COUPLED-OSCILLATOR MODELS FOR VORTEX-INDUCED OSCILLATION OF A CIRCULAR CYLINDER

 BYKELVIN NORMAN WOOD
B.A.Sc., University of British Columbia, 1973
A. THESIS SUBMITTED IN PARTIAL FULFILLMENT OF the requirements for the degree of MASTER OF APPLIED SCIENCE in the Department of

Mechanical Engineering

We accept this thesis as conforming to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA

August, 1976
(c) Kelvin Norman Wood, 1976

In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission.

Department of Mechanical Engineering

The University of British Columbia
2075 Wesbrook Place
Vancouver, Canada
V6T 1W5

Date August 17, 1976

ABSTRACT

The vortex-induced oscillation of a circular cylinder is modelled by a non-linear system with two degrees of freedom. The periodic lift acting on the cylinder due to the vortex-street wake is represented by a self-excited oscillator, which is coupled to the cylinder motion. Approximate solutions and stability criteria are presented which are valid over restricted intervals.

Changes to the form of the coupled-oscillator model and its approximate solution are examined in order to improve the comparison between predicted model and experimental results. The changes are motivated by the study of experimental evidence, and by comparison with the known properties of similar systems of non-linear equations.

Significant improvement in the coupled-oscillator model performance is obtained through the inclusion of an effective structural damping term which is dependent on wind speed and cylinder displacement.

TABLE OF CONTENTS

Page

1. INTRODUCTION 1
2. PRELIMINARY 3
3. MODEL FORMULATION 7
3.1 Higher Order Non-1inearity 7
3.2 Combination-Oscillation Solution 8
3.3 Variable Damping 11
(i) Harmonic Solution 13
(ii) Combination-Oscillation Solution 17
4. DISCUSSION 22
REFERENCES 23
APPENDIX A
Hartlen and Currie's Original System of Differential Equations 24
APPENDIX B
Extension to Seventh Order Non-1inearity in $C_{L}{ }^{\text { }}$ 30
APPENDIX C
Combination-Oscillation Solution to Hartlen and Currie's Original System 36
APPENDIX D
Variable Structural Damping 39
Page
Figure I Experimental Results for Vortex-Induced Oscillation of a Circular Cylinder (Feng) 42
Figure II Schematic Diagram of Experimental Configuration 43
Figure III Characteristic Domains of Vortex-Induced Oscillation 44
Figure IV Theoretical Predictions for Hartlen and Currie's Original Model 45
Figure V Theoretical Prediction for a Higher Order Non-linearity in $C^{\prime}{ }_{L}$. 46
Figure VI Theoretical Predictions for Combination- Oscillation Solution Applied to Hartlen and Currie's Original Model 47
Figure VII Theoretical Predictions of the Effect of Variable Structural Damping-Harmonic Solution 48
Figure VIII Theoretical Predictions of the Effect of Variable Structural Damping-Combination- Oscillation Solution 49

Page

Table I Effective Structural Damping During Vortex-Induced Oscillation 11
Table II Damping Parameter Determination 12

LIST OF SYMBOLS

A Non-dimensional transverse cylinder displacement amplitude.
A_{F} Component of A at $\omega_{\mathrm{V}_{\mathrm{F}}}$ (free component)
A_{H} Component of A at ω_{c} (harmonic component)
$C_{\text {L }}$ Instantaneous lift coefficient
$\overline{\mathrm{C}}_{\mathrm{L}} \quad$ Amplitude of lift coefficient
C_{L} Amplitude of lift coefficient for stationary cylinder
C_{H} Amplitude of the component of C_{L} at ω_{c} (harmonic component)
C_{F} Amplitude of the component of C_{L} at $\omega_{V_{F}}$ (free component)
S. Strouhal number $=\frac{h \omega_{V_{S}}}{2 \pi V}$

V Free stream velocity
$X_{c} \quad$ Instantaneous transverse cylinder displacement
$\mathrm{X} \quad$ Non-Dimensional transverse cylinder displacement $=\frac{\mathrm{X}}{\mathrm{c}} \mathrm{h}$ 2
a Mass parameter $=\frac{\rho \mathrm{h}}{8 \pi^{2}} \mathrm{Sm}$
b Coupling parameter
f Damping parameter
h Cylinder diameter
m Cylinder mass per unit length
ω_{c} Detuned frequency of cylinder oscillation (wind-on)
$\omega_{\mathrm{n}} \quad$ Natural frequency of spring-cylinder system (still-air)
ω_{V} Vortex formation frequency for the elastically mounted cylinder
$\omega_{\mathrm{V}} \quad$ Vortex formation frequency for stationary cylinder
$\omega_{V_{F}} \quad$ Vortex formation frequency approximately at $\omega_{V_{S}}$ (elastically mounted
$\Omega \quad=\frac{\omega_{c}}{\omega_{n}}$
$\omega_{0} \quad=\frac{\omega_{v_{s}}}{\omega_{\mathrm{n}}}$
$\omega_{F} \quad=\frac{\omega_{v_{F}}}{\omega_{n}}$
$\beta \quad$ Critical damping ratio (wind-on)
Bo Critical damping ratio (wind-off)
$\alpha, \gamma, \eta, \delta \quad$ Coefficients of non-linear damping terms
$\phi \quad$ Phase angle by which C_{L} leads X
$\lambda \quad$ Detuning parameter for cylinder oscillation frequency
$\rho \quad$ Fluid density
τ

$$
\text { Non-dimensional time }=\omega_{n} t
$$

ACKNOWLEDGEMENT

The author would like to thank Dr. G.V. Parkinson for his advice and guidance in the course of this research.

Financial support was received from the National Research Council of Canada, Grant A586.

1. INTRODUCTION

Dating from the early $1960^{\prime} \mathrm{s}$, there has been an active program in this department to study the effects on fixed or elastically supported bluff bodies of the wakes produced by them. In the Reynolds Number range which is of interest $\left[0\left(10^{4}\right)\right]$, the wake is characterized by periodically shed vortices, the frequency of which is governed by the Strouhal relationship. This work is concerned with the interaction of an elastically mounted circular cylinder with its wake, for the case in which the Strouhal frequency is close to the resonance frequency of the cylinder-mounting system. Detailed experimental studies have been carried out by Ferguson (1) and Feng (2) to document the vortex-induced oscillation of just such a system.
-.... As direct solution of the governing dynamic equations for the cylinder and its wake is not feasible at present, a variety of simplified mathematical models have been suggested to describe the interaction [a summary of the more promising suggestions is given by Parkinson (3)]. A proposal by Hartlen and Currie (4) seems to have particular merit. They consider the lift acting on the cylinder (due to its periodic wake) to be governed by a second order non-linear differential equation (of the type studied by van der Pol) which is coupled to the cylinder motion. Over a restricted interval, the results predicted by their model bear good resemblance to certain of the experimentally observed features. They fail to produce some important characteristics however.

Using the coupled-oscillator concept it is the intention of this work to suggest changes in the form of non-linear terms and examine the effects on the solution. The stimulus for this comes from the need
to obtain better correlation between model predictions and experimental results.

2. PRELIMTNARY

Figure I provides a summary of Feng's results for the vortexinduced oscillation of a circular cylinder (for given input conditions). As Feng determined only three values of lift coefficient amplitude, transient C_{p}^{\prime} behaviour was used in establishing the location of the jumps in \bar{C}_{L} [Parkinson (5)]. The results demonstrate that over a discrete range of flow speeds (the lock-in range), cylinder displacement and fluctuating lift are periodic in time, with the same frequency, which is close to that of the natural frequency of the spring-cylinder system. The amount by which the phase of the exciting force leads the cylinder displacement is measured as well. Important features to note are the hysteresis loops which exist for both amplitude (of displacement and lift) and phase. Also significant is the response for $\omega_{0}>1.4$ (outside of lock-in), where cylinder oscillations persist at frequency close to ω_{n} while the frequency of the predominant excitation is considerably higher (ω_{F}).

Figure II describes the configuration and the important elements of the spring-cylinder system. With the effect of the vortex-street wake on the cylinder included as a forcing function, the differential equation for transverse displacement X_{c} is:

$$
m \ddot{X}_{c}+2 \beta \omega_{n} m \dot{X}_{c}+m \omega_{n}^{2} X_{c}=C_{L}\left(\frac{\rho}{2} v^{2} h\right)
$$

To nondimensionalize the equation, introduce

$$
\begin{aligned}
x & \equiv \frac{x_{c}}{h} \\
\tau & \equiv \omega_{n} t
\end{aligned}
$$

$$
\mathrm{V} \equiv \frac{\mathrm{~h} \omega_{\mathrm{V}_{S}}}{2 \pi \mathrm{~S}} \quad \text { (Strouhal Relationship) }
$$

and obtain

$$
\begin{equation*}
X^{\prime \prime}+2 \beta X^{\prime}+X=a \omega_{0}{ }^{2} C_{L} \tag{2.1}
\end{equation*}
$$

For modelling purposes, the problem now reduces to determining an expression for C_{L}.

Hartlen and Currie originally suggested that the lift coefficient be governed by the following differential equation

$$
\begin{equation*}
C_{L}^{\prime \prime}-\alpha \omega_{0} C_{L}^{\prime}+\frac{\gamma}{\omega_{0}} c_{L}^{\prime 3}+\omega_{0}^{2} c_{L}=b X^{\prime} \tag{2.2}
\end{equation*}
$$

This form was chosen because of its simplicity, and because away from resonance of the spring-cylinder system (BX ' $\rightarrow 0$), self-excited oscillation of amplitude and frequency approximately equal to $\sqrt{\frac{4}{3} \frac{\alpha}{\gamma}}$ and ω_{0} respectively is predicted for C_{L} (provided α, γ are small). This behaviour is consistent with experimental observation if $\sqrt{\frac{4}{3} \frac{\alpha}{\gamma}}$ is set equal to the amplitude of the lift coefficient for a stationary cylinder ($C_{L_{0}}$).

The coupling term ($\mathbf{B} \mathrm{X}^{\prime}$) was included to provide a dependence of C_{L} on cylinder motion. Its presence leads to the prediction of interesting C_{L} behaviour for ω_{0} close to ω_{n}. Drawing a comparison between this system and the well-studied forced oscillation of the van der Pol equation [Stoker (6)], one would expect a range of ω_{0} for which C_{L} and X have the same oscillation frequency (lock-in), bounded by a range of $\omega_{\text {o }}$ for which C_{L} has components close to ω_{0} and ω_{n} (combination-oscillation). Figure III demonstrates that the postulated regions of characteristic response are consistent with experimental evidence - region A being associated with the
typical forced response of an elastic system, region B with the transitional range in which frequency components close to ω_{0} and ω_{n} are present, and region C with the lock-in range. It is not possible to make further assumptions concerning the detailed nature of the response, as the forcing function is itself dependent on C_{L} through Equation (2.1).

