
dimensionless group which predicts the dividing line

between the Schumann and intraconduction models.
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Hausen [15] propoéed a modellianhich the effect of
‘matrix thermal conductivity is taken ihto consiaeratioh»'
in terms of_an,oVerall heat trahsfer’toefficient;»This
is the so called modified-infinite conduction~model.‘The
overall heat transfer coefficient is defined in terms of
‘the actual convective heat transfer 'coefficient and a
parameter which is called modification factor. A number
of authors [4,6,15] have proposed different expressions
for this modification factor.

An analytical solution to transienﬁ heat conduction
in solids can be obtained by the approximate integral
method.This method was first employed by Goodman [16] to
solve a very simple problem of unsteady heat conduction
in a semi-infinite slab.His results were 1in good
agreement with the well established results of Carslaw
and Jaeger [17].However, the elegant methods ﬁroposed by
Carslaw and Jaeger will only be satisfactory if the
thermal conductivity 1is ‘independent of temperature;
whereas the integral method can be extended to includé
the effect of temperature dependent thermal
conductivity.Goodman applied the integral method to
transient heat conduction in planar geometry. Lardner
and Pohle [18] have demonstrated that the method is
equally appropriate for spherical geometry.A more
complete discussion of this method 1is given in the

following chapter.
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1;3 SCOPE'OF THE PRESENT INVESTIGATIQN

The literature .search. confirms ‘the fact:that_for.a
vSufficiently_low thermal_conductivity, the 1intraconduction
effect sthId be taken.into_conéideratién.'The inclusion of
this_effect'makes thé analysis more involved. The solution 
to transient response of the matrix has to be determined.

The purpose of the present work 1is to propose an
analftical solution to the matrix trénsient response by
utilizing an approkimate integral‘technique. The use of this
method avoids lengthy computer programs; the method provides
a quick determination of the solid mean temperature in ordéf
to obtain the effectiveness of the regenerator. The usual
simplifying assumption of constant solid thermal properties
can also be relaxed.

The first stage after the development of the proposed
approximation is to examine its validity against more
rigorous analyses.Once the accuracy of the method is
established ,it <can then be extended to include different
types of regenerator and also the effect of matrix geometry
on the regenerator performance. It should be emphasized that
there are no published results for the moving bed
regenerator.The development of the integral method provides
the means té obtain design data for the moving bed

regenerator.



2. THE GOVERNING EQUATIONS . =

2.1 DIMENSIONLESSYPARAMETERS‘

| It isi-a cdmmonv préctice in regenerator design . to
‘pfesentj the results in terms of a number of dimensionless
parameters which are introducéd to simplify the governing
‘equations. These paraméters were first introdﬁced by Hausen

[15].

Number of transfer units (NTU)

This parameter is also termed the reduced length (A) in
the literature. It is defined in terms of the heat transfer
coefficient,heat transfer area per unit bed volume and the

fluid capacity rate? (refer to Fig.9)

£=hAay/(mC),

where h=convective heat transfer coefficient ,
. A=heat transfer area/unit bed volume ,
m=fluid flow rate/unit area ,
C=fluid specific heat capacity at constant

pressure.

These terms are explained in more detail in Appendix A.

2capacity rate=mC

22.
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Dimensionless period -
The- period of each heating and cooling cycle is

nondimensionalised as
n=hA(6-y/u)/(M_.C ) ,

S S
H=hA(P—L/u)/(MS.CS) ,

-where P=period of fluid flow ;
L=bed length , |
u=fluid velocity ,
Ms=bed density ,

Cs=solid specific heat capacity .

vThe ‘term L/u which represents the fluid residence time
is usually ignored.This is permissible in many regenerator
applications because it is negligible compared to the period
(p) [12]. In short cycling applications the residence time
becomes of similar magnitude to the period and the effect of

L/u can not be ignored.

Effectiveness

This is defined as the ratio of the actual rise in the
matrix temperature to its maximum possible rise (refer to
Fig.9), that is

e=[m C_(T

s's 'm

sO’Tsi)/((mC)min)'(Tfi—Tsi)] !



25
- where ﬁs=solid flow rate/bed area ,
(mC) . =minimum of the_tworﬁc ,
min -
(mSCS)/(mC)min=capac1ty,rate ratio.

It should be emphasized that the solid temperature 1is
presented as a mean temperature ,which is different than the
solid surface temperature.This is explained in more detail

in Appendix D.

Dimensiqnless thickness or radius

The slab thickness and the sphere radius are
nondimensionalised as (refer to Fig.9)
1. For the slab;

z=x/4 , where d=thickness of the slab

2. For the sphere ;

z=r/R , where R=sphere radius .
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Normalised temperatures

‘The fluid and sdlid temperatures are normalized as
1. For the fluid
F=(T_-T_ .)/(T_.-T .) .
£ s1 fi sa

2. For the solid

¢=(Ts_Tsi)/(Tfi_Tsi )

2.2 THE MATHEMATICAL MODELS

It was explained in the previous chapter that
regenerators can be divided into different groups depending
on the type of matrix employed.In the present work two types
of regenerators are considered (fixed and moving bed) with
two matrix geometries (planar and spherical).

The equations are developed for the rate of heat
transfer between a group of solid particles(either moving or
fixed)and the fluid moving countercurrently to the
particles.

There are two heat transfer processes which take place
in a thermal regenerator. However one may predominate
depending on the assumptions made in developing the model.
If it is assumed that the matrix thermal conductivity is

infinite (Schumann model) the dominant heat transfer process
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is heat transfer across fhé surface of the matrix (or heat
transfer to the - fluid). On the other hand if the:matrix
thefmai ' conductivity is gassdmed to be. ~ finite
(Intraconduction model) ,the conduction élsb bermes
important.

Theé  two models are analysed in more detail in the next

two sections.

2.2.1 SCHUMANN MODEL

This is the simplest model of a thermal regenerator

and is based on the following simplifying assumptions:

a. The thermal properties of the system are
independent of temperature,

b. The transfer of heat by conduction in the fluid
itself is small compared to the heat transfer by
convection from the fluid to the solid,

c. The fluid flow rate does not vary along the bed,

d. There is no thermal gradient within the matrix.

If there 1is no transverse thermal gradient within
the matrix,then the matrix can be assumed to be at a
uniform temperature and can be represented by a single
temperature at any point along the regenerator (Fig.8a).

Thus the only heat transfer process 1s the heat
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gained/lost by the fluid passing through the

regenerator.

" Fluid phase heat transfer equation

.If'ﬁ islﬁhe mass rate of fluid flow/unit béd :area
bast_ a  section ‘'a distance y from the entrance bf the
regeneratér,then between y and y+dy the heat tfansferred
from/to the fluid in time dé will be (refer to’Appendik

A)

dQ=mC[(8Tf/ay)9+1/u.(an/ae)y]dy.Ab ,

=mC(DTf/Dy)dy.Ab ,

where D/Dy=(3/3y)+1/u.(3/28)

Solid phase heat transfer equation

The total heat flow to the fluid must be equal to
the heat lost by the matrix,that is

do=hA(T-T )dy.A (2.2)

b

If ﬁs is the mass flow rate of solid/unit area ,
then between y and y+dy the heat lost from the matrix

will be

dQ=&ScS[(aT/ay) +1/us.(aT/89)y]dy.A (2.3.a)

0 b °
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The above‘équation can also be written as

dQ=MScs[uS§aT/ay)6+(aT/ae)y]dy.Ab

(2.3.b),
where M =m /u_ ,
s s’ s.

if the bed is stationary (uS=0) then equation (2.3.b)
becomes

dQ=—MSCS(aT/89)dy.A (2.3.¢)

b

The sign difference between equations (2.3.a) and
(2.3.c) is due to the change of direction in which y is
measured; for the moving bed y is measured from the
solid entrance whereas for the fixed bed y is measured
from the opposite end. Also in both of the equations the
matrix temperature is represented by a . single
- temperature T. This is because the model assumes that at
any point along the regenerator the matrix is at a

uniform temperature.

Summary of the equations

Combining equations (1),(2) and (3):

For the moving bed
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hA(Tfo)=mScs[(aT/ay)efJ/us.(aT/ae)y] ,  (2.4.3)
;mScS(DT/Dy) .
and _hA(T-Tf)=mC{(an/ay)9+1/u.(an/aO)Y]‘, - {2.4.b)

~=mC(DT,/Dy) .
‘For the fixed bed:0Only the solidbphase equation changes,

hA(T—Tf)=—MSCS(BT/aG) . (2.5)

2.2.2 INTRAPARTICLE CONDUCTION MODEL

For regenerators composed of matrices with low
thermal conductivity,eg.glass and ceramics,assumption.
(d) of the Schumann model is invalid. Thus allowance
must be made. for thermal gradient within the matrix. The
temperature of the solid at any point along the
regenerator can no longer be represented as one
temperature. It is thus desirable to obtain the
temperature distribution within the solid and represent
the matrix temperature as a mean temperature.

There are thus two heat transfer processes for an

intraconduction model ,

1. Heat is gained/lost by the fluid passing through the
regenerator.

2. Heat is transferred within the matrix.
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1. Fluid phase heat transfer equation

-~ This equation. is the same as that for the Schumann

model.

2. Solid phase heat transfer equation

There are two stages of heat transfer in the solid

phase.

(a) Heat transfer across the surface of solid:
This can be represented as

h(TS—Tf)=KS(aT/ax)x (Planar geometry) , (2.5.a)

=0

=—KS(aT/ar)r (Spherical geometry). (2.5.b)

It should be emphasizéd that in this case Ts
represents the solid sﬁrface temperature which might not
necessarily be the same as mean solid temperature.

The heat lost by the solid can be represented 1in
terms of the rate of change of its internal energy as

(refer to Appendix A)
. d d

dQ=m C dy.A [(3(f T dx)/oy)+(a(f T dx)/26)/u_l/a , (2.6)
s s b 0 0 s

d
where (f T dx)/d represents the mean solid temperature,
0

and d is the semi-thickness of the matrix.
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(b) Heat transfer within the solid:
The matrix thérmal-conductivity-is finite and there
‘is a temperaturé distribution within the matrix.Heat
transfer within the matrix 1is represented by the
difquion ' equation.Assuming the problem is one
dimensional we have
for planar geomefry
2 2 :
9T/06=a(d T/0x ) , (2.7.a)
for spherical geometry

aT/36=al (8°T/3r°)+(2/r) (3T/3r)] . (2.7.b)

The above equations are coupled by the symmetry

condition
planar ,
(3T/3x) _4=0  d=thickness of slab , (2.8.a)

spherical ,

(aT/ar)r =0 R=radius of sphere . (2.8.b)
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The distribution of gas and solid temperature along'
the regenerator is obtained by solving . these equations

with appropriate initial conditions

for a fixed bed , the initial condition is fepresented

by a step change in the gas inlet température ,
T,=T, . " for 6 20 and y=0 ,
T=T, , for 6=0 and y=0

for a moving bed , the inlet temperatures are specified.

