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ABSTRACT 

Compound curved s u r f a c e s are f r e q u e n t l y encountered i n 

engineering applications, such as marine pr o p e l l e r s , turbines, ship 

h u l l s , aeroplane fuselages and automobile bodies. In the manufacture 

of such items the surface d e f i n i t i o n i s required i n a smoothly changing 

form without surface o s c i l l a t i o n s and i r r e g u l a r i t i e s . Frequently, 

however, the surfaces are defined by measured prototype data, which may 

be sparse i n nature and have attendant measurement er r o r s . In such 

instances the data has to be approximated and possibly smoothed by a 

series of curves of some known form. There are a number of types of 

curves a v a i l a b l e for curve f i t t i n g i n CAD/CAM work. 

In this work the basis and properties of B-spline curve f i t t i n g 

are established and evaluated i n r e l a t i o n to other curve f i t t i n g 

techniques. A series of t r i a l shapes, or bench marks, were devised 

which showed that B-splines generated the smoothest curves and are very 

suitable for computer-aided-design a p p l i c a t i o n s . 

B-splines, with other types of spline curves, form the basis of 

a new computer-aided-machining program c a l l e d G-SURF. The surface i s 

defined within G-SURF as a g r i d of orthogonal space curves and i s 

machined using an end m i l l i n g cutter i n c l i n e d at a predetermined angle 

to the surface normals. The end m i l l thus cuts on the leading or 

t r a i l i n g edge (as appropriate) and i s able to remove material very 

e f f i c i e n t l y at a f u l l and preselected material cutting speed. Within 

t h i s work G-SURF has been used to design and produce a series of t r i a l 

objects, including a 3 f t . ship h u l l and a chain-saw guide bar. They 

have served to prove and test the G-SURF program. 
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CHAPTER 1 

INTRODUCTION TO B-SPLINE CURVE FITTING AND G-SURF 

1.1 Introduction 
i 

Compound curved surfaces are frequently encountered i n engin-

1 2 

eerlng applications , . The performance and appearance of ship h u l l s , 

aeroplane fuselages , marine propellors, and automobile bodies, etc. 

depend l a r g e l y on the smoothness of the s u r f a c e 3 . 

In most of the cases, a prototype i s f i r s t made and tested and 

the surface i s subsequently measured from the prototype. In the case 

of marine propellors the surface i s stored as a e r o f o i l sections at 

d i f f e r e n t radius r a t i o s , while ship h u l l s are defined at various sec

tions c a l l e d water-lines, s t a t i o n - l i n e s and b u t t o c k - l i n e s 3 . The 

surface data, however generated, i s i n essence a f i n i t e series of 

points. The points do not define the complete surface, they may be 

sparse i n nature and frequently have measurement errors. Surface 

o s c i l l a t i o n s or i r r e g u l a r i t i e s are usually not acceptable as they 

become apparent i n the finis h e d product. A hood or fender of an 

automobile should "look" smooth when i t i s complete -. 

Doubly curved surfaces present a challenge i n manufacturing as 

they cannot be e a s i l y machined by plane or c y l i n d r i c a l generators. 

However, i f they can be defined as a series of curves smoothly trans

l a t i n g through or among the given data points, the surface can be re

produced on a CNC machine. 



1.2 G-SURF 

G-SURF is a CAD-CAM package designed and developed at UBC for 

designing and manufacturing doubly curved surfaces of essentially low 

to moderate curvature**. G-SURF approximates a surface as a series of 

orthogonal space curves. The number and spacing of the curves deter

mines the adequacy of the surface definition. 

The orthogonal space curves used to define the surface may be 

B-spline or other types of spline curves. The orientation of the local 

or component coordinate reference frame across the surface is given in 

Figure 1.1. The tangent of the spline curve determines the local Y-

axis while the tangent to the orthogonal spline curve determines the 

local X-axis. 

As shown in Figures 1.2 and 1.3 the surface is machined with an 

end milling cutter inclined at a predetermined angle to the surface 

normal in the oscullating plane (i.e. the tangential plane to the curve 

along which the tool is travelling). The end mill thus cuts on the 

trai l i n g or leading edge and operates at f u l l cutting speed at a l l 

times during the machining operation. The greater the inclination of 

the end mill to the surface normal the smaller is the effective radius 

of cutting and the less likely is the cutter to remove essential 

surface material. Curvature and interference checks can be made within 

the program and cutter inclination adjusted accordingly. 

G-SURF is designed for use on a mini-computer and is thus 

suitable for small CNC manufacturers with modest computing f a c i l i t i e s . 

The output is applicable to 2-1/2, 3, 4 or 5 axis CNC machines. The 

4 and 5 axis CNC machines are more flexible and enable a wider range of 

work to be completed. 
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1.3 Curve Fitting 

A number of curve f i t t i n g methods can be used within G-SURF to 

define the orthogonal surface grids. The two basic choices when 

f i t t i n g a curve to discrete data points are interpolation or approxima

tion. The former passes a curve through a l l the data points, however 

much in error they may be, while the latter passes a curve among the 

points. Approximation generally gives a smoother curve for CAD/CAM 

applications but where no adjustment can be made to the position of the 

specified data interpolation becomes a necessity 5. 

The common types of curve f i t t i n g with their attendant charac

teristics are given below: 

1.3.1 Least-mean-square curve f i t t i n g 

The least-mean-square method of curve f i t t i n g minimizes the 

mean-square deviations of a polynomial function 6. This f i t is approp

riate when the error in the data points have a normal distribution. 

Even one "wild" point can distort a least-mean-square f i t to the extent 

that i t is unacceptable. Least-mean-square f i t s frequently generate 

oscillations in the curve as shown in Figure 1.4. Wild points, sharp 

slopes or a scarcity of points at the end of the curve can start fluc

tuations, which make this f i t unsuitable for CAD/CAM purposes. 

th 

1.3.2 n order polynomial f i t 

A polynomial can be made to pass through a given set of data 

points. The d i f f i c u l t y is that the order of the polynomial is deter

mined by the number of points. Higher order polynomials frequently 



generate oscillations as shown in Figure 1.5 and are not suited for 

surface design in CAD/CAM applications 2. 

