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ABSTRACT 

Effectiveness of solar radiation pressure in the three-axis attitude control of 
present day and next generation of large communications satellites is investigated. 
A simple two-flap configuration is used with optimization of the direction of the 
applied control moment rather than the magnitude of the weak solar radiation 
pressure. Simulations were carried out in the presence of varying orbital eccentricity 
and inclination, solar aspect angle and controller dynamics parameters. Time 
histories of librational response against orbital position are presented for controlled 
and uncontrolled conditions. The results suggest the semipassive controller to be 
quite effective over a wide range of system parameters and it can meet the exacting 
pointing accuracy demanded by large communications satellites. 
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1. INTRODUCTION 

1.1 Preliminary Remarks 
Spacecraft motion involves two fundamental areas of interest: the study of 

the trajectory of its centre of mass, known as orbital mechanics, and the analysis of 
the motion of the spacecraft about its centre of mass, referred to as attitude 
dynamics. Orbital mechanics treats the spacecraft as a point mass and is governed 
by the classical Keplerian relations. Spacecraft, however, have finite dimensions and 
hence possess inertias. Consideration of the inertias of the spacecraft is necessary 
to describe its orientation about the centre of mass. The study of motion about the 
centre of mass, also known as libration, constitutes attitude mechanics. 

The simultaneous analysis of coupled orbital and librational motion 
obviously represents a complex dynamical problem. The analysis involves three 
coordinates to identify the position of the centre of mass in space and three 
rotational degrees of freedom to account for the spacecraft's motion about its 
centre of mass. Fortunately, we have two simplifying factors. Firstly, the Keplerian 
analysis indicates that orbital motion occurs in a plane . Hence we need only two 
variables to specify the position of the centre of mass of the satellite in its orbit. 
Furthermore, it has been observed that for all situations of practical importance, the 
energy associated with librational motion is merely a small fraction of that 
contributed by the orbital motion. ̂  In other words, the perturbation of the orbital 
motion by the attitude motion can be neglected. Hence the classical Keplerian 
relations continue to describe the orbital motion with sufficient accuracy even in the 
presence of librations.thus decoupling the two motions. 

There are numerous situations of practical importance where it is desirable to 
maintain a satellite in a fixed orientation in space relative to the Earth. 
Communications satellites with precisely directed antennas, cloud cover scanning 
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weather satellites, Earth resources survey satellites, scientific and military 
observations satellites, etc., have preferred orientations dictated by their missions. 
Unfortunately, despite being precisely oriented at launch, satellites tend to deviate 
from their desired orientations under the influence of various environmental forces. 
The dominant among these are; 
(a) local variation of the Earth's gravitational acceleration over the satellite's 

dimensions (gravity-gradient torque); 
(b) interaction of the ferromagnetic and current carrying materials, on board the 

satellite,with the Earth's magnetic field (magnetic torque); 
(c) free molecular interaction of the satellite with the Earth's atmosphere (for 

near-Earth orbits); 
(d) solar radiation pressure acting on reflective surfaces of the exterior of the 

satellite. 
3 

These environmental forces are deterministic and several authors have 
successfully modelled the influence of these forces on the dynamics of spacecraft. 
By contrast,the less dominant effects of cosmic dust,micrometeorite impacts, solar 

4 

wind, etc., are random in nature. Brereton has studied their relative contributions 
with respect to the specific geometry of the GEOS-A satellite (Figure 1.1). It is of 
significance to note here that the solar radiation pressure becomes the most 
dominant environmental torque close to and higher than 36,000 kilometres, which 
corresponds to the geosynchronous altitude, i.e., the altitude at which the satellite's 
orbital period becomes equal to the Earth's rotational period about its axis. 

This raises the possibility of a communications satellite being subjected to a 
significant solar radiation pressure torque causing large amplitude motion. 
Obviously, this would be inconsistent with the high pointing accuracy demanded of 
such satellites. Furthermore, the destabilizing contribution of solar radiation 
pressure would be magnified in situations where the satellite's projected area to 
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Figure 1.1 Variation of environmental torques with altitude for a representative 
satellite. 
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mass ratio becomes relatively large together with an appreciable deviation between 
the centre of pressure and the centre of mass. Several present day and next 
generation satellites display these features. 

Over the years, a variety of attitude control concepts have been proposed and 
a few successfully implemented in spacecraft design. They may be classified into 
major categories as active, passive and semi-passive procedures. 

Active stabilization procedures use energy available on board the satellite. 
Such systems can maintain a specified orientation with almost any desired degree 
of accuracy at the expense of energy and consequently limit the satellite's useful 
lifetime. Control systems employing microthrusters, momentum wheels, magnetic 
coils, etc.,belong to this class. 

On the other hand, passive stabilization techniques do not rely on the source 
of energy aboard the satellite. They are characterized by their use of environmental 
forces to provide the necessary control torques. The approach has proved effective 
where the orientation requirements are not severe. The Earth's gravity gradient is the 
most widely exploited environmental force todate. 

Semi-passive stabilization systems utilize environmental forces to provide 
the control effort but at the same time require a small amount of on board power to 
actuate control mechanisms. The use of normally destabilizing solar torque to 
advantage in controlling undesirable librations falls in this category. This is achieved 
through a judicious choice of controller configuration and strategy in conjunction 
with suitable performance criteria. Such systems are in the developmental stage. 
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12 A Brief Review of Literature 
The presence of solar radiation pressure in the space environment has been 

5 
known for a long time. In 1958, Roberson estimated its order of magnitude. 
Utilization of the solar radiation pressure to control satellite motion was first 
recognized by Garwin who proposed "solar sailing" as a simple, viable method of 
propulsion for interplanetary missions. Sohn^ considered its application for attitude 

g 
control using a weather vane type configuration, while Hibbard suggested the use of 
a set of reflecting mirrors to increase the available force. 

A detailed study of planar librations of a flat plate in an eccentric, ecliptic 
orbit subjected to the solar, Earth and Earth-reflected radiations is due to Flanagan . ..9,10 and Modi ' 

1112 
Modi and Kumar ' considered the solar radiation pressure acting on a 

cylindrical satellite and included cross-plane motion in circular orbits. Modi and 
13 

Pande studied effects of solar radiation pressure on the attitude dynamics of a 
14 

slowly spinning system while, Shrivastava and Hablani explored its effect on a 
gravity stabilized satellite. 

15 
Galitiskaya and Kisler analysed a set of panels for three-axis stabilization 

and qualitatively established their optimum inclinations for the maximum utilization 
of the solar pressure. 

16 
Scull reported an experiment on board Mariner IV where solar radiation 

pressure had been applied to align the roll-axis of the spacecraft with the Sun-line, 
on depletion of the attitude control gas. During a major portion of the mission, one 
of the vanes of the solar controller was inoperative. However, after its subsequent 
reactivation, the solar controller together with active gyros proved effective in 
aligning the roll-axis of the spacecraft to within 1 0 of the Sun-line. 

17 18 
Later Modi and Pande ' discussed effectiveness of a semi-passive 

three-axis four plate controller with particular emphasis on simplicity of design and 
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practical feasibility. 
19 Noting the need for further simplification, Lunscher and Modi improved this 

controller utilizing a near optimum magnitude independent strategy. A simple 
two-plate controller was developed that effectively reduced large deviations from 
equilibrium observed earlier and also shortened the time required to damp 
disturbances. Through computer simulations, the controller was shown to be quite 
effective with satellites of relatively small sizes, e.g., INTELSAT-IV and ANIK-I, 

having low controller dynamics parameters (C=2 and C =5, respectively). 

1.3 Scope of the Present Investigation 
The possibility of stabilizing next generation of large communications 

satellites using solar radiation pressure through a near optimal three-axis control 
strategy is explored here. In the beginning, the governing equations of motion for an 
axisymmetric dual-spin satellite with a stabilized platform undergoing general three 
dimensional librational motion are derived. This is followed by evaluation of solar 
radiation pressure induced generalized forces. A two-flap controller having arbitrary 
orientation in space is described in conjunction with a control strategy which 

19 
follows the procedure discussed by Modi and Lunscher .Finally, the effectiveness 
of the controller is assessed with reference to the recently launched INSAT-1A 

(Indian National Satellite) and the proposed communications satellite of the 
European Space Agency,L-SAT, to be launched in 1987. 

INSAT-1A (Figure 1.2) is a highly advanced communications, direct TV 
broadcast and meteorological satellite launched in 1982. Its design life was seven 
years. It had a solar sail mounted on a 12.65 m boom to provide stability against the 
solar pressure moment due to the deployed solar arrays. Unfortunately, the sail 
failed to deploy, thus considerably reducing the satellite's useful lifetime. INSAT-1A 
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Figure 1.2 Geometry of recently launched India's multipurpose communications 
satellite INSAT 1-A 
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dramatically showed the situation in which the solar pressure torque can virtually 
dictate the librational dynamics. The standby INSAT-1B, identical to the failed 
satellite, was launched in 1983 and is operational. The world is watching with 
considerable interest the performance of this unique three-in-one multifunctional 
satellite that promises enormous saving in cost. 