2.3 NON-DIMENSIONAL FORM OF GOVERNING EQUATIONS

The governing equations can be nondimensionalised in
terms of dimensionless parameters £, n,Biot number and
normalised temperatures defined in section 1. The equations

in dimensionless form are (Refer to Appendix A)

Fluid phase

Equations (2.4.b) and (2.5) become (refer to Appendix A),

8F/8£=(¢S—F) , (fixed bed) , (2.9.a)

=(F—¢s) ' (moving bed) . (2.9.b)

Again the sign difference is due to the change of direction
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in which ¢ (or y) is measured.

Solid phase

Planar geometry

Equations (2.5.a),(2.7.a)and (2.8.a) become (refer to

Appendix A)

(2%/82) =Bi(¥ ~F) | (2.10.a).
z=0 - s
2 2 .
o¥/an=[8"¥/8z"  1/Bi , | ~(2.10.b)
(o%/02) _ =0 . | (2.10.c)

Spherical Geometry

Equations (2.5.b),(2.7.b)and(2.8.b) become(refer to Appendix

A)

(o%/23z) =-Bi(¥ -F) , (2.11.a)

z=1 s
a¢/8n=[(62¢/822)+(2/z)(a¢/az)]/(3Bi) , (2.11.b)
(aw/az)z=0=o . (2.11.¢)

The initial conditions are nondimensionalised for the case

of a fixed bed as ,



F=1

$=0

at £=0 and 20 ,

,"at'n=0‘and £20
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3. THE METHOD OF SOLUTION

3.1 INTRODUCTION TO THEINTEGRAL METHOD.

The 1inclusion of matrix thermal conduétivity in the
thermal desigﬁ of  regenerators makes fhe analysis more
complicated.The diffusion equaﬁion (equations.2.10.b,2.11.b)
muét be solved to obtain the temperature aistribution within
the  matrix.This can be done by employing numerical
techniques (discussed in the review of previous work) which
require lengthy computer programs.

An alternative .solution is the application of the
approximate integral technique.This method. was first
introduced by von Karman and Pohlhausen in order to,lsolve
the boundary 1layer problem in fluid mechanics.However,the
method is equally appropriate for unsteady heat conduction
in solids.Goodman [16] employed the technique to solve the
diffusion equation,coupled with either linear or non-linear
boundary conditions. The method makes wuse of two

assumptions:
a. The thermal properties(ie.conductivity,density etc) are

usually assumed to be independent of temperature in

order to linearize the diffusion equation.

36
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b. The solid is initially at a constant temperature.

Goodman éubseqﬁently has developed . a technique to
account for’temperatufe dependent‘thermal préperties.This‘is
‘explained in more detail in section (3;4) of this chapter.

The integral method introduces a quantity §(6) called
the penetration depth.This 1is defined as a distance into
which the heat flux at the surface penetrates the solid,and
beyond which there is no heat tranSferred.Consequently there
will be a temperature gradient inside the 5olid up to the
penetration depth ,while the solid will be at a uniform
temperature beyond this point (Fig.10).This is expressed

mathematically as

0

(3T/3x)
x=8
The penetration depth 1is analogous to the boundary layer
thickness in fluid mechanics.
The technique adopted by the approximate integral

method can be explained as follows;



38

5.

o)

| Tz=Tpo+ 8T | Tq=T3+6T
(c) (d)
Figure 10, Schematic representation of penetration

depth concept.
Tg= Surface temperature,

Ti= Initial temperature.
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The solid temperature is rebresented by a polynomial
in x (or r for'sphefical'geometrY) .The order of thé
polynomial is 1limited by ‘the number of variable
constraints (ie. boundary. conditioﬁs, " initial

conditions etc) .The unknown coefficients are

usually:a function of time.

One way to improve the accﬁracy of the assumed profile
is to increase the order of the polynomial.Each additional
parameter which is thereby introduced is determined from an
additional derived constraint.This may not always- be
possible.

Koh.y [19] has demonstrated that the temperature
profile is better approximated by an exponential function
than a polyﬁomial, however the analysis becomes more
involved. There 1is never a unique procedure to follow in
using the 1integral method.The ultimate criterion  for
determining whether - or not a particular profile 1is
successful must involve an assessment of both 1its accuracy
and simplicity.A simple polynomial profile has been found

adequate for most engineering purposes.
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3.2 PLANAR GEOMETRY'

The solid température is represented by aipolynomial of
x,where x 1is the distance frOm the surface - of the
“solid.Since - the order of the polanmiai‘is limitéd by‘thé
number of constraints,it would be advantageous to model thé
matrix as a semi-infinite slab extending in the x
direction.In this way>the order of - the polyhomial can - be

increased as will be seen later.

3.2.1 SEMI-INFINITE SLAB

The temperature distribution T(x,8) inside the
slab is to be calculated subject to the following

constraints
T(<S,9)=Ti ' (3.2.1)
oT(6,6)/3x=0 , (3.2.2)
aT(O,G)/ax=h.(TS—Tf)/KS=—f(9) .(3.2.3)
There are three constraints so the profile must
be represented by a second-order polynomial. The
assumption that the slab is initially at a constant

temperature can be utilized in deriving an

additional constraint. .Equation (3.2.1) is
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differentiated with - respect to time and then

substituted in the diffusion equation.The result is
2 2 | L
9 T(5,60)/0x =0 . = (3.2.4)

This is usually called the smoothing condition.

The  temperature distribution -can now be
represented by a cubic profile.The éonstraints‘ are
nondimensionalised in terms of z (dimensonless

depth) ,Biot number ,normalised temperatures and 60,

that is (refer to Appendix B)
$=0 at z=60 ’ (3.2.5)
o¥/9z=0 at z=60 , (3.2.6)
aw/az=Bi.(¢s—F)=-f(n) at z=0 , (3.2.7)
82¢/822=0 at z=6 (3.2.8)

0 14

where 60=5/d ,

is the dimensionless penetration depth. The cubic

profile will take the form (refer to Appendix B)

¢=f(n).(60—z)3/(3.6é) . (3.2.9)
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The surface temperature is obtained by setting z=0
in equation (3.2.9) ,the result is

w =f(m).8 /3 . | (3.2.10)
- Equation (3.2.10)  expresses a relationship
between the solid surface temperature vahd the
penetration depth.Cohsequently, once the pénetration
depth is calculated ,it will only require a simple
élgebraic manipulation to <calculate the surface
temperature or vice-versa.
The penetration depth is obtained by
integrating the diffusion equation (egn.2.10.b) from
z=0 to z=8, and substituting for ¥ from eqguation

0
(3.2.9),the result is (refer to Appendix B)

n
8g=12. (S £(n) an ) /(£().81)10°° . (3.2.11)

The surface temperature can then be obtained by
substituting for 60 from equation (3.2.10).The

result is

n
¥o=l8.£0m) (5 £(n) an)/(3.81)1%°° . (3.2.12)
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3.2.2 SLAB OF FINITE THICKNESS

Initially,the symmetry condition (eqn.2.10.c)
- does not affect'the,tehpérature-dist:ibution 'within
the matrix.The matrix can thus be modeled as fhough
it were semi-infinite.

However,at some later. time the ‘penetration
depth reaches the Centre. ofb the matrix and the
symmetry condition ~comes into effect.At this stage
the penetration depth has no meaning and the model
should be replaced by a slab of finite thickness
whose far surface 1is insulated (represeﬁting the
symmetry condition). The slab .is subject to the

following constraints

oT(4d,0)/8x=0 , (3.2.13.a)
T(O,G)=TS , (3.2.14.a)
aT(O,G)/ax=h.(Ts—Tf)/KS . (3.2.15.a)

The above equations in dimensionless form are
¥ (1,n)/82=0 , (3.2.13.b)
¢(0,n)=¢s ) (3.2.14.Db)

a¢(0,n)/az=Bi.(¢S—F)=-f(n) . (3.2.15.b)
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The second-order profile must then take the form

w:ws—f(n).<z2—z;z)/z o (3.2.16)

The. surface-temperature‘*l!S will be obtained by
integrating the diffusion equation (egqn.2.10.b) with
respect to z.The solid temperature ¥ is replaced by
the polynomial expression(egn.3.3.4).As opposed to
the previous case,the integration extends from z=0

to z=1. The result is (refer to Appendix B)
n .
¢s=[f(n)/3+f0f(n) dn /Bi J+constant . (3.2.17)

Assume nois the time at which the penetration
depth reaches the far surface of the slab .The
initial condition (ie. ¢S(n0)) can be obtainéd by
explicitly setting 60=1 in equation (3.2.10).Setting
¢S=¢S(n0) in equation (3.2.12) results in obtaining
14 The constant of integration is then obtained by
setting WS=¢S(n0) and n=n in equation(3.2.17).The

0
result is

n .
¢S=f(n)/3 +f f£(n) d(n)/Bi For nzn, . (3.2.18)
n
0
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In summary

If n<n0‘then equation (3.2.12) is used.

If'nzno then equation (3.2.18) is used.

3.3 SPHERICAL GEOMETRY

Lardner and Pohle [18] have demonstrated that for
spherical geometry, the polynomial representation of the
temperature profile 1is inappropriate.Since for spherical
geometry the steady stafe_ solution 1is proportional to

(1/r),they suggested a profile of the form
T=(Polynomial in r)/r . | (3.3.1)

Although Lardner and Pohle dealt with a spherical hole,
the same method 1is applicable to the case of a solid
sphere.The procedure adopted for spherical geometry 1is the
same as that for planar geometry , that is , the original
profile 1includes the penetration depth.As soon as the
penetration depth reaches the centre of the sphere,a second

profile should be used.
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3.3.1 SPHERE OF INFINITE RADIUS

- The penetration depth 1is. meésured'»f:om_the
surface of the sphere. The temperature profile is

subject to the following constraints

2T(R-5,0) /3r=0 , | | '. .(3.312.a)
. T(R-6,0)=T(i) , © (3.3.3.a)
vaT(R;G)/8r=—h.(TS—Tf)/KS , (3;3.4.5)
3°T(R-5,60)/3r°=0 . (3.3.5.a)

Equation(3.3.5.a)represents the smoothing condition.