1.3.3 Conic splines* 

Splines are piecewise combinations of particular curve types 

which can be made to match in position and slope at the junction of 
7 

each section . They are the mathematical equivalent of the mechanical 

splines, or flexible elastic strips, used by draftsmen to smooth 
o 

curves . 
The general equation of a conic is given as: 

2 2 ax + bxy + cy +dx + ey + j = 0 

This represents a l l two-dimensional sections through a right circular 

cone (i.e., line, circle, ellipse, parabola, hyperbola — a l l single 

curvature curves). With conic splines this equation can be used to f i t 

the f i r s t three data points and then to f i t the next three data points 

with position and slope continuity at each junction. Conic splines do 

not give curvature continuity at junctions. Changing any data point 

changes a l l the fitted equations. A worked example of a conic spline 

is given in Appendix I and summarised in Figure 1.6. 

The conic equations are applied to advantage in CURVFIT- to span a 
set of closely spaced digitised points with widely spaced 'control 
points' at which position and slope are chosen and specified. 
Inflexion points are identified as additional control points. The 
method is capable of producing either approximation or inter
polation f i t s . 
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1.3.4 Cubic spline curve f i t t i n g 

These are a set of cubic polynomial equations of the form: 2 

3 2 ax + bx + cx + d = y 

This equation i s more f l e x i b l e than the conic equation i n that 

i t generates double curvature. In th i s case the equation can be used 

to f i t the f i r s t four data points and then to f i t each a d d i t i o n a l data 

point with p o s i t i o n , slope and curvature continuity at each junction. 

A worked example of the cubic spline curve f i t t i n g i s given i n Appendix 

II and the res u l t s shown i n Figure 1.7. While any degree of 

polynomial curves can be used the cubic i s most widely accepted i n 

CAD/CAM ap p l i c a t i o n s . It i s of s u f f i c i e n t l y high order to give 

curvature continuity and yet low enough to prevent unnecessary 

o s c i l l a t i o n s . 

As with conic splines a l l equations f o r a p a r t i c u l a r curve are 

altered i f any data i s changed. Also large v e r t i c a l slopes create 

computational d i f f i c u l t i e s . 

1.3.5 B-Splines curve f i t t i n g 

B-splines are l i n e a r combinations of basis functions formed 
ik 

from p a r t of the power s e r i e s g i v e n by y = ( x - e j where x i s the 

independent variable, y the dependent variable , e i s any constant and 

k the degree of the polynomial. B-splines have the property of 

generating the least curvature ( i . e . smoothest) of a l l curves, produce 

no o s c i l l a t i o n s and, are v a r i a t i o n a l l y diminishing ( i . e . degenerate to 

the least power required to f i t the data — a straight l i n e i s f i t by 

an equation of a straight l i n e ) 5 , 1 0 , 1 1 . B-splines may be of any order 

although cubic B-splines are used within G-SURF. These span four 



i n t e r v a l s and a l t e r a t i o n of any data points e f f e c t s only the 

neighbouring four spans. The d e f i n i t i o n and formulation of B-splines 

are given in Chapter 2 of this work. 

1.4 Objectives 

The object of the present work i s to examine the basis of B-

spl i n e curve f i t t i n g and to evaluate i t i n r e l a t i o n to other curve 

f i t t i n g techniques. A series of t r i a l shapes, or bench marks, were 

devised for making these comparisons. In addition, i t i s required 

that the c a p a b i l i t i e s of G-SURF be investigated and developed by 

machining a series of test surfaces of increasing complexity. The 

a p p l i c a b i l i t y of the approach to l o c a l i n d u s t r i a l problems i s 

i l l u s t r a t e d by two recent projects. One i s the generation of smooth 

data and CNC tapes required i n the manufacture of chain saw guide bars. 

The other i s i n l o f t i n g and machining a three-foot model ship h u l l . 



Y 
m 

Machine Coordinates 

X m 

Surface approximated by a set of curves. 
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FIG. 1.2 G-SURF machining technique. 



Rotary tables were designed by Dr.Shi-Gang Wang & Dr.J.P.Duncan. 

FIG. 1.3 A schematic of a 5 - a x i s C.N.C. machine. 
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j FIG.l.4 Curve f i t t ing using Least-mean-squares. 
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FIG. 1.5 Curve f i t t i n g using 9th order polynomial. 
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FIG. 1.6a Curve f i t t i n g using Conic splines.with i n f l e c t i o n 

point at Y = 3.0. 

E q u a t i o n s o f c u r v e s I n d i f f e r e n t r e g i o n s a r e : -

R e g i o n A : x 2 
+ 2 . 2 2 0 * X * Y - 1 . 5 8 * Y 2 - 1 .333*X + 3 . 1 7 * Y + 2 . 4 7 = 0 . 0 

R e g i o n B : x 2 
- 1 .420*X*Y - 0 . 5 7 * Y 2 - 2 . 2 9 *X + 1 .31*Y + 1 .59 - 0 . 0 

R e g i o n C : x 2 
+ 2 5 . 5 0 0 * X * Y - 1 2 . 2 5 * Y 2 - 1 2 4 . 7 5 * X - 4 . 1 3 * Y + 2 5 4 . 5 = 0 . 0 

Reg ion D : x 2 
+ 0 . 5 7 0 * X * Y + 0 . 1 3 * Y 2 - 1 2 . 6 0 * X - 3 .56*Y + 3 8 . 4 5 = 0 . 0 
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X 

FIG. 1.6b Curve f i t t i n g using Conic splines with inflection 

point at Y = 3.2. 



FIG. 1.7 Curve f i t using Cubic s p l i n e s . 

Equations of curve i n d i f f e r e n t regions are :-

Region A : 

Region B  

Region C  

Region D  

Region E  

Region F 

2.6 - 1.33*X + 0.15*X2 + 0.08*X3 

29.6 - 23.33*X + 9.15*X2 - 0.91-X3 

2 3 

- 124.2 + 87.02*X - 19.69*X + 1.49*X 

740.7 - 431.93*X + 84.10*X2 - 5.43*X3 

- 356.51 + 72.67*X + 3.66*X2 - 0.96*X3 

-11353.3 + 4785.59*X - 669.6*X2 + 31.1*X3 

= Y 

= Y 

= Y 

= Y 

= Y 

= Y 



CHAPTER 2 

B-SPLINE THEORY AND EXAMPLES 

B-splines are d e f i n e d 5 as l i n e a r combinations of basis func-

t i o n s formed from the truncated power series y = (x-e) where x i s the 

independent variable, y the dependent variable, e i s any constant and k 

the degree of the p o l y n o m i a l . The k'*1 order b a s i s f u n c t i o n s are 

a p p r o p r i a t e l y s c a l e d k*"*1 d i v i d e d d i f f e r e n c e s of the truncated power 

s e r i e s . 