The second satellite chosen for study is L-SAT (Figure 1.3), a large 
communications satellite as suggested by its name. It carries two large solar panels 
spanning a distance of about 33 m, to generate around 7 kW of power. INSAT-1A and 
L-SAT have nominal controller dynamics parameters of C = 10 and C=80, 
respectively. 
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Figure 1.3 Geometry of the proposed European 
communications satellite L-SAT 1 

Space Agency's 



2. FORMULATION OF THE DYNAMICAL PROBLEM 

2.1 Kinematics of the System 
Consider a dual spin axisymmetric satellite with its centre of mass at S, 

moving in a Keplerian orbit about the centre of force 0, as shown in Figure 2.1. The 
dual spin satellite consists of a central body I called the rotor, which is spinning at a 
uniform angular velocity d , connected to a stabilized platform II. The rotor provides 
stability through a gyroscopic moment and the platform, despun by control 
moments, can be used to track a given object in space. Sections I and II are 
connected through a viscous damper which is effective in the axial direction. 

The spatial orientation of the axis of symmetry of the satellite (the x-axis) is 
completely specified by two successive modified Eulerian rotations 7 and 0 , 

referred to as roll and yaw, respectively. These, together with the true anomaly 6, 
define the attitude of the satellite's principal axes x,y,z with respect to the inertial 
reference frame x'.y'.z'as indicated in Figure 2.1. The rotor and platform spin in the 
x,y,z reference with angular velocities d and X, respectively. 

From the geometry of the motion, the following relations for angular 
velocities are readily obtained: 

x , I 
= d - 7 s i n / 3 + 6 > c o s 0 c o S 7 (2.1a) 

x , I I 
= X - 7 s i n 0 + e 9 c o s 0 c o s 7 (2.1b) 

w y = 0 - f 5 s i n . 7 ; 

w = 7 C O S / 3 + 6 * s i n | 3 s i n 7 

(2.1c) 

(2.ld) 

10 



Figure 2.1 Geometry of motion of an axisymmetric satellite in the solar 
pressure environment. 
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Based on the geometry and mass distribution of the satellite it is convenient 
to define: 

I =inertia parameter of an axisymmetric satellite 
= l /I xx yy 
= l x x / l z z ; and (2.2a) 

J=platform inertia fraction 

The direction cosines of the local vertical ( j 0 ) along x,y,z directions are : 

1 = s i n 7 c o s 0 ; 

1^ = cos7COsa ; (2.3) 

1 = s i n 7 s i n ^ c o s a + c o s 7 s i n a 

Since x,y,z are body fixed principal axes with origin at centre of mass of the 
satellite,the following relations hold: 

' m x d m s = J m y d m s = J m z d m s = 0 ' <2-4> 
s s s 

J m x y d m s = / m y z d m s = / m z x d m s = 0 ; (2.5) 
s s s 

J x 2 d m =Ul + 1 - I ) 
J m s s 2 y y z z x x ' 

f y 2 d m = — ( I + 1 - I ) ; Jm * s 2 z z x x y y ' ' 

J z 2 d m =Ul + I - I ) . (2.6) 
J t n s s 2 x x y y z z v ' 
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2.2 Evaluation of the Energy Expressions 
The expressions for the kinetic and potential energies needed for the 

Lagrangian formulation can be obtained quite readily, 
T = kinetic energy of the satellite 

= kinetic energy due to orbital motion + kinetic energy due to 
rotational motion 

m 
£(R 2 + R 2 0 2 ) co2 + I co2 + I co2]. 2 2 xx x yy y zz z 

Substituting from equations (2.1) and (2.2), the kinetic energy can be expressed as, 

-£(R Z + R 62) + [ I ( 1 - J ) ( a - 7 s i n ^ 
2 2 1 

+ e ' c o s / J c o s T ) 2 + J I (X - - f s i n / J + OcosB 

COS7)2 + (0 - 6siny)2 + (7 c o s / 3 + 

0 s i n / 3 c o s 7 ) ] . (2.7) 

U = potential energy of the satellite 9 

udm. 
m 

s r 

where 
r = (x+RI )T + (y+Rl„) J+ (z+Rl )k . 

x y z 

Using expressions (2.1) to (2.6), the potential energy to 0(—s-) can be shown to be, 
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Mm I v v 1 - 1 2 2 

U = — S - M{ _£*( _ _ ) } ( i - 3 s i n S c o s ^ f l ) . (2 .8) 
9 2 2R J 1 

2.3 Nonconservative Forces and Constants of Motion 
The Rayleigh dissipation function is defined as 

The classical Lagrangian procedure applied to the a-degree of freedom yields, 

^ • { l x r ( a - 7 s i n / J + e c o s / 3 c o s 7 ) } + K d ( d - X ) = N f l . ( 2 . 1 0 ) 

For a dual spin satellite the rotor is spun at a constant average rate, i.e., 
without any spin decay. The spin energy dissipated (say through bearing losses) 
should be compensated by means of an energy source. The generalized force Nfl 

achieves this through 

N a = K d ( i - X ) . (2.11) 

Integration of ( 2 . 1 0 ) then yields a constant of the motion, 

a - 7 s i n 0 + 0 c o s 0 c o s 7 = 1 . ( 2 . 1 2 ) 

This may be used to eliminate the cyclic coordinate a through the spin parameter a 
defined as 
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a 
a = -7 

1 
a -1 (2.13) 

0 0=0=7=0 0 0 = 0 
Note, the formulation also assumes absence of energy dissipation in other degrees 
of freedom. 

2.4 Equations of Motion 
1 2 

Neglecting orbital perturbations due to librational motion • and using the 
spin parameter, the Lagrangian procedure yields the governing equations of motion 
in the roll(7), yaw(p') and pitch(X) degrees of freedom. Recognizing that: 

the independent variable t can be replaced by the true anomaly 0. Finally employing 
the classical Keplerian relations, the equations of librational motion can be written 
as: 

7" - 20'(7'tan/3-cos7> - (0' -sin7> sec01 (1 - J) 

I(a+1){ (1+e)/(1+ecos0) } 2 + J I ( X ' 7 ' 

sin/3 + COS0COS7) + { 3(1-1 )/(1+ecos0) 

- 1 }sin7COS7 - { 2esin0/(1+ecos0) } 

( 7 ' + cos7tan0) = Q (2.14a) 
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j3" - 7'C O S T - {2esin0/( 1+ecos0)} ( p " - s i r ^ ) 

+ (7'cos0 + cos7sin/J) [(1+J)I(a+1) 

{(1+e)/(1+ecos0)} 2 + J I ( X ' - 7'sin/J + 

cos/3cos7) + (7'sin/3 - cos/3cos7) ] -

{3(1-1 )/(1+ecosfl)} sin 27sin/Jcos/3 = C> ; (2.14b) 

X" - 7"sin/3 {2esin0/(1+ecos0)} (X'-7'sin0 

+ C O S / 3 C O S 7 ) - /3'7'cos0 - 7'cos/3sin7 -

/3'cos7sin0+(K/JI) { (1+e) 3/ 2/( 1+ecos0) 2} 

[X' - 7'sin0 + cos/3cos7 - (a + 1) 

{ (1+e)/( 1+ecos0) } 2] = Q x ; (2.14c) 

where Q. (i = 7, B, X) represent the normalized generalized forces due to 
solar radiation pressure which are related to the generalized forces N. (i= 7, B, X) 
by: 

Q = N 
R 3 (1+e) 3 

7 7 I u (1+ecos0) 4 ' z z 

R 3 (1+e) 3 

^ Jyy* 1 (1 +ecos0) 
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R 3 (1+e) 3 

° X " N x I u (1+ecos0) 4 ' ( 2" 1 5 > 

A A 

This highly nonlinear, nonautonomous and coupled system is not amenable 
to any closed form solution. The equations were solved numerically using an 
Adams-type predictor-corrector method available in the University's computer 

20 21 
centre library ' . 



3. CONTROLLER CONFIGURATION AND GENERALIZED FORCES 

3.1 Description of the Controller 
The normalized generalized forces (Q.) on the right hand side of the 

equations of librational motion are provided by moments generated on the 
controller plates by the solar radiation pressure. The controller's geometry and 
orientation are identified with respect to the satellite's principal axis x,y,z as shown 
in Figure 3.1. Each of the controller plates is capable of three independent rotations 

, and 6. Thus the two plates taken together constitute a six degree of 
freedom system. When all of the six plate rotations are zero, the plate normal n is 
aligned in the -z direction. The plates are reflective and hence effective on both 
sides. The movement of the controller plates is constrained so as not to intercept 
the satellite body. This translates to a mathematical constraint described later in 
Chapter 4. 

3.2 Evaluation of the Solar Radiation Pressure Force 
Consider a plate element of area dA (Figure 3.2) with reflectivity p, 

transmissivity r.and the sunlight incident at angle £.The resultant force due to the 
solar radiation pressure p 0 is given by 

d? = -podA|cos£ | { (1-r)u + ps} . (3.1) 

With plates made of a highly reflective material, one can neglect the 
absorption, that is, 

1-T - p, 
giving 

18 



Figure 3.1 Geometry of the proposed controller 
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Figure 3.2 Orientation of a plate element and solar pressure force components. 



dF = 2pp odA|cos£|cos£ n . 

21 

(3.2) 

Integration over the entire plate area gives the resultant force acting at the 
centre of pressure of the plate, 

F = 2pp oA|cos^ |cos^ n . (3.3) 

3.3 Determination of the Controller Plate Orientation 
The general orientation of the controller arm and the plate determine the 

moment arm and angle of incidence £, respectively. The controller plate surface 
normal n, defines the orientation of the plate after three rotations. 

