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ABSTRACT 

A physical model and a numerical solution procedure has been 

developed to predict heat transfer behaviour in supercritical fluids. A 

major area of concentration was the modelling of the turbulent components 

of shear stress and heat flux. Traditionally, the turbulent fluxes are 

modelled by algebraic expressions such as the familiar mixing length methods. 

However, the use of this technique has not been entirely satisfactory. 

Newer methods for constant-property flows which model turbulent fluxes by 

considering the transport of quantities such as turbulent kinetic energy 

and the dissipation rate of turbulence have been extended to supercritical 

fluids. This involves the solution of two additional partial differential 

equations that are solved simultaneously with the equations of continuity, 

energy, and momentum. The numerical scheme has been developed on a com

pletely two-dimensional basis by extending the Pletcher-DuFort-Frankel 

f i n i t e difference method. 

Computed results for velocity and temperature profiles as well 

as wall temperature distributions exhibited reasonable agreement with 

previous experimental data and therefore indicate the v i a b i l i t y of the 

present method. Computations were carried out for supercritical carbon 

dioxide flowing through a circular duct in the reduced pressure range 

1.0037 to 1.098. A consideration of the influence of buoyancy on the mean 

momentum balance permitted the calculation of unusual velocity profiles in 

this investigation. The existance of such velocity profiles had been 

accepted previously but the nature of their growth along a pipe has probably 

not been suggested previous to this work. No attempt was made to include 

buoyancy generated turbulence or additional fluctuating property correlations 
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in this work, but suggestions are made regarding possible avenues of 

approach. Some of the incidental outcomes of this work were a new con

tinuous universal velocity profile implicit in cross stream distance an 

a new mixing length distribution for turbulent pipe flows. 
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I. INTRODUCTION 

1.1 General 

Forced convection heat transfer to supercritical fluids has 

attracted the attention of many investigators during the past two decades. 

This interest has partly stemmed from the challenging nature of the problem 

and partly as a consequence of several engineering trends. There has been, 

a steady development of power plants towards supercritical conditions i n 

response to increasing demands for cheaper energy. Rocket motors are f r e 

quently cooled by fuel at supercritical pressures. Supercritical fluids 

have been used as coolants for e l e c t r i c a l machines and have also been con

sidered as coolants for nuclear reactors. 

Very large changes of thermodynamic and physical properties near 

the c r i t i c a l state are responsible for the unique nature of supercritical  

heat transfer. Effects which are normally approximated through constant  

property idealizations become dominant near the c r i t i c a l state. Conse

quently, several commonly made assumptions and empirical correlations y 

based on constant property idealizations, become inapplicable in this 

region. At the present time, there i s insufficient knowledge of super

c r i t i c a l heat transfer mechanisms to produce completely satisfactory 

designs near the c r i t i c a l state. One of the goals of the present work 

is to improve this situation by an analytical examination of the phenomenon. 

The c r i t i c a l point i s often defined as the pressure and temperature 

at which no distinction can be made between the liquid and vapour phase of a 

fl u i d . At pressures higher than c r i t i c a l , the fl u i d i s termed supercritical. 

The term subcritical i s used for fluids below their c r i t i c a l pressure. At 
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supercritical pressures, heating of a f l u i d brings about a continuous change 

from a dense liquid - l i k e state to a lighter state resembling a gas (vapour 

like) . No distinct interface occurs between a liquid and vapour at super

c r i t i c a l pressures. However, the pseudocritical temperature (the tempera

ture at which specific heat attains a local maxima) may be used as an 

approximate demarcating temperature between the liquid and vapour-like 

states. An i l l u s t r a t i o n of the preceeding terminology i s provided i n 

Figure 1. Property variations become less severe away from c r i t i c a l 

pressures and correspondingly the heat transfer mechanisms become simpler. 

The term supercritical heat transfer i s normally used only up to pressures 

where property variations are severe enough to make constant property heat 

transfer treatment inapplicable. The boundaries of this region are some- , 

what arbitrary. 

Below the c r i t i c a l pressure, boiling does not occur i f the f l u i d 

state does not encompass the saturation temperature. Therefore, single-

phase heat transfer mechanisms apply. In a somewhat similar manner i f the' 

state of a supercritical f l u i d i s far removed from the pseudocritical tem

perature (so that property variations are not significant), conventional 

single-phase mechanisms apply. Abnormal heat transfer occurs only at or 

in the v i c i n i t y of the pseudocritical temperature. 

A brief discussion of the thermodynamic and transport properties 

of supercritical fluids i s provided in Appendix A. Figures 2 to 5 i l l u s t r a t e 

the variations of viscosity, density, specific heat '(C) and thermal con

ductivity of supercritical carbon dioxide at a pressure of 75.84 bars. 
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FIGURE 1. Locus of Maximum as a Function of Temperature for 
.'Supercritical Carbon Dioxide. 
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FIGURE 2. Specific Heat (C ) of Carbon Dioxide as a Function of 
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FIGURE 3. Thermal Conductivity of Carbon Dioxide as a Function of 
Temperature. 
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FIGURE 4. Density of Carbon Dioxide as a Function of Temperature. 
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FIGURE 5. Viscosity of Carbon Dioxide as a Function of Temperature. 
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1.2 Review of Literature 

Comprehensive surveys of near c r i t i c a l heat transfer with exten

sive bibliographies have been made by Hall"'", Hendricks, Simoneau* and. 
2 3 Smith , and Hsu and Graham . The discussion in this section i s mainly 

restricted to forced convection aspects of supercritical heat transfer. 

Probably the earliest investigation of heat transfer to super-
4 

c r i t i c a l fluids was that of Schmidt, Eckert, and Grigull . They conducted 

their experiments in a natural convection loop and presented their results 

in terms of an apparent thermal conductivity, defined as the thermal con

ductivity required to transfer an equivalent amount of heat at the same 

temperature difference through a solid material of the same size. They 

found that apparent thermal conductivity becomes very large near the 

critical, point. A later study by Schmidt^ in a closed tube showed that 

apparent thermal conductivity at supercritical conditions can be as large 

as 10,000 times that of copper over a narrow range of temperatures. Con

trary to this and other studies indicating an improved behaviour at the 

c r i t i c a l point, several studies^ observed a sharp decrease i n the heat 

transfer coefficient near the c r i t i c a l point. This apparent contradiction 

was resolved when i t was demonstrated that maxima and minima in heat transfer 

can occur depending on the level of heat flux (Hauptmann^ and Styrikovich 

et a l . ). 

Differences between wall temperature and bulk temperature are 
9 

small in experiments where minima are observed. According to Hsu t the 

two results can be explained in boiling terms with instances of increased 

heat transfer coinciding with a mechanism similar to nucleate boiling, 

whereas a minimum heat transfer coefficient i s akin to film boiling. This 
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postulate was supported by the fact that maximum coefficients generally 

occurred at low temperature differences as in nucleate boiling. Some of 

the f i r s t direct observations in a supercritical f l u i d by G r i f f i t h and 

Sabersky^ indicated the existence of a bubble-like flow around a heating 

wire. Supercritical heat transfer i s sometimes accompanied by boiling-like 
11 12 9 noise . Goldmann , therefore, was also led to conclude l i k e Hsu that 

under certain conditions of non-equilibrium, a boiling-like mechanism w i l l 

sometimes occur. 

Contrary to the preceeding evidence, flow visualisations 

carried out by Hauptmann^ and Green'" ̂ have been in favour of single-

phase forced convection mechanisms. The strongest argument against the 

boiling theories i s that two distinct phases are not possible under 

equilibrium at supercritical pressures and sufficient departure from con-
15 

dition:; of equilibrium has not yet been proved. Following Deissler , i t 

has been shown that conventional forced convection, theories that account for 

large property variations can account for most of the peculiarities including 

maxima and minima in supercritical fluids. This i s the approach adopted in 

most theoretical investigations and w i l l be pursued further i n the present 

work. 

Experimental investigations have mostly made use of smooth pipes 

of circular cross-section with uniform heat flux boundary conditions. The 

f i r s t detailed study was that of Wood"^, who made very careful measurements 

of velocity and temperature profiles. He also measured some unusual 

velocity profiles (which exhibited a maxima away from the center). 

Similar profiles have also been measured and studied carefully on a f l a t 

plate by Simoneau''"̂ . A great deal of effort has been placed on developing 
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data correlations using either the Dittus Boelter type of equation or i t s 

modifications, 

d 
, t 

Nu x = C Re* Pr° (-f-) . (1.1) 
b 

Here, 'X' implies that properties are evaluated at a reference 
18 temperature t . Suggestions for evaluating t v have been made by Eckert 

X X 

19 
and Bringer and Smith amongst others. Some other notable attempts to 

20 21 develop correlations have been by Hess and Kunz , Krasnoschchekov et a l » 
22 23 24 Gunson and Kellog , Swenson et a l . , and Mirapolsky and Shitsman 

Although these correlations are useful and one of the few means 

of predicting supercritical heat transfer, they have not been very success-
3 

f u l ; to quote Hsu and Graham : "It would be conceded by most investigators 

in this f i e l d that any of the correlations using the Dittus-Boelter type of 

equation are not f u l l y acceptable prediction schemes". 

Hall also concluded that existing correlations are inadequate 

as a means of predicting heat transfer i n the c r i t i c a l region. As the 

f l u i d state moves away from the c r i t i c a l point, property variations become 

less severe and then these correlations are more nearly applicable. 

A rather different approach to correlating and explaining forced 

convection heat transfer to supercritical fluids has been suggested by 
25 

Hendricks, Graham, Hsu, and Mediros , treating the problem as a pseudo-

two-phase phenomenon. Another model i s the penetration model due to 

26 

Graham . The chief value in these latter approaches probably l i e s i n 

their heuristic description of mechanisms and not in their a b i l i t y to 

correlate data. 
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An alternative approach to predicting near-critical heat transfer 

i s application of turbulent forced convection theories with allowance for 

property variations. Accordingly, turbulent fluxes are defined as: 

< T(y) = (u + p O |H , (1.2) 

and 

q(7) = (k +
 P C p ^ ) |£ . (1.3) 

The principal unknowns in equation (1.2) and (1.3) are the flux variations 

T(y)» q(y)» and d i f f u s i v i t y e . The turbulent Prandtl number i s generally 
15 27 

regarded as equal to unity. Deissler ' pioneered attempts to analyse 

supercritical fluids and proposed that close to a wall d i f f u s i v i t y i s 

given by: 

£m 2 + + r, . 2 + + , . , ,„ — = n u y [1 - exp(-v n u y /v)] . (1.4) v w w 

28 

Goldmann redefined the non-dimensional parameter occurring i n the universal 

velocity profile i n order to make them more sensitive to property variations. 
29 

According to Tanaka , Goldman's proposal implies a redefinition 

of the same parameters occurring in the d i f f u s i v i t y expression which are, 

+ 

( f ) ' 1 / 2 dy + , (1.5) 
0 w 

and 
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u 
J 

^ p + 

(-£-) du . (1.6) 
Pw 

0 

30 

Hsu and Smith modified Deissler's method by considering effect of density 

derivatives i n shear and heat transfer expressions as: 
e' - (1 + F)e ; e' = (1 + F )e : (1.7) 
m m h h m 

where, 

and, 

dy dy 

J n d£nC t + 

d£n£ 7 » (1.9) n , + , + dy dy 

The factors inside the parenthesis have been referred to as enhancement fac-
31 

tors. Another type of enhancement factor has been suggested by Yoshida 

29 32 v 

Tanaka used Kato's expression for eddy d i f f u s i v i t y and Goldmann^s 

model for calculations. They were able to predict wall temperature peaks 

typical of deterioration regimes in supercritical heat transfer. Hess and 
20 

Kunz , on the other hand, adopted Van Driest's expression for eddy d i f f u s i 

vity for calculations i n supercritical hydrogen and went on to develop a 

widely used correlation that involves an additional parameter v^/v^. 

Shear stress and heat flux variation have been assumed to be 

either constant or varying linearly in most investigations. This follows 

directly from the assumption that streamwise variations are not significant, 
33 

or equivalently that the flow i s one-dimensional. Shiralkar and G r i f f i t h 

found wall shear stress values by an additional mass flow constraint and 

were able to predict wall temperature trends in the deterioration regimes 
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34 for supercritical steam and carbon dioxide. Sastry and Schnurr , however, 

did not make the assumption of one-dimensionality except in the near wall 

region. They adopted the well known Patankar and Spalding scheme and used 

Van Driest's expression for d i f f u s i v i t y . Their computed results exhibited 

good agreement for supercritical steam i n the enhancement regime. 

In another group of studies i n which investigators having realized 

the importance of buoyancy even i n predominantly forced convection situations 

and have allowed the shear stress variations to be influenced by buoyancy. 

At least three attempts to make such calculations have been made and are 
30 35 36 due to Hsu and Smith , Hall , and Tanaka 

Before undertaking the main part of investigation, a preliminary 
* 

one-dimensional study was carried out in order to gain familiarity with 

forced convection concepts in supercritical fluids. Calculations were made 

for pipe flow using a linear shear stress distribution as well as a shear 
37 

stress distribution that accounts for buoyancy in vertical flows , 

" »» -¥<^- i>+ ( 1- 1 0 ) 

where, 

I = 
PR 

pg(R-y)dy , (1.11) 
0 

The terms one-dimensional and two-dimensional in this investigation make 
reference to the minimum number of coordinates required to analyse the 
problem. 
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and, 

I y - pg(R-y)dy . (1.12) 
0 

Equations (1,10) to (1.12) follow directly by integrating the one-dimensional 

momentum equation. The remaining formulation i s essentially similar to that 
33 

of Shiralkar and G r i f f i t h . An important innovation i n the present inves

tigation was the use of temperature as an independent cross-stream variable 

in the numerical solution. This was made possible by rearranging equation 
(1.3) for 4^ rather than 4̂ ". Since properties were tabulated as the function dt dy 

of temperature, this eliminated numerous interpolations for the properties 

which otherwise consume the bulk of computing time. An additional advantage 

was that inaccuracies associated with interpolaration were also reduced. It , 

also becomes possible to divide the grid in equal increments of enthalpy 

which yields an efficient grid distribution with suitably close points 

near the wall and in the v i c i n i t y of the c r i t i c a l point where properties 

change rapidly. Although i t may appear from the one-dimensional equations 

that computation time is not a severe limitation, this i s not the case due 

to time-consuming iterations for x and I. As a consequence of this study, 
w 

a need for an investigation at the two-dimensional level was reinforced. 

So" far, a l l analyses discussed have been quantitatively success

ful only in selected regions. Their main contribution, however, l i e s in 

the fact that they have predicted a principal peculiarity of supercritical 

fluids which i s 'enhancement' and 'deterioration' in heat transfer at low 

and high heat fluxes respectively. A one-dimensional analysis also succeeds 

in predicting some of the unusual velocity profiles. A more complete range 
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of velocity profiles has been calculated in this investigation (as discussed 

in Chapter V). 

In conclusion, calculation methods in supercritical fluids f a l l 

within two broad categories. The f i r s t of these i s through the use of 

empirical correlations and the second through the use of forced convection 

theories that make use of the mixing length type of algebraic formulations 

for d i f f u s i v i t y . The l a t t e r approach was adopted in this work in order to 

explore the possiblities that a more rigorous effort i n this direction can 

yield. However, an important change in this investigation was the replace

ment of the algebraic formulations for d i f f u s i v i t y by some of the more 

recent methods used for studying constant property turbulence flows. 

These methods formally referred to as turbulent models, d i f f e r according 

to the level of approximation and may involve one, two, or more additional 

d i f f e r e n t i a l equations for turbulence properties such as the Reynolds stress 

that are solved simultaneously with the three primary conservation equations 

(of mass, momentum, and energy). Therefore, this l a t t e r form of turbulence 
* 

modelling i s often referred to as multi-equation models of turbulence . 

Though s t i l l in their early stages of development, these models are 

regarded as an improvement over algebraic formulations (of the mixing 

length types) because of their success in application to many engineering 

situations. By accounting for the transport of turbulence properties, 

they place the art of turbulence modelling on a physically r e a l i s t i c l e v e l . 

See Launder and Spalding for multi-equation models of turbulence. 
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1.3 Need for the Present Work 

The designer of heat transfer equipment requires information on 

wall temperature distribution (or heat transfer coefficients) and wall 

shear stresses (or f r i c t i o n factors). It i s desirable that the prediction 

procedure available to him should be versatile enough to cover a wide variety 

of operating conditions, within which he may explore and optimise a design. 

Various attempts for supercritical fluids have been outlined in the l i t e r a 

ture survey but as indicated, they are i n need of further development. 

However, they have pointed to a possible route which needs to be inve s t i 

gated. 

The purpose of this dissertation i s to develop a numerical pro

cedure which can handle forced convection heat transfer calculation at 

super-critical conditions. The major areas of improvements i n the present 

work were the inclusion of a multi-equation model of turbulence and the 

extension of the analysis to a f u l l y two-dimensional lev e l . The procedmre 

i s general enough to be used (in most cases with only minor modifications) 

for any f l u i d flowing i n plane or axisymmetric configurations, but calcula

tions were restricted to flow of supercritical carbon dioxide through ci r c u l a r 

ducts. 

** 
Carbon dioxide has a convenient c r i t i c a l range . Because of this 

and also because of i t s easy handling and av a i l a b i l i t y i n a f a i r l y pure form, 

carbon dioxide has been selected as a working f l u i d i n many experimental _ 
Heat transfer coefficients in supercritical fluids are heat flux dependent 
and therefore they do not have the same significance as i n constant 
property fluids. 

'p = 73.8 bars, t = 304°K. c c 
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investigations. Its properties in the c r i t i c a l region are f a i r l y well known, 
* 

unlike most other fluids . Because of this and also because a variety of 

experimental data is available, carbon dioxide was selected as the f l u i d for 

testing the numerical procedure in this investigation. 

The problem investigated i n this study i s also interesting from 

an academic point of view in that the combination of d i f f i c u l t phenomena 

such as turbulent flow and large property variations are generalisations 

of phenomena that occur in most convective heat transfer problems. There 

i s also a need to inquire into the applicability of recent methods i n tur

bulence modelling and numerical analysis under the influence of such condi

tions ., 

The contributions of this investigation are twofold. F i r s t , the 

formulation of a physical model and second, the development of a numerical 

solution procedure. The three primary equations for conservation of mass 

momentum and energy are discussed i n Chapter II. These are f u l l y two-

dimensional and include terms for buoyancy and viscous dissipation. The 

associated turbulence model discussed i n Chapter III i s a two-equation model 

of turbulence. Chapter IV describes the main features of the numerical 

solution procedure along with some preliminary results. The associated 

computer program i s described i n Appendix D. The remaining chapters dis

cuss the achievements and shortcoming of the prediction procedure. 

The properties of supercritical steam are also well known. 
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II. THE CONSERVATION EQUATIONS 

2.1 General 

The main thrust of this investigation was concerned with flow i n 

circular ducts, but an attempt was made to keep the mathematical formulation 

suff i c i e n t l y general so that i t would apply to both plane and axisymmetric 

flow situations. 

This investigation was primarily concerned with time-averaged 

effects. The process of time averaging causes s t a t i s t i c a l corre

lations involving fluctuating velocities and temperature to appear i n the 

conservation equations. These unknown correlations are approximated from 

additional equations which generally take the forms of algebraic formulae 

(as in the mixing length models); they can also be determined from the 

solution of d i f f e r e n t i a l equations for time-averaged properties of turbu

lence. The latter approach i s relatively recent and has mostly been con

cerned with constant property fluids. Therefore, i t required a review 

before i t was introduced in this investigation. 

The complete mathematical model formulated in this work involves 

di f f e r e n t i a l equations for the fluctuating velocity correlations as well 

as the three primary conservation equations of mass, momentum, and energy. 

Only the latte r set of equations, along with algebraic formulae for turbu

lent viscosity, are discussed i n this chapter. The remaining equations 

are taken up i n the next chapter. This division has been made for the 

sake of c l a r i t y . 
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2.2 Statement of Problem 

The problem under consideration was forced convective heat trans

fer to supercritical fluids flowing past r i g i d surfaces in two-dimensional 

plane or axisymmetric configurations. Heat addition or removal took place 

only at the r i g i d boundaries. The flow was normally turbulent and the mean, 

flow was assumed to be steady (hydrodynamically as well as thermally). The 

f l u i d was assumed to be at supercritical pressures and the f l u i d properties 

were assumed to be known. Figure 6 shows a schematic diagram of the 

problem as applicable to pipe flow. 

The conservation equations considered in this chapter include a. 

term accounting for buoyancy. The necessity of including this term may be 

questioned since the primary interest in the present work is forced con

vection heat transfer. However, i t has been indicated by Hauptmann'7, 

30 1 

Hsu and Smith , and Hall that free convection effects can influence 

several predominantly forced convection situations. It i s d i f f i c u l t to 

define precisely when these effects are totally absent. Moreover, i t i s 

f e l t that the role of buoyancy in the mean momentum balance for forced 

convection situations i s not f u l l y understood. A consideration of this 

influence i n forced convection heat transfer provides an opportunity to con

tribute towards a further understanding of this situation. Nevertheless 

the mathematical model formulated i n this work is not generally applicable 

for both forced and free convection heat transfer since the turbulence 

model used in this work i s primarily meant for forced convection heat 

transfer. It should be pointed out that in previous analytical investiga

tions (treated as one-dimensional) the free convective influence has been 

conceived only i n terms of a buoyant body force contribution in the mean 
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momentum balance. 

2.3 The Governing Equations 

The equations of continuity, energy and momentum governing the 

flow can be written in such a way that they apply to plane as well as to 

rotationally symmetric flow. For the problem under consideration, these 
* 

equations may be written as : 

9^ (Pur ) + ̂  (pvr ) - 0 (2.1) 

9u , 9u 
P u 9x" + p v 97 dx a 9y 

a , 9u iV^ - pu'v') + F 
x 

(2.2) 

and. 

p u 9^ + p v -97 
dp , 1 9 
dx a 9y r a flc — - ph'v») + (u - 9u/9y' ̂ 9y; 

(2.3) 

where: a = 0 (for plane flows), 

a = 1 (for axisymmetric flow) 

The body force term in the x-momehtum equation, F , may take the values 

indicated i n Table 1.1. 

* 39 See Eckert and Drake 
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TABLE 2.1 Value of F 
x 

FLOW CONFIGURATION F x 

I Non-buoyant or Horizontal Duct Flow 0 | 

II Upward Duct Flow ~Pg I 
III Downward Duct Flow +Pg 1 

IV Upward Facing Flat Plate + TM pgdy 

Jy 

V Downward Facing Flat Plate 

For a horizontal pipe, the indicated body force i s zero. This i s 

actually only true for non-buoyant flows. The case of horizontal-pipe buoyant 

flow cannot be treated here since in that case the axisymmetric condition i s 

violated. The body forces for the f l a t plate IV and V of Table 1.1 are 

actually not the body forces; these terms arise due to body forces + pg in 

the y-momentum equation. However, since the y-momentum equation i s not 

stated spearately, these values can be seen as F^ with dp/dx taking a value 

equal to zero. 