Given a knot sequence [ t^» t
n] a B-spline approximation to a set 

of data points i s given by: 

n 
F(x) = S o B ( x) (1) 

i = l 1 1 , J 

where F(x) i s the function value of the curve at x, 

t Vi 
ct̂  i s the c o e f f i c i e n t of the i basis function, 

B. . i s the value of the i ' * 1 basis function or order j . 

An example of a B-spline f i t and basis function i s given i n Figures 2.1 

and 2.2. 

2.1 Knots 

For the, cubic B-spline used i n G-SURF the basis function con

s i s t s of four cubic polynomial arcs stretching across f i v e knots. Each 

i s normalised and non-zero over four i n t e r v a l s and zero everywhere 
1 3 

else . At most, four basis functions of order four are non-zero at 

any point on a curve as shown i n Figure 2.3 for the i n t e r v a l 3 to 4. 

The point at which a basis function s t a r t s i s c a l l e d the knot 

point. These points are usually coincident with the data points. To 

incorporate end-slope c o n t r o l , a d d i t i o n a l knots are added at the end 



points of the curve 5. The number of ad d i t i o n a l knots required at each 

end i s (k-1) where k i s the order of the B-spline. 

A knot sequence may contain i d e n t i c a l knots up to a m u l t i p l i c 

i t y k. The ef f e c t of a knot occuring with a m u l t i p l i c i t y n, i . e . 

t = t = • • • = t (2) 
i i+1 i+k-1 v ' 

to decrease the degree of d i f f e r e n t i a b i l i t y of the basis function B 
k 1) » 

at x to n ^ t i . e . , i f any two knots coincide the curve loses i t s 

d i f f e r e n t i a b i l i t y by 1 at that point. The formation of a double knot 

may be viewed as being a coalescence of two adjacent knots as shown i n 

Figure 2.4. 

2.2 Basis Functions 

Given a knot sequence X = [ t ^ ,  m",t 1 the basis function of 
i i n 

order k (degree k-1) may be d e f i n e d 5 , 1 2 as 

x - t t - x 
B i k ( x ) = t H- B i k - l ( x ) + B i + l k - l ( x ) ( 3 ) 

' i+k-1 i ' i+k i+1 ' 

where the i n i t i a l conditions are defined as 

1 i f t <x< t 
\ x ( x ) - 1 • 1 + 1 . (4) 

' 0 otherwise 

In order to get a better understanding of the basis function 

the following table i s derived, using Equations (3) and (4), for a knot 

sequence x = [ t j , * # , , t ] i n the region t^ < x < t ^ . 
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k = 1 k = 2 k = 3 k = 4 

B i , r 0 
B l , 2 = 0 

B 2 , i - 0 

B2,2 " ° 

B l , 3 . - 0 

(1-x) 3 

B 3 , l = 0 

B3,2= ^ 

B 2 j 3= (1-x) 2 

B2,4= 
x(2-x) 

2 { < ! - * > + ^ 1 

V = 1  

B5,l= ° 

B4,2 = x  

B5,2= ° 

B 3 3 = x(l-x) 
x(2-x) 

2 

2 
B4,3 " 2 

B3,4 

B4,4 

- 4»<i-

3 
X 
6 

? 2 
- « ) + ( ^ ) H - ( 3 - x ) ^ 

B 6 , l = ° 
B6,2 = 0 

B5,3 = ° 

B 7 , l = ° 

Each column in the above table represents the basis functions 
of different orders. 1 2 

( i ) The f i r s t column contains equations of basis functions of 
order one. The basis function is given in Figure 2.5. 
If Bj ̂  is used to f i t a set of data points the resulting 
f i t wi i l be a histogram. 
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( i i ) The second column gives equations of polynomial pieces 
representing the basis function of order two between 
t(4) & t(5). The basis function is given in Figure 2.6. 
If a curve is f i t using 2» t n e output w i l l be a linear 
interpolation with only point continuity. 

( i i i ) The third column contains the equation of polynomial 
pieces forming basis function of order three in the interval 
t(4) to t(5). The basis polynomials are shown in Figure 
2.7. Curve f i t t e d using B^ ^ is continuous in point and 
slope. ' 

(iv) The fourth column contains equations of polynomial pieces 
of order four in the range t(4) to t(5). The basis poly
nomials are given in Figure 2.8. The curve obtained 

• using B^ ^ is continuous in point, slope and curvature. 
This is the order of B-splines used in the G-SURF program. 

A worked example of B-spline curve f i t t i n g i s given in Appendix 

III. For computational purposes a recurrence algorithm developed by 

Carl de Boor 5 is used to evaluate the basis function. 

2.3 Nodes 

Once the basis functions have been defined, the B-spline 

approximation of order k to any arbitrary function 1 0, or set of data, 

may be stated as: 

F(x) 

where 

G i 

's are called the nodes and the value of the function at the 

nodes gives us the coefficient of B-spline basis functions. This is 

shown in detail in Appendix III. 

In B-spline interpolation, however, the procedure to determine 

ct^'s i s s l i g h t l y different. In matrix form B-splines basis function 

may be defined as: 

I a(V B i , k ( x ) 
(4) 

Tk=iy t 'i+i + fci+2 + *••+ W i ) • (5) 
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{ F } = [B] {«} 
or (6) 

w = ur 1
 { F } . 

Knowing both the matrices on the right hand side, the matrix {a} can be 

easily determined. There are other features about [B ] and {F } which 

make the calculation of [otj's very easy. [B ] i s a banded matrix and 

can be inverted without pivoting by Gauss's method5. This approach is 

used within ( B S P I N ) for B-spline interpolation. 

2.4 Geometric Interpretation of B-Spline Approximation 

B-spline approximation (BSAPP) can be fitted to a set of data 

points without calculating the basis function. Carl de Boor has proved 

that 

F (for k = 0) 
F^ k(x) =* (7) 

X F I > K _ 1 + d - A ^ . ^ (for k > 0) 

x - X ' ^ 
ti-k+M" t i 

where 

M is order of B-spline, k = M-1, 

F^ i s the value of the i th data point, 

F ,(x) is the value of B-spline f i t of degree k at the point i,k 
x. 

Consider a knot sequence T = [ t Q .... t ^ ] = [111123456789999]. 

The value of the B-spline i s to be found for x = 7.6. Since 

t 9<7.6<t 1 0, i = 9. 