The above equations in dimensionless form are

a¢(1—60,n)/az=0 , , (3.3.2.b)
?(1—60,n)=0 , (3.3.3.Db)
a¢(1,n)/az=—Bi.(¢s—F)=—f(n) . (3.3.4.b)
a?¢(1—60,n)/822=0 , (3.3.5.b)

where 60=6/R=dimensionless penetration depth.(3.3.6)
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There are 4 constraints ,consequently  the
polynomial 'will be a cubic.Adopting the suggestion

by Lardner and Pohle, thevresult is
3 2 | |
$=(A.z +B.z +C.z+D)/z . (3.3.7)

Applying the constraints,the~pfofile must take the

The surface temperature 1is obtained by setting

z=1,in above equation, the result is
¢S=—f(n).60/(3—60) . (3.3.9)

The penetration depth is obtained by
integrating the diffusion equation (egn.2.11.b)
after ¥ has been replaced by equation(3.3.8). The
integration extends from z=1—6O to z=1,the result is

(refer to Appendix B)
2 3 n .
[(560—50)/(3—60)]=20(fof(n) dn)/(3Bi.f(n)) .(3.3.10)

The surface temperature is obtained by substituting

for 60 from equation(3.3.9),the result is



48

3¢§[5f(h)—2¢s]=20(¢s-f(n))2(IZf(ﬁ) an)/(38i)(3.3.11)

3.3.2 SPHERE OF FINITE RADIUS

As in-the case of‘planar geometry,thé symmetry
condition at the centre does not come into effect
_until the penetration depth reaches the centre.At
this point the profile has to - be, changed to take
account of - szmetry condition.The new set of

constraints are

3T(0,6)/ar=0 , (3.3.12.a)
aT(R,G)/ar=—h.€TS-Tf)/KS , (3.3.13.a)
T(R,9)=TS . (3.3.14.a)

In dimensionless form the equations are

o¥(0,n)/23z=0 , (3.3.12.b)
a¢(1,n)/az=—Bi.(¢S—F)=-f(n) , (3.3.13.b)
¢(1,n)=¢s . (3.3.14.Db)

Again adopting the suggestion by Lardner and Pohle

the profile will take the form
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¢=(A.z3+B.z +C.z)/z .

It should be emphasized that since the‘ sphere
is solid,fhe‘term 1/z.should not appear 1in the final
'expression of the temperature profile.This 1is why
there is no constant term.included in the polyﬁomial
of z in the aboVe equation.Applying the constraints

the profile will take the form
, .
¢=¢s+f(n).(1—z )/2 . (3.3.15)

Integration of the diffusion equation after

equation(3.3.15)is substituted for ¥ will give
K .
¢S=—f(n)/5—(f f(n) dn )/Bi +constant . (3.3.16)
0
The constant of integration is obtained by the
procedure explained 1in previous section,the result
is

n
¢s=—f(n)/5-(f0f(n) dn)/Bi , (3.3.17)

where 1, defines the end of the 1initial stage and

the beginning of the second stage.
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In summary
S If n<no' Equation(3.3.11)should be usea

If n2 BEquation(3.3.17)should be used

i)

3.4 TEMPERATURE-DEPENDENT THERMAL PROPERTIES

The wusual simplifying assumption of constant thermal
properties made in developing the mathematical model of
regenerators can be relaxed.When the thermal properties are

temperatufe—dependent, the diffusion equation is replaced by
p.C.3T/36=0(K.dT/3x)/3x . (3.4.1)

Both K and p.C are temperature-dependent.The procedure
to obtain the. temperature distribution will be somewhat
different to that adopted for constant thermal
properties.Goodman [20] has demonstrated that only the
thermal properties at the surface enter the problem. This
simplifies the analysis in a way that there will still be
only one unknown,ie.the surface temperature.

The procedure is explained in more detail in Goodman's

paper [20].
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3.5 NUMERICAL PROCEDURE

The fluid and solid phase equations describe the
intraparticle qonduction'model.The fluid phase equation‘ is
solved numeriéally by a finite difference approiimation,
while the solid .phase' eguation is solved_- using the
approximate integral method.The two unknowns are the fluid

and the solid temperature throughout the bed.

The calculation 1is carried out for two types of

regenerators, hamely fixed bed and moving bed.

3.5.1 FIXED BED

The regenerator bed 1is represented by a 2
dimensional grid. The length of the bed y (or A in
dimensionless form) 1is divided into n equal

increments of §y(or &6¢), that is
A=n.8&t . (3.5.1)
The period P (or N in dimensionless form)
during which the fluid is passed through the bed is

divided 1into i equal 1increments of 88 or (&7 in

dimensionless form)

N=1.6n . (3.5.2)



52

At each point along the bed the fluid and solid
temperatures are represented as F(n,if and' ¢én,i)
"respectively;  At éach_ step. point therev are two
unkhdwn temperatureé,ie ‘F(n,i+1) and @én,i+1) ,
provided the .temperatutes at the (n,i) pointrare
“known., |
The fluid phase equation (eqn.2.9.b) is

represented by a central-difference approximation as

(1+A£/2)F(n,i+1)-¢én,i+1)A£/2=(1-A£/2)F(n—1,i+1)+

Ag.wén—1,i+1)/2 .

The solid phase equations involve [f(7n) dn .In
order to represent the equations 1in numerical
form,the 1integral term is approximated by the area
under the curve f(n) versus n ,that is

An
fo f(n)dn=Ari(n,i+1)

=Ari(n,i)+An[f(n,i+1)+£f(n,i)]/2 ,(3.5.3.a)

and

n,tAN
I 0 f(n)dn=Ar2(n,i+1)

n
0 —Ar2(n,i)+An[£(n,i+1)+f(n,i)1/2,(3.5.3.b)

where initially



53

Ari1(n,0)=0 , and Ar2(n,n0)=0‘.(3.5.3.c)

The solid phase equations can now be written in_

‘their numerical form..

Planar geometry

‘For n<ngy

éo(n,i)=[12Ar1(n,i)/(Bi.f(n,i))10‘5 , (3.5.4)

ws(n,i+1)=[4f(n,i+1).Ar1(n,i+1)/(3Bi)]0'5 . (3.5.5)

For nzno ,
ws(n,i+1)=Bi.f(n,i+1)/3+Ar2(n,i+1)/Bi . (3.5.6)
where
f(n,i)=Bi.[F(n,i)-ws(n,i)] . ' (3.5.7)

In order to determine which equation should be
used to obtain the solid surface temperature,the
‘penetration depth should be calculated first.If the
penetration depth‘is less than the semi-thickness of
the matrix ,equation (3.5.5) should be used,

otherwise,equation(3.5.6)should be used.
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Spherical'gebmetpyv

The same p:ocedUte as for the planar geometry
is adopted.The penetration depth and solid surface
temperature are represented in their finite
difference form as
O 14

For n<n

2 . 3 .
560(n,1) 50(n,1)v

=20(3-5(n,1)).Ar1(n,1)/(3Bi.£(n,1)) , (3.5.8)

3¢§(n,1+1)(5f<n,i+1>-2¢s<n,i+1>)=

20(¢S(n,i+1)—f(n,i+1))2.Ar1(n,i+1)/(3Bi) . (3.5.9)

For nzno ,
ws(n,i+1)=—f(n,i+1)/5—Ar1(n,i+1)/Bi , (3.5.10)
where
£(n,i)=Bi.[%_(n,i)-F(n,i)] , (3.5.11)

where 7, represents the end of first stage and the
beginning of the second stage.
In order to determine which of the above

equations should be used, the penetration depth at
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_eaéh step point should bé calculated first.
At the (n,i) step point,the anndwns are .
-F(n,i+1).;and ?S(n,i+1),provided’the temperatures at
the (n-1,1i+1) éhd'(n,i) points are known .
The  starting values for the solhtion are
obtained from the initial condition which in their

finite difference form are

iF(n,i)=1 At n=0 and i20 , (3.5.12.a)
F(n,i)=0 At i=0 and n>0 , (3.5.12.b)
¢S(n,i)=0 At i=0 and n20 , (3.5.12.¢c)
60(n,i)=0 at i=0 and n20 . (3.5.12.4)

At the entrance (ie.n=0)the fluid temperature

"does not vary with time,that is
F(O,i+1)=F(0,i)=1 .
Consequently, there is only one unknown

temperature,ws, which can be obtained from either

equation (3.5.6) or (3.5.5).
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3.5.2 MOVING BED REGENERATOR

In,the;caSe‘of a mdving bed _regenerator,the
period 'of:‘:operation - is° .not an iqdepehdent
characteristic of the éystem;It is :defined as the
time it takes é solid particle to tfaverse one full
length of the regenerator chéhber. . Consequently, the
period of the cycle is related to the regenerator
height.The coﬁditions are steady at the entrance and
exit of tﬁe regenerator. Only the temperature
distribution at different points along the
regenerator bed during one cycle is of interest. To
_obtain a max imum efficiency,a contra-flow
arrangement should be adopted.

The bed is divided into n equal increments of
A¢.The di;ection ¢ 1s measured from the solid
entrance.This 1is because the penetration depth
during the 1initial stages of the cycle must be
obtained in order to determine which equation should
be used for the solid temperature calculation.

The solid and fluid temperatures at each point
along the regenerator are repfesented by ?S(n)and
F(n) respectively; ws(O) represents the solid inlet
temperature,whereas F(0) represents the fluid outlet
temperature.