Initially the plate normal is directed along -z ,, 

(3.4) 

For rotations through 5 about y 1 ( a 2 about z 2 and a 1 about x 3, the 
transformations between intermediate coordinates can be written as: 

x 2 

z 2 

cos6 0 s i n S 

0 1 0 

- s i n 6 0 cos8 
Y i 

2 i , , 

(3.5) 
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giving 

Thus. 

x 3 

z 3 

cosa2 

• s i n a 2 

0 

s i n a 2 0 

c o s a 2 0 

0 1 

x 2 

22/ ' 

(3.6) 

X 
y 
z 

1 . 0 0 

0 c o s a , - s i n a , 

0 s i n a , c o s a . 

x 3 

Z 3 / , 
(37) 

A 

n 

- c o s o 2 s i n 6 

c o s a , s i n a 2 s i n 8 + s i n a , c o s 6 

s i n a , s i n a 2 s i n 6 + cosa,cosS 
(3.8) 

cos£ = n . u= - u 1 ( c o s a 2 s i n 6 ) + U j ( c o s a t s i n a 2 s i n 6 + 

s i n a , c o s 6 + u k ( s i n a , s i n a 2 s i n 6 -

c o s a , c o s 6 ) , (3.9) 

where u = unit Sun position vector. 
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3.4 Position of the Centre of Pressure in Principal Coordinates 
The evaluation of r, the position vector of the centre of pressure, proceeds in 

a manner similar to that of n except that there is no 6 rotation, 

?=r o±hi, (3.10) 

where the positive and negative signs refer to the upper and lower arms, 
respectively. r Q is measured from the controller arm hinge point while h is measured 
from S. Initially, the centre of pressure is located at a distance e in positive y 2 

direction. 

On applying rotations a2 followed by a 1 f the vector r Q in the principal 
coordinates is given by, 

/ s i n a 2 

r Q = e I cosa 1cosa 2 } (3.11) 
\ s i n a 1 c o s a 2 

i.e., 

s i n a 2 ±h/e 

cosa 1coso 2 \ (3.12) 
s i n a 1 c o s a 2 
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3.5 Evaluation of the Controller Plate Moments and Generalized Forces 
The moment produced by each controller plate is given by, 

N = J A r x dF = r x F, 

where F is substituted from equation (3.3) to yield 

N = 2pp QA | C O S ^ | cos£ r x n. (3.13) 

Using equations (3.8) and (3.12), r x n can be evaluated giving the control moment 
components as: 

N x = 2epp 0A |cos£ | cos£ cosa 2 cos5 ; 

Ny = -2epp 0A |cosi- | cosi- [±(h/e)(cosa 1cos5 

- s i n o 1 s i n a 2 s i n 6 ) + c o s a 1 s i n a 2 c o s 8 -

s i n a 1 s i n 6 ] ; 

N z = -2epp 0A |cosi-1 cos£[±(h/e) + sina 2> 

(sinajcos5 + c o s a 1 s i n a 2 s i n 6 ) + cosa^ 

2 . 

cos a 2 s i n 8 J . (3.14) 

The resultant moment consists of contributions from the upper and lower plates, 
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N = N + N. u I (3.15) 

The generalized forces can now be obtained quite readily. Equations (3.14) give the 
moments along the orthogonal directions x,y,z (Figure 2.1).The generalized moments 
N^, N^, can be related to them through projections along principal coordinate 
directions after application of the corresponding Eulerian rotations 7 , /3, X. 

is applied first along z 0 axis (7 axis) resulting in rotation 7 with the first 
moment projections, 

N. 

N 
Y1I 

N. 

C O S 7 s i n 7 0 

- s i n 7 C 0 S 7 0 

0 0 1 

0 

0 

N 

0 

0 

N 

is applied next along the y , axis (/3 axis) causing rotation 0 with the projections, 

N. 
N. 
Y2\ 

N. z 2* 

cos/3 

0 

sin/3 

0 -sin/3 

1 0 

0 cos/3 
N, 
N 

(-sin/JN, 

cos/3N 

Finally is applied along x 2 axis leading to rotation X. However, the principal 
body coordinates do not rotate with X, so N % is simply added to the N component 

A X 2 
to give the final moment vector in the principal body coordinates, 



26 

N. 
N. 
N. 

1 0 -sin/3 

0 1 0 

0 0 cos/3 

N, 

N 

(3.16) 

The generalized moments can now be determined from the known moments N , N , 
N z by inverting the transformation (equation 3.16), 

N 

1 0 tan/3 

0 1 0 

0 0 sec/3 

N. 
N. 

N. 
(3.17) 

Applying equations (2.15a), (2.15b) and (2.15c) one obtains the normalized 
generalized forces. 

n 

1 0 tan/3 

0 I 0 

0 0 Isec/3 

N. 
N. 

N. 

(3.18) 

R 3 (1+e) 3 

where II = 
Ixx* £ ( 1 + e c o s e ) * 

The constants of equation (3.18) can be combined with those common to 
equations (3.14) giving the dimensionless controller dynamics parameter, 

2epp 0R 3A 
C = . (3.19) 

I n 
XX 

Thus the normalized generalized moment vector has the form, 
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Q^J =CE(0)|cos$|cos£ 

0 tan/3 

1 0 

0 Isec/3 

N px 
N. 
P Y i 

N pz 

(3.18) 

where; 

Np x = cosa2 cos6 ; 

= - [±(h/e) ( c o s a ^ c o s f i s i n a ^ s i n a 2 s i n 6 ) 

+ c o s a 1 sina2COs6 - s i n a ^ s i n S ] ; 

N = - [±(h/c) + s i n a 0 ) ( s i n a . c o s f i + pz I i 

c o s a 1 s i n a 2 s i n 5 ) + cosa ^ c o s a 2 s i n 8 ] ; 

E(6>) = 
(1+e) 3 

( 1 + e c o s e ) 4 

The highly transcendental character of the generalized forces does not 
permit closed form determination of the plate orientation for a desired moment Q . 
Note also that the problem is underspecif ied, i.e., there are three equations and six 
unknowns. 



4. CONTROL PHILOSOPHY AND OPTIMIZATION OF GENERALIZED FORCES 

4.1 Introduction 
As outlined earlier, the generalized forces are quite complex, necessitating 

the development of a control philosophy particularly suited to the phyiscs of the 
controller. The solar radiation pressure force, though dominant (relative to other 
environmental forces), provides only a weak control moment. On the positive side, 
the well developed theory of gyroscopes can be used to advantage because a dual 
spin satellite in space behaves exactly as a disturbed gyroscope. It may be noted 
that the theory can be easily extended to nondual spin spacecraft by simply setting 
the spin parameter a to zero (Chapter 2, equation 2.13). 

Thus the following guidelines emerged in the design of the control strategy: 
(a) utilize the theory of gyroscopes to judiciously choose the direction in 

which the optimal control moment N should be applied, independent of its 
magnitude,to stabilize the spacecraft; 

(b) maximize the weak solar radiation pressure moment along the direction. 

The principles imply that application of a nonlinear optimization technique, 
such as the projected gradient method, would be the best means of solving the 
controller equations. Furthermore, since the controller equations are underspecified, 
(six unknowns with three equations) we would require at least three constraint 
equations.This translates into the following optimization problem: 

Minimize the cost function F, subject to the constraint given by vector g =0. 

where: 

F = - N.«N d (4.1a) 

28 
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and 

g = 
9l 

•93 

= 0 (4.1b) 

Functions g 2 and are described' in section 4.2. The cost function implies that 
we wish to maximize the component of the control moment N along the desired 
moment direction subject to the constraints represented by equation (4.1b). 

4.2 Constraints of the Problem 
Directional Constraint 

The directional constraint ensures that N acts along N . and has the form, 

(42a) 

This function closely approximates the angle (in radians) between N and 
when they are nearly aligned. The function, therefore, has the following desirable 
properties: 

(i) its solution is unique, that is, equation (4.2a) is satisfied only when N and 
are exactly in the same direction; 

(ii) it permits specification of the maximum acceptable misalignment between 
N and to act as the stopping condition for the method used to solve 
equation (4.2a). 
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Mechanical Constraints 
The mechanical constraints ensure that the controller arms and plates do not 

move in a way as to interfere with any part of the satellite. This requires that > 0 
and < 0 as shown in Figure 3.1; 

"2 * 0 ' 

(4.2b) 
alj < 0 ; 

0 , a\ < 0 , 

(4.2c) 
a* > 0 . 

Since the gradient of the vector g does not exist on the constraint surface 
(Appendix A), the nonlinear constrained optimization technique mentioned earlier 
cannot be used. Instead, a similar two step approach is employed that economically 
permitted near second-order convergence to the constrained minimum of F. 

The first step attempts to achieve the constraint surface (g=0) using the 
second-order Newton method. The second step utilizes a combination of two 
unconstrained optimization techinques, steepest descent method and the 

22 

Fletcher-Reeves conjugate gradient method, to move one increment towards the 
unconstrained minimum of F. This corresponds to one step of the steepest descent 
method or one cycle of the Fletcher-Reeves method. The above restriction prevents 
the system from drifting away too far from the constraint surface in the pursuit of 
the minimum of F as the increment, in general, is not along the constraint surface. 
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Step one is then reactivated to reach the constraint surface again. Thus, by repeated 
application of step one and step two in sequence, the constrained minimum of F is 
obtained. 

