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(i) 

ABSTRACT 

The vortex-induced os c i l l a t i o n of a circular cylinder is 

modelled by a non-linear system with two degrees of freedom. The 

periodic l i f t acting on the cylinder due to the vortex-street wake is 

represented by a self-excited oscillator, which i s coupled to the 

cylinder motion. Approximate solutions and s t a b i l i t y c r i t e r i a are 

presented which are valid over restricted intervals. 

Changes to the form of the coupled-oscillator model and i t s 

approximate solution are examined i n order to improve the comparison 

between predicted model and experimental results. The changes are 

motivated by the study of experimental evidence, and by comparison with 

the known properties of similar systems of non-linear equations. 

~- Significant improvement in the coupled-oscillator model 

performance i s obtained through the inclusion of an effective structural 

damping term which i s dependent on wind speed and cylinder displacement. 
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1. 

1. INTRODUCTION 

Dating from the early 1960's, there has been an active program 

in this department to study the effects on fixed or e l a s t i c a l l y supported 

bluff bodies of the wakes produced by them. In the Reynolds Number range 
4 

which i s of interest [0(10 ) ] , the wake i s characterized by periodically 

shed vortices, the frequency of which i s governed by the Strouhal relation­

ship. This work i s concerned with the interaction of an e l a s t i c a l l y 

mounted circular cylinder with i t s wake, for the case i n which the Strouhal 

frequency i s close to the resonance frequency, of the cylinder-mounting 

system. Detailed experimental studies have been carried out by Ferguson (1) 

and Feng (2) to document the vortex-induced o s c i l l a t i o n of just such a 

system. 

- As direct solution of the governing dynamic equations for the 

cylinder and i t s wake i s not feasible at present, a variety of simplified 

mathematical models have been suggested to describe the interaction [a 

summary of the more promising suggestions i s given by Parkinson (3)]. A 

proposal by Hartlen and Currie (4) seems to have particular merit. They 

consider the l i f t acting on the cylinder (due to i t s periodic wake) to be 

governed by a second order non-linear d i f f e r e n t i a l equation (of the type 

studied by van der Pol) which i s coupled to the cylinder motion. Over a 

restricted interval, the results predicted by their model bear good re­

semblance to certain of the experimentally observed features. They f a i l 

to produce some important characteristics however. 

Using the coupled-oscillator concept i t is the intention of 

this work to suggest changes in the form of non-linear terms and examine 

the effects on the solution. The stimulus for this comes from the need 



to obtain better correlation between model predictions and experimental 

results. 
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2. PRELIMINARY 

Figure I provides a summary of Feng's results for the vortex-

induced o s c i l l a t i o n of a circular cylinder (for given input conditions). 

As Feng determined only three values of l i f t coefficient amplitude, 

transient behaviour was used i n establishing the location of the jumps 

in C [Parkinson (5)]. The results demonstrate that over a discrete range 

of flow speeds (the lock-in range), cylinder displacement and fluctuating 

l i f t are periodic i n time, with the same frequency, which i s close to that 

of the natural frequency of the spring-cylinder system. The amount by 

which the phase of the exciting force leads the cylinder displacement i s 

measured as well. Important features to note are the hysteresis loops 

which exist for both amplitude (of displacement and l i f t ) and phase. Also 

significant i s the response for u)„ > 1.4 (outside of lock-in), where c y l ­

inder oscillations persist at frequency close to while the frequency 

of the predominant excitation i s considerably higher ( w ) . 
r 

Figure II describes the configuration and the important elements 

of the spring-cylinder system. With the effect of the vortex-street wake 

on the cylinder included as a forcing function, the di f f e r e n t i a l equation 

for transverse displacement X c i s : 

mX + 2g0) mX + mu) 2X = CT (§V2h) 
c n c n c L I . - • 

To nondimensionalize the equation, introduce 

T = to t n 
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h CO 
• - S 

V = (Strouhal Relationship) 

and obtain r . 
X" + 23X' + X = aco 0

2C L (2.1) 

For modelling purposes, the problem now reduces to determining an ex­

pression for C . ' 
Ju 

Hartlen and Currie originally suggested that the l i f t co­

efficient be governed by the following d i f f e r e n t i a l equation 

C" - atOoC; + ̂  C'3 + w 0
2 C = bX' (2.2) 

i-i Jj C 0 o Li Jj 

This form was chosen because of i t s simplicity, and because away 

from resonance of the spring-cylinder system (bX' •> 0 ) , self-excited os-

d i l a t i o n of amplitude and frequency approximately equal toy— — and co0 

w 3 y 
respectively i s predicted for C L (provided a, y are small). This behaviour 

i s consistent with experimental observation i f — ' i s set equal to the am-
Y 

plitude of the l i f t coefficient for a stationary cylinder (C ). 
L 0 

The coupling term fliX ') was included to provide a dependence of 

on cylinder motion. Its presence leads to the prediction of interesting 

C behaviour for C0o close to co . Drawing a comparison between this system 
Li n 

and the well-studied forced o s c i l l a t i o n of the van der Pol equation [Stoker 

(6) ] , one would expect a range of co0 for which C and X have the same os-
Li 

d i l a t i o n frequency (lock-in), bounded by a range of co0 for which C has 

components close to co0 and to (combination-oscillation). Figure III dem-
n 

onstrates that the postulated regions of characteristic response are 

consistent with experimental evidence - region A being associated with the 
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typical forced response of an elastic system, region B with the trans­

i t i o n a l range in which frequency components close to co0 and 0) are present, 
n 

and region C with the lock-in range. It i s not possible to make further 

assumptions concerning the detailed nature of the response, as the 

forcing function is i t s e l f dependent on C through Equation (2.1). 