The fluid phase equation (egqn.2.9.b)is represented

by a central difference approximation as
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F(n+1)—F(n)=A£[F(n+1)—¢S(n+1)+F(n)—¢é(h)]/2.(3.5.13)

The solid phase eqguations in their numerical

form are shown below,

Planar geometry

For n<n0 ,
. 0.5
6O(n)=[12.Ar1(n)/(Bl.f(n))] , (3.5.14)
. 0.5
ws(n+1)=[4.f(n+1).Ar1(n+1)/(3.Bl)] . (3.5.15)
For nZnO ,
ws(n+1)=f(n+1)/3+Ar2(n+1)/Bi , (3.5.16)
where
f(n)=Bi.[F(n)—¢s(n)] , (3.5.17.a)
An
Ar1(n+1)=fo f(n) dn , (3.5.17.b)
n,tAn
Ar2(n+1)=f O £(n) dn . (3.5.17.c)

"0
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Spherical geometry

’ For n<n

o
552 (n)=57(n)=20(3-5,(n))Ar1(n)/(3Bi.£(n)) , (3.5.18)

0

3¢z(n+1)[5f(n+1)-2¢s(n+1)]=20[¢s(n+1)—f(n+1)]2

JAri(n+1)/(3Bi) . (3.5.19)

For nzno ’
¥ _(n+1)=-f(n+1)/5-Ar1(n+1)/Bi ,  (3.5.20)
where .
f(n)=Bi.[¢s(n)—F(n)] , (3.5.21.a)
An
Ar1(n+1)=f0 f(n) dn , (3.5.21.b)
n, tAn
Ar2(n+1)=f 0 £(n) dn . (3.5.21.c)
n
0

It should also be emphasized that
An=AgmC/ (M . .5.22
n=AtmC/ ( Scsus) (3.5.22)
At each point along the regenerator there are

two unknowns,namely, ¢S(n+1)and F(n+1),provided that

ws(n)and F(n) are known.
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The. analysis prdceéds'by using the average of
thé:flUid and solid>inlet temperétures as  a first
approxihation for ‘the fluid oUtlef temperéture.The
calculated inlet temperature ‘is then compared‘ with
the actual given ihlet temperatpfe.lf there is any
discrepancy the initial approximatioh is adjusted

and the analysis is then repeated.



4. RESULTS AND DISCUSSION

‘The * - first stage ih ‘analysing the results . is,_to
" establish the wvalidity . of the approximateﬂ, integral
method.This 1is échieved_ by comparing the results obtained
against the results pubiished byldifferent authors.

Unfortunately the publishedrresults are-scérce.Most_of
the previous analyses have disregarded intfaconduction
effects.One source_of results évailable are those published
by Handley and Heggs [12] ,who employéd the Crank-Nicholson
scheme to solve the diffusion equation numerically.The
results are mainly for a fixed bed regenerator with a

spherical matrix.
4.1 FIXED BED

4.1.1 SPHERICAL GEOMETRY

The diffusion equation,coupled with the
appropriate boundary conditions, were solved using
the approximate integral method for different Biot
numbers.The results whére then compared with those
published by Handley and Heggs. Figs.11,12,13
represent the fluid outlet temperature for different
Biot numbers.An excellent agreement between the two
methods can be seen.The comparison of the results
were made for a range of dimensionless parameters
1€A<40 and 0<Bi<5 which cover the design range of

most industrial regenerators.
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Experimental studies  carried out by the same
authors revealed an excellent accurécy of the

resQlts [12].

4.1.2 PLANAR GEOMETRY

Unfortunately no results_‘couid be found for
compariﬁg the numerical and integral method for the
planar geometry.Most of lthe previous studies have
éoncentrated on the spherical geometry (which is a
more practical geometry).

The fluid outlef. temperature profile is
expected to follow7é‘characteristic trend (S shaped
profile) if the method is correct. It 1is apparent
from Fig.14 ;hat the fluid outlet temperature
follows the expected trend.Thus it can be deduced
that the 1integral method is equally applicable to
the planar geometry.Fig.14 represents the fluid
outlet temperature profile for different reduced
lengths.

Once the validity of the method is established,
the analysis can be extended to examine the severity
‘'of intraconduction effect for differenf geometries,
This is achieved by comparing the difference between
the solid surface and mean temperature for the two

common geometries at different Biot numbers.
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it'is expected -that as uthe Biot number is
increased; the differenqe between the solid surface
and mean temperature should increase.This is bécéﬁse
as the Biot number increases(ie. KS decreases), the
depth into which the heat flux at the surface
penetrates the so0lid decreases. Conseqguently, the
'surface temperature will be mucﬁ higher than the
temperature at ‘the centre of the sphere.Thus the
resulting bmean temperature is smaller.(refer to
Fig.8).

To show this,the graph of percentage difference
between the solid surface and mean temperature was
plotted for different Biot numbers (Figs.15,16,17).

The percentage difference was obtained from
Difference=(¥% -¥ )/¥
s m s

Evidently,as the Biot number increases the maximum
difference between the two temperatures 1increases,
as expected.It can be seen (Fig.17) that for a
moderate Biot number (Bi=2) a maximum difference
between the two temperatures is about 9 peréent for
the planar geometry.Consequently, a model which
neglects the 1intraconduction effect overestimates
the effectiveness.

It is also evident from the same charts that

for a fixed dimensioless group (A and Bi) ,the


http://expected.lt
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diffefence between fhe surface ana mean -temperature
is greater for the'pladar geometry than that fof ﬁhe_
:sphgrical-geomtry.That is,the int;asphere'conduction
 mecHénism has less signifiéance than-intraplénér
conductidn.This is because for an equal Biot number
and‘ reduced length (A), the sphere radius has to be
smaller than the slab thickness (for the same
material). Carpenter and Heggs arrived at the same
‘conclusion in their analysis [5].

Most of the investigators have tried to predict
the dividing line between the Schumann and
intraconduction models [5]. The dividing line is
usually expressed in terms of dimensionless
parameters (A, I ,Bi) .The main reason for this is
to reduce the computation time required to solve the
model numerically.This of course is not important if

the problem is solved analytically.

4.2 MOVING BED REGENERATOR

Since there are no results available for a moving bed
regenerator, the validity of the results presented here are
based upon the validity of the method.

As for the fixed bed, the difference between the solid
surface and mean temperature increases as the Biot number
increases (Fig.18). Consequently, at a fixed A, the mean

solid temperature decreases as the Biot number
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increases.Since the regeherator effeétiveness_is-definéd' in
terms of the solid mean temperature, the reduction in the
-‘formér is refelected in the reductionvéi the latter.So“it
can be deduced that és the Biot number is inéreased_, the
effectiveness should decrease.Thi§ is shown in Fig.19. It-
should be pointed out that for a_fixed thermal conductivity,
the Biot number reduces as the size of the sphere vis
reduced.So one would expect a higher effectiveness for a
matrix of smaller size.But the size of the sphefe is limited
by its terminal velocity.That ié, if the spheres are too
small, they might be blown off the top by the oncoming
fluid.

The analysis revealed that as the Biot number is
increased ,the distance 1increment at which the solid and
fluid temperatures are calculated must be reduced.This
reduction in the distance 1increment (8f) might cause a
stability problem at very high Biot numbers.The stability
problem is due to the form of the temperature profile in the
solid.The present derived profile is based on Lardner and
Pohle [18] suggestion that ¥#Xi1/z.

Further analysis revealed that the sphere should be
assumed to be solid even at the initial stages where the
penetration depth <concept 1is applied, then the term
(constant/z) must be omitted from the final expression for
the solid temperature profile.This would results in a second

form of profile which is of the form
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$=-f(n)[z2-(1-6_)]1/(38,.) .
_ S 0 o0
The integration of the diffusion equatioh will result in

'qu n<ng

4

27% +54¢S3;f(n)+45¢52.f(n)2=20f(n)3.(fo(n) dn)/Bi .

For nZno ,

¥ =-.90"0 £(n) dn/Bi -£(n)/5 -f £(n) dn/Bi .

S 0 : m

Surprisingly, for nzno, the solid temperature is almost
identical to the original derived surface temperature based
on Lardner and Pohle suggestion.The solution to the above
equations were compared with the original results.The
results were extremely close for 1low Biot numbers as is
evident from Figs.20,21.However,the advantage of this second
profile 1is that it 1is stable even for high Biot numbers
(Bi28).This is shown by plotting the charts of effectiveness
versus reduced length for different Biot numbers
(Figs.22,23,24). It is therfore suggested that at high Biot
numbers the.second profile must be used.

It is evident from the charts of effectiveness versus
reduced length that the effect of Biot number is very
significant.For example, consider Fig.24 which shows the

effectiveness versus reduced length for Bi=0.1 and Bi=10. It
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can be seen that in order to obtain thé.Saﬁe,effectiveness
(for example 60'percént), the reduced length (or the bed
length) ~has  to be almost tripled in the case 6f.Bi=10,This
critical information had ﬁot»been.available prior to this
work.- |

Finally ,from the definition of effectiveness, it is
apparent that as the capacity rate ratio (Ri3 is reduced,

the effectiveness reduces.This is shown in Fig.25

3R=(&S.cs )/(&.c)min



- 5, CONCLUSION
The approximate .integral method was employed to obtain
an analytical - solution to * transient response of a

regenerator matrix; the following points.are concluded,
1. '~ The approximate method gives results that agree well
with the more exact methods employed for the case of

a fixed bed regenerator.

2. The effect of Biot number is much more severe than

expected in the case of a moving bed regenerator.
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6. AREAS OF FURTHER RESEARCH
‘The intraconduction model.»is ‘based 6n a number - of
simplifying assumptions . .The use of an integral methbd
enableé'one to relax ééme bf.these.assumptions, In order to
examine the effect éf tﬁese assumptions the,foliowing is

suggested,

1. The simplifying assumption of constant thermai
properties (for the solid) should be relaxed. This
can be easily achieved with the use of the integral

method [19].

2. It 1is believed that the bed extension in the
direction of gas flow contributes to a wuniform
temperature profile [8]. Thus the simplifying
assumption of uniform fluid velocity should be

relaxed .
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Figure 11, Comparison between the numerical and analytical method employed
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Fluid outlet temperature VS Reduced time
fixed bed,Bl=.25
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Figure 12. Comparison between the numerical and analytical method employed .
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Figure 13, Comparison between 1_:he numerical and analytical method employed
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Fluld outlet temperature VS Reduced time
For a fixed bed
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Figure 14, The characteristic S shaped curves of fluid outlet temperature

profile for a fixed bed regenerator (various reduced length).
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Figure 15,

The effect of thermal conductivity on solid temperature profile (Bi=.02).
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Figure 16. The effect of thermal conductivity on the solid temperature profile (Bi=0.25).
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Figure '18. The effect of thermal conductivity on solid temperature profile (Moving bed).
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Figure 19, The effect of thermal conductivity on regenerator effectiveness (original profile)
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Figure 24. Moving bed regenerator effectiveness based on the alternative profile.



Figure 25,
THE EFFECT OF C APACI T Y RATE RATIO ON EFFECTIVENESS
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APPENDI X A:DERIVATION AND DIMENSIONAL ANALYSIS

A.l Dimensionless parameters

ft'is a common practice in.regenerators thermal design

to represent the results in termsl of a group of
: dimensionless parametérs. The governing equations will also
be simplified_by transforming the independent variables y,6

and x(or r)into these dimensionless parameters.

