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ABSTRACT

The vortex~induced oscillation of a circular cylinder is
modelled by a non~linear system with two degrees of freedom. The
periodic 1lift acting on the cylinder due to the vortex-street wake is
represented by a self-excited oscillator, which is coupled to the
cylinder motion. . Approximate solutions and stability criteria are

presented which are valid over restricted intervals.

Changes to the form of the coupled¥oscillator model andits
approximate solution are examined in order fo improve the comparison
between predicted model and experimental results. The changes are
mqtivated By the study of experimenﬁal evidence, and by comparison witﬁ

the known properties of similar systems of non-linear equations.

~w - Significant improvement in the coupled-oscillator model
performance is obtained through the inclusion of an effective structural

damping term which is dependent on wind speed.and:cﬁlinder displacement,
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1. INTRODUCTION

Dating from the early 1960's, there has been an-active program
in this deﬁartment to study the effects on fixed or elastically supported . -
bluff bodies of the-wakés produced by them. In the Reynolds Number rénge
which is of interest [0(104)], the wake is charactefized by periodicélly
shed vortices, the frequency of which ié,governed by the Strouhal relation-
ship. This work is concerned ﬁith the interactioﬁ of én elastically
mounted circular cyliﬁder witﬁ its wake, for the case in thch the Strouhal
frequency is close to the resonance frequency‘of'the cylinder-mounting
system. Detailed experimental studies havé been carried out by Ferguson (1).
and Feng (2) to document the vortéx—induced oscillation of juét such a

system.

me o~ Ag direct solution of the géverning'dynamic equations for the
cylinder and its wake is not feasible at present, a variety of simplified'
mafhematical models have been suggested to describe the interaction [a
summaiy of.the more promising suggestions is given by Parkinson (3)]. A“
?rdposal by Hartlen and Currie (4) seems to have particular merit. Tﬁey
consider the lift acting on the cylinder (due to its periodic wake) to be
governed by a second order non-linear differential equation (of the type
studied by van der Pol) which is coupled to the cylinder‘motion. Over a
"restricted interval, the results predicted by their model bear good fe—
semblance to certain of the experimentally observed features. They fail

to produce some important characteristics however.,

Using the coupled-oscillator concept it is the intention of
this work to suggest changes in the form of non-linear terms and examine

the effects on the solution. The stimulus for this comes from the need
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to obtain better correlation between model predictions and experimental

results.



2. PRELIMINARY

Figure I provides a summary of Feng's resu1t§ for the vortex-—
induced oscillation of a qircular cylindér (for given input conditioms).
As Feng determined only three values of 1lift coefficient amplitude,
transient C; behaviour was used in establishing the location of the jumps
in._L [Parkinson (5)]. The results demonstrate'that over aidiscrete range
of flow speeds (the 1ock—in range), cylinder displacement and fluctuating
lift are periodic in”time, with the same frequency, which is close to>that
of the natural frequenéy of the spring-cylinder syétem. The amount by
which the phase of the exciting force leads the cylinder displacement is
measured as well. Important features to note are the hysteresis loops
which exist for both amplitude (of displacement and 1lift) and phase. Also.
‘significant is_the response for w, > 1.4 (outside of lock-in), where cyl-

inder oscillations persist at frequency closevto'wn while the frequency

of the predominant excitation is considerably higher.(@F).

Figure II describes the configuration and the important elements
of the spring-cylinder system. With the effect of the vortex-street wake
on the cylinder included as a forcing function, the differential equation

for transverse displacement Xc is:

z . 9 0.2
+ + =c, &V
mXc 26w mX  + mw X ¢ GV h)

To nondimensionalize the equation, introduce

X
<
h

-
il
€
rt



1H

(Strouhal Relationship)
and obtain ' o

X" + 2BX' + X = awozc

1 ......(2.1)

For modelling purposes, the problem now reduces to determining an ex-—

pression for CL.

Hartlen and Currie originally suggested that the 1ift co-

efficient be governed by the following differential equation

Cl = aweCl + g)-oc£3 + . C..= X' ... (2.2)

This form was chosén because of its simplicity, ?nd because away -

from resonance of the spring-cylinder system (&X' - 0), self—excitéd os—
ciizgfign of amplitude and frequency approximately.equal tqlx§?§‘and Wo
reépectively is predicted for CL (provided o, Y are small). This behaviour
is consistent with experimental obserﬁation if Ly is set equal to the am-

3y
plitude of the lift coefficient for a stationary cylinder (CL ).
: ]

The coupling term (BX') was included to provide a dependence of‘
CL.on cylinder motion. Its presence leads to the prediction of interesting
CL behaviour for w, close to wn. Drawing a comparison between this system
and the well-studied forced oscillation of the van der Pol equation [Stoker
(6)], one wouldbexpect a range of W, for which CL.and X have the same os-
cillation frequency (lock-in), bounded by a range of w, for which CL has
vcomponents close to w, and wn (combination-oscillation). Figure I1TI dem-

onstrates that the postulated regions of characteristic response are

consistent with experimental evidence - region A being associated with the
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typical forced response of an elastic system, region B with the trans—
itional range in which frequency components qlose to W, and'wn are present,
and region C with the iock—in range. It is not possible to make further
assumptions concerning the detailed nature of the response, as the

forcing function is itself dependent on CL through Equation (2.1).