Hartlen and Currie obtained an approximate solution to the system of coupled differential equations [Equations (2.1) and (2.2)] valid within the lock-in region, by assuming X and C_{L} to be given as follows (method of van der Pol)

$$
\begin{gather*}
x=A_{H} \sin \Omega \tau \\
C_{L}=C_{H} \sin \left(\Omega \tau+\phi_{H}\right) \tag{2.3}
\end{gather*}
$$

The actual analysis and a summary of results is included in Appendix A. Figure IV summarizes model predictions for the indicated input values. The results demonstrate the model's ability to generate certain of the features of vortex-induced oscillation.

The stability of the approximate solution is not given directly by the method of van der Pol. An alternate method: which does provide such information is the $K-B$ method [Minorsky (7)]. This analysis is introduced and developed in Appendix A. The results obtained allow one to confirm that the solutions summarized by Figure IV are stable, and that the two approximate methods of solution yield identical results provided that Ω, $\Omega^{2} \cong 1$.

The results obtained are encouraging. The model fails to produce a double-amplitude response, however, and since the approximate solution is valid only within the lock-in region, the system behaviour for
$\omega_{0}>1.4$ cannot be produced. The following work is concerned with an investigation of the form of model and solution used, with a view to improving the comparison between predicted and experimental results.

3. MODEE FORMULATION

3.1 HIGHER ORDER NON-LINEARETY

It was decided to investigate the effect of increasing the order of non-linearity in the governing equation for C_{L}. Following a suggestion by Land (8), odd power terms to seventh order in C_{L}^{\prime} were included. The equation for C_{L} then takes the form

$$
\begin{equation*}
C_{L}^{\prime \prime}-\alpha \omega_{0} C_{L}^{\prime}+\frac{\gamma}{\omega_{0}}\left(C_{L}^{\prime}\right)^{3}-\frac{\eta}{\omega_{0} 3}\left(C_{L}^{\prime}\right)^{5}+\frac{\delta}{\omega_{0} 5}\left(C_{L}^{\prime}\right)^{7}+\omega_{0}^{2} C_{L}=b X^{\prime} \tag{3.1}
\end{equation*}
$$

$$
\text { where } \alpha, \gamma, \eta, \delta>0
$$

The justification for including fifth and seventh powers of C_{L}^{\prime} comes from examining the homogeneous form of Equation (3.1) (bX' $\rightarrow 0$). For $\alpha, \gamma, \eta, \delta$ small, then

$$
C_{L} \cong C_{F} \sin \omega_{0} \tau
$$

and C_{F} may have one or three positive real roots. In the latter case the middle root would be unstable, and the trivial solution $\mathrm{C}_{\mathrm{F}}=0$ is unstable in either case. Considering the inhomogeneous form, it was hoped that the increase in non-linearity would result in the existence of two stable C_{L} amplitudes for a given ω_{0} within the lock-in region; a hysteresis effect possibly resulting from the manner of the dependence on ω_{0}.

Approximate solutions (by the methods of van der Pol and K-B) to the system of Equations (2.1) and (3.1) are included in Appendix B. Values for the non-1inear coefficients $\alpha, \gamma, \eta, \delta$ are determined by requiring that three positive real roots $\mathrm{C}_{\mathrm{H}_{\mathrm{i}}}$ exist within lock-in (two of
which are known from experiment), and that one real root $C_{L_{0}}$ exist away from lock-in $\left(b X^{\prime} \rightarrow 0\right)$.

In order to match predicted with experimental values of Iift coefficient amplitude within lock-in, the non-linear coefficients necessary were found to be of 0 (10). The effect of the magnitude of α, γ, η, δ on the approximate solution of Equation (3.1) has not been examined.

Figure V shows numerical results for the indicated input values. The stability analysis confirms that the middle amplitudes of C_{H} and A_{H} are unstable, and that the other amplitudes are stable.

The results demonstrate the system's ability to model the behaviour of C_{L} reasonably well within lock-in (as it was designed to). The frequency and phase variations remain a problem, however, as to a first order approximation they are independent of C_{L} and thus do not reflect jumps in amplitude which the system produces. The behaviour of the predicted cylinder amplitude is clearly a problem as well.

The predicted results indicate that an extension to seventh order non-linearity in C_{L}^{\prime} results in only marginal improvement of the system behaviour, while introducing further complications in doing so.

3.2 COMBINATION-OSCILLATION SOLUTION

Currie and 0ey (9) proposed that the double amplitude response could be accounted for by the existence of different solutions to the system of Equations (2.1) and (2.2) for harmonic, or combination-type forms of solution; that is, whether X and C_{L} are assumed to be of form given by Equation (2.3), or as shown below (combination-type)

$$
\begin{gathered}
X=A_{H} \sin \Omega \tau+A_{F} \sin \omega_{F} \tau \\
C_{L}=C_{H} \sin \left(\Omega \tau+\phi_{H}\right)+C_{F} \sin \left(\omega_{F} \tau+\phi_{F}\right)
\end{gathered}
$$

They draw comparisons between the coupled-oscillator system and the forced oscillation of the van der Pol equation. Actual results of a detailed analysis have yet to be published.

Experimental evidence supports a combination-oscillation form of solution over a range of ω_{0} adjacent to the lock-in region (Figure III, region B). There is no evidence for a solution of this form within the lock-in region, however.

A study was carried out to see whether or not a solution of this form could realistically account for one of the amplitudes within lockin, mor the system behaviour outside of it. The actual analysis is included in Appendix C. A stability analysis was not carried out, as the approximations which are required in order to combine the $K-B$ method with a combination-oscillation form of solution are not at all obvious.

Figure VI illustrates the important numerical results for the indicated input values. The phase and frequency variations for Ω and ϕ_{H} are identical to those for the harmonic case and thus have not been shown. Away from the neighbourhood of $\omega_{0}=1$, the forced cylinder response at ω_{F} is negligible, thus A_{F} and ϕ_{F} have not been shown as well. The results demonstrate the possibility of the existence of a combination-type oscillation within lock-in. Unfortunately, the analysis predicts a solution valid only within lock-in, and a complicated C_{L} behaviour over this range $-C_{L}$ is predicted to have components of approximately equal magnitude at frequencies of Ω and ω_{F}.

It would appear that the governing equations as formulated are not capable of accommodating a combination-type solution.

3.3 VARIABLE DAMPING

If one assumes the cylinder motion to be governed by Equation (2.1), and that within lock-in X and C_{L} may be approximated by:Equation (2.3), then by substituting for X and C_{L} in Equation (2.1) and applying the principle of harmonic balance, the following result may be obtained:

$$
2 \beta=\frac{a \omega_{o}^{2}}{A_{H} \Omega} C_{H} \sin \phi_{H}
$$

Since all the quantities on the right-hand-side of the equation are known or are measurable, the apparent structural damping during vortex-induced cylinder oscillation may be calculated. These calculated values are then to be compared with the value measured in still-air (which is the value given by Feng).
-.. - Table I summarizes the experimental results and the calculated ratio $\frac{2 \beta}{\left(2 \beta_{0}\right)}$, where $\left(2 \beta_{0}\right)$ is the wind-off structural damping. The effective structural damping appears to depend on cylinder oscillation amplitude as well as wind speed.

ω_{0}	A_{H}	C_{H}	ϕ_{H}	$\frac{2 \beta}{2 \beta_{o}}$	$\begin{aligned} \mathbf{a} & =.002 \\ 2 \beta_{c} & =.002 \\ \Omega & =.97 \end{aligned}$	
. 98	. 03	. 45	$\begin{gathered} 2^{\circ} \leftrightarrow 6^{\circ} \\ 4^{\circ} \end{gathered}$	$\begin{gathered} .57 \leftrightarrow 1.7 \\ 1.1 \end{gathered}$		
1.06	. 11	. 8	2 $\mathrm{g}^{\leftrightarrow} \mathrm{a}$	$\begin{gathered} .3 \underset{1.5}{\leftrightarrow} 2.2 \\ \hline \end{gathered}$		
1.12	. 21	1.5	$\begin{gathered} 10 \leftrightarrow 16 \\ 11^{\circ} \end{gathered}$	$\begin{gathered} 1.7 \leftrightarrow 2.8 \\ 1.9 \end{gathered}$		
1.21	$\begin{aligned} & .48 \\ & .3 \end{aligned}$	1.91 .5	$\begin{gathered} 37 \leftrightarrow 59 \\ 37 \\ 102 \end{gathered}$	$\begin{aligned} 4 & \leftrightarrow \\ & 4 \\ & 2.7 \end{aligned}$		

TABLE I Effective Structural Damping During Vortex-Induced Oscillation.

It is clear that any model which fails to take this effect into account will have little chance of success in predicting experimental behaviour.

It is proposed that the effective structural damping be approximated by a relationship of form:

$$
2 \beta=2 \beta_{0}\left(1+f \omega_{o}^{2} A_{H}\right)
$$

The $\omega_{0}{ }^{2}$ and A_{H} provide a dependence of system damping on the wind force acting on the cylinder, and cylinder displacement respectively. One would expect the constant f to depend on the experimental configuration. An appropriate value can be calculated from the experimental results as follows:

TABLE II Damping Parameter Determination
A value of $f \cong 4$ would seem to be indicated.