Dimensionless length

This is defined in the following manner

£=h.A.y/(m.C) . : (A.1.1)

The number of transfer unit(N.T.U) is equivalent to ¢

at y=L, that 1is
A=h.A.L/(m.C) . (A.1.2)

The number of transfer unit is also called the reduced

length.
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Dimensionless time
This is defined as
m=h.A.(6-y/u)/(M_.C) .  (AJ1.3)

The dimensionless period of one cycle operation, I, 1is

equivalent to n at 6= period, that is
N=h.A.(P-L/u)/(M_.C_) . (A.1.4)
For moving bed regenerators,the period of one cycle is
defined as the time required by the solid to travel one full

length of regenerator.The dimensionless time is expressed in

terms of the dimensionless length.
The time €6 required by the solid to travel a full
length of regenerator is

6=y/uS

Substituting for 6 in equation (A.1.3) and ignoring the

fluid residence time y/u ,the dimensionless time will be

n=h.A.y/(MS.CS.uS) , (A.1.5.a)

but from (A.1.1)
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y=m.C.£/h.A - (a.1.5.b)
80
'n=£.m.C/(MS.CS.uS) . : (A.1.5)

Porosity (B)

The porosity or void fraction is defined as
=(V,-n.V )/V. , A.1.6.
B=( p " S)/ b (A.1.6.a3)

where Vb is the bed volume and n is the number of solid

particles in the bed.Porosity can also be defined as
B= -M . A,1.6.b
(pS S)/pS ( )

Heat transfer area

The heat transfer area is defined as

A=(particles surface area)/bed volume |,

or
A=(n.AS)/VbA, (A.1.7)
but from (A.1.6.a)

Vb=(n.vs)/(1—B) '
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so substitute for Vb in equation (A.1.7),the result is

A=AS;(1—B)/VS . | | (A.1.8)
For planar geometry eduation (A.E.B) reduces to
A=(1—B)/d' d=semi-thickness . | (A.1.9.a)
For spherical geometry equation'(A.1.8) reduces to
A=3,(1-B)/R  R=radius . (A.1.9.b)

In practice the matrix is not of regular geometry.The
regenerator is wusually composed of broken rocks. It is
therefore required to express the characteristic size of the
matrix in terms of an equivalent spherical diameter.This is
defined as

3
Dev=[6.net volume of rocks/w.n)] . (A.1.10)

If the rocks are all of the same shape and size, the

above equation can be written as

3
Dev=[6.VS/n] . (A.1.11)
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Heat transfer coefficient
It 1is a common practice fo.represént-the heat_transfer
coefficiént in terms of flow Reynolds. hﬁmber.There are a
numbef df different correlations: suggested for this
purpose,some of which are listed in Table.1 . |
| Experimental studies - have shown that the degree of
' packing<(or porosity) has a very large influence on the heat
transfer coefficient [9] .Consequently,the corrélations
which include such effect are more conservative. There are

two ways to account for porosity effect,these are
1.It is suggested [8,20] that the porosity effect
should be 1included in Reynolds number calculation.Reynolds
number is then redefined as
Re=u.D /[ (1-B).»]"* ,
ev
Re=u.D /(B.») 5 ,
ev
these are so called modified Reynolds number,
2.The porosity can be taken into consideration as an

independent variable. Most of the correlations 1listed in

Table.1 are based on such a consideration.
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It is reédily shown [21] thét.in'the absence of natqral-
convection, the Nusseit pUmber of a single: sphere in an
extensive fiow approaéhes 2 ,when the 'Reynolds number
-approaches 0.The correlations that are based on such finding
are thus more accurate. |

In the present study, the correlation dhe to

I.S.Cservery [10] was utilized for heat transfer

calculation.



Correlations

Author

Coments'

Nu=0.3329r1/3Re0’5

This is used
for chequer
work matrix

Nu-(.255/3)*?r1/3Re2/3 Handley and
Heggs
0.7 ' .
Nu={.2SA/B)PrRe Schneller.J | Modified
Reynolds
number
Nu=.016Pr°'67Re1.3 Frantz.J Porosity
effect
ignored
Nu=2+0.69Pr‘/3Re°‘5 Rowe .P.N for a single
sphere
For Re>100

Nu=2+0.6(3.25-2.25B)Re

For Re<100

Nu=2+6(3.25-2.258)pr '/

0.59t1/3

3 (Re/100) '+ 69

Cserveny.!l

An own inter
- polation
formula

Table. 1.

Correlations for the convective

heat transfer coefficient.
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A.2 Derivation of Governing equations

"The governing equatioﬁs are ‘developedy for a éeneral'
cése of moving_bed,regenérators;These are tﬁen modified for
'tﬁe case of fixed bed regenerator accordingly.

| The total heat flowito the fluid:with mass flow rate ﬁ,
between y and y+dy (where y is measured from fluid entrance)
comprise two compbnents.The‘ first component is the heat
transferred to the mass (i.A .dé) in_moying between y and

, b
y+8y, that 1is

dQ1=(m.d9.Ab).C.(an/ay)e.dy . (A.2.1.a)

The second component 1is the heat transferred to the
fluid enclosed between y and y+dy as its temperature changes

with time,that is

dQ2=p.A .dy.C.(an/aG)y.dG , (A.2.1.b)

b
but ﬁ=p.u , SO
dQ2=(&.Ab/u).c.dy.(an/ae)y.de ) (A.2.1.¢)
The total heat transferred to the fluid is then

dQ=h.c.Ab.[(an/ay)+ (0T, /26)/ul.dy.dd . (A.2.2)

This is equal to the heat lost from the solid,that is
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dQ=h.(A.dy,Ab)f(TS—Tf).de . | o (A72.3).-

Equating the total heat loss from the solid to the

total heat gain by the flﬁid ,the result is
ﬁ.c.[(an/ay)+(an /36)/ul=h.A.(T_-T.) . (A.2.4)
From chain rule
DTf/Dy=an/ay+(an/69)/u ,
so equation (A.2.4) can be written as
m.C.dT /dy=h.A.(T_-T.) . (A.2.5)
The heat 1lost from the solid can also be expressed in

terms of its rate of change of internal energy.Defining U as

the internal energy /unit area then

d
U=p .C .f T dx for one solid , (A.2.6.a)
S S 0
d
U=MS.CS.I T dx for the whole bed . (A.2.6.Db)
0

As for the fluid the total change in solid 1internal energy

comprises two components,that 1s

h.A.(TS—Tf)=(dU/dG)/d , (A.2.7)
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where
: o 4 a _ : _ -
dU/d9=MSCS[US.a(f'T dx)/oy+a(f T dx)/261} .. (A.2.8)
I1f the bed is stationary then us=0 and
z ‘ : d
h.A(TS-Tf)——(MS.CS/d).a(IOT dx) /26 . (a.2.9)

Note that the sign difference between equations (A.2.9)
and (A.2.8) is due to the direction in which y is measured.

It can be seen that if the solid temprature is wuniform
throughout ,then equations (A.2.8 and A.2.9) reduce to the
solid phase equations for the Schumann model.

In the 'present study, the two equations used to model
the regenerator are equations (A.2.5) and the diffusion
equation,which is

2 2
pSCS(aT/89)=KS(a T/9x ) Planar geometry , (A.2.10.a)

=Ks{62T/ar2+(2/r).aT/ar] Spherical . (A.2.10.b)

The diffusion equation 1is coupled with the following

boundary conditions
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1.The symmetry condition

v‘(aT/8X)X_a=O- planar , - | (A.2.11.a)

(aT/ar)r =0 Spherical . (A.2.11.b)
2.Heat flux at the surface

=h.(TS ~-T ) planar , (A.2.12.a)

K .(9dT/0ox)
s X f

=0

KS.(aT/ar)r R=h.(Tf —TS) spherlcalb. (A.2.12.b)

The above equations are nondimensionalised in terms of
£, n,Bi and normalised temperatures.From the definition of

these parameters the following can be deduced ,

de=(Tf -Ti).dF ,

0

ar=(7_ . -T.).4% ,
f 1

0
=M .C .3n/(h.A) ,
26 . cS n/( )

dy=m.C.2t/(h.a) ,

TS-Tf=(¢S—F).(TfO—Ti) ,

dz=dr/R For spherical geometry ,
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dz=dx/d  For planar.ggomgtry .
Equétiop (A.2.5) cah now be written in dimensionless form as
wS—F=aF/ds . | | (A.2.13)
For moving bed regeﬁerators,y. is measured from the

solid entrance. Consequently ,equation (A.2.13) must be

altered accordingly,the result is
F—¢S=dF/d£ . (A.2.14)

The diffusion equation(A.2.10) can also be written 1in

dimensionless form as

planar geometry

2 2 2
pS.Cs.h.A.(Bw/an)/(Ms.CS)—KS.(a ¥/9z)/d ,
from the definition of porosity (B) , Ms=ps.(1—B) ,

from equation (A.9.a) A=(1-B)/d .So substitute for A and

MS in above equation, then

a¢/an=xs.(az¢/az2)/(h.d) ,
or

2%/om=(3"%/02°) /Bi . | (A.2.15)



The cgrreépondiﬁg cohstraints are

i.Symmetry céndition
.(aw/az)z=1=0‘

2.Tﬁe heat flux at tﬁe surface
K. (2%/32)/d=h. (¥_-F) ,

that is

(o¥/0z) =Bi.(¥ -F)
z s

spherical geometry
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(A.2.16)

(A.2.17)

The diffusion equation in dimensionless form will be

pscsh.A(aw/an)/Mscs=Ks[(a2¢/az2)/R2+(2/z.R)(aw/az)/R] ,

but Ms=ps.(1—B) ,
and A=3.(1-B)/R ,
2..2 2
so 3(a¢/an).h/R=ks/R [07¥/0z +(2/2).0%/0z] ,

or  o%/dn=[0%%/3z°+(2/z). (2%/dz)1/(3Bi)

(A.2.18)



The corresponding constraints are
l1.Symmetry condition
(3%/23z) =0 .
z

=0

2.Heat flux at the surface
(KS/R).(B¢/82)=h.(F—¢S) ,
that 1is

(3%/3z) =Bi.(F-% )
z=1 S
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(A.2.19)

(A.2.20)



APPENDIX B:INTEGRAL METHOD

‘B.l Planar geometry

The matrix (usually chequrework) is modelled in two

stages

Semi-infinite slab

The diffusion equation in dimensionless form‘is
2 2., .
o¥/0z=(03 ¥/3z")/Bi . C(B.1.1)

The penetration depth,defined 1in chapter 3,has a
characteristic property such that the solid 1is at an
equilibrium temperature (initial temperature) at any point
beyond penetration depth.