Hartlen and Currie obtained an approximate solution to the
system of. coupled differential equations [Equations (2.1) and (2.2)]

-valid within the lock-in region, by assuming X and C. to be given as

L
follows (method of van der Pol)

X = AH sin QT

CL = CH sin (QT.+ ¢H) eeee (2.3)
‘The-actual analysis and a summary of results is included in Appendix A.
'Figure IV summarizes model predictions for the indicated dinput values.

" The results demonstrate the model's ability to generate certain of the

features of vortex-induced oscillation.

The stability of the approximate sélution is not given directly
by the method of van der Pol. An alternate method: which ‘does provide.sﬁch in-
formation is the K~B method [Miﬁorsky (7)].3 This analysis is introduced
and developed in Appendix A. The results obtained allow one to confirm
that the solutions summarized by Figure IV are stable, and that the two
approximate methods of solution yield identical results prqvided that {2,
& = 1.
The results obtained_are encouraging. The model fails toipro—
duce a double-amplitude response, however, aﬁd sincé the approximate sol-

ution is valid only within the lock-in region, the system behaviour for
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Wo > 1.4 cannot be produced. The following work is concerned with an
investigation of the form of model and solution used, with a view to

improving the comparison between predicted and experimental results.



3.. MODEL FORMULATION

3.1 HIGHER ORDER NON—LINEAREEZ

{
It was decided to investigate the effect of increasing the
order of non-linearity in the governing equation for CL. Following
a suggestion by Landl (8), odd power terms to seventh order in Ci were .

included. The equation for CL then takes the form

$

L We 5

"o ! '1_,'.3_'11 1D
c awOCL + o (CL) 5.3 (CL) + I

: (Ci)j + w2 C = bx!
cers (3.1)

where o, Y, N, § > 0O

The justification for including fifth and seventh powers of Ci
comes from examining the homogeneous form of Equation (3.1) (bX'~> 0).

R

Forva, Y, N, 6 small, then

CL = CF sin W,T

and CF may have oge or fhree positive real roots. In the latter case

‘the middle root would be.ﬁﬁstable,and the triViél'sOlution_CF =0 is
‘=unétable in:either caée.“ Considering .the ‘inhomogeneous form, it

was hoped that the increase in non-linearity would result in the exist-
ence of two stable CL amplitudes for a givén W, within the loék—in region;
a hysteresis effect poséibly resulting from the manner of the dependence

on W,.

Approximate solutions (by the methods of van der Pol and K-B)
to the system of Equations (2.1) and (3.1) are included in Appendix B.
Values for the non-linear coefficients o, Y, N, § are determined by

requiring that three positive real roots CH exist within lock-in (two'of
' : i
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which are known. from experiment), and that one real root CL exist away from
. o -

lock-in (bX' > 0).

. [
In order to match predicted with experimental values of 1lift
coefficient amplitude witﬁin lock-in, the non-linear coefficients nec-—
essary were found to be of 0 (10). The effect of the magnitude of o, ¥,

N, 8§ on the approximate solution of Equation (3.1) has not been examined.

Figure V shows numerical results for the indicated input values.
The stability analysis confirms that the middle amplitudes of CH and AH

are unstable, and that the other amplitudes are stable.

The results demonstrate;the system's ability to model the be-
haviour of CL reasonably well within lock-in (as it was deéigned to).
The freqpency and phase variations remain a-ptoblem,-however,.as to a first
6rd%f’épproximation they are independent of CL anq thus do not reflect‘

jumps in amplitude which the system produces. The behaviour of the»ﬁre—

dicted cylinder amplitude is clearly a problem as well.

The predicted results indicate that an extension to seventh
order non~linearity in Ci,results in only marginal improvement of the

system behaviour, while introducing further complications in doing so.

3.2 COMBINATION-OSCILLATION SOLUTION

Currie and Oey (9), proposed that the double amplitude response
could be accounted for by the existence of different solutions to the
system of Equations (2.1) and (2.2) for harmonic,.or combinétion—type
forms of solution; that is, whether X and CL are assumed to be of.form

given by Equation (2.3), or as shown below (combination-type)



X = AH sin Q1 + AF sin wFT eee. (3.2)

CL = Cy 31n‘(QT + ¢H) + Cq §1n (wFT +’¢F) .

They draw comparisons between the coupled-oscillator system and the
forced oscillation of the van der Pol equation. Actual results of a

detailed analysis have yet to be published.

Experimental evidence supports a combination-oscillation form
of solution over a range of w, adjacent to the lock-in region (Figure ILIL,
region B). There is no evidence for a solution of this form within the

lock-in region, however.

A study was carried out to see whether or not a solution of this
form could realistically account for éne of the amplitudes ﬁithin lock—
"in,mor the.system behaviour outside of it. The actual analyéis is inf
cluded in Appendix C. A stability analysis was not éarried cut, as the
approximations which are required in order to combine the K-B method

‘with a combination-oscillation form of solution are not at all obvious.