4.3 The Constraint Surface 
The second order Newton method is utilized to achieve the constraint 

surface. The foundation of this technique is the Taylor series approximation upto 
first order variation, 

g(x k + 1)-g(x k) + gxAx =0, 

Where x is a vector comprised of the six controller plate rotations and g x is the 
gradient or the Jacobian matrix of g. g(xk) is the current value of the constraint 
vector g.The method leads to the next smaller constraint vector, g(x^ + 1), in steps of 
size 

Ax =-gx' [g xg x' ] 1 g(x k), (4.3) 

resulting in a plate rotation update of 

xk+1 = xk + ^ • ( 4 4 ) 

The iteration stops when |g(x̂ )| becomes less than a preset error tolerance, t , 
expressed in radians, 

|g(xk)| < t « 0 . 



32 

One of the difficulties of this method lies in the inversion [9 X9 X' 3 ^ in 
equation (4.3). When the mechanical constraints of equations (4.2b) and (4.2c) are 
satisfied, the matrix reduces to a simple constant whose inversion produces no 
problem when non-zero. However, when the mechanical constraints are not 
satisified, the matrix could be singular. This problem was overcome by using a 
random number generator to produce a series of uniformly distributed random 
numbers of extent ±t . When added to the plate rotations, they act as a distrubance 
and perturb the system off the'singular point. Fortunately, this problem was never 
encountered. 

A complication may arise when one of the mechanical constraints ( g 2 or 
g^) is zero implying that the gradient at the constraint is also zero. This results in a 
zero element row and column in the g x9 x' matrix, making it singular. The problem, 
however, can be overcome by noting that a constraint which is satisfied represents 
the one that is no longer active. It can, therefore, be temporarily removed from 
consideration by reduction of the matrix (by removal of zero row and column) prior 
to inversion. After inversion the zero row and column are once more restored and 
the computational process continues. 

4.4 Unconstrained Minimization 
Once the constraint surface is obtained, a combination of two techniques, as 

mentioned before, is implemented to minimize F. Initially, the steepest descent 
gradient method rapidly guided the system to a minimum. When close to the 
solution, the Fletcher-Reeves conjugate gradient method was used for finer second 
order convergence. The criterion used for determining closeness to the solution was 

|Ax.|£20t. 
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where | Ax ̂  | represents the largest plate rotational increment in a given step. The 
above approach was preferred to second-order Newton-Raphson method because 
the latter would involve inversion of the cost function's Hessian matrix. Obviously, 
this is computationally costly. More importantly, since F can readily be shown to 
have a maximum as well as a minimum, the Hessian matrix of F is not always 
positive definite. Therefore, a true second-order method could inadvertently drive 
the system to the maximum. In comparison, the steepest descent gradient method is 
easy to implement and is guaranteed to converge to a minimum. However, near the 
minimum the convergence rate of the gradient method can become quite slow. For 
this reason the Fletcher-Reeves method is invoked in this region. The 
Fletcher-Reeves method only requires the computation of the gradient of the cost 
function which is easier and far less time consuming. 

The steepest descent gradient method determines the current search 
direction by utilizing the gradient of the cost function, F, denoted by F , 

F 
(4.5) 

The next lowest value of F is located at a distance D, from the current point in the 
k 

direction Ŝ .The new plate rotations are then updated from the previous values 

Xk-H = X k + D k V <4"6> 

is evaluated through a linear search discussed later. This process continues until 
the change in plate rotations between successive optimal points on the constraint 
surface becomes less than 20t. At this point the Fletcher-Reeves conjugate gradient 
method takes over. This is a multistep cycle requiring as many iterations as there 
are dimensions to the problem (six in the present case). 
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The first step is a steepest descent gradient search exactly the same as in 
equations (4.5) and (4.6) above. The subsequent five steps involve the current cost 
function gradient F . and previous cost function gradient F . The new search 
direction is given by 

dk 
s k = ' ( 4 7 ) 

\\\ 

where d R = - F ^ + d,_, . (4.8) 
1 x,k-l' 

Initially d = F , i.e., the gradient of the cost function in the first step. x. 
o x,o * ' 3 K k 

is updated as in equation (4.6). Each cycle produces a second order convergence 
step just as the Newton-Raphson method does but is less time consuming as only 
the gradient of the cost function has to be computed in each interval. 

A linear search in the direction of S R is employed by both the techniques, 
namely, the steepest descent gradient method and the Fletcher-Reeves method. This 
search is conducted using the secant method out to a maximum distance of ten 
degrees from the current point x^. The secant search seeks to find the zero of the 
directional derivative of F along Ŝ . The secant method updates through the 
recursive relation. 

F D ( D k - 1 } 

D K + 1 =D - (D.-D, ) U * 1 , (4.9) 
k 1 k 1 k k 1 V V - W i * 

where F^ is the directional derivative of F. Initially is set within the ten degree 
bound, but it is reduced if Dk + 1 falls outside the zero to ten degree region. The 
iterations stop when Dk is less than t. 
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4.5 Some Further Remarks 
The algorithm was found to be quite efficient and robust. Irrespective of the 

starting point, it was able to drive the system to the constraint surface and then 
attain the objective function minimum. Selection of a starting point for the 
constrained optimization involved two choices. On initiation of the satellite control, 
or when the current moment direction differed from the previous moment direction 
by more than thirty degrees, the controller plates were assigned zero-moment 
position facing the sun flat-on. Since at this orientation each plate individually is 
producing the maximum force, it was felt that fewer iterations may be needed to 
achieve the optimal combined directed moment. When the previous current moment 
directions differed by less than thirty degrees, the corresponding plate rotations are 
used as the starting guess, thereby possibly reducing the number of iterations 
required. 

Occasionally some difficulty was encountered when the cost-function F had 
a non-negative value on completion of a constrained optimization phase. This 
implied that N was directed opposite to N^. However, this phenomenon was rare and 
was never observed to occur consecutively in two control action intervals. When 
h/e was specified greater than unity, the solution became more tedious and error 
prone, though the failure rate remained less than 0.5% and was usually zero for h/e 
= 1. It may be noted that these failures may also be due to the bounds placed on the 
iteration counts in the method to prevent computing costs from becoming 
prohibitive. During such failures the satellite was simply coasted without applied 
moment for one interval and then the control action was resumed. 

Yet another problem was encountered during implementation of the 
constrained optimization algorithm, however this was attended through a minor 
modification of the controller moment gradient. From equation (3.14) we see that 
the term | cos£ | multiplies all the three components of the controller moment N. If 
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plates are edge on to the sun, the |cos£| term becomes zero resulting in the 
moments and their gradients becoming zero. Thus a saddle point is obtained in the 
optimization equations. Since the optimization algorithm require a non-zero gradient 
to proceed, it will stop at such a point. The problem was avoided by forcing 
|cos£ |£0.02 in the calculation of the moment Jacobian matrix. This preserved a 
gradient of | cosi; | at the saddle point permitting the algorithm to proceed. 

4.6 Nature of the Controller Moments and Practical Feasibility of the Controller 
The use of a magnitude independent strategy can be justified by 

consideration of the nature of the controller moments that are available. If the 
maximum moment N available in all directions about the satellite for various solar 
positions and controller offset ratios h/e is plotted, one obtains a series of 
surfaces. It may be noted that these surfaces may be compiled with relative ease 
owing to the symmetric nature of the problem. Firstly, because of overall symmetry 
of the entire system about the x-axis, the results of all solar positions can be 
obtained by moving the solar vector u in any fixed plane normal to the y-z plane. The 
elevation of u can now be specified by a single angle 0. Further symmetries, 
discussed in Appendix-B, imply that the calculation of the optimal moments for 
one-half of a hemisphere about the satellite is sufficient to generate the remaining 
moment directions through a series of reflections and rotations, thus saving a great 
deal of computer effort. Figures (4.1a) to (4.Id) show the surfaces obtained for 
h/e=1 for four different solar elevation angles with u in the x-y plane. The unseen 
part of each surface is obtained by reflecting the observed points about the z axis. 
Inverting the figures would show the result for negative 0. 

Three features become immediately apparent from these surfaces: 
(i) they are convoluted, i.e., there can be abrupt changes in minima; 



Q= 6 0 ° 

Figure 4.1 Maximum controller moment surfaces under varying solar elevation 
angles. 
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(ii) they become increasingly flattened for increasing fi; 
(iii) as h/e becomes larger, both the above features are increasingly 

emphasized. 
These results indicate that for an arbitrary satellite orientation (i.e., arbitrary 

0), any specific moment cannot be guaranteed in all directions. However, some 
moment seems to be available in any direction. Thus a magnitude independent 
strategy would prove successful. 

The physical implementation of the moment optimization also has to be 
justified with respect to a real satellite. During simulations, it was observed that the 
proposed optimization procedure and associated control strategy (presented in the 
next chapter) not only operated satisfactorily but also quite rapidly. As an example, 
stabilization of a disturbed satellite during one hundredth of an orbit, took about 87 
seconds on an Amdahl 470-V8 computer. Hence the controller would have sufficient 
time per step to achieve the control action in actual orbit. The fact that a large 
mainframe processor was employed does not detract from the feasibility of 
achieving similar performance with a dedicated processor on board the spacecraft. 

However, it is recognized that the complete optimization procedure as 
outlined here would involve a great deal of computational resources. The moment 
surfaces of Figure 4.1 provide an avenue for streamlining the optimization procedure 
considerably and for improving its reliability. The search time of any optimization 
algorithm and the reliability of its convergence to a global minimum depend 
strongly on the starting point chosen. Figures (4.1a) to (4.1d) indicate the moment 
directions for a given solar elevation angle for which the plate rotations are known. 
A series of such surfaces could be rigorously evaluated to an arbitrary angular 
resolution during satellite development on Earth, and then stored as 'read only' 
memory in the satellite control computer. Such storage would be rendered more 
economical by utilizing the symmetries described in Appendix B thus involving grid 
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points only over one-quarter of a sphere. Given such a data base, convergence to an 
optimal moment for a given direction N q would entail first a choice of the closest 
direction and solar elevation for which there is a stored solution, and then use of 
that solution as the starting point for the constrained optimization algorithm. Such 
an approach would involve far fewer iterations to converge to the optimal plate 
rotations. 