Hartlen and Currie obtained an approximate solution to the 

system of coupled d i f f e r e n t i a l equations [Equations (2.1) and (2.2)] 

valid within the lock-in region, by assuming X and to be given as 

follows (method of van der Pol) 

X = sin fix 

CT = C„ sin (fix + <{>„) (2.3) 

The~actual analysis and a summary of results i s included i n Appendix A. 

Figure IV summarizes model predictions for the indicated input values. 

The results demonstrate the model's a b i l i t y to generate certain of the 

features of vortex-induced oscil l a t i o n . 

The s t a b i l i t y of the approximate solution i s not given directly 

by the method of van der Pol. An alternate method^ which does provide such i n ­

formation i s the K-B method [Minorsky (7)]. This analysis i s introduced 

and developed i n Appendix A. The results obtained allow one to confirm 

that the solutions summarized by Figure IV are stable, and that the two 

approximate methods of solution yield identical results provided that fi, 

ft2 = 1. 

The results obtained are encouraging. The model f a i l s to pro­

duce a double-amplitude response, however, and since the approximate sol­

ution i s valid only within the lock-in region, the system behaviour for 



0)o > 1.4 cannot be produced. The following work i s concerned with an 

investigation of the form of model and solution used, with a view to 

improving the comparison between predicted and experimental results. 
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3. MODEL FORMULATION 

3.1 HIGHER_ORDER_NON=L^ 

f " 

It was decided to investigate the effect of increasing the 

order of non-linearity i n the governing equation for C T. Following 

a suggestion by Landl (8), odd power terms to seventh order in C' were 
Li 

included. The equation for C then takes the form 
J-i 

C" ~ O0)oC' + X_ ( c ' ) 3 - (CM 5 +'7^f (CM 7 + 0) o
2 C = bX* L L 0Jo L C0o3 L l0o~> L L 

(3.1) 

where a, y, n, <5 > 0 

The j u s t i f i c a t i o n for including f i f t h and seventh powers of C' 
Ju 

comes from examining the homogeneous form of Equation (3.1) (bX1 - y 0). 

For a, y, r\, & small, then 
CT = C_, sin OJ 0T 

and C„ may have one or three positive real roots. In the latter case F 

the middle root would be unstable, and the t r i v i a l solution Ĉ , = 0 i s 

unstable i n either case. Considering the inhomogeneous form, i t 

was hoped that the increase i n non-linearity would result in the exist­

ence of two stable C amplitudes for a given co0 within the lock-in region; 
L i 

a hysteresis effect possibly resulting from the manner of the dependence 

on 0)o. 

Approximate solutions (by the methods of van der Pol and K-B) 

to the system of Equations (2.1) and (3.1) are included i n Appendix B. 

Values for the non-linear coefficients a, y, n, 6 are determined by 

requiring that three positive real roots C exist within lock-in (two of 
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which are known from experiment), and that one real root C exist away from 
° 

lock-in (bX' 0). 

r 

In order to match predicted with experimental values of l i f t -

coefficient amplitude within lock-in, the non-linear coefficients nec­

essary were found to be of 0 (10). The effect of the magnitude of a, y» 

T), 6 on the approximate solution of Equation (3.1) has not been examined. 

Figure V shows numerical results for the indicated input values. 

The s t a b i l i t y analysis confirms that the middle amplitudes of C„ and 
H 

are unstable, and that the other amplitudes are stable. 

The results demonstrate the system's a b i l i t y to model the be­

haviour of CT reasonably well within lock-in (as i t was designed to). 

The frequency and phase variations remain a problem, however, as to a f i r s t 

order approximation they are independent of C and thus do not reflect 

jumps in amplitude which the system produces. The behaviour of the pre­

dicted cylinder amplitude i s clearly a problem as well. 

The predicted results indicate that an extension to seventh 

order non-linearity in C' results in only marginal improvement of the 

system behaviour, while introducing further complications i n doing so. 

3.2 COMBINATION-OSCILLAT 

Currie and Oey (9) proposed that the double amplitude response 

could be accounted for by the existence of different solutions to the 

system of Equations (2.1) and (2.2) for harmonic, or combination-type 

forms of solution; that i s , whether X and C are assumed to be of form 

given by Equation (2.3), or as shown below (combination-type) 
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X = sin Qr + sin aye (3.2) 

C L = C H sin («x + cpR) + C p sin (oyx + ^ 

They draw comparisons between the coupled-oscillator system and the 

forced o s c i l l a t i o n of the van der Pol equation. Actual results of a 

detailed analysis have yet to be published. 

Experimental evidence supports a combination-oscillation form 

of solution over a range of U)0 adjacent to the lock-in region (Figure I'll, 

region B). There is no evidence for a solution of this form within the 

lock-in region, however. 

A study was carried out to see whether or not a solution of this 

form could r e a l i s t i c a l l y account for one of the amplitudes within lock— 

in,-or the system behaviour outside of i t . The actual analysis i s i n ­

cluded i n Appendix C. A s t a b i l i t y analysis was not carried out, as the 

approximations which are required i n order to combine the K-B method 

with a combination-oscillation form of solution are not at a l l obvious. 

Figure VI il l u s t r a t e s the important numerical results for the 

indicated input values. The phase and frequency variations for and $ 

are identical to those for the harmonic case and thus have not been shown. 