The contribution of fluctuating property correlations has been 

neglected in previous investigations since i t i s f e l t that their overall 

influence i s not significant. As a preliminary step, this practice was 

continued in the present investigation in the preceeding conservation equa

tions. Hall''" has estimated these correlations and carried out a useful 

order of magnitude analysis. His conclusion was that these correlations 

are probably negligible, but further discussion on this issue i s provided 

in Chapter VI. 
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Since the pressure variations i n the cross-stream direction were 

not significant i n this investigation, then: 

, 3t k 3h m i \ 

P 

Whenever indicated by the turbulence model under use that the 

turbulent fluxes could be expressed as a product of a function (which was 

either known or could be determined) and the velocity gradient, then this 

function was called the turbulent viscosity (or conductivity). This i s 

the sense i n which the effective viscosity concept has been used i n this 

investigation: 

r - K £ . (2.5) pu'v' -t 3y 

K t 3h 
ph'v' C 3y * P 

(2.6) 

and in addition, 

u f - y + y t , (2.7) 

k c c = k + k . (2.8) ef f t 

The ratios of the two turbulent coefficients i s then the turbulent Prandtl 

number (Pr f c = C p y t / k t ) . 

The pressure gradient in the momentum equation for non-confined 

flows w i l l be known and for the confined flow, i t can be found by the 

additional constraint of known mass flow rate (see section 4.3 for details) 

(2.9) 
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2.4 Algebraic Formulations for Turbulent Viscosity 

No precise way i s yet available for completing the preceeding 

equation set. The conventional means however is through the use of alge

braic formulations for the turbulent viscosity. Predominant among these 

is Prandtl's mixing-length hypothesis. This type of formulation has been 

used in the past for an analytical treatment of supercritical f l u i d s . 

However, at the present time i t i s possible to make use of apparently 

improved models of turbulence and the intention in this investigation was 

to explore an alternative model. Nevertheless, the algebraic formulations 

were s t i l l necessary i n the laminar and transitional region close to the 

wall. In addition, they were useful for developing a solution procedure 

and for deriving certain boundary conditions and starting profiles. 

Some of the algebraic expressions that have found use in analy

t i c a l work dealing with supercritical fluids are due to Deissler, Kato, 

and Van Driest. These expressions were originally formulated for con

stant property fluids but are used with the assumption that i f the f l u i d 

properties appearing in the expressions are allowed to take their local 

values, they are s t i l l applicable. In addition, a l l the available 
29 

expressions may be redefined by the use of Goldmann's hypothesis 

However, the general experience i n this and other investigations ( a l l one-

dimensional analysis) has been that whichever expression is used, the 

results are not altered significantly. The most widely used formulation 

i s due to Van Driest. It was also selected in the present work, 

u t = pl If • <2'10> 

I = Ky [1 - exp(-y +/A +)] , (2.11) 



where, 

K — 0.4 and A + = 26 . 

For y + > 26, i t i s possible to use % = Ky with comparable accuracy. 

However, this was not done in order to ensure a smooth merger of the 

transitional region with the turbulent region. Beyond y = 120, Van Driest's 

expression reduces to £ = ky within 1%. At least three different proposals 

exist for expressing the argument of the exponent in equation (2.11). None 

of these proposals i s advantageous under a l l circumstances. However, the 

procedure of using wall properties to evaluate the damping function has 

been shown to be superior to using local properties for fluids of moderate 

Prandtl number . Accordingly the expression chosen was: 

(2.12) 

Another expression for the mixing length £, away from the wall, used by 
40 41 

Pletcher and Nelson ' , was used in this investigation for some preliminary 

testing and i s 
for I > 0.0896 replace by I = .0898 , (2.13) 

where 6 i s the thickness of a developing boundary layer. Even for a f u l l y 

developed boundary layer this mixing length distribution has given good 

agreement for the velocity profiles and reasonable agreement for the 
41 

f r i c t i o n factors (about 5% higher). 

Once the turbulent viscosity is known, the turbulent conductivity 

is normally found by the assumption of unity turbulent Prandtl number. This 

_ — _ 
See Pletcher and Nelson and McEligot et a l 
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value has been advocated in previous investigations dealing with super

c r i t i c a l fluids. This assumption is probably a good one when the Prandtl 

number is close to unity. A value of 0.9 instead of unity has become 

popular i n recent years i n numerical studies of convective heat transfer. 

Accordingly, solutions were made with this value. This quantity i s d i s 

cussed in greater detail i n Chapter VI. 

2.5 Boundary Conditions and Starting Profiles 

The equations of continuity, energy, and momentum require 

starting profiles and boundary conditions before a solution can be effected. 

Starting enthalpy profiles were constant i n i:he problems considered. The 

velocity profiles, however, were not normally constant and these had to be 

generated by other means. In turbulent flow problems however, i t is not 

necessary to know these precisely since downstream results are not very 

sensitive to the starting profiles. It was nevertheless necessary to 

ensure that these profiles were smooth and continuous i n order to avoid 

i n s t a b i l i t i e s i n the numerical procedure. In a widely used numerical 

procedure , the starting velocity profiles normally follow from the 1/7 

power law. This i s appropriate in numerical procedures where a one-

dimensional analysis i s used in the near wall region. In the present 

solution procedure, a starting pr o f i l e was also required i n the near wall 

region. In principle i t should be possible to use a laminar law profile 

in the laminar sublayer and part of the transitional region (up to y + = 11),, 

a log law in the rest of the transitional region and most of the turbulent 

region with perhaps a 1/7*"*1 power law prof i l e near the edge of the boundary 

layer. Such a procedure w i l l however inevitably introduce discontinuities. 
44 

A continuous prof i l e due to Spalding is also available. However, i t s use 
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was not convenient for this work because i t appears to be implicit i n 

velocity. Continuous profiles e x p l i c i t l y defining u were devised for the 
* 

present work but the method of generating the i n i t i a l profiles by standard 

solution procedures has been preferred because the latter procedure i s more 

consistent with equation ( 2 . 2 ) . In a f u l l y developed constant property 

pipe flow, the shear stress varies as 

x = T r/R (2.14) w 

Using these values of shear stresses and noting that the Van Driest hypo

thesis can be translated to yield 

/ [ 2 K 2py 2 {1 

- exp(-y +/A +) 2}] . (2.15) 

The starting velocity profiles for pipe flow problems where the 

flow i s f u l l y developed before entering the solution regime can then be 

easily generated. In order to obtain the starting profile for f l a t plate, 

problems, the shear stress T i s assumed to be constant at the starting 

location and equation (2.15) i s solved for u up to a point where i t s 
til 

solution matches with a 1/7 power law pr o f i l e . 

In addition to starting profiles, the enthalpy and momentum 

equations require one boundary condition at each of i t s boundaries. 

These w i l l either be of known enthalpy and velocity or a known gradient. 

Thus, at the wall where y = 0, 

du 
3y 

2 2 2 -u + (u + 4TK py {1 - exp(-y +/A +) 2}) 
1/2] 

*e.g., U + = B[l - exp(-y+/B - (y +) 1' 5/100)]; B = 2.5 *n(y + + 1) + 5.5. 
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u = 0; v = 0; t = 3 t 

t or -5— 
W dy y=0 w 

At a free stream boundary, 

u = uro; t = t Q 

and at an axis of symmetry, 

37 = 0 ; 3y" = 0 • 

2.6 Concluding Remarks 

The present model differs from a previous two-dimensional analysis" 

of supercritical fluids, f i r s t by the fact that additional terms have been 

added to account for viscous dissipation and buoyancy and second, the 

governing equations were used in their f u l l form a l l the Way to the wall. 

A one-dimensional analysis at the wall which i s an important feature of the 
43 34 45 numerical procedure adopted by Sastry * , i s made possible by neglecting 

convection in the laminar and transitional near wall region. This assump

tion has been widely tested and proven to be good for constant or moderately 

variable property fluids. However, for supercritical fluids when the 

pseudo-critical temperature l i e s in this region i t appears that rapid 

changes i n density w i l l make this assumption unsuitable. What effect 

this has on the overall flow computation has not yet been sufficiently 

evaluated. One d i f f i c u l t y with using a one-dimensional analysis for 

supercritical fluids i s that their wall shear stress behaviour i s not known 

adequately either through standard correlations or experimental data. In 

the absence of this information, wall shear stresses in one-dimensional 



29 

methods can be found only by use of iterative schemes that do not always 

converge easily. With a two-dimensional analysis, this problem does not 

arise since in that case the wall shear stress can be found in a straight

forward manner from the computed velocity profiles. A higher order tur

bulence model that was incorporated in the analysis i s discussed in the 

next chapter. 



30 

III. TURBULENCE MODEL 

3.1 General 

A major limitation i n prediction of turbulent flows i s an impre

cise knowledge of velocity and enthalpy correlations p Û Û . and p hU^ 

respectively. Several different approaches to modelling these correlations 

may be found in the literature. So far, the various different forms of 

algebraic formulations have found the widest use. However, in recent years, 

a different class of turbulence models has gained in popularity. These 

involve a simultaneous solution of d i f f e r e n t i a l equations for quantities 

such as the kinetic energy of turbulence, dissipation, and Reynolds stresses . 

Although a significant improvement over the algebraic formulations, 

the alternative models of turbulence considered here have their limitations 

as well. It should be pointed out that turbulence modelling i s not a 

rigorous theoretical effort. Exact equations are derived as a starting 

point and guide to modelling, but only those terms that can be exactly 

defined are retained. The remaining information i s supplied through 

approximation and empiricism. However, i t is f e l t that further improve

ments in turbulence modelling w i l l come from this direction considering 

the fact that these models are presently undergoing a rapid development. 

As already mentioned, only the high Reynolds number form of modelling 

w i l l be considered. That i s , the turbulence modelling w i l l be applicable 

only i n the f u l l y turbulent region of the flow. For laminar and transi-

See for example, Launder and Spalding , Launder, Reece, and Rodi , and 
47 

Hanjalic for multi-equation approach to turbulence modelling. 
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tional regions, the present study makes use of the Van Driest hypothesis. 

This was f e l t j u s t i f i a b l e since modelling in this region has as yet made 

l i t t l e progress even for constant property fluids. As further progress 

takes place i n low Reynolds number regions, i t can be added to the methods 

proposed in this investigation since the remaining equations are i n any 

case solved in the laminar and transitional regions. Of the several 

different turbulence models comprising the multi-equation approach, the 

kinetic energy-dissipation (K - e) model appears to be adequate for the 

work carried out i n this investigation. It permits the analysis to stay 

at a reasonably simple level and appears to compare in accuracy with some 

of the more involved turbulence models. The kinetic energy-dissipation, 

model has already been formulated and much used for constant property 

fluids. The formulation of this model was re-examined here for applica

tion to supercritical fl u i d s . This examination starts at the Reynolds stress 

equation. Although this equation i s not used directly, i t i s required for 

introducing thin shear flow simplifications in the turbulence kinetic 

energy and dissipation equations. It also provides a necessary link between 

the desired correlations and the turbulent properties (kinetic energy and 

dissipation of turbulence). Further, the turbulence kinetic energy equation 

then does not have to be derived separately since i t i s a direct consequence 

of the Reynolds stress equation. A l l exact forms of the relevant equations 

were re-derived in this investigation for variable property flows since so 

* 3U. 3U. 
* 1 1 € = V 3X^ 3X^ 5 K " 2 U i U i • 

** - 9 U 1 3 U i 
Thin shear flow simplifications imply >> Û ; "§x~ > >'§x — 
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far, the literature has been concerned primarily with constant property 

situations. The turbulence correlations that arise because of the fluctua

tions in physical properties have been neglected i n the derivations of this 

chapter in the same manner as they were neglected in Chapter II. However, 

i t was deduced from the computed results (as discussed in Chapter VI) that 

a fluctuating property correlation that arises due to buoyancy (that i s , 

p'U_.ĝ ) in the Reynolds stress equation may not be negligible under the 

influence of free convective effects. This correlation was neglected 

because the primary interest in this investigation i s forced convection 

and also because the science of turbulent free convection s t i l l appears to 

be at the development state for constant property fluids. 

The Cartesian tensor notation i s used in this section but towards 

the end of this chapter, the f i n a l equations employed in the numerical 

solution are also expressed in the conventional notation. 

3.2 Reynolds Stress Equation 

A comprehensive discussion of Reynolds stress equation and i t s 
46 

closure for constant property fluids can be found in Launder et a l . The 

same equation was derived in this investigation for variable property 

fluids. The details are provided in Appendix B. 

An equation for fluctuating motion U i s obtained by subtracting 

the Navier-Stokes equation from the Reynolds equation. The resulting 

equation i s : 

An equation for the transport of Reynolds stresses Û U_. i s often called 
the Reynolds stress equation. 
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3U 
3T 

au. 
1 + D, 1 

Jk 3: 
1 3pJ_ 1 _3_ , 8 U i . 
p 3X± " ^ W ^ v } p 3 X k - ^ 

3U. -
- u, ~^ + -=- — (PU.U, - piru,) 

k 3Xk p 3^ v ^ i " k ^ i T k ' 

(3.1) 

Multiplying equation (3.1) by U_. and adding to i t the corresponding equa

tion for U. multiplied by Û, leads after rearrangement and averaging (as 

shown in Appendix B) to the Reynolds stress equation: 

D U i U i 
DT 

au. 
= - (u.u, j"k 33^ + U i U k SX^ 

3U, 3U. 
- 2 V — i - J -

8 \ 3 X k 

p.- au 3u + — (—- + — P ̂ ax. 3x.; 

3 i 

1 3 
p 9 x k 

(Production) 

(Dissipation) 

(Pressure-strain or Redistribution) 

3U.U. p u.u.u, - y - 5 J - 1 - p' (6.,u. + 6.. u.) 
x j k ax^ ] k 1 l k j 

(Diffusion) 

(3.2) 

The preceeding equations account for variation in properties p, y, and V 

but neglect the correlations with fluctuation in properties. The t i t l e s 

provided in brackets on the right-hand side are the physical interpretations 

usually associated with these terms. Except for some differences in the 

diffusion term, this equation i s very much like i t s constant property 

counterpart. In the latter case, diffusion i s normally represented as: 

) Xk 
3U.U-. — U.U.U. - V -—^ + V ( 6M U - + 6 - u U - ) 

i j k 3X, P ] k 1 i k j 3 X k 
(3.3) 

From a purely physical argument, this difference i s reasonable 

since variations in density from point to point in the flow should influence 
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the turbulent diffusion process associated with the Reynolds stresses. It 

is fortunate that the remaining terms are alike indicating that similar 

modelling practices for these terms appear suitable. Accordingly as a 

preliminary step, these terms were modelled as in earlier works 

48 

Viscous dissipation was described using Rotta's result for 

isotropic turbulence with the assumption that fine scale motions are 

isotropic: 

The pressure-strain correlation has been modelled by Launder et 
46 49 al and Naot et a l using different approaches but with the same result. 

Namely: 

2v (3.4) 

, dU. 9U. 
i j s l (3.5) 

where, 

(3.6) 

i 

(8 C2-2) 
- ( ^ . - f P c . . ) , (3.7) 11 

where, 

3U. 3U. 



35 

au au 
D i j " " Ul Dk 3X7 " Yk M l f » < 3 * 9 > 

3 1 

and 

au. 
p = " Yk ax; ' ( 3 - 1 0 ) 

46 
As pointed out by Launder et a l , one or more terms in the pressure-strain 

37 

correlation may be removed without altering the essential feature that 

the term as a whole be redistributive. Therefore, they proposed a simpler 

version of the pressure-strain correlation: 
<f>< . , - - Y(P. . - | P 6. .) . (3.11) 
i j , 2 i j 3 i j 

This form i s convenient because of i t s algebraic simplicity and appears 

adequate for algebraic stress modelling to be discussed later. Another 

reason for retaining the latter proposal i s that there i s considerable 

controversy regarding the value of in equation (3.7). However, 

when (3.11) i s used, y 1 S found directly from Crow's"*^ result for suddenly 

strained isotropic turbulence . When the f u l l pressure-strain correlation 
46 

i s used, Crow's result i s satisfied irrespective of the value of 

Presence of a nearby wall results i n additional effects on the 

pressure-strain correlation. This effect was not considered in the present 

work because i t was f e l t to be a minor consideration i n the thin shear 

flow model to be used. Only one of the shear stresses i s of interest in this 

model and i t s transport effects are found from the turbulent kinetic energy 

Equation (3.11) satisfies Crow's result when y = 0.6. 
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equation. The pressure-strain correlation drops out entirely when the 

Reynolds stress equation i s contracted to yield an equation for the turbulent 

kinetic energy. This i s also expected from a physical point of view since 

the effect of the pressure-strain correlation i s to redistribute turbulent 

kinetic energy from one component to another without influencing the overall 

balance of turbulent kinetic energy. 

46 

The diffusion terms have been treated by assuming that pressure 

and viscous diffusion are negligible; a result that has found further confir

mation by Irwin's experiments"'"'". The task then remains to model the t r i p l e 

correlation appearing i n equation (3.2). Various proposals for approxi-
52 mating U^U^U^ are reviewed by Wolfshtein, Naot, and Lin"". The task of 

selecting or formulating this correlation in terms of known parameters 

was simplified in this analysis because the area of interest in this inves

tigation i s thin shear flows. A relatively simple proposal for this corre-
53 

lation i s due to Daly and Harlow , 

„ 3U.U. 
= ~ C ' r D, U n - r i - 1 • (3.12) U.U.U, s e k I 3X0 i J k I 

The general v a l i d i t y of this equation was not questioned i n this investiga

tion because the only place i t found use was in the reduction of equation 

(3.2) to the turbulent kinetic energy equation . In that case, this 

equation simplifies to a gradient diffusion hypothesis. That i s , the rate 

of transport of turbulence energy i s taken as proportional to the spatial 

gradient of the same quantity. This hypothesis appears to be physically 
54 

r e a l i s t i c and has been used by several investigators starting from Prandtl 

* 
During the algebraic stress modelling simplifications, an explicit state
ment of diffusion i s not required. 
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Therefore, equation (3.12) i s retained here for the time being. Equation 

(3.12) has been used with just about equal success i n thin shear flow 

computations as compared to another considerably more complex expression 
46 

for diffusion by Launder et a l 

Putting a l l these proposals together, the Reynolds stress equa

tion can be written asi 

D U.U. 
i .1 

DT 
U.U. 

9U. l 3U. 
j " k 9^ + u i u k 91^ i V - c i i-VJ • 3 5 i i K ) 

+ «id.i + *u.2>+T^;(p!v£ ax 
9U.U. 

^ • ) -
I 

(3.13) 

3.3 Turbulence Dissipation Equation 

An equation for the dissipative correlation £ was obtained, by 

the following procedure. Equation (3.1) i s f i r s t differentiated by the 
„ 9U 9 i operator . ( ) and then multiplied by ^ v .. After some rearrangement 

3 Y 
and averaging, this results in the desired equation. Details of this deri

vation are shown in Appendix B. The dissipation equation i s thent 

V 
D(£/V) 
DT 

V 9 
p 9Xk V k 

9U. u3U. 
(i) 

Z 3X^ 9X^ ^p 3X ' (ID 

9U. 9U. 3U, 
_ 2 v ( — — 9Xk 9X£ 9XS 

9U„ 3U, 
+ 9X i 9 X k 

(III) (3.14) 
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- 2v U 
3U. 3 U. 

1 I 
k 3X^ SX^X^ 

2v 1 3 3U. „ 3U. 
p 3Xk 3X£ 3X£ 3X k

; 

(IV) 

(V) 

3U 
+ 2v i 3 1 3 3U. 

3X£ 3X£ p 3 X k ^ 3X̂ > (VI) 

- 2V 
3U 3U 3Ufc 

(VII) (3.15) 

The most outstanding difference between the present and constant property 

case i s that i t was possible to derive an equation for the ratio of d i s s i 

pation to kinematic viscosity, e/v, rather than e by a derivation procedure 

that i s essentially similar to the constant property case. 

Of the terms involving source and sink terms III and IV i n 

equation (3.15) are the same as in the corresponding constant property 

dissipation equation. These have been shown to be negligible by Tennekes 

and Lumley"'"'. For the case of constant property fluids terms V and VI of 

equation (3.15) become equal to 

2 
3 U. - 2 (V 3X k3X £

) ' 

Term VII i s similar to i t s constant property form. 

The source and sink terms were modelled collectively by Hanjalic 
56 and Launder as follows: 
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.2 2 

3U.8U.8U 3 U. 2 

The same expression was adopted in this investigation for terms 

V, VI, and VII of equation (3.15). Since the right-hand side of equation 

(3.16) does not contain any d i f f e r e n t i a l operators, i t i s d i f f i c u l t to 

conceive a different result for variable property fluids. A more rigorous 

treatment of the source-sink combination i s d i f f i c u l t here because the 

modelling of equation (3.16) i s a result of empirical information. 

Terms I and II of equation (3.15) contribute towards the d i f f u 

sion process. In these terms, the viscous diffusion and pressure d i f f u 

sion were assumed to be negligible by Hanjalic and Launder"*^ and the 

following formula was derived for U^e': 

K — - 3e V ' - ^ l V i f ' (3-17> 

For the case of thin shear flows, this equation reduces to a simple gradient 

diffusion hypothesis essentially similar to the gradient diffusion hypothesis 

for turbulent energy. However, equation (3.17) i s not compatible with 

equation (3.15) since the variable under consideration is e/v rather than 

e. Therefore, i f equation (3.16) i s modified to include the gradient of 

(e/v) rather than e, the modelled dissipation equation for variable property 

fluids could be written as: 

2 
D(e/v) v 3 ( K rr-i— 3e/v. . P 1 W  

V ~ D T ~ " p 3 i ^ ( p C e l ¥ i ^ + ( C e l 'l-Qa*T'. ( 3 ' 1 8 ) 

This compares with the constant property dissipation equation, which is 
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Without further examination, the additional modifications embodied i n 

equation (3.18) must be tentative. A choice had to be made i n this i n v e s t i 

gation between equations (3.18) and (3.19). The task of numerical computa

tion i s essentially similar in both cases and i f the variations of kinematic 

viscosity are neglected in equation (3.18), i t too becomes an equation for 

the transport of the dissipative correlation e. In supercritical fluids, 

the properties y and p vary rapidly around the c r i t i c a l point but fortunately 

the variations of v is comparatively moderate as illu s t r a t e d in Figure 7 . 