Using the recursive relation, given in equation 7, we get 

F 9 3(7.6) = X F 9 2(7.6) + (1-X) F G 2(7.6) 
\ - (7.6 - 7)'_ 

x oT^~ 0' 6  
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F 9 2(7.6) = X F 9 x(7.6) + (1-X) F g ^7.6) 

X (4=2) " °* 3 

F g 2(7.6) = X Fg ^7.6) + (1-X) F ? ^7.6) 
\ - < 7' 6 - 6.6)  

X (4=2) ~ 0 , 3 

F 9 x(7.6) = X F 9 + (1-X) F g 

'\ - (7-6 - 7.0) _ 
A " (4-1) " °' 2 

Fg L(7.6) = X Fg + (1-X) F ?  

A (4-1) 0 , 5 3 

F ? L(7.6) = X F 7 + (1-X) F 6 

' _ (7.6 - 5.0) _ 
X ~ (4-1) _ °' 8 7 

The value of the data points F^, F^, Fg, Fg can be put into the 

above relations and the value of B-spline determined. This is shown as 

a graphical solution in Figure 2.9. A geometerical f i t to the S-curve 

at the point x = 5.5 is shown in Figure 2.10. 



FIG. 2.1 A B-Spline f i t to a given set of data points. 



FIG. 2.2 Basis function'for a set of equally spaced knots. 
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Y 

F I G . 2.3 B a s i s f u n c t i o n between two e q u a l l y s p a c e d 
k n o t p o i n t s . 
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l ' ' 1 ' I I 

FIG.2.4 Knot c o a l e s c e n c e . 
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F I G . 2.5 B a s i s f u n c t i o n o f o r d e r one. 
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F I G . 2.6 B a s i s f u n c t i o n of order two. 
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FIG. 2.7 B a s i s f u n c t i o n of order three. 
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FIG.2.8 B a s i s f u n c t i o n of o r d e r f o u r . 



F I G . 2.9 G e o m e t e r i c e x p l a n a t i o n o f B - S p l i n e s . 



FIG. 2.10 B-Spline (BSAPP) geometeric construction. 
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CHAPTER 3 

CURVE FITTING COMPARISONS 

3.1 Test Curves and Curve Fitting Methods 

To evaluate B-spline curves in relation to other curve f i t t i n g 

methods a series of t r i a l shapes, or bench marks were devised. The 

three chosen standard data sets are given in Figures 3.1 to 3.3 and 

comprise of: 

1. The S-curve: used to evaluate the smoothing capabilities 

of each method. Figure 3.1. 

2. The two-level curve: used to evaluate the treatment of 

h i g h slopes. Figure 3.2. 

3. The off-set point: used to evaluate the capability of each 

method to deal with an off-set point and thereafter follow 

a straight lin e . Figure 3.3. 

The curve f i t t i n g methods implemented on the PDP 11/34 and used 

for comparison with B-splines are as follows: 

1. BSAPP — B-spline approximation. 

2. BSPIN — B-spline interpolation. 

3. CON.SPL — conic polynomial spline. 

4. CUB.SPL — cubic polynomial spline. 

5. LMS — least-mean-squares approximation. 

6. 9TH POLY — 9th order polynomial curve. 

7. UNIGRAPHIC — general f i t t i n g routine from ] 
graphics package (installed locally at 
National Research Council). 



3.2 Comparison of Curve Fitting Methods 

3.2.1 The S-Curve 

The resulting curves for BSAPP, BSPIN, CUB.SPL, CON.SPL, LMS, 

9TH POLY and UNIGRAPHIC are given in Figures 3.4 to 3.10 respectively. 

This set of data points were fitted well by most of the methods but 

some differences are evident. 

BSAPP generated the smoothest curve, although as discussed 

previously, this did not pass through a l l the data points. However, 

the fitted curve always lies within the convex hull of the enclosing 

polygon as shown in Figure 3.4. 

BSPIN and CUB.SPL fitted the data points with a smooth c u r v e 

which passed through a l l the points as shown in Figures 3.5 and 3.6. 

CON.SPL fitted the data points with a f a i r l y smooth curve. However, i t 

was not as smooth as BSPIN and CUB.SPL. 

Further, CON.SPL required the most manual intervention and some 

prior knowledge of the curve. The user is required to define a l l 

inflection points and slopes as well as end point slopes. Manipulation 

of the inflection point slopes can be used to improve the curve but 

this depends on user's s k i l l and the result is not unique. 

Results from LMS given in Figure 3.8 show unwanted o s c i l l a 

tions. It was found that suitable results were obtained only when a 

large number of data points were used. Even then there is no assurance 

that oscillations w i l l not occur. 

The 9TH POLY given in Figure 3.9 also shows some oscillations. 

With less smooth data sets these oscillations can become very s i g n i f i 

cant . 

Results from UNIGRAPHIC curve f i t t i n g are given in Figure 3.10 

The results are not unlike those of CUB.SPL shown in Figure 3.6. 
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3.2.2 The two-level curve 

This set of data highlights the capabilities of a method to 

deal with relatively sudden changes of slopes without overshoot. The 

resulting curves for BSAPP, BSPIN, CUB.SPL, CON.SPL and UNIGRAPHIC are 

given in Figures 3.11 to 3.15 respectively. 

BSAPP fitted by far the smoothest curve, and had no overshoots 

as shown in Figure 3.11. 

BSPIN, CUB.SPL and CON.SPL a l l generated serious oscillations 

in the fitted curve as shown in Figures 3.12 to 3.14. BSPIN and 

CUB.SPL gave similar results. The results for CON.SPL were better than 

BSPIN and CUB.SPL. However, the operator time required for CON.SPL 

was significant and probably unacceptable in practice. 

The spline f i t t i n g routine on UNIGRAPHIC also gave o s c i l l a 

tions as shown in Figure 3.15. 

3.2.3 The off-set point 

This set of data highlights the capabilities of a method to 

deal with off-set points. The resulting curves for BSAPP, BSPIN, 

CUB.SPL, CON.SPL and UNIGRAPHIC are given in Figures 3.16 to 3.21 re

spectively. 

BSAPP smoothed the data to a remarkable extent, s t i l l keeping 

within the convex hull of the enclosing polygon. The straight line 

portion was exactly reproduced as shown in Figure 3.16. 

BSPIN and CUB.SPL fitted a highly oscillating curve to the 

given set of data points as shown in Figures 3.17 and 3.18. 

Oscillations created in the offset curve were carried down into the 

straight line portion of the curve. 