Away from the neighbourhood of to0 = 1, the forced cylinder response at 

oy i s negligible, thus Â , and cf>F have not been shown as well. The re­

sults demonstrate the p o s s i b i l i t y of the existence of a combination-type 

o s c i l l a t i o n within lock-in. Unfortunately, the analysis predicts a 

solution vali d only within lock-in, and a complicated C behaviour over 

this range - C i s predicted to have components of approximately equal 
Li 

magnitude at frequencies of Q and o j . 
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It would appear that the governing equations as formulated 

are not capable of accommodating a combination-type solution. 
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If one assumes the cylinder motion to be governed by Equation (2.1), 

and that within lock-in X and C may be approximated by; Equation (2.3), 

then by substituting for X and C i n Equation (2.1) and applying the 

principle of harmonic balance, the following result may be obtained: 

Since a i l the quantities on the right-hand-side of the equation are known 

or are measurable, the apparent structural damping during vortex-induced 

cylinder o s c i l l a t i o n may be calculated. These calculated values are 

then to be compared with the value measured in s t i l l - a i r (which is the 

value given by Feng). 

Table I summarizes the experimental results and the calculated 
2 3 

r a t i ° ( 2 3 ^ ) ' w h e r e C 2 3 o ) i s the wind-off structural damping. The effective 

structural damping appears to depend on cylinder o s c i l l a t i o n amplitude as well 

wind speed. 
as 

Wo 
H 

2 3 
2 3 o • 

.98 .03 .45 
4° 

.57«-> 1.7 
1.1 

1.06 .11 .8 2 «-KL4 
9° 

.3 •«-* 2 . 2 
1.5 

1 . 1 2 . 2 1 1.5 1 0 +-+16 
11° 

1.7 2.8 
1.9 

1 . 2 1 .48 

.3 

1.91 

.5 

37 -e-̂-59 
37 

1 0 2 

4 -w 5.6 
4 
2.7 

a 
2 3 c 

a 

= . 0 0 2 : 
= . 0 0 2 
= .97 

TABLE I Effective Structural Damping During Vortex-Induced Oscillat xon. 
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It i s clear that any model which f a i l s to take this effect into account 

w i l l have l i t t l e chance of success i n predicting experimental behaviour. 

It i s proposed that the effective structural damping 'be. approximated 

by a relationship of form: 

2 3 = 2 g 0 ( 1 + fu)0
2 A J J ) 

2 

The 0Jo and provide a dependence of system damping on the wind force acting 

on the cylinder, and cylinder displacement respectively. One would expect 

the constant f to depend on the experimental configuration. An appropri­

ate value can be calculated from the experimental results as follows: 

too 2 3 

2 3 o 

f 

. 9 8 . 0 3 1 . 1 3 . 5 

1 . 0 6 . 1 1 1 . 5 4 . 0 

1 . 1 2 . 2 1 1 . 9 3 . 4 

1 . 2 1 . 4 8 
. 3 

4 
2 . 7 

4 . 3 
3 . 9 

TABLE II Damping Parameter Determination 

A value of f = 4 would seem to be indicated. 

The modified equation governing cylinder response then i s 

X " + 2 3 0 ( 1 + fw 0
2 A J J ) X ' + X = ato D

2 C L ( 3 . 3 ) 

In order to assess the effect of the proposed variable damping term, the 

system of Equations ( 2 . 2 ) and ( 3 . 3 ) has been solved approximately, assuming 

harmonic and combination-type forms of solution for X and C ^ . A s t a b i l i t y 

analysis has been carried out for the harmonic solution and i s included 
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i n Appendix D. 

(i) Harmonic Solution 

Within the lock-in range, assume X and C to be given by 
Li 

Equation (2.3). If one substitutes for X and C into Equations (2.2) and 
Li 

(3.3) and neglects terms in A^, C^, <f>̂  and higher harmonics, the following 

system of equations can be obtained by applying the principle of harmonic 

balance: 

aw 0
2 C R cos (pH = (1 - f t 2 ) 

2 2 aco0 C R sin <J>H = Â , ftB0 (1 + fco0 A^) 

o : / ' " " . . ^ " ' , ' 1 - ^ ' . ' - 1 . . . . ( 3 . 4 ) 

(0J o
2 - ft2) . , , (1 - ft2 ) b A H - v- s—~ sin <p - cos A — * p„ = — aw0ft H H • 2 HH a co0C to0 H 

where B c 5 230 

To proceed, i t i s necessary to make an assumption concerning the frequency 

behaviour ft(co0) (which i s close to 1 throughout the lock-in region). Intro­

duce 

where |X| = 0(1) 

and make the assumption that 
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1 - ft2 = X B„ - X 2 ^ — S XB0 

fi, fi = 1 

both of which are reasonable, since Bc 

then, one obtains 
=0(10 ). From Equation (3^4) 

ao)0 X B . 

ao) 0
2 C R sin ̂ S y ^ l + f 0) o

2 A^) 

^ o C ° S *H + S ± n *H ( 1 rH H ' = 0 0)0 

(3.5) 

-A- sin * - cos * ( 1 ~ ̂  > S 

u)0 H 

where A = 0)o - 1 

From Equations (3.5.1 and 2) 

tan a = 1 + f"° AH n. -\ 

2 , Br 

aw, 
X 2 + (1 + f W o

2 A ^ ) 2 ... (3.6) 

From Equations (3.5.3 and 4) 

X 2 = (1 + fo) 0
2 A H) no) ^ - - a + fa).' y . (3.7) 

. , _ ab where n = —— Bo 



Substituting for A in Equation (3.6.2) 

aw0
 n u » 

Substituting for tan (f> in Equation ( 3 . 5 . 3 ) 