Figure VI illustrates the important numerical results for the
indicated input values. The pﬁase and frequency variations for I and ¢H
are identical to those for the harmonic case and thus havé not been shown.
Away from the neighbourhood of w, =,1’ the.foréed cylinder'response at
W ié negligible, thus AF and ¢F have not been shown as well. The re-
sults demonstrate the possibility of ﬁhe existence of a combination~-type
oscillation within lock—iﬁ. Unfdrtunateiy, the analysis predicts a
solution valid only within lock-in, and a complicated CL behaviour over

this range - CL is predicted to have components of approximately equal

magnitude at frequencies of @ and W
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It would appear that the governing equations as formulated

are not capable of accommocdating a combination-type solution.
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3.3 VARIABLE DAMPING

If one assumes the cylinder motion tc be governed by Equation (2.1),
and that within lock-in X and CL may be approximated by:Equation (2.3),
then by substituting for X and CL in Equation (2.1) and applying the

principle of harmonic balance, the following result may be obtained:

2
28 = 2% C. sin ¢H

h AL H
Since all the quantities on the right-hand—side of the equation. are known
Or are measurable, the apparent structural damping during vortex-induced
cylinder oscillation may be calculated. These calculated values are
then to be compared with the value measured in still-air (which is the

value given by Feng).

i Table I summarizes the experimental results and the calculated

ratio ?é%iy, where (2B,) is the wind-off structural damping. The effective
o . .

structural damping appears to depend on cylinder oscillation amplitude as well as

wind speed.

Wo | A Cy | Oy 268, .
.98 .03 45 2°«> 6° 57> 1.7
: 4° 1.1
1.06 .11 .8 2 <14 .3 ;+52.2 a ~ 002
: 9 1. 28, . = .002
1.12 .21 1.5 10 <16 1.7 < 2.8 | % = .97
11° 1.9
1.21 .48 1.91 37 «>59 4h <> 5.6
. o 37 V 4
3 .5 102 2.7

TABLE T Effective Structural Damping During Vortex~Induced Oscillation.
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It is clear that any model which fails to take this effect into account

will have little chance of success in predicting experimental behaviour.

It is proposed that the effective structural dampingibe approximated

by a relationship of form:

28 = 28, (1 + fu,> A

2
The W, and AH provide a dependence of system damping on thewind force acting
on the cylinder, and cylinder displacement respectively. One would expect
the constant f to depend on the experimental configuration. An appropri-

ate value can be calculated from the experimental results as follows:

Wo AH . 28 £

28,
.98 .03 1.1 3.5
N Y a1 1.5 4.0
112 | .1 1.9 34
1.21 .48 4 NP
"3 2.7 3.9

TABLE II Damping Parameter Determination

e

A value of £ 4 would seem to be indicated.

The modified equation governing cylinder response then is

X'+ 28, (L + f0,2 A) X' + X = av,’ ¢ ceen (3.3)

L

In order to assess the effect of the proposed variable damping term, the
system of Equations (2.2) and (3.3) has been solved approximately, assuming
harmonic and combination-type forms of solution for X and CL' A stability

analysis has been carried out for the harmonic solution and is included



in Appendix D.

(i) Harmonic Solution

\

Within the lock-in range, assume X and CL

13.

to be given by

Equation (2. 3) If one substitutes for X and CL into Equations (2.2) and

]

(3.3) and neglects terms in AH’ Cﬁ, ¢é and higher harmonics, the following -

System of equations can be obtained by applying the principle of .harmonic

balance:

awo2 Cy cos AH 1 - Q )

2 . _ 2
aw, CH sin ¢H = AH B, (1 + fw, AH)

2 . 2 2
(wo - Q ) . Q _
SomL @ cos by tosin by (-G 0 =
w2 - 2% a-922 > _ My

RS sin ¢H ~ cos ¢Hv

where B, = 2R,

C
p}iEQ;lLO
Lo

.. (3.4)

. To proceed, it is necessary to make an assumption concerning the frequency

behaviour Q(w,) (which is close to 1 throughout the lock-in region).

duce

Q=z1- "B

where |A] = 0(1)

and make the assumption that

Intro-



ot
!

e}

!

RS
0
T

both of which are reasonable,

then, one obtains

aw, C

=

awoz CH sin ¢H

0o

g

where A =

From Equations (3.5.1 and 2)

tan ¢H

2 2 B,
CH‘AH( 2
aw

o

From Equations (3.5.3 and 4)

2

where n = —

cos ¢H + sin ¢H

AT = (1 + fwoz AH) [ A

14.

since B, = 0(10_3). From Equation (3.4)

cos ¢H-; AH AB,
2aB. (L + £ w,” A)

P
a-° =,

Wo

s (3’5),

sin ¢H - cos ¢H -, =

(1-Puy . Py
K 0w, Cyy
woz -1
_ 14 fu,t Ay
hy

2 | '
) [;\2+(1+fw°2AH)2J ceer (3.6)

W,

-+ fw,2 AH)J eee (3.7)

ab
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. . 2 . . :
Substituting for A" in Equation (3.6.2)

2 2 ., nw 2 '
- 7)) (Lt fw, AH) T ..f.(3.8)

B

2 2
Cy A4y (
Substituting for tan ¢H in Equation (3.5.3)

2
1+ fw,
A . ¢ AH)(1-‘3}1)=0
oWy A 9

We

. then substituting for A and pH (from Equations (3.7 and 8)) one obtains.