The matrix is subject to the following dimensionless

boundary conditions

w(&o,n)=¢i=0 , (B.1.2)
o¥ (5, ,m) /2220 , (B.1.3)
aw(O,n)/az=Bi.(ws—F)=—f(n) . | (B.1.4)

Differentiating equation (B.1.2) with respect to 5 and

substituting back into the diffusion equation results in an

101
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extra boundary condition called. the smoothing'condition,that

is
_ A o, ,
82¢(60,n)/az =0 . , (B:1.5)

There are 4 constraints.The matrix temprature 1is thus

represented by ‘a cubic profile,that is
2 3 '
$=A+Bz+Cz +Dz~ . (B.1.6)
‘Applying the constraints,there will be 4 equations
2 3
+ =
A 860+C60+D60 0,
B+2C.§,.+3D 62—0
) o
B=-f(7n) ,

+ L] = .
2C+6D 60 0

The 4 unknowns are found by solving the above

simultaneous equations ,the cubic profile is then
3 2
¢=f(n).(6o~z) /(3.60) . (B.1.7)

The surface temprature ¢s is obtained by setting z=0 in

equation (B.1.7),the result is
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¢S=f(n).6o/3 . B (B.J.B)

“The diffusion. equation is now integrated with respect

to z,that is
8 ) 2 2 .
f00(8¢/an) dz=(j00 (0"%/02") dz)/Bi . (B.1.9)
From Liebnitz theorem

fgo<a¢/az) dz=d(f80 ¥ dz)/An-¥(5, ) (ds /dn) , (B.1.10)

O I
but by definition ¢(60,n)=0,so equation (B.1.9) becomes

5 .
d(foo ¥ dz)/dn=[(3%/0z) _. -(2¥/dz)_

1/Bi . (B.1.11)
0 0

Applying equations (B.1.3) and (B.1.4)to the above

equation , the following is obtained
6
d(foo ¥ dz)/dn=f(n)/Bi . (B.1.12)
Substituting for ¥ from (B.1.7), the result is
% 3 2 2
d(f0 [f(n).(&o—z) /(350)] dz)/dn=d(f(n).60/12)/dn . (B.1.13)
So equation (B.1.12) becomes

d[f(n).6§/12]/dn=f(n)/Bi . (B.1.14)
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The solution to ‘the above differential equation is

obtained by integration with respect to 75,the result is

| . | o |
8=12.(f £(n) dn y/(Bi.f(n) %% (B.1.15)

where §0=0 , at =0

The surface temperature is computed by substituting for

50 from (B.1.8),the result is

n
RICICINTAIE an)/(3.81)1°%°° . (B.1.16)

Slab of finite thickness

At time =14 the penetration depth reaches the centre
of thé matrix.From this point on the penetration depth has
no meaning and the matrix has to be remodelled.This 1is
achieved by modelling the matrix as a finite slab (thickness

d) subject to the following dimensionless constraints

w(o,n)=¢s , (B.1.17)
aw(O,n)/az=Bi.(?S—F)=-f(n) , (B.1.18)
o¥(1,n)/2z=0 . (B.1.19)

There are 3 constraints.So the temperature profile must

be a second-order polynomial,that is
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$=A+Bz+Cz . ’ N . (B.1.20)

The constants A,B 'and‘ C are found from constraints.The

‘profile will then take the form
‘ X .
¢=¢S+f(n).(z -2z)/2 . (B.1.21)

The diffusion equation is now integrated with respeét

to z. After applying the Liebnitz theorem,the result 1is

1
d(f ¥ dz)/dn=[(2a%/08z) - -(a¥/23z) 1/Bi . (B.1.22)
0 z=1 z=0

Applying equations (B.1.18) and (B.1.21) to the above

equation, the following is obtained
d(ws—f(n)/3)/dn=f(n)/Bi . (B.1.23)

The solution to the above differential equation is

obtained by integration with respect to 75,the result is
n .
¢s—f(n)/3=(f f(n) dn)/Bi +Constant . (B.1.24)
0

At time =0y 60=1,ie.the penetration depth has reached

the thickness of the slab.So from (B.1.8)

¢S(n0)=f(n0)/3 . (B.1.25)
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Substitute for ¢S(n0)vin equation(B.1.24) ,the result is

#_(ng)-£(ny)/3=(fJ0£(n) dn)/Bi+Constant ,

SO

Constént=-(ngf(n) dn)/Bi . ’ (B.1.26)

Substitute for Constant in equation (B.1.24),the result is
n ;
¢S=f(n)/3+(f £(n) dn)/Bi . (B.1.27)

0

B.2 Spherical geometry

As for the planar geometry,the spherical matrix is

modelled in two stages

Sphere of infinite radius

The diffusion equation for spherical geometry in

dimensionless form is
2 2 .
o¥/on=[0 ¥/0z +(2/z).0%/08z])/(3.Bi) . (B.2.1)

The penetration depth concept is employed to
approximate the solid temperature profile.The penetration
depth 1is measured from the surface of the sphere.The matrix

is subject to the following dimensionless constraints
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g¢(1—50,n)=¢i=o», | ' . (B.2.2)
_a¢(1-50,'n)/az=o , | | o - (B.2.3)
aw(J,n)/az=—Bi.(¢s—E)=—f(n) . . (B.2.4)

Equation (B.2.2) is differentiated with'réspect to 7
and then substituted back in the diffusion equation.This
results in an extra boundary condition of the form

%% /3z°+(2/2) . (3% /22)=0 . (B.2.5)

Applying equation (B.2.3) to the above equation,it

reduces to the smoothing condition,that is
82¢(1-60,n)/822=0 . (B.2.6)
The suggested profile is of the form [17]
$=(polynomial in z)/z . (B.2.7)
The reason for this form of the pfofile is that it

resembles the steady state solution of the diffusion

equation.The steady state solution being

g X (1/2)
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The pblynomialv_of z 1is a cubic.So the final profile

will take the form
2 ' . .
¥=Az +Bz+C+D/z . ' : : (B.2.8)

Applying the constraints and solving for A,B,C and D~

,the final expression will be
' 3,, .2 |
¢=—f(n).[z—(1—60)] /(60.(3—60).2) . (B.2.9)

The surface temprature 1is obtained by setting 2z=1 in

the above equation,that is

¢S=—f(n).60/(3—60) . (B.2.10)

The diffuéion’equation (B.2.1) is rewritten as
2 2 Sy
o(¥.z)/0n=[0"(¥.2)/0z" 1/(3.Bi) . (B.2.11)

The above eguation is integrated with respect to =z.
After applying the Liebnitz theorem,the result is

1

1 |
a(f  w.z dz)/dn=(f  3°(%.z)/dz° dz)/(3.Bi) . (B.2.12)
1—60 1—60

The right hand side of the above -equation can be
simplified by applying equations (B.2.2),(B.2.3) and

(B.2.4).Equation (B.2.12) reduces to
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1

al(s . ¥,z dz)/dn=-f(n)/[Bi;(3—6O)] i (B.2.13)
- |
0

It can be seen that the above differential equation 1is
highly non-linear.. The non-linearity can be reduced to some
extent by readjusting the diffusion equation.Equation

(B.2.1) 1is now'written,as
3(¥.2°) /an=[0(z".0%/02) /02)/(3.B1) . (B.2.14)

The above equation  1is now integrated with respect to

z,the result is

1

1
au ¥.22 dz)/dn=[z°(2%/3z)]  /(3Bi) . (B.2.15)
1- 1

0 0
After applying the constraints,the above equation
reduces to

1
a(f  %.2° dz)/dn=—f(n)/(3Bi) . (B.2.16)

1_
60

It can be seen that equation (B.2.16) is less
non-linear in comparison with equation (B.2,13).
Substituting for ¥ from equation (B.2.9) and performing the

integral,the result is

2

3
d[(60 560

).f(n)/(3—60)]/dn=—20f(n)/(3Bi) . (B.2.17)
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The  above differential equation is solved by
integration with reSpect to n, with the initial condition

(8,=0 at 7=0) the result is
2 .3, ,.. n .
[(560—60)/(3—50)]=20(f0f(n) dn)/(3Bi.f(q)) . (B.2.18)

The surface temprature is obtained by substituting for

60 from equation (B.2.10),the result is

. |
3¢2[5f(n)—2¢s]=20[¢s—f(n)]2.(f0f(n) dn)/(3Bi) . (B.2.19)

Sphere of finite radius

At some time no,the penetration depth reaches the
centre of the sphere.At this time the penetration depth
concept should be disregarded due to the symmetry effect.The

matrix 1s now subject to the following dimensionless

constraints
o¥(0,n)/2z=0 , (B.2.20)
o¥(1,n)/3z=-Bi. (¥ _-F)=-f(n) , (B.2.21)
¢(1,n)=¢s . (B.2.22)

The profile will take the form [17]

$=(polynomial in z)/z . (B.2.23)
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It should be noted that since the sphere is subject  to
a bouhdaryycondition at the Centre,the‘polynomial-should not
include a constant term .So the profile . will take the form

2
$=Az +Bz+C . : _ (B.2.24)

The unknowns A,B and C are found 'by applying the

constraints, the result is
| 2
¢=¢S+f(n).[1—z /2 . (B.2.25)

The modified diffusion equation (B.2.14) ‘is now

integrated with respect to z,the result is
S B 15
a(f ¥.z"° dz)/dn=[[ 9(z".0%®/0z)/08z dz]/(3Bi) ,
0 0
=-f(n)/(3Bi) . (B.2.26)

Substituting for g from equation (B.2.25) and

performing the integration,the result is
d[¢5/3+f(n)/15]/dn=-f(n)/(3Bi) . (B.2.27.a)

The above differential equation is solved by

integration with respect to 7,the result is

¢S+f(n)/5=—(fgf(n) dn)/Bi+Constant . (B.2.27)
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At‘n=n0 ,'60:1 .So ¢S(n0)'can be obtained by setting
8,=1 in equation (B.2.10),the result is |
¥ =~ 2 . o 2.
_S(no) f(no)/ _ | (B.2.28)

Substituting for ¢S(n0) in equation (B.2.27) the

constant of integration is obtained,that is
Constant=-3f(n0)/10+(f80 f(n) dn)/Bi .  (B.2.29)

The term f(no) can be computed by setting & =1 in

equation (B.2.18),the result is
£(n,)=10(f70 £(n) dn)/(3Bi) . (B.2.30)
From equations (B.2.30) and (B.2.29),it can be deduced
that the constant of integration 1is zero.So equation

(B.2.27) becomes

n
¢S=-f(n)/5—(f0f(n) dn)/Bi . (B.2.31)



APPENDIX C: EFFECTIVENESS COMPUTATION

In regenerators the'thermodyhamically perfeCt‘situation
Voccurs when the matrix at'the exit from the fegeneratorvié
at the same temperature of the entering hot fluid.
Obvioﬁsly{this is not 'possible in practice because of the
resistance to the heat transfer between the two - media. To
measure the performance of a regenerator against the
idealised situation,a parameter called effectiveness 1is
employed.This is defined as the ratiq of the actual rise (of
drop) in the matrix temperature to the maximum possible

rise.In mathematicall form € is defined as

e=m _.C .(T —Tmsi)/[(m.C)m.

s Cs ns0 ln.(Tfi—T ], (c.1)

msi

where (m.C)min=minimum of the two capacity rates,
and Tmé=Mean solid temperature

It 1is apparent from equation (C.1) that the solid
temperature at inlet and outlet are represented as mean
temperatures.Consequently,the first step towards the
effectiveness computation} is the calculation of the solid

mean temperature,.