— - + < 
1 + f0)o 

cxwr 
^ } (1 - ) = 0 

2 
w0 

then substituting for A and p (from Equations(3.7 and 8)) one 

(_A_) 2 -ml _ ( i + fo) 0
2 A H ) ) 

cta)0 A 

(!•:+ fa>„ A J J ) [ 1 - ^ A ^ (1 + F A ) O
2 A J J ) 

where C, = f — - ) — i -
1 V ~2)

 nA 

which can be expanded to yield 

0 - SX \ 7 + 8 2 ^ + 

where 
+ g 7 ' A H + 8 8 ^ 

g ; L = C 1
2 (f 0) o

2)' 

8 , = 3 C 2 (f0) o
2) 

8 3 = 3C1 f W°2 

g 4 = C^ 2 - 2 C 1 (fw o
2) 

5 1 o 
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H = - 2 c i 

2 A 2 

g 7 = f u„ (1 + ( — ) ) ' aw0 ' 

The seventh order polynomial i n A^ can be solved approximately as a function 

of 0)o and the input parameters (n,b, C L , f ) . Once the roots A^ have been 
2 1 2 determined, values C can be determined from Equation(3. 8), and A from 

i B 1 

Equation (3.7). The sign of Â^ (and thus = 1 - A -y) can be determined 
2 

by substituting for C„ and tan <p'„ i n Equation (3.5.3). 

1 1 

Figure VII shows the results of such an analysis for the indicated 

input values. The results demonstrate the system's a b i l i t y to.generate 

multiple amplitudes i n A^, C , (pR and ft with varying to0. The p o s s i b i l i t y 

of producing a hysteresis effect exists as the upper branch of A ^ o O i s 

valid for ft < 1 only, and the two lower branches for ft > 1 only. The principle 

result of the s t a b i l i t y analysis (Appendix D) i s that the middle branch of 

Ay.(u)0) i s unstable, while the upper and lower branches are stable. The arrows 

on Figure VII incorporate this information i n describing possible behaviour 

for increasing or decreasing w0• 

Although there are s t i l l remaining d i f f i c u l t i e s with the amplitudes 

of X and C , and with trends i n the phase angle for ft > 1, the inclusion of 

the variable damping term has resulted i n a significant improvement i n model 

performance within the lock-in range. 



( i i ) Combination-Oscillation Solution 

If one assumes X and C^ to be given by Equation (3.2), then 

substituting into Equations (2.2) and (3.3) and neglecting terms such 

as A^, (pp, higher harmonics and combination tones and f i n a l l y applying 

the principle of harmonic balance, one obtains the following system of 

equations: 

2 2 

ato0 C p cos (f>F = (1 -a>F ) 

2 2 aco0 C p sin <j>F = Ap o^B. (1 + fw0 j^) 

ato 0
2 C H cos (J>h = A H (1 - ft2) 

a t o „ 

... (3.10) 

(C0o :) 
aoj 0 toT 

cos cJ)F + sin (pF 

0J„ 
1- (Sr> ( P F (if) + 2 P H > = 0 

(Wo " W p . 

« o . o L S ± N ^ F - G O S * F 

o 2 2 
1 - C—) (P* + 2P„) H ' 

3 A F 
au) 0 C„ 

2 2 
(Wo - ST) , . . , 
~ ~ o ^ f t c o s + S l n 

.ft 
+ 2 P : 

1 ( P H ^ F ( f t " ) ) 

= 0 

2 2 (u 0 - ST) 
ato 0 f t 

sin <J>H - cos <J>H 
J AH 
ato0C H 

Next introduce 

a 
2 2 
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2 ^ 2 
= o "H OX00 ft 

then from Equations ( 3 . 1 0 . 5 and 6) 

? b a 0 J o tan cp 
CT ( 1 + tan <j> ) = F 

2 

F' ~ ~ ~ 5 C 3- 1 1) B 0a OJ F ( 1 + f u. V 

bAp bat0o sin cp̂  
which uses — — — = : from Equation ( 3 . 1 0 . 2 ) . To pro-

ceed, i t i s necessary to make assumptions concerning the frequency behaviour 

ft (too) (which i s close to 1 ) and co„(co0) (which i s close to U)0). 

Assume that w = 0Jo, then from Equations ( 3 . 1 0 . 1 and 2) 

. t a n * 3 ( 1 + ^ o 2 V 
1 - too 

2 2 

thus, tan <J> < < 1 for to0 away from the immediate neighbourhood of i0o = 1 . 

From Equation ( 3 . 1 1 ) then 

2 

where A = 0)o - 1 

Substituting for O and tan d) i n Equation ( 3 . 1 0 . 5 ) yields 

P F ( ? ) 2 + 2 P H ^ ( 1 - £ O I ^ > < ^ ) 2 . . - . . ( 3 . 1 2 . 1 ) 

From Equation ( 3 . 1 0 . 7 ) 

PH + Vft^)2 = ( 1 + Otoo'tan * > ^ 2 •••• ( 3- 1 2- 2) 
H 

then solving for p„ from Equations ( 3 . 1 2 . 1 and 2) 



From Equations (3.10.7 and 8) 

( a „ p r - r - — — — - 7 — - .) tan 6 , + a = o 
H aft (1 + fca0

 2 O YH H 

X B 
introduce ft = 1 - —^- and assume that 

1 - ft2 = X B 0 - X 2 B 2 = X B F 

then examine 

ft, ft2 = 1 

2 2 
E 0 ) / - ftZ ~, A 

H ao)0 ft aw 0 

Q -D „ 1 + f 0 ) o
2 A 

t a n V E r 3 ^ ( i + f -o 2 v = x — -

Substituting for a and tan (J) i n Equation (3.14), one obtains 
H H 

X 2 = ( > U ) ° 2
? - ] ) (1 + fto G

2 A ) 2 

A (1 + fto/ A H) 

From Equations (3.10.1 and 2) 