The modified equation governing cylinder response then is

$$
\begin{equation*}
X^{\prime \prime}+2 \beta_{0}\left(1+f \omega_{0}^{2} A_{H}\right) X^{\prime}+X=a \omega_{0}^{2} C_{L} \tag{3.3}
\end{equation*}
$$

In order to assess the effect of the proposed variable damping term, the system of Equations (2.2) and (3.3) has been solved approximately, assuming harmonic and combination-type forms of solution for X and C_{L}. A stability analysis has been carried out for the harmonic solution and is included
in Appendix D.
(i) Harmonic Solution

Within the lock-in range, assume X and C_{L} to be given by Equation (2.3). If one substitutes for X and C_{L} into Equations (2.2) and (3.3) and neglects terms in $A_{H}^{\prime}, C_{H}^{\prime}, \phi_{H}^{\prime}$ and higher harmonics, the following system of equations can be obtained by applying the principle of harmonic balance:

$$
\begin{gathered}
a \omega_{o}^{2} C_{H} \cos \phi_{H}=A_{H}\left(1-\Omega^{2}\right) \\
a \omega_{o}^{2} C_{H} \sin \phi_{H}=A_{H} \Omega B_{0}\left(1+f \omega_{o}^{2} A_{H}\right) \\
\frac{\left(\omega_{o}^{2}-\Omega^{2}\right)}{\alpha \omega_{0} \Omega} \cos \phi_{H}+\sin \phi_{H}\left(1-\frac{\Omega^{2}}{\omega_{0}^{2}} \rho_{H}\right)=0 \\
\frac{\left(\omega_{o}^{2}-\Omega^{2}\right)}{\alpha \omega_{0} \Omega} \sin \phi_{H}-\cos \phi_{H}\left(1-\frac{\Omega^{2}}{\omega_{o}^{2}} \rho_{H}\right)=\frac{b A_{H}}{\alpha \omega_{o} C_{H}}
\end{gathered}
$$

$$
\text { where } B_{o} \equiv 2 \beta_{0}
$$

$$
\rho_{H} \equiv\left({\stackrel{C}{C_{H}}}_{L_{0}}^{2}\right.
$$

To proceed, it is necessary to make an assumption concerning the frequency behaviour $\Omega\left(\omega_{0}\right)$ (which is close to 1 throughout the lock-in region). Introduce

$$
\begin{gathered}
\Omega \equiv 1-\frac{\lambda B_{0}}{2} \\
\text { where }|\lambda|=0(1)
\end{gathered}
$$

and make the assumption that

$$
\begin{aligned}
& 1-\Omega^{2} \equiv \lambda B_{0}-\lambda^{2} \frac{B_{0}}{4} \cong \lambda B_{0} \\
& \Omega, \Omega^{2} \cong 1
\end{aligned}
$$

both of which are reasonable, since $B_{0}=0\left(10^{-3}\right)$. From Equation (3.4) then, one obtains

$$
\begin{gathered}
a \omega_{0}^{2} C_{H} \cos \phi_{H} \cong A_{H} \lambda B_{o} \\
a \omega_{0}^{2} C_{H} \sin \phi_{H} \cong A_{H} B_{o}\left(1+f \omega_{o}^{2} A_{H}\right) \\
\frac{\Delta}{\alpha \omega_{0}} \cos \phi_{H}+\sin \phi_{H}\left(1-\frac{\rho}{\omega_{0}^{2}}\right) \cong 0 \\
\frac{\Delta}{\alpha \omega_{o}} \sin \phi_{H}-\cos \phi_{H}\left(1-\frac{\rho_{H}}{\omega_{0}^{2}} \cong \frac{b A_{H}}{\alpha \omega_{0} C_{H}}\right. \\
\text { where } \Delta \equiv \omega_{0}^{2}-1
\end{gathered}
$$

From Equations (3.5.1 and 2)

$$
\begin{gather*}
\tan \phi_{H}=\frac{1+f \omega_{0}^{2} A_{H}}{\lambda} \\
C_{H}^{2}=A_{H}^{2}\left(\frac{B_{0}}{a \omega_{0}{ }^{2}}\right)^{2}\left[\lambda^{2}+\left(1+f \omega_{0}^{2} A_{H}\right)^{2}\right] \ldots \tag{3.6}
\end{gather*}
$$

From Equations (3.5.3 and 4)

$$
\begin{equation*}
\lambda^{2}=\left(1+f \omega_{0}^{2} A_{H}\right)\left[\frac{n \omega_{0}^{2}}{\Delta}-\left(1+f \omega_{0}^{2} A_{H}\right)\right] \ldots \tag{3.7}
\end{equation*}
$$

$$
\text { where } n \equiv \frac{a b}{B_{0}}
$$

Substituting for λ^{2} in Equation (3.6.2)

$$
\begin{equation*}
C_{H}^{2}=A_{H}^{2}\left(\frac{B_{0}}{a \omega_{0}^{2}}\right)^{2}\left(1+f \omega_{0}^{2} A_{H}\right) \frac{n \omega_{0}^{2}}{\Delta_{1}} \tag{3.8}
\end{equation*}
$$

Substituting for $\tan \phi_{\mathrm{H}}$ in Equation (3.5.3)

$$
\frac{\Delta}{\alpha \omega_{0}^{\prime}}+\frac{\left(1+f \omega_{0}^{2} A_{H}\right)}{\lambda}\left(1-\frac{\rho_{H}}{\omega_{0}^{2}}\right)=0
$$

then substituting for λ and ρ_{H} (from Equations(3.7 and 8)) one obtains

$$
\begin{aligned}
& \left(\frac{\Delta}{\alpha \omega_{0}}\right)^{2}\left(\frac{n \omega_{0}}{\Delta}-\left(1+f \omega_{0}^{2} A_{H}\right)\right) \\
& =\left(1+f \omega_{0}^{2} A_{H}\right)\left[1-C_{1} A_{H}^{2}\left(1+f \omega_{0}^{2} A_{H}\right)\right]^{2}
\end{aligned}
$$

$$
\text { where } C_{1} \equiv\left(\frac{b}{C_{L_{0}} \omega_{0}^{2}}\right)^{2} \frac{1}{n \Delta}
$$

which can be expanded to yield

$$
\begin{equation*}
0=g_{1} A_{H}^{7}+g_{2} A_{H}^{6}+\ldots .+g_{7} A_{H}^{1}+g_{8} A_{H}^{o} \tag{3.9}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathrm{g}_{1} \equiv \mathrm{C}_{1}^{2}\left(\mathrm{f}{\omega_{0}}^{2}\right)^{3} \\
& \mathrm{~g}_{2} \equiv 3 \mathrm{C}_{1}^{2}\left(\mathrm{f}{\omega_{0}}^{2}\right)^{2} \\
& \mathrm{~g}_{3} \equiv 3 \mathrm{C}_{1}^{2} \mathrm{f} \omega_{0}^{2} \\
& \mathrm{~g}_{4} \equiv \mathrm{C}_{1}^{2}-2 \mathrm{C}_{1}\left(\mathrm{f} \omega_{0}^{2}\right)^{2} \\
& \mathrm{~g}_{5} \equiv-4 \mathrm{C}_{1} \mathrm{f}_{\mathrm{o}}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& g_{6} \equiv-2 C_{1} \\
& g_{7} \equiv \mathrm{f} \omega_{0}^{2}\left(1+\left(\frac{\Delta}{\alpha \omega_{0}}\right)^{2}\right) \\
& g_{8} \equiv 1+\frac{\mathrm{n} \Delta}{\alpha^{2}}\left(\frac{\Delta}{\mathrm{n} \omega_{o}^{2}}-1\right)
\end{aligned}
$$

The seventh order polynomial in A_{H} can be solved approximately as a function of ω_{0} and the input parameters ($n, b, C_{L_{0}}$, f). Once the roots $A_{H_{i}}$ have been determined, values $C_{H_{i}}{ }^{2}$ can be determined from Equation(3.8), and $\lambda_{i}{ }^{2}$ from Equation (3.7). The sign of λ_{i} (and thus $\Omega_{i} \equiv 1-\lambda_{i} \frac{B_{o}}{2}$) can be determined by substituting for $\mathrm{C}_{\mathrm{H}_{\mathrm{i}}}{ }^{2}$ and $\tan \phi_{\mathrm{H}_{\mathrm{i}}}$ in Equation (3.5.3).

Figure VII shows the results of such an analysis for the indicated input values. The results demonstrate the system's ability to generate multiple amplitudes in A_{H}, C_{H}, ϕ_{H} and Ω with varying ω_{0}. The possibility of producing a hysteresis effect exists as the upper branch of $A_{H}\left(\omega_{0}\right)$ is valid for $\Omega<1$ only, and the two lower branches for $\Omega>1$ only. The principle result of the stability analysis (Appendix D) is that the middle branch of $A_{H}\left(\omega_{0}\right)$ is unstable, while the upper and lower branches are stable. The arrows on Figure VII incorporate this information in describing possible behaviour for increasing or decreasing ω_{0}.

Although there are still remaining difficulties with the amplitudes of X and C_{L}, and with trends in the phase angle for $\Omega>1$, the inclusion of the variable damping term has resulted in a significant improvement in model performance within the lock-in range.

If one assumes X and C_{L} to be given by Equation (3.2), then substituting into Equations (2.2) and (3.3) and neglecting terms such as $A_{H}^{\prime}, \phi_{F}^{\prime}$, higher harmonics and combination tones and finally applying the principle of harmonic balance, one obtains the following system of equations:

$$
\begin{align*}
& a \omega_{0}{ }^{2} C_{F} \cos \phi_{F}=A_{F}\left(1-\omega_{F}{ }^{2}\right) \\
& a \omega_{0}{ }^{2} C_{F} \sin \phi_{F}=A_{F} \omega_{F} B_{0}\left(1+f \omega_{o}{ }^{2} A_{H}\right) \\
& a \omega_{0}^{2} C_{H} \cos \phi_{H}=A_{H}\left(1-\Omega^{2}\right) \\
& a \omega_{0}{ }^{2} C_{H} \sin \phi_{H}=A_{H} \Omega B_{0}\left(1+f \omega_{0}{ }^{2} A_{H}\right) \tag{3.10}\\
& \left.\frac{\left(\omega_{0}^{2}-\omega_{F}^{2}\right.}{\alpha \omega_{0} \omega_{F}}\right) \cos \phi_{F}+\sin \phi_{F}\left[1-\left(\frac{\Omega}{\omega_{0}}\right)^{2}\left(\rho_{F}\left(\frac{\omega_{F}}{\Omega}\right)^{2}+2 \rho_{H}\right)\right]=0 \\
& \frac{\left(\omega_{0}^{2}-\omega_{F}^{2}\right)}{\alpha \omega_{0} \omega_{F}} \sin \phi_{F}-\cos \phi_{F}\left[1-\left(\frac{\Omega}{\omega_{0}}\right)^{2}\left(\rho_{F}\left(\frac{\omega_{F}}{\Omega}\right)^{2}+2 \rho_{H}\right)\right]=\frac{b A_{F}}{\alpha \omega_{0} C_{F}} \\
& \frac{\left(\omega_{0}^{2}-\Omega^{2}\right)}{\alpha \omega_{0} \Omega} \cos \phi_{H}+\sin \phi_{H}\left[1-\left(\frac{\Omega}{\omega_{0}}\right)^{2} \quad\left(\rho_{H}+2 \rho_{F} \ldots\left(\frac{\omega_{F}}{\Omega}\right)\right)\right]=0 \\
& \frac{\left(\omega_{o}{ }^{2}-\Omega^{2}\right)}{\alpha \omega_{0} \Omega} \sin \phi_{H}-\cos \phi_{H}\left[1-\left(\frac{\Omega}{\omega_{0}}\right)^{2}\left(\rho_{H}+2 \rho_{F}\left(\frac{\omega_{F}}{\Omega}\right){ }^{2}\right]=\frac{b A_{H}}{\alpha \omega_{o} C_{H}}\right.
\end{align*}
$$

$$
\sigma_{H} \equiv \frac{\omega_{0}^{2}-\Omega^{2}}{\alpha \omega_{0} \Omega}
$$

then from Equations (3.10.5 and 6)

$$
\begin{equation*}
\sigma_{F}\left(1+\tan ^{2} \phi_{F}\right)=\frac{b a \omega_{0} \tan ^{2} \phi_{F}}{B_{0} \alpha \omega_{F}\left(1+f \omega_{0}^{2} A_{H}\right)} \tag{3.11}
\end{equation*}
$$

which uses $\frac{b A_{F}}{\alpha \omega_{b} C_{F}}=\frac{b a \omega_{0} \sin \phi_{F}}{B_{0} \alpha \omega_{F}\left(1+f \omega_{o}^{2} A_{H}\right)}$ from Equation (3.10.2). To proceed, it is necessary to make assumptions concerning the frequency behaviour $\Omega\left(\omega_{0}\right)$ (which is close to 1) and $\omega_{F}\left(\omega_{0}\right)$ (which is close to ω_{0}).