by 2 .(nwoz L@+ Fee? M)

TR A
: o T 2 2 2
= (L+ qu AH) 1- Cl AH ‘l + fuw, AH)‘ |
e ,
_ b 1
where Cl =¢ —) e
CL W,

which can be expanded to yield

o
|

7. 6. D T
=g AH + g, AH tooeees 8, AH + 8g AH » .i.. 3.9

where
| _ 2 2.3

2

- 2 2
8, = 3Cl (fw,")
83 = 3012 f woz

2

- 2 2

= - w
g, Cl ZCl (fw, %)

o}
W
|

= _ 2
= 4Cl fw_ |
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8 = - 2C1
2
2 A
g = fu (L4 (G )
nA , A
g851+ O?—( 2—1)
nw, :

The seventh order polynomial in AH‘can be solved approximately és a function
of w, and the input parameters (n,b, CLo’ f). Once the roots AH have been
determined, values CHi2 can be determined from quat;on(3.8),and Xiz frém
Equation (3.7). The sign of Ai (and thus Qi =1~ Ai'7§) can be determingd

by substituting for CH 2 and tan ¢H in Equation (3.5.3),
. i i

Figure VII.shows the results of such an analysis for the indicated
input values. The tresults demonstrate the system's ability to. generate
multiple amplitudes in‘AH, CH’ ¢H and Q.with varying w,. The possibilify
of producing a hysterésis effect exists as the upper branch of AH(wo) is
valid for @ < 1 only, and the two lower branches for > 1 only. “The principlé
result of the stability analysis (Appendix D) is that the middlé bfanch of
AH(wo) is unstable, while the upper and lower branches are stable. The.arrqwé
on Figure VII incorporate this'iﬁformation in describing possible behaviour

_for increasing or decreasing w,.

Although there are still remaining difficulties with the amplitudes
of X and CL’ and with trends in the phase angle for > 1, the inclusion of
the variable damping term has resulted in a significant improvement in model

performance within the lock-in range.
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Combination-Oscillation Solution

L1 .

If one assumes X and ¢, to be given by Equation (3.2), then

substituting into Equations (2.2) and (3.3) and neglecting terms such

as Aé, ¢§, higher harmonics and combination tones and fiﬁally applying

the principle of harmonic balance,

equations:
2
awo,™ Cy cos ¢p = AL (1 ~Wr )
al, p Sin g AF wiPo ° AH
2
aw,” C cos ¢ AH 1 - o’ )
.20 .
ae” O sin ¢y = A@B, (1 + £, AH) cevs (3.10)
, ’ 2
ne 6; 2 Wp 2 ). Q 2 -
‘ -i;;—js————_ cos ¢p + sin ¢y 11 ~( =) (Pp () *+20p| =0
-} F ° .
2 2 ' :
L 2 2 bAF
(wo wF ) . _ _ E__ m =
A E R - OO SRSTRy Fpe =
2 2 f 2 op”
(We” = 2% . 5, ot E =0
RY cos ¢, + sin ¢ |1 (wg) (8 e ()
( 2 92) Q ? w 2 bAH
w —
° ~ sin ¢_ - cos ¢ =) (p, + 2p, . F.) wC
RY Wor TH L TF (@7 oGy
Next introduce
w 2_ (UFZ
o =2
F Cl) o W

F

one obtains the following'System of
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o _ w0’
CH T aw, £

then from Equations (3.10.5 and 6)

-~

L2
b aw, tan ¢F

o, (1 + tan 2 bp) = - 5 ere (3.11)
: B,O wF (1 + fuw, AH)

bAF baw, sin ¢F
-which uses e = - > from Equation (3.10.2). To pro-
% F Bo,awF 1 + fu, AH)

ceed, it is necessary to make assumptions concerning the frequency hehaviour

$2(w,) (which is close to 1) and wF(wo) (which is close to w,).

Assume that wF = W,, then from Equations (3.10.1 and 2)

2
tan 6. = B,W, 1+ fw, AH)

F 1 - w°2

thugzutgnz ¢F < <1 for woz away from the immediate neighbourhood of w, = 1.

-~ From Equation (3.11) then

2
~ : 2
=280 At wla
| a2
where A = w,” - 1
Substituting for Op and tan ¢F in Equation (3.10.5) yieids
2 n B, w 2 S
- ———e M o .
oy (52 +20, ¥ (1 D e Ga2D)
From Equation (3.10.7)
W 2 A W 2
pH + ZDF(F = (1 +mﬂ) (Q—) .‘ evee (3.12.2)
then solving for Py H from Equations (3.12.1 and 2)
>
2

n B.w, - A We
a A ow, tan ¢H) 3

oy =(1 -2
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n B,w, _ 2A
o A 0w, tan ¢H)/3

= (l + cose (3.13)

From Equations (3.10.7 and 8)

-

o nw, . 2 _
(GH 0 1+ fu? AH))tan ¢H + OH = Q cee. (3.14)
- _ )\B
introduce = 1 -~ -—EQ and assume that
1-92- as, - A2 5.2 = s,
: 4
Q 0% =1
then examine
G = woz - 9° ~ A
H O, £ OWe
1+ fw 2 AH
‘ e 2 ~ °
tam T T (LHE e Ay = X

.Substituting for GH

and tan ¢H in Equation (3.14), one obtains
2 B )-‘."I,_.:' \n_ woz
AT = (—= 5
AL+ fwe” AY)

2
- a+f%2%) .e.. (3.15)

From Equations (3.10.1 and 2)

2 2

@,9°¢," = 4" 3.5 (-9 v arew

' 2
= AH2 Bo2 (>\2 + (1 + fmoz AH) M)
. . 2
then substituting for A™:

2 .2
b R
c2 tw®

H nmozA

(1 + fw,? A

or
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= b o :
oy = Aﬁ-l 5 7 1 + fu, AH) eeo. (3.16)
nw, CL_ A .