113



114

C.1 Planér'geometry

. The mean solid temperature in planar geometry is defined as
q , — .
T =(f T dx)/d , - (C.2)
m 0 ) .

or in dimensionless form

i '
¥ =f ¥ dz . (Cc.3)
m 0 -

There are two expressions for % depending on the

penetration depth.These were obtained 1in the previous

Appendix.
For n<n0 ,
3 2
¢=f(n).(60—z) /(3.60) . (B.1.7)
2z
For nZng
2
¢=¢S+f(n).(z -2.z)/2 . (B.1.21)

The corresponding mean temperatures -are then

For n<n

1 3 2
¢m=f(n).[f0(6o—z) dz]/(3.6o) ,
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* but -

1 8 y
§ ¥ dz=(f %% az)+(; ¥ dz) ,
0o 0o 5,

by definition the second integral is equal to zero  and the

mean temperature will be
¥ —fk')'[f60<a'—z)3 dz1/(3 52)
m o %0 %0’
that is
¥ =£(n).52/12 | (C.a)
mvn'o . .
o
For 2Ny o
. L 2
$ = [¥ +f(n).(z2"-2.2)/2] dz ,
m°g s
performing the integration,
¢m=¢s-f(n)/3 , (c.5)
where f(n)=Bi.(F—¢S) . (c.6)

C.2 Spherical geometry

The mean temperature in cartesian coordinate (3

dimensional) is defined as
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Tm=(fffT dx dy dz)/(fffdx dy dz) . (c.7)
The above ' equation can be tranSfo:med to sherical
‘coordinate System ‘by applying the Jacobian transformation
[21].
»Defining x=r.¢ose.sin¢ '
y=r.sin@.sing¢ |,
Z=r,COS¢
The Jacobian transformer will be

ax/or ax/06 ax/0¢

J= |oy/dr oy/06 dy/d¢ =-r25in¢ . (C.9)

dz/0or 9z/06 0z/0¢
so [ffdx dy dz=fff—r2 sin¢ dr 46 d¢ . (C.10)

Substitute the above,in equation (C.7)

n/2 2w R - 27 w/2
de.fo sing d¢/f0-r dr.f0 sing d¢. S de

R 2
T =f (-Tr")dr.S
m 0 -7

-n/2

or

R 2 R 2
T =f (T.r”) dr/(f r~ dr) . (Cc.11)
m g 0



117

- The mean temperature in dimensionless form is

¥ =3.f w.z° dz . - - » (C.12)

‘There are two expressions for = %,depending on the

penetration depth,these are

For n<n0 ,

_ ; , _
¢=—f(n).[z—(1-60)] /[(3—60)602] . - (B.2.9)

The mean temperature is obtained by substituting the
above expression for ¥ in equation (C.12).First it is noted

that
2 1-8 2
$ =3[ (.2°) az+35 0 (¥.2%) 4z , (C.13)
0

and by definition ¥=0 beyond penetration depth.So the second

integral in equation (C.13) is zero and (C.13) reduces to
2
¢m=3.f (¥.z7) dz . (C.14)

Substituting for L2 from equation (B.2.9) in above

equation,the result is

1 . 3 2
¢m=—3.f(n).f1_6 z.[z—(1—60)] dz/[(3—60).60 1,

0
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50
$ =-3,f( )-(552453)/i20 (3-6 )] (C.15)
_m-"' nl. 0 O-‘. . | . . E .

0

It 1is interesting to note that from equation (B.2.18)

the mean temperature can also be written as
n o
$ =-f f(n) dn/Bi . (C.16)
mo
>
2
¢=¢S+f(n).(1—z Y/2 . (B.2,25)
Substituting for ¥ in equation (C.12),the»result is
L 2 2 4
¥ =3[ [¢ .z +f(n).(z -2 /2)] 4z ,
m 0 ] )
that is
= +
wm ¢S f(n)/5 , | (C.17)

where f(n)=Bi.(¢s-F) . (C.18)



APPENDIX D :SAMPLE CALCULATION

D.1 Governing equations

The governing equations are written in their numerical form

as

Fluid phase

(1+Ag/2)F(n,i+1)-Ag/zws(n,i+1)=A5/2¢s(n—1,i+1)+(1—Az/2)F(n-1):"

Solid phase

1. Planar geometry

For n<n0 ’
. - . . 0.5
60(n,1)=[12Ar1(n,1)/(B1.f(n,1))] , (D.2)
. . . . 10.5
¢s(n,1+1)=[4f(n,1+1).Ar1(n,1+1)/(331)] . (D.3)
For nzno .
ws(n,i+1)=f(n,i+1)/3+Ar2(n,i+1)/Bi , (D.4)
_/
where
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£(n,i)=BilF(n,i)-¥_(n,1)] , | | (D.5)
CAri(n,i+1)=Ari(n,i)+An[f(n,i+1)+f(n,i)1/2 , (D.6)
CAr2(n,i+1)=Ar2(n,i)+An[£(n,i+1)+£(n,i)1/2 , (D.7)

- note that Ar1(n,;0)=0 and Ar2(n,n0)=0 .

2.Spherical geometry

For n<n0 ,

56§(n,i)—63(n,i)=20[3*60(n,i)]Ar1(n,i)/(3Bi.f(n,i)) . (D.8)

3¢§(n,i+1)[5f(n,;+1)—2ws(n,i+1)]=20[¢S(ﬁ,i+1)—f(n,i+1)]2

.Ar1(n,i+1)/(3Bi) . (D.9)

For nZno ,
¢S(n,i+1)=—f(n,i+1)/5—Ar1(n,i+1)/Bi , : (D.10)
where
f(n,i)=Bi[¢S(n,i)—F(n,i)] , (D.11)

Ari(n,i+1)=Ari1(n,i)+An[f(n,i+1)+£f(n,i)]/2 . (D.12)
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D.2 Method of solution

D.2.1 Fixed bed

| - The analysis begins by first-computing'éo(n,i) at éach
step point.If 60(n,i)<1,then‘eqpations (D.3 Qr‘D;9) are used
.to compute the solid temperature.If however,66(n,i)21 , then
‘equations (D.4) or(D.10) are wused to compute the solid

temperature.

There 1is a step change in the fluid temperature at the
entrance to the regenerator (ie.F(0,1i)=F(0,i+1)) .Thus
essentially there 1is only one unknown temperature which is
ws(n,i+1).This can be'computed by solving equations (D.3) or
(D.9) .At any other point the unknown temperatures can be
computed by solving the two simultaneous equations

representing the fluid phase and solid phase ,these are
For n<n

Equations (D.1) and (D.3) or (D.9) should be solved to
compute the unknowns ws(n,i+1) and F(n,i+1).This is done by
substituting for F(n,i+1) from (D.1) in (D.3) or (D.9) and
solving for ¢S(n,i+1).1t should be clear that ws(n,i+1) lies

within the limit

0s¢s(n,i+1)s1 _ (D.13)
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For nZno ,

‘The lineari equations (D.1) and (D.4) or (D.10) are

. gathered together in a matrix form
ULF(n,i+1),%_(n,i+1)]=H , | (D.14)
where U and H are the following matrices.

l1.For planar geometry

— -

1+AE/2 -A¢
U= . (D.15.a)

-Bi/3-An/2 1+Bi/3+An/2

pae

Ag(ws(n—1,i+1))/2+(1—A5/2)F(n—1,i+1)

H= . | (D.15.b)

Ar2(n,i)/Bi+An[F(n,i)-¢s(n,i)]/2

-
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2.For spherical'geometry

1+A5/2 -aE/2

u= | | . (D.16.a)

-Bi/5-An/2 1+Bi/5+An/2J

e —

A£(¢S(n—1,i+1))/2+(1—A£/2)F(n-1,i+1)

H= , ' . (D.16.b)

t:Ar1(n,i)/Bi+An[F(n,i)—¢s(n,i)]/2 J

The solution is merely the inversion of (D.14),that is

[F(n,i+1),¢s(n,i+1)]=u"1.H i (D.17)

The starting values for the iteration are

F(0,1i)=1 For i20 , (D.18.a)
60(n,0)=0 For n20 , (D.18.b)
ws(n,0)=0 For n20 . (D.18.c)

The initial fluid temperature "at any position other

than entrance is computed from
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¥/0z=-£(n) ., v (D.19.a)
but ¥(n,0)=0 for all n, so
F(n,0)=0 for n>0 . . (D.19.Db)

D.2.2 Moving bed

The fluid phase need to be altered for this éase,since
¢ has to be measured from the solid entrance.Also for moving
bed regenerators An is expressed in terms of A¢.
ConseQuently, the unknowns are F(n+1) and ?S(n+1). The
equations will be identical to the previous case (fixed
bed), if Af is replaced by -A¢.

The solid and fluid inlet temperatures are known.In
order to start the iteration ,one need to know the fluid
outlet temperature. This 1is initially approximated as the

mean solid and fluid inlet temperatures,that is
F(O)=[F(A)+¥_(0)1/2 . (D.22)

The fluid and solid temperatures at each step point are
thén computed wusing the procedure outlined for the fixed
bed.The calculated fluid inlet temperature is then compared
with the actual given temperature.If there 1is any
discrepency, the initial approximation is readjusted and the

procedure is then repeated until the two values coincide.
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The U and H matrices are identical to the previous case
except that

Af

I

movingz—AEfixed

also the problem 1is one »dimehsional,that is the

unknowns are F(n+1) and ¢S(n+1).