2 2 2 
(aw 0

2) C R
2 = A ^ Bo 2 ( (1 - ft2) +• (1 + f too2 Ag) ) 

2 „ 2 # , 2 . „ . . 2 2 

A H " B 0 " ( X ' + (1 + fto 0" A J J ) ; ) 

2 

then substituting for X : 

2 h 2 

C „ " = " 2 (1 + f a ) , A J J ) 
nto0 A 

or 
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PH = A H 2 2 I 2 . ( 1 + f w ° 2 V 
nco0 C A 

(3.16) 

Equating (3.13.1) and (3.16), and substituting for tan <j> and X one obtains 
H . 

nton 

A(l + fw 0 ^ 
1) aio0 / 3b , 2 ,., , _ 2 . v 

nA (C co0 ) 
i-"o 

+ 2 nBQ0Jo - 1) 
cxA 

which can be expanded to yield 

0 = g l A H
7 + g 2 A H

6 + . . . +gg Y (3.17) 

where 

& 1 = 9 C 1
2 (fto 0

2) 

g 2 = 27 C^ 2 ( f W o
2 ) 

g 3 = 27 C x
2 (ft0 o

2) 

g 4 5 9 C 1
2 + 6 C± C 2 (fco 0

2) 

g 5 5 12 C 2 foj0 

H E 6 c i C2 

*7 * < C2 2 + > 



2 1 . 

L 0 

r - 2 n B 0 toq 

°2 ~ a A ~ 1 

The seventh order polynomial i n can be solved in a manner similar to 
2 

Equation (3.9). Once the roots have been determined, values for 
1 2 i 

can be determined from Equation (3.16), and A. from Equation (3.15).. The 
A. B o 

sign of X. (and thus ft^ = 1 — ) can be determined by substituting for 
2 2 C and tan cp i n Equation (3.13.1). C i s then given by Equation (3.13.2). H. H. h . 1 1 x 

and Aj, and (p̂, from Equations (3.10.1 and 2). 

Figure VIII shows the results of such an analysis for the i n ­

dicated input values. Since the forced cylinder response at to is negligible 
F 

away from the neighbourhood of toD - 1, Â , and cp̂  have not been shown. The 

results demonstrate the system's a b i l i t y to generate a combination-type 

solution valid only at the extremes of the resonance region, and r e a l i s t i c 

behaviour of C for toQ < 1.15 or toe > 1.38. These features are both character-

i s t i c of vortex-induced cylinder o s c i l l a t i o n . 

There i s no solution for 1.15 < to0 < 1.28 as C i s imaginary r . 1 

over this range. There i s no solution for to0 < 1.05 as the results are i n ­

valid in the neighbourhood of toQ = 1. 

The inclusion of the variable damping term i n the d i f f e r e n t i a l 

equation governing cylinder displacement appears to allow for the r e a l i s t i c 

accommodation of a combination-oscillation form of solution. This has the 

effect of extending the range of applicability of the coupled-oscillator 

model outside of the lock-in region. 
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4. DISCUSSION 

Several changes in form of the governing equations of Hartlen 

and Currie's original coupled-oscillator model for vortex-induced os­

c i l l a t i o n have been suggested and examined. Various forms of solution 

to the modified equations and the question of their s t a b i l i t y have been 

investigated as well. Predicted results have been compared with exper­

imental information, i n order to obtain a measure of their usefulness. 

The results of this work show the application of a combination-

o s c i l l a t i o n form of solution to Hartlen and Currie's original model, and 

the extension to a seventh order non-linearity in C ' to be unproductive. 

A positive contribution has been made, however, with the inclusion of 

an effective structural damping term dependent on wind speed and cylinder 

displacement. The modified governing equations then produce a hysteresis 

mechanism within the lock-in region (harmonic solution), and r e a l i s t i c 

system behaviour outside of lock-in (combination-oscillation form of 

solution). 

The inclusion of a variable structural damping term (which i s 

consistent with experimental evidence) has the effect of improving trends 

i n the coupled-oscillator model performance, and extending i t s range of 

applicability. It i s proposed that the results are encouraging enough 

to warrant further investigation of this form of non-linearity. 
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APPENDIX A 

Hartlen and Currie's original system of d i f f e r e n t i a l equation-soluti on 
by the methods of van der Pol and K-B 

Governing System 

\ 

A . l 

...» A. 2 

X" + 230X' + X = au) 0
2 C 

3 

C " - aa) 0C + (CT') + u)„2 CL = bX' 
J-1 Li u)0 L L 

(i) Solution after van der Pol 

Assume 

X = A^ sin fir 

C L = CH S ± n + V 
then,,.substituting for X and C i n Equation A . l and neglecting terms such 

as A^, <p̂, and higher harmonics, one obtains the following system of equations 

after applying the principle of harmonic balance: 

2 2 au)0 C R cos <j>H = (1 - ft ) 

2 
a<jj 0 C H sin <p = B 0fi 

... A.3 

2 2 2 
O0) o fl

 c o s * H
 + S l n ^H ( 1 - t > PH } = ° 

sin A - cos <f> (1 - ( 7 — ) pTI) = owe fl H " " VH V J" KH' aco c CL 
H 

where 

B 0 — 230 
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C 
C L 0 V 3 Y 

_ C 2 

P H V - ) 

From Equations A.3.1 and 2 

, B Q ft tan (p 
H 1 - f t 2 

2 ao) 2 2 

•1 + C o t 2 <f> 
n 

From Equations A.3.3.. and 4 ... A. 4 

2 
2 ft 1 - n 

1 + G o t 2 <j> 
H 

C
 2 = ( C too ) 2

 ( 1 + ( t o p
2 - ft2) ) 

H L 0 ^ '•" ctto0 ft tan * 
n 

, _ ab where n = — 

( i i ) Solution by the K-B method (to ascertain the s t a b i l i t y 

of the approximate solutions to Equation A.1). 

Rewriting Equation A.l 

X ' ' + X = atoo 2 C - | * ( C J ' - Oto0 c ' + X- c ; 3 + W o 2 C T ) 
L b L L to0 L L 

... A.5 

assuming X = (x) sin (x + 8 H (x)) 

.. A.6 

X ' = A J J (x) cos (x + e R (x)) 
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which implies that 

(x) sin(T + e R (x)) + ^ (T) 6 r (x) cos(x + 6 H (x)) = 0 

or 6 ' (x) = - ̂ C O sin(x + 6 H (x)) 
^ (x) cos(x+ 9 R (x)) 

then multiplying Equation A.5 by X', one can determine 

A. 7 

V ( T ) - ( a C L - ¥ ( C L * ' " ^ C L + t C L > 3 + ^ W C ° S ^ + 8 H ( T ) ) 

and from Equation A.7 

e ' (x) = / 2 „ Bc (ato 0 C L - ^ (C- - aco0 C L + J - C' L
3 + 0 ) o

2 c L ) ) sin(x + 6 H (x)> 

Since a, B c are 0 (10~ ) 

^ ~ 2TT 

2lT 

2TT 
•» 

i 
2 B (a w0 CT - Tf- ( • • • )) cos ip dip 

L D 

A. 9 
2TT 

2 g 
(aw0 C L -'-jp ( ... )) sin ip dip 

where ip = x + 8. 
H 

If one assumes that C = CTT(x) sin ( X + cp (x)) 
L H H 

and that C', cp*, are 0 (10~ ), then from Equation A. 9 n. n 

a C 
H H 2 1 2 . ato 

- (w o + - (1 - " ) ) sinC + — - (1 -
n n 2 

.) cos C 
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r 

-a C, 
3' * H 2 (w D

2 + ̂  (1 - w a
2)) cos C + ( i - s i n c 

too 

... A.10 

where £ = 9 R - <J>H 

2 2 C„ C = H ._ H 
H ~ 4. a ~ C 2 

3 y L o 

Stationary solutions to Equations A.10 exist for = 0 i n which case 

K, = K, , C„ = C and 6 ' = - K which implies 8 = -K x. To f i r s t H H H . H H H H H . 
S s S 

order approximation £ must not be a function of X, thus <jj• = 8 - Z, s H H s s s 
= - K„ X - r where r f r CO . In which case one obtains H ^s s s s 

P H 

- ( w 0
2 + • £ ( ! - w 0

2) ) sin ? + ^JSifl: ( ! _ _|) Cos C = 0 n s n 2. s 
Wo 

... A.11 

0 1 0 PH 2K ^ 
( W o 2 + f- ( 1 - w 0

2) ) cos ? + ̂  ( 1 - ~ § ) sin K = —V"5-
0 s 

Two further equations are obtained by requiring that the station­

ary solutions satisfy Equation A . l . Substituting for X and C T: 

X = AJJ. sin (x + e R ) = A J J sin (1 - K R)x E ̂  sin fix ... A.12 

C L = C H sin (x + cp h ) E C. I sin ( (1 - K )x - C ) = C sin (ftx - X, ) xi 11 s H s 

where ft = 1 - K 
H 

provides 



at0o C H sin £ g = - B„ ft A^ 
S £ 

2 2 aco0 Cfl cos Cg = (1 - ft ) 
s s 

Solving Equations A.11 and A.13 one obtains 

28. 

... A. 13 

2 
1 - n 

1 + cot C s 
2 

2 = rau s_ 
BO 

H 

(1 + cot £ ) 
s 

A.-14 

c H
 2 - (Co,.2) 
S 

tan 
aojc 

(1 + a>0 (n - 1)) 

where tan £ 
i - f t 

which can be shown to be identical to the results obtained by the method 
2 ~ 

of van der Pol (Equation A. 4) provided that ft, ft = 1. 

To determine the s t a b i l i t y of a particular solution, one need 
d A H 

examine the sign of - j — only in the neighbourhood of the root A^ . From 
H s 

the expression for A^ (Equation A.10.1) one can determine 

d A i d C H r ^ a a P H ^ 
= ( — — cos C) 

dA H dAjj C R n u 0 ^ 

thus 
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-aa PH d C, s H cos r - T - 7 -

s d h 
n as. 

A. 1 5 

From Equation A . 1 4 . 2 

d CH _ , B^Jl , 2 . . L 2 . A ____ = ( } ( l + C o t O 
acoc H 

The s t a b i l i t y c r i t e r i o n i s 

d A' < 0 Stable 

> 0 Unstable 

d C H Examining Equation A . 1 5 , since 7 - 7 - , a, a , p , n, co0, are a l l positive 

quantities, then the question of s t a b i l i t y i s decided by - cos? or - cos ( 

Thus 

( - C ) < T / 2 •> w i l l be stable 

( • - 5 ) > n / 2 - > A J J w i l l be unstable 
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APPENDIX B 

Extension to 7th order non-linearity in C' - solution by the 

methods of van der Pol and K-B. 