5. CONTROL STRATEGY 

5.1 Nature and Objective of the Control Strategy 
The objective of the control strategy is to determine the desired moment 

direction Nd. This is achieved through a knowledge of the spacecraft's dynamical 
relations together with an application of the theory of gyroscope. Once the 
appropriate moment direction has been identified, the optimization procedure 
outlined earlier specifies the controller plate angles to achieve maximum moment N 
in that direction subject to the constraints. 

It is necessary to base the strategy on readily measureable parameters 
concerning the satellite's immediate dynamics.The parameters used are: 
(i) satellite's position relative to the fixed stars (Q, u) ; 

(ii) angular velocity of the satellite (7, B , X) ; 
(iii) the Sun's position relative to the satellite ( i , cb) ; 
(iv) Earth's position relative to the satellite (R,d,e). 

Furthermore, the strategy should be such that it depends only on the applied 
moment's direction to achieve a desired result. A quantity is therefore sought whose 
direction as well as magnitude changes in proportion to the applied moment. The 
satellite's angular momentum, L, represents such a quantity. The applied moment N 
is related to the angular momentum L .through the classical relation 

for a reference coordinate system that is either inertial or fixed to the body at its 
centre of mass. The value of L can be readily calculated from the satellite's angular 
velocity (roll, yaw and pitch rates) as; 

40 
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L =u> I + L x x xx a 

= (X - -ysin/J + 000370050) I x x + L f l ; (5.1a) 

Ci) I 
y y y 

(|5 - 0 s i n 7 ) i y y ; (5.1b) 

6J I 
z z z 

= (7COS/3 + 0 c o s 7 s i n / 3 ) I 
z z 

(5.1c) 

Note,the angular momentum contribution of the rotor, L a .has been accounted for. 
When Euler's dynamical equations are applied to an axisymmetric body, it 

can be shown that the axis of symmetry precesses about L.the angular momentum 
vector, counterclockwise at a rate, 

4, = (u? + u * ) 1 / 2 s i n 0 s . (52) 

The precession progresses as long as the spin and precession velocity vectors 
along I and L, respectively, are misaligned as shown in Figure 5.1. I is the unit s s 
vector along the axis of symmetry. This unstable situation can be remedied by 
promoting realignment of these vectors (\{>—**-0 as 6 —"*"0). Ideally this aligned 
orientation is a fixed direction in space for all positions in the orbit, i.e., normal to 
the orbital plane. Furthermore, the equilibrium configuration for a spinning satellite 
is with the spin axis normal to the orbital plane. This direction is referred to as the 
reference momentum orientation L D . In the absence of any applied moment, I_R 
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Figure 5.1 Relative geometry of the axis of symmetry, the angular momentum 
vector and the reference momentum vector. 



43 

maintains a fixed angle 0 R with respect to L.The vector L R is specified by two more 
modified Eulerian angles (7^ and B^) representing the orientation of the spin axis 
with respect to the orbital frame. Thus, applying transformations corresponding to 
these rotations as indicated in Chapter 3, components of the reference momentum 
vector along principal coordinate directions are given by: 

] 

(5.3a) 

(5.3b) 

] 

(5.3c) 

L R j [ =cos|3[cos7COS7f cos/3 £ + sin7sin7jCOS/3 

+ sin/3sin/3^ ; 

L R y =cos7sin7jcos0£ - sin7COS7^cos/3^ ; 

L R z =sin/3[cos7COS7jCOS0^ + sin.7sin7 ̂ cos/3 

- cos/3sin/3 f . 

The three principal angles 0 g, 0 R and 6^ are illustrated in Figure 5.1. They can be 
readily expressed in terms of the associated vector orientations as: 

os [w]' 6s = a r c cos | i* i | ; (5.4a) 

0 R = arc cos | -frr I ? C5-413) 
0 g = arc cos | | . (5.4c) 

Note 4>, taken to be always positive, is defined as the angle between the L R-L and 
I -L planes, s 



44 

The L, L_ and I vectors form the basis of the control strategy. The 
K S 

controller's efforts are directed towards bringing L and I in alignment with L_ 
S K 

which implies achievement of roll-yaw control. Final pitch control is effected 
through a simple time-optimal bang-bang strategy where N is directed along I 

The above mentioned vector alignment strategy is performed in several 
stages. The approach permits precession of I about L to bring it in alignment with 
Lp,while manipulating L to finally align with both. 

Figure 5.2 shows, in the form of a flow chart, some of the important steps 
involved in determination of the desired control moment direction N^. In the 
controlled mode of operation of the satellite, the strategy routine is entered and one 
of the two initial branches of the flow chart is followed depending on the 
configuration of the vectors L , L D and I in Figure 5.1. If L, L B and I are misaligned, 

r\ S K S 

(i.e., 0 g, 0p and 9^ are not all zero) the algorithm to achieve their alignment 
(momentum alignment) is followed. When this is accomplished, the other branch 
corrects for the pitch misalignment. Note, a certain amount of pitch alignment is 
also attempted during the momentum alignment as depicted in the flow chart. 

Momentum alignment is effected by simultaneously following the three 
parallel paths of alignment, equalization and pitch control, each of which generates 
an orthogonal moment direction. Their resultant gives the desired direction N^, 

which is then utilized in the optimization routine to obtain the applied moment N 

through appropriate plate rotations. The primary objective of alignment and 
equalization paths is roll-yaw control.Thus the moment direction generated in these 
branches is always orthogonal to L so that |L| is not affected. 

Pitch, controlled by the third path, is influenced by the other two. This 
necessitates the final bang-bang pitch control in the other branch. It must be noted 
that the flow chart has been simplified considerably in order to help comprehend the 
essential features of the control strategy. 
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52 Alignment Control 
The alignment control branch of the strategy attempts to move the angular 

momentum vector L in such a way as to increase the speed of convergence of l g to 

Lp under the action of precession. Once this occurs, it forces convergence of the 

three vectors L, L B and I . This assumes that equalization control has already 
K S 

positioned I suitably. The alignment control strategy consists of two phases as s 

explained next. 

Phase 1: Positioning of I , L D and L for subsequent convergence 
S K 

The role of Phase 1 of alignment control is to speed up the convergence of I 

to Lp and to position L suitably for convergence. This is conducted in two parts: 

Part 1 

Immediately following an impulsive disturbance (e.g., micrometeorite impact), L is 

displaced from its alignment with I and L„ to a position where 0 =0TJ*O. I and L D 

S K S i\ S K 
remain initially aligned due to the inertia of the satellite. The effect of 0 having a 

5 

finite value causes precession to occur in accordance with equation (52) 

resulting in divergence of I from L D. That is, 0_ increases. This divergence would 
S K Q 

continue until 80° . Following this, convergence of the two vectors would occur 

with corresponding decrease in 0g.The divergence of L R and l g can be stopped if L 

is moved to the other side of the I -L„ plane where the position of I relative to L is 
S K S 

such that the two vectors converge and 0g decreases. 

The condition of divergence or convergence can be easily determined by the 

value of \l> ( i// < 1 80° or \jj > 1 80°,respectively). According to the right hand rule, \J/ 

increases in the counterclockwise sense and the condition for 

convergence/divergence in vector notation can be written as: 
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LR x L-»s 

< 0,LD and I diverge ; 
R S 

(5.5a) 

>0,L_andl converge 
H S 

(5.5b) 

As soon as the satellite is subjected to a disturbance, condition (5.5a) is found to be 
satisfied. The direction of the applied moment, N^, is then chosen to move L into the 
I -L B plane with the objective of placing it, eventually, on the other side where 
S H 

condition (5.5b) holds. 
Thus the moment is applied orthogonal to L in the direction of n, the bisector 

of 9 in order to maintain 0 g and 0 R equal throughout: 

n = L R + l s ; 
and 

N d l = (L x n) x L = n(L«L) - L(n«L) . (5.6) 

The moment is applied until L crosses the I -L D plane which is detected 
S K 

as a fulfilment of condition (5.5b). 

Part 2 
When L croses the I -L D plane Part 2 of the strategy takes over. The 

S K 
initial value of 9^ is recorded as 0_.The precession of \b is directed so g go 
as to cause 9 to decrease without altering L. The period of convergence 
can be reduced further by simply moving L further away from the I -L D 

S K 
plane thereby reducing the required precessional travel angle <f>.The purpose 
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of Part 2, therefore, is to move L an optimal angle from the I -L_ plane 
S R 

to minimize the alignment time. 
The applied moment is now directed in the same direction as in Part 

1, though, the sign is altered because L is now on opposite side of the 
's"LR p l a n e-

N d 1 = - (L x n) x L. (5.7) 

The dynamics is governed by this scheme until one of the following two 
conditions is satisfied. 

(j> 6q < 6g0/2 t 5 - 8 ) 

This condition is based on the premise that 8^ decreases uniformly during 
both divergence of L in Phase 1 (Part 2) and convergence of L during 
Phase 2. It is quite obvious that the cut-off point cannot be exactly 
halfway as given in condition (5.8).This is because of several reasons: 

(a) During divergence of L the convergence of 6^ is aided, while 
the opposite occurs during convergence of L. 