CON.SPL had great d i f f i c u l t y i n f i t t i n g this set of data 

points. Additional inflection points, data points and slopes were 



tried but even so the most acceptable curve is shown in Figure 3.19. 

The conic spline and spline general from UNIGRAPHIC give 

identical and unsatisfactory results shown in Figures 3.20 and 3.21. 

In the case of the conic spline the curve turns on i t s e l f , while in 

spline general oscillations are encountered. 

3.3 Other Evaluation Factors 

While the technical suitability of a curve f i t t i n g method to a 

particular application is of prime concern, other factors such as: 

1. the ease of use; 

2. computational size and application to mini-computers; and 

3. speed of computation 

need to be exercised. A general assessment of these factors is given 

in Table 3.1. From the standpoint of ease of use BSAPP and CUB.SPL 

were rated 'good' while CON.SPL was rated 'poor' as i t required the 

most manual intervention and some prior knowledge of the curve shape. 

The task image size, which is the memory size required to store and 

run the object code for the compiled .version is given in Table 3.1. It 

can be seen that BSPIN and CUB.SPL require approximately the same 

memory sixe (32kB). BSAPP requires a somewhat larger memory,(50kB), 

although i t gives a graphic terminal display. If this feature were 

removed i t would be approximately the same size as BSPIN and CUB.SPL. 

CON.SPL requires approximately twice the amount of memory as the other 

methods. 

The overall assessment is that BSAPP, BSPIN and CUB.SPL are a l l 

easy to use and require similar computer memory space. BSAPP gives by 
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far the smoothest curves and i s the only method to suitably handle a l l 

the bench mark curves. BSPIN and CUB.SPL both give good i n t e r p o l a t i o n 

r e s u l t s . CON.SPL requires the most memory capacity and the most user 

input, but i s s t i l l s uitable for some ap p l i c a t i o n s . The other methods 

LMS and n*"*1 order polynomial are not considered suitable for CAD/CAM 

ap p l i c a t i o n s . 



TABLE 3.1 

PROPERTY BSAPP BSPIN CON.SPL CUB.SPL 

1. Task image size 25088 Words 16192 Words 30528 Words 17248 Words 

50 K Byte 32 K Byte 61 K Byte 34 K Byte 

2. Graphic's a b i l i t y Graphic display, Paper plot Paper plot Paper plot 

Paper plot 

3. System dependence IGL, PLOT10 PLOT10 PLOT10 PLOT10 
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FIG. 3.4 A B-Spline (BSAPP) f i t to the S-Curve. 
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FIG. 3.5 A B-Spline (BSPIN) f i t to the S-Curve. 
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FIG. 3.6 A cubic spline (CUB.SPL) f i t to the S-Curve. 
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.3.7 A conic spline (CON.SPL) f i t to the S-Curve. 
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FIG. 3.10 UNIGRAPHIC'S f i t to the S-Curve. 
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FIG. 3.11 A B-Spline(BSAPP) f i t to the two level curve. 
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FIG. 3.12 A B-Spline(BSPINT) f i t to the two level curve. 
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FIG. 3.13 A Cubic spline(CUB.SPL) f i t to the two level curve. 
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FIG. 3.15 UNIGRAPHICS f i t to the two level curve. 
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CHAPTER 4 

B-SPLINE AND G-SURF APPLICATIONS 

4.1 Introduction 

B-spline and G-SURF have been discussed in the preceding chap

ters. G-SURF is a Fortran computer program which utilizes B-splines, 

and other spline curves, to define and machine surfaces. G-SURF 

exploits the smoothing property of B-splines to generate smooth surface 

shapes. Two test objects and two industrial components were machined 

using this approach and are discussed below. The process of machining 

these objects served to prove the versatility of the approach and at 

the same time highlighted some interesting features. 

The objects that were machined are: 

1. Twisted Surface, 

2. Sine curve, 

3. Chain-saw guide bar, and 

4. Ship hull. 

4.2 Twisted Surface 

This doubly curved surface can be obtained by twisting the 

opposite edges of a square flat plate. The surface was generated by 

G-SURF from a set of equi-spaced points lying on equi-spaced lines as 

shown in Figure 4.1. B-splines fitted straight lines to this set of 

points and a predetermined number of machine data points and data 

surface normals were generated. The object was machined on a 5-axis 

machine in time share mode from a 2-1/2 axis controller. The cyl i n d r i 

cal end milling cutter is programmed through G-SURF to move along the 



generating lines in such a way that i t has a constant inclination 

(10 degrees) to the surface normal in the local tangent plane, as shown 

in Figure 1.2. A photograph of the fi n a l machined component is given 

in Figure 4.2 and shows that each of the cuts is straight although each 

had been generated with a f u l l range of 5-axis movements. As the 

cutter axis was inclined at a small angle to the local surface normal 

the resulting blend of adjacent cuts gave an excellent surface finish. 

It was noted during machining that material removal was 

accomplished very effectively using the f u l l cutting speed of the end 

m i l l . 

4.3 Sine Curve 

A series of sine curves were selected to generate a surface 

with both convex and concave sections. To give the best possible 

access to these shapes the G-SURF program was adapted to cut on either 

the leading or trai l i n g edges as shown in Figure 4.3. Thus, deeper 

concave surfaces can be accessed without the spindle or the tool inter

fering with the object. Figure 4.3 shows G-SURF's mode of changing i t s 

cutting edge at every change in curvature. 

The computer plot of the surface is shown in Figure 4.4 and 

photograph of the machined component in Figure 4.5. During the course 

of machining i t became apparent that alignment of a l l the five axes was 

very important. The f i r s t few attempts to machine the sine curve 

produced a step at the highest and lowest point. This step was even

tually explained by misalignment in the y-z plane. A computer simula

tion of a misalignment in this plane is given in Figure 4.6 for an 

error of 2 mm in the y-axis. 
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4.4 Chain Saw Guide Bar 

For the CNC machining of a chain saw guide bar a set of digit

ized data points was supplied from an existing bar as shown in Figure 

4.7. A major requirement was that the final guide bar should be smooth 

and have a minimum negative curvature. 

A cubic spline curve was i n i t i a l l y fitted to this set of data 

on the UNIGRAPHIC system with an instantaneous slope curve, as shown in 

Figures 4.8 and 4.11 respectively. Subsequently, a B-spline was 

fitted to the same set of data points as shown in Figure 4.9. The 

results clearly show that B-splines give a much smoother f i t although 

by no means perfect. 

An iterative procedure was adopted in which the original set of 

data was replaced by points from the last B-spline f i t . The result of 

the 2nc* i t e r a t i o n gives a smoother curve, as is shown in Figures 4.9 

and 4.10, and the derivative plots are given in Figures 4.12 and 

4.13. 

4.5 Ship Hull 

A model of a ship hull was made to be used for stability tests 

in the B.C. research ship testing f a c i l i t y . The data for station lines 

was obtained for the Eastwood hull as shown in Figure 4.14. On the 

f u l l size ship the station lines were 10 feet apart and the whole 

length of the ship was 106 feet. The selected model length was 30 

inches. The ship hull surface was developed with B-splines and the 

fin a l shape of the hull is given in Figure 4.15. A photograph of the 

completed oak model is shown in Figure 4.16. 

The ship hull was machined using only the 3-axis capabilities 

of the CNC machine. 
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F I G . 4 . 2 P h o t o g r a p h o f t h e t w i s t e d p l a n e . 
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C u t t i n g w i t h t r a i l i n g 

FIG. 4 .3 G-SURF's mode of changing cutt i n g edge 



FIG. 4.4 The sine curve surface. 
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FIG. 4 .5 Photograph o f t h e s i n e c u r v e s u r f a c e . 
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FIG. 4 . 7 Data p o i n t s f o r c h a i n saw b l a d e . 
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FIG. 4.8 Cubic spline f i t to chain saw blade. 



F I G . 4.9 B - S p l i n e f i t t o c h a i n saw b l a d e . 



2. 000,— 

FIG. 4.10 B-Spline f i t to chian saw blade, 2 i t e r a t i o n . 



FIG.4.11 F i r s t derivative p l o t of cubic spline f i t to chain saw 



FIG. 4.12 F i r s t derivative plot of B-Spline f i t to chain saw blade. 
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T I C M R R K S P A C I N G : 1 f t 

FIG. 4.14 Station l i n e s f o r East-wood-hull. 
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FIG.4.15 Tool path f or East-Wood h u l l . 
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F I G . 4.16 P h o t o g r a p h o f t h e s h i p h u l l . 



CHAPTER 5 

CONCLUSIONS 

The basis of B-spline curve f i t t i n g has been examined and 

evaluated i n r e l a t i o n to other curve f i t t i n g techniques. It i s found 

that: 

(a) B-spline approximation (BSAPP) f i t s , to a given set of data 

points, the smoothest, curve which l i e s within the convex h u l l of the 

enclosing polygon. 

(b) B-spline approximation (BSAPP) i s v a r i a t i o n a l l y diminishing, 

i . e . i t f i t s a straight l i n e with a l i n e a r equation. 

(c) B-spline i n t e r p o l a t i o n (BSPIN) gives r e s u l t s very s i m i l a r to 

cubic splines (CUB.SPL). 

(d) B-spline i n t e r p o l a t i o n (BSPIN) and cubic splines can f a i l when 

faced with high slopes or o f f - s e t points but otherwise they give good 

a l l purpose i n t e r p o l a t i o n r e s u l t s . 

(e) Conic spline (CON.SPL) requires the most manual intervention 

and i n that sense Is not very user f r i e n d l y . 
t i l 

( f ) Least-mean-square (LMS) and n order polynomial (9TH POLY) are 

not generally suitable for CAD/CAM ap p l i c a t i o n s . 

The c a p a b i l i t i e s of G-SURF as demonstrated during the design 

and manufacture of the machined models are: 

(a) Cutting with an end m i l l i n g cutter i s a very e f f i c i e n t means of 

material removal and gives good surface f i n i s h . 
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(b) I n c l i n a t i o n of the end m i l l i n g cutter to the surface normal 

enables the cutter to be positioned to minimize surface interference, 

c) Positioning the end m i l l so that i t cuts on either the leading 

or t r a i l i n g edge increases the a c c e s s i b i l i t y of the tool to deep 

conca v i t i e s . 

(d) Alignment of a l l the f i v e axes on a CNC machine i s c r i t i c a l . 

(e) The computer CPU task f i l e size required for G-SURF i s 

approximately 55 kB which w i l l f i t on to any Fortran based mini 

computer. 

5.1 Proposed Future Work 

(a) The next phase of this work should include the study of B-

spline surfaces and their comparison with other common surfaces, such 

as Coon's Patch, UNISURF, Ferguson's Patch, etc. 

(b) Graphic relationships between d i f f e r e n t machining parameters to 

increase the e f f i c i e n c y of G-SURF. 



APPENDIX I 

A WORKED EXAMPLE OF CONIC SPLINE CURVE FITTING 

The curve f i t t i n g routine called 'CON.SPL' f i t s a given set of 

data with piecewise conies of the general form 

2 2 
ax + bxy + c y + d x + ey + f = 0 . AI.l 

The curve can be guided by specifying slope at the end points 

or at inflection points. In the present example the data points for 

the S-curve are as follows: 

x O 1 2 3 4 5 * 6 7 8 

y 2.6 1.5 1.2 2.2 4.0 4.5 3.3 1.2 2.0 

The slope at the end points was specified by additional points 

as: 

(-1.0, 4.0) for the starting slope 

(8.5, -4.0) for the end slope. 

The inflection point was chosen to be at (3.5, 3.0) and the 

slope point as (-1.8, 8.0). 

To f i t the f i r s t part of the spline curve the f i r s t three data 

points are used together with the starting slope at x = 0 and the 

weighted mean slope at x = 2. 

At the f i r s t data point, x = 0, the slope is given as 

dy _ 4.0 - 2.6 

dx -1.0 - 0.0 ~ - 1 , 4 A I * 2 

At the third point the weighted mean slope is 
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Sw = t S2 ( x4 " V + S3 ( X3 " X 2 } ^ / ( X4 " X 2 ) A I * 3 

where 
y3" y2 

S = - = - 0.3 
3 X2 

y4" y3 S, - = 1 3 x.-x_ 4 3 

dv so that at x = 2.0 , = 0.35 dx 

The resulting equations for the f i r s t part of the spline curve 

are 

0 + 0 + 6.76c + 0 + 2.6e + f = 0 

0 + 2.66b - 7.28c + d - 1.4e + 0 = 0 

1 + 1.5b + 2.25c + d + 1.5e + f = 0 AI.4 

4 + 2.4b + 1.44c + 2d + 1.2e + f = 0 

4 + 1.9b + .84c + d + 0.35e + 0 = 0 . 

The solution of this set of simultaneous equations is 

x 2 - 2.22xy - 1.59y2 - 1.33x + 3.17y + 2.48 = 0 . AI.5 

Similarly the equations for the other parts of the spline curve taking 

position and slope continuity at each junction are: 

between x = 2 and x = 3.5 

x 2 - 1.42xy + 0.58y2 - 2.29x + 1.31y + 1.59 = 0 . AI.6 

between x = 3.5 and x = 5.0 

x 2 + 25.5xy - 12.25y2 - 124.75x + 4.12y + 254.5 - 0 AI.7 

between x = 5.0 and x = 8.0 

x 2 + 0.58xy + 0.13y2 - 12.603yx - 3.56y + 38.45 = 0 . AI.8 
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The plot of the conic spline curve is shown in Figure 1.6. In 

the last interval 4 points are fitted instead of three because a f i t to 

the 1st, 3rd and 4th points in that interval, l i e s within the 

acceptable error limit at the 2nd point. Hence, for computational 

purposes the 2nd point is ignored. 

In f i t t i n g curves with CON.SPL, i t was found that the 

definition of the endpoint slope c r i t i c a l l y affected the curve f i t t i n g . 

If for example the end point slope was defined as being greater than or 

equal to the slope between the f i r s t two data points then a curve was 

not generated in this region as shown in Figure AI.l and AI.2. 

However, i f the end point slope is less than the slope between the 

f i r s t two points a suitable f i t is obtained as shown in Figure 1.6. 

UNIGRAPHIC conic f i t has similar d i f f i c u l t i e s as shown in 

Figure AI.3, where the curve tends to curl back on i t s e l f in spite of 

the slope being less than the slope between the f i r s t two points. In 

figure AI.4 a UNIGRAPHIC conic f i t to an end slope larger than the 

slope between the f i r s t two points is shown. The f i t is poor. 

In f i t t i n g curves with CON.SPL, inflection points and slope at 

the inflection point play a c r i t i c a l role. If the inflection point 

slope is less than slopes between the two sets of points, then a curve 

is not f i t to the two adjacent segments of the curve as shown in Figure 

AI.5. If however the inflection point slope is in between the slopes 

of the two sets of points only one segment is fitted with a curve as 

shown in Figure AI.6. For an acceptable f i t the inflection point slope 

is greater than the slopes between the two sets of points, as shown in 

Figure 1.6. 
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FIG. A I . l Conic spline f i t when end slope greater than slope between points. 



FIG. AI. 2 Conic spline f i t when end slope equals slope between points. 
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FIG.AI „ 3 UNIGRAPHICS Conic f i t to end slope greater than slope between points. 
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FIG.AI.4 UNIGRAPHIC Conic f i t to end slope less than slope between points. 
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FIG. AI. 5 Conic spline f i t to i n f l e c t i o n point slope l e s s than slope between points. 
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APPENDIX II 

A WORKED EXAMPLE OF CUBIC SPLINE CURVE FITTING 

The curve fi t t i n g routine called 'CUB.SPL' f i t s a given set of 

of data with piecewise cubics of the general form 

g(x) = a i + b^x-x^ + C i ( x - X i ) 2 + d ±(x-x i) 3 AII.l 
where 

x ± < x < x i + 1 . 

Given a set of ordinates x^ < x^ ••• < x n a cubic spline can 

be f i t over the region [x^x^] in small cubic parabolas which have the 

above general equation and at junctions x^ have point, slope and 

curvature continuity. 

2 3 g(x) = a i + b 1(x-x i) + c i(x-x i) + d i(x-x 1) 

g'(x) = b ± + 2c i(x-x ±) + 3d i(x-x ±) 2 All.2 

g"(x) = 2c ± + 6d.(x- X i) . 

Let us take the following set of data points for the S-curve. 

x O l 2 3 4 5 6 7 8 

y 2.6 1.5 1.2 2.2 4.0 4.5 3.3 1.2 -2 

Since the slope and curvature are not specified at the ends, we 

f i t a cubic polynomial to the f i r s t three intervals (four data points) 

and thereafter we f i t cubic polynomials in each subsequent interval 

ensuring point, slope and curvature continuity. 

To f i t a curve between x, and x, 
1 4 
2 3 g(x) = a2 + b- jX + c^x + d^x 
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1 0 0 0 a l 2.6 

1 1 1 1 b, 1.5 
X 1 — 

1 2 4 8 C l 1.2 

_1 3 9 27 d l 2.2 

2.6 

-1.3333 

.15 

.083. 

A l l . 3 

To f i t a curve between x. and x,.. 
4 5 

g(x 4) = g(3) = 2.2 

g'(x 4) = b±+ 2c xx + 3dxx = 1.816 

g"(x 4) = 2c Lx + 6djX = 1.8 

g(x 5) = 4.0 

Using these four conditions the following equations are obtained 

and can be solved to give the four coefficients a^, b^, c^ and d^ • 

1 

0 

0 

_1 

a2 =  

b2 * 

C2 " 
d„ = 

3 

1 

0 

4 

29.5984 

-28.3316 

9.1494 

-0.9166. 

9 27 a2 2.2 

6 27 
X b2 = 1.8166 

2 18. C2 1.8 

16 64_ - d 2 - _4.0 _ 

All.4 
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The cubic equation for the curve between x^ and x,. is given as 

g(x) = 29.5984 - 28.3316 x + 9.1494 x 2 - 0.9166 x 3 . All.5 

Similarly the equations for regions x, to x Q can be fitted as: 

region 5 6 

g(x) = -124.206 + 87.0247 x - 19.6897 x 2 + 1.4866 x 3 All.6 

region 6 7 

g(x) = 740.724 - 431.9298 x + 84.1005 x 2 - 5.4327 x 3 All.7 

region 

region 

X7 " X8 

g(x) = -356.5129 + 72.6732 x +3.66795 x 2 -0.96422 x 3 All.8 

X8 " X9 

g(x) - -11353.3236 + 4785.5914 x - 669.6061 x 2 + 31.0964 x 3 

All.9 

A plot of these cubic spline curves is shown in Figure 1.7. 
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APPENDIX I I I 

A WORKED EXAMPLE OF B-SPLINE CURVE FITTING 

The curve f i t t i n g routines called 'BSAPP' and 'BSPIN' f i t a 

given set of data with piecewise polynomials as defined in the text. 