Equating (3.13.1) and (3.16), and substituting for tan ¢H and A one obtains
_ 1 .

2 : ' 2

e S0 o) e (2 p P Ay
AL + fw, AH) nA (CL we)
2
+2-ntwg—l)
oA
which can be expanded to yield
7 6 °
0=1g) Ay +gy Ay + ... Fgg Ay ceee (3.17)
where
", 3
- 2 2
g1:9C1 (fwo)
' 2
- 2 2.°
g2: 27 Cl (fwo )
- 2 2,
gy = 27 Cl (fw,")
' 2
- 2 2
g, = 9 Cl + 6 Cl C2 (fw,”)
=12 C, C, fw,’
&5 = 1 72 e
&g =6 C1 C2
2 2 L) 2)
g; = fwo” (€ + -7
2
zcl () (- M



21.

. ' -, b 1
where : C1 _(C ) 2) oA
. L o o
L= 2 n B, W, _ [N
CZ - a A 1

The seventh order polynomial in AH can be solved in a manner similar to

) Hi
from Equation (3.15). The

Equation (3.9). Once the roots'AH have been determined, values for C

can be determined from Equation (3.16), and A

A.B,
i

2

C 2 and tan ¢ in Equation (3.13.1). C

Hi Hi Fi-

and Ag and ¢F from Equations (3.10.1 and 2).
i i .

i

sign of Xi'(and thus Qi =1 - ) can be determined by substituting for

2 is then given by Equation (3.13.2),

FigureVIIT shows the results of such an analysis for the in-

dicated input values. Since the forced cylinder response at W

F is negligible

_away frqm the neighbourhqod of w, = 1, AF and ¢F have not been shown. - The
resuits demonstrate the system;s ability to generate a combinatibn—type
solution valid only at the extremes of the resonance region, énd realistic
behaviour of CL for w, < 1.15 or woi?_1.38. These featureé are both character;
istic df voftex—indﬁced cylinder oscillation.

There is no solution for 1.15 < i, < 1.28 as CF is imaginary
. . . i :
over this range. There is no solution for w, % 1.05 as the results are in-

valid in the neighbourhood of w, = 1.

The inclusion of the vafiable damping term in the differential
equation governing cylinder‘displacement appears to allow for the realistic
accommodation of a combination—oscillation form of solution. This has the
effect of extending the range of applicability of the_coupled—dscillator

model outside of the lock-in region.
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4.} DISCUSSION

Several changes in form of the governing equations of Hartlen
and Currie's original coupled-oscillator model for vortexliﬁdﬁced os—
cillation have been suggested and examined. Various forms of solution
to the modified equations and the question of their stability have been
investigated as well., Predicted results'have been compared with exper-—

imental information, in order to obtain a measure of their usefulness.

.The results of this work show the application of a combination-
oscillation form of solution to Hartlen an& Currie's original model, and
the extension to a seventh order non<linearity in CLi‘tO be unproductive.
A positive contribution has been made, however, with the inclusion of
an effective structural damping term dependent on ﬁind speed énd cylinder
displacement. The modified governing equations then produce a hysteresis
mechégiémmwithin the lock-in region (harmonic solﬁtion), and realistic
system behaviour outside of lock-in (combination—oécillation form of

solution).

‘The inclusion of a variable structural damping term (which is
-consistent with experimental evidence) has the effect of improving trends
in the coupled-oscillator model performance, and exteﬁding its range of
applicability. It is proposed that the results are encouraging enocugh

to warrant further investigation of this form of non-linearity.
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APPENDIX A

Hartlen and Currie's original system of differential equation—-solution

by the methods of van der Pol and K-B v

Governing System

X''" + 28, X' + X = awoz CL
eeo AL
Cp'' = owoCl + = (C]) + wo”C = bX!
. o
(i) Solutionafter van der Pol
Assume

X = AH sin QT

- vee A2

: CL = CH sin (Ot + ¢H) )

~ then..substituting for X and CL in Equation A.l and neglecting terms such
as Aﬁ, ¢ﬁ, and higher harmonics, one obtains the following system of equations

after applying the principle of harmonic balance: -
5,2 C. cos ¢, = (1 - 92)
e by H

2 . -
aw, GH sin ¢H B2 AH
| eee A3
2 2 ' 2

Sggamf—%—l— cos ¢H + sin ¢H (1 - (%:) pH) = 0

2 2

2 b
(Y MNP IR _
o, £ sin ¢H cos ¢H 1 (wo) _ pH)' 0w, CH'

where

o]
)
1

28,
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= /4 Q
‘. V37

_c
Pu ‘(—CH )
Lo

-

From Equations A.3.1 and 2

tan ¢H =B &

From Equations A.3.3.and 4

LR 2 AQA

2 9

[5)) =
° 1-n

' 2
1+ C ot ¢H»

c?=(c %)2@.”“’02492)?)-

“ o, 2 tan ¢H

ab
B,

H

where n

(ii) Solution by the K-B method (to ascertain the stability

of the approximate solutions to Equation A.1).

Rewriting Equation A.1

2 B Y .3 2
[ ] — - 2o LR 1 P S ]
X + Xv aqo CL 5 (CL O, CL‘+ w, CL + W, CL)
ee A5
assumlgg X = A (T) sin (T + OH ¢9))
.+« A.6

X' = Ay () cos (1 +»6H (‘r)‘)



26.

which implies that
Ay (D) sin(T + 0, (1) + 4y (1) 8 () cos (T + 6, ()= 0

or 6}'1 (1) = - Aﬁ 1) sin(T + GH (™)
| AH () cos(T + BH ()

then multiplying Equation A.5 by X', one can determine

'Y o(r) = 20 Be o gy o 4o 132 S
AH (1) (a W, CL 5 (CL Ol CL + . (_:L + W, Ci)) cos (T + BH ()
and from Equation A.7
L} - _ 2 ’ - By vy Y b, 3 . 2 | . .
BH () (a w, CL "D (CL ow, CL + W, C L +-}w° CL)) sin (1 + 6H ()
| Ar(D
. -3
~Since a, B, are 0 (10 ™)
2
ol 2 _ Bo - '
Ay = on I (a w, CL -3 Q) .cos Y dy
© .e. A9
2w A
T | f, .2 By .
GH o rol J~(a»° C. "% (oo )) sin ¥ AY

o

where P = T + GH

If one assumes that CL = CH(T) sin (T + ¢H(T)) :

and that CI'-I’ ¢I'i’ are 0 (10_3), then from Equation A.9

— acC ’ 2 p .
A]tlg : H[- (woz +}- (1 -Ww,)) sing +0L(uo (1 -—_——H—-) cos C]

We




~a Cy 2

(w,
“x

cos T 4—-{%£1 (1 -

e
H 2

1 2
+-r‘l'(l—l.0° ))

H
2 2
I
g = i_o_c‘CLZ
3 ¥ °

Stationary solutions to Equations A.10 exist for A'

27.

p

H .
2) sin €

We!
.eo A10

= 0 in which case

To first

= ' 5 = 'yl P 3 1 4 = -
AH AHS ;. CH ».CHS and GH Ky which implies GHS KyT-
order approximation Cs must not be a function of T, thus'q)H = GH - CS
s s
= =Ky T -gg where ts # Es (T). -In which case one obtains
s : :
. DH
' 2 1 2 . a W, _ s -
- e + n 1 -w,)) sin CS + - (1 » ——5) cos Cs 0
e We
cov A1l
2 1 2 o pHs 2KH AHs
1 = - Mo ¢ 1 . S . =
(w,™ + n (1-w"))cos ES + ” (1 > ) sin CS .
: w, HS

Two further equations are obtained by requiring

ary solutions satisfy Equation A.l. Substituting for X and

X =
S S S S

provides

AH sin (T + eH ) = AH sin (1 - KH)T'E AH sin

that the station~

CL:

QT ... A12
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2 . _
aw, €y sing = - B, §2 AH
s s
.on A3
2 _ 2
aw, CH cos ES = AH -8
s f=
Solving Equations A.11l and A.1l3 one obtains
2 1
Yo =TT n
1+ cot2€
s
2 C o
AH 2 =(aw°2 ) HS . ....Afl4
s - Bof -+ cot2 CS)
9 . 2.2 tan s 2 1
CHS = (CL°w° )y 1 - a0a (1 +w, (n- l))J
where tang = :Llﬁ%;
S 1-Q

which can be shown to be identical to the results obtained by the méthod
of van der Pol (Equatioh A.4) provided that €, QZ ;.1_
To determine the stability of a particular solution, one need

dA' ‘
dAH only in the neighbourhood of the root AHS. From

examine the sign of

the expression for A' (Equation A.10.1) one can determine
P q

T dc

, EE ) ac py

n We

jas]

cos )

Pl
==
oo

thus
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From Equation A.14.2

d C 2
o (B2 (14eot’ M

W
ae CH

The stability criterion is

< 0. Stable

s

|

i

_ > 0 Unstable
Ap = Ay

s -

o d C
Examining Equation A.15, since-a——~, a,cx,g)H s 1, ‘Wes, are all positive
g s -
quantities, then the question of stability is decided by - cosl or - cos -z).

Thus

(-z) <.mw/2 ~ A, will be stable
S

(-%) > @/2 » A, will be unstable
S
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APPENDIX B_

Extension to 7th order non-linearity in C£ - solution by the

. , 3
methods of van der Pol and K-B.

Governing System

X"+B°X'+X=am°2CL-

Cl' — wo C'

_1 I IR S P 2 = gt
L + (C) 3 (CL) + 5 (CL) + w,” C bX

L W,
° Wo ’ Wo

(i) Solution after van der Pol

Assume

= AH sin QT

... B.2

e _CL = Cy sin QT + ¢H)

Substituting for X and CL into Equation B.l, and applying the principle of

_harmonic balance one obtains:

amozvc cos ¢ AH (l - Q )

2

AW, Gy sin ¢ AH Bo Q : cee B.3
2
(W~ - Q ) cos ¢ +
o Wyl
3y 22 2 5040 & 4 35 §,9 0
- % o2 Cp *ea ey ) % mes oley) Cylsindy =0
w2 -gh 3y Q.2 2
ow, & oMM ¢ - % ) Cy *+
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(IR VR I TR by
B "6k o ‘w) Cm [°°° % T auc

2
8

Rl
Pany

g

Q

H

Equations B.3.3 and 4 are obtained by assuming that

-\

' =
¢l =C, Qcos (O + )

''3-.3 3 3
(CL) =% CH 7 -cos (1 + (bH)
5.5 5 45
v z 2
(CL) 8 vCH Q7 cos (Ut + ¢H)
W7 35 7.7
(CL) = i GH Q" cos (QT:+ ¢H)

. From Equation B.3 one can determine:

can g, = B0
1-0

¢ 2 (°“”°2)

2 H B.§

AH = - oo 3.4

(1 + cot2 ¢H)

2 @?
W, = -
l_‘n
1+ cot2 ¢
_ H
06 _ 8N Wa2 b 48 Y w6 lo @Z-0) | _,
g 78 %) &% *t35 5 O § " Su, ftan o,

In oxrder to provide for a double amplitude response within the
lock-in region, three real roots of the cubic polynomial in CH2 must exist.

For a particular value of € (and thus w,) within the region, values of
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CL and Ei - are available from experimental data and provide two
max min '

equations for the determination of the non-linear coefficients. The

choice of a third root (E ) is made in order to establish %,
o ‘ unstable
%3 3 so that a single real root of predetermined amplitude (CL ) is

[+]
predicted outside of the lock-in region. This requires the selection

of an appropriate value of § as well. Once the various parameters have

been specified, Equation B.4.4 can be solved for CH 2 (w,) by standard

i
methods.
(ii) Solution by the K-B method
Rewrite Equations B.1
2 B Y .3
s = _ _ Do vty 1 I '
X' +x =aw, CL B CL Oy CL + wa (CL ) _
‘ «+s« B.5
5
e n o . § - ,7 2
-— (") +—< ¢C + w,” C
w°3 L w°5 L L

assume
X = A, (1) sin (T +6, (1))
X' = Ay (T) cos (T + g, (1))
c, = Cy (T) sin (T + ¢, (1))

then proceeding in a manner identical to that introduced in Appendix A (ii)

one obtains

aC . : .
v = H _ 2 _J-_ _ 2 . Qo
AH = (wé + - (1 - w,")) sing+ N G (CH) cos
-a C
0.'v = H (_woz +-% (1 - woz)) cos'g + a:° G (CH)_sin z

H 2 A, |

... B.6
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cepz1-2 B 0 355w
Stationary solutions to Equation B.6 exist for

i = » . —_
AH 0 in which case AH AH

v o . . . » - -
OH Ky which implies @ - KT

To a first order approximation, s must not be a function of T, thus -

9y =@H ~g = - Ky —g _ where T #;S ()

In which case one obtains

Ol

2,1 . 2 . : o _
: (Wwo™ + n a1 - w,7)) Slngs + - G (CHS) cosg 0
2 1 2 ow L o H s ... B.7
(oo + = (1 - w,")) cos g_+—* G (CHS) sin ¢ = = c,

S

It is required as well that the stationary solution satisfy Equation B.1
for

X = AHS sin (T + OHS) = AHs sin (1 - KH)T = AHS sin Qt

C, =C. sin (T+¢,)=C,

sin (1 - KH)T —CS)ECH sin (Ot —z;s)
s s s : ,

S
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which providés

2 . _
aw, CH sincC s B, S AH
s [
.. B.8
2 . 2
aw, CH cos z;S—AH a-8
s s
From Equations B.7 and 8 one obtains:
w°2 - 1
l-n
2 .
1 + cot Es .
2 ... B.9
C
AH 2 _ (awOZ)Z HS
s BQ a + cot2 gs)
.6 8 2n .4 48 Y 4 2
CH—7(L)o 5CH+355w°C

-{B
1 - 9

where tan Cs =

which can be shown to be identical to the results obtained by the method

of van der Pol (Equation B.4) provided that £, 8'22, 94, 96 = 1.

To determine the stability of a root AH , examine the sign of
s

From Equation B.6.1 one has that AH' =F (CH), therefore

-4 F H which can be evaluated from Equations
d CH d A’H



B.6.1 and 9.2.

[T~
=8

=

The criterion of stability being

< 0 stable

AH > 0 unstable
s

Ax

-\

35.
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APPENDIX C

Combination-oscillation solutionAapplied to Hartlen and Currie’s
original system (solution by the method of van der Pol).

Assume

= AH sin Q1 + AF sin W, T
.. C.1
CL = CH sin (1 + ¢H) + CF sin (Q%T + ¢F)

then substituting for X and CL into Equation A.l and neglecting terms such
. as AH',. F" higher harmonics and combination tones, the following.results

are obtained after applying the principle of harmonic balance:
aw,? C.. cos ¢, = 1 - 2)
o G p-Ap U7 4
2
aw, C sin ¢ AF B, u

awoz C,. cos ¢H = AH (1 - Qz)

H
9 eee C.2
al, C sin ¢ AH B, @
w 2 2) 2 " 2 !
° . f -
TR cos ¢F + sin ¢F ‘l —(6:) (pF ) + 2 pH) =0
2 2 . . N . -
(W," - w.™) 2 W 2 b AF
~ F i _ & T - - F
Tam, wy Sy mcos by TG Cep @D 20y T g
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2 2. 2 w. 2
Wwe™ =07 o _ 8 - -F _
C 0w, R cos ¢H + Sln“¢H 1 (wo) ( pH,+ 2pF Q) ) | =0
2_ 2 | 2 g 2| bA
(wo _Q) . ___9_ ~F . _
dwg @ S by mcos oy F 1 -(EE) oy + 20, (7)) = ,
C2 C 2
where p_ = —H sty
H 4 o CL
3 ¥ °
02 C 2
= =X
P = 4 o~ CL
3 v °
Note that Equations C.2.5-7 assume that
3 w. w, 2 .
3~ 3 _F 2,°F 2
(CL) =4 2 C, 5 cos (wFT'I"(I)F) Cp (Q) +2Cy
o .3 ‘ ‘ w, 2
3. o 2 2, Fy.
+7 9 Cycos (QU+t ) | Cy +2 (5.
From Equations C.2.5 and 6 one obtains
" 2
2 F
We =
1- s
1+ cot ¢F
g 2 w 2 0?2 oy 2 :
‘___ _( _o _:4(‘0" F) ... C.3
20y *op () =(g>) l+ocwowFtan¢
F
From Equations C.2.7 and 8
2
2 Y
We =
_n



‘2
_E_ . _(&1_ (wo - Q )
Py * 2p (g ) =G 1 +dw09 tan ¢H

. E ( 38.
w 2 2 L 2 .

From Equations C.2.1-4

AF2__(a woz ¥
| Bo W7 (1 4 cot? b

tan ¢ - 8o
H 2
1-80
2 2
AHZ =(a woz CH
B, 9 1+ cot2 ¢H)

P SO

If one assumes that £ = 1 and wF = @, then Equations C.3 can be -

solved for pH,F’ AH,F’ ¢H,F.as.functlons of wy, O,y and 7. -Q(mo) and

W (w,) are given by the appfopriate roots of Equations C. 3.3 and 1.
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APPENDIX D

Variable structural damping - solution by the K-B method.

iy
Governing system '

1 2 A} ._. 2
X''" + B, (1 + fu, AH) X' + X = aw, CL
D.1
Y 3 2
Yy ' 1 - 1
CL oWe CL + oo (CL )+ w, CL b X

Assume

X = AH (1) sin(t + GH (t))
X' = AH (1) cos (T + GH (t))

CL = CH sin (T + ¢H (1))
Then proceeding in a manner identical to that introduced in Appendix A(ii)

one obtains

-C.a
By Sp— st o0 -1 @+ A) @ - 1)

e

0w o (1 T.Eﬂ)' e.e. D.2 -
n w°2 : .

- cos L 1+ f woz AH)

cos T (wo” - = (1 + fw, AY (w,° - 1))

1 - Py

Wo2

+sinz (L + fw,> A “—‘—:’l—l
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Stationary solutions to Equation D.2 exist for

e

K;T = 0 d1n which case AH

s
CH = CH
s
and GH' = - KH which implies GH = = KT. To a first order approximation,
1 T = —_ EE - —
[ must not be a function of T, thus ¢HS GHS (N KHT (o where

[ # T (t). Two further equations are obtained by requiring that the

stationary solution satisfy Equation D.1.1 for

X =A sin (1L - K )T = sin Qr
HS _H AHS

‘CL = CHS sin ((1 - KH)T - Cs) = CHS sin (T - gs)

The expressions which are derived. for AH s CH , £ and T s are

identical to those obtained by the method of van der Pol (Equations (3.6-9)),

where

€S = -9
_ - AB

— = 9
“H. 2

To determine the stability of a root AH , examine the sign of
s : -

=

. From Equation D.2.1 one.has that AH' = F (AH’ CH’.C)> therefore

[a N
e

e
d AH _OF OF d CH oF dt

==+ + 5 ... D.3
S e |
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The partial derivatives can be obtained from Equatioﬁ D.2.l? and thé
exact differeﬁtials from Equations (3.5.2) and (3.8). The criterion for
stability being

d AH' _ < 0 stable

d AH ' >0 unstable
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'FIGURE 1: Experimental Results For Vortex-Induced
Oscillation of a Circular Cylinder (Feng)
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FIGURE Il: Schematic Diagram of Experimental Configuratioh
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FIGURE Ill: Characteristic Domains of Vortex-induced Oscillation
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FIGURE 1V: Theoretical Predictions from Hartlen
Currie’s Original Model
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FIGURE V!: Theoretical Predictions for Combination-
Oscillation Solution Applied to Hartlen
~and Currie’s Original Model
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