(b) There are nonlinearities in the controller moments (e.g., due to 
the presence of gravity gradient torques). 

(c) ^ follows a different trajectory depending on inward or 
outward movement of L. 

In practice, however, the actual switch point was found to be less than 2 
and as low as 1.7 for large disturbances. The influence of the choice on 
the final result was, in general, small. 
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(ii) e > 8 0 ° 
v ' s 

This condition sets a sufficiently safe margin such that 0 g is not 
permitted to increase indefinitely while awaiting condition (i) to be fulfilled. 
If 0 were to exceed 9 0 ° , precession would cause divergence rather than 
alignment, placing the system back into Phase 1 (Part 1). In stabilization 
trials, this limit was seldom attained. 

Phase 2: Simultaneous convergence of L, I and L D 
S K 

The objective in Phase 2 is to converge all the three vectors L, I and L_ 
S K 

simultaneously. Control shifts to this phase when either condition (i) or (ii) 
in Phase 1 (Part 2) is satisfied. The applied moment N d is again directed 
normal to L in the plane L-n so as to move L towards I and L D. Thus 

S K 
the moment direction is opposite to that in Phase 1 (Part 2), 

N d 1 = <L x n) x L . (5.9) 

The moment is applied in this direction until one of the three conditions is 
satisfied: 

(i) Overshoot 
L B and I come into alignment before 0 0 n become zero. Further 
H S 5 x\ 

precession causes divergence of 0^ so Phase 1 (Part 1) is re-entered. 

(ii) Undershoot 
Here 0 , 8n < 1.5 0 and 0 > 0. This condition occurs if L is s R 9 . 9 
approaching the I -l_p plane while 0 is large, making it unlikely for vector 
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alignment to occur on this approach. 8 is therefore reset and Phase 1 
(Part 2) is re-entered. 

(iii) es=8R=eq=o 

Momentum alignment, i.e., roll-yaw control is now complete. This condition 
is also tested in Phase 1 (Part 1). Now the second branch of the strategy 
for pitch control is entered. 

5.3 8 , 8~. Equalization Control 
S K 

The objective of this branch of the strategy is to maintain 8 and 
6>p equal throughout. This is necessary for the above mentioned two-phase 
alignment control strategy to be successful. In other words, it is necessary 
to ensure that I aligns with L D as it passes through the L D-L plane during 

S K K 
precession.The tolerance allowed here is 

l e g " *RI k V 1 0 * ( 5- 1 0 ) 

Thus equalization becomes finer as 6*̂  becomes smaller. If condition (5.10) 
is violated, then this part of the strategy produces a moment component 
N d 2 perpendicular to n-L plane which equalizes 0 g and 8^. This component 
is therefore orthogonal to N d 1 and is directed along 

N d 2 = ± <L x n). (5.11) 

Here the appropriate sign is determined as follows: 
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Positive 
0 g > 0p and condition (5.5a) is true; 

0 g < 0 R and condition (5.5b) is true. 

Negative 
0 g > 0 R and condition (5.5b) is true; 

6 < 0„ and condition (5.5a) is true. 
5 £v 

5.4 Pitch Control During Momentum Alignment 
It is necessary to control the pitch during momentum alignment for 

the following three reasons: 
(i) An impulsive disturbance significantly affecting X (pitch rate) 

produces a deviation far out of proportion to maximum roll-yaw 
divergence. 

(ii) Pitch rate is in part governed by the projection of L on the 
symmetry axis L As L is moved, changing 6 the projection given 
by L = | L cos© | also changes. Therefore roll-yaw control has a 
direct influence on the pitch rate, often leading to pitch divergence. 

(iii) Since the precession rate \j/ depends strongly on the magnitude of 
L, increasing |L| to off-set the reduction of l_x in condition (ii) at 
large $ also serves to speed alignment. 

The third moment component N^g is orthogonal to both N^ and N ^ 
in order to minimize interference with alignment during pitch control. Thus 
"d3 m u s t a ,'9 n w i t n changing only its magnitude. 

This phase of the pitch control operates on a quasi bang-bang 
fashion and is somewhat less refined than the final pitch alignment. Initially 
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the pitch deviation AX=X~X^ is determined. The pitch control is then 
effected if: 
(i) |AX| > 0, indicating misalignment; and/or 
(ii) |X| > 0, implying drift from alignment. 
In case of condition (i), a bang-bang switch point is set, AX =AX/1.8 . 
For AX < AX |L| is increased; while for AX > AX L is decreased. AX 

5 5 5 

is reset when X passes through zero, and |X| is maintained within fixed 
bounds to prevent the change in |L| substantially influencing roll-yaw 
control. In case of condition (ii), is reduced for X > 0 and vice versa. 

These changes in |L| are produced by providing a third moment 
component N^g directed along L, 

L 
N = ± . (5.12) 
d3 | L | 

The pitch control strategy described above has been quite simplified. The 
precession rate is strongly influenced by large increases or decreases in 
11—|. Consequently, the roll-yaw strategy would be affected adeversely if |L| 
were allowed to change without bound. Hence it was found that pitch and 
roll-yaw could be favourably balanced if pitch control maintained a bound 
on X (which directly affects |l_|), 

32° < |X| < 270° per orbit . (5.13) 

It was also necessary to specify an orbit tolerance so that AX attains zero 
within 

18° < |A0| < 30°. (5.14) 
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Thus, 11— | is increased if: 
(i) AX < AX and X is within bound (5.13). This brings AX to zero 

within orbital tolerance (5.14). 
(ii) AX = 0 but X < 0. 

(iii) The absolute lower limit of condition in (5.13) is violated. 
11_| is decreased if: 
(i) AX > AX and X is within bound (5.13). This brings AX to zero 

0 

within orbital tolerance (5.14). 
(ii) AX = 0 but X > 0 . 

(iii) The absolute upper limit of condition in (5.13) is violated. 
Retaining N̂ g as a unit vector as opposed to a vector of finite 

magnitude, was found to produce unsatisfactory results. In fact, it was 
necessary at times to increase N^g upto three units over and N^.The 

degree of increase was determined by two factors: 
(i) Whether 6 is increasing or decreasing. 

0 

This is because an increase of 0 causes an increase in the 
s 

angular momentum component l_x without the aid of N^g and vice 
versa. 

(ii) Whether the past action on |L| had the desired effect on X. 
That is, if X increased when it is required to increase or vice 
versa. 

The three unit limit was imposed because the increase of N^g also has the 
effect of slowing roll-yaw control. 
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5.5 Total Applied Moment 
The final resultant moment direction is obtained as 

N d = Nd1 + Nd2 + Nd3 • ( 5 1 5> 

Though no optimal control studies were done on roll-yaw alignment, it is 
expected that the bang-bang nature of the control with maximum moment 
would approximate a time optimal strategy. This was substantiated by the 
symmetry of the convergence and divergence trajectories of the response 
to typical disturbances. Furthermore, it should be pointed out that the 
strategy incorporates the attractive feature of having no controller gains to 
be optimized. 

5.6 Final Pitch Alignment 
Once momentum alignment (roll-yaw alignment) has been achieved, 

the control strategy switches to the path on the right in Figure 52 for 
final pitch control phase. First X must be driven to zero. Since L and I are 
aligned, the entire controller power can now be concentrated to damp the 
pitch motion by applying moments along L in the manner; 

/ > 0. N d = -L ; (5.16a) 
• 1 

X j 
[ < 0, N d = L . (5.16b) 

At the final decision point (X = Xf ? ) where X is effectively zero, there 
is no guarantee that the pitch angle is properly aligned. Thus, the objective 
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is to achieve pitch alignment as quickly as possible. 
It is obvious that for pitch alignment the control moments are 

applied in a direction along the symmetry axis. Since the satellite is aligned 
with the orbit normal ( l g normal to the orbit), the maximum moments in 
opposite directions are equal. Therefore, a time optimal bang-bang control 
strategy may be employed. 

Thus, final pitch control consists of setting a X switch point (X g) 
and then driving the system at the maximum power with the moment 
directed along the symmetry axis I When the switch point is crossed, the 
moment direction is reversed until X = 0 whereupon a new set point is 
specified.This process is repeated until X = X^ . Table 5.1 indicates choice 
of the switch point (X ) and the corresponding moment direction according 
to the initial conditions each time X passes through zero. 

Table 5.1 Switch point 
alignment. 

and moment direction during final pitch 

CONDITIONS AS 
PASSES ZERO 

X SWITCH POINT ( X g ) APPLIED MOMENT 
DIRECTION 

x £ < X Q and V x f < n X s 
k ( X Q + X f ) 

2 
N d - -I 

s 

x £ < X and o V x f * n X s -
k(X +X. + 2I1) o r 

2 
N d " I 

s 

h > X Q and V x f < n X s 
k ( X Q + X f ) 

2 
N d * I 

s 

x £ > X and o * n X s -
k(X +X,-2II) o r 

2 
N d " -I 

s 

On completion of a bang-bang control cycle, it may still be possible that 
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pitch alignment is not achieved, i.e., X^X^ . This may be attributed to an imbalance in 
moments, caused by friction effects, acting before and after the switch point. This 
is compensated by skewing the switch point through k, which is initially taken as 
unity and reset after each successive trial as 

expected X throw 
b — y * 

old a c t u a l X throw 

The principles underlying this form of compensation are presented in Appendix C. 