Therefore, as a f i r s t step variations i n V were neglected in equation 

(3.18). The variations i n density however are s t i l l maintained inside the 

dif f e r e n t i a l operation. Equation (3.19) has already been used successfully 
ft* 

in moderately varying property situations 

3.4 Algebraic Stress Modelling and Thin Shear Flow Simplifications 

An attractive simplification of the Reynolds stress equation i s a 
58 

procedure termed algebraic stress modelling by Rodi . This simplification 

i s effected in the Reynolds stress equation by introducing the assumption that variations in U.U./K are small compared to variations in O.U. i t s e l f . 
i j 1 3 

Therefore, since 

M _ r(K) •= P - e , (3.20) 

Hence, 

Dotted lines i n Figure 7 arise because of uncertainty i n precise values 
of viscosity (see Appendix A). 

** 57 See for example Khalil and Whitelaw . 



FIGURE 7. Properties of Carbon Dioxide Near the Pseudocritical 
Temperature. 
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n U.U. 

^(u.u.)- r(u.u.) =~Yj-(P - e) . (3.2i) 

Introducing equation (3.21) in equation (3.13) yields an algebraic expression. 

for the Reynolds stresses U.U., 
1 J 

U.U. - 2/3 6.. K . 
K " I fry " f P 6i-j> » (3.22) 

where 

A = 1 - Y 
(P/e - 1 + C x) 

In obtaining equation (3.22), the simpler version.of the pressure-strain 

correlation equation (3.11) was used. Further simplifications for thin 

shear flows yields: 

K 2 8 U 1 U XU 2 = f(P/e) , (3.23) 

where 

„ (C - 1 + y P/e) 
f(P/e) = ± (1- Y) — 5-. (3.24) 

(C - 1 + P/e) z 

Equation (3.23) makes possible the definition of an effective viscosity 

type of hypothesis. In the present study, a similar equation was derived 

using the f u l l pressure-strain correlation. The f i n a l result bears the 

same features as equation (3.22) but in this case the function f(P/e) i s 

somewhat more complicated: 
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1 f 2 

1 8 1 5 (p/e - i + c r 
where, 

f 2 = J33(30 C 2 - 2) (P/e - 1 + + 10{(12 - 15 C 2)P/e + 11^ - 11}(5 - 9C2) • 

(3.26) 

Details of the derivation are provided i n Appendix B. 

Equation (3.23) is the basis of the kinetic energy-dissipation 
59 

model described by Launder and Spalding . In this model (which was at 

f i r s t probably conceived through physical arguments rather than through 

algebraic stress modelling), the function f(P /e) i s replaced by a constant* 

At f i t 3 t sight, this appears to be a drastic simplification of the algebraic 

stress model proposals. However, in actual practice, i t does not make a 

significant difference whichever procedure i s used. Preliminary calculations 

were made in this investigation using a constant value of f(P /e) (equal to 

0.09) as well as with equation (3.24). In the latter case, was assigned 

a value equal to 2.4863 so that f(P /e) w i l l be equal to 0.09 when the pro

duction to dissipation ratio i s equal to unity. Computed results showed that 

there was no significant difference between the calculated velocity and 

temperature profiles. The reason for this i s that i n near wall flows, pro

duction to dissipation ratio retains a value close to unity i n most of the 

calculation regions. However, towards the edge of the boundary layer i t 

rapidly drops to zero but here the velocity gradients are very small and 

therefore errors in effective viscosity do not reflect i n the calculated 
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results. Therefore, for the sake of simplicity, a l l calculations reported 

in this investigation were made with a constant value of f(P/e) (equal to 

0.09). 

A knowledge of turbulence energy K and the dissipation e i s 

necessary before the required Reynolds stress can be computed through 

equation (3.23). These quantities are determined through d i f f e r e n t i a l 

equations which can be obtained i n the following manner. 

By a contraction of the tensor and introducing thin shear flow 

simplifications in equation (3.14), leads directly to the turbulence 

energy equation for such flows: 

DK ~ ~ 1 , s 8 / K 2 3K ̂  

m = ~ Y 2 9X^- £ + T 9 x 7 ( p e U2 ^ V ( 3 ' 2 7> 

2 
Now substituting M in accordance with algebraic stress model proposals and 
using a new constant a', equation (3.27) becomes: 

K 

DK 1 3 ,_p_ K 2 3K. r — - 3 U 1 , ... 
Df = P3X7 to? ~ U1 U2 3X7" £ * ( 3 ' 2 8 ) 

Similarly, the dissipation equation becomes 

DT " p 3X0
 K£ M? + ( C£l £ _ C £ 2 ) K * ( 3 , 2 9 ) 

2 £ 2 

Or in line with the notation used i n Chapter II, equations (3.28) and 

(3.29) can be rewritten as: 

3K . 3K 1 3 / a K2 3K. —rr 3u u — + v - r - = — - - r - (r p — r -5-) - u'v' - r - - £ , (3.30) 3x 3y a 3y £0^ 3y 3x 
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and 

2 2 
9£ . 9£ 1 9 /_0l K 9E-, , /•„ P o \ E /o o i \ 

u — + v — = — (r p — r — ) + (C , — - C „) — . (3.31) 9x 9y a 3y ^ ea' 3y el e e2 K pr 7 £ 

Equations (3.30) and (3.31) involve four empirical constants. These are 

found by reference to standard sets of experimental data. They must 

necessarily have the same values as for constant property fluids i f these 
60 c 

equations are to have general v a l i d i t y . A recent study by Stephenson for 

turbulent pipe flow uses the following values for the empirical constants: 

c£ = 1.0/C^, = 1«0/C U > C £ = 1.9, and C y = 0.09. 

These values were also used in the present study. The function f(P/e) i s 

written as since i t i s regarded as a constant for the purpose of compu

tations. Constant C is then found by reference to near wall data i n 
£1 

plane flows which yields the relationship, 

* 2 - ^ 2 - C
el» C f V < 3 - 3 2 ) 

In the present work, equation (3.32) was replaced by another 

similar equation. This i s discussed in the next section. Equations (3.23), 

(3.30)j and (3.31) comprise the kinetic energy-dissipation model of turbu

lence used for computations in this investigation. 

3.5 Boundary Conditions for the Kinetic Energy-dissipation Model of  
Turbulence 

Wall boundary conditions for the turbulence kinetic energy and 

dissipation equations are derived by noting that close to a wall convection 
38 

and diffusion of turbulent kinetic energy can be neglected , and production 
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and dissipation of this quantity are nearly in balance. This leads to the 

following relation. 

e = C 1 / 2 K —• . (3.33) U 8y 

In the laminar and transitional region close to the wall, use i s 

made of the Van Driest hypothesis but at the point where the turbulence 

model takes over, the two regions are matched by equating the respective 

effective viscosities. This leads to the relation for this region. 

K 2 2 2 du • " . 
Cy P T = P K y dy ' (3.34) 

The point at which the two solutions are matched i s sufficiently removed into 

the f u l l y turbulent region so the exponential damping term was not necessary 
+ + 

in equation (3.34). The region of matching was between y = 75 and y - 150 

for most computations carried out in this investigation. Another relation 

that applies i n this region i s 
2 

x - P<2y2(|^) • (3*35) 

Equations (3.33), (3.34), and (3.35) can be combined to yi e l d 
T = C 1 / 2 pK . (3.36) 

Further, to ensure complete consistency between the near wall and f u l l y 

turbulent region, the practice in the past has been to use equation (3.32) 

for obtaining the numerical value of constant C£^. However, occasional 

i n s t a b i l i t i e s in the solution caused a re-examination of equation (3.32) 

in the present study. It is possible that the problem never arose before 
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because of a different type of numerical solution procedure. Equation (3.32) 

was obtained with reference to plane flows where the shear stress close to a 

wall i s nearly constant in the absence of a pressure gradient. 

The relationship between the two empirical constants and C ^ 

was reformulated i n the present study with reference to f u l l y developed pipe 

flow. In this case, the shear stress distribution can be expressed as 

T - T.r/R . (3.37) 

Using this shear stress distribution and the results expressed i n equations 

(3.33), (3.34), (3.35), and (3.36) in the relevant dissipation, equation for 

constant property, f u l l y developed pipe flow yields 

2 
K 1 + ^ + %L R JI 

o'(C 0 - C _) C 3 / 2 . (3.38) e e2 el u 

The procedure of obtaining equation (3.38) i s given in Appendix B. There 

was no indication during the modelling of the dissipation equation that i t 

is not generally v a l i d for both plane and axisymmetric flows. Therefore, 

the differences between equation (3.32) and (3.38) appear contradictory. 

The most l i k e l y cause of this difference should then not be the dissipation 

equation i t s e l f but equations (3.34) and (3.35) which follow from the near 

wall algebraic formulation. 

Let us therefore suppose that the near wall mixing length type 

distributions are different in plane and pipe flow and that in pipe flow 

i t i s expressed through 

2 
- U^UJ = K2yZ 0 f ( y ) 2 , (3.39) 
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where f(y) i s some unknown function. Now i f the preceeding derivation i s 

repeated using equation (3.39), then the value of f(y) could be recovered. 

This would s t r i c t l y involve solving a cumbersome dif f e r e n t i a l equation. 

Fortunately, this does not have to be done. The value of f(y) can be 

deduced approximately by an examination of equation (3.38). It should be 

f (7) = 1 — . (3.40) 

Therefore, the near wall mixing length distribution for pipe flow can then, 

be expressed approximately as 

Jo/R = K y / R . (3.41) 
/ l + 3y/R + 3y 2/R 2 

Equation (3.41) i s compared with a well known empirical result due to 

Nikuradse for f u l l y developed pipe flow, 

Jo/R - 0.14 - 0.08(1 - y/R) 2 - 0.06(1 - y/R) 4 . (3.42) 

Table 3.1 compares some calculated values from three different proposals in 

the near wall region. The last column of Table 3.1 contains values 

according to the standard plane flow proposal. Equation (3.41) reduces to 

the plane flow equation when the radius R i s large. The close agreement 

between the values contained in the f i r s t two columns of Table 3.1 appears 

to validate the argument presented in this section. 
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TABLE 3.1 Mixing Length Distribution in Turbulent Pipe Flow 

y/R 
A/R 

Equation (3.41) 
(This Investigation) 

Jt/R 
Equation (3.42) 

Nikuradse 
5,/R = 0.4 y/R 

0.01 0.0039 0.0039 0.0040 

0.015 0.0059 0.0059 0.0060 

0.02 0.0078 0.0078 0.0080 

0.05 0.0186 0.0189 0.020 

0.07 0.0253 0.0259 0.0280 
...... . 

A further comparison for the f u l l pipe i s illu s t r a t e d in 

Figure 8. The close agreement almost throughout the pipe i s surprising 

since the discussion and derivations of this section were only intended 

for the ;near wall region. 

The procedure used for obtaining equation (3.41) may be of 

significance in other investigations where a mixing length distribution i s 

required i n flows of arbitrary but known shear stress variation. However, 

for this work, the main consideration was formulating consistent constants 

for the dissipation equation. In line with the previous argument, this can 

be done by using either of the following procedures: 

a) by using equation (3.42) as the near wall algebraic formulation 

for pipe flows and equation (3.32) for obtaining the value of 

c e l J 

b) by continuing the use of plane flow algebraic formulation but 

using equation (3.38) for obtaining the value of C£^-
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FIGURE 8. Mixing Length Distribution in Pipe Flow. 
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The f i r s t procedure has the advantage that i t appears to be more 

correct. However, this i s not a significant advantage since the value of 

y/R at the point where the two solutions are normally matched i s small 

(about 0.05) and therefore the value of a n d t n e subsequent computed 

results should not be significantly different. The second procedure which 

is an approximation i s computationally simpler. While developing the numeri

cal solution procedure, computations were i n i t i a l l y made with both equations 

(3.32) and (3.38) and the results were found to be of comparable accuracy. 

The latt e r procedure was f i n a l l y selected for numerical solution because of 

i t s computational simplicity. Figure 9 shows the various possible values of 

Starting profiles for the turbulent kinetic energy equation were 

found by f i t t i n g an arbitrary but smooth monotonic function between a known 

value close to the wall (equation (3.36)) and another at the axis of 

symmetry found by reference to Laufer's experimental data*'"'*. Starting 

dissipation profiles are then found through equation (3.32). There appears 

to be as yet no standard procedure for obtaining these profiles. However, 

the downstream computations are not normally very sensitive to inaccuracies 

in the starting profiles. This i s illustrated in the next chapter i n the 

section on preliminary results. It may be pointed out that i n formulating 

the boundary conditions, the primary consideration was to obtain a workable 

procedure and that this area bears further inquiry. 
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FIGURE 9. Constant C for the Dissipation Equation. 
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3.6 Summary of Mathematical Formulation 

TABLE 3.2 Summary of Mathematical Formulation 

PRINCIPAL UNKNOWNS 

v, cross-stream velocity 
u, stream-wise velocity 
h, enthalpy 
p u v', turbulent shear stress 

p h'v', turbulent heat flux 
p, pressure 
K, kinetic energy of turbulence 
£, dissipation of turbulence 

energy 
p, density 
C , specific heat P 
u, viscosity 
k, thermal conductivity 

RELEVANT EQUATION IF ANY 

Equation (2.1) 
Equation (2.2) 
Equation (2.3) 
Equation (2.10) i n the near wall 
region and equation (3.23) i n the 
fu l l y turbulent region 
Equations (2.7) and (2.8) 
Equation (2.9) 
Equation (3.30) 
Equation (3.31) 

Tabulated property data 
Tabulated property data 

Tabulated property data 
Tabulated property data 

Chapters II and III describe the mathematical formulation used 

in the present study. The primary unknowns have been collected together 

in Table 3.2 along with the relevant relationships for these variables. 
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3c7 Concluding Remarks 

It i s apparent in review of this chapter that the multi-equation 

approach to turbulence modelling relies to a great extent on empiricism and 

approximation. Nevertheless, i t was decided to make use of this approach 

in preference to the algebraic formulations for the following reasons: 

a) this approach i s an improvement over the algebraic formulations, 
* 

particularly so when abnormal phenomenon are encountered ; 

b) i t i s f e l t that this approach holds good prospects of future 

improvement; 

c) since this approach involves empiricism and approximation, an 

important test of i t s usefulness i s i t s a b i l i t y to predict 

known experimental results. So far in constant property situa

tions, the agreement between predicted and measured results 

has been surprisingly good. It appeared worthwhile to test the 

same methods under the influence of severe property variations. 

A number of different proposals are available for adoption i n this 

area of turbulence modelling. Here the selection was governed by practical 

considerations. It was f e l t that the selected approach should be reasonably 

simple, at least as a f i r s t attempt of introducing this approach to an 

already complex phenomenon. 

An abnormal phenomenon encountered in supercritical heat transfer i s the 
existence of maximas in velocity away from the axis of symmetry. In 
such situations, the mixing length type algebraic formulations imply zero 
turbulent fluxes at the location of the maximas. A heat flux equal to 
zero does not appear to be r e a l i s t i c . 
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IV. THE NUMERICAL PROCEDURE 

4.1 General 

Partial d i f f e r e n t i a l equations governing turbulent supercritical 

flows are non-linear and intri c a t e l y coupled. The velocity u occurs i n a l l 

the equations. The density p (which i s a function of enthalpy) i s also 

featured i n a l l the equations. The dissipation e appears i n the turbulence 

energy equation K and vice versa, while the turbulent viscosity depends on 

both. Besides this simultaneity, there is no obvious equation from which 

pressure can be extracted. In such a situation, approximate analytical 

methods cannot be profitably employed and only numerical procedures appear 

to have any hope of success. In the past decade a certain number of 

numerical schemes have proven to be successful in handling two-dimensional 

turbulent flow problems. A review of the various methods available for 

the analysis of turbulent flow heat transfer has been made by Patankar and 
43 

Spalding . The approach in this investigation was to select an existing 

numerical scheme and adapt i t s formulation for the problem being i n v e s t i 

gated. 

4.2 Required Capabilities of the Numerical Procedure 

Any numerical scheme for the problem must meet the following 

requirements: 

a) i t should be applicable to two-dimensional turbulent flows 

and preferably allow for the treatment of both axisymmetric 

and plane flows; 
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b) i t should permit calculation of confined flows; 

c) i t should be applicable to variable property flows; 

d) i t should be efficient in terms of computer time usage so as 

to be a practically useful tool for both research and 

engineering design. 

• The procedure selected to satisfy these requirements i s based on 
62 

the DuFort-Frankel explici t f i n i t e difference formulation . It has been 
63 

developed and used for two-dimensional turbulent flows by Pletcher „ and 
40 41 

Pletcher and Nelson ' . It was selected i n preference to the better known 
43 

Patankar-Spalding procedure . The Patankar-Spalding procedure normally 

makes use of a one-dimensional analysis close to the wall which does not 

appear to be suitable for supercritical fluids. The Pletcher scheme has 

the advantage that i t i s very flexible and permits easy modification for 

testing a variety of different proposals. Being based on an explicit 

formulation, i t permits an easier development of a computer code. An 

important point to note while selecting a numerical scheme is that 

existing computer codes cannot easily be used or modified and the only 

reasonable course i s to develop a new code. In this regard, a simpler 

formulation i s useful since already the problem i s a complex one because 

of the fact that five p a r t i a l d i f f e r e n t i a l equations and several auxiliary 

relationships constitute the physical model. 

A point in favor of the Patankar-Spalding procedure was that i t 

has already been tested on the kind of turbulence model being employed. 

However, this was not considered to be a major criterion for selection 

since i t was f e l t that i f a scheme is successful with the mixing length 
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type of algebraic formulations (such as the ones employed in Pletcher's 

scheme), i t would also be successful with higher order turbulence models. 

The numerical scheme selected has very good s t a b i l i t y performance. 

Further, i t does not make use of iterative or matrix-type solutions and i s 

therefore reasonably efficient in computer time usage. A more complete 

treatment of the f i n i t e difference scheme can be found i n the literature 

already quoted; only the important points are covered in this chapter. 

4 . 3 Finite Difference Formulation 

The grid selected was orthogonal. Spacing between consecutive 

grid lines i n either x or y direction was varied but only gradually. If 

a central node i s denoted as (I, J ) , remaining nodes around i t are 

denoted as shown in Figure 1 0 . Numbers next to each node are used to 

denote these points and were used in the computer program, as consistently 

as possible. In order to solve for information at node 5 , a l l information 

about the flow has to be known at nodes 1, 2, 3 , and 4 and some at nodes 

6 and 7 (density and velocities). 

The f i n i t e difference formulation for the energy equation i s as 

follows: 

( h i + i , j " V i , ^ ( h i , j+ i - h i , j - i } 

P I , J U I , J Ax + + Ax_ P I , J V I , J Ay + + Ay_ 

( p I + l ~ P I - 1 } , 1 
= U T , 7— \—T~ + I,J Ax^ + Ax R T Ay, + Ay 

*r — J T 

( R

J + i + V 

h I , J + l - °- 5 ( hI +l,J + hI-l,J> 
Ay + 
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( R J + R J - 1 } J k e f f I,J , k e f f I.J-1 
4 1 C _ T C 

1 p I,J p I,J-1 
Ay 

+ u " i . J + l ^ I . J - l ) 
• eff I,J ̂  Ay + + Ay_ 1 

(4.1) 

The convective and diffusion terms in the momentum and turbulence 

equations are described i n a manner similar to that in the energy equation 

(4.1). The remaining terms in those equations are either algebraic or only 

contain first-order p a r t i a l derivatives. Therefore, the f i n i t e difference 

formulations for the momentum and turbulence equations are constructed 

similarly. The momentum equation i s : 

( UI+1.J - U I - 1 , J } , n v
 ( UI.J+1 " " l . J - l *  

P I , J U I , J Ax + Ax_ P I , J I,J Ay + + Ay_ 

( PI+1 " P I - 1 }
 + 1 

Ax + + Ax_ Rj Ay + + Ay_ 
( RJ +1 + V 

4Ay 
(y eff I,J+1 

+ ^eff l,J> { ( UI,J+1 - °- 5 ( uI+l,J + U I - 1 , J ) } " 

+ ^eff I . J - l * { ° - 5 ( u I + l , J + V l . J * " U I S J - 1 } 

(Rj + R ^ ) 

4Ay 
(y 

+ gp I,J 

eff I,J 

(4.2) 

The f i n i t e difference formulation for the turbulence kinetic energy equation i s 

X ' J I , J AXj_ + Ax + P I , J V I , J Ay + Ay 
+ — T — 

Rj Ay + + Ay_ 
( R J + 1 + R*> 

4Ay +
 ( yK I.J+l + y K I,J } { KI,J+1 

" °- 5< Kl +l,J + K I - 1 , J ) } * ^ ' ^ - " ^ I,J + ^ I.J-1> { ° - 5 ( K l + l , J 
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+ K I - 1 , J ) - K I , J - 1 ) } I + U 

and the dissipation equation 

( UI,J+1 " U I , J - i r 

K I,J Ay + + Ay_ P I , J £ I , J ' 

(4.3) 

( e i + l , J " h - l . J * ( £I,J+1 " £ I , J - 1 ) 

P I , J U I , J Ax + + Ax_ P I , J V I , J Ay + + Ay_ 

(R + R ) 

I , J + l + I,J> { ( £ I , J + 1 " 0 : 5 ( e l + l , J Rj Ay + + Ay_ 4Ay 

+ £ I - 1 , J ) } " 1 - ' " ^ K 1,3 + \ I,J-1> { 0 ' 5 ( £ I + 1 , J + e i - l , J > 

" £ I , J - 1 } 

4Ay 

( u i , J + l - U I , J - i r 

- C e l - K I , J (Ay + + A y j p ^ j e ^ e2j 

2 

4 j p i j 

i i i ! — k i ± t (4.4) 

K 
where the parameter u = 0.09 p — . The f i n i t e difference formulation 

for the continuity equation i s : 

R

J + i + R J n 
4Ax + + Ax_ L ( P U >I+1,J+1 ~ ( P U )I-1,J+1 + ( p u ) I + l , J ' ( P U ) l - l . j ] 

+ ( p v R ) I + l , J + l " ( p v R ) I + l , J Q m 

Ay. (4.5) 

To obtain a pressure equation to be used in conjunction with the 
41 

partial d i f f e r e n t i a l equations, the method devised by Pletcher and Nelson 
i 

was used. In this method, the momentum equation i s rearranged to yield 
u e x p l i c i t l y and then multiplied by p . This equation i s then 

1+1,J I,J 

integrated over the cross-section of the pipe or channel and equated to 

the known mass flow rate. Since the pressure i s only a function of the 

axial location, i t can be factored out of the integration to yield a 
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FIGURE 10. The Finite Difference Grid. 
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pressure equation, 

G -/ Pi, J U I + I , J D A / 1 ! d A + ( p i + i " pi-i> / 1 d A > < 4 - 6 > 
Jk JA JA 

where: PA = 4pj j u - j - j R j ( A y + + Ay ) Ay + Ay 

+ (Ax + + Ax„) Ay_(R J + 1 + R j ) ( y e f f ^ J + 1 + y g f f ^ ) 

+ (Ax + + A x J Ay^CRj + R ^ ) ( y r f f ^ + p e f £ ^ , (4.7) 

P B = - 4 P i , j R j A y
+

A y - ( A x
+
 + Ax-> v i , j ( u i , J + i - U I , J -P 

+ 2 P I , J ( A X
+
 + A x - > A y > e f f i , J + i + u e f f I , J > 

+ < u I . J + l - 0 - 5 u I - l , J ) < R J * - l + V 

+ 2 p I } J ( A x + + Ax_) A y + ( y e f f ^ + y £ f f I > J . 1 . ) ( u I > J _ 1 

" °-5 " i - l , ^ ( R J + R J - 1 } 

+ 4 p l , J u I - l , J u I , J R J ( A y + + A y-> A y+ A y-

+ 4 p 2 ,RT(Ax, + Ax )(Ay, + Ay )Ay,Ay g (4.8) 
1 , J J T — T — T — 

and PC = -4p I jRj(Ay + + Ay_)Ay+Ay_ (4.9) 

In equation (4.6), u , T i s multiplied with p instead of 

P T - T because the latter quantity remains unknown u n t i l PT.-, i s determined-

Once p T i s determined, an iterative correction for the mass flow rate 
I I I j J 

can be carried out. However, this i s not necessary because the f i n i t e 

difference formulation requires a fine grid for convergence so the errors 

incurred by the use of p in equation (4.6) are negligible. 
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4.4 Method of Solution 

It should be pointed out that although the preceeding f i n i t e 

difference formulations were written for axisymmetric configurations, they 

are also valid for plane flows when a l l R's are assigned a value equal to 

unity. 