The data points for the S-curve are as follows: 

x 0 1 2 - 3 4 5 6 7' 8 
y 2.6 1.5 1.2 2.2 4 4.5 3.3 1.2 -2.0 

Both B-spline curve f i t t i n g methods go through the following sequence: 

(a) Generate a knot sequence 
There are 9_ data points. 
Hence, there are JL5_ knots. 
The knot sequence t ^ to t ^ i s 
0. 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 8, 8, 8 

(b) Generate the basis functions 

Once the knot sequence has been generated the basis functions 

can be obtained from equations 3 and 4. The divided difference 

recurrence r e l a t i o n s h i p i s given i n the t e x t . However, f o r 

computational ease and computing ef f i c i e n c y , Carl de Boor's algorithm 

i s used w i t h i n G-SURF^. This algorithm goes through the following 

steps to produce the equations of the basis function i n each i n t e r v a l . 

Given a knot sequence [ t ± t j and k, the order of the B-

spline to be generated, the basis functions can be obtained by the 

following steps: 

1. b l := 1 

2. for j = 1, ••• k-1 do. 
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2.2 6 L. := x - t , , . . 
3 ±+1-3 

2.3 Saved := 0 . 

2.4 for r = 1, j , do. 

2.4.1 Term := b / ( 6 R + 6 ^ , ) . 
r r j + l - r ' 

2.4.2 b := Saved + 6 R * Term. 
r r 

2.4.3 Saved := * Term. 
J+l-r 

2.5 b.,. := Saved. 
J+l 

The basis functions can be generated using the de Boor 

algorithm. 

Let 0 < x < 1 

then i = 4 , because t^ < x < t 
b l =. 1 

j = 1 

6 R = (1-x) 

6 1 = x 

r = 1 

Term = — = 1 
1-n+n 

b 1 = (1-x) 

Saved = x 

b 2 - x 

j = 2 

6 R = (2-x) 
EL 
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r = 

Saved 

Term = 1 * = (1-x) 1-x+n 

b 1 = (1-x) 2 

Saved = x(l-x) 

r = 2 

Term 

b 2 = x(l-x) + (2-x) j 

2 

X x_ 
(2-x)+x = 2 

x 

x_ 
2 
2 

x 
B 3

 = 2 

3 

6 3 = (3-n) 

= X 

2 
Term = . / ^ l = (l-x ) : 

(1-x) + n 

b1 = (1-x) 3 

2 
Saved = x(l-x) 

Term 
x(l-x) + f (2-x) 

(2-x) + x 
b 2 = x(l-x 2 + (2-x)(l-x) |+ (2-x) 2 J 

2 4 6 
Saved = f - (1-x) + - f - (2-x) + ( 3-x) 

r 

Term 
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2 2 2 
b3 = J~ ( 1 ~ x ) + IT <2_x> + <3_x> f~ _ 

b4 ~ 6~ 

So the equations of the basis functions in the region 0 < x < 1 are 

B 2 > 4 = x( l - x ) 2 + (2-x)(l-x) f + (2-x) 2 | 
2 2 2 

B3,4 = f ~ ( 1 " X ) + f " ( 2 " X ) + ( 3 ~ x ) f " 
3 

B4,4 " 6^ * 
Similarly solving for B-spline basis function equations in the region 

1 < x < 2 we obtain: 

_ (2-x) 3  

B2,4 " ~~4 

_ x 2 (3-x)(2-x)x (3-x) 2(x-l) 
B3,4 " 4 U x ) + 6 + 6 

2 2 
B4,4 = f~ ( 2 " x ) + f (3-x)(x-l) + (4-x) ^f-

•o _ ( X - 1 ) 3 

B5,4 " ~~~6 
For region 2 < x < 3 we obtain: 

n - (3-x) 3 

3,4 " ~~6 

_ x 2 (4-x)(x-l)(3-x) (4-x) 2(x-2) 
B4,4 " 6 ( 3 ~ x ) + ~ 6 + 6 

_ (x-l) 2(x-3) (x-l)(4-x)(x-2) (x-2) 2(5-x)  
B5,4 " ~ + 2 + 6 

_ (x-2) 3  

B6,4 " ~ 
For region 3 < x < 4 we obtain: 

_ (4-x) 3  

B4,4 " ~ 
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B5,4 = i [(x-DC 4^) 2 + (5-n)(x-2)(4-x) + (5-x)2(x-3) ] 

B6,4 = 1 t(x-2)2(4-x) + (x-2)(5-n)(x-3) + (6-n)(x-3) 2] 

•a _ ( X - 3 ) 3 

B7,4 " ~ 6 * 

Similarly the basis function in the intervals 4 < x can be 

found. 

(c) Generating the Two Extra B-Spline Coefficients 

The B-spline approximation to any function g(x) is given 

by 
n 

g(x) = S a B . 
i=l 1 1 , J 

We know B. . but we need to find a. . 
i . J • i 

There are two methods which can be used to find : 

1. As there are (m+2) basis functions, we need (m+2) 

conditions to find a l l the a^'s. There are m data points, so we need 

two more conditions. These two conditions are obtained by making a 

linear interpolation in the f i r s t and last interval at the 0.333 and 

0.666 of interval length respectively. 

In this example the two generated data points are: 

for the f i r s t interval 

(0.333, 2.6 + ( 1 , ^ Q ' 6 ) *3333 ) 

= (0.333, 2.234 ) 

(7.666, 1-2 + ( ~ 2 - ° ~ 1 , 2 ) * T ) 
and for the last interval 

2. 
8-7 

= (7.666, - 1.0666) . 
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Thus can be evaluated quite easily. Carl de Boor has proved 

that the a^'s are equal to the value of the data points"*. Thus, the 

may be given as: 

a l 2.6 

a2 = 2.234 

a3 = 1.5 

a4 = 1.2 

a5 = 2.2 

a6 = 4.0 

a7 = 4.5 

a8 = 1.2 

a9 = -1.0666 

a i o 
= -2.0 . 

To illustrate how the B-spline basis functions add up to form 

the desired f i t the expanded region 3 < x < 4 is shown in Figure AIII.l 

with the basis functions drawn in there normalized form. In Figure 

AIII.2 basis functions are shown after they have been multiplied by 

their respective coefficients. This method is used in B-spline 

approximation (BSAPP). 

2. a±'s c a n a^- s o be found by solving the matrix equality (6) 

green in the text. This method is used in B-spline interpolation 

(BSPIN). 
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F I G . A3.1 B a s i s f u n c t i o n add up to form c u r v e . 
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F I G . A 3 . 2 B a s i s f u n c t i o n a f t e r b e i n g 
t h e r e c o e f f i c e n t s . 

m u l t i p l i e d by 
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