5.7 Arbitrary Orientation in Space 
The control strategy was devised about the premise that the final alignment 

position is stable. Thus, the orientation of the spacecraft specified by was not 
only an equilibrium point but also a fixed direction for any position in the orbit. 
When I and L are aligned with L D, the satellite remains in that position unless 

S n 
disturbed. However, for general and 0^, L R does not remain fixed in space. Thus 
I remains aligned with L D only if a control moment is continiously applied 
S H 

throughout the orbit. In such a case, we would require the controller to mainitain lg 

aligned with without also aligning L.L is positioned at some optimal angle &s so 
that I is capable of keeping up with the progression of L B. This is obviously quite 

S K 

an involved procedure and hence serveral extensions were added to the basic 
control strategy devised earlier.They are; 
(') LF Î S'̂ RI > 0q/2' w n e n n o t i n Phase 1 (Part 1) where 8^ is diverging, 

suspend application of and act to equalise 0 g and 8^. This condition 
occurs during first repositioning of the satellite from a stable position, or 
when maintenance of 8 =0 O is particularly difficult. 
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When condition (i) is in effect, restrict N^g to one unit in magnitude in order 
not to slow the equalization. 
In Phase 1 (Part 2), continually reset 0g O- T n i s indicates that L R is 
separating from I faster than the precession rate. 8 will presumably begin s g 
to decrease at approximately the optimal value of 0 g for arbitrary 
orientation placement. 
If 0g increases while in Phase 2, then the precession rate is too slow (8g 

too small) and convergence cannot occur. Therefore Phase 1 (Part 2) must 
be re-entered and reset until 8 begins to decrease again. 
If I overtakes L R and the control enters Phase 1 (Part 1), two conditions are 
examined for and acted upon: 
(a) If 0g is less than some specified tolerance then it is assumed that the 

precession rate is marginaMy too fast, and can be reduced by reducing 
0 and 0D.This would cause L D to overtake I later, placing the control 

5 K K S 

back into Phase 1 (Part 2). To facilitate this action no equalization 
moments a r e applied since these would slow and probably 
destablize the control. 

(b) If the angle between the n-L plane and the I -L D plane is less than 60°, 
S K 

it is likely to be easier and quicker to turn L sideways using N^, 
through the I -L D plane, to enter Part 2 than to remain in Part 1 and 

S r\ 

simply decrease 0 g and 0 R. This speeds up implementation of the 
control and prevents divergence in certain situations after lg overtakes 

It was found that the maximum increase in must be constrained more 
s 

sharply than during stabilization control. Previously 8 was limited to less 
than 80°. In the case of arbitrary orientation it was found necessary to 
limit 6 to about 50°. Larger values of 8 led to underdamped response 
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with poor convergence. Determination of the optimal 0 g limit for a 
particular final position can be achieved only through a trial and error 
approach. 

(vii) After reducing 8 as required in (vi), if 8 is still found to be greater than 
s g 

the Phase 1-Phase 2 switch point, the control holds L in station at the 
critical 8 This speeds I and L D convergence and provides an opportunity 

S S K 

to stabilize pitch. 
The procedure is amenable to further refinement though the proposed extensions do 
lead to generally effective and stable control. 



6. RESULTS AND DISCUSSIONS 

Effectiveness of the controller is demonstrated through two configurations 
representing current trends in communications satellite technology. 

INSAT-1A is about 20 m long from the end of the solar array to the tip of the 
solar sail and weighs 1,089 kg (Figure 12). The main body is 2.18 x 1.55 x 1.42 m. In 
the simulation, a value of 80 is assigned to the controller dynamics parameter which 

2 
corresponds to the plate area of 2.5 m and the moment arms of 122 m.The original 
configuration was slightly modified by the addition of a boom as a mount for the 
second control flap. Thus the inertia ratio for uncontrolled motion is 1=0.3 whereas 
for controlled motion it has a value of 02. A controller offset ratio of h/e = 2 was 
chosen. 

L-SAT 1 has an array span of 33 m and a payload mass of 600 kg 
2 

(Figure 1.3). The body dimensions are 3.5 x 2.1 x 1.75 m. A plate area of 2.5 m and 
moment arms of 16 m give a controller dynamics parameter of C = 10. Once again 
the inertia parameter was taken as I =02 and the offset ratio was set as h/e = 2. 

The system involves a large number of parameters associated with the 
orbital elements, satellite geometry and inertia, solar information and controller 
configuration. The results presented here attempt to assess the significance of their 
influence on the spacecraft's librational dynamics. 

For nominal orientation control, each satellite was given a large impulsive 
disturbance corresponding to micrometeorite bombardment over a 24 hour period, 
i.e., -0.05 < 7of 0o»^o < 0.05. This corresponds to the initial librational 
velocity of 0.05 radians per radian of the orbital motion. The final tolerance 

-5 
demanded by the controller was 5x10 radians. The numerical integration step-size 
was reduced adaptively during execution from a base step size of 0.05° for L-SAT 59 
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and 0.025° for INSAT 1-A. The controller's effectiveness was evaluated against the 
standard pointing accuracy requirement of 0.01° 

Figures 6.1 and 6.2, summarise the effect of orbital inclination on the 
controller's effectiveness. As can be expected, in the absence of any control, both 
the satellites become unstable rather quickly (Figures 6.1a, 6.2a). However, note the 
effectiveness of the solar pressure based control strategy. It is able to damp such a 
severe disturbance in a fraction of an orbit!The maximum amplitude attained is also 
quite small. This is particularly true in the case of INSAT 1-A where the maximum 

_3 
amplitudes in roll and yaw are approximately 4x10 degree. Such a near optimum 
performance of the solar controller is one to two orders of magnitude better than 

9_13 17-19 
that reported by Modi et al. ' Effectiveness of the controller over the 
wide range of orbit inclinations promises applications in a variety of missions. 

Figures 6.3 and 6.4 present the performance of the controller in orbits of 
differing eccentricity. The controller continues to be effective even in the presence 
of eccentricity induced librations in addition to the external impulsive disturbance! 
Note, the principal influence of a noncircular orbit is to increase the control period 
and the maximum amplitudes of librations. 

The influence of the solar aspect angle <j> is shown in 
Figures 6.5 and 6.6. <f> is a measure of the orientation of the satellite's orbit 
relative to the Earth-Sun line. It is seen that the influence of <j> is quite small, 
affecting primarily the roll and yaw, indicating near independence of the time of 
year at which a disturbance is applied. 

Performance of the solar pressure controller is quite dependent upon the 
Sun's activity, eclipse and passage through Earth's shadow. Their influence is 
primarily reflected in the value of C through a change in the solar pressure intensity. 
Figure 6.7 studies controller's performance over a range of C to account for such 
situations. It is indeed gratifying that the controller's performance remains entirely 
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untarnished. As expected, larger values of C lead to a more damped response. 
Finally, Figure 6.8 explores the possibility of undertaking large angle 

maneuvers using such a semi-passive controller. The controller is commanded to 
impart L-SAT 1 a new orientation with respect to the original equilibrium 
configuration through roll, yaw and pitch rotations of 40°, -20° and 45°, 
respectively. It appears that the final configuration is acquired in about one to two 
orbits. This freedom to position a satellite in different orientations would enable it 
to undertake diverse missions. 
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Figure 6.1 Librational response of INSAT 1-A to a representative impulsive 
disturbance in an ecliptic orbit in the uncontrolled mode and in orbits 
of varying inclinations in the controlled mode. 
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Figure 62 Librational response of L-SAT 1 to a representative impulsive 
disturbance in an ecliptic orbit in the uncontrolled mode and in orbits 
of varying inclinations in the controlled mode. 
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Figure 6.3 Effectiveness of the near-optimal solar pressure control strategy 
INSAT 1-A for elliptic orbits. 
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Figure 6.4 Influence of varying orbit eccentricities on the controlled librational 
response of L-SAT 1. 
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Figure 6.5 Effect of solar aspect angle on the attitude motion of INSAT 1-A with 
the solar pressure controller. 
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Figure 6.6 Influence of varying solar aspect angles on the librational response 
of L-SAT 1 in the presence of the solar pressure controller. 
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Figure 6.7 Effect of changes in the controller dynamics parameter on the 
librational response. 
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Figure 6.8 Plot showing versatility of the solar pressure controller 
undertaking large angle slewing maneuvers. 



7. CONCLUDING REMARKS 

The analysis suggests that the solar pressure control strategy originally 
proposed by Lunscher and Modi appears to remain effective over a wide range of 
system parameters, solar activity and Earth's shadow. In particular, it is quite 
successful in damping exceedingly severe disturbance induced librations of large 
communications satellites launched recently (INSAT 1-A) or currently being 
designed (L-SAT 1). The solar pressure can also be used to undertake large angle 
slewing maneuvers. The semi-passive character of the controller promises a longer 
lifespan for satellites thus making them more cost-effective. 

It might be appropriate to suggest at this stage a course of future research 
that is likely to be fruitful. There are several areas in which the model presented 
could be improved: 
(i) The strategy for arbitrary orientation of the satellite may be modified so 

that it is time-optimal or more explicitly determines the optimal 8 
(ii) Flexibility effects of the solar panels for larger satellites should be 

incorporated in the dynamical relations as well as in the controller's 
generalized forces. 

(iii) Utilization of the solar radiation pressure based control strategy for 
station-keeping in an orbital drift situation may prove to be profitable. 

(iv) Effect of the Earth's albedo and scattered radiation from the Earth's 
atmosphere should be considered in a more sophisticated model. 