Briefly, the method of solution was as follows. F i r s t , a l l the 

equations were rearranged to exhibit the relevant unknown variable e x p l i c i t l y . 

Thus for example, equation (4.1) was rearranged so that only the unknown 

enthalpy j w a s o n the left-hand side. In this form, the equations are 

ready for a solution. Once a l l the variables are known at two previous grid 

lines (i.e., at I and 1-1 locations), then the equations can be solved one 

at a time to yield the required information for a l l J's at an '1+1' location. 

The order in which the equations are solved is pressure equation, momentum 

equation, energy equation, continuity equation, turbulence kinetic energy 

equation, and f i n a l l y dissipation equation. The turbulent fluxes are formu-1 

lated through algebraic relationships prior to the solution of these equa

tions. Property values are computed at each '1+1* location after the solu

tion of the energy equation but prior to the solution of the continuity 

equation since the continuity equation requires the value of density at the 

*I+1' grid location. The solution then progresses to the next grid l i n e . 

More description about the solution procedure is provided i n Appendix C 

and D. 

It may be noted that information about the flow i s required at 

two previous grid lines. Normally such information is available, but i f i t 

is not (as sometimes may be the case at a starting location), then a stan

dard explicit formula that requires information at only one previous loca-
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tion was used at the f i r s t step. Standard explici t formulations are also 

embodied in the computer program but their use was minimised because they 

have poor s t a b i l i t y performance as compared to the DuFort-Frankel formula

tion. 

Properties are stored in tabular form at each pressure. The 

property tables were divided in equal increments of enthalpy rather than at 

equal temperature intervals. The former procedure i s superior because i t 

permits for greater number of divisions around the pseudo-critical tem

perature where the property variation i s steep. Property values at known 

enthalpies or temperature are found by linear interpolation. 

Once a l l variables are computed at internal nodes along ah 1+1 grid 

line, wall values are found by imposing the appropriate boundary conditions. 

These are mostly of the gradient type for the energy equation. Wall values 

in that case are found by, 

fcI,l = fcI,2 " k~7~ * <4-10> 

This simple relationship was f e l t to be sufficient since whenever 

any of the par t i a l d i f f e r e n t i a l equations contain a gradient type boundary 

condition, the y grid has to be very fine close to the wall (with y + equal 

to about unity) in order to secure convergence. 

Starting velocity and enthalpy profiles are found through relation

ships described in Chapter II in the section on boundary conditions. 

Equation (2.15) i s solved through a forward difference formula i n order 

to obtain the starting velocity pr o f i l e i n pipe flow problems. For the 

starting turbulence kinetic energy pr o f i l e , certain empirical relationships 
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* 
were tried , but f i n a l l y a simpler practice was adopted: 

K = AXU + A 2 . (4.11) 

The constants A^ and are found by a knowledge of the kinetic energy at two 

locations. Near the wall, kinetic energy is known through equation (3.35) 

and at the center of a pipe with f u l l y developed flow conditions, i t was 

assigned a value equal to 0.84 T
w/P* found by reference to Laufer's experi-
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mental data . Equation (4.11) automatically satisfies the symmetry boundary 

condition and follows the correct trend. This simpler practice was f e l t to 

be adequate since downstream results are not very sensitive to starting pro

f i l e s i n turbulent flow problems. In the next section, the results of a 

computation are illustrated i n which the starting K p r o f i l e was intentionally 

kept somewhat inaccurate. The starting dissipation profile i s found through 
equation (3.32), a practice that has often been used i n other studies (e.g., 

46 

Launder et a l ). It may be recalled that the f l u i d i s unheated before 

entering the solution region and as a result behaves l i k e a constant 

property f l u i d at the starting location. 

The present solution procedure i s applicable to both laminar and 

turbulent flows. For laminar flows, the only change that has to be made 

is to equate the turbulent component of effective viscosity to zero. The 

main difference in solving various types of problems i s the way i n which 

grid spaces are arranged. If an extremely fine grid were to be used, various 

different kinds of grid spacings would yield convergence. This would be a 

An approximate empirical relationship designed in this investigation to 
describe Laufer's experimental d a t a 6 1 for f u l l y developed pipe flows i s : 

KA = 3.9 + 3.6(y/R) - 7.9(y/R)2 + 4.72(y/R)3 - 3.5(y/R)°- 5 6. 
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costly procedure. Therefore, grids lines are arranged i n a manner so as to 

secure convergence with the coarsest possible grid. The spacing between the 

grid lines i s varied in such a way that the flow regions with the steepest 

variations (such as near wall regions i n turbulent flows) contain the most 

nodes. The particular manner in which this i s done for different types of 

flows i s indicated alongside the preliminary results discussed next. 

4.5 Preliminary Results 

The computer program was developed in stages and ver i f i e d 

thoroughly at each step. The program development can be approximately 

categorized in three steps: 

a) development of subroutines for solution of momentum, con

tinuity, and energy equations; 

b) addition of a turbulence viscosity subroutine based on 

algebraic formulations; 

c) addition of subroutines for solution of pressure, kinetic 

energy, and dissipation equations. 

Several tests were conducted during the development of the pro

gram. Some of the more important ones are reported here. During most of 

the preliminary testing, variation of properties was suppressed by using 

constant values through the property subroutine. 

4.5.1 Laminar Flow_Along_a_Flat_Plate 

In order to test the formulation of the continuity and momentum 

equations, boundary conditions were simulated to correspond with the 
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Blasius flat-plate problem. The leading edge of the plate was at x=0, the 

plate being parallel to the x-axis. A solution was attempted starting from 

the leading edge and uniform streamwise velocities were imposed at the 

starting location. 

Before grid spacings can be decided, some idea of the length. 

scales involved i s necessary. In most boundary layer problems, this scale 

i s taken to be of the order of the boundary layer thickness at the starting 

location and then the grid lines in both x and y directions are spaced in 

some proportion of the boundary layer thickness. However, the f l a t plate 

problem i s unique because the starting location i s the leading edge where 

boundary layer thickness i s zero. Therefore,, an alternative length scale 

was devised by reference to laminar boundary layer theory. This length scale 

was taken to be equal to the thickness of the boundary layer at a downstream 

distance equal to the boundary layer thickness. Such a situation occurs only 

once very close to the leading edge during the development of the boundary 

layer and occurs at a distance of approximately 25-.V/U . Having obtained 

a length scale, the next step was to devise the grid spacing. Equal d i v i -
41 

sions in the cross-stream direction were adopted as suggested by Pletcher . 

The grid lines in the cross-stream direction were spaced at distances equal 

to 6 v/U . For the streamwise divisions, most of the previous numerical 

studies have suggested a step size proportional to the boundary layer 

thickness (Ax = A^6). The constant of proportionality in this example was 

assigned a value equal to 0.5, although this rule does not apply at the 

leading edge. At the leading edge, a step size equal to 9 v/U was 

*Since 6 ^ 5 /^p , the length scale i s found from x 'V 5 /—^ or x ̂  25 •—-
CO CO CO 
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selected. The main criterion for obtaining these divisions was to ensure 

that at least one nodal point l i e s within the boundary layer at the f i r s t 

grid line downstream from the leading edge. The manner of obtaining the 

f i n a l grid spacings was this: what was believed to be a conservative grid 

division along the X-axis was decided f i r s t , then the spacing along the 

Y-axis was narrowed successively u n t i l convergence was secured some dis

tance downstream from the leading edge. The f i n a l grid spacing thus 

found worked well for widely different values of free-stream velocity and 

f l u i d properties. The solution found in this way was in error by about 

10% at the f i r s t step away from the leading edge and then progressively 

improved in the downstream direction u n t i l the Blasius velocity p r o f i l e was 

achieved. 

Figure 11 compares the computed values with the results due to 
* 

L. Howarth . The agreement here can be seen to be satisfactory. Hence, 

i t was concluded that the continuity and momentum equations are properly 

formulated and that the program was functioning well up to this stage. 

A subroutine for solving the energy equation was then introduced 

in the computer program. Thermal boundary conditions i n this case were a 

uniform i n i t i a l temperature profile and an isothermal wall. The previous 

grid spacing was retained in this case. The results are shown in Figure 12. 

The agreement here too was surprisingly good. The next step was to try 

the program for turbulent flows. 

4.5.2 Turbulent Flow Along a FlatJPlate 

It w i l l be noted in Chapter II that the general form of the 

_ _ 
See Schlichting 



FIGURE 11. Blasius Velocity Distribution in the Boundary Layer 
Along a Flat Plate. 
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FIGURE 12. Temperature Distribution on a Heated Flat Plate at 
Small Eckert Number for Pr = 2.57. 
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governing equations i s the same in both laminar and turbulent flows. The 

only change i s i n the values of the effective viscosity. Accordingly, a 

subroutine based on the algebraic formulations of Chapter II was added to 

the program for computing the turbulent viscosity. 

The problem attempted was flow over a smooth f l a t plate. In 

this case, however, the solution was started some distance downstream from 

the leading edge. Starting profiles of velocity, u were found as discussed 

in Chapter II. The normal velocity v at the starting location was computed 

through,the use of the standard explicit formulation used i n conjunction 

with the starting u profiles. 

Since the variation of velocity near the wall i s very steep i n 

turbulent flows, the grid spacings i n the y direction are normally kept i n 

geometric progression rather than equal divisions as in the laminar case. 
63 

The nodal points i n the y direction are found from the relation : 

• * I . J * A y Y I , J - l * ( 4 « 1 2 ) 

A was prescribed a value of 1.1 in this case. It i s also necessary to 
y , 

ensure that the f i r s t node nearest the wall l i e s within the laminar sub-

layer (y < 5). Grid spacing in the streamwise direction were found i n the 

same way as in the laminar flow problem, 
Ax = A <5 . (4.13) x 

A value of .65 for A^ was found to be adequate in this case. At the 

starting location about thirty nodal points lay within the boundary layer. 

These increased progressively with the growth of the boundary layer i n a 

manner implied by equation (4.12). The universal velocity profile given by 
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Kays^ was chosen as a reference for comparison. The universal velocity 

profile i s given by: 

u = y for y < 5, 

u + = -3.05 + 5.0 £ny + for 5 < y + < 30, (4.14) 

u + = 5.5 + 2.5 iny+ for y + > 30. 

The prof i l e obtained from equation (4.14) i s compared with the computed 

profile i n Figure 13. It can be seen that the result i s satisfactory. 

Wall shear stress values and the growth of the boundary layer 

were also checked to see that they satisfied the following relationships 

approximately (Figure 14): 

6 x °' 8 

—- = (—) , (4.15) 0 x o o 

T 0.2 
— = (—) • (4.16.-
X X o 

The next stage was to add a subroutine for the pressure equation and test 

the program on confined flows. 

4.5.3 Turbulent_Flow_in a_Pipe 

At this stage, a subroutine for the solution of the pressure 

equation (4.6) was introduced in the computer program. After some i n i t i a l 

runs with the algebraic formulations for effective viscosity subroutines 

for the solution of kinetic energy and dissipation were added to the com

puter program. This completed the development of the solution procedure as 



FIGURE 13. Velocity Distribution in a Turbulent Boundary Layer 
Along a Flat Plate. 
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FIGURE 14. Growth of a Turbulent Boundary Layer and Decline 
of Shear Stress Along a Plate. 
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required i n this investigation. Some examples from constant property pipe 

flow computations are described next. 

Starting profiles i n this case corresponded to hydrodynamically 

fully-developed flow conditions and constant starting enthalpy profiles. 

A constant wall heat flux boundary condition was imposed. 

Grid lines i n the cross-stream direction were divided according 

to equation (4.12). The only difference in this case i s that the constant 

A^ i s determined in such a way that the prescribed number of nodes cover 

the entire pipe. In most problems covered in this investigation, about 

100 nodes along a diameter of the pipe were found to be adequate. The 

numerical solution has to be carried out at only half of these nodal points 

since the rest follow from symmetry. Divisions in the streamwise direction 

were found in accordance with equation (4.13). The value of A^ in pipe 

flow problems was kept between 0.3 and 0.65 depending on the particular 

problem. High heat flux cases require lower values of A^. However, in 

the i n i t i a l portion of the thermal entry length, A^ was kept much smaller 

and increased gradually in a geometric progression. This is necessary 

because of a rapid change in wall temperature close to the starting loca

tion. For the particular example illustrated in this section, A was 
x 

equal to 0.5. The f i r s t streamwise step was kept equal to y^ ^ a n <^ increased 

in ratios of 1.2 u n t i l the streamwise step became equal to a value indicated 

by equation (4.13). 

An expression for Nusselt numbers due to Bankston and McEligot 
45 

as reported by Sastry was used as a reference for comparison. They 

recommended the following equation for a i r : 



7 5 

Nu = 0.259 Re 0' 7 2 5 Pr°' 4 . (4.17} 
oo 

This comparison i s ill u s t r a t e d in Figure 15. The computed values 

of Nu^ are lower than that indicated by equation (4.17). However, i t 

appears that in this range of Reynolds numbers, equation (4.17) over-

predicts the Nusselt number by about 6%. Experimental data of Kays*'"' as 

well as M i l l s * ^ suggest a value of Nusselt number approximately equal to 
5 

177 at Re = 1.026 x 10 . The computed value of Nu^ i s about 173. Similarly, 
at a Reynolds number of 50,000, equation (4.17) appears to s l i g h t l y over-
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predict the data (by about 3.5%) • Therefore, i t was concluded that the 

computed results are as satisfactory as can be expected. 

Next, a test run was made with a somewhat inaccurate starting 

profile of turbulence kinetic energy. The starting profile was determined 

in this manner: in order to find the values of constants and A^ of 

equation (4.11), the kinetic energy at the axis of symmetry was assigned a 

value equal to 0.1 T /p instead of the usual 0.84 T / p . S t r i c t l y i f the 
w w 

program i s functioning well, the correct values of kinetic energy K should 

be achieved at a downstream location starting from any arbitrary values. 

However, the starting p r o f i l e should not be such that i t causes large 

i n s t a b i l i t i e s i n the solution procedure. Figure 16 shows that the 

inaccuracies i n the starting pr o f i l e appear to be corrected at thirteen 

diameters downstream from the starting location. 

The f i n a l result included in this section i s the velocity d i s t r i 

bution i n pipe flow. Equation (4.11) was again used as a reference for 

comparison. The results are shown in Figure 17. A correct prediction of 

the velocity distribution i s essential because in a way, i t plays a controlling 
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FIGURE 15. Nusselt Number in Pipe Flow. 
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FIGURE 16. Turbulence Kinetic Energy in Pipe Flow. 
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FIGURE 17. Velocity Distribution in Turbulent Pipe Flow. 
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role in a l l of the part i a l d i f f e r e n t i a l equations comprising the physical 

model. 

From these results, i t was ascertained that the program i s func

tioning well. In the next chapter, this solution procedure i s applied, to 

supercritical carbon dioxide. 
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V. RESULTS AND DISCUSSION 

5.1 General 

Heat transfer predictions for supercritical carbon dioxide made 

with the procedure developed in this investigation are compared with previous 

experimental data i n this chapter. Computations were carried out in the 

reduced pressure range 1.0037 to 1.098. Although numerical predictions i n 

this range of pressures are comparatively d i f f i c u l t because of the proximity 

of the c r i t i c a l point, heat transfer within this range of pressures i s the 

least understood. A completely general prediction scheme should be able to 

make r e a l i s t i c predictions at these pressures. 

A comparison was made between measured and calculated temperature 

and velocity profiles i n pipe flow, followed by a comparison of wall tempera

ture distributions. The discussion of results i n this chapter mainly focuses 

attention on specific features as related to the flow under consideration. 

Approximations and assumptions of a general nature have already been stated. 

The most in f l u e n t i a l of these are discussed in greater detail i n the next 

chapter. 

Calculations were made for pipes because that i s where most of 

the experimental data and practical applications exist. There is one in v e s t i 

gation by Hauptmann'' for supercritical carbon dioxide flowing on a f l a t 

plate . Part of that study was an optical examination of the flow 

For brevity, radial velocity and radial temperature profiles are referred 
simply as velocity and temperature profiles. 

17 
A f l a t plate study for supercritxcal nitrogen i s due to Simoneau . 
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which served to establish flow mechanisms. However, i t i s not very con

venient for comparison because temperatures were reported at only one 

location on the plate and the flow was partly laminar with transition 

occurring on the plate. However, i f need arises in a future investiga

tion to make such computations, the procedure presented in this i n v e s t i 

gation can be adapted for such problems since both the numerical procedure 

and physical model i s applicable to plane flows as well. 

5.2 Velocity and Temperature Profiles 

Compared to wall temperature measurements, experimental data for 
16 

velocity and temperature profiles i s scant. However, Wood has devoted an 

entire thesis to the measurement of such profiles and use i s made of his 

data here in order to test the theoretical model. 

Wood conducted experiments in an Inconel pipe with an inside 

diameter of 0.0229 m and total length of 1.435 m. It was mounted v e r t i 

cally and the flow was upward. The heated section of the pipe was .7645 m 

long. The tube upstream of the heated section served to establish a f u l l y 
developed velocity p r o f i l e . He conducted his tests at two general conditions: 

2 
a pressure of 74.12 bars with a constant wall heat flux of 117350 W/m ; a 

2 

pressure of 75.84 bars with a heat flux of 92744.45 W/m . A series of 

runs were conducted by varying mass flow rates and inlet bulk temperatures. 

Temperature profiles were measured throughout, but velocity profiles were 

measured only during runs conducted at the lower pressure. Profile measure

ments were made at one location (30.7 diameters downstream from the 

beginning of the heated section) only. ' • 
Conditions corresponding to four of his experimental runs were 
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selected for computations. Fully developed velocity profiles and constant 

bulk enthalpies were used as starting conditions and computations were 

carried out i n step-by-step fashion up to a point where profiles were 

measured. 

Calculated and experimental temperature profiles are compared in 

Figure 18 at a pressure of 75.84 bars (p/P c =1.027, t = 305.6°K). Inlet 

temperature i n case (a) i s 293.15°K and for (b), i t i s 298.7°K. Both 

results compare within 0.5% with experimental data (within 8% based on wall-

centerline temperature differences). The centerline temperatures are pre

dicted well with approximately correct amounts of temperature drops to 

various radial locations. Most of the temperature drop, however, takes place 

in the near wall region which cannot be shown on such a graph. It was not 

f e l t necessary to draw another graph on an expanded or logarithmic scale for 

the near wall region since there were no measurements i n that region for com

parison. However, Wood measured the temperature of the wall and these can be 

used as an indication of the accuracy of prediction i n the near wall region. 

The measured and computed wall temperatures for case (a) are 305.04°K and 

304.4°K respectively. The same quantities for case (b) are 306.1°K and 

305.55°K. The close agreement here suggests that the predictions are good 

in the entire flow region from wall to centerline. 

Figure 19 compares results at 74.12 bars (p/p £ = 1.0037, 

t = 304.3°K). The inlet temperature in this case i s 299.81°K. Property 

variations in this run were more severe due to the proximity to the c r i t i c a l 

point as well as higher heat flux, but agreement i s s t i l l good. Inaccuracies 

in the property data probably increase with the proximity of the c r i t i c a l 

state, but i f this has influenced the results, i t i s in the near wall region. 

Deviations (by about 10%) in velocity profile can be seen close to the wall. 



FIGURE 18. Temperature Profiles for Supercritical Carbon Dioxide. 



83 

FIGURE 19. Velocity and Temperature Profiles for Supercritical 
Carbon Dioxide. 
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Wall velocity in both cases i s zero, therefore, the deviation in the velocity 

profile should start reducing i n the near wall region. No such helpful 

constraint i s available for the prediction of temperature pr o f i l e s . There 

was some difference between measured (306.372) and computed (305.01) wall 

temperature i n this case. However, the agreement here i s s t i l l close 

enough to indicate that the prediction procedure has worked well under 

the conditions considered. A detailed comparison of the entire near wall 

region i s not possible because of lack of measurements for this part of 

the flow. 

In his measurements of temperature p r o f i l e , Wood noted that they 

become less "round1 as i n l e t bulk temperatures approached the pseudocritical 

temperature. The total temperature span from centerline to wall i s i n d i - , 

cative of the overall 'roundness' of temperature profiles. The same feature 

has been predicted computationally as well. This effect occurs because 

specific heat variations play an important role in determining the precise 

shape of temperature profiles. In constant property fluids, a similarity 

can often be noticed between temperature and velocity profiles when Prandtl 

number i s close to unity. This happens because equations for conservation 

of energy (with temperature as independent variable) and momentum have a 

similar form. The analogous situation for variable property fluids i s 

approximately a similarity between enthalpy and velocity profiles. In the 

present case, peaks at the pseudocritical temperature. Consequently, tem

perature varies gradually with enthalpy in the v i c i n i t y of the pseudocritical 

temperature. Therefore.the temperature profiles look f l a t t e r . While developing 

heat transfer correlations for supercritical fluids, i t may be worthwhile 

investigating the po s s i b i l i t y of a number based on enthalpy difference 
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rather than the usual practice of employing temperature difference. An 

attempt to develop such correlations was not made in this investigation 

because i t was f e l t that the prediction procedure is not yet sophisticated 

enough to be sufficiently reliable and accurate for this purpose. 

The f i n a l set of data due to Wood that were compared showed 

several interesting features. Computations corresponding to this data 

are shown in Figure 20. The trend appears to be approximately correct, but 

actual magnitudes are in error up to 15% at some locations. The unusual 

shape of the velocity profile here is a consequence of buoyancy force with, 

varying density. It appears that a variety of different shapes of velocity 

profiles are possible i n supercritical fluids. Figure 21 illustrates some 

of the formations that the velocity profile undergoes as the f l u i d progresses 

along the pipe. This profile could have been modified further at conditions 

of higher heat fluxes or i f the pipe had been longer as is illustrated 

later in Figure 30. At the time when Wood made these measurements, he 

found this to be a surprising discovery and had to argue in several 

different ways before he accepted them as a fact, even though their 
30 ' ' existence had been postulated early by Hsu . The term unusual profiles 

was coined by him and i t is used here although these are now widely 

accepted. The entire range of shapes and their development in a pipe was 

however probably not known un t i l this investigation. Unusual profiles have 
30,35,36 

been predicted before by several investigators using a one-

dimensional analysis but in that case, although a profile can be predicted 

in which velocity f i r s t rises and then f a l l s towards the axis of symmetry 

leading to a global maxima away from center. A profile such as in Figure 20 

in which velocity rises, f a l l s , and rises again cannot be predicted by 

previous methods. In practice, a profile must transform gradually from i t s 
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FIGURE 21, Development of 'Unusual' Velocity Profiles in Supercritical Carbon Dioxide, 
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usual constant property form to an approximately one-dimensional form. This 

gradual transformation (Figure 21) can be predicted by a two-dimensional 

analysis accounting for buoyancy. The actual profile i n Figure 20 has not 

yet attained i t s one-dimensional shape which i t could have had the pipe 

been long enough. 

The encouraging feature i n this computation i s the correct pre

diction of trend in a flow where a variety of different types of velocity 

profiles are possible (Figures 22 and 30). The discouraging feature i s that 

actual magnitudes of velocity were not well predicted. Although an error of 

15% can sometimes be considered commonplace when predicting wall temperature 

distributions, better agreement was expected between measured and computed 

velocity profiles. The main reason why a better agreement could not be 

achieved in this flow i s the extreme proximity of the pseudocritical tempera

ture which led to uncertainties in both calculated and experimental results. 

In order to attain an unusual p r o f i l e , Wood had to take i n l e t temperatures 

within 0.005% of the pseudocritical temperature. This i s not a general 

requirement for unusual profiles (which can occur with lower i n l e t tempera

tures as well i f Q/G ratios are higher). However, due to experimental 

limitations, the value of Q/G was not raised further in Wood's experiments. 

At his particular operating conditions, the result was that the f l u i d 

travelled down the pipe without a significant change in temperature. At 

this temperature, density variations are very steep which means that the 

slightest errors in temperature w i l l result in. significant errors in 

density. This effect is shown in Figure 22. In most supercritical flows, 

similar differences normally occur over smaller regions and therefore 

effect the computation to a smaller degree. The slight difference in 
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FIGURE 2 2. Temperature and Density Profile in Supercritical 
Carbon Dioxide Corresponding to Data in Figure 20. 



temperature in Figure 22 could easily have been r e c t i f i e d by redesignating 
* 

certain empirical constants .that go into the mathematical model, but this 

was not done since the entire set of computations in this investigation 

should be made with fixed values of such parameters. 

Another important source of error in the present computation i s 

the possible inaccuracies i n property data caused as a result of the 

proximity of c r i t i c a l pressure and pseudocritical temperature - The 

same d i f f i c u l t y was faced by Wood in reducing his experimental data. 

He found that when the profile in Figure 20 was numerically inte

grated, i t did not yield correct mass flow rate. The computed pr o f i l e has 

this i n i t s favour. Given the density, i t ; Tields the correct mass flow 

rate since mass flow constraint i s an integral part of the mathematical 

procedure. 

5.3 Comparison of Wall Temperature Distributions 

As mentioned in Chapter I, supercritical fluids can produce a 

variety of different wall temperature distributions varying from the 

enhancement regimes, where wall temperature rises less slowly than bulk 

temperature to deterioration regimes characterised by l o c a l peaks i n wall 

temperature. A r e a l i s t i c theoretical model must be able to predict both 

these regimes. 

Wall temperature measurements have been carried out i n a greater 

* 
These are empirical constants such as Von Kantian's constant for which 
values l i k e 0.4 and 0.42 have been suggested. 

** 
Computations made after raising the pressure from 78.84 bars to 76.75 bars 
showed that velocity profiles were again normal. 
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number of investigations because i t i s relatively easier to measure. From 

a computational point of view, i t i s somewhat more d i f f i c u l t to predict wall 

temperatures accurately compared to velocity and temperature profiles because 

they require an accurate near-wall analysis. In the case of temperature and 

velocity profiles, inaccuracies of the near-wall region do not always 

influence predictions i n the rest of the flow. Moreover, temperature pro

f i l e s must always have the same general shape, that i s , decreasing towards the 

axis of symmetry. There i s no such helpful characteristic when predicting 

wall temperatures for supercritical fluids. 

A. Wood's Data 

Wood's experimental procedure has already been discussed. He 

also measured wall temperatures at various axial locations by soldering 

copper constantan thermocouples to the outer wall of his test section. 

Assuming uniform heat generation and no heat loss to the surroundings, he 

used the following equation relating inside and outside wall temperatures: 

g 2 - fa<*2? - -1] (5.1) 
1 - 0 . • 

where 8 i s the ratio of inside diameter to outside diameter. Since 

much of Wood's data consists of outside wall temperatures, the same rela

tion was used for calculating inside wall temperatures. The f i r s t assump

tion involved in equation (5.1) was satisfied by the low thermal r e s i s t i v i t y 

of inconel and the second was checked by a heat balance (which indicated a 

loss of less than 0.3%). His measurements indicated that some thermocouples 

always read high and others always read low. This apparently happens 

because i t is not possible to attach a l l the thermocouples i n the same 

t - t = - r j — 
e w 2k 
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fashion. Therefore, he drew a smooth curve through the data for finding 

wall temperatures. His smoothed values of inside wall temperatures were 

used in the previous section but here the raw data reduced by equation (5.1) 

is used in Figures 23 to 25. 

Figures 23 to 25 show computed and experimental values of wall 

temperatures corresponding to graphs (a) and (b) of Figure 18; Figure 25 

corresponds to the operating conditions in Figure 19. The agreement can 

be seen to be satisfactory at 75.84 bars, but at 74.12 bars, i t i s com

paratively poor. A possible reason for this was mentioned earlier that i s 

uncertainty of property data. Figures 24 and 25 display enhancement regimes 

found in supercritical fluids at moderate heat fluxes. It can be seen i n 

these figures that after an i n i t i a l length (about 9 diameters i n Figure 24 

and 12 diameters in Figure 25), the wall temperatures are almost constant 

whereas the bulk temperatures rise linearly. 

The remaining computations of wall temperature in this investiga

tion are a l l in which deterioration (local peaks i n wall temperatures) 

was observed. 

B. Data of Jackson and Lutterodt 

Jackson and Lutterodt 6 7 conducted their experiments at a pressure 

of 75.8 bars (p/p c = 1.026) in a stainless steel tube (D = .01897 m). The 

tube was mounted ve r t i c a l l y and consisted of 64 diameters of entry length 

followed by a heated length of 129 diameters. Besides thermocouples at 

various axial locations, thermocouples were also attached around the tube 

to check for circumferential variations. 
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Figure 26 compares computed and experimental data from their work. 

The shaded area shows the extent of circumferential variations of temperature. 

The shading was done in this investigation by joining the original data 

points. Computed results are approximately within this zone. Correct 

behaviour i s predicted in the thermal entrance length where wall temperature 

rises quickly. Buoyancy force was included corresponding to v e r t i c a l upflow, 

although i n this particular flow, buoyancy plays a minor role. (Jackson 

and Lutterodt confirmed this by changing the direction of flow and noting 

that there was no significant change in wall temperature distributions.) 

S t r i c t l y because of axial symmetry, there should not be any circumferential 

variation of temperature in this flow. In practice, this seems d i f f i c u l t 

to achieve due to unsymmetry in tube wall thickness and variation of i n l e t 

conditions. These may cause significant circumferential variations because 

heat transfer behaviour close to the c r i t i c a l region is very sensitive to 

inlet and boundary conditions. It may be pointed out that an even tube 

wall thickness is necessary i n order to obtain a uniform heat flux boundary 

condition, because heating in this type of experimental set-up i s provided 

by means of resistance heating. The measurements of circumferential varia

tions has not been given enough attention i n most of the other investigations 

concerned with wall temperature, measurements and could at least partly be 

responsible for observed differences between computed and experimental 

results i n those cases. 

C. Data of Schnurr 

68 

Schnurr conducted his experiments in a 0.0034 m outer diameter 

stainless steel tube with a 0.00038 m thick wall. An entrance length of 

127 diameters was followed by an 82 diameter test length. Local tube wall 
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temperatures were measured by chromel-alumel thermocouples. Schnurr did 

not make an explici t statement about the orientation of the tube but from 

his references to the top and bottom surfaces, i t i s inferred that the tube 

was horizontal, accordingly buoyancy force was dropped from the governing 

equations. Computations corresponding to his operating conditions at 

75.29 bars (p/p c = 1.012) are shown in Figure 27. The agreement here i s 

not good in several respects. F i r s t , the temperatures are too low (by 

about 7%) at the beginning of the thermal entrance length. Second, a slight 

peak in wall temperature observed both experimentally and computationally 

has shifted considerably to the right. This i s probably a consequence of 

the former error since f l u i d temperatures must reach a certain level before 

deterioration i s affected. Last, at the termination of deterioration, 

temperatures are too high. 

It appears that a major part of the error i s due to neglected 

buoyancy effects. Heat flux i s f a i r l y high in this case and density 

gradients i n the v e r t i c a l direction are large. Therefore, as pointed out 

by Schnurr, buoyancy forces must play an important role i n this flow. The 

computation of this three-dimensional effect has not been taken up i n the 

present investigation. Nevertheless, this computation shows that this could 

be a worthwhile point to investigate in future work. 

D. Data of Ikraynnikov and Petukhov 

Ikraynnikov and Petukhov conducted their experiments i n a stain

less steel tube of 29 mm inside diameter with a wall thickness of 1.5 mm, 

78 diameters of the tube served as the test length. This was preceeded by 

25 diameters (calming section according to their terminology) for allowing 
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the flow to get f u l l y developed. Wall temperatures were measured by 

chromel-alumel thermocouples and the tube was oriented v e r t i c a l l y with 

the flow upward. 

They used relatively low mass flow rates and high heat fluxes. 

Therefore, deterioration as well as buoyancy effects are significant. Com

putations corresponding to their data shows the development of unusual velo

city profiles. Results for measured and computed wall temperature are 

plotted in Figures 28 and 29. Inlet temperatures for both runs are 15°C. 

Figure 28 compares results at the lower heat flux. Although 

computed temperatures are somewhat lower (by up to about 12%), the trend i s 

predicted well. This flow i s quite sensitive to inlet conditions. Computa

tions corresponding to the same conditions but with an inlet temperature of 

about 5°C higher (not plotted here) resulted in a double peak instead of the 

single peak found i n this case. 

Figure 29 shows a plot of another result from their investigation 

at a heat flux approximately nine times as high. Here the correct level of 

temperature peak is predicted as well as the location of deterioration 

(within 10%). However, computed wall temperatures drop far below predicted 

temperatures at the conclusion of deterioration. A reason for this appears 

to be a free convective effect that was excluded in this analysis and 

is discussed in the next chapter. Its effect i s to lower predicted tempera

tures for v e r t i c a l upflow whenever i t becomes dominant. A second cause 

which could be p a r t i a l l y responsible i s circumferential variations of 
* 

temperature which can be large just at the conclusion of such a deterioration. 

* , 67 See Jackson and Lutterodt 
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Computed velocity profiles for this flow shown in Figure 30 

demonstrate how the buoyancy forces modify the velocity profiles i n this 

flow. These modifications are much severer as compared to those i n 

Figure 21 because of strong heating at the walls. The near wall regions 

are not shown in Figure 30 for the sake of c l a r i t y . Since the velocity at 

the wall i s zero and since there i s no back flow or recirculation i n any 

of the problems considered here, the velocity always increases with radial 

distance in the near wall region i n this investigation. Figure 30(f) 

indicates the f i r s t signs of a return to a normal velocity p r o f i l e . If 

the pipe i s long enough, the flow eventually heats i t s e l f out of the 

c r i t i c a l region and behaves l i k e a constant property f l u i d . 

5.4 Scope for Further Results 

This chapter was mostly restricted to a discussion of wall tem

perature distributions and radial velocity and temperature profiles. The 

calculation of other flow properties that comprises the mathematical formu

lation i s also a necessary part of each computation (such as those in 

Figure 31). The necessity of recording such data was not f e l t primarily 

because experimental data on these quantities i s not available for compari

son. Further, i t is f e l t that an adequate r e l i a b i l i t y cannot be placed on 

a l l the data at the present stage. It should be pointed out that the fact 

that some of the data compares well with experimental data i s not a 

sufficient criterion that a l l the associated data i s equally accurate. 

Another important point that deserves restating concerns the 

type of computations made. These were restricted to conform to the 

operating conditions in previous experimental studies. However, for the 

purpose of practical design work, several other operating conditions (such 
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as variable wall heat fluxes) w i l l probably be of interest. It i s hoped 

that the present procedure w i l l prove ammenable to further extensions. 

It i s f e l t that in the present form, the f u l l potential of the present 

procedure can be exploited only when used in conjunction with experimental 

data. Whenever an adequate agreement can be reached between experimental 

and predicted results, the present procedure can be used for generating 

similar results at other related operating conditions. Alternatively, 

the present procedure can be used for carrying out preliminary f e a s i b i l i t y 

studies before undertaking an actual experimental study. 

5.5 Concluding Remarks 

To conclude, calculations made in this chapter indicate that 

there are several ways in which the theoretical analysis i s not completely 

satisfactory. However, overall agreement i s considered reasonable for the 

calculations illustrated. Predictions made in this chapter, though broadly 

covering the range of forced convection heat transfer phenomenon occurring 

in supercritical fluids are not exhaustive, more over computations in some 

cases were not carried out for the f u l l range of the heated section. For 

example, measurements corresponding to Figure 26 extend to 130 diameters, 

but calculations were terminated after 60 diameters. The only reason for 

doing so was to e f f i c i e n t l y u t i l i z e the available computer time. Computer 

time usage i s directly proportional to the number of diameters covered and 

therefore computations were terminated as soon as what was f e l t to be the 

important range was covered. 
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VI. FURTHER DISCUSSION 

6.1 General 

Variations in turbulent Prandtl number, contribution of fluctu

ating property correlations, and the influence of free convective effects 

in the turbulence model are three major areas leading to uncertainty i n 

the formulation of the theoretical model. It was f e l t that these should 

be discussed more f u l l y since the further development of the theoretical 

procedure presented in this investigation w i l l probably depend on the 

cl a r i f i c a t i o n of these issues. 

6.2 Turbulent Prandtl Number 

The turbulent Prandtl number was assigned a constant value equal 

to 0.9 in the present work. In actual practice, turbulent Prandtl number 

varies with molecular Prandtl number Pr and also with geometric location 

in the flow. A better practice was not adopted because there i s as yet 

no definite procedure for doing so, even in constant property flui d s . A 

large number of proposals, however, can be found. Reynolds7**' has examined 

more than thirty different ways of predicting turbulent Prandtl number. 

Calculations were made using some of these in order to study their 

effect on calculated heat transfer behaviour. 

A. Graber's Proposal 

71 

Graber took no account of the position within the flow but 

allowed for the dependence of molecular Prandtl number through the 

formula 
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P r t
_ 1 = 0.91 + 0.13 P r 0 ' 5 4 5 . (6.1) 

The i l l u s t r a t i o n of Figure 32 shows the calculated Prandtl number using 

equation (6.1) for a supercritical flow. This flow i s the same as that 

in Figure 26 of Chapter V. The result shows the low sensitivity of turbu

lent Prandtl number to i t s molecular counterpart. This i s also apparent 

directly from equation (6.1). Even though values calculated from 

equation (6.1) are slig h t l y lower than 0.9, calculated temperatures do 

not d i f f e r significantly (See Figure 33). Equation (6.1), however, i n d i 

cates that the practice of using a value less than unity for supercritical 

carbon dioxide appears to be better founded than that of other investiga

tions which employ a value of unity. 

B. Quaramby and Quirk's_Proposal 

72 

In view of the scatter in their data, Quaramby and Quirk f e l t 

that i t was impossible to isolate the dependence of turbulent Prandtl number 

on molecular properties. However, they proposed a relation for variation 

across the pipe and represented i t by 

Pr t = (1 + 400~ y / R) . (6.2) 

This gives Pr =1/2 near the wall and Pr f c = 1 in the core (Figure 32). 

Scatter around this result i s ±0.1 in the core and more in the wall layer. 

A value of 0.5 at the wall i s much lower than that suggested by other 

investigations and leads to lower calculated wall temperatures as seen 

in Figure 32. 
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FIGURE 32. Turbulent Prandtl Number Variation Across a Pipe. 
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FIGURE 33. Wall Temperature Variations with Different Turbulent 
Prandtl Numbers. 
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C. Cebici^s_Proposal 

73 

Cebici extended Van Driest's mixing length representation near 

a wall to turbulent heat fluxes. His arguments lead to the result 

- KD- - exp (-y"l"/A+)l Pr = c ^ v / ^ . (6.3) - = = • « =3S 

K h [ l - exp(-y +/B +), 

At the wall, Pr i s given by 

1 ':h A" 

As y becomes larger, the exponential terms in equation (6.3) rapidly 

approach zero, leading to 

Pr = - . (6.5) 
h 

74 

Cebici's proposal and i t s later modification by Na and Habib allow for 

dependence of constants i n equation (6.3) on molecular Prandtl number. 

Therefore, i t combines both molecular and geometric effects. Molecular 

effects, however, are small in this flow as indicated already. Therefore, 
, calculations were made with equation (6.3) assigning constant values of 

+ 

= 0.44 and B =35 (suggested by Cebici). Calculations made with 

equation (6.3) are shown in Figures 32 and 33. Calculated wall tempera

tures are higher because of higher Pr near the wall. 
Trends of variation in the last two porposals are completely 

opposite. A decreasing Pr with radial distance in the wall layer i s in 

agreement with Rotta's7""* proposal, whereas a trend of increasing Prandtl 

number in the high Reynolds number region i s in agreement with turbulence 
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modelling theory 7 6. A rigorous evaluation of the two proposals cannot be 

made because of a paucity of experimental data for this quantity. Further, 

a l l proposals discussed here were made for constant property f l u i d s . 

Additional effects due to variable properties cannot be ruled out. However, 

un t i l more i s known about the turbulent Prandtl number, the use of a con

stant value seems to be a reasonable practice since i t i s f a i r l y successful 

in predicting experimental behaviour. 

6.3 Enhancement Factors 

As stated earlier, the fluctuating property correlations were 

neglected during the formulation of the mathematical model. Nevertheless, 

i t i s f e l t that in future investigations, the need may arise to question 

this assumption further. Probably many of the questions connected with 

these effects can be answered precisely only when experimental information 

on these quantities becomes available. At the present time, i t i s possible 

to make rough estimates of some of these additional terms i n the following 

manner. 

A s t r i c t averaging of the Navier-Stokes equations yi e l d for the 

turbulent shear stress? 

T = p u'v' + u p'v' + v p'u' + u'p'v' . (6.6) 

I II III 

Terms I, II, and III in equation (6.6) are additional fluctuating property 

correlations that arise in the momentum equation. Term I i s the most 

amenable to an estimate. It i s also probably the largest of three because 

term II contains v as a product and term III is a t r i p l e correlation. 
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Therefore, approximating equation (6.6) as: 

T = p u'v' + u h'v' , t (6.7) 

where, 

The additional assumptions embodied in equation (6.7) are: density... 

fluctuations due to pressure fluctuations are negligible and that higher 
2 2 2 

order effects are small (These involve 3 p/3h and h' v' ) .Equation 

(6.7) can now be rearranged as: , .' • 

T = p u'v' 1 + <(> u 
PPrx 

3h/3y 
3u/3y or, (6.8) 

T = p u'v' t 1 + u ,9p, 
p Pr ^3u;x (6.9) 

The factor inside the bracket may be regarded as an enhancement factor. 

Equation (6.9) i s equal i n magnitude to an enhancement factor proposed 
30 * 

by Hsu and Smith when Pr i s equal to unity . The similarity here i s 

surprising because Hsu and Smith obtained their expression through physi

cal arguments based on an extension of the Prandtl's mixing length concept 

in order to account for density derivatives. 

Similar considerations for the energy equation w i l l lead to an 

analogous enhancement factor for the turbulent heat flux as was done by 

Hsu and Smith. Here the simpler procedure of regarding both these enhance-

See Section 1.2. 
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ment factors as equal i s adopted in order to effect a calculation. The 

two enhancement factors should have the same order of magnitude on appeal to 

an analogy between velocity and enthalpy fields. A further simplification, 

used here i s to regard Pr as unity i n (6.9) for similarity with Hsu 

and Smith's proposal. The test flow chosen for computations i s the same 

as in the section on turbulent Prandtl numbers. Figure 34 illustrates 

computed values of enhancement factor. Calculations were effected by 

multiplying turbulent fluxes throughout by the enhancement factor. This 

factor has a value of unity at the wall since the velocity there i s 

zero and unity near the core because density gradients there are zero. 

Velocity gradients are also zero at the centre, but this fact did not 

cause any complication i n this flow because density f a l l s to zero faster 

than velocity. Calculated results showed less than 1% alteration in 

computed wall temperatures. This i s because enhancement i s nowhere 
i 

greater than 6% and influence, on calculated results must be much smaller. 

Of a l l calculated results, wall shear stresses were most effected as shown 

in Figure 35. Wall shear stresses are slightly lower than the unenhanced 

case at most points because normally i t tends to compensate for increases 

in shear stress away from the wall. Although in this particular flow, 

enhancement i s not large, i t may be larger whenever heat fluxes or flow 

rates are larger. This factor was not used in this investigation because 

i t i s f e l t that i t involves uncertainties and also because in the present 

work, i t s effect i s probably outweighed by other approximations. However, 

as prediction methods improve further i n accuracy, the need for an investi

gation in this area may arise. 
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6.4 Free Convective Influences 

The influence of free convective (or buoyant) effects i n forced 

convection situations of superciritical fluids can clearly be determined 

when experiments are carried out in pipe flow by changing the orientation. 

of the flow with respect to gravity, a l l other conditions remaining the 

same. Such experiments have been carried out by Jackson and Lutterodt*' 7. 

It was found that, as buoyant effects become significant, observed upflow 

wall temperatures are higher than downflow wall temperatures. Further 

experimental confirmation of these results has been provided by Bourke, 
77 

Pulling, G i l l , and Denton 

The prediction of the correct differences between upflow and 

downflow wall temperatures should s t r i c t l y be outside the capability of 

this investigation since the sole cause of this difference i s free convec

tive effects. However, the p o s s i b i l i t y of predicting this effect was 
36,78 

investigated i n this analysis because of a hypothesis due to Hall 

According to this hypothesis, buoyancy forces in upflow modify the shear 

stress distribution i n such a way as to result in fla t t e r velocity pro

f i l e s in upflow. Thereby the shear generated turbulence i s inhibited. 

This leads to higher wall temperatures i n upflow. Therefore, the implica

tion here i s that i f calculations are made accounting for such a modification 

in shear stress behaviour, then the correct differences between upflow and. 

downflow temperatures can be predicted. This hypothesis was supported by 

approximate one-dimensional calculations. Hall's contribution i s con

sidered invaluable in this investigation i n so far as emphasis and stimula

tion into the study of free convective effects i s concerned. However,., 

recently a closer look at the problem has become possible due to the 
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a v a i l a b i l i t y of two-dimensional analytical methods as i s explained next 

and i t appears that an important free convective effect may have been 

either overlooked or de-emphasized. 

It may be pointed out that the difference between upflow and 

downflow temperatures i s not a phenomenon unique to supercritical f l u i d s . 

It has also been noted i n constant property fluid s . Accordingly, Bates et a l 

in response to the preceeding hypothesis, accounted for buoyancy i n the 

mean momentum balance and computed wall temperatures in, constant property 

fluids for both upflow and downflow through a two-dimensional numerical 

procedure. Their results showed a complete reversal of observed behaviour. 

Calculated wall temperatures i n downflow were higher than i n upflow. 

Such a calculation for supercritical fluids was also made in 

this investigation. Figure 36 shows calculated results for carbon dioxide. 

Predicted wall temperature differences are again reversed from observed 

behaviour. That i s , wall temperatures are lower for upflow. In this flow, 

unusual velocity profiles associated with negative shear stresses were 

noted for upflow. Figure 37 compares the radial shear stress distribution 

i n this flow at a location (x/D =30) downstream from the start of heating. 

Although the shear stress i s lower at some points in upflow as expected, 

the wall shear stresses are higher. The wall shear stresses dominate heat 

transfer here and result in lower wall temperatures for upflow. Therefore, 

the conclusion drawn here i s that modified radial shear stress distribution 

i s not a sufficient criterion for obtaining the correct temperature 

differences and another explanation must be found. It should further 

be pointed out that due to a constantly changing velocity p r o f i l e and the 

contribution of the thermal entrance length, this flow i s clearly not 
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one-dimensional and therefore a one-dimensional calculation procedure that 

neglects flow acceleration cannot be expected to be correct. Figure 38 

il l u s t r a t e s the computed turbulence kinetic energy profiles for this flow 

(at a location x/D = 15). However, such data was not used to deduce any 

conclusions here because the phenomenon under consideration appears to be 

dominated by the near wall region. 

Buoyancy forces may be regarded as influencing the flow in two 

ways. F i r s t , by a contribution to the mean-momentum balance, and second, 
* 

by influencing turbulence generation . Unless this second effect i s 

included in an analysis, i t i s believed that calculation procedures may 

continue to underpredict upflow wall temperatures and overpredict downflow 

temperatures solely because of this effect. Upward heated flows are stably 

s t r a t i f i e d and therefore, turbulence is suppressed in such flows. In 

downward flow, s t r a t i f i c a t i o n i s unstable and turbulent production enhanced. 

Stratification in ve r t i c a l flows i s in a direction perpendicular to the 

predominant heat flow direction and i s therefore not very obvious. It i s 

probably because of this reason that i t has not received sufficient atten-
80 81 

tion before. Recent Russian literature ' , however, indicates that the 

role of stratification-induced turbulence in ve r t i c a l confined, flows 

(both constant property and supercritical) i s now being studied. 
An adequate analytical treatment of free convective effect w i l l 

In the momentum equation, buoyancy forces appear as +pg^ when g^ and U^ 
are in the same direction. If this term is retained during the deriva
tion of the Reynolds stress equation, the corresponding contribution i n 
that equation i s [U.p'g. + U.p'g.] or approximately B[U.h'g. + U.h'g.]. 
This would further result in an additional production term in the 
kinetic energy equation equal to + 3 U.h'g.. 
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probably depend on the progress in handling the same problem in constant 

property fluids*. The analytical treatment of such effects may be the 

principle interest of a future investigation on supercritical f l u i d s . 

*See Launder 8 2 and Gibson and Launder for recent methods i n constant 
property free shear flows. 
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VII. CONCLUSIONS AND RECOMMENDATIONS 

Conclusions and recommendations of a specific nature w i l l be 

found interspersed throughout this dissertation. Therefore, this section 

has been used for touching upon the broader points concerned with this 

work. 

It i s concluded from the computed results that both the physical 

modelling as well as the numerical solution procedure of the present 

work are viable procedures but in need of further development. A change 

was made from previous investigations by introducing the use of a com

pletely two-dimensional solution procedure and a two-equation model of 

turbulence in the f u l l y turbulent region of the flow. The mixing length 

type of algebraic formulations have been used in the past, mainly on the 

basis of how well they can predict experimentally determined behaviour. 

Although this s t i l l remains the criterion for testing the v i a b i l i t y of 

the present method, an additional advantage of physical realism and 

broader generality can be achieved with the multi-equation models of 

turbulence. The methods and approximations of the present work, though 

physically r e a l i s t i c , can only be regarded as a beginning to apparently 

promising extensions. A logical extension of the physical model presented 

in this investigation, appears to be the use of low Reynolds number 

modelling (in the near wall region). In fact, many of the improvements 

such as extension to combined free and forced convection (refer to 

Chapter VI) appear to be dependent upon such physical modelling. However, 

i t may be realized that in view of i t s complexity, supercritical heat 

transfer i s not the ideal phenomenon to select for any new radical changes 

in forced convection theories. Rather, i t i s f e l t that new theories 
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should f i r s t be thoroughly verified at the constant property level before 

being considered for supercritical heat transfer. The kind of turbulence 

model employed in this investigation appears to be receiving the atten

tion of several investigations at precisely such a level (that i s , con

stant property le v e l ) , and i t may be worthwhile to make use of this pro

gress with perhaps only minor modifications for application to super

c r i t i c a l fluids. 

It i s further concluded that the consideration of buoyancy i n 

the mean momentum balance i s a useful method of predicting unusual 

velocity profiles but not entirely sufficient to account for a l l of the 

free convective effects such as observed differences between upflow and 

downflow temperatures. 

The use of f u l l y two-dimensional numerical procedure was f e l t 

necessary in this investigation in order to account for the thermal 

entrance length and the near wall behaviour in supercritical f l u i d s . 

The numerical procedure used in this work w i l l probably prove amenable 

to further extensions. 
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APPENDIX A. Properties of Supercritical Fluids 

Hsu and Graham3 have reveiwed the present state of knowledge 

concerning properties of near c r i t i c a l fluids. A useful treatment of the 

thermodynamics of the c r i t i c a l point can be found i n Hirschfelder, 

83 
Curtiss, and Bird . 

Classical modelling of a f l u i d near the c r i t i c a l state has been 

based on Van der Waal's proposal. His model i n which an allowance i s 

made for the attractive and repulsive forces between molecules leads to 

an equation of state i n the following form: 

(p + -%)(V - b) = Rt . ( A ' 1 ) 

V 

The Van der Waal's equation predicts a value of i n f i n i t y for C^ at the 

c r i t i c a l point. The Van der Waal's equation i s a useful tool for under

standing the thermodynamic behaviour near the c r i t i c a l state but i t does 

not succeed i n mapping the (P, p, T) surface with sufficient accuracy. 

Therefore, V i r i a l type equations requiring several empirical coefficients 

are usually employed, 

P - A(t )p + B(t ) p 2 + C(t ) p 3 + D(t ) p 4 . (A.2) 

A mathematically more analytic equation, based on the recently popular 

Ising model for ferromagnets has been proposed by Vicentini Missoni et a l . 

For numerical work, however, i t i s probably not an eff i c i e n t practice to 

use these equations directly in the computer program since these equations 

require an interative solution. Therefore, use was made of tabulated 
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values of properties. 

In most supercritical heat transfer systems, the pressure i s 

maintained above the c r i t i c a l pressure. Therefore, singularities such as 

an i n f i n i t e value for specific heat are avoided. However, the property 

variation i s s t i l l severe in the v i c i n i t y of the c r i t i c a l point. For 

example, the peak in specific heat i s s t i l l large even at pressures con

siderably removed from the c r i t i c a l pressure. 

Like the specific heat, the thermal conductivity also exhibits 

a peak around the c r i t i c a l point but because of the d i f f i c u l t i e s i n measuring 

this quantity near the c r i t i c a l state, there was considerable controversy 

regarding the behaviour of thermal conductivity near the c r i t i c a l state 

u n t i l very recent times. Some investigators believed that there i s no 

spike i n thermal conductivity. However, experiments due to Michels, 
84 

Sengers, and Van der Gulik have demonstrated that there i s a large spike, 

i n thermal conductivity right around the c r i t i c a l point. Subsequently, 

similar spikes have been noticed i n other fluids as well. Property values 

used in this investigation include this spike. 

Compared to thermal conductivity, variations i n viscosity around 

the c r i t i c a l point are less drastic. It i s l i k e l y that there i s a slight 

detectable spike i n viscosity as well. However, because of uncertainty i n 

the precise magnitude of this peak, i t i s normally neglected i n engineering 

applications. The viscosity data obtained in this investigation contained 

slight irregularities but these were smoothed out prior to feeding the 

property tables i n the computer program. 

The property data for C0 ? used in this investigation are the same 
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as that used with two previous numerical studies due to Schnurr"" and 
9 85 8 86 87 Sastry ' . The density data i s from Michels and Michels ' * . Enthalpy 

88 
and specific heat data are from Koppel and Smith . Viscosity data are 

89 
from Kestin, Whitelaw, and Zien and thermal conductivity data are from 

90 

Sengers and Michels „ Table A.1 gives an example of how the property 

tables were set up at p/p c - 1.027 prior to feeding in the computer program. 

A good agreement between the experimental and predicted heat transfer data i n 

a number of test runs indicates that the property data used in this inves

tigation are probably accurate enough for the work carried out i n this 

investigation. The cases where such an agreement was not achieved appear 

largely to be a result of approximations i n the theoretical model rather 

than inaccuracies i n the property data. However, as theoretical prediction 

schemes improve and more accurate property data becomes available in future, 

i t should be employed in numerical prediction schemes. 
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TABLE A . l * Properties of Carbon Dioxide (Pressure = 1100.00 PSIA). 

** 
N 

TEMPERATURE 
(RANKINE) 

VISCOSITY 
(LBM/FT-SEC) 

SP. HEAT 
(BTU/LBM-R) 

CONDUCTIVITY 
(BTU/SEC-FT-R) 

DENSITY 
(LBM/CU FT) 

1 483.3 .7334E-04 .496 .1904E-04 61.505 ! 
2 492.6 .6939E-04 .537 .1835E-04 60.017 
3 502.0 .6530E-04 .572 .1759E-04 58.321 1 
4 510.3 .6169E-04 .611 .1674E-04 56.455 1 
5 517.5 .5866E-04 .651 .1584E-04 54.431 
6 525.0 .5512E-04 .735 .1490E-04 51.850. 
7 531.9 .5132E-04 .848 * .1418E-04 49.544 
8 537.3 .4559E-04 .937 .1338E-04 47.603 
9 542.0 .3937E-04 1.200 .1261E-04 45.320 
10 545.5 .3405E-04 1.635 .1139E-04 42.410 
11 547.8 .3037E-04 2.218 •1057E-04 39.564 
12 549.0 .2828E-04 2.878 .1529E-04 36.927 
13 549.4 .2744E-04 3.294 .1595E-04 34.250 fe 
14 549.7 .2661E-04 3.709 .1662E-04 31.575 & 
15 550.1 .2564E-04 3.861 .1726E-04 28.689 
16 550.6 .2437E-04 3.397 .1785E-04 25.316 
17 551.1 .2298E-04 2.930 .1804E-04 22.100 
18 552.2 .2038E-04 2.427 .1433E-04 20.291 
19 554.4 .1630E-04 1.892 .8252E-05 18.433 
20 557.7 .1461E-04 1.408 .6588E-05 16.877 
21 562.2 .1407E-04 1.068 .5256E-05 15.545 
22 567.6 .1375E-04 .789 .4760E-05 14.446 
23 574.9 .1352E-04 .618 .4543E-05 13.350 
24 .584.1 .1333E-04 .514 .4458E-05 12.246 
25 595.7 .1337E-04 .446 .4404E-05 11.255 
26 607.0 .1347E-04 .409 .4389E-05 10.527 
27 618.4 .1359E-04 .384 .4389E-05 9.951 
28 631.8 .1373E-04 .362 .4422E-05 9.428 
29 645.6 .1386E-04 .344 .4460E-05 8.945 
30 659.7 .1398E-04 .330 .4499E-05 8.509 
31 677.8 .1416E-04 .321 .4574E-05 8.117 
32 694.3 .1433E-04 .309 .4653E-05 7.798 
33 710.6 .1450E-04 .297 .4732E-05 7.489 
34 726.8 .1468E-04 .287 .4811E-05 7.199 
35 743.1 .1486E-04 .278 •4890E-05 6.935 

* The data here is described in Br i t i s h Units because this i s the manner i n which, 
i t was fed to the computer program. The relevant conversion factors to S.I. 
units are contained in the computer program and are from Eckert and Drake . 

**ENTHALPY = 30.0 + 5(N - 1), (BTU/LBM). 
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APPENDIX B 

Equations f o r the Turbulence Model 
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Reynolds Stress Equation 

The starting point for deriving equations for turbulent quantities 

are the Navier-Stokes equations. These may be written as: 

3U, „ 3U, . ^ • a 3lY. -
3T + \ 83^ " ' p 3Xi

 + p 33^ ^ y 33^ * ^•" L J 

The instantaneous motions can be broken into mean and fluctuating 

components. The resulting equation i s : 

3(U + U.) ^ 3U ^ 3U. 3U 3U. „ 
3T 1 * U k 3 X ^ P k 3 X ^ + U k 3^ + U k 3 X ; = - P3x7 ( p + p t> 

(B.2) 4 - i 3 

* 3 X ^ 1 + V p 9 X k 

The time averaged form of these equations are the Reynolds equations * 

3U. * 3U. . , ^ - r , ~ 3U 
1 + U. 1 i l ^ + r ^ - (y-s^-) ( P ¥ k ) • CB.3) W " °k 3X^ " p 3X. T p 3 ^ v^ 3^' p 3 ^ v" "1 

Subtracting equation (B.3) from (B.2) results in the equation for the 

fluctuating component U (equation (3.1)). This i s repeated here for 

convenience: 

3U. ^ 3U. . a , , a 3U 3U -

I F + u k ^ - - ^ + ^ ( w ^ - \ < + i 4 ( p U A ~ p U i V 

(B.4) 

Multiplying equation (B.4) by U and adding to i t the corresponding equa

tion for U_. multiplied by U\, leads to: 
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3U.U. ~ 3U.U. 3U. 3U. U. a , U. ~ , 
1 .1 + U 1 J = - uu - i - o — 1 1-̂ 2 i J L . 
3T ^ uk SX .̂ k j 3 ^ k i 3 ^ p 3X± p 3X 

U. 3 3U. U. g 3U. 

3 X ^ ( p U i U k - p W 

- T ^ ( p V k " p W - ( B*5 ) 

During the simplifications, use is made of the continuity equations, 

3pU. 3pU. 3pU. 
1x7-°- "3x7-°- a n d l x f = 0 ' ( B* 6 ) 

x i i 

The continuity equation (B.6) allows transformations such as 
-^|- <F) = ( PU kF) , - (B.7) 

'k 9 X k 3 ^ 

where F i s any general flow property. 

Further rearrangements of the left-hand side of equation (B.5) 

lead tot 
/v 

3U.U. - 3U U. 3U. 3U. , 3U , 3U 
-k2- + \ ' ^ " V j 3 ^ 7 V i ^ + V3xT + V < 

1 3 p , u i i n + i x ( l i D !%• 
p i x f - p i r + P 3 \ ( u uj V 

(u 

3U • 3U. 3U. • , ft 

^ 1 3 • /„ „ _ 4 A _ 2 ̂  — — 1 - ~ i r - (P U.U.U. ) 
? K i d \ p 3 x k 3 x k p 3 x k 1 3 k 
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u. a u a  

+ -r|- (p u.u,) + -jdr (P U 4 U
k

} » 

p 82L l k P BX^ 3 k 

(B.8) 

or, 

3U.U. ~ 3U.U. 
1 3 + u — i - 1 
3T + Uk 3X^ 

3U. 3D. 
U.U. + U.U, 
j u k 3^ "i"k 3^ 

- 2v 
3U. 3U. , 3D. 3D 
3 X k 3 X k P * Y 

3U.U. 
p SX̂ . 1 P i j k ^ 3 \ p Jk x ik j 

U. „ U a  

+ —1 (p U.U, ) + - f a f - (P U.U ) p 3X^ p x k p 3X^ 3 k 
(B.9) 

Averaging equation (B.9) leads directly to che Reynolds stress equation 

which i s equation (3.2). 

Turbulence Dissipation Equation 

An equation for the transport of the dissipative correlation 

was obtained in the following manner. Equation (B.4) i s differentiated 
3 

with the operator -r^— leading to: 

a 3 U 4 -- d i 

4f V + U k ^ V + 3X7 3X~ = - 3X7 P̂ 3X±' ~ °k 3X, 3^ 3^ 3X£ 

3U. ' , a  

3U. 3D. 3U. 
k x 

„ . 3 U, 3U^ 3D. 3 (1 321) . u = t - A 
^ c i v ̂  u r 

3D. 
3 / 1 3 (B.10) 

3D. 
Multiplying equation (B.10) with ^ results in 
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1 JL 
2 3T 

3D. U. k 3 
9 X k 

3U. 4 3U. 3U, 3U. l k l 9 U i 3 .1 3p' 
3XA 3X& 3 ^ 3X£ 3X £ 3X± 

- U. 
3U. 3D. l i 3D, 3D. 3D. i k l 

k 3X£ 3X £ 3Xk 3]^ 3X £ 3X £ 

3D± 3D± 3Dk 

3D. „ 

- D. k 3Xa 33^ ^ X ^ 

3X £ 3X£ ^4 ( p U i V 

3D i 3 
3X£ 3X̂  

A 3 / I s 

p 3 ^ U i 3X,/ (B.ll) 

Rearranging the preceeding equation and multiplying throughout by 2v , 

V 3T 
3D. ' 

v (3X, } + VD. k 9 X k  

9 U i 3 

3D. ' 
V (3x £> 

3D. 
3X£ 3 X j l 

(y 

3D. 
-2v 

) Xk 
( 

9 X k 

3D. 3D 

v 3 
• p 3 ^ 

3D 

3D. ' 
^ VU, ( ^ i ) V k dX„ 

- 2V 3X£ 3XA p̂ W±

J 

3X„ 3X£ 3X i3X k^ 
- 2v D. 

2" 
3D± 3 D ± 

k 3X r3X & ZX^ 

1 3U. 3D. 3D 
-2v ^ ^ ^ + 2v 

3D 
dX^ 3X£ 3 ^ " 3X„ 3X 

i 3 
t P 3 X k ^ ^ 

. 2 v 3 
p 3 x k 

3D. 3D. 
3X£ 3X, (y 9 x k 

+2V 
3D. ~ 

1 o 
3X£ 3X£ 

(B.12) 
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3u 2 

Replacing V(~-^) by d and averaging leads directly to the desired equation 

which i s equation (3.14). 

Algebraic Stress Modelling 

Equation (3.22) was derived by Rodi using only one of the compo

nents of the pressure-strain correlation. A similar expression using the 

f u l l pressure-strain correlation (equation (3.7)) i s derived here. Using 

D U.U. U U 
i JL _ r(U.U.) = —r1 (P - e) , (B.13) PT i V " i w j ' K 

the Reynolds stress equation can be written as 

Z £L ( p . e ) , 1 eS±i . C i | ( U . D . . | S i j K ) + P t j - UP,. - § « y P ) 

3U. 3U. 9 

3 1 

where, 

C„ + 8 30 C. - 2 8 C - 2 
L = A i ~ ' M 55 - a n d N I i - ' • ' ( B* 1 5 ) 

Equation (B.14) can be rearranged as: 

U.U. - 2/3 6..K A. 0 A, 9 

K e 13 3 13 e 13 3 13 

A- 3U. 3U. 
+ T K ( 3 r + ^ ' • ( B - 1 6 ) 

J 1 

where, 
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A l --(P / e-'l + V • A2 = (P/e - 1 + V ' a n d A3 = (P/e - 1 + y " 

(B.17) 

Equation (B.16) can then be expanded for thin shear flows to yield expressions 

for the stress components U ^ ' and U2- These are: 

A - 2 / 3 K 2 ^ 1 p 4 . 4 P ^ 2 (B.19) 
K 3 e ? + 3 e ' 

U 2 - 2/3 K 2
 A l p + 4P ^2 (B.20> 

Substituting equations (B.19) and (B.20) in equation (B.18) yields 

2 3U 
^ = V A 3 ^ - ^ ( A , + A , ) ( 1 - A . | + 2 i L | ) • ( B " 2 I ) 

1 2 e 3X2 3 e 1 2 / v 1 e 2 e dx £ 

or 
As 

2 [3/2 M(P/£ - 1 + C,) + {(L - 2N)P/e + ^ - l } ( l - L - NJ] 3 ^ 
£ L — • ~ 2 K L fi - 3 X 

(P/e - 1 + C x) 
TT TT = - 9 OA 
U1 U2 3 e ZTj/c- _ i 4. r. ^ 2 

(B.22) 

Further substitution for L, M, and N leads to equation (3.24). 