$$
\begin{aligned}
& \text { Assume that } \omega_{F} \cong \omega_{0} \text {, then from Equations (3.10.1 and 2) } \\
& \qquad \cdot \tan \phi_{F} \cong \frac{B_{0} \omega_{0}}{1-\omega_{0}^{2}}\left(1+f \omega_{0}^{2} A_{H}\right)
\end{aligned}
$$

thus, $\tan ^{2} \phi_{F} \ll 1$ for ω_{0}^{2} away from the immediate neighbourhood of $\omega_{0}=1$. From Equation (3.11) then

$$
\begin{aligned}
& \sigma_{F} \cong \frac{n}{\alpha}\left(\frac{B_{0} \omega_{0}}{\Delta}\right)^{2}\left(1+f \omega_{0}^{2} A_{H}\right) \\
& \text { where } \Delta \equiv \omega_{0}{ }^{2}-1
\end{aligned}
$$

Substituting for σ_{F} and $\tan \phi_{F}$ in Equation (3.10.5) yields

$$
\begin{equation*}
\rho_{F}\left(\frac{\omega_{o}}{\Omega}\right)^{2}+2 \rho_{H} \cong\left(1-\frac{n B_{o} \omega_{o}}{\alpha \Delta}\right)\left(\frac{\omega_{o}}{\Omega}\right)^{2} \tag{3.12.1}
\end{equation*}
$$

From Equation (3.10.7)

$$
\begin{equation*}
\rho_{H}+2 \rho_{F}\left(\frac{\omega_{o}}{\Omega}\right)^{2}=\left(1+\frac{\Delta}{\alpha \omega_{o} \tan \phi_{H}}\right)\left(\frac{\omega_{0}}{\Omega}\right) \tag{3.12.2}
\end{equation*}
$$

then solving for $\rho_{F, H}$ from Equations (3.12.1 and 2)

$$
\rho_{H}=\left(1-2 \frac{n B_{0} \omega_{0}}{\alpha \Delta}-\frac{\Delta}{\alpha \omega_{0} \tan \phi_{H}}\right) \frac{\omega_{0}}{3}
$$

$$
\begin{equation*}
\rho_{F}=\left(1+\frac{\mathrm{n} \mathrm{~B}_{0} \omega_{0}}{\alpha \Delta}+\frac{2 \Delta}{\alpha \omega_{0} \tan \phi_{\mathrm{H}}}\right) / 3 \tag{3.13}
\end{equation*}
$$

From Equations (3.10.7 and 8)

$$
\begin{equation*}
\left(\sigma_{H}-\frac{n \omega_{0}}{\alpha \Omega\left(1+£ \omega_{0}^{2} A_{H}\right)}\right) \tan ^{2} \phi_{H}+\sigma_{H}=0 \tag{3.14}
\end{equation*}
$$

introduce $\Omega \equiv 1-\frac{\lambda B_{0}}{2}$ and assume that

$$
\begin{gathered}
1-\Omega^{2}=\lambda \mathrm{B}_{\circ}-\frac{\lambda^{2} \mathrm{~B}_{0}^{2}}{4} \cong \lambda \mathrm{~B}_{\mathrm{o}} \\
\Omega, \Omega^{2} \cong 1
\end{gathered}
$$

then examine

$$
\begin{gathered}
\sigma_{H} \equiv \frac{\omega_{0}{ }^{2}-\Omega^{2}}{\alpha \omega_{0} \Omega} \cong \frac{\Delta}{\alpha \omega_{0}} \\
\tan \phi_{H} \equiv \frac{\Omega B_{0}}{1-\Omega^{2}}\left(1+£ \omega_{0}{ }^{2} A_{H}\right) \cong \frac{1+f \omega_{0}{ }^{2} A_{H}}{\lambda}
\end{gathered}
$$

Substituting for σ_{H} and $\tan \phi_{H}$ in Equation (3.14), one obtains

$$
\begin{equation*}
\lambda^{2}=\left(\frac{\mathrm{n} \omega_{0}^{2}}{\Delta\left(1+\mathrm{f} \omega_{0}^{2} \mathrm{~A}_{\mathrm{H}}\right)}-1\right)\left(1+\mathrm{f} \omega_{0}^{2} \mathrm{~A}_{\mathrm{H}}\right)^{2} \tag{3.15}
\end{equation*}
$$

From Equations (3.10.1 and 2)

$$
\begin{aligned}
\left(a \omega_{0}^{2}\right)^{2} C_{H}^{2} & =A_{H}^{2} B_{o}^{2}\left(\left(1-\Omega^{2}\right)^{2}+\left(1+f \omega_{0}^{2} A_{H}\right)^{2}\right) \\
& \cong A_{H}^{2} B_{0}^{2}\left(\lambda^{2}+\left(1+f \omega_{0}^{2} A_{H}\right)^{2}\right)
\end{aligned}
$$

then substituting for λ^{2} :

$$
C_{H}^{2}=\frac{A_{H}^{2} b^{2}}{n \omega_{0}^{2} \Delta}\left(1+f \omega_{o}^{2} A_{H}\right)
$$

or

$$
\begin{equation*}
\rho_{H}=A_{H}^{2} \frac{b^{2}}{n \omega_{0}^{2} C_{L_{0}}{ }^{2} \Delta}\left(1+f \omega_{0}^{2} A_{H}\right) \tag{3.16}
\end{equation*}
$$

Equating (3.13.1) and (3.16), and substituting for $\tan \phi_{H}$ and λ one obtains

$$
\begin{array}{r}
\left(\frac{n \omega_{0}^{2}}{\Delta\left(I+f \omega_{0}^{2} A_{H}\right)}-I\right)=\left[\begin{array}{l}
\frac{\alpha \omega_{0}}{\Delta}\left(\frac{3 b^{2}}{n \Delta\left(C_{L_{0}} \omega_{0}^{2}\right)^{2}} A_{H}^{2}\left(1+f \omega_{0}^{2} A_{H}\right)\right. \\
\\
\left.\quad+\frac{\left.2 n B_{0} \omega_{0}-1\right)}{\alpha \Delta}\right]^{2}
\end{array}\right]
\end{array}
$$

which can be expanded to yield

$$
\begin{equation*}
0=g_{1} A_{H}^{7}+g_{2} A_{H}^{6}+\ldots+g_{8} A_{H}^{\circ} \tag{3.17}
\end{equation*}
$$

where

$$
\begin{aligned}
& g_{1} \equiv 9 c_{1}{ }^{2}\left(f \omega_{0}{ }^{2}\right)^{3} \\
& g_{2} \equiv 27 c_{1}^{2}\left(f \omega_{0}^{2}\right)^{2} \\
& g_{3} \equiv 27 \mathrm{c}_{1}{ }^{2}\left(\mathrm{f} \omega_{0}{ }^{2}\right) \\
& g_{4} \equiv 9 C_{1}{ }^{2}+6 C_{1} C_{2}\left(f \omega_{0}{ }^{2}\right)^{2} . \\
& \mathrm{g}_{5} \equiv 12 \mathrm{C}_{1} \mathrm{C}_{2} \mathrm{f}_{\omega_{0}}{ }^{2} \\
& \mathrm{~g}_{6} \equiv 6 \mathrm{C}_{1} \mathrm{C}_{2} \\
& g_{7} \equiv f \omega_{o}^{2}\left(C_{2}^{2}+\left(\frac{\Delta}{\alpha \omega_{0}}\right)^{2}\right) \\
& g_{8} \equiv C_{2}^{2}+\left(\frac{\Delta}{\alpha \omega_{0}}\right)^{2} \quad\left(1-\frac{n \omega_{o}^{2}}{\Delta}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& C_{1} \equiv\left(\frac{b}{C_{L_{0}} \omega_{0}{ }^{2}}\right)^{2} \frac{1}{\mathrm{n} \Delta} \\
& C_{2} \equiv \frac{2 \mathrm{n} B_{0} \omega_{0}}{\alpha \Delta}-1
\end{aligned}
$$

The seventh order polynomial in A_{H} can be solved in a manner similar to Equation (3.9). Once the roots $A_{H_{i}}$ have been determined, values for $\mathrm{C}_{\mathrm{H}_{i}}{ }^{2}$ can be determined from Equation (3.16), and $\lambda_{i}{ }^{2}$ from Equation (3.15). The sign of λ_{i} (and thus $\Omega_{i} \equiv 1-\frac{\lambda_{i} B_{0}}{2}$) can be determined by substituting for $\mathrm{C}_{\mathrm{H}_{\mathrm{i}}}{ }^{2}$ and $\tan \phi_{\mathrm{H}_{\mathrm{i}}}$ in Equation (3.13.1). $\mathrm{C}_{\mathrm{F}_{i}}{ }^{2}$ is then given by Equation (3.13.2), and $A_{F_{i}}$ and $\phi_{F_{i}}$ from Equations (3.10.1 and 2).

Figure viti shows the results of such an analysis for the indicated input values. Since the forced cylinder response at ω_{F} is negligible away from the neighbourhood of $\omega_{0}=1, A_{F}$ and ϕ_{F} have not been shown. The results demonstrate the system's ability to generate a combination-type solution valid only at the extremes of the resonance region, and realistic behaviour of C_{L} for $\omega_{0}<1.15$ or $\omega_{0}>1.38$. These features are both characteristic of vortex-induced cylinder oscillation.