(v) It may be possible to determine the minimum grid resolution for storage to 
obtain adequate accuracy. In such a case, the optimization algorithms need 
not be executed on board the satellite as only reference to a stored table of 
predetermined plate rotations would be required. 
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APPENDIX A: EVALUATION OF g 
e =0 

The directional constraint g , was defined as, 

2 { 1 -
N-N 1/2 

IN! IN, 
(A.I) 

The reasoning underlying this constraint is readily apparent from the vector 
diagram below, 

N* N 
Since 

N N. 
= cose, gj becomes zero when the vectors are aligned 

with e = 0. Furthermore, since 
cose * (1 - -j-) , 

g^ e near alignment. 
The gradient of g^ is evaluated as follows 

e « 1, (A.2) 

9 i . 2 { 1 -
N - N , n-1/2 

} 1 ( 
|N| | N d | J 

N-N 

|N| IN, 

r ' ( N - N , ) , -, 

= - < 9 i |N| | N d | ) - [ N x N d - _ ^ - N x N j 

= " ( 9 i 

( N - N , ) , r- VW-WJ; i 
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= " <9i |N| I N d I >" 1 N
X [ N d ~ <N.Nd)fi] . (A.3) 

A A 

At g, * 0, N-N, * 1, hence "d 
N 

9'x - — [ N - N, ] ; 
e=0 g,|N| d 

A A 

but at g, = 0, N = N d, hence 

* * . - 0 " INI T • To understand this singularity let us apply L' Hospitals' rule with respect to the 
separation angle e. Since near alignment gi — e, 

, . d 9 i 
l i m = 1 . 
e-*0 de 

Also, in general, 

d A A x dNI 

therefore at alignment, 

I _ x dN 
g , x T T d7 • ( A- 5 ) 

However, the derivative in equation (A.4) represents a unit vector pointing in the 
direction from which the vector is approaching alignment. As such, the gradient of 
g, on alignment depends on the path N followed to achieve alignment. Therefore 
g , I is not an analytic function, rendering it undefined. 

I e =0 
To illustrate, suppose = i and N is approaching alignment from the first 

quadrant in the x-y plane. Then 
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N' = (cose sine 0) therefore 

dN' , . n x 

= (sine -cose 0) , and 

l i m = (0 -1 0) = - j . 
e-»0 

» 
N 

Hence g, I = - —*- j (A.6) 
X l e=0 | IM | 

However, if N approaches alignment from the fourth quadrant of x-y plane, 

N' = (cose sine 0) 

, . dN' , . o X l i m T- = (sine cose 0) n = j, -de e =0 e-»0 , 
N 

g, x| = T T J • ( A 7 ) 

x l e = 0 | IM | 
Clearly equations (A.6) and (A.7) are not consistent. 



APPENDIX B: CONTROL MOMENT SYMMETRIES 

The locus of points generated by the endpoints of all optimal control 
moment vectors, N, form a surface about the satellite's center of mass. It is shown 
here that this surface contains at least two levels of symmetry. Before proceeding, 
it will be noted in advance that these symmetries occur with respect to the 
sun-satellite line. Consequently it is convenient to normalize the solar aspect 
vector, u, by placing it in the satellite x-y plane, (uz = 0).This action, representing 
a simple coordinate rotation about the x-axis, does not detract from the generality 
of the analysis. 

x-v Axis Mirror Image Symmetry 
Should the satellite be physically inverterd by a rotation about the z-axis 

while holding the controller plate rotation fixed, then the resultant moment will be a 
reflection of the initial moment in the x-y plane, i.e., if; 

a i f = * - a i i ; (B-1a> 

ah, = 7T - a" ; (B.1b) 

u - ir - a L 

1,f ~ * a U 
L - it 

u 
l.f ~ ff 

u L 
2,f " ~ tt2,i ; 

L u 
2,f " ~ a2,i : 

t 

(B.1c) 

(B.ld) 

= 8j ; (B.1e) 

8^ = «i ; (B.if) 

then by substitution of (B.1) and u = 0 into equations (3.14); 
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\ f = Nx,i « P * ) 

N y , f = N y J ; (B.2b) 

N = - N (B.2C) 

2-axis Reflection Symmetry 
If the upper and lower plate rotation a, and 6 are turned opposite to their 

initial values then the resultant moments will be a reflection of the initial moments 
through the z-axis, i.e., if: 

a i , f = " a i j : C6-33) 

a = - a • (B.3b) 
» > 

6f = - 6, ; (B.3c) 

then 

Nx,f = " Nx,i 

N y > f = " N y J ; (B.4b) 

N , f = N • (B.4C) 

The above results are also obtained by substitution of (B.3) and u z = 0 into 
equations (3.14). 

When combined, the symmteries demonstrate that the optimal moment 
surface is fully specified by any one of the four regions bounded by the planes 
containing the x-y and x-z axis. Since the solar aspect vector is free to move in the 
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x-y plane the shape of the surface will be solely determined by its elevation angle fi 
(Figures 4.1a-4.1d). When 0 is negative the physical system can be rendered 
identical to that of positive R by inversion of the satellite through a rotation about 
the y-axis. Consequently the moment surface produced is also simply a y-axis 
inversion of that produced by positive £2. This can be considered a third form of 
symmetry. 



APPENDIX C: BANG-BANG COMPENSATION 

Pitch control is performed by a simple bang-bang control strategy with the applied 
moment directed along the satellite axis of symmetry. It was remarked that on 
completion of one control cycle, the pitch angle may not agree with that desired 
(X^). Numerous unforseen imbalances may be responsible for this. To compensate 
for the imbalance, the switch point in subsequent trials was skewed by a constant 
proportion k. In order to determine the appropiate k the dynamics of bang-bang 
control in the presence of a moment imbalance is examined here. 

Assume that the imbalance is due to the presence of the constant torque T . 

This, for example, could correspond to frictional coupling to the rotor or plates of 
nonuniform reflectivity.The applied moment therefore becomes 

T + r, X < X sw' (C.la) 

N = < 

-T + T , X > X sw' (C.lb) 

where X is set at the uncompensated bang-bang switch point, sw 

X sw (C2) 

Taking unit moment of inertia, the pitch equation of motion are: 

N (C3a) 

X = Nt + X Q . (C.3b) 

Initially, X and X are taken to be zero. Therefore the pitch rate before switching is 
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X = ( T + T ) t . (C.4) 

Equation (C.4) can be solved readily for the pitch rate at the switch point, 

X = [ 2( T + r ) X ] 1 / 2 . (C.5) sw 1 v ' sw J \ • ) 

After switching the pitch rate will become zero at X f 0 at time t, _, 

t, _ =X /( T - T ) = [ 2( T + T ) X ] 1 / 2/( T - r ) . f,2 sw v
 / i v

 ; sw J v ' 

( C 6 ) 

The stopping point is now obtained as 

X £ f 2 = [ ( T + r )/( T - r ) + 1 ] X 8 W 

= [ ( T + T ) / ( T - T ) + 1 ] Xf/2 

= [ T/( T - r) ] X f . (C.7) 

Therefore, as expected, there is an overshoot or undershoot if r * 0. 
If an alternate switch point is defined as 

Xsw2 = X f , 2 / 2 • <C-8) 

and our perspective modified so that the target pitch is X^ 2 instead of X £ with 
switch point ̂ S W 2 » t n e n f r o m equation (C.7): 

X f = [ ( T - r )/ T ] X f 2 ; 

X s w = f < T " * > / T 3 \ w 2 = k Xsw2 • (C-9> 

X s w is now the compensated switching angle, guaranteeing termination of control 
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a t X f , 2 -

However, the underlying assumption of the control is that the magnitude of 
neither T nor T is known, k can still be found if at least one trial control attempt is 
made using the conventional switch point equation (C.2). This provides the actual 
termination point \^ ^ a s w e " a s t n a t intended, X ^ . k is thus found from equation 
(C.7)as: 

X f e x p e c t e d throw 
k = —±- = . (C.10) 

X f 2 a c t u a l throw 

Equation (C.10) is only valid for the first compensated control attempt. If this 
does not cause pitch to align then its repeated use will produce a biased 
compensation constant. To remove this bias it must be recognised that the earlier 
analysis was founded on the expectation that the previous switch point was set at 
X = X r ~. Therefore, sw f , 2 

expected throw = X r = 2 X K f sw 

However, when the switch point is compensated, X g w , the effective expected throw 
differs from the true expected throw, 

effective expected throw = 2 X ^ w = 2k X g w = k (expected throw) 

Therefore, the unbiased compensation constant is 

e x p e c t e d throw 
k =k — , (C.11) 

1 "•"1 1 a c t u a l throw 

where k 0 = 1. 
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If an initial pitch alignment trial results in overshoot and if the pertubing 
force is linear and constant, then the current and next compensation constants are 
related by: 

k
i + i + kj = 0 - f ) + ( 1 + £ ) = 2; 
ki + 1=2-k,. (C.12) 

Thus, in principle, only one trial is needed to determine the appropiate 
compensation. However, in practice this approach was found unsatisfactory, 
particularly if a great deal of overshoot was encountered in the first attempt. A 
separate k was therefore recorded and used for the two directions of motion, 
clockwise and counter-clockwise. 

Control simulation found application of compensation to work marginally 
better than a totally uncompensated system. In practice it also proved useful to 
limit k to a minimum value of about 0.65. This was because the first attempt at 
alignment, particularly with small throws, often led to large overshoots yielding k 
values less than 0.5. This in turn resulted in severe overcompensation of subsequent 
trials, thereby slowing convergence. 