Governing System 

X'* + Bo X' + X = aw 0
2 C 

CL* - ™ ° C L + ^ ( C L ) 3 - ̂ 3 ( C V 5 + A 5 ( C L ) 7 + C L = b X ' 
0 J o 0 J o 

B.l 

(i) Solution after van der Pol 

Assume 
X = Ag sin ftx 

• • • B . 2 
C L = C R sin (fix + cbR) 

Substituting for X and C into Equation B.l, and applying the principle of 

harmonic balance one obtains: 

2 2 aco0 C R cos cpH = (1 - ft ) 

2 
,;aco0 C R sin o>R = A R B0ft ... B.3 

(co0
2 - ft2) cos cp + 

a toaft 

n i y r 2 5 n > ft,4 4 6 (n ) 6 r 6 i c ^ 6 - n 
^ 4a ~ 2 H 8 a w7 H ~ 64 a w 7 CH 3 s l n *H " 0 

C0 o 

2 2 
(COQ ft ) . , 9 P̂ - s i n <p„ -ao)0 ft H 

! _ 31 ( A ) 2 2 
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I H rJL)2
 c

 4 _ 15 6 _ft 6 6 
8 a ^ w0 ' 64 a ^ W/ U H 

cos A = 
H aa)0C 

Equations B .3 .3 and 4 are obtained by assuming that 

C* = C ft cos (ftr + A ) 
L H ri 

( C L ) 3 " I fi3 c o s (flT + V 
(C[) 5 = | C H

5 ft5 cos (ftx + ( J ) H ) 

( C L ) 7 = If C H ? FI?
 COS (fiT + V 

From Equation B .3 one can determine: 

H 

tan B0ft 
1 - ft' 

r 2 ( \ 
2 H BGft 

(1 + cot <|>H) 
B.4 

Wo ft' 
1 — n 

1 + cot A 
H 

6 8 ]1 rWp_. 2 4 48 j_ . u^ 6 
' 7 ; L H + 35 6 ft; 

* | ( " Q 2 - " 3 > 
6 6w0 fttan A 

H 

= 0 

In order to provide for a double amplitude response within the 

lock-in region, three real roots of the cubic polynomial in C must exist. 
H 

For a particular value of ft (and thus c o 0 ) within the region, values of 
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and C are available from experimental data and provide two 
max min 

equations for the determination of the non-linear coefficients. The 

) i s made in order to establish 
"unstable 

choice of a third root (CT 

Y Ct •g, ~f so that a single real root of predetermined amplitude (C ) i s lo 
predicted outside of the lock-in region. This requires the selection 

of an appropriate value of 6 as well. Once the various parameters have 
2 

been specified, Equation B.4.4 can be solved for C (wc) by standard H, 1 
methods. 

( i i ) Solution by the K-B method 

Rewrite Equations B.l 

X' ' + x = a W„ CT -
L b V v +k C C L , ) 3 .... B.5 

, „ 3 < V >  + ~ i ' V 7 + " ' 2 ° i 
W„ W0 

assume 

X = (T) sin (T + 0 H (x)) 

X' = (T) cos (X + 9 R ( T ) ) 

then proceeding in a manner identical to that introduced i n Appendix A ( i i ) 

one obtains 
a C T ~ H 

I 2 - (Wo2 +~ (1 - Wo2)) s i n - C - r - ^ G (C„) cos £ n n n 

-a C 
0. 

H 
H ( w 0

2 + - (1 - w 0
2)) cosX + — G (C„) sin X n n n 

B.6 
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where t, = - (p 

r 2 C 4 C 6 

r ( c ) = 1 . 3 i c x . + I n J L _ 3 5 6 S i _ 
G K BJ 4a 2 8 a 4 64 a i.6 

0) o W 0 0) o 

Stationary solutions to Equation B.6 exist for 

A R' =0 i n which case A R = 
s 

C = C H H s 

0 * = - K which implies 0 = - K x H H H H s 

To a f i r s t order approximation, £ must not be a function of X, thus 

A = 9 H - ^ s = - K H T - ? s W h e r e C s ^ s ( T ) 

s s 

In which case one obtains 

9 1 9 OUJ 
( 0 ) o

Z + j- (1 - to/)) s i n r + ̂  G (C ) cos r = 0 
XI o XJL Jtl o ' 

s 

' 2 K 

< u. 2 + ± ( i - a,.2)) cos ? s + ^ c (cH \ . i n c . - <r± • • •  B" 7  

s H 

It i s required as well that the stationary solution satisfy Equation B.l 

for 

X = A sin (x + 01T ) E A sin (1 - K„)x E A sin fix H H 11 n n 

C L = C H sin (X + <pH ) E C R sin ( (1 - K^x - r, g) E C R sin (fix - ? g) 
s s s s 
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which provides 

atoQ C u sinC = - B 0ft A a s H s s 

a0J o
2 C u cos £ = A u (1 -ft 2) 

ri S n 
S S 

B.8 

From Equations B.7 and 8 one obtains: 
2 1 

1 - n 
1 + cot r, 

9 M 2 2 H 
H ^Bft ' . 2 , 

S (1 + cot £ ) 

B.9 

CH 7 ° 6 LH + 35 6 u° CH 

64 . 6 
35 W ° 

= 0 

where tan £ -ftB 
1 - ft' 

which can be shown to be identical to the results obtained by the method 
2 4 6 ~ 

of van der Pol (Equation B .4 ) provided that ft, ft , ft , ft = 1 . 

To determine the s t a b i l i t y of a root A^ , examine the sign of 

d V From Equation B . 6 . 1 one has that A^' = F (C R), therefore 

AH = AH 

d V d F d CH  
d A H " d C H d A H 

which can be evaluated from Equations 



B.6.1 and 9.2. The criterion of s t a b i l i t y being 

35. 

< 0 stable 

> 0 unstable 
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APPENDIX C 

Combination-oscillation solution applied to Hartlen and Currie's 

original system (solution by the method of van der Pol). 