There is no solution for $1.15<\omega_{0}<1.28$ as $C_{F_{i}}$ is imaginary over this range. There is no solution for $\omega_{0}<1.05$ as the results are invalid in the neighbourhood of $\omega_{0}=1$.

The inclusion of the variable damping term in the differential equation governing cylinder displacement appears to allow for the realistic accommodation of a combination-oscillation form of solution. This has the effect of extending the range of applicability of the coupled-oscillator model outside of the lock-in region.

4. DISCUSSION

Several changes in form of the governing equations of Hartlen and Currie's original coupled-oscillator model for vortex-induced oscillation have been suggested and examined. Various forms of solution to the modified equations and the question of their stability have been investigated as well. Predicted results have been compared with experimental information, in order to obtain a measure of their usefulness.

The results of this work show the application of a combinationoscillation form of solution to Hartlen and Currie's original model, and the extension to a seventh order non-1inearity in $C_{L}^{\prime \prime}$ to be unproductive. A positive contribution has been made, however, with the inclusion of an effective structural damping term dependent on wind speed and cylinder displacement. The modified governing equations then produce a hysteresis mechanism within the lock-in region (harmonic solution), and realistic system behaviour outside of lock-in (combination-oscillation form of solution).

The inclusion of a variable structural damping term (which is consistent with experimental evidence) has the effect of improving trends in the coupled-oscillator model performance, and extending its range of applicability. It is proposed that the results are encouraging enough to warrant further investigation of this form of non-linearity.

REFERENCES

1. Ferguson, N., "The Measurement of Wake and Surface Effects on the Sub-critical Flow Past a Circular Cylinder at Rest and in VortexExcited Oscillation", M.A.Sc. Thesis, U.B.C., 1965.
2. Feng, C.C., "The Measurement of Vortex Induced Effects in Flow Past Stationary and Oscillating Circular and D-section Cylinders", M.A.Sc. Thesis, U.B.C., 1968.
3. Parkinson, G.V., "Mathematical Models of Flow-Induced Vibrations", Symposium on Flow-Induced Structural Vibrations, Karlsruhe, August 1972.
4. Hartlen, R.T., Baines, W.D., and Currie, I.G., "Vortex-Excited Oscillation of a Circular Cylinder", UTME - TP 6809, November 1968.
5. Parkinson, G.V., "Wind-Induced Instability of Structures", Phil Trans. Roy. Soc. Lond. A, 269, 1971, 395 - 409.
6. Stoker, J.J., "Non-linear Vibrations in Mechanical and Electrical Systems", Interscience Publishers, Inc., New York, 1950.
7. Minorsky, N., "Non-linear Oscillations", van Nostrand, 1962.
8. Landl, R., "Theoretical Model for Vortex-Excited Oscillations", Fnternational Symposium Vibration Problems in Industry, Keswick, England. April 1973.
9. Currie, I.G., Leutheusser, H.J. and Oey, H.L., "On the Double-Amplitude Response of Circular Cylinders Excited by Vortex Shedding", Proc. CANCAM '75, Fredericton, New Brunswick, May, 1975.

APPENDIX A

Hartlen and Currie's original system of differential equation-solution by the methods of van der Pol and $K-B$

Governing System

$$
\begin{gathered}
X^{\prime \prime}+2 \beta_{0} X^{\prime}+X=a \omega_{0}^{2} C_{L} \\
C_{L}^{\prime \prime}-\alpha \omega_{0} C_{L}^{\prime}+\frac{Y}{\omega_{0}}\left(C_{L}^{\prime}\right)^{3}+\omega_{0}^{2} \cdot C_{L}=b X^{\prime}
\end{gathered}
$$

(i) Solution after van der Pol

Assume

$$
\begin{gathered}
X=A_{H} \sin \Omega \tau \\
C_{L}=C_{H} \sin \left(\Omega \tau+\phi_{H}\right)
\end{gathered}
$$

then substituting for X and C_{L} in Equation $A .1$ and neglecting terms such as A_{H}^{\prime}, ϕ_{H}^{\prime}, and higher harmonics, one obtains the following system of equations after applying the principle of harmonic balance:

$$
\begin{gathered}
a \omega_{0}^{2} C_{H} \cos \phi_{H}=\left(1-\Omega^{2}\right) A_{H} \\
a \omega_{0}^{2} C_{H} \sin \phi_{H}=B_{0} \Omega A_{H}
\end{gathered}
$$

$$
\begin{gather*}
\frac{\left(\omega_{0}^{2}-\Omega^{2}\right)}{\alpha \omega_{0} \Omega} \cos \phi_{H}+\sin \phi_{H}\left(1-\left(\frac{\Omega}{\omega_{0}}\right)^{2} \rho_{H}\right)=0 \\
\frac{\left(\omega_{0}^{2}-\Omega^{2}\right)}{\alpha \omega_{0} \Omega} \sin \phi_{H}-\cos \phi_{H}\left(1-\left(\frac{\Omega}{\omega_{0}}\right)^{2} \rho_{H}\right)=\frac{b A_{H}}{\alpha \omega_{0} C_{H}}
\end{gather*}
$$

where

$$
B_{o} \equiv 2 \beta_{0}
$$

$$
\begin{aligned}
& C_{L_{0}} \equiv \sqrt{\frac{4}{3} \frac{\alpha}{\gamma}} \\
& \rho_{H} \equiv\left(\frac{C_{H}}{C_{L_{0}}}\right)
\end{aligned}
$$

From Equations A.3.1 and 2

$$
\begin{aligned}
& \tan \phi_{H}=\frac{B_{0} \Omega}{1-\Omega^{2}} \\
& A_{H}^{2}=\frac{C_{H}^{2}\left(\frac{a \omega_{0}}{B_{0} \Omega_{\ell}}\right)}{1+\cot ^{2} \phi_{H}}
\end{aligned}
$$

From Equations A.3.3. and 4

$$
\begin{gathered}
\omega_{0}^{2}=\frac{\Omega^{2}}{1-\frac{n}{1+C o t^{2} \phi_{H}}} \\
\mathrm{C}_{\mathrm{H}}^{2}=\left(\mathrm{C}_{\mathrm{L}_{0}} \frac{\omega_{0}}{\Omega}\right)^{2}\left(1+\frac{\left(\omega_{0}^{2}-\Omega^{2}\right)}{\alpha \omega_{0} \Omega \tan \phi_{H}}\right) \\
\text { where } \mathrm{n} \equiv \frac{\mathrm{ab}}{\mathrm{~B}_{0}}
\end{gathered}
$$

(ii) Solution by the $\mathrm{K}-\mathrm{B}$ method (to ascertain the stability of the approximate solutions to Equation A.1).

Rewriting Equation A. 1

$$
\begin{gathered}
X^{\prime \prime}+X=a \omega_{0}^{2} C_{L}-\frac{B_{o}}{b}\left(C_{L}^{\prime \prime}-\alpha \omega_{0} C_{L}^{\prime}+\frac{\gamma}{\omega_{0}} C_{L}^{\prime 3}+\omega_{o}^{2} C_{L}\right) \\
\text { assuming } X=A_{H}(\tau) \sin \left(\tau+\theta_{H}(\tau)\right) \\
X^{\prime}=A_{H}(\tau) \cos \left(\tau+\theta_{H}(\tau)\right)
\end{gathered}
$$

which implies that

$$
\begin{gathered}
A_{H}^{\prime}(\tau) \sin \left(\tau+\theta_{H}(\tau)\right)+A_{H}(\tau) \quad \theta_{H}^{\prime}(\tau) \cos \left(\tau+\theta_{H}(\tau)\right)=0 \\
\theta_{H}^{\prime}(\tau)=-\frac{A_{H}^{\prime}(\tau)}{A_{H}(\tau)} \frac{\sin \left(\tau+\theta_{H}(\tau)\right)}{\cos \left(\tau+\theta_{H}(\tau)\right)}
\end{gathered}
$$

or

$$
\ldots \text { A. } 7
$$

then multiplying Equation A. 5 by X^{\prime}, one can determine

$$
A_{H}^{\prime}(\tau)=\left(a \omega_{0}^{2} C_{L}-\frac{\dot{B}_{0}}{b}\left(C_{L}^{\prime \prime}-\alpha \omega_{0} C_{L}+\frac{\dot{\gamma}}{\omega_{0}} C_{L}^{\prime 3}+\omega_{0}^{2} C_{L}\right)\right) \quad \cos \left(\tau+\theta_{H}(\tau)\right)
$$

and from Equation A. 7

$$
\theta_{H}^{\prime}(\tau)=-\left(a \omega_{0}^{2} C_{L}-\frac{B_{0}}{b}\left(C_{L}^{\prime \prime}-\alpha \omega_{o} C_{L}+\frac{\gamma}{\omega_{0}} C_{L}^{\prime}{ }^{3}+\omega_{o}^{2} C_{L}\right)\right) \frac{\sin \left(\tau+\theta_{H}(\tau)\right)}{A_{H}(\tau)}
$$

Since a, B_{0} are $0\left(10^{-3}\right)$

$$
\begin{gathered}
\overline{A_{H}^{\top}} \cong \frac{1}{2 \pi} \int_{0}^{2 \pi}\left(a \omega_{0}^{2} c_{L}-\frac{B_{0}}{b}(\ldots)\right) \cos \psi d \psi \\
\overline{\theta_{H}^{\top}} \cong-\frac{1}{2 \pi A_{H}} \int_{0}^{2 \pi}\left(a \omega_{0}^{2} C_{L}-\frac{B_{0}}{b}(\ldots)\right) \sin \psi d \psi \\
\text { where } \psi \equiv \tau+\theta_{H}
\end{gathered}
$$

If one assumes that $C_{L}=C_{H}(\tau) \sin \left(\tau+\phi_{H}(\tau)\right)$
and that $C_{H}^{\prime}, \phi_{H}^{\prime}$, are $0\left(10^{-3}\right)$, then from Equation A. 9

$$
\overline{A_{H}^{\prime}} \cong \frac{a C_{H}}{2}\left[-\left(\omega_{0}^{2}+\frac{1}{n}\left(1-\omega_{0}^{2}\right)\right) \sin \zeta+\frac{\alpha \omega_{0}}{n}\left(1-\frac{\left.\rho_{H}\right)}{\omega_{0}^{2}} \cos \zeta\right]\right.
$$

$$
\overline{\theta_{H}^{\prime}}=\frac{-a C_{H}}{2 A_{H}}\left[\left(\omega_{0}^{2}+\frac{1}{n}\left(1-\omega_{0}^{2}\right)\right) \quad \cos \zeta+\frac{\alpha \omega_{0}}{n}\left(1-\frac{\rho}{\omega_{0}^{2}}\right) \sin \zeta\right]
$$

$$
\text { where } \quad \zeta \equiv \theta_{\mathrm{H}}-\phi_{\mathrm{H}}
$$

$$
\rho_{H} \equiv \frac{C_{H}^{2}}{\frac{4}{3} \frac{\alpha}{\gamma}} \equiv \frac{C_{H}^{2}}{C_{L_{o}}{ }^{2}}
$$

Stationary solutions to Equations $A .10$ exist for $\overline{A_{H}^{\prime}}=0$ in which case $A_{H}=A_{H_{S}}, C_{H}=C_{H_{S}}$ and $\overline{\theta_{H}^{\prime}}=-K_{H}$ which implies $\theta_{H_{S}}=-K_{H}$. To first order approximation ζ_{s} must not be a function of τ, thus $\phi_{H_{s}}=\theta_{H_{s}}-\zeta_{s}$ $=-K_{H_{s}}{ }^{\tau}-\zeta_{s}$ where $\zeta_{s} \neq \zeta_{S}(\tau)$. In which case one obtains

$$
-\left(\omega_{0}^{2}+\frac{1}{n}\left(1-\omega_{0}^{2}\right)\right) \sin \zeta_{s}+\frac{\alpha \omega_{0}}{n}\left(1-\frac{\rho_{H_{s}}}{\omega_{0}^{2}}\right) \cos \zeta_{s}=0
$$

$$
\left(\omega_{0}^{2}+\frac{1}{n}\left(1-\omega_{0}^{2}\right)\right) \cos \zeta_{s}+\frac{\alpha \omega_{0}}{n}\left(1-\frac{\rho_{H_{S}}}{\omega_{0}^{2}}\right) \sin \zeta_{s}=\frac{2 \kappa_{H} A_{H}}{a C_{H_{S}}}
$$

Two further equations are obtained by requiring that the stationary solutions satisfy Equation A.1. Substituting for X and C_{L} :

$$
\begin{gathered}
x=A_{H_{S}} \sin \left(\tau+\theta_{H_{S}}\right) \equiv A_{H_{S}} \sin \left(1-\kappa_{H}\right) \tau \equiv A_{H_{S}} \sin \Omega \tau \ldots \operatorname{A.12} \\
C_{L}=C_{H_{S}} \sin \left(\tau+\phi_{H_{S}}\right) \equiv C_{H_{S}} \sin \left(\left(1-\kappa_{H}\right) \tau-\zeta_{S}\right) \equiv C_{H} \sin \left(\Omega \tau-\zeta_{S}\right) \\
\text { where } \Omega \equiv 1-\kappa_{H}
\end{gathered}
$$

$$
\begin{align*}
& a \omega_{0}^{2} C_{H_{s}} \sin \zeta_{s}=-B_{0} \Omega A_{H_{s}} \\
& a \omega_{0}^{2} C_{H_{s}} \cos \zeta_{s}=A_{H_{s}}\left(1-\Omega^{2}\right)
\end{align*}
$$

Solving Equations A. 11 and A. 13 one obtains

$$
\begin{gathered}
\omega_{0}^{2}=\frac{1}{1-\frac{n}{1+\cot ^{2} \zeta_{s}}} \\
A_{H_{s}}^{2}=\left(\frac{a \omega_{0}^{2}}{B_{0} \Omega^{2}}\right)^{2} \frac{C_{H_{s}}^{2}}{\left(1+\cot ^{2} \zeta_{s}\right)} \\
\left.C_{H_{s}}{ }^{2}=\left(C_{L_{0}} \omega_{0}^{2}\right)^{2\left[1-\frac{\tan s}{\alpha \omega_{0}}\right.}\left(1+\omega_{0}^{2}(n-1)\right)\right] \\
\text { where } \tan \zeta_{s} \equiv \frac{-B_{0} \Omega}{1-\Omega^{2}}
\end{gathered}
$$

which can be shown to be identical to the results obtained by the method of van der Pol (Equation A.4) provided that $\Omega, \Omega^{2} \cong 1$.

To determine the stability of a particular solution, one need To determine the stability of a particular solution, one need
examine the sign of $\frac{d A_{H}^{\top}}{d A_{H}}$ only in the neighbourhood of the root $A_{H_{s}}$. From the expression for $\overline{A_{H}^{\prime}}$ (Equation A.10.1) one can determine

$$
\frac{d \overline{A_{H}^{\top}}}{d A_{H}}=\frac{d C_{H}}{d A_{H}}\left(\frac{\overline{A_{H}^{\top}}}{C_{H}}-\frac{a \alpha \rho_{H}}{n \omega_{o}} \cos \zeta\right)
$$

thus

$$
\left.\frac{d \overline{A_{H}^{\prime}}}{d \overline{A_{H}}}\right|_{A_{H}=A_{H_{S}}}=\left.\frac{-a \alpha \rho_{H_{S}}}{n \omega_{0}} \cos \zeta_{s} \frac{d C_{H}}{d A_{H}}\right|_{A_{H}=A_{H}} \ldots \text { A. } 15
$$

From Equation A. 14.2

$$
\frac{d C_{H}}{d A_{H}}=\left(\frac{B_{2} \Omega}{a \omega_{0}^{2}}\right)^{2}\left(1+\cot ^{2} \zeta\right) \frac{A_{H}}{C_{H}}
$$

The stability criterion is

$$
\begin{aligned}
& \left.\frac{d \overline{A_{H}^{\prime}}}{d A_{H}}\right|_{A_{H}=A_{H_{S}}}=0 . \text { Stable } \\
& \quad>0 \text { Unstable }
\end{aligned}
$$

Examining Equation A.15, since $\frac{d C_{H}}{d A_{H}}, a, \alpha, \rho_{H_{S}}, n, w_{0}$, are all positive quantities, then the question of stability is decided by $-\cos \zeta$ or $-\cos (-\zeta)$. Thus

$$
\begin{aligned}
& (-\zeta)<\pi / 2 \rightarrow A_{H_{S}} \text { will be stable } \\
& (-\zeta)>\pi / 2 \rightarrow A_{H_{S}} \text { will be unstable }
\end{aligned}
$$

APPENDIX B

Extension to 7 th order non-1inearity in $C_{L}^{\prime}-$ solution by the methods of van der Pol and $K-B$.

Governing System

$$
C_{L}^{\prime \prime}-\alpha \omega_{0} C_{L}^{\prime}+B_{0} X^{\prime}+X=a \omega_{0}^{2} C_{L} \gamma_{0}^{\prime}\left(C_{L}^{\prime}\right)^{3}-\frac{\eta}{\omega_{0}^{3}}\left(C_{L}^{\prime}\right)^{5}+\frac{\delta}{\omega_{0}^{5}}\left(C_{L}^{\prime}\right)^{7}+\omega_{0}^{2} C_{L}=b X^{\prime}
$$

(i) Solution after van der Pol

Assume

$$
\begin{gathered}
X=A_{H} \sin \Omega \tau \\
C_{L}=C_{H} \sin \left(\Omega \tau+\phi_{H}\right)
\end{gathered}
$$

Substituting for X and C_{L} into Equation $B .1$, and applying the principle of harmonic balance one obtains:

$$
\begin{aligned}
& a \dot{\omega}_{0}^{2} C_{H} \cos \phi_{H}=A_{H}\left(1-\Omega^{2}\right) \\
& a \omega_{0}^{2} C_{H} \sin \phi_{H}=A_{H} B_{o} \Omega \\
& \frac{\left(\omega_{0}^{2}-\Omega^{2}\right)}{\alpha \omega_{0} \Omega} \cos \phi_{H}+ \\
& {\left[1-\frac{3 \gamma}{4 \alpha} \frac{\Omega^{2}}{\omega_{0}}{ }^{2} C_{H}^{2}+\frac{5}{8} \frac{\eta}{\alpha}\left(\frac{\Omega}{\omega_{0}}\right)^{4} C_{H}^{4}-\frac{35}{64} \frac{\delta}{\alpha}\left(\frac{\Omega}{\omega_{o}}\right)^{6} C_{H}{ }^{6}\right] \sin \phi_{H}=0} \\
& \frac{\left(\omega_{0}^{2}-\Omega^{2}\right)}{\alpha \omega_{0} \Omega} \sin \phi_{H}-\left[1-\frac{3 \gamma}{4 \alpha}\left(\frac{\Omega}{\omega}\right)^{2} C_{H}^{2}+\right.
\end{aligned}
$$

$$
\left.\frac{5}{8} \frac{\eta}{\alpha}\left(\frac{\Omega}{\omega_{o}}\right)^{2} C_{H}^{4}-\frac{35}{64} \cdot \frac{\delta}{\alpha}\left(\frac{\Omega}{\omega_{o}}\right)^{6} C_{H}^{6}\right] \cos \phi_{H}=\frac{b A_{H}}{\alpha \omega_{o} C_{H}}
$$

Equations B. 3.3 and 4 are obtained by assuming that

$$
\begin{gathered}
\mathrm{C}_{\mathrm{L}}^{\prime}=\mathrm{C}_{\mathrm{H}} \Omega \cos \left(\Omega \tau+\phi_{H}\right) \\
\left(\mathrm{C}_{\mathrm{L}}^{\prime}\right)^{3} \cong \frac{3}{4} \mathrm{C}_{\mathrm{H}}^{3} \quad \Omega^{3} \cos \left(\Omega \tau+\phi_{H}\right) \\
\left(\mathrm{C}_{\mathrm{L}}^{\prime}\right)^{5} \cong \frac{5}{8} \quad \mathrm{C}_{\mathrm{H}}^{5} \quad \Omega^{5} \cos \left(\Omega \tau+\phi_{H}\right) \\
\left(\mathrm{C}_{\mathrm{L}}^{\prime}\right)^{7} \\
=\frac{35}{64} \quad C_{H}^{7} \Omega^{7} \cos \left(\Omega \tau+\phi_{H}\right)
\end{gathered}
$$

From Equation B. 3 one can determine:

$$
\begin{gathered}
\tan \phi_{H}=\frac{B_{0} \Omega}{1-\Omega^{2}} \\
A_{H}^{2}=\frac{C_{H}^{2}\left(\frac{\alpha \omega_{0}}{B_{0} \Omega}\right)}{\left(1+\cot ^{2} \phi_{H}\right)} \\
\omega_{0}^{2}=\frac{\Omega^{2}}{1-\frac{n}{1+\cot ^{2} \phi_{H}}} \\
C_{H}^{6}-\frac{8}{7} \frac{\eta}{\delta}\left(\frac{\omega_{0}}{\Omega}\right)^{2} C_{H}^{4}+\frac{48}{35} \frac{\gamma}{\delta}\left(\frac{\omega_{0}}{\Omega}\right)^{6}\left[\frac{\alpha}{\delta}+\frac{\left(\omega_{0}{ }^{2}-\Omega^{3}\right)}{\delta \omega_{0} \Omega \tan \phi_{H}}\right]=0
\end{gathered}
$$

In order to provide for a double amplitude response within the lock-in region, three real roots of the cubic polynomial in $C_{H}{ }^{2}$ must exist. For a particular value of Ω (and thus ω_{0}) within the region, values of
$\overline{\mathrm{C}}_{\mathrm{L}_{\text {max }}}$ and $\overline{\mathrm{C}}_{\mathrm{L}_{\text {min }}}$ are available from experimental data and provide two equations for the determination of the non-1inear coefficients. The choice of a third root ($\bar{C}_{L_{\text {unstable }}}$) is made in order to establish $\frac{\eta}{\delta}$, $\frac{\gamma}{\delta}, \frac{\alpha}{\delta}$ so that a single real root of predetermined amplitude ($C_{L_{o}}$) is predicted outside of the lock-in region. This requires the selection of an appropriate value of δ as well. Once the various parameters have been specified, Equation B. 4.4 can be solved for $C_{H_{i}}{ }^{2}\left(\omega_{0}\right)$ by standard methods.
(ii) Solution by the $\mathrm{K}-\mathrm{B}$ method

Rewrite Equations B. 1

$$
\begin{aligned}
X^{\prime \prime}+x & =a \omega_{0}^{2} \cdot C_{L}-\frac{B_{0}}{b}\left[C_{L}^{\prime \prime}-\alpha \omega_{0} C_{L}^{\prime}+\frac{\gamma}{\omega_{0}}\left(C_{L}^{\prime \prime}\right)^{3}\right. \\
& \left.-\frac{\eta}{\omega_{0}^{3}}\left(C_{L}^{\prime}\right)^{5}+\frac{\delta}{\omega_{0}^{5}} C_{L}^{\prime 7}+\omega_{0}^{2} C_{L}\right]
\end{aligned}
$$

assume

$$
\begin{aligned}
& X=A_{H}(\tau) \sin \left(\tau+\theta_{H}(\tau)\right) \\
& X^{\prime}=A_{H}(\tau) \cos \left(\tau+\theta_{H}(\tau)\right) \\
& C_{L}=C_{H}(\tau) \sin \left(\tau+\phi_{H}(\tau)\right)
\end{aligned}
$$

then proceeding in a manner identical to that introduced in Appendix A (ii) one obtains

$$
\begin{aligned}
& \overline{A_{H}^{\prime}} \cong \frac{a C_{H}}{2}\left[-\left(\omega_{0}^{2}+\frac{1}{n}\left(1-\omega_{0}^{2}\right)\right) \sin \zeta+\frac{\alpha \omega_{0}}{n} G\left(C_{H}\right) \cos \zeta\right] \\
& \overline{\theta_{H}^{\prime}} \cong \frac{-a C_{H}}{2 A_{H}}\left[\left(\omega_{0}^{2}+\frac{1}{n}\left(1-\omega_{0}^{2}\right)\right) \cos \zeta+\frac{\alpha \omega_{0}}{n} G\left(C_{H}\right) \sin \zeta\right]
\end{aligned}
$$

$$
\begin{gathered}
\text { where } \zeta \equiv \theta_{H}-\phi_{H} \\
G\left(C_{H}\right) \equiv 1-\frac{3 \gamma}{4 \alpha} \frac{C_{H}^{2}}{\omega_{0}^{2}}+\frac{5}{8} \frac{\eta}{\alpha} \frac{C_{H}^{4}}{\omega_{0}^{4}}-\frac{35}{64} \frac{\delta}{\alpha} \frac{C_{H}^{6}}{\omega_{0}^{6}}
\end{gathered}
$$

Stationary solutions to Equation B. 6 exist for

$$
\begin{array}{ll}
\overline{A_{H}}=0 & \text { in which case } \\
& A_{H}=A_{H} \\
& C_{H}=C_{H_{S}} \\
\overline{\theta_{H}}=-K_{H} \quad \text { which implies } & \theta_{H}=-\kappa_{H} \tau
\end{array}
$$

To a first order approximation, ζ_{s} must not be a function of τ, thus

$$
\phi_{H_{s}}=\theta_{H_{s}}-\zeta_{s}=-\kappa_{H} \tau-\zeta_{s} \text { where } \zeta_{s} \neq \zeta_{s}
$$

In which case one obtains

$$
-\left(\omega_{0}^{2}+\frac{1}{n}\left(1-\omega_{0}^{2}\right)\right) \sin \zeta s+\frac{\alpha \omega_{o}}{n} G\left(C_{H_{s}}\right) \cos \zeta s=0
$$

$\left(\omega_{0}^{2}+\frac{1}{n}\left(1-\omega_{0}^{2}\right)\right) \cos \zeta_{s}+\frac{\alpha \omega_{e}}{n} G\left(C_{H_{s}}\right) \sin \zeta_{s}=\frac{2 \kappa_{H}}{\alpha} \frac{A_{H_{s}}}{C_{H_{s}}} \quad \ldots$ B. 7

It is required as well that the stationary solution satisfy Equation B. 1 for

$$
\begin{gathered}
x=A_{H_{S}} \sin \left(\tau+\theta_{H_{S}}\right) \equiv A_{H_{S}} \sin \left(1-\kappa_{H}\right) \tau \equiv A_{H_{s}} \sin \Omega \tau \\
C_{L}=C_{H_{s}} \sin \left(\tau+\phi_{H_{S}}\right) \equiv C_{H_{S}} \sin \left(\left(1-\kappa_{H}\right) \tau-\zeta_{s}\right) \equiv C_{H_{S}} \sin (\Omega \tau-\zeta s)
\end{gathered}
$$

which provides

$$
\begin{aligned}
& a \omega_{0}^{2} C_{H_{S}} \sin \zeta s=-B_{0} \Omega A_{H_{S}} \\
& a \omega_{0}^{2} C_{H_{s}} \cos \zeta_{s}=A_{H_{S}}\left(1-\Omega^{2}\right)
\end{aligned}
$$

... B. 8

From Equations B. 7 and 8 one obtains:

$$
\begin{gathered}
\omega_{0}^{2}=\frac{1}{1-\frac{n}{1+\cot ^{2} \zeta_{s}}} \\
A_{H_{S}}^{2}=\left(\frac{a \omega_{0}^{2}}{B \Omega}\right)^{2} \frac{C_{H_{s}}^{2}}{\left(1+\cot ^{2} \zeta_{s}\right)} \\
C_{H}^{6}-\frac{8}{7} \omega_{0}^{2} \frac{\eta}{\delta} C_{H}^{4}+\frac{48}{35} \frac{\gamma}{\delta} \omega_{0}^{4} C_{H}^{2} \\
-\frac{64}{35} \omega_{0}^{6}\left[\frac{\alpha}{\delta}-\frac{n}{\omega_{0} \delta}\left(\omega_{0}^{2}+\frac{1}{n}\left(1-\omega_{0}^{2}\right)\right) \tan \zeta_{s}\right]=0
\end{gathered}
$$

$$
\text { where } \tan \zeta_{s}=\frac{-\Omega \mathrm{B}}{1-\Omega^{2}}
$$

which can be shown to be identical to the results obtained by the method of van der Pol (Equation B.4) provided that $\Omega, \Omega^{2}, \Omega^{4}, \Omega^{6} \cong 1$.

To determine the stability of a root $A_{H_{S}}$, examine the sign of $\left.\frac{d \overline{A_{H}^{\prime}}}{d \overline{A_{H}}}\right|_{A_{H}=A_{H}} \quad$. From Equation B. 6.1 one has that $\overline{A_{H}^{\prime}}=F\left(C_{H}\right)$, therefore

$$
\frac{d \overline{A_{H}}}{d A_{H}}=\frac{d F}{d C_{H}} \frac{d C_{H}}{d A_{H}} \text { which can be evaluated from Equations }
$$

B. 6.1 and 9.2. The criterion of stability being

$$
\begin{aligned}
& \left.\frac{d \overline{A_{H}^{\prime}}}{d A_{H}}\right|_{A_{H}=A_{H_{s}}} \quad<0 \text { stable } \\
&
\end{aligned}
$$

APPENDIX C

Combination-oscillation solution applied to Hartlen and Currie's original system (solution by the method of van der Pol).

Assume

$$
\begin{gathered}
X=A_{H} \sin \Omega \tau+A_{F} \sin \omega_{F} \tau \\
C_{L}=C_{H} \sin \left(\Omega \tau+\phi_{H}\right)+C_{F} \sin \left(\omega_{F} \tau+\phi_{F}\right)
\end{gathered}
$$

then substituting for X and C_{L} into Equation $A .1$ and neglecting terms such as A_{H}^{\prime}, $\phi_{F}{ }^{\prime}$, higher harmonics and combination tones, the following results are obtained after applying the principle of harmonic balance:

$$
\begin{aligned}
& a \omega_{0}{ }^{2} C_{F} \cos \phi_{F}=A_{F}\left(1-\omega_{F}{ }^{2}\right) \\
& a \omega_{0}^{2} C_{F} \sin \phi_{F}=A_{F} B_{o} \omega_{F} \\
& a \omega_{o}{ }^{2} C_{H} \cos \phi_{H}=A_{H}\left(1-\Omega^{2}\right) \\
& a \omega_{0}{ }^{2} C_{H} \sin \phi_{H}=A_{H} B_{o} \Omega \\
& \frac{\left(\omega_{0}^{2}-\omega_{F}^{2}\right)}{\alpha \omega_{0} \cdot \omega_{F}} \cos \phi_{F}+\sin \phi_{F}\left[1-\left(\frac{\Omega}{\omega_{0}}\right)^{2} \quad\left(\rho_{F}\left(\frac{\omega_{F}}{\Omega}\right)^{2}+2 \rho_{H}\right)\right]=0 \\
& \frac{\left(\omega_{o}^{2}-\omega_{F}^{2}\right)}{\alpha \omega_{o} \omega_{F}} \sin \phi_{F}-\cos \phi_{F}\left[1-\left(\frac{\Omega}{\omega_{o}}\right)^{2}\left(\rho_{F}\left(\frac{\omega_{F}}{\Omega}\right)^{2}+2 \rho_{H}\right)\right]=\frac{b A_{F}}{\alpha \omega_{o} C_{F}}
\end{aligned}
$$

$\frac{\left(\omega_{0}{ }^{2}-\Omega^{2}\right)}{\alpha \omega_{0} \Omega} \cos \phi_{H}+\sin \phi_{H}\left[1-\left(\frac{\Omega}{\omega_{0}}\right)^{2}\left(\rho_{H}+2 \rho_{F}\left(\frac{\omega_{F}}{\Omega}\right)^{2}\right)\right]=0$
$\frac{\left(\omega_{0}^{2}-\Omega^{2}\right)}{\alpha \omega_{0} \Omega} \sin \phi_{H}-\cos \phi_{H}\left[1-\left(\frac{\Omega}{\omega_{0}}\right)^{2}\left(\rho_{H}+2 \rho_{F}\left(\frac{\omega_{F}}{\Omega}\right)^{2}\right)\right]^{\prime}=\frac{b A_{H}}{\alpha \omega_{0} C_{H}}$

$$
\text { where } \begin{aligned}
\rho_{H} & \equiv \frac{C_{H}^{2}}{\frac{4}{3} \frac{\alpha}{\gamma}} \equiv\left(\frac{C_{H}}{C_{L_{0}}}\right)^{2} \\
\rho_{F} & \equiv \frac{C_{F}^{2}}{\frac{4}{3} \frac{\alpha}{\gamma}} \equiv\left(\frac{C_{F}}{C_{L_{0}}}\right)^{2}
\end{aligned}
$$

Note that Equations C.2.5-7 assume that

$$
\begin{aligned}
& \left(\mathrm{C}_{\mathrm{L}}{ }^{\prime}\right)^{3} \cong \frac{3}{4} \Omega^{3 .} \mathrm{C}_{\mathrm{F}} \frac{\omega_{\mathrm{F}}}{\Omega} \cos \left(\omega_{\mathrm{F}} \tau+\phi_{\mathrm{F}}\right)\left[\mathrm{C}_{\mathrm{F}}{ }^{2}\left(\frac{\omega_{\mathrm{F}}}{\Omega}\right)^{2}+2 \mathrm{C}_{\mathrm{H}}{ }^{2}\right] \\
& \quad+\frac{3}{4} \Omega^{3} \mathrm{C}_{\mathrm{H}} \cos \left(\Omega \mathrm{~T}+\phi_{\mathrm{H}}\right)\left[\mathrm{C}_{\mathrm{H}}{ }^{2}+2{\mathrm{C}_{\mathrm{F}}{ }^{2}\left(\frac{\omega_{\mathrm{F}}}{\Omega}\right)}^{2}\right]
\end{aligned}
$$

From Equations C. 2.5 and 6 one obtains

$$
\begin{gather*}
\omega_{0}{ }^{2}=\frac{\omega_{F}{ }^{2}}{1-\frac{n}{1+\cot ^{2} \phi_{F}}} \\
2 \rho_{H}+\rho_{F}\left(\frac{\omega_{F}}{\Omega}\right)^{2}=\left(\frac{\omega}{\Omega}\right)^{2}\left[1+\frac{\left(\omega_{0}^{2}-\omega_{F}\right)^{2}}{\alpha \omega_{0} \omega_{F} \tan \phi_{F}}\right]
\end{gather*}
$$

From Equations C.2.7 and 8

$$
\omega_{o}^{2}=\frac{\Omega^{2}}{1-\frac{n}{1+\cot ^{2}} \phi_{H}}
$$

$$
\rho_{\mathrm{H}}+2 \rho_{\mathrm{F}}\left(\frac{\omega_{\mathrm{F}}}{\Omega}\right)^{2}=\left(\frac{\omega_{o}}{\Omega}\right){ }^{2}\left[1+\frac{\left(\omega_{o}^{2}-\Omega^{2}\right)}{\alpha \omega_{0} \Omega \tan \phi_{\mathrm{H}}}\right]
$$

From Equations C.2.1-4

$$
\begin{gathered}
\tan \phi_{F}=\frac{\omega_{F}{ }_{0}}{1-\omega_{F}^{2}} \\
A_{F}^{2}=\left(\frac{a \omega_{0}^{2}}{B_{0} \omega_{F}}\right) \frac{C_{F}^{2}}{\left(1+\cot ^{2} \phi_{F}\right)} \\
\tan \phi_{H}=\frac{\Omega B_{0}}{1-\Omega^{2}} \\
A_{H}^{2}=\left(\frac{a \omega_{0}^{2}}{B_{0} \Omega}\right) \frac{C_{H}^{2}}{\left(1+\cot ^{2} \phi_{H}\right)}
\end{gathered}
$$

If one assumes that $\Omega \cong 1$ and $\omega_{F} \cong \omega_{\text {o }}$ then Equations C. 3 can be solved for $\rho_{H, F}, A_{H, F}, \phi_{H, F}$ as functions of $\omega_{0}, \alpha, \gamma$ and $\eta . \Omega\left(\omega_{0}\right)$ and $\omega_{F}\left(\omega_{0}\right)$ are given by the appropriate roots of Equations C. 3.3 and 1.

APPENDIX D

Variable structural damping - solution by the K-B method.
Governing system

$$
\begin{aligned}
& X^{\prime \prime}+B_{0}\left(1+f \omega_{0}^{2} A_{H}\right) X^{\prime}+X=a \omega_{0}^{2} C_{L} \\
& C_{L}^{\prime \prime}-\alpha \omega_{0} C_{L}^{\prime}+\frac{\gamma}{\omega_{0}}\left(C_{L}\right)^{3}+\omega_{0}^{2} C_{L}=b X^{\prime}
\end{aligned}
$$

Assume

$$
\begin{gathered}
X=A_{H}(\tau) \sin \left(\tau+\theta_{H}(\tau)\right) \\
X^{\prime}=A_{H}(\tau) \cos \left(\tau+\theta_{H}(\tau)\right) \\
C_{L}=C_{H} \sin \left(\tau+\phi_{H}(\tau)\right)
\end{gathered}
$$

Then proceeding in a manner identical to that introduced in Appendix A (ii) one obtains

$$
\text { ... D. } 2
$$

$$
\begin{aligned}
& \overline{A_{H}} \cong \frac{-C_{H}}{2}\left[\sin \zeta\left(\omega_{0}^{2}-\frac{1}{n}\left(1+f \omega_{0}{ }^{2} A_{H}\right)\left(\omega_{0}{ }^{2}-1\right)\right)\right. \\
& -\cos \zeta \quad\left(1+f \omega_{0}^{2} A_{H}\right) \frac{\alpha \omega_{0}}{n} \\
& \left(1-\frac{\left.\rho_{H}\right)}{\omega_{0}^{2}}\right] \\
& \overline{\theta_{H}} \cong \frac{-C_{H}}{2 A_{H}}\left[\cos \zeta\left(\omega_{0}^{2}-\frac{1}{n}\left(1+f \omega_{0} A_{H}\right)\left(\omega_{0}{ }^{2}-1\right)\right)\right. \\
& \left.+\sin \zeta \quad\left(1+f \omega_{o}^{2} A_{H}\right) \frac{\alpha \omega_{o}}{n}\left(1-\rho_{H}\right)\right]
\end{aligned}
$$

Stationary solutions to Equation D. 2 exist for

$$
\begin{aligned}
\overline{A_{H}^{\prime}}=0 \text { in which case } A_{H} & =A_{H_{S}} \\
\therefore C_{H} & =C_{H_{S}}
\end{aligned}
$$

and $\overline{\theta_{H}}=-K_{H}$ which implies $\theta_{H_{S}}=-K_{H} \tau$. To a first order approximation, ζ_{s} must not be a function of τ, thus $\phi_{H_{S}}=\theta_{H_{S}}-\zeta_{S}=-\kappa_{H} \tau-\zeta_{S}$ where $\zeta_{s} \neq \zeta_{s}(\tau)$. Two further equations are obtained by requiring that the stationary solution satisfy Equation D.1.1 for

$$
\begin{gathered}
x=A_{H_{S}} \sin \left(1-K_{H}\right) \tau \equiv A_{H_{S}} \sin \Omega \tau \\
\cdots \\
C_{L}=C_{H_{S}} \sin \left(\left(1-K_{H}\right) \tau-\zeta_{S}\right)=C_{H_{S}} \sin \left(\Omega \tau-\zeta_{S}\right)
\end{gathered}
$$

The expressions which are derived for $A_{H_{S}}, C_{H_{S}}, \Omega$ and $\zeta \mathbf{s}$ are
identical to those obtained by the method of van der Pol (Equations (3.6-9)), where

$$
\begin{aligned}
\zeta_{S} & \equiv-\phi \\
-\kappa_{H} & \equiv \frac{-\lambda B_{0}}{2}
\end{aligned}
$$

To determine the stability of a root $A_{H_{S}}$, examine the sign of
$\frac{\mathrm{d} \overline{\mathrm{A}^{\prime}}}{\mathrm{d} \mathrm{A}_{\mathrm{H}}}$
. From Equation D. 2.1 one has that $\overline{A_{H}{ }^{\prime}}=F\left(A_{H}, C_{H}, \zeta\right)$, therefore

$$
A_{H}=A_{H}
$$

$$
\frac{d \overline{A_{H}^{\prime}}}{d A_{H}}=\frac{\partial F}{\partial A_{H}}+\frac{\partial F}{\partial C_{H}} \frac{d C_{H}}{d A_{H}}+\frac{\partial F}{\partial \zeta} \frac{d \zeta}{d A_{H}}
$$

The partial derivatives can be obtained from Equation D.2.1, and the exact differentials from Equations (3.5.2) and (3.8). The criterion for stability being

$$
\left.\frac{d \overline{A_{H}^{\prime}}}{d_{H}}\right|_{A_{H}=A_{H_{S}}}=\quad>0 \text { stable }
$$

FIGURE 1: Experimental Results For Vortex-Induced Oscillation of a Circular Cylinder (Feng)

FIGURE II: Schematic Diagram of Experimental Configuration

FIGURE Ill: Characteristic Domains of Vortex-Induced Oscillation

FIGURE IV: Theoretical Predictions from Hartlen and Currie's Original Model

FIGURE V: Theoretical Predictions for a Higher Order Nonlinearity in C_{L}^{\prime}

FIGURE VI: Theoretical Predictions for CombinationOscillation Solution Applied to Hartlen and Currie's Original Model

FIGURE VII: Theoretical Predictions of the Effect of Variable Structural Damping - Harmonic Solution

FIGURE VIII: Theoretical Predictions of the Effect of Variable Structural Damping-CombinationOscillation