APPENDIX E :THE COMPUTER PROGRAM

Three programs ;fixedplan ,fixedsph and moving were
written for handling the thermal desigh of fixed and -mbving
bed regenerators fespectively. The intraconduction éfféct
was inéluded in_ail the three pfograms; The programs were )
written in Fortran language and were run,oﬁ Amdahl 470.

The first two programs were written for the purpose of
examining the wvalidity of the integral method.This was
achieved by comparing the analytical results obtained (using
the integral method) with the published results (using
numerical methods).The third program was written in order to
obtain a set of charts for moving bed regenerators.

The input data for the first two programs included the
parameters required to ~calculate the reduced length and
dimensionless period for the fixed bed.However,for a moving
bed regenerator' it was only neccessary to compute the
reduced léngth.

A suitable time and distance increments were chosen(0.2
for both).The fluid and solid surface temperatures at each
step point were then computed. For a moving bed regenerator
the fluid and solid surface teﬁperatures at each 1length
increment along the whole length were obtained .

Two :external subroutines were used in all three

programs, namely
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Zerol

-~ This external subroutine was used to solve -the‘

two non-linear equations for the penetration depth

and solid surface temperature, when 60<1.

SLE

This external subroutine was used to solve the

‘two linear simultaneous equations for the fluid and

solid surface temperatures.The subroutine uses the

matrix inversion technique to solve the equations

list of all three programs are included at the end

of this section.
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IMPLICIT REAL*B (A-H,0-2)
REAL*8 LEN,LENV
REAL®*4 RELEU

THIS 1S A PROGRAM TAKING ACCOUNT OF, ' o !
INTRAPARTICLE CONDUCTION FOR SPHERICAL COORDINATE

THE NAME OF THIS PROGRAM 1S REGE

DIMENSION TGU(100),TSU(100) ,HTU(100),TSM(100)
DIMENSION A1D(S, 5).510(5).70(5 5) x10(5) IPERM(10)
DIMENSION ARU(100) DIFF(100)

DIMENSION PENEU(100) EFF(100)

COMMON /UPPER/ DTU,BIU

COMMON /UPER!/ D1S,RL2,RL3

COMMON /DELTA/ TG1,TG2,TS1,TS2,AR!1

COMMON /SOLTE2/TG6,TS5,AR3

COMMON BLOCK DELTA DEFINES THE VARIABLES USED IN SUBROUTINE FN
IN WHICH THE PENETRATION DEPTH 1S CALCULATED.

COMMON BLOCK /SOLTE2/ DEFFINES THE VARIABLES USED IN SUBROUTINE
FCN IN WHICH TS(N,I+1),TG(N,I+1) ARE CALCULATED.

HT=HEAT TRANSFER AR=AREA UNDER CURVE HT VS TIME
ARE+=AREA UNDER THE CURVE F*PENETRATION VS TIME
X=SOLUTION OF NON-LINEAR EQUATION

X1=SOLUTION OF LINEAR EQUATION SOLVED BY MATRIX INVERSION
A1=MATRIX OF COEFFICIENTS

B1=MATRIX OF RIGHT HAND SIDE OF EQUATION A.X=B
DT=INCREMENT OF TIME

CONST=F (TIME) WHEN T=T0

PENE=PENETRATION DEPTH

READ(S,500)SOLK,DENSOL, CPSOL ,DIASOL, PORO, SOLFLO
FORMAT(E?.2,77.1,F4.1,E8.1,P4.1,F4.2)
READ(5,5100)GAMTU, LENU, BEDAU, VOLFU
PORMAT(F6.1,r5.2,FP4.1,P5.2)

CPGU=0.917+(2,.58E-4) *GAMTU~ (3.9BE-8 ) *GAMTU**2

VISGU=1,46E-6*GAMTU**1,5/(110.+GAMTU)

DENGU=353./GAMTU

GASKU=6. 16E-7*GAMTU**0 6B

VKI1GU=DENGD/VISGU

DENU=DENSOL/DENGU-1,

GASFUsVOLPU*DENGU
VTERU=SOLFLO/ (DENSOL* (1 .-PORO) *BEDAU)
UGASU=GASFU/(DENGU*BEDAU)

REYNU=UGASU*DIASOL*VRKIGU

PRANU=VISGU*CPGU/GASKU

VO1D=3.25-2.25*POR0O

IF(REYNU.GE.100.) GO TO 8000
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Y4U=200,
EXTERNAL PN2V
LOGICAL L22V

X(1)ANDZ(2) ARE THE INITIAL GUESSES FOR TG(N,I+1) |
AND TS(N,1+1), . ’ ' o

TG6=TGU(NU)
TS5=TSU(NU)
AR3=ARU(NU)"

THE VALUES OF TG(N,I+1),TS(N,I+1) ARE NOW CALCULATED

CALL ZEROI(X4U,Y4D,PN2D,E2,L22V)
TGU(NU+1)=RL2*TG6/RL3-DIS* (X4U+TS5)/(2.¢RL3)
TSU(NU+1)=X40
ARU(NU+1)=ARU(NU) = (TGU(NU+1)+TGU(NU)~TSU(NU+1)~-TSU(NU) ) *RLU
HTU(NU)=BIU* (TGU(NU)-TSU(NU))

EXTERNAL FNU

LOGICAL LZU

E1=5,B-7

X2U=0.

Y2U=2,

TG 1=TGU (ND)

TG2=TGU (NU+1)

TS1=TSU(NU+1)

TS2=TSU(NU)

AR1=ARU(NU)

THE VALUE OF PENETRATION DEPTH IS NOW CALCULATED

CALL 2ZERO1(X2U,Y20,FNU,E1,LZU)

PENEU(NU+1)=X20

RLS= (5, *PENEU(NU)**2-PENEU(NU)**3) /(3.~PENEU(NU))
TSM(NU)=-3,*BIU* (TSU(NU)-TGU(NU) ) *RL5/20.
WRITE(B,2560)PENEU(NU+1),TSU(NU+1),TGU(NU+1),DTU,BIU,TGU(2)
PORMAT(6F12.4)

IF (NU.NE.2) GO TO 2570

DIFF(NU)=0.

GO TO 2580 ,
DIFF(NU)=100.*(TSU(NU)-TSM(NU) ) /TSU(NU)
!PP(NU;BR‘(TSM(NU)-TSU(Z))/(TGU(NU)-TSU(z))

GO TO 901

IF T>=T0 USE MATRIX INVERSION TO SOLVE 2 LINEAR EQUATIONS
AT TH1S STAGE PENETRATION DEPTH IS EQAL TO THICKNESS OF PLAT

PENEU(NU+1)=PENEU(NU)
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901 .
1000

1601
1602
3301

3302

1050

1001

1002
999
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NDIMA=S

‘RDIMT=5

NDIMBX=5 ' o - ‘ :

NN1=2 v ' , .
NSOLe1 o '

NN1=NO.OF EQUATIONS, A1sMATRIX OF COEFFICIENTS
B1=MATRIZ OF KNOWN RIGHT HAND SIDE A*X=B

A10(1,1)=RL3

A1U(1,2)=D1S/2.

AD(2,1)=-BIU/5.-DTV/2.
A1U(2,2)=1,+BIU/5.+DTV/2.
B1U(1)sRL2*TGU(NU)-DIS*TSU(NU) /2,
BO=DTU*TSU(NU) /2.
B1U(2)==ARU(NU)/BIU+DTU*TGU(NU) /2.-B0D

CALL SLE(NN1,NDIMA,A1U,NSOL,NDIMBX,B1U,X1U,

€ 1PERM,NDIMT,TU,DET,JEXB)

TGU(NU+1)=X10(1)

TSU(NU+1 )=X1U(2)

ARU(NU+1)=ARU (NU)-RLU* (TGU(NU}+TGU(NU+1)-TSU(NU+1)-TSU(NU))
HTU(RU)=BIU* (TGU(NU)-TSU(NU))
TSM(NU)=-ARU(NU) /BIU

EFF(NU)=R* (TSM(NU)-TSU(2))/(TGU(NU)-TSU(2))
DIFF(NU)=100.*(TSU(NU)-TSM(NU) ) /TSU(NU)
MU=NU-2

CONTINUE -

DTEMP=TGU(NU) - (TGINU-TSINU)

IF (DABS(DTEMP).GE.0.1) GO TO 1001

DO 1050 NU=2,NNU

MU=NU-2

1P (MU.GT.0)GO TO 1601
DMUsD] S*MU
GO TO 1602
DMU=DMU+DIS
WRITE(6,3301)DMU,EFF(ND)
PORMAT(F&.2,P6.3)
WRITE(7,3302)DMU, TSU(ND)
FORMAT(F4.2,PB8.3)
CONTINUE
GO TO 999
IF(DTEMP.GT.0.) GO TO 1002
TGU(2)=TGU(2)+DABS (DTEMP/4. )
GO TO 1
TGU(2)=TGU(2)-DABS (DTEMP/4. )
GO TO 1 .
STOP
END
FUNCTION PNU(X)
PENETRATION DEPTH IS CALCULATED IN THIS FUNCTION

IMPLICIT REAL*8 (A-H,0-2)
COMMON /UPPER/ DTU,BIU
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COMMON /DELTA/ TG! TBZ,TSl TS2 AR?

P2=TS1-TG2

P1=BID*DTU* (TS1+4TS2-TG1-TG2) /2. *AR1

FNU= (5 ,%X**2-X¢*3)*pP2*BIU-20. '(3 -X)*P1/(3.*B1U) ' ‘
RETURN

END '
runcrxou_rnzu(x) ' \

TS(N,I+1) AND TG(N,I+41) ARE CALCULATED IN THIS SUBROUTIN
USING THE NON LINEAR EQUATION FOR TS ’

IMPLICIT REAL*8 (A-H,0-2)

' COMMON /UPPER/ DTU,BIU

COMMON /UPER1/ D1S,RL2,RL3

COMMON /SOLTE2/ TGS TSS AR3
xl-an'TGG/RL3-DIS‘(X*TSS)/(RLB‘Z )
P4=5.*BIU* (X-X1)-2.*X

P2=X-BIU* (X-X1)

P1=sAR3+BIU*DTU* (X-X1+TS5-TG6) /2.
IF(P2.GT.0) GO TO 10

FN2Us3, *X*22¢pg-20 % (-P2)**2*P1/(3,*BIU)
GO TO 20

FN2U=3 ,%X*228pg-20.2p2¢%%2¢p1/(3,.*BIU)
RETURN

END