Assume 

X = A^ sin fix + Ap sin tô x 
... C.l 

C L = ° H S ± n (fiT + V + C F S L N ( W F T + V' 
then substituting for X and C into Equation A . l and neglecting terms such 

as A ', (f> ' , higher harmonics and combination tones, the following results H r 
are obtained after applying the principle of harmonic balance: 

aw 0
2 C F cos cf>F = Ap (1 - Up2) 

ao>0 c sin in * F = Ap, B 0 

2 2 ao)c C R cos A
H = A R (1 - fi ) 

ato, 0 C R sin 4>H = ̂  B 0 

C.2 

/ 2 2. (w0 - Wp ) 
aw0. w„ cos <p_ + sin <J) 

2 2 

1 ( P F CnO + 2 P H > 

2 2 
(Wo - Wp^) 

S ^ T T sin Ap - cos cpi CO,/ 

cy 2 
( P F (TT> + 2 PH ) aa)Q CT 



2 2 
(LOO - ft ) i , > i 

ato0 ft C O S + S l n *H 
ft 2 W F 2 

= 0 

< 2 o 2^ 
( l0o - ft ) . , , 

aa)0 ft S l n ~ c o s 

ft 2 U F 2 

ao)0 C H. 

where p = 
2 2 

H _4 a C J 

3 y L ° 

2 2 

F 4 a ~ VC. 
3 Y 

Note that Equations C.2.5-7 assume that 

3 3. 0) 'V* ~i  a C F <rcos <V + V o w 2 
°F <<T> + 2 C H 

+ T ft C„ cos (ftx:+ cb ) 
? O W F 2 

CH + 2 C F V > 

From Equations C.2.5 and 6 one obtains 

tOo 
1 - n 

1 + cot CO 

• O L CO 
1 + 

2 2 

ao)0 Wp tan cPF 

• • * C • 3 

From Equations C.2.7 and 8 

2 
COo 

ft 
1 -• n 

1 + cot cb. H 



to„ 
P H

 + 2 p F < f i T > = <^> 1 +. 
2 2 

(Mo - « ) 
au)0ft tan <J> H J 
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From Equations C.2.1-4 

tan <p. 
t O p B 

F 2 
1 - w„ 

2 2 
2 .a to„ . F 

- ( B D U > F (1 + cot cf> ) 

tan <p = fiB0 

1 - JT 

2 2 

N B 0 n ( i + cot <{>H) 

If one assumes that fi ? 1 and to = 0)o then Equations C.3 can 

solved for p„ „, A.T „, cp „ as functions of w0> a,y and r\. fi(to0) and 
H, r i i , r H, r 

to (to0) are given by the appropriate roots of Equations G. 3.3, and• 1. F 
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APPENDIX D 

Variable structural damping - solution by the K-B method. 
r''" 

Governing system 

Assume 

X" + B 0 (1 + f03 o
2 y X' + X = aw 0

2 Cj 

Y 2 
CT " - au>0 CT ' + -1- (CT ') + a>0 CT = b X' 

X = Ag (x) sin(x + 9 R (x)) 

... D.l 

X' A J J (x) cos (x + 9 R (x)) 

C L = C R sin (x + <|>H (x)) 

Then proceeding in a manner identical to that introduced i n Appendix A ( i i ) 

one obtains 

V 
2 1 2 2 sin £ (u) o - - (1 + f0)o ^ (0Jo - 1)) 

2 _ OU) „ ( 1 " PH ) : 

- cos C (1 + f 0)o A^) — 

i _ 
H 2 

2 1 2 cos C ( aj0 - - (1 + fw0 A^) (u>0 - 1)) 

2 . * «o 0

 ( 1 " V + sin £ (1 + fw0 Ay) — 0)o2 

D.2 
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Stationary solutions to Equation D.2 exist for 

A J J ' = 0 i n which case A ^ = 

CH = CH 

and 8 ' = - K which implies 8 = - K T. To a f i r s t order approximation H H H H 
s £ must not be a function of T, thus A s H H ^s K T - r where H s 

£ ^ £ g (x). Two further equations are obtained by requiring that the 

stationary solution satisfy Equation D . l . l for 

X = A 
H
 S ± n ( 1 ~ K H ) T = *H sin fir 

C L = CH S ± n ( ( 1 " K H ) T " C s } = CH S l n ( f i T " C s } 

s s 

The expressions which are derived for A , C , fi and £ are H H s S s 

identical to those obtained by the method of van der Pol (Equations(3.6-9)) 

where 

- K - \BC 

H 

To determine the s t a b i l i t y of a root A ^ , examine the sign of 

From Equation D.2.1 one has that A ^ ' = F ( A ^ , C R, 0, therefore 

AH = \ 

d V = 9 F 3 F d CH 3F d £ _ 
d A H _ 9 A H ' C H d A H H d A H 

. D.3 
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The p a r t i a l derivatives can be obtained from Equation D.2.1, and the 

exact differentials from Equations (3.5.2) and (3.8). The criterion foi 

s t a b i l i t y being 

d V 
a. 

< 0 stable 

> 0 unstable 
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FIGURE I: Experimental Results For Vortex-Induced 
Oscillation of a Circular Cylinder (Feng) 
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FIGURE II: Schematic Diagram of Experimental Configuration 
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FIGURE IV: Theoretical Predictions from Hartlen and 
Currie's Original Model 
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FIGURE VI: Theoretical Predictions for Combination-
Oscillation Solution Applied to Hartlen 
and Currie's Original Model 
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1.2H 
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1-40 
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/3 = .001 

a = .0022 
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FIGURE VIS = Theoretical Predictions ot the Effect of 

Variable Structural Damping — Harmonic 

Solution 



FIGURE VIII: Theoretical Predictions of the Effect of 
Variable Structural Damping—Combination-
Oscillation 