A Relation Connecting the Constants of the Dissipation Equation 

In order to derive this relation, use w i l l be made of equations 
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(3.32), (3.33), (3.34), (3.35), (3.36), and (3.37) of Chapter III. 

Replacing Tr- in equation (3.33) through equation (3.34) and K dy 
through (3.36) gives 

T 3 / 2 1 
E = (1) -A- . (B.23) 

P <y 

Equation (3.30) for f u l l y developed constant property pipe flow can be 

written as 

e 2 1 

Using equation (3.37) and noting that y = R - r, equation (B.23) can be 

written as .. •' 

T 3 / 2 , 3/2 

Further, 

_3e 
3r 

T 3/2 
vpRy K 

3 r 1/2 3/2 
2 R - r (R - r)' 

(B.26) 

Using the results expressed in equations (B.26), (3.34), and (3.35), 

K 2 3e 
a'e 3r V a;c y b 

2 + _ J 1 _ 2 R - r (B.27) 

and further, 



143 

Now putting R - r = y, and noting that r - R and further substituting the 

value of K from equation (3.35), e from (B.23) in equation (B.24) results 

i n 

T + 3y_ + 3y__ 
R R2 

C )C e 2 u 
3/2 (B.29) 

It should be pointed out that the entire treatment i n this section i s only 

valid for the f u l l y turbulent near wall region. 



APPENDIX C 

Computer Program 
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The computer program was compiled and executed on an IBM system 

370, Model 168 computer under control of the MTS operating system. The 

Watfiv fortran compiler was used since the nature of the task undertaken 

required frequent debugging. However, the coding used in the program con

sists of commonly used fortran IV statements (with the exception of PRINT) 

and therefore the program should be compatible with other fortran IV com

pilers as well. The execution time for a run typical to the present work 

is about 40 seconds. 

The Main Segment 

The overall structure of the program is illustrated i n the 

adjoining flow chart (Figure 39). Control of operations is maintained 

through the main segment of the program. This section of the program con

tains a l l of the READ statements as well as most of the WRITE statements 

used in the program. Except for the subroutine VANDR, a l l other sub

routines are brought into operation only through this section of the 

program. 

For convenience of description and understanding, the main segment 

of the program has been divided into seven chapters. These divisions are 

marked on the computer l i s t i n g contained in Appendix D. However, i t was not 

possible to make s t r i c t demarcations of the main segment because of several 

small auxilliary calculations that are carried out in this section of the 

program. The approximate contents of the various chapters are described 

next. 

Chapter I. Dimensioning of arrays as well as statements containin'g input 
data. 



FIGURE 39 . Flow Chart of Computer Program. 
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CHAPTER II. READ statements for property data and conversion to appropriate 

units. 

CHAPTER III. I n i t i a l i s a t i o n of variables. 

CHAPTER IV. CALL statements for subroutines concerned with the starting 

profiles and Y-grid divisions. 

CHAPTER V. Call statements for subroutines concerned with solution of 

the d i f f e r e n t i a l equations and the pressure equation. Sub

routines used in assembling effective viscosities are also 

called in this section of the program. 

CHAPTER VI. Contains statements for imposing boundary conditions and the 

WRITE statements for dependent variables. 

CHAPTER_VII. Contains statements for rearrangement of array so that the 

computed variables do not exceed the allocated storage. 

Chapter V of the main segment u t i l i z e s a major portion of the 

total execution time (about 90%). Therefore, the programming approach for 

most of the other chapters gives preference to convenience rather than com

putational efficiency. For example, subroutine GRID i s called i n 

Chapter IV of the program. This subroutine i s actually required only for 

the Blasius f l a t plate problem. For other problems, i t i s superfluous. 

It was l e f t in because this subroutine was frequently used for testing 

the program. 

A l l computations are performed in SI units. Therefore, a l l 

inputs with the exception of physical property data are given in SI units. 

The appropriate conversion factors for the property data are included i n 
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the program. 

A description of the important aspects of the computer program 

is provided next. 

Storage Allocation 

A description of the arrays i s given in Table C l . The five 

dependent variables, U, V, T, DE, and ZK, as well as the properties RHP 

VISC, XK, and CP are stored i n arrays of size 10 x 100 (10 columns and 

100 rows). The program w i l l also work without any change i n the logic of 

computation with arrays of a size as small as 3 x N, where N i s the number 

of grid divisions used i n a particular problem. Rather than changing N 

for every problem, 100 rows i n the arrays are provided in the 

DIMENSION statement since the Y-grid divisions rarely exceed this quantity. 

100 rows imply 200 nodal points along each diameter of a pipe. A minimum 

of 3 columns are necessary i n this program for each of these arrays because 

values of variables from two previous steps are stored in the f i r s t and 

second column and the new computed values are stored in the third column. 

After the three columns are used up, variables from the second and third 

columns can be transferred into the f i r s t and second columns respectively. 

However, repeated replacements u t i l i z e more computational time. Therefore, 

a larger array size of 10 x 100 was used i n the program. In this way, 

computation proceeds up to the 10th streamwise step. Subsequently, the 

information from the 9th and 10th columns i s reassigned to 1st and 2nd 

columns of the arrays. Larger array sizes were not used i n order to keep 

the core usage within reasonable limits. 
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TABLE C .1. Description of Arrays Used in the Main Segment 

ARRAY DESCRIPTION 

CP(I,J) Specific heat C at node (I,J). '<• 
P 

DE(I,J) Dissipation e at node (I,J). I 

R(J) 
' til 

Radial distance from axis of symmetry r, to J grid l i n e . 
RHO(I,J) Density p at node (I,J). 

RP(I,J) Production P at node (I,J). 

T(I,J) Enthalpy h (or temperature t) at node (I,J). 

TURV(I,J) Turbulent viscosity y t at node (I,J). 

U(I,J) Velocity U at node (I,J). 

UPL(J) 
; 

+ ,„ . , Tth 
Non-dimensional velocity U (location varies on the J 
grid l i n e ) . 

V(I,J) Velocity V at node (I,J). 

VISC(I,J) Viscosity u or V f f (varies) at node (I,J). 

XI (N) Temperature t on the n t h line of the property table. 

X2(N) til 
Viscosity ]X on the n line of the property table. 

X3(N) Specific heat C on the n line of the property table. 
P 1 

X4(N) th • 
Thermal conductivity k on the n line of the property 1 

tables. 1 
X5(N) Density p on the n t h line of the property table. 

X7(N)* Enthalpies corresponding to XI(N). 

X(I) th 
Streamwise distance X to I grid. 

XK(I,J) Thermal conductivity k at node (I,J). 

XKE(I,J) 2 
pK /e at node (I,J). 

.... continued 

*For arrays XI(N), X2(N), X3(N), X4(N), X5(N), and X7(N), the meaning 
given in this table should be regarded only as a preliminary meaning. 
During the course of computations, these w i l l normally be changed. 
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TABLE C l . Description of Arrays Used in the Main Segment (Continued) 

ARRAY 

XX(I) 

Y(J) 

YPL(J) 

ZK(I,J) 

DESCRIPTION 

Auxilliary variable containing predecided streamwise step 
divisions. 

th 
Distance from wall y to J grid l i n e . 

+ th Non-dimensional distance y (location varies on J grid 
l i n e . 

Turbulence kinetic energy K at node (I,J). 

The remaining arrays are mostly one-dimensional and constitute 

a relatively minor proportion of the storage. 

Statements Defining Data and Operating Conditions 

Table C.2 describes the major input variables for the program. 

It w i l l be noted in Table C.2 that some input variables apply 

spe c i f i c a l l y to plane flow problems and others such as RADS are s p e c i f i 

cally for pipe flow problems. If a pipe flow problem i s being solved, 

then the plane flow variables are assigned arbitrary values and vice 

versa. It w i l l be noted in the program l i s t i n g that a l l of the variables 

of Table C.2 (in Chapter I) are defined by ARITHMETIC statements. The 

same purpose can also be served through READ statements and this change 

may easily be introduced i f f e l t necessary by a future user. 
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TABLE Co2. Description of Input Variables 

VARIABLE 

CF 

GQ 

JEU 

JPRINT 

LNTP 

NC 

QW 

RADS 

SSTF 

TO 

TW 

UO 

UD 

DESCRIPTION 

If CF = 1, then computation scheme skips calculations for 
kinetic energy K and dissipation e. If CF = 0, then these 
calculations are performed. 

Mass flow rate. 

Number of Y-grid divisions. 

Number of streamwise steps that are skipped before output 
i s printed. 

If LNTP = 1, calculations are performed for turbulent case. 
If LNTP = 0 and CF = 1, then laminar flow computations are I 
performed. 

"lumber which determines the location Y(NC) where the multi-
equation turbulence model takes over from the near wall 
algebraic formulations. 

Wall heat flux. 

Radius of pipe. 

Constant F^ for calculating streamwise step increments. 

I n i t i a l temperature. 

Constant wall temperature used for isothermal boundary 
condition problems. 

Free stream velocity. Use i n plane flow problems. 

Unheated distance on a f l a t plate for plane flow problems. 

The f i r s t executable statement of subroutines UVEL and PRES 

both assign a value to variable GRAV. If the flow direction i s v e r t i 

cally upward, then GRAV i s assigned a value equal to -g. If buoyancy 

force i s to be neglected, then GRAV i s assigned a value equal to zero and 

i f the flow direction i s downward, then GRAV i s assigned a value equal to 

+g-
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The program as described solves for enthalpy as the dependent 

variable of the energy equation. If i t i s required that the temperature 

be the dependent variable, then the following statements contained i n 

Chapter II of the program are removed. 

TO = SLOP 

DO 110 N = 1,35 

X7(N) = X1(N0 

X1(N) = (25.0 + 5.0*N)*C7 

XA(N) = X4(N)/X3(N) 

X3(N) =1.0 

110 CONTINUED. 

Chapter IV of the computer program contains the following 

statement, 

R(J) = RADS - Y(J) . " 

This i s only applicable to axisymmetric flows. For plane flow problems, 

this i s changed to read, 

R(J) = 1.0. 

Another important change that w i l l be required for each problem i s i n the 

calculation of starting profiles. The program l i s t i n g s described i n 

Appendix D makes use of subroutine CHAMP for obtaining the Y-grid division 

and starting velocities. This subroutine i s applicable only for turbulent 

fully-developed flow starting conditions. For other problems, this sub

routine i s replaced by other problem-dependent subroutines. Another sub

routine CHANGE included in the program l i s t i n g applies to turbulent f l a t 
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plate problems. 

The program as described i n Appendix D i s set up for pipe flow 

problems where starting conditions require uniform enthalpy profiles and 

f u l l y developed velocity profiles. After understanding the working of 

the program, a prospective user should be able to make the necessary 

problem-dependent changes. 

Description of Subroutines 

A description of the subroutines Is provided i n Table C.3. 

A l l variables are handled as non-subscripted variables i n the 

subroutines U, V, E, and ZKIN. In order to simplify the notation used 

for different variables i n these subroutines, the following nomenclature 

i s used. A number which stands for the nodal location (as described i n 

Chapter II) i s attached to the variable name. For example, the velocity u 

w i l l be named around and at a central node as described in Figure 40. 
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TABLE C.3. Description of Subroutines 

pujjjMû Hinv'r 11111 iifrr TIT 

SUBROUTINE 

BCT2 

CHAMP 

CHANGE 

GRID 

INITIA 

PRES 

PROP 

TURB 

UVEL 

VANDR 

WEL 

ZKIN 

ZZK 

DESCRIPTION 

Generates starting profiles of turbulence energy K and 
dissipation e. 

Generates the Y-grid and fully-developed starting velo
cit y profiles for pipe flow problems. 

Generates the Y-grid and starting velocity profiles for 
turbulent flow over a f l a t plate. 

Computes enthalpies or temperatures through the f i n i t e 
difference formulations for the energy equation. 

Generates the Y-grid for laminar flow over a f l a t plate, 
starting at the leading edge. 

I n i t i a l i z e s the arrays U(I,J), V(I,J), and T(I,J). 

Computes pressures through the mass flow constraint. 

Computes properties by linear interpolation of values i n 
the property tables. 

Computes and assembles effective viscosities and effec
tive conductivities through algebraic formulations. 

Computes velocities U through the f i n i t e difference for
mulation for momentum equation. 

Computes velocity gradients in one-dimensional flows 
through the use of Van Driest hypothesis. 

Computes velocities V through the f i n i t e difference 
formulations for the continuity equation. 

Computes turbulence energy k and dissipation e through the 
f i n i t e difference formulations of their respective 
equations. 

Computes and assembles effective viscosities and effective 
conductivities according to the K - £ turbulence model. 



1 5 6 

1-1 I 1+1 

FIGURE 40. Nomenclature for Variables in Subroutines. 



157 

APPENDIX D 

Listing of Computer Program 



LISTING OF ASHN+... 

COMMON INDEX 
DIMENSION XPC100),X{100),Y{ 100) ,U<10, 100) ,VU0,100) , 
1RH0U0,100)tVISCCI Of 100)tR(100) 
1*XX1300) 
It XKtl 0,100) , CPU 0,100) ,T(10,100 ) 
1,TURVI 10,100) 
DIMENSION X l O 5 ) , X2(35),X3{35),X4(35) , X5 ( 35 ) , X7( 35) 
DIMENSION YPL MOO) , UPLl 100 ) 
DIMENSION XKEMO, 100) ,ZK{ 10, 100 ) , RP U 0, 1 00) ,DE( 10,100) 
JPRINT=10 
JPR=JPRINT 
T0=292.55 
PI=3.1416 
XXXP=7$10.0**6.0 
RADS=.01 
G0=.2 
QW=5000 
TW=TO 
UO =.45 
UD=.i 
NC=35 
CF=0.0 

JEU=50 
DELF=1 
SSTF=0.5 
DELTA=RADS 
LNTP=1 

CHAPTER 2 
INDEX=2 
XP(1)=XXXP 



LISTING OF ASHN+ 

XPC 2)=XXXP 
Cl=5,0/9.0 
C2=1.4882 
C3=1000.0/0.23884 
C4=3600.0/0.5778 
C5=l.60184*10.0 
C 7=1.89/1356.0/6.0*10.0**7.0 
PEAK=-3.0 
PEAK=3.0 
00 102 N=i,35 
READ' 5f 101) Xl(N),X2{Ni,X3tN),X4lN),X5(N) 

101 FORMAT(5G9.4) 
X1(N)=C1*XKNI 
X2(NJ=C2*X2(N) 
X3(N)=C3*X3(N) 
X4IN)=C4*X4tNI 
X5(N}=C5*X5<N) 

102 CONTINUE 
IF(PEAK.GE «0»0 I GO TO 104 
DO 103 N=ll,22 
READt5,101) X4IN) 
X4(N) = C4*X4(N) 

103 CONTINUE 
104 CONTINUE 

DO 109 N=i,35 
X7(N)=(25.0+5.0*N)*C7 

109 CONTINUE 
CALL PROP{T0,XXXP,SRHO,SVISC,SXK,SCP«SLOP,X1,X2,X3.X4,X5,X7) 
TO=SLOP 
DO 110 N=l,35 

Ln 



LISTING OF ASHN+... 

X7(N)=X1(N) 
XI(N)={25.0+5.0*N)*C7 
X4{N)=X4(N)/X3{N) 
X3IN)=1.0 

110 CONTINUE 
CHAPTER 3 

PRT=SCP*SVISC/SXK 
PRINT,PRT 
CALL INITIA(U,V,T,U0,T0) 
00 12 1=1,10 
DO 12 J=l, 100 
XKEII,J)=0.0 
ZKU,J>=0.0 
RP(I,J> = 0.0 
DEU,J)=0.0 
TURViI,Ji=0.0 
RHOd, J)=SRHO 
VISCC I,J) = SVISC 
CPU,J)=SCP 
XK(I,J)=SXK 
X K{I,J)= SXK/SC P 
C P U , J » = 1.0 

12 CONTINUE 
W=25.0*VISC«lt ll/UO/RHOUtl ) 
xxm=o.o 
FACTOR=0.37 
XX(2)=FACT0R*W 
DO 152 1=2, 299 
XX{ 1 + 1 )=XXU ) + 5.0*FACT0R/f UO*RHOU , 1)/V I SC t 1, 1) /XX (I ) )**0.5 

152 CONTINUE M 
ON 
o 



L I S T I N G OF ASHN+ >. 
DO 151 1=1,10 
X i i ) = X X l I ) 

151 CONTINUE 
N=JEU 

CHAPTER 4 
CALL GRIDCWtNtYl 
C A L L CHAMP(RAOS,NtYfGQ.SRHO-SVISC»U,SHMAl 
1 = 1 
CALL TURB(U,VISC,RHO,Y,TURV,I,N,CP,XK,LNTP,DEITA,SHWA) 
CALL BCT24U ,Y » DE ,ZK , NC » N, SHWA.SRHO) 
DO 1500 J = l , 9 9 
XK{ I, J }=XK ( I, J J-TURVU , J ) * C P t I, J) 

1500 V I S C U , J ) = V I S C U , J } - T U R V U , J J 
X ( U = X X < i l 
X(2 )=XX<2) 
STF=Y( 2)/RADS 
DEL TA=RADS 
DO 13 J=1,N 
R{ J ) = RADS-Y(J> 

13 CONTINUE 
C 2=1.9 - . 16/.3*(1.+3.*Y(NC)*Y{NC)/R< NC)/RINC) 
1*3.*Y{NC >/R'NC)> 

CHAPTER 5 
DO 154 L=lt70 
DO 15 1=2,9 
I F C C F . G T . 0 . 5 ) GO TO 77 7 
CALL ZZKCXKE,ZK , DE , RP ,U , VIS C, RHQ, Y , TU RV 

1, I »N, N C R ADS, CP, XK, SHWA.CF ) 
GO TO 775 

777 CALL TURB(U,VISC,RHO,Y,TURV,I,N,CP,XK,LNTP,DELTA,SHWA) 



LISTING OF ASHN+.. 

775 PRINT,SHWA 
XII+1) = STF*DELTA+XU) 
CALL PRESJ U,V,VISC,RHO,R,Y,GQ,N,I,X(I-1),X{I),X<I+U, 
lXPCI -n ,XP( 1+1 ) ,SHWA) 
NN=N-1 
DO 14 J=2,NN 
CALL U V E L ( U < I , J + 1 ) , U ( I - 1 , J ) » U ( I , J ) , U ( I +1, J ) , U ( I , J-1 ) • 

iRHoUt j» tvisci i, j+i i, vi sea , J I , vi sen, j-n ,vi I .J I , 
1R1J+1),RIJ)»R{J-l)» Y(J + l)» Y{J),Y(J-1) 
1,XP( I - H.XPC I) .XPU+11 , X11 -1J ,X(I ) ,X{ 1 + 1) } 
CALL E(U{ I , J-1 I ,U< I , J > ,U(I , J - r l l ,TII , J - i ) ,TU , J) ,TI I , J + l ) , 

1TC1-1,J),T(1+1,J),XP(I),XP(1-1),XP(1 + 1 ) , Y { J - i ) , Y ( J ) , Y { J + l ) , R { J - l ) 
1RU)»R{J+1) , R H O ( I , J I , C P ( I , J ) , V I S C ( I , J ) , X K { I , J - l ) , X K U , J ) , X K ( I , J ^ l 
1, X ( I ), X ( I-1),X< I + 1),V( N J ) ) 
CALL PROP (T{ 1 + 1 , J) ,XPM+1 ) , RHO {I +1 , J ),VISCU +1, J ) ,XK( 1 + 1, J ) , 
1CP (1+1,J),SL0P,X1,X2,X3,X4,X5,X7) 
CALL VVELIUC1-1, J) ,U ( I , J ), U U +1, J ) »U ( 1-1, J - 1) ,U( I , J - l ) , U U + 1 , J - l ) 
1, RHOl I -1 , J) » RHO ( I, J ) , RHOC I+1, J I ,RHOH-l, J - l ), RHOt I » J-1)»R HO{I+ 1, 
1J-1),R( J+l),Ri J),R( J - l ) ,VM + 1,JI ,V( 1+1, J - l ) ,X(I-1 I ,X( I) ,XU + 1) , 
1 Y ( J + l l , Y I J ) T Y ( J - l ) ] 
IF(J.LE.NC) GO TO 105 
IF(CF.GE.0,5) GO TO 105 
CALL ZKIN { ZK( I, J - i ) , ZK{ I, J ) , ZK{ I , J + l ), ZK 11-1 , J ) , Z KU+i , J ) ,DE( 
IIrJ-l),DE{ I,J),DE(ItJ^l)»DE(I-l,J)» DE(I+1» J),XKE(I,J-l),XKE*I , J ) , 
1XKE{ I, J+l ) ,Y( J-1),Y {J) ,Y{ J + l ) ,R(J-1 ), R( J) ,R C J + l ) , X{ 1-1) , 
IX ( I I , XI 1+1) ,RHOJI, J) ,V(I , J J ,RPU, J ) ,U( I , J ),C2 ) 

105 CONTINUE 
14 CONTINUE 

CHAPTER 6 
IF(STF.LE.SSTF)STF=STF#1.2 



L I S T I N G O F A S HM + • • 

1 0 J C O N T I N U E 
J C = 3 
I P 1 = I + I 
DO 1 0 0 0 J = l , 9 9 
X M I , J I = X K ( I # J i - C P { I , J I * T U R V C I * J ) 

1 0 0 0 V I S C ( I t J ) = V I S C ( I , J ) - T U R V { I , J ) 
T U + l » n = T { I + l t 2 ) + 0 W * Y ( 2 } / X K { I , l l 
C A L L P R O P ' T t 1 + 1,1 ) , X P < 1 + 1 ) , R H Q { I + 1, I ) , V I S C U + 1, 1) , X K { I + 1, 1) , C P 
1( 1 + 1 , 1 ) , S L O P , X I , X 2 , X 3 , X 4 , X 5 , X 7 ) 

D I A M = X ( I - l l / R A D S / 2 . 0 
U { I + i , N ) = U U + l , N N ) 
V ( 1 + 1 , N ) = 0 . 0 
R H O ( I * i , N >=RHO< I * i , N N > 
V I S C < I + l , N ) = V I S C U + i , N N ) 
X K { 1 + 1 , N ) = X K ( I + 1 , M N ) 
C P ( I * 1 , N I = CP< t + I . N N ) 
T ( I + l , N ) = T ( I + 1 , N N ) 
E N T H = 0 . 0 
D O 2 0 0 0 K = 1 , N N 
E N T H = E N T H + { T ( I + l , K ) * U ( I + i , K ) * R H Q < I + 1 » K ) + T ' I + 1 , K + 1 ) * U f I + 1•K+1)* 

1RH0 < I - 1 , K * l » J 
l M P ( K ) + R ( K + l ) ) * ( Y < K + ] * - Y ( K ) ) * P I / 2 . 0 

2 0 0 J C O N T I N U E 
E N T H = E N T H / G Q 
W R I T E ( 6 , 7 5 ) D I A M , S L O P , E N T H , S H W A 

1J F 0 R M A T { 4 X , ' 0 I A M S = « , F 6 . 2 , » W A L L T E M P = ' , P 7 . 3 , • B U L K E N T H . = • , G 11 . 4 , 
i « S H E A R S T . = ' , F 6 . 2 > 

I N 0 € X = 2 
J P R = J P R + 1 
I F ( J P R . L T . J P R I N T " G O T O 7 7 9 ^ 

O N 



L 1 S T i N G O F A S H N * . . . 

W R I T E ( 6 , 7 0 ) X I I ) 
W R I T E ( 6 , 7 1 ) 
W R I T E ( 5 , 112 I f U ( I f K l , K = 1 , N ) 
W R I T F ( 6 , 7 2 ) 
W R I T E ( 5 , l i 2 ) ( T ( I , K ) , K = 1 , N ) 
W R I T E ( 6 , 7 3 ) 
WRITEC5 ,112» I Z K ( I , K I , K = N C , N I 
W R I T F ( 6 , 7 4 ) 
W R I T E ( 5 , 1 1 2 ) ( D E ( I » K ) , K= N C » N ) 
W R I T F ( 5 , 1 L2I( T U R V ( 1 , K ) , K = l , N l 

7 u F Q R M A T J 4 X , * X = ' » F 1 1 . 4 ) 
7 i F 0 R M A T ( 4 X , ' V E L O C I T I E S ' ) 
7<i F O R M A T ( 4 X , « E N T H A L P Y " ) 
7J> F O R M A T ( 4 X K I N . E N E R ) 
7-* F O R M A T ( 4 X , « 0 I S P . ' ) 

J P R = 0 
7 7 * C O N T I N U E 

lo C O N T I N U E 
C H A P T E R 7 

D O 1 8 1=1,2 
X P ( I } = X P ( 1 + 8 ) 
DO 1 8 J = 1 , N 
Z K H , J ) = Z K ( I + 3 , J ) 
D E ( I ,Jl=OE< 1 + 8 , J l 
X K E I I , J ) = X K E ( 1 + 8 , J ) 
R P ( I , J ) = R P ( 1 + 8 , J ) 
UU • J » = U ( 1 * 8 , J I 
V ( I , J ) = V ( I + 8 , J ) 
R H O I I , J ) = R H 0 ( I + 8 , J ) 
V I S C ( I , J ) = V I S C ( I - « , J » 



L I S T i N G O F A S H N . . . 

X K ( i , J ) = X K U + 8 , J ) 
X ( I >=X{ 1 + 8 > 
C P ( I , J ) = C P ( T +8 , J ) 
T ( I » J ) = T ( I • 8 » J ) 

l b C O N T I N U E 
P R I N T , X ( 1 + 1 ) 

1 1 ^ F O R M A T { I X , L O G l 1 . 4 ) 
1 5 - t C O N T I N U E 
77<i C O N T I N U E 

S T O P 
E N D 
S U B R O U T I N E Z K l N ( Z K l , Z K 2 , Z K 3 , Z K 4 , Z K 5 , D E i , D E 2 , D E 3 , 0 E 4 , D E 5 , 

1 X K E 1 , X K E 2 , X K F 3 , Y 1 , Y 2 , Y 3 , R 1 , R 2 , R 3 , X 4 , X 2 , X 5 , R H 0 2 , V 2 , K P 2 , U 2 , 
1 C 2 ) 
SIGK=1.0/0.09 
Z Z 1 = 0 . 5 / R 2 / { Y 3 - Y 1 ) * { R 3 - R 2 » / ( Y 3 - Y 2 1 
Z Z 2 = 0 . 5 / R 2 / { Y 3 - Y I ) * ( R 1 + R 2 ) / ( Y 2 - Y 1 ) 
Z l = Z Z i * ( X K E 2 + X K E 3 ) / S I G K 
Z 2 = Z Z 2 * ( XKE1 + X K E 2 I / S I G K 
C0EF=RH02*U2/(X5-X4 ) + 0 . 5 * { Z 1 + Z 2 ) 
T E R M = R P 2 - D E 2 * R H 0 2 * Z 1 * { Z K 3 - 0 . 5 * Z K 4 ) - Z 2 * { 0 . 5 * Z K 4 - I K I ) 

1 - R H 0 2 * V 2 * ( Z K 3 - Z K 1 ) / { Y 3 - Y 1 ) +RH*)2*U2*ZK 4 / ( X 5 - X 4 ) 
ZK 5 = T F R M / C . O E F 

C A S S U M I N G Z , S A N D C Q E F A R E S A M E 
T E R M i = R P 2 * C 2 * Q E 2 / Z K 2 - 1 . 9 * R H Q ^ 0 E 2 * D E 2 11 K 2 

1 - Z 1 * ( D E 3 - 0 . 5 * D F 4 ) - Z 2 * ( G . 5 * 0 E 4 - Q E 1 ) - R H 0 2 * V 2 * 11) E 3 - 0 E l I / t Y 3 - Y I ) 
l + R H C 2 * U 2 * D E 4 / { X 5 - X 4 ) 

D E 5 = T E R M 1 / C 0 E F 
R E T U R N 
E N D 

ON 
Ul 



L I S T i N G O F A S H N + . . 

S U B R O U T I N E B C T 2 ( U , Y , D E , Z K , N C , N , S H WA» S R H O I 
D I M E N S I O N U ( 1 0 , L O O ) , Y ( 1 0 0 ) , Z K ( 1 0 , 1 0 0 ) , D E ( 1 0 , L O O ) 
N O N C - 1 0 
U S T = S H W A / S R H O 
DU=<U( l . N C + 1 ) - U { 1 , N C - 1 ) ) / ( Y { N C + l ) - Y ( N C - l ) ) 
U K l = . l 6 / . 3 * Y < N C ) * Y C N C ) * C U * D U 
U K 2 = 0 . 8 4 0 * U S T 
U 2 = U ( 1 , N ) 
U l = U ( l . N C > 
C 1 = I U K 2 * * L . O - U K 1 * * 1 . 0 I / ( U 2 - U 1 ) 
C 2 * U K 1 * * 1 . 0 - U l * C l 
N N = N - 1 
D O 1 0 J = N C , ! M N 
0 U = ( U J 1 » J + 1 ) - U ( 1 . J - l I I / ( Y ( J * l ) - Y { J - l ) ) 
Z K ( 1 , J ) = ( C l * U ( 1 , J l * C 2 1 * * 1 . 0 
Z K ( 2 , J ) = Z K ( 1 , J ) 
D E ( 1 , J J = 0 . 3 * Z K ( 1 , J ) * n u 
0 E ( 2 , J ) = D E I 1 , J ) 

U C O N T I N U E 
N C = N C + 1 0 
R E T U R N 
E N D 
S U B R O U T I N E Z Z K ( X K E , Z K , O E , R P , U , V I S C , R H O , Y , T U R V 

1 , I , N , N C , R A D S , C P , X K . S H W A , X X ) 
D I M E N S I CN X K E ( 1 0 , 1 0 0 ) , Z K { 1 0 , 1 0 0 ) , D E ( 1 0 , 1 0 0 ) , P P ( 1 0 , 1 0 0 ) , 

1 U ( 1 0 , 1 0 0 ) , V I S C ( 1 0 , 1 0 0 ) , R H O ( 1 0 , 1 0 0 I , T U 4 V ( 1 0 , 1 3 0 » , C P ( 1 0 , I 0 0 » , 
I X K { 1 0 , 1 0 0 ) , Y ( 1 0 0 ) , Y P L ( I C O ) , U P L I 1 0 0 ) 

D E ( I , N ) = 0 E ( I , N - l ) 
Z K ( I , N ) = Z K ( 1 , N - 1 ) 
S H W A = V!SC( t , I ) *U( I » 2 ) / Y ( 2 ) 



L I S T I N G D F AS H N + * . 

N C F = 1 0 
U S T = ( S H W A / R H O C 1 , 1 ) ) * * 0 . 5 
O O 1 J = 1 , N C 
Y P L ( J ) = Y ( J ) * L ! S T / V I S C U , 1 ) * R H O ( I , 1 ) 
U P L ( J ) = U ( I , J ) / U S T 

1. C O N T I N U E 
DO 2 J = 2 , N C 
R P L = 0 . 4 * Y ( J I 
I F I Y P L ? J ) . L E . 1 2 5 . 0 ) R P L = R P L * (1 . O - E X P ( - Y P L ( J ) / 2 8 - 0 ) ) 

T U R V U , J ) = P H O < I , J I * R P L * * 2 . 0 * ( U ( I , J « - l • - U i I . J - l ) l / i Y < J - L l - Y U - l > ) 
I F ( T U R V ( I , J ) . L E . 0 . 0 ) T U R V ( I , J ) = - T U R V { I , J ) 

2. C O N T I N U E 
Z K W A = 3 , 3 3 3 * U S T * * 2 . 0 

o N C F = N C F + l 

I F C Y P L ( N C F ) . L E . 7 5 . 0 1 G O T O 6 

! ) U = « U ( I , N C F + 1 ) - I J ( I , N C F - l ) ) / { Y < N C F + 1 ) - Y < N C F - 1 ) ) 
Z K.( I , N C F ) = , 1 6 / . 3 * Y ( N C F ) * Y ( N C F ) * D U * D U 
0 E { I , N C F | = . 3 * Z K ( I , N C F ) * C U 

D E I I + 1 , N C > = D E ( I , N C ) 
Z K C I + l , N C ) = Z K ( I , N C ) 

N C C = N C + 1 

D O 1 0 J = K C C , N 
X K F ( I , J » = R H O < I , J ) * Z K ( I , J ) * Z K ( I , J ) / D E C I , J I 

1 U C O N T I N U E 
X K E J I , M C ) = P H 0 ( I , N C F ) * Z K ( I , N C F ) « 7.K 1 I , N C F ) / 9 F ( I , N C F ) 
F A C T = ( Y C N C C ) - Y { N C > I / ( Y < N C C l - Y ( N C F ) ) 
Z K { I , N C ) = Z K ( I , N C C ) - F A C T * ( Z K { I , N C C ) - Z K { I , N C F ) ) 
D E I I , N C ) = D E ( I , N C C ) - F A C T * ( D E C I , N C C ) - D E ( I , N C F ) ) 
N N = N - 1 

D O 3 5 J=NCC,NN 



L I S T i N G O F A S H N + . . . 

R P t I , J t = X K E ( I, J » * ( U ( I , J * l » - U ( I , J - l l l * ( U ( I . J * l ) -U { [ , J - l ) i 
l / ( Y C J + l ) - Y ( J - l ) ) / ( Y ( J * l ) - Y ( J - l ) 1 * 0 . 0 9 

T U R V { I , J ) = Q . 0 9 * X K 5 C I , J ) 
3o C O N T I N U E 

T U R V l I , N ) =T .URV « I »t\iN ) 
N N N = N - 2 
D O 3 J = 2 . N N N 

j> T U R V ( I » J ) =( T U R V U . J - i ) + T U R V ( I , J )+ T U R V ( I , J +1 H / 3 .0 
P R T = 0 . 9 
D O 4 J = 1,!M 
V I S C ( I t J ) = V I S C C I . J ) + T U R V ( I , J » 
X K { I , J > = X K { I , J » - T U R V U , J » * C P C I , J l / P R T 

* C O N T I N U E 
R E T U R N 
E N D 

00 
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L I S T I N G O F . . . + A S H 2 + . . . 

U 5 = T E R M / C O E F 
7 7 C O N T I N U E 

R E T U R N 
E N D 
S U B R O U T I N E V V E L i U 4 , U 2 » U 5 . U 7 » U 1 » U 6 , R H 0 4 , R H 0 2 , R H 0 5 , R H 0 7 » R H U 1 , 

1 R H 0 6 . R 3 » R 2 » R l , V 5 , V 6 , X 4 , X 2 1 X 5 , Y 3 , Y 2 , Y 1 ) 
C O M M O N I N D E X 
I F ( I N D E X . G T . 1 ) GO T O 50 
T E R M = - { R 2 + R 1 ) * ' R H 0 5 * U 5 - R H 0 2 * U 2 + R H 0 6 * U 6 - R H O I * U 1 ) / ( X 5 - X 2 ) 
T E R M = T E R M / 4 . 0 
V 5 = ( T E R W * { Y 2 - Y 1 ) + R H 0 6 * V 6 * R i ) / R H Q 5 / R 2 
G O TO 7 8 

5w C O N T I N U F 
T E R M = { R 1 + R 2 ) / 4 . 0 / ( X 5 - X 4 ) * { R H 0 5 * U 5 - R H Q 4 * U 4 * R H 0 6 * U & - R H 9 7 * U 7 ) 
T E R M = - T E R M 
V 5 = ( T E R M * < Y 2 - Y 1 l - R H 0 6 * V 6 * R l J / R H 0 5 / R 2 

7 o C O N T I N U E 
R E T U R N 
E N D 
S U B R O U T I N E E { U 1 , U 2 , U 3 , T I , T 2 • T 3 , T 4 , T 5 , X P 2 , X ? 4 t X P 5 , Y l , Y 2 , Y 3 , 

l R l f R 2 t R 3 t R H C 2 t C P 2 , V I S C 2 . X K l , X K 2 t X K 3 , X 2 , X * t X 5 , V 2 ) 
C O M M O N I N D E X 
C J = l . 0 
I F ( I N D E X . G T . 1 ) G O TP 5 0 
T E R M = U 2 * ( X P 5 - X P 2 l / ( X 5 - X 2 ) * C J - 0 . 5 / R 2 / ( Y 3 - Y U M ( R 2 + R3 ) * < X K 2 +X K 

1 * I T 3 - T 2 ) / < Y 3 - Y 2 ) ~ ( R 1 + R 2 ) * { X K 1 + X K 2 ) * ( T 2 - T 1 )/ ( Y 2 - Y 1 I ) 

i - V l S C 2 * ( { U 2 - U 1 I / ( Y 2 - Y L » > * * 2 . 0 - R H O 2 * V 2 * C P 2 * < T 2 - T 1 » / < Y 2 - Y 1 ) 
T 5 = T E R M * { X 5 - X 2 ) / R H 0 2 / U 2 / C P 2 + T 2 
G O T O 7 9 

5 u C O N T I N U F 
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L I S T I N G O F . . . + A S H 2 * . 

D O 12 J = l , 1 0 0 
U I I t J ) = U O 
V ( I , J 1 = 0 . 0 
T l I , J ) = T C 

i^ C O N T I N U F 
D O 1 4 1 = 1 , 1 0 
T { I ,1 ) =TW 
U I I , 1 1 = 0 . 0 

1 4 C O N T I N U E 
R E T U R N 
E N D 
S U B R O U T I N E T UR B { U , V I S C , R H O , Y , T ' J R V , I » N »C P , X K , L N T P , D E L T A , SHWA I 
D I M E N S I O N U i n . l O J I , V I S C < 1 0 , 1 0 3 ) , R H Q U O . 1 0 0 ) t T U R V < 1 0 , 100) , 

I C P U O , 1 0 0 » , X K I 1 0 , 1 0 0 1 , Y ( 1 0 0 » , Y P H 1 0 0 « , U P L ( 1 0 0 I 
S H W A = V I S C { I , 1 ) * U ( I , 2 ) / Y < 2 ) 
U S T = ( S H W A / R H O i I , 1 ) ) * * 0 . 5 
D O 1 J = 1 , N 
Y P L ( J ) = Y { J ) * U S T / V I S C ( I , L ) * R H O ( I , i ) 
U P L ( J » = U< I t J l / U S T 

1 C O N T I N U E 
N N = N - 1 
DO 2 J = 2 , N N 
R P L = 0 . 4 * Y ( J ) 
I F ( Y P L ! J ) . L E . 1 0 0 . 0 ) R P L = P P L * ( I . 0 - F X P t - Y P L ( J ) / 2 8 . 3 ) ) 
I F C R P L . G E . ( 0 . 0 8 9 * O E L T A ) I R P L = 0 . 0 8 9 * 0 E L T A 
T U R V ( I , J ) = R H O { I , J ) * R P L * * 2 . 0 * ( U { I » J + I ) - U { I , J - l ) ) / ( Y ( J + l ) - Y ( J - l ) ) 
I F ( T U R V ( I , J > . L E . 0 . 0 i T U R V ( I , J l = - T U R V ( I , J l 

2 C O N T I N U E 
3 * N N N = N - 2 

DO 3 J=2,NNN 
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L I S T i N G O f . . . - A S H 2 * . . . 

Y { 2 ) = S V I S C / S R H O / I SH W A / S R H O ) * * 0 . 5 
D Y M = { 0 . 9 9 * R A D S / Y ( 2 ) I * * < 1 . 0 / ( N - 3 I ) 
P R I N T , D Y M 
U T { 1 ) = 0 . 0 
N N = N - 1 
D O 1 J = 3 , N N 

1 Y ( J ) = DY M * Y I J - l ) 
DO 2 J = 1 , N 
U ( 1 » J ) =U M A X * { Y ( J ) / R A D S ) * * ( I . O / S N ) 
U ( 2 , J ) = U C 1 , J ) 

Z C O N T I N U F 
D O 3 J = 2 , N N 
Y D = ( Y ( J ) + Y { J - l ) ) / 2 . 0 
S H= SHW A * { R A D S - Y ( J ) J / R A D S 
C A L L V A N D R . S H . Y B . S V I S C , S R H - 3 , D U > 
U T ( J I = U T { J - I I - 1 Y ( J ) - Y ( J - l ) ) * D U 

a C O N T I N U E 
D O 4 J = 2 , N N 
I F I U T C J J . L E . U f l . J I I U { 1 , J J = U T { J ) 

U I 2 , J ) = U ( 1 , J ) 
* C C N T I N U E 

P R I N T , S H W A , R E Y N . U M A X t U B A R 
W R I T E ( 5 , 1 1 2 ) ( U ( 2 , K ) , K = 1 , N ) 
W R I T E ( 5 , 1 1 2 » ( Y ( K I , K = l , N ) 

1 1 * . F O R M A T ( I X , 1 0 G 1 1 . 4 ) 
D O 6 J = l , N 

o R U ) = R A O S - Y ( J J 
U ( 1 , N ) = U ( 1 , N N ) 
U I 2 » N ) = U ( 2 , N N ) 
S U M = 0 . 0 M 

4> 
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L I S T I N G O F . ..+ASH2+... 

P C ( J ) = - 4 . 0 * R H O ( I f J ) * P ( J ) * t D E L P + O E L M ) * D E L P * D E L M 
1 C O N T I N U E 

P A { 1 1=0.0 
P B ( 1 J-0.0 
PC(11=0.0 
P A ( N . = P A ( N N I 
P B < N ) = P B { N N ) 
P C < N ) = P C ( N N ) 
F H 1) =0.0 
F2(11= 0.0 
DO 2 J=2 , N 
P l ! J i = P P ( J ) / P A ( J ) 
F 2 { J ) = P C ( J ) / P A { J ) 

I C O N T I N U E 
SUM 1=0 .0 
SUM2=0.0 
D O 3 J=1 ,N\J 
S U M 1 = S U M 1 * ( F 1 I J J * F 1 ( J * 1 M * ( R ( J » * R ( J - 1 H * ( Y 0 1 ) - Y ( J M * P I / 2 . 0 
SUM2 = SUM2*(F2( J ) + F 2 ( J + l » ) * < P U ) * R ( J + L ) ) * < Y ( J * l ) - Y C J ) ) * P I / 2 . 0 

3 C O N T I N U E 
DELPR=(GC-SUM1 I/SUM2 
XP5=DELPR+XP4 
R E T U R N 
E N D 

ON 



L 1 S T i N G O F . , . * * S O U R C E * 

S U B R O U T I N E C H A N G E ( S R H O » S V I S C , U D , U O . Y , X X . U , V , N , S H W A , D E L T A ) 
0 I M E N S I ON X X I 3 0 0 ) , Y ( 1 0 0 ) , U { 1 0 , l O O ) . V ( 1 0 . 1 0 0 ) . Y P L C i 1 0 ) , Y P L C l I 1 0 ) 
D I M E N S I O N U T < 2 , 1 0 0 ) 
R X = S R H O * U O * U D / S V I S C 
S H W A = S R H P * U G * * 2 . 0 * 0 . 1 8 5 / f A L 0 G 1 0 { R X ) ) * * 2 , 5 8 
D E L T A L = 5 . 3 * U 0 * R X * * « - 0 . 5 ) 
D E L T A = 0 . 3 7 * U D * R X * * ( - 0 . 2 ) 
F A C L = D E L T A / D E L T A L 
D E L T A = O E L T A / F A C L 
V ( i ) = 0 . 0 
Y ( 2 ) = 7 . 0 / < S H W A / S R H 0 ) * * 0 , 5 * S V I S C / S R H C 
Y < 2 ) = Y ( 2 I / F A C L 
F A C T 0 H = 0 . 6 5 
X X ( 2 ) = U H 
X X < 3 1 = X X ( 2 ) + 0 . 3 7 *F A C TO R * X X { 2 ) *{ U O * X X { 2 I * S R H 0 / S V I S C ) * * ( - 0 . 2 ) 
X X ( 1 ) = U 0 - X X ( 3 ) + X X { 2 ) 
R X l = S R H n * U O * X X l D / S V I S C 
D E L T A 1= 0 . 3 7 * " X X < 1 ) * R X I * * ( - 0 . 2 ) 
D E L T A I = D E L T A 1 / F A C L 
S H W A 1 = S R H 0 * U C 1 * * 2 . 0 * 0 . 1 8 5 / 1 A L O G I C { R X l l 1 * * 2 . 5 8 
D O 1 0 0 J = 3 T N 

1 0 J Y l J ) = l . l * Y ( J - l ) 
Y P L M = ( S H W A / S P H 0 , * * 0 . 5 / S V t S C * S R H Q 
D O 1 0 2 J = 2 , N 
I F ( Y ( J ) . L E . D E L T A > U< 2 , J l = U O * { Y ( J ) / D E L T A | * * l 1 , 0 / 7 . 0 ) 
I F { Y< J ) . L E . D E L T A l ) IJ { 1 , J ) = U 0 * ( Y ( J ) / D E L T A 1 ) * * { 1 . 0 / 7 . 0 ) 

1 0 _ . C O N T I N U E 
U T ( 1 , 1 I = 0 . 0 
U T ( 2 , 1 ) = 0 . 0 
D O 1 0 4 J = 2 . 3 0 
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