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Abstract 

The objective of this thesis is to examine the improvement of the design and 

implementation of a fault tolerant Steer-by-Wire system. This application integrates the 

methods of multi-level redundancy developed in previous work with a tool set for 

monitoring the health of the computer controlled system. It allows the system to tolerate 

faults at all levels of its organization. 

The health monitoring system adopted is based on a simplified representation of the 

dynamic model of the Steer-by-Wire application. By comparing the output of a system 

model to the actual output achieved by the application, it provides three measures of 

component health, all of which indicate errors based on the performance of a system state 

relative to a base model. The analytical redundancy provided by the health monitoring 

system may be used to either reduce overall system cost through replacement of a 

physical sensor, or as an additional sensor to allow continued voting after the first failure 

of a physical sensor thus avoiding significant system degradation. 

The health monitoring system has been implemented on a prototype of a three-

wheeled vehicle. The vehicle has two "independent" steering systems: the first resembles 

a conventional power assist, the second a Steer-by-Wire configuration. 
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Chapter 1: Introduction 

1.2 Safety Critical Function 

1.2.1 Introduction 

A safety critical function is a function whose failure necessarily causes unsafe 

operating conditions; any unhandled error will lead to elevated risk to the system, its users, 

or environs. For example, unanticipated catastrophic failure of a car's steering system will 

cause a loss of vehicle control leading to the possibility of accidents, injuries and damage. 

A safety-critical system must ensure that system functions deemed safety critical have no 

possibility of failure. 

A number of techniques are used to achieve service dependability. During the 

design phase, the engineer can design to fault avoidance. This involves using various 

design methodologies, modelling, and validation techniques to prevent fault from being 

incorporated in the initial design. Then the designer looks to fault removal techniques. 

This involves system testing or prototyping to discover faults, which are then removed 

from the design. 

Once a system prototype is produced, the engineer can implement fault tolerance 

techniques. This means the inclusion of fail-operational behaviour within the device by 

having control that can detect, diagnose, treat and recover from errors that occur. This also 
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includes fault detection and fault diagnosis mechanisms as well as protection, supervision 

and appropriate safety actions. 

1.2.2 Passive / Active Safety System 

While a number of potential strategies for improving application safety exist, 

generally strategies can be classified as either active or passive safety systems. 

Passive safety systems operate by attempting to minimize harm caused by a failure. 

These systems attempt to make the system react to failure in a particular way, or constrain 

errors in a particular way. Examples of passive safety systems include seatbelts, 

compound glass, airbags, and surge protectors. 

Active safety systems change system operating-conditions to reduce the probability 

of failure. Examples of active safety systems include A B S , Electronic Traction Control, 

and Electronic Stability Protection. 

In brief then, a passive safety system seeks to manage the results of failure, whereas 

an active system seeks to reduce the incidence of failure. 

1.2.3 Dependability 

Safety critical functions have to be dependable regardless of implementation. 

Dependability is that property of a computing system which allows reliance to be 

justifiably placed on the service it delivers. It is usually expressed in terms of other 

measures such as safety, reliability and availability. Laprie [1] defines these terms as 

follows: 

Safety is a measure of the continuous delivery of service free from occurrences 

of catastrophic failures. 
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• Reliability is a measure of the continuous delivery of proper service. 

• Availability is a measure of the readiness for correct service. 

1.3 Recent Developments of Steering Systems 

The proliferation of electronic control systems is nowhere more apparent than in the 

modem automobile. Automotive systems are increasingly being designed with integrated 

electronic sensors, actuators, microcomputers, information processing for single 

component, and engine, drivetrain, suspension, and brake systems. During the last two 

decades, advances in electronics have revolutionized many aspects of automotive 

engineering, especially in the areas of engine combustion management and vehicle safety 

systems such as anti-lock brakes (ABS) and electronic stability control (ESC). However, 

only recently has the electronic revolution begun to find its way into automotive steering 

systems in the form of electronically controlled variable assist and, within the past two 

years, fully electric power assisted steering systems. 

1.3.1 Conventional Steering System 

The basic design of automotive steering systems has changed little since the 

invention of the steering wheel: a conventional steering system as shown in Figure 1.1 [2] 

typically consists of the handwheel (steering wheel), the steering column, intermediate 

shaft, rotary spool valve (an integral part of the hydraulic power assist system), the rack and 

pinion, and the steering linkages. Since the steering column and pinion are almost never 

collinear, they are joined to the intermediate shaft via two universal joints matched to 

rninirnize torque and speed variations between steering column and pinion. 
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Figure 1.1: Conventional Steering System 

1.3.2 Power Steering 

Power steering is a system for reducing the steering effort by using an external 

power source to assist in turning the wheels. Power steering technology was first 

introduced to the mass market in the 1950's and has continued to use hydraulic systems. 

These systems have achieved a remarkable performance in regard to ride and handling, 

cost and comfort and power assist has become a standard component in modem 

automotive steering systems. Using hydraulic pressure supplied by an engine-driven 

pump, power steering amplifies and supplements the driver-applied torque at the steering 

wheel so that steering effort is reduced. In addiction to improved comfort, reducing 

steering effort has important safety implications as well, such as allowing a driver to more 

easily swerve to avoid an accident. 
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Electric Power Steering arrived first on small cars in Europe in the mid-1990s, and 

is now found on cars such as the Chevrolet Cobalt, Acura N S X , Saturn V U E V6, and on 

most FIAT and Lancia cars. The basic system uses sensors to detect the motion and 

torque applied to the steering column and a computer module to generate torque 

commands to an amplifier motor system based on position error and torque input [3]. 

Compared to hydraulic systems, electric systems are significantly more efficient, 

(because the hydraulic pump used in conventional systems is usually running constantly), 

and this is the main reason for their introduction. The assist level is also easily tunable to 

the vehicle type, road speed and even driver preference [4]. A n added benefit is the 

elimination of the environmental hazard posed by leakage and disposal of hydraulic 

power steering fluid. Due to all these advantages, electric power steering likely to gain a 

considerable proportion of the power steering system market. 

Electric power steering is currently limited to smaller vehicles. This is because of 

the 12 volt electrical system and typical current limits of around 80 amps. Larger vehicles 

such as trucks and SUVs require a larger power output than the 1 K w currently available. 

A new 42 volt electrical system standard should enable use of electric power steering on 

larger vehicles. 

Four basic variants of electrical steering system are being developed and can be 

separated into categories based on the location of the electric motor that provides steering 

assistance [5]. Each of the four solutions focuses on one type of operation, drives of 

steering column, pinion, double pinion (gear, double gear) and rack Figure 1.2. 
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Motor at Column Motor at Pinion Motor with Double-Pinion Motor at Rack 

Figure 1.2: Four Types of Electric Power Steering Configurations 

1.3.3 Steer By Wire 

The Next step in steering system evolution is termed "Steer-by-Wire" and involves 

the complete removal of the steering column and shaft. This represents a dramatic 

departure from traditional automotive design practice. The term "By-wire" refers to the 

lack of physical connection between the steering wheel and the steering mechanism, brake 

pedal and the brake actuators or accelerator pedal and engine controller. This project 

focuses on the health monitoring of a Steer-by-Wire system. This idea is not new as 

many modem aircraft, both commercial and military, rely completely on fly-by-wire fight 

control systems [6]. 

The main difference between the conventional steering systems and the "Steer-by-

Wire" systems is the connection between the steering wheel and the steering actuator. One 

may view the steering system as having two main subsystems: 

1). Command input subsystem (steering wheel), 
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2). Steering power circuit ( e.g., the pump, cylinder, and valves of electro-hydraulic 

power steering). 

The conventional systems include different forms of mechanical and hydraulic 

connections between the steering wheel and the steering actuator. In simplest terms, the 

steering wheel rotation is proportionally amplified by the steering actuator to obtain a 

proportional articulation angle. Since the two systems are mechanically coupled, there is a 

built in inherent force feedback to the operator at the steering wheel proportional to the 

steering conditions. A "Steer-by-Wire" system has only electrical signal connection 

between the steering wheel sub-system and the steering power sub-systems and cannot 

provide "natural" force feedback. 

A number of current production vehicles already employ by-wire technology for the 

throttle and brakes Figure 1.3 [7]. One of the main advantages of By-Wire systems is the 

opportunity for performance improvement. Using software, it is considerably easier to 

implement more flexible control strategies, which also allow for better tunability and 

performance of the control systems. As an example, in the conventional car steering 

combined with mechanical linkage and hydraulic power steering, the effort required to 

manoeuvre a car is inversely proportional to the vehicle's speed, and therefore turning the 

steering wheel for parking always requires more torque than that required in high-speed 

situation. With a Steer-by-Wire system, it is easy to incorporate the vehicle's speed into 

the control loop running in the embedded application, and thereby adjust the tactile force 

feedback to guarantee effortless use to the user. The absence of a steering column also 

greatly simplifies the design of car interiors. The absence of a steering column allows 
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better space utilization in the engine compartment. Without a direct mechanical 

connection between the steering wheel and the road wheels, noise, vibration, and 

harshness from the road no longer have a path to the driver's hands and arms through the 

steering wheel. 

Figure 1.3: Automotive Applications for By-wire Technology. Source: Motorola 

1.3.4 Challenge 

Despite the potential benefits outlined in section above, the Steer-by-Wire concept 

also brings many challenges to the control engineer. Safety considerations and fault 



9 

tolerance become major issues. One of the risks of embedded computing systems is the 

binary failure mode of an electronic component: either it works, or it does not. The design 

of an integrated embedded system must consider the system's ability to cope with such 

faults. The greatest challenge in design is to guarantee that the system will continue to 

perform safely even if one or more components fail. 

Existing technological solutions to the problem are dependent on high levels of 

redundancy and high costs correspondingly. This type of solution is not appropriate for the 

development of products in cost sensitive markets such as consumer devices, automobiles, 

and pleasure boats, nor is it ideal for industrial or military applications. Thus the special 

constraints of the automobile industry (mass production, certification rules etc.) have also 

to be taken into account. 

1.4 Objective 

The objective of this thesis is to examine the implementation of a health monitoring 

system and to develop this within a fault-tolerant Steer-by-Wire environment. The 

complete framework will then integrate multi-level redundancy, perform both local and 

distributed error detection, and allow the system to tolerate faults at all levels of its 

organization. With certain levels of redundancy of both hardware and software, each 

E C U could perform both local and distributed error detection, ( in conjunction with its 

peers), to detect sensor, E C U , and communication errors. 

The thesis introduces a Steer-by-Wire/Power Assist prototype steering system 

installed on an existing three-wheeled chassis. The dynamic model of the complete 

system is analyzed and used to track physical vehicle performance. The overall control of 
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the system is performed using a highly object-oriented software framework that 

incorporates data acquisition, control and communication functions. 

The thesis examines the creation of the health monitoring system and use of this as 

an "analytical sensor". The idea behind the use of the analytical sensor is to provide an 

additional level of security to augment the normal 3 sensor voting routines. 

(Alternatively in very cost sensitive and non threatening applications one may wish to use 

this to reduce cost). The development and testing of an appropriate set of software 

measures to recognize different forms of error is also presented. 

1.5 Outline 

This thesis is organized into five chapters. Chapter 2 provides a review of previous 

research and development efforts in the design of fault-tolerant, safety-critical systems. 

The chapter discusses the existing technologies that are used in implementing fault-

tolerant features among sensors, actuators and communications from both hardware and 

software point of view. 

Chapter 3 addresses the architecture of the proposed system. It specifies the 

approach adopted to build a dynamic model for the specific application, provides the 

background to the health monitoring system proposed in [8], and describes the approach 

taken to create the health indicators. 

Chapter 4 describes assembly and implementation of a laboratory automotive Steer-

by-Wire system, which was designed and built to illustrate the concepts developed within 

this thesis. This is followed by the experimental results. A n analysis of the health 
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monitoring system compared with physical sensors state values shows that system failure 

modes can be detected and diagnosed through a combination of selected health indicators. 

Chapter 5 presents the overall conclusions of the work and makes recommendations 

for further work. 
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Chapter 2: Achieving Fault-tolerance 

2.1 Introduction 

Fault-tolerance is the property that enables a system to continue operating properly 

in the event of the failure of one or more of its components. Complex safety-related 

functions in future automotive systems will be increasingly based on electronic 

components, which are susceptible to a variety of failure modes caused by either interior 

or exterior factors. Consequendy fault-tolerance is emerging as a key technology which 

needs to be applied to the design of By-wire systems. The goal for a By-Wire system 

designer should be to create as robust and reliable a system as possible within reasonable 

cost constraints; Ideally, the range of faults tolerated by the system should be as wide as 

possible, so that the probability of the catastrophic failure can be minimized. 

2.2 Terminology 

Hiller [9] provides a good summary of terms used in fault-tolerant system design. 

Although his work concentrates on software fault-tolerance, an identical terminology is 

applicable to the whole electro-mechanical system. The three most important terms are 

fault, error and failure. 
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A fault exists when there exists a state of operation in a system that leads it to 

non-conformance of its specifications. Faults are classified by their duration, 

as either transient or permanent, and their realization, as dormant or active. 

• A n error is the manifestation of an active fault; it is an occurrence of the 

system entering a state of non-conformance to its specification. Undetected 

errors are termed latent [10]. The key difference between a fault and an error 

is that whereas errors are the results of faults, only an error is measurable. 

A failure is the result of an unresolved error. Note that a failure of a low-level 

system might be considered a fault by a higher level system, which could in 

turn trigger a different error. In a safety-critical system, a failure will be called 

catastrophic i f it happens at a high enough level to put the user's safety at risk. 

Since typical By-Wire system requires the correct action to be taken at the correct 

time, one needs only consider terminology commonly used in the discussion of real time 

systems. Kopetz defines a real-time system as follows [11]: 

• A real-time system is a computer system in which the correctness of the 

system behaviour depends not only on the logical results of the computations, 

but also on the physical time when the results are produced. 

In addition to this, a hard real-time system - as opposed to soft real-time system - is 

one for which a missed deadline implies a failure. In general, real-time computer systems 

interact with a physical environment, such as sensors and actuators. Safety-critical systems 

such as Steer-by-Wire are typical examples of hard real-time systems: a missed execution 
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deadline is not tolerable since it may lead to global catastrophic failure. So in a hard real

time application, the system must always produce the correct value at the correct time. The 

manifestation of an active time fault will be called a time error and defined as a 

computation result which is: either never produced or produced outside its allowed 

predefined time zone. 

2.3 Fault Sources 

A typical Steer-by-Wire system normally includes physical components such as 

sensors and actuators. Usually, these are monitored and controlled by a distributed 

computing platform, hence one must also consider the ECU's and communication 

channels. Before one may examine the architecture of a fault-tolerance system, it is 

necessary to have a good understanding of the nature of the potential faults for each of 

these components. 

2.3.1 Sensors 

In general, faults that can be expected in sensors are either due to mechanical failure 

of some components (e.g., fatigue or accidental impact) or to environmental disturbances 

(e.g., vibrations, electromagnetic interferences, etc). Mechanical failures usually lead to 

permanent faults, while electrical disturbances or vibrations may cause transient faults. 

"Intelligent" sensing units, which are combined with a dedicated microprocessor and 

memory at the sensor level, should obviously be considered separately, since they feature 

logic components, which are themselves subject to electromagnetic interferences and 

other environment-caused disturbances. Although the use of intelligent sensing units 
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simplifies the system from a global perspective, it adds a degree of complexity at the local 

level and therefore introduces additional fault sources in the system. 

2.3.2 Actuators 

D C motors are extensively applied into the area of Electric Power Steering and 

Steer-by-Wire. Common D C motor failures are due to wear of the brushes and integrity 

of armature insulation. The brushes tend to wear quickly because of their friction on the 

commutator ring. For applications where system reliability and longevity are important 

requirements, it may be preferable to use brushless D C motors. The amplifier now 

becomes more complex and sensors are needed to synchronize current with rotation. Other 

typical D C motor failure sources include bearings or seal failure, insulation breakdown, 

demagnetization and damaged connections. 

2.3.3 Electronic Controller Units 

When examining faults on ECU's, it is necessary to distinguish physical hardware 

failures from software faults. Indeed, although an E C U can be considered "just another 

physical component" in the system, it also runs a soft application, which is itself subject to 

faults. 

Apart from accidental physical damage to the E C U hardware, which is obviously 

outside of the scope of normal operation, E C U hardware faults are typically caused by 

electromagnetic interferences, temperature changes or vibrations [12] and are therefore 

transient by nature. Such faults may corrupt the values present in memory or inside the 

processor's registers, and may lead to failure of the E C U if no mechanisms are 
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implemented to detect and tolerate them. They can lead to software errors in both the 

time and value domains. 

Software design faults ("bugs") should also be considered. Design faults exist 

"when the design of the system does not match the specifications" [12]. Therefore, they 

are not locally detectable (since the software performs according to its own erroneous 

specifications). However, especially in complex software systems, guaranteeing the 

absence of design faults implies that exponential numbers of combinations need to be 

considered and tested; this may often be impossible. Ways to detect and treat software 

design errors are therefore required. This is usually achieved through the use of diverse 

redundancy. 

In the context of distributed computing systems, malicious processor behaviour, i.e., 

a fault which results in a processor outputting inconsistent and incorrect data at correct 

times, is called a "Byzantine" error. This refers to the classic Byzantine generals problem 

[13]. 

2.3.4 Communication Channels 

A communication channel is faulty i f the data it carries is corrupted during 

transmission or not transmitted. The most likely cause for corruption of the signal is 

electro-magnetic noise. Many communication protocols have built-in checks (typically 

Cyclic Redundancy Check), which detect i f a message has been corrupted during its 

transmission. These faults are by definition transient, but they can cause higher level time 

faults, since the recovery mechanism may introduce nori-^eterrninistic transmission times. 
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Other types of faults can be caused by failure of the communication controller chips 

themselves, e.g., from the effects of electromagnetic interferences or ageing. Finally 

damage to the physical medium itself (e.g., a broken wire) wil l induce a permanent 

communication fault. 

In a computing network, a faulty node, which attempts to gain access to the bus 

repetitively and thereby prevents the remaining fault-free nodes to communicate, is said to 

exhibit a babbling idiot behaviour. Such behaviour must absolutely be avoided in hard 

real-time, safety-critical applications, for obvious reasons. 

Sensor measurements acquired by ECU's can be erroneous because the analog or 

digital link from the considered sensor to the considered E C U is physically damaged. 

Possible damages can include broken wires or damaged contacts. In a similar manner, it 

is possible that a correct analog command is sent in an incorrect manner to a non-faulty 

actuator because of a damaged link, thereby triggering an actuation error. 

2.4 Existing Approaches to Achieve Fault-tolerance 

In this section different approaches taken to design fault-tolerant safety-critical 

systems are examined and contrasted. Although the projects reviewed rely on different 

methodologies, one concept is universal and compulsory in fault-tolerant system design: 

redundancy. 

2.4.1 Redundancy 

In the event of a failure of one or more components of an embedded system is 

detected, alternate hardware must be available to allow the system to tolerate the faults). 
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Redundancy is necessary then for error treatment as well as for error diagnosis, (which 

uses a voting arrangement between alternate components). 

Redundancy is often described as being either "hot" or "cold". A cold redundant 

component does not run in normal operation, but can be activated and take over i f the 

primary component fails. A hot redundant unit or component, on the other hand, runs in 

parallel with its primary counterpart. Hot redundancy is advisable in hard real-time 

safety-critical environments, where the switching time must meet stringent requirements. 

"Redundancy" will therefore refer to "hot redundancy" in this chapter. 

Redundancy can also be categorized as exact or diverse. Exactly redundant units 

are identical in all points, perform the same tasks at the same times, and are therefore 

expected to produce identical results at a given time. On the other hand, diversely 

redundant units use separate methods to perform a given task. Examples of diversely 

redundant units for position sensing are a potentiometer and an optical encoder both used 

for position sensing (but with different characteristics and different methods required for 

their use). Unlike the tolerances of identically redundant units, acceptable tolerances of 

diversely redundant units must be judged individually to account for each unit's unique 

physical characteristics, such as speed, accuracy and environmental effects. 

The use of diversity allows a system to tolerate software design faults, which are not 

detectable using exact redundancy. Diversity also decreases the probability of 

environmentally caused simultaneous failures of the redundant units, by allowing the 

selection of physically different units. Finally, it aids in cost reduction, since high-quality, 

expensive units can be used in conjunction with lower performance redundant units. 
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2.4.2 Fly-by-Wire 

Fly-By-Wire systems are common in commercial aerospace applications, and have 

been in use since the late 1980s. The first commercial airplane to be equipped with a total 

Fly-By-Wire system, with no mechanical back-up, was the Airbus A320, in 1988. Since 

then, Boeing has developed its own Fly-By-Wire aircraft, the Boeing 777, and Airbus has 

expanded its technology to newer models, such as the A330 and A340. Although the 

aeronautics example provides a good starting point for personal vehicle By-Wire systems 

design, the technological solutions adopted in Fly-By-Wire applications are not 

necessarily directly transferable to large scale, cost-sensitive markets. 

Fault-tolerance of the Boeing 777 Primary Flight Computers (PFCs) is 

accomplished using triple-triple redundancy [14]. This means that T M R , which consists 

of three redundant units, coupled with a voter [12], is used at two levels in the PFCs: each 

of the three redundant computing units which form the PFC is itself comprised of 3 

diversely redundant computers. Diversity is ensured at the hardware level by selecting 

hardware processors from different manufacturers (namely A M D , Intel and Motorola), 

and at the software level by compiling the Ada source code using three different Ada 

compilers. 
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2.4.3 X-by-Wire 

The "X-By-Wire : Safety Related Fault Tolerant Systems in Vehicles" project was 

conducted in Europe from 1996 to 1998 and involved members of both the automobile 

industry and academia: Daimler-Benz, Centro Ricerche Fiat (CRF), Ford Europe, Volvo, 

Magneti Marelli, Bosch, Mecel, Technical University of Vienna, and Chalmers University 

of Technology [15]. 

The objective of this project was to achieve a framework for the introduction of 

safety related fault tolerant electronic systems without mechanical backup in vehicles. 

The " X " in "X-by-Wire" (XBW) represents the basis of any safety related application,such 

as steering, braking, power train or suspension control or multi-airbag systems. These 

applications will greatly increase overall vehicle safety by liberating the driver from 

routine tasks and assisting the driver to find solutions in critical situations. 

The approach taken by the X B W team is based on exact redundancy and fail-

silence, at all levels in the system's organization. In a Fail-Silent Unit (FSU), the 

component must be able to self check and output either the correct value or nothing at all. 

Furthermore, each atomic subsystem is a fault-tolerant unit (FTU), which is composed of 

two exactly redundant FSUs Figure 2.1. This is valid for both sensor level and E C U level. 
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Figure 2.1: Structure of a Fault-tolerant Unit 
X-by-Wire Project 

The fail-silent property is likewise enforced for each of the two bus channels, based 

on error detection coding and checking for compliance with expected communication 

behaviour. Thus, the architecture is capable of tolerating a failure of any bus channel. 

In X B W s implementation prototype, actuation was achieved by having three 

redundant D C motors connected to a specialized gear box. Each actuator provides one 

third of the required torque in normal operation, and half of the required torque in an error 

state. The report concluded that it was more cost effective to have three motors capable of 

delivering 50% of the required torque than two that deliver output 100% of required 

torque. 

The X B W project was conducted in parallel and in close partnership with the Time 

Triggered Architecture project, which also aimed at demonstrating an architecture of 

fault-tolerant distributed real-time systems in safety-critical transportation application. As 



22 

Time Triggered Protocol supports the use of a duplicate physical communication channel, 

it employs exact redundancy. 

Achieving the desired fail-silence property appears, however, particularly 

challenging and costly. For example, at the E C U level, fail-silence implies that each F S U 

is able to perform self error detection, and is able to shut itself down. In practice, only the 

combination of two ECU's can make this possible. Hence, quadruple redundancy is 

required to form a single Electronic Controller F T U . The increased cost makes it 

unsuitable for large scale production in cost-sensitive markets. Furthermore, the 

architecture is extremely rigid and does not make optimal use of the available resources. 

However, some of the techniques used for software error detection and for fault-tolerant 

actuating are quite ingenious. 

2.4.4 Error Detection 

While some redundancy is required, many projects avoid the use of total hardware 

redundancy in an effort to reduce costs. For example, at the sensor or actuator levels, 

model-based methods have been developed which exploit the "inherent redundancy 

contained in the dynamic system equations that relate the different sensors outputs" [16]. 

This is called analytical redundancy. It essentially takes two forms: 

Direct redundancy (the relationship among instantaneous outputs of sensors) 

Temporal redundancy (the relationship among the histories of sensor outputs 

and actuator inputs). 

Analytical redundancy allows the outputs of dissimilar sensors to be compared. 

The residuals resulting from these comparisons are then measures of the discrepancy 
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between the behaviour of observed sensor outputs and the behaviour that should result 

under normal conditions. [17] gives an example of a triple redundant unit replaced by a 

double redundant hardware system used jointly with analytical redundancy, resulting in 

significant cost reduction. 

Error detection can take on different forms, but these are generally classified as 

either data replication or executable assertions. Data can be replicated through analytical 

redundancy, double execution, and hardware replication. Executable assertions include 

limit checking, certification, signature checking, self-tests, and watchdog timers [18]. 

Furthermore, detection can be performed within a component or via a network by peer-to-

peer checking or supervisory elements. Distributed environments require a mechanism to 

synchronize their timing, and when error detection is performed in a distributed 

environment, errors may be detected in the time domain: each computer can check the 

communication timing of the other computers. 

The E C U level of the system has been the subject of many research efforts on error 

detection. Some workers have attempted to design processor architectures, which 

inherently provide on-line self-testing capabilities [19]. In the latter example, a primary 

and back-up microprocessors are integrated in a single element. Other approaches use 

codes to detect hardware E C U failures [20]. In these applications, computation results are 

coded using a code generator, and later checked by a code checker, thereby providing self-

test capabilities. This concept is similar to methods used for communication error 

detection, such as CRC. Unfortunately, it requires development of additional logic 

circuits, and can therefore not be directly used with off-the-shelf components. The latter 
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works are mainly targeted at the fault tolerance of large computer networks, and are 

relatively poorly adapted to smaller embedded applications. 

In an effort to minimize the overall system cost Bouvier [21] reduced the number 

of components and optimized the use of the components. Bouvier developed a distributed 

fault-tolerant architecture and demonstrated it in a Steer-by-Wire application. In his 

system triple hardware diverse redundancy was used at both the sensor and E C U levels 

while the object-oriented model of the system was combined with on-line error detection 

and both software and hardware dynamic reconfiguration1 utilities. Each E C U could 

perform local error detection on the data it acquired, and also a distributed error detection 

with its peers to detect sensor, E C U , and communication errors. The system response 

strategy uses a dynamic reconfiguration approach, in which the system can reconfigure 

resources at run-time. This architecture uses an abstraction of system hardware and 

resources in combination with an execution task flow chart to select tasks. The fail-

silence property described by the X-By-Wire project is also implemented on each E C U . 

Each E C U is connected to a second set of channels called state-lines, which operates as a 

voting mechanism, where two peers must validate the local E C U as being functional to 

allow it to broadcast data over the communications bus. This research uses and enhances 

the fault-tolerant architecture developed by Bouvier. 

2.4.5 Reconfiguration 

Dynamic reconfiguration is the process of making changes to an executing system 

without requiring that the system be temporarily shut down. This feature should be built 

into systems that have requirements for adaptability and/or high availability. 

1 See section 2.4.5 
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A distributed reconfigurable network of ECU's to control hyper-redundant space 

robot manipulators was developed in [22]. Their system is able to adapt itself in real-time 

to partial failures and to the changing operating conditions through the use of a distributed 

consensus algorithm. The inverse kinematics problem is solved on all ECU's, and the 

optimal solution is selected and applied after exchanges over the communication channel 

have led to an agreement. 

Oldknow has developed a dynamically reconfigurable architecture for machining 

applications [23]. The goal of his work is to optimize the machining process from an 

economic point of view. Depending on the operating conditions, different constraints are 

active. Relying on reconfigurable architecture, the system is able to adapt itself to the 

current active constraint, in real-time. 

A further application of reconfigurable systems lies in possibilities for off-line 

modifications. If the system's architecture is flexible enough, modifications such as sensor 

upgrades are possible in a way that is transparent to higher-level software. [23] in 

particular details a way to use self-instantiating intelligent components, from which the 

code required to use them is uploaded to the high-level controller, hence providing "plug 

and play" functionality. 

2.4.6 Graceful Degradation 

To cope with failures, a system may reduce performance capabilities, cancel less 

important tasks, or switch to different control algorithms. This method of tolerating errors 

is called Graceful Degradation. 
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The most active research group currently tackling graceful degradation issues in 

distributed embedded real-time systems is RoSES (Robust Self-configuring Embedded 

Systems). The RoSES project was started at Carnegie Mellon University in 2000, under 

the supervision of Dr. Phil Koopman [24]. The RoSES approach to graceful degradation 

is based on Product Family Architecture (PFA). A P F A can be thought of as the whole 

range of offerings of a given manufacturer for one type of products. The idea behind the 

RoSES project is that upon failure of some of the components of a system, it is possible to 

shift to another configuration, i.e., to another "product" in the PFA. 

However, the initial effort of the RoSES team concentrates on off-line 

reconfiguration of non safety-critical systems, and is therefore not directly applicable to 

the problem described here. 

2.5 Health Monitoring 

The majority of work in fault-tolerant systems discussed so far relates to the 

detection and handling of errors, where errors are classified as existing in a binary state: 

either the error exists (the system is in a state of non-conformance with specification), or 

the error does not exist. A weakness with the binary error approach of these fault-tolerant 

systems is the lack of error predictability. The ability to predict impending failure allows 

the operator or system to take preemptive action to prevent failure by altering system 

functionality or scheduling maintenance. Indicators of system health give insight into the 

likelihood of failure. 

Health indication seeks to represent the system's health state by selecting indicators 

which describe system performance or correlate to known failure modes. There are a 
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number of approaches that have been used to develop health indicators, which can be 

classified as either Condition Monitoring, Parameter Identification, or State Estimation. 

2.5.1 Condition Monitoring 

Condition monitoring can be defined as a technique or a process of monitoring the 

operating characteristics of machine in such a way that changes and trends of the 

monitored characteristics can be used to predict the need for maintenance before serious 

deterioration or breakdown occurs, and/or to estimate system's health. 

In general, the condition monitoring approach involves adding physical sensors to 

measure a direct indicator of health. Condition monitoring will often require the creation 

or addition of new sensors to measure signals which directly indicate system performance. 

These sensors are specific to each application, and each recorded signal is usually 

indicative of a specific fault or operating condition. 

A variety of internal system parameters may indicate errors; temperature can reveal 

lubrication problems, misalignment, or overload; noise may indicate valve, gear, or 

bearing wear. The use of these internal states to predict failure is discussed in, Goode 

[25], who proposes a prediction model theory based on statistical process control, and a 

failure model using a stable zone and failure zone to predict time to failure. 

Condition monitoring systems are programmed with awareness of a number of fault 

conditions, and a diagnosis mechanism compares the system state with the condition 

signals to provide a diagnosis of system health. 
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2.5.2 Parameter Identification 

Parameter identification techniques seek to determine and monitor the model 

parameters for the system over time; a common way to do this is to use observers. 

Usually, a system model of a given order is defined, and then a least squares regression is 

performed to determine the parameters for the given relationship between system input 

states and measured system output states. The system parameters can then have limit 

values applied to them that describe acceptable operation. 

Isermann [26], describes the parameter estimation method for linear systems and 

how significant parameter changes can be detected by reference to the normal values 

using statistical methods like the Two-Probe T-Test. 

One weakness in this method is that the parameters of a given order model may not 

represent system characteristics in a predictable way. Typically, these systems would then 

need to be developed for each application experimentally, and the limits must also be set 

experimentally. This reduces the potential design benefits of using a system model. 

2.5.3 State Estimation 

The process of state estimation involves using a known system model, and applying 

a set of inputs to known system states to predict the output state at a given interval. The 

health indicators that are built from state estimation are generally composed of the residual 

error between the predicted state and the measured state. 

State estimation techniques such as Kalman filters or various other tracking filters 

can also be implemented as a prognostic technique. The Kalman filter is a dynamical 

systems tool for estimating unknown states by combining current measurements with the 
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most recent state estimate. It can be considered as a virtual sensor in that it takes current 

available sensor measurements and provides optimal estimates (or predictions) of 

quantities of interest that may in themselves not be directly be measurable. It is typically 

implemented with the use of a linear system model, but can also be extended to non-linear 

systems through the use of the extended Kalman filter algorithm that linearizes the system 

about an operating point. The linearization allows the application of other linear algebra 

techniques. 

Other parameter estimation techniques rely on models to predict future state values. 

If the observer output states reconstruct measurements of the process, then the observer 

creates analytical redundancy of those states. Typically, a diagnostic observer generates 

output states that are indicative of faults, whereas the state observers generate data needed 

for control. Control observers also tend to operate within a closed-loop environment, 

whereas a diagnostic observer tends to operate in an open-loop configuration. This 

requires the diagnostic observer to be more complete, or more robust when considering 

model uncertainties. 

2.6 Summary 

The main challenge of developing "By-wire" systems is the achievement of suitable 

levels of fault-tolerance at a cost which is acceptable to the market. One must be able to 

guarantee that continued functionality is provided even if one or more of the system 

components is faulty. 
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This chapter first described the terminology used to define faults together with the 

common fault sources for each of the typical components of a Steer-by-Wire system. It 

then reviewed previous research projects and approaches of fault-tolerance systems. 

Finally health monitoring was introduced in the main areas of condition monitoring, 

parameter estimation and state estimation. 



31 

Chapter 3: System Architecture and Dynamic 
Modelling 

3.1 Introduction 

The steering system was chosen to be used as an example in this thesis is the 

steering system on a prototype three-wheeled urban vehicle designed in the laboratory. 

The steering systems transmits the input from the steering wheel to the steering actuators, 

which in turn move the steering rack and tie rods to steer the wheels. 

The steering action is usually achieved using a mechanical connection often assisted 

with hydraulic or electrical components ("Power Assist"). In this particular case it was 

deemed advantageous to build a modular steering system that can accommodate manual 

steering, a power assisted mode and a steer by wire mode, each either alone or in parallel. 

This complicates the overall design, but provides considerable flexibility in the provision 

of performance and robustness. In order to simplify the building of the initial prototype 

and to expedite the experimental part of this project, the experiments were conducted 

using a torque command rather than manual torque supplied by the steering wheel. The 

torque command to the power steering system was generated by the error signal in the 

steer by wire position loop. Additional discussion of this arrangement is given later in the 

Chapter. 
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Next section provides a detailed description of the parallel power steering and steer 

by wire actuators together with a discussion of suitable control strategies. This is followed 

by an introduction to the idea of Health Monitoring developed in previous work by 

Nicholas Cullingham [8] in the laboratory (concerned with the monitoring of hydro-

mechanical marine steering systems) and the provision of improved fault tolerance 

through the use of soft sensors. The basic premise here is that one may utilize a virtual 

model of the system dynamics, together with the inputs to the real system, to track the 

expected values of major physical states within the system and to make comparison with 

actual values. 

Finally in this chapter, the dynamics of the steering system are modelled by 

analyzing the control loops of the parallel steering actuators and an initial simulation of 

the behaviour of the proposed health monitor is developed. This then allows the 

development of suitable approaches to the design and implementation of the real time 

software system which will be embedded within the experimental steering system. 

3.2 Steering Actuation Design and Control Strategy 

Steer-by-wire and power steering are both safety-critical functions. While power 

steering does have mechanical backup, the loss of the power assistance can cause 

significant problems. A true steer by wire system poses even greater risks and it is likely 

that this wil l require the use of redundant actuation components as well as redundant 

sensors and computational elements. It is not necessary however that these redundant 

systems be duplicates and in many cases one may achieve both a lowering of cost and 

improvement in reliability by having different types of actuator and drive. Some systems 



33 

performance may suffer as a result of not simply duplicating the best alternative. 

However, in the case of steering, the required performance parameters are quite easily 

satisfied and exceeded by a wide variety of approaches. 

Within the steering system the following major groups of elements need to be 

considered: 

a) Actuators and associated elements, (drive trains, amplifiers, etc) 

b) Sensors 

c) Communication networks 

d) Computation and logic elements 

e) Power supplies and associated wiring 

Ideally, to maintain system functionality in the case of single component's failure 

and prevent catastrophic failures, each component should be fault-tolerant, reliable, and to 

achieve this will require some degree of redundancy. The major interest in this research is 

to find ways to minimize the increased cost of redundancy by incorporating a parallel 

software system which can offer "analytical redundancy". 

Among the electronic components needed in the application, actuators are almost 

always the most expensive to duplicate, hence the consideration of alternate approaches to 

actuator redundancy is one of the major issues to be considered during the prototype 

design phase. A fault-tolerant system with a single motor drive may overcome most of 

the problems in critical applications by having redundant and reliable controllers, the 

result of a complete motor failure is of great concern. 
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As with any design problem there are many ways to achieve actuator redundancy, 

X-By-Wire project's prototype had three D C motors connected to a specialized gear box. 

Each actuator would provide one third of the required torque in normal operation, and half 

of the required torque in an error state. The report concluded that it was more cost 

effective to have three motors capable of delivering 50% of the required torque than two 

each delivering 100% of the required torque. However, to support a high number of 

redundant actuators, more controllers, feedback systems and communication systems have 

to be considered for reliable operation. At the same time one may wish to anticipate 

potential transmission failure and provide alternate drive possibilities. This research 

suggests that a triplicate system including the necessary sensors and 

actuators/transmission elements is unlikely to be cost effective. 

For research purposes, the prototype vehicle in the laboratory uses two actuators 

with different means of transmission. The provision wil l be made for the possibility of 

manual override in the limit case, which in practice would require a flexible transmission 

element to take full advantages of Steer-by-Wire system (This is likely practical on a 

temporary "limp home" basis). The motors will also utilize different control modes, one 

in position mode (steer by wire), the second in torque mode (power steering). 

Realistically, the power steering would be driven by either torque applied to the steering 

wheel or a combination of torque and position. The prototype vehicle does not have the 

rigid connection between steering wheel and steering mechanism so output from the first 

motor amplifier (torque signal) is used to drive the second loop, as shown in Figure 3.1: 
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Figure 3.1: Two-actuator System Schematic Illustration 

3.2.1 Steer by Wire Actuation 

The first control loop in the system (Steer-by-Wire) receives commands from the 

user by measuring the position sensors mounted at the steering wheel and controls an 

actuator driving the pinion and the steering rack. This controller implements closed loop 

position control and has position and velocity sensors to measure the rack's movements. 

To facilitate the operation of the second control loop (power steering), it also measures 

the current output supplied to the actuator. 

3.2.2 Electric Power Steering Actuation 

Most modem conventional power steering systems consist of an engine driven 

hydraulic pump and a hydraulic actuator. However, electric power steering systems are 

more compatible with Steer-by-Wire applications. In addition, electric power steering 
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systems offer better fuel economy, are more compact and more environmentally friendly 

than traditional hydraulic systems. 

To simplify the building and controlling of the experimental prototype, the input to 

the power assist mode in this case comes from the first motor amplifier's output. As 

shown in Figure 3.1, the current output from the first motor amplifier is detected and 

transferred to the power assist controller; this in turn determines the appropriate output 

magnitude and drives the motor (i.e., the power steering actuation is operated in an open 

loop torque mode). With the power assist, the amount of steering torque required by 

Steer-by-Wire actuator can be significantly reduced. 

In the normal situation, these double actuators will be operated in their different 

modes. Should the position mode motor fail, the other motor would still be able to acquire 

the current output from the amplifier in the position control loop, steer the wheels itself 

and back-drive the other actuator. This guarantees the fail-safe capability of the overall 

system at the actuation level. 

3.3 Fault-tolerant Framework 

Before presenting the Health Monitoring concept, it is useful to provide an 

introduction to the fault-tolerant framework which is to be used as a platform for the 

Health Monitoring system. This fault-tolerant system architecture is based on Bouvier's 

multiple embedded hardware [21]. 

To achieve a particular system function, a fault-tolerant system relies on having 

redundant methods, which consist of software or analytical replication, and hardware or 

physical replication. Each system function can be thought of as a causal system that has a 
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set of input states, parameters, output states, and relations between each of those states. 

Redundancy is needed to maintain any high level function when that function depends on 

generating a defined output from a given set of inputs even i f a sub-component fails. 

Input states are replicated through analytical or physical redundancy; the relationship 

between input and output, the actuators or plant, are replicated only through physical 

redundancy. 

To facilitate fault-tolerant management and system reconfiguration, object oriented 

programming techniques are used in the development environment. Thus each 

component can be described by a software class whose attributes and methods provide an 

abstraction of that component. Where components are replicated, each class can be 

instantiated as a software object, whose attributes describe that particular component. The 

inheritance property, which allows a class to by defined as a child of a previously 

designed class, causes the child class to include all of the attributes and methods of the 

parent. This property is particularly useful when designing for diverse redundancy, where 

each replication has similar attributes, or may require more attributes, and has similar 

methods, which need to be slightly altered for each case. As in terms of the whole system, 

this allows one to isolate the high-level software from the low-level redundant sensors and 

actuators. By doing this, one can allow the high-level software to be "unaware" of the 

low-level redundancy and to be unaware of where the information originated from. Thus, 

programming and many kinds of error detection can be done in a relatively simple 

manner. 
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A representation of the fault-tolerant framework in Bouvier"s work is shown in 

Figure 3.2, which displays the hierarchical nature of software configuration including 

atomic methods, mid-level methods or high-level methods. The architecture shown here 

is representative of one Electronic Control Unit (ECU). 

Atomic methods describe the actual instantiation of components available to the 

system. Each atomic method has a one-to-one relationship with an input component (a 

sensor) or an output component (an actuator). Atomic methods make up the system 

description and the hardware abstraction layer. 

The mid-level methods make up the redundancy manager, where the treatment of 

sensor and actuator errors is done locally. These methods include the error detection, 

masking, and error response functionality. Redundancy manager is used to determine the 

state of all physical devices in the system, and provide a correct, single reading from 

redundant sensors , even if one of them is faulty. 

The high level methods sit at the highest level in the system, and are independent of 

the low-level hardware. Their inputs and outputs rely solely on fault-tolerant methods and 

data that have been checked against errors in the mid-level methods. A typical example of 

a high-level method is one that performs a closed-loop control action: it takes a reference 

value and a feedback value, compares them, applies a control strategy and outputs a 

command. 
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The architecture utilize triple hardware diverse redundancy at both the sensor and 

E C U levels while the object-oriented model of the hierarchical system is implemented to 

allow the dynamic reconfiguration of both software and hardware utilities. 

3.4 Health Monitoring System Development 

As seen from Bouvier's work, at least three components are needed for every level 

of fault tolerance, as 3 is the smallest number which allows majority voting. Should one 

of these components fail or become isolated, voting can no longer be used. 

Ideally, the system should provide some protection and allow for modifications 

following initial failure, without increasing the level of redundancy. Wherever possible, 

protection should be provided by the software since it has lower value. This is achieved 

by building models of the system and using the relationships between input and output as 

an auxiliary check on system performance. In this way, one can develop a fault-tolerant 

as well as cost-effective system by further reducing the amount of hardware while 

maintaining system's fail-safe functions. This model based detection as well as the 

treatment procedures is termed a Health Monitoring system. 

The following section introduces the particular Health Monitoring concept 

developed in Cullingham's thesis project. Cullingham implemented this approach to 

provide additional software redundancy within an electro-hydraulic marine steering 

system [8]. The system is adapted here for the dual actuator electro-mechanical 

automobile steering system. 
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3.4.1 Model-based Approaches and Model Selection 

Section 2.5 discussed a number of approaches to achieving health awareness: 

condition monitoring, parameter identification, and state estimation. In general, the 

condition monitoring approach involves adding physical sensors to measure a direct 

indicator of health. Alternatively, parameter identification and state estimation use model-

based approaches, and sensors that may already exist for control purposes, to create a 

measure of health. Model-based approaches are preferred for this project because they 

allow the use of existing hardware. 

The greatest difficulty with parameter estimation occurs when the system model is 

non-linear. Typically, parameter identification approaches rely on the least squares 

algorithm to determine the parameters, and this algorithm requires the model to be not 

only constant, but also linear. 

Most real mechanical systems cannot be accurately represented by a single linear 

model. Mechanical systems typically have a number of non-linearities (e.g. saturations, 

relays, friction). Furthermore, a number of mechanical systems are not time-invariant; 

they change not only with their internal parameters, but also with time. To accurately 

model such system, non-linear model elements and multiple model states are required. 

Although there are few non-linearities (saturations, dead-bands) in the prototype 

steering system, state estimation approach is still more compatible with this application. 

First, it is straightforward to compare the analytical sensor with physical sensors to assess 

system health. Second, state estimation is also the best approach for systems controlled in 

real time since it mmimizes memory requirements and is computationally efficient. 
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For this study, a complete simulation model is constructed from a number of system 

parameters and second-order transfer-functions, including gains, filters as well as 

integrals. In this manner, a number of small processes or system components can be 

individually modelled, and then cascaded in series to produce an overall model of the 

system. This facilitates the process integrating both control loops, (closed position loop 

and open torque loop), and to simplify the modelling. The use of a second-order system 

model to estimate system dynamics has a number of benefits. In particular, reducing the 

system to its dominant second order model allows its performance to be specified simply 

in terms of gain, damping and natural frequency. 

To allow the dynamic model to continue to accurately replicate application's 

behaviour, the closed loop state estimation is updated in the real time. The model is 

adjusted after each comparison with the physical system to ensure that the starting values 

of the parameters for the next period correspond to the actual values observed. The details 

of this procedure are to be detailed in section 3.4.3. 

3.4.2 Indicator Selection 

The model-based approach used by Cullingham [8] re-used the existing control, 

sensors and ran the system model in parallel with the physical plant. Differences in 

performance then needed to be identified that would provide meaningful information 

about failures or impending failures of the system. The study of potential failures of the 

marine steering system lead Cullingham to propose three different indicators of failure: 

the Instantaneous Response Indicator, the Dynamics Response Indicator and the Average 

Response Indicator. 
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The Instantaneous Response Indicator is the current error between input and 

output to the system. Obviously a lower absolute value of the indicator indicates a healthy 

measure for the system, whereas a high absolute value indicates that the system health 

may have deteriorated. In this research, the IRI represents the error between command 

and actual positions of the steering rack. The instantaneous error is a good initial 

indicator of system health, for one can only tolerate a set amount of error. However the 

instantaneous error does not always provide enough information to localize component 

problems. Typically one needs to examine the change in these parameters over time and 

to incorporate reasonable dynamic models so that one can compensate for transient 

periods of high error which are normally the result of the input transients. 

The Dynamics Response Indicator is determined from errors between the actual 

system states and those estimated from a system model. This process requires that the 

model know the inputs to the system and that the model be restarted with actual physical 

values at regular intervals to prevent errors in the output from the system model being 

confused with deterioration of the system. The procedure is described in detail in the next 

section. The model developed for the prototype estimates the expected amplifier output 

to the drive motor which is then compared to the actual output of the amplifier within the 

steer by wire loop. Since the Dynamics Response Indicator is run over a short period of 

time and its states are reset with measured states on a regular basis, health errors arising 

from slow changes in the system may be missed. The third type of response indicator is 

used to verify system health. 
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The Average Response Indicator is the difference between expected change and 

the measured change over a period of time. The response to a slow moving input is 

checked over a period of time that is significantly longer than the settling time of the 

dominant system dynamics. For the purpose of this thesis, this indicator is the difference 

between motor's expected average velocity and actual average velocity over the time 

window. A large error signal here indicates that the system is not responding as expected. 

A change in performance can be attributed to either the input (actuator fault) being 

incorrect, or that the model structure or model parameters no longer adequately 

approximates the actual system (mechanical fault). 

3.4.3 State Estimation Process 

The Health Monitoring System has three available inputs: the system state vector, 

system reference vector, and control signal vector. 

The model is not design to be run continuously, instead it is only operated over 

short intervals at which comparisons are made between the model and physical system 

states. Once the comparison is made, the model is reset with current system states and 

allowed again to run for a short time. This principle described in the previous paragraph 

is shown in Figure 3.3. In this figure, a single estimation process is shown. The model 

is updated at each loop closing to include all of the inputs, u(t), u(t+A) ... u(t+nA) and the 

starting states of the system, y(t); it then produces the system end point, y(t+nA). After 

each estimation, the actual system states are stored by the model and used to generates the 

state value at the end of the next period. 
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Figure 3.3: Single State Estimation Interval 

In Figure 3.3, the period of estimation is significantly longer than the loop-closing 

interval, but the system health indicators are required to be updated at each loop closing. 

Then when an estimation occurs at each loop closing, it shares the same inputs with other 

estimations in the same interval and acquires the starting state generated by the dynamic 

model from previous estimations, as shown in Figure 3.4. During this multiple estimation 

process, each set of estimation then represents results for a window of system data that 

moves with time. When an estimation occurs at each loop closing, the moving windows 

overlap with previous estimations. 

To accurately simulate the actual system's behaviour and prevent the tolerated errors 

in the model estimation being confused with deterioration of the system, at the end of 

each estimation interval, (e.g. 5 times of loop closing), the dynamic model is restarted to 

the actual system states and performs another interval's estimation after being 

synchronized with the actual system inputs and states. 
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Figure 3.4: Multiple State Estimation Intervals 

A parabolic approximation is applied to estimate a history of inputs, as shown in 

Equation 3.1. In this case, three of the input points are used: the start point, end point, and 

mid point. The parabolic input was tested in an algebraic solution to the equation of a 
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second order system by Cullingham [8] and it is proved that the parabolic approximation 

is fairly accurate across the entire range of the sine wave input signal and adequate when the 

system input is a continuous function. 

u(t) = \ att2 + a2t + a3 

« 0 - 2 w , + « 2 — 3 w 0 + 4 w , — l u 2 

« , = — 2 . " 2 = J Z ' 0 3 ~ U ° 

Equation 3.1 

Where: 

A is a discrete time interval representing half the estimation period. 

uv=u{t), U\=u{t+A), and ui=u(t+2A) 

3.5 System Dynamics Modelling 

To implement the Health Monitoring System one must first build the models of the 

various steering elements and extract the equations relating the states of interest. Both the 

Steer-by-Wire and power assist loops are implemented using Microprocessor without 

Interlocked Pipeline Stages (MIPS) processors with high speed serial communication to 

the control and data acquisition modules. A detailed description of the actual components 

is included in Chapter 4. 

3.5.1 Steer-by-wire Motion Control 

Motion control of the Steer-by-Wire actuation is achieved using the F P G A Based 

Motion Control Module (TMAC), an F P G A based motion control module. The module 

performs closed loop servo position control of up to 2-axes and it executes both the 

interpolation task and the measurement of quadrature encoder input, and outputs the 
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required analog voltage to the amplifiers. A layout of this control process is shown in 

Figure 3.5. 

A supervisory P C is used to communicate with the embedded system. This system 

operates using a highly object oriented framework of methods running within the MIPS 

master which allows simple motion, monitoring and communication tasks to be easily 

achieved. The motion commands result in coarse increments being transmitted to the 

F P G A module which in turn interpolates these and performs the functions already 

described. The current amplifier within the control loop utilizes tachometer feedback to 

allow easier and more robust tuning of the system. 

SCMxx D 
Supervisory System Servo 

Amplifier 
Servo 
Motor TMAC 

(Tach) 

Quad 
Encoder 

Figure 3.5: Closed-loop Position Control for Steer-by-wire Actuation 

Velocity Loop 

The block diagram of the internal velocity loop is shown below in Figure 3.6 and has 

3 variable gains, ( K r e f , Kioop and Kach )• 
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Figure 3.6: D C Motor and Servo Amplifier Control Algorithm 

The velocity response of the servo drive can then be modelled as a first-order lag as 

shown in Equation 3.2. 

Q{s) _ K vel 

VD,a{s) l + T v e / ( s ) 
Equation 3.2 

where 

Kvel~ 
'ref 

k k 

J 
vel' KTKAkf00pktachktach D 

Equation 3.3 

The parameters of this firs-order function can be verified by applying a step input 

to the actuator and measuring the steady-state gain and rise time. 

Position Loop 

The controller used by T M A C is a "lead/lag" filter. After having identified the 

parameters for the velocity loop, the lead/lag filter parameters are chosen so that the 
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closed position loop response is a second-order lag with a natural frequency of (o„ and a 

damping ratio of £. The lead/lag filter can be represented by the following transfer 

function in the Laplace domain: 

U (A-V (5 + g) 
n lead, lag\A >~ ^ lead .lag + 

Equation 3.4 

Proper tuning of the lead/lag filter can greatly simplify the analysis of the system's 

behaviour. Including the first-order transfer function of servo amplifier and D C motor as 

shown above results in the continuous-time block diagram of position control in the 

Laplace domain, as shown in Figure 3.7. 
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A'DDJ 

K K 
A'DDJ 

A*. _ 
poLD 

Figure 3.7: Lead/lag Filter in Closed-loop Position Control 

The global transfer function of this control loop can be expressed as: 
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H(S): 

K vel KDjAi p & had,lag (S + a ) ^ n A ^ polH & AID, H, 0 

s{l-Tvels){s+b) 

j | K v e l K D I A D K l e a d lag(s+a)Kpot D K A ! D D e 

S{\-Tvels){s + b) 

Equation 3.5 

By choosing a = —-— , the effect of Xxi is cancelled. Furthermore, it is possible 
Tvel 

to obtain a second order global transfer function characterized by its natural frequency co„ 

and the damping ratio of £, by selecting b and Ki^d, lag in the following manner : 

WnTvel 
lead Jag V~ V V Tf 

&pot,D^AID,D,O^DlA,D^vel ^ 

In order to adapt this analysis to discrete time (Z-transform) form, the following 

simple transformation is used, where Ts is the loop-closing period : 

s = z ~ l 

T 

Equation 3.7 

This gives the following discrete expression for the controller : 
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s + a 

s + b 

z-A 

z-B 

A = l 
K lead, lag = K lead, lag , where 

B = \ 

Equation 3.8 

The filter can now be implemented as a digital controller for numerical integration 

within the object-oriented software environment. 

3.5.2 Power Assist Motion Control 

A separate power assisted steering system is used to supplement the steering torque 

of the Steer-by-Wire system and to act as a back up system in case the Steer-by-Wire loop 

fails. Ideally, the steering system would be modular and the power steering system would 

input from a torque sensor mounted on the steering wheel and knowledge of current 

position error in the system; this enables easy motion of the system from rest and 

enhanced dynamics during transients. However the prototype used for this research has 

only two loops and the manual steering component is not physically available. In order to 

approximate the ideal system, the required steering torque from the power steering system 

is assumed to be proportional to the current position error. 

T = k torsion •AO 

Equation 3.9 

Where 

AG : current position error, 

T : the steering torque and 
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Ktoreion : the steering column stiffness or the ratio between them. 

This approximation allows the input of what is essentially a torque reference input 

without requiring an additional torque sensor. At the same time, one can adjust its 

magnitude by simply modifying the gain in this open torque loop, as shown below: 

-D,d 

K DiA. D 
1 

Js K DiA. D 
1 

Js 

Figure 3.8: Open-loop Torque Control 

The input is position error and output is position. KG , KD/A,D, KA, KT, J represent 

torque loop gain, drive unit D A C gain, amplifier gain, torque constant and inertia of servo 

system respectively. Since the position loop and torque loop are mechanically connected, 

the first step in the design of the system is to model the dynamics and examine the 

required torques in the various modes of operation. 

3.5.3 Dynamic Performance Simulation 

A n off-line simulation of system dynamics offers an opportunity to examine the 

dynamic performance, to verify the parameters and balance the control loops. This 

modelling was performed by using MatLab/Simulink before it was implemented within 

the embedded system. 

The Steer-by-Wire loop includes a D C brush motor and a ball screw connected to 

the steering rack to move the wheels according to position reference. The power assist 

loop includes a second D C brush motor connected to the same steering rack and pinion 
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mechanism through a pair of pulleys. Thus, the steering rack is moved by the combined 

outputs of both motors. The complete system diagram is shown in Figure 3.9, T, and T 2 

represent the torque outputs from the two driving motors. The reaction force from the 

tires is included in F|o ad, which is estimated using approaches adopted in [27] , see 

Appendix A . 
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1 
w. 

a 
If 

Position 

Figure 3.9: Ballscrew and Pinion, Rack Coupling Mechanism 

The integration of both of the control loops and the actuation mechanisms results in 

a continuous-time block diagram of the overall system model as shown in Figure 3.10. 

Primarily reference input is sinusoidal wave, which represents the common input from 

steering wheel. Closed-loop position control and open-loop torque control are coupled by 

the actuation mechanism developed in the application design. To protect against motor 

overload, saturation is used to limit the current outputs from amplifiers. 
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Figure 3.11: Simulation of Output States in Matlab 

After initially identifying all the parameters, and running the simulation in Matlab, 

the system's dynamic performance can be assessed with the reference to the position 



57 

feedback, position error, torque outputs from both loops as well as the steering rack's 

travelling status. A simulation of these output states is shown in Figure 3.11 with a 

sinusoidal input at 1Hz. 

Off-line simulation allows one to check system performance and stability, to tune 

the system parameters, and at the same time create a benchmark for implementing the 

Health Monitoring System in the embedded application 

3.6 Health Monitoring Framework 

The desired output from a health monitoring layer is a set of values that are 

indicative of the current status for a given component. Each unique health monitor should 

aggregate a set of indicators, as well as all of the methods that describe those indicators. 

The Health Monitoring indicators are model-based, as described in Section 3.4, which 

makes each indicator dependent on the current system state and the input applied over a 

period. The Health Monitoring layer necessarily relies on the systems' sensors, 

observable states, and controller inputs. Thus an abstraction of the hardware system as 

well as the current error status of all the state variables are needed i f the Health 

Monitoring layer is to function properly. 

The Health Monitoring needs to be integrated with the error detection functions so 

that the health indicators can be generated and, i f disagreements are found, faulty sensor 

can be detected and disabled. 

Figure 3.12 shows a flow chart of the data used by the health monitoring system 

during normal operation. During the first step, the RunModel method is used, which 

updates the model elements, and generates an estimation for system states. In this 
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application, the estimated states include steering rack's position and velocity as well as 

current outputs from amplifiers. At the same time, by acquiring the physical sensors, 

(such as the tachometer, encoder and potentiometer), one can also obtain the actual 

physical states of the system. Data from the health monitoring system and the sensors 

must then be compared. 

Reference h 

1. RunModel 
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2. Update States 
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Implement specific model 

S X | Physic 3 1 Position |_ / ' 
Analytical Position 

Redundant Analytical Sensor 

Distributed 

Error Detection 

Local 

Error Detection 
-Health indicators 

Figure 3.12: Health Monitoring System Data Flow 

The second step in the data flow for the Health Monitoring system is updating the 

system states with the values produced by the Distributed Error Detection routine. This 

then allows the calculation of the output values for each of the Health Indicators. 

3.7 Summary 

A combination of Steer-by-Wire mode and power assisted mode is proposed as the 

steering strategy for the purpose of experiment. Then it introduces the fault-tolerant 
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platform that the health monitoring functions are designed to interface with. This platform 

runs on multiple embedded hardware. 

The development and potential benefits of the Health Monitoring platform are 

discussed and the three health indicators introduced by Cullingham are defined and 

integrated into the system. 

This chapter also explains the process of building simulation models to examine the 

behaviour of the combined steering system and shows how these may be utilized to 

detennine the effectiveness of the proposed system models. System response to a typical 

sinusoidal input are presented. 

Finally the Chapter describes how health monitoring is integrated with the physical 

fault-tolerant system and how the health indicators are obtained from the comparisons of 

physical sensors and analytical sensors within the error detection process. 
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Chapter 4: Design and Test of a Laboratory 
Steer-by-wire System 

4.1 Introduction 

Model-based Health Monitoring is performed by comparing the outputs of a real

time model with actual sensor values. Demonstration of the Health Monitoring scheme 

then requires a realistic prototype steering system with suitable sensors and monitoring 

equipment. 

This chapter first provides a detailed description of hardware components of the 

Steer-by-Wire application with the power assist, and the assembly and setup for the 

steering and actuating function. This experimental system has been implemented in the 

Product Development Laboratory at U B C . The second part describes the experiments 

used to demonstrate performance of the Health Monitoring, which is designed to detect 

failure modes in different scenarios. At last, a fault diagnosis strategy is proposed to 

verify the fault symptoms and causes and supervise the overall behaviour of the specified 

application. 
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4.2 Description of Steer-by-wire Setup 

4.2.1 Embedded System Configuration 

The Health Monitoring system described in this thesis sits atop a prototype 

embedded system that was developed for the fault-tolerant system architecture in Mathew 

Bowler's previous research [21]. It is a distributed computing platform based on the 

exact redundancy strategy, which is applied to all the levels of configuration, including 

sensors, actuators and ECUs. However, in this thesis, the major objective is to provide a 

model based software system with the ability to monitor the health conditions of the 

physical hardware in real time. The idea is to allow additional redundancy to be achieved 

at a lower cost and provide a flexible tool for a variety of apphcations. 

Under normal operating conditions, it is expected that the Steer-by-Wire system 

must be controlled by multiple computers. The distributed computing environment 

introduced by Bouvier included error checking and data sharing via C A N bus network 

communications. To isolate and test the health monitoring functions, the experiments 

done described in this Chapter involve only one ECU's however no network based 

exchange of fault data is transmitted between them. Figure 4.1 shows the ECU's and 

other electronic components such as amplifier, power supply and communication interface 

used in the system. The majority of the embedded computer configuration and basic 

programming was completed by Bouvier, who set up a distributed fault tolerant 

architecture with the ability to tolerate faults at both sensor and ECU's levels. 
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Figure 4.1: Embedded Computer Configuration 

Embedded Computing Platform 

The embedded computing platform is based on MIPS processors of varying 

performance. The characteristics of the SCM20 and SCM40 modules are shown in Table 

4.1. 
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Parameter S C M 2 0 S C M 4 0 
CPU speed 33MHz 200MHz 

Bit size 32 64 
SDRAM 8MB 16MB 

Flash disk 16MB 16MB 
Power supply 24VDC . 24VDC 

Table 4.1: MIPS Processors Parameters 

Each module is mounted on a carrier board which provides Ethernet 10 Base-T, and 

CAN2.0 network support. The modules communicate with I/O modules from the same 

manufacturer over a proprietary high speed serial link. The I/O modules used here are: 

Digital output module, 16 channels, each capable of 12 bit P W M output. The 

board is configured to provide 4 channels of P W M output, and 12 channels of 

controlled output. 

Digital input module, 16 channels of digital input. 

Analog input module, 12 bit, 4/8 channel, programmable input range to +/-10V. 

• Analog output module, 12 bit, 8 output channels of-10V to 10V. 

2 axis position controller, F P G A based, loop closing 4KHz, incorporates 

encoder feedback and analog out to amplifier. 

Software Environment 

The Steer-by-wire and the health monitor applications are developed in Forth and 

run under a real time operating system on th MIPS modules. In order to ensure portability 
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of the application over multiple hardware platforms, the A N S Forth standard was selected. 

The object oriented extension used was developed by McKewan, and is A N S Forth 

compliant; the resulting language supports the major object-oriented concepts such as 

inheritance, polymorphism, and aggregation. 

Within this object-oriented extension, classes are defined between the delimiting 

words :Class and ;Class. Inside each class definition, instance variables may be declared 

as any A N S Forth variable, or as an aggregated class. The scope of these variables is 

limited to the each object declared, and cannot be accessed directly from other objects of 

the same type. Also inside each class definition, methods are defined between the 

delirmting words : M and ; M , and the last character of every method name must be a colon 

(":"). After defining a class (e.g. Classl), an object (e.g. Objectl) can be instanced by 

calling the command Classl Objectl. It is then possible to access a method within that 

object (e.g. Methodl:) by calling the command Methodl: Objectl. The method Classlnit: 

is automatically called when the class is instantiated. The method's definition may be 

changed, which allows the developer to initialize the object's instance variables to a set of 

initial values. 

4.2.2 Electrical Actuation Circuit 

As described in section 3.2 the steering actuation strategy adopted for the initial 

prototype provides both Steer-by-Wire and electrical power assist loops but no manual 

steering facility. The two actuators are connected through different means to the steering 

mechanism operated in parallel so that the steering functionality is improved and actuator 

fault tolerance is achieved. To meet this requirement, each actuator includes its own 
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E C U , digital and analog input/output, power amplifier and necessary sensors. The 

embedded computer platform interfaces with the steering system via the actuation circuit 

shown in Figure 4.2. 

Steering 
v Input 

SCM20 Dl/O Al TMAC 

SCM40 Dl/O Al AO 

jAm.p1 f MOtOM T̂ IITcnD 
n ir, . J Tacn End] 

UPosition mode). 

]Amp2-+- Motor2 ~ Q 
[ (torque mode) ^ J 

Figure 4.2: Circuit Diagram of Actuators 

The SCM20 runs the first motor in the closed loop position control; this motor 

drives a ballscrew which in turn powers the steering rack, (Steer-by-Wire loop). The 

command position of the steering wheel is measured by the analog input module and 

passed by the E C U to the motion control module. The motion control module performs 

smoothing of the position input and closes the position loop, (outputting an analog voltage 

to the power amplifier). The brush type D C motor actuator provides both position 

feedback to the motion control module through an encoder and velocity feedback direct to 

the power amplifier through a tachometer. 

The SCM40 operates the second motor in the open loop torque control mode, 

(power assist loop). In most modes of operation the torque command would be provided 

http://jAm.p1
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by a torque sensor attached to the steering wheel, (whether or not the steering wheel is 

physically connected to the rack) and the complete steering system would then have 

parallel torque and position inputs. In this case there is no input torque signal from the 

steering wheel. For the purpose of testing the health monitoring system, the torque 

reference signal was taken from the applied torque exerted by the Steer-by-Wire loop 

actuator. The SCM40 module determines the magnitude of the torque being commanded 

from the analog input module, which is used to detect the current output from the first 

motor's amplifier. 

Two amplifiers used in the application are identical and the motors driven by them 

are different. The description of these components are shown in the tables of Appendix D. 

4.2.3 Laboratory Steering Assembly 

The experimental steering system is built on a three-wheeled chassis as shown in 

Figure 4.3, where it gives side view and front view. This testbed includes all required 

electrical steering components such as motors, ballscew or pulley, rack and pinion as well 

as steering rack and tie rods. 



Figure 4.3: Steer-by-Wire with Power Assist Testbed 
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In this assembly, the leftmost motor in the picture is operated in position mode, 

(Steer-by-Wire loop). This motor is coupled to a ballscew and the rotational displacement 

of this ball screw is converted into linear motion of a nut, which moves the steering rack 

and therefore steers the two front wheels. The ballscew used is 0.5 inches diameter with 

a lead of 0.5 inches, the large lead angle allows easy back driving of the ballscrew, (this is 

a required feature of the design and forces the selection of a drive motor with high torque 

capacity). 

The second motor sitting on the chassis is the one running as power assist. The 

motor is much smaller but has both an integral epicyclic gearbox (ratio 1:19.7) and is 

driving a steering pinion via a pair of pulleys with ratio 1:3 so that enough driving torque 

is available. 

The steering column has no direct connection with steering rack, its displacement is 

measured by double potentiometers, which are read by the analog input module. 

4.3 Instantiation of Health Monitoring System 

Health Monitoring is a model based approach that detects the system's faults and 

diagnoses the failure modes by comparing the output of a system model to the actual 

output from system, and generating the differences between them. To monitor the health 

conditions of the physical hardware in real time, a real time 'Virtual system model" must 

be programmed and implemented in the embedded computing system. The control loops 

and vehicle dynamics of the system are approximated in this case as a simple second order 

system with the undamped natural frequency and damping ratio being determined by 

experiment. 
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Each element of the model previously simulated in MatLab/Simulink is 

implemented as a software object within an objected-oriented Forth language framework, 

which resides in the ECU's and is capable of real-time operation. The overall behaviour of 

the power assisted Steer-by-Wire system is thus provided by a collection of software 

objects. These objects do not need to be coded, they are instantiated from class definitions. 

The class definition of an object defines it completely, and specify its instance variables 

and methods. Multiple objects (with different names) can be instantiated from the same 

class definition within a given object-oriented model. 

Figure 4.4 shows the detailed description of the classes from which the on-line 

Health Monitoring utilities are instantiated and executed. 

Objects instantiated from the classes, variables as well as methods are directly used 

for data processing by passing the data via the stack according to the control flow. 

Instance variables and methods of the classes are specifically introduced in Appendix B. 

Counterparts of actual outputs of physical sensors can be obtained from the instance 

variables defined in the corresponding objects. This is known as the analytical redundant 

sensor, which joins in the detection of sensor faults and protect against continuous system 

degradation. As discussed in section 3.6, the output from the analytical sensor can be used 

by the Local Error Detection object and the redundancy management architecture. In a 

normal operation, each state used by the model is dependent on a previous model 

estimate. The model adapts to small deviations between these expected and observed 

values, and it treats large differences as faults. 
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Health Monitoring 
Classes 

Description 

InputandFeedback Acquire sensors information from the input and feedback 
source (every 10 msjand make a record of them 

Parabolic Perform the parabolic approximation based on Equation 3.1 
and prepare for the numerical integration 

LeadLag_Health Represent the position loop's Lead Lag filter, gains and 
saturation in discrete expression based on Equation 3.8 

PID_Health Represent the torque loop's PID filter (only proportion normally) 
and gains 

Physicalsystem Aggregate results from both loops, apply vehicle dynamics 
and numerical integration of acceleration and velocity 

Execinst Instantiate the classes above, execute the methods and dose 
the position loop 

Figure 4.4: Health Monitoring Classes Description 

4.4 Test Setup and Results Achieved 

4.4.1 Health Monitoring Configuration 

The embedded computing system was run with a loop closing and sampling interval 

of 10 ms. The health monitoring model was configured with an estimation scale of 5 

samples, for an estimation interval of 50 ms. The parameters used by the dynamic model 

for the tests are shown in Table 4.2. A complete list of model parameters is given in 

T a b l e d . 
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Parameter Value Unit 
Position Loop 

°n 18 rad/s 
Z 0.75 

0.06 
A 22 Sec"1 

B 27 Sec"1 

Torque loop 
is 

torque 0.06 

Table 4.2: Health Monitoring Parameters 

So as to have a well controlled position reference input for these tests then this has 

been generated in software rather than trying to provide a regulated input from the steering 

column via the analog input module. 

4.4.2 Test Results of Injected Failures 

The health monitoring system is used to identify when system performance deviates 

from that expected. From a safety standpoint one can identify a number of potential 

failure modes and focus the experimental investigation. It might be noted that one is not 

concerned here with a problem of lack of performance (e.g. not tracking fast transients 

etc), one is simply concerned with the health of the system as designed. 

The steering system is tested in two different configurations; the first is the pure 

Steer-by-Wire system without any power assist, the second is the complete system 

including Steer-by-Wire and power assist loops. Clearly the model used in each case 

simply reflects the components selected. 
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Pure Steer-by-wire 

Figure 4.5 shows the behaviour of the Health Monitoring system in the pure Steer-

by-Wire operating condition in the absence of faults. The figure shows the comparisons 

between states predicted by the Health Monitoring and those measured in the physical 

system. The selected observers are the steering rack position, the position error ( control 

error signal ), the current output from the amplifier ( converted to torque ), and the 

velocity of the steering rack. Actual values of these observers are obtained from the 

motor encoder, tachometer, and the amplifier current monitor. 
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Figure 4.5: Steer-by-Wire in Normal Status 



73 

In Figure 4.5, input is a sinusoid wave with 6000 BLU at 0.33 Hz, which represents 

a steering rate approximately 2.5 rad/s at the steering wheel. 

One can see that when there is no failed component or external disturbance, the 

system states estimated by the Health Monitoring follow their physical counterparts with 

small error. One can assume then that the system models are fairly accurate and reliable. 

Figure 4.6 is also in normal operation but its input has an increasing frequency from 

roughly 0.5 to 2 Hz. With the varying frequency, we can further prove that Heath 

Monitoring resembles the system dynamic well. 

Figure 4.6: Steer-by-Wire With Varying Input Frequency 
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One failure fault was conducted on one of the transmission components, the flexible 

coupling, which is used as the connection of motor and ballscrew's shafts Figure 4.7. It is 

able to compensate for misalignment between shafts and prevent the transmission of 

overload power. The failure mode is injected by loosing the coupling. A loose coupling 

results in insufficient driving power transferred from the motor to the steering rack. 

Consequently the steering rack is not able to travel at the commanded speed and the power 

output from the motor is apparently reduced. Figure 4.8 shows the comparison results 

with the injection of the loose coupling failure mode. 

Figure 4.7: Flexible Coupling Between Motor and Ballscrew 
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Figure 4.8: Steer-by-Wire With Loose Coupling 

One can see that this failure reflects on the position error, current output and rack's 

velocity as big differences between Health Monitoring estimations and actual system 

observations, since Health Monitoring is a representation of system in healthy status. 

Both position error and amplifier's output have bigger Health Monitoring estimations than 

actual sensors' values. Since the tachometer is coupled to the motor, so it gives a bigger 

velocity output. 



76 

Steer-by-wire with Power Assist 

With power assist, we have the second motor to supply the torque and the load on 

the first motor is relieved. Figure 4.9 gives the normal operation of power assisted Steer-

by-Wire condition. To compare it with the normal status of pure Steer-by-Wire, we can 

see that with the same input, the current output from the first amplifier (the one for the 

motor in position mode) is reduced for half. 

Another failure mode is tested under the power assisted Steer-by-Wire condition 

and it is shown in Figure 4.10. A resistance force is applied to one side of the wheels, 

which represents possible scenarios such as mechanical failure of steering rack, tie rods or 

wheels. So in this case, there are always bigger actual outputs from both of amplifiers and 

position error. Since the wheels are not able to travel to the required position, both of 

position feedback and velocity from the sensors show smaller values on this side. Once 

such faults detected, we may diagnose it as a failure mode similar to a resistance force. 
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As shown above, by injecting faults such as mochfying system's components, 

shutting down the power or disturbing data communication, one may be able to detect 

different fault symptoms by simultaneously supervising different system states such as 

position, velocity and force. 

A subsequent fault diagnosis strategy can be developed by finding the best match 

between fault symptom and cause. This requires one to develop an adequate system 

model which characterizes the dynamics of vehicle steering, which means sufficient 

system dynamical characteristics should be known during the process of steering. Then a 

complete system model can allow one to distinguish different fault symptoms and locate 

the fault causes among the failure modes which have been known. For example, in order 

to have the ability to diagnose faults from external environment, one needs additional 

force or torque sensor mounted on the wheels to have knowledge of external disturbances 

acting on the vehicle. At the same time, a more sophisticated filter (e.g. Kalman filter) is 

also required to improve the performance on estimating the external disturbance. 

However, such developments are outside the scope of this thesis and no diagnostic module 

has been introduced yet. 

4.5 Summary 

In this chapter, the concepts detailed in Chapter 2 and Chapter 3 are illustrated 

through experiments conducted on a prototype steering system that was designed and built 

as part of this thesis. The system has been operated in both Steer-by-Wire and "power 

assisted steer-by-wire" modes. 



80 

The Health Monitoring system is implemented in as a virtual system environment 

which runs in parallel with the control activities on MIPS based processors. This chapter 

has given a brief account of the software development, the hardware design and the mode 

of operation of the steering system. 

Experiments have been performed to verify the system models used and to 

demonstrate the ability to recognize component failure or unusual operating conditions. 

These experiments have examined both a simple Steer-by-Wire arrangement as well as the 

combination of power assist and Steer-by-Wire loops. The failure modes chosen are 

simply and fairly gross in nature but were easily recognized by the system. Clearly a 

precise method of examining outputs and assigning tolerances to the allowable errors 

between model and measured states is still required. 
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Chapter 5: Summary 

5.1 Conclusions 

By-Wire systems and associated embedded computing applications are expected to 

have wide-spread use in personal vehicles. This results from the improvements, that may 

be attained in performance, flexibility and efficiency as well as the chance of providing 

additional feature. However, the potential risk involved in these electrical systems, means 

that one must guarantee vehicle and passengers safety. At the same time one must 

provide the required level of safety efficiently, i.e., cost is an issue in these applications. 

Previous approaches developed by other research groups to attain these goals have 

relied on high redundancy levels. The Boeing 777 controller is comprised of three triple 

redundant ECU's, while the X-by-Wire automobile project is controlled by three fault-

tolerant nodes, each of which is locally comprised of four ECU's. Most of the approaches 

resort to exact redundancy, specific physical sensors to detect faults and computationally 

expensive techniques. 

The architecture presented in this thesis contains a health monitoring layer within 

the overall framework; this framework functions as a fault detection and diagnosis 

mechanism to protect the monitored system against degradation when one or more sensor 

failure occurs. Since it is based on the system dynamic model, the health monitoring 
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system can provide the awareness of the health of the system's components by estimating 

the performance of sensors and actuators and detecting their faults, without the burden of 

adding extra physical sensors and without adding high computational loads. 

Consequently its analytical redundancy feature provides the safe-critical system with the 

fault tolerant capability at minimal cost. 

The concepts and architecture described in this thesis are illustrated through 

application to a prototype automobile Steer-by-Wire/Power Assisted system. The 

experimental testbed was designed and assembled as part of this thesis. The health 

monitoring architecture described was implemented within the object oriented 

environment of the embedded computing platform. Testing has shown that the health 

monitoring system is capable of representing normal behaviour, and also of detecting 

component failure or unusual operating conditions. A fault diagnosis strategy was 

proposed to match the fault symptoms and causes, and distinguish different failure modes. 

5.2 Recommendations for Future Work 

Three kinds of health indicators and a framework used to organize them were 

introduced in this work. However, the existing fault-tolerant architecture does not include 

this analytical redundancy within the local and distributed error detection procedures. 

These fault detection functions should be established in order to implement a completed 

health monitoring layer, 

The sensitivity of the technique needs to be further tested. The accuracy of the 

health indicators affects the thresholds observed when the outputs of the analytical sensor 

represents the healthy status and are compared with the actual system states. A n analytical 
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sensor with low accuracy can not be trusted alone and it would be only involved in the 

voting scheme to arbitrate between two sensors that do not agree after the third has failed. 

Meanwhile, the communication of the health monitoring states needs to be implemented 

so that the health monitoring system is able to collect data from multiple ECUs, where 

each of the system states are measured and shared across a network. This requires a 

distributed functionality of the system to be developed. 

Non-linearities should also be taken into consideration in the health monitoring 

system so that it can accurately represent the real system. These non-linearities include 

saturation, friction, relay and backlash and have been incorporated in the health 

monitoring system by Cullingham. 
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Appendix A: Tire Lateral Force and 
Steering Rack Load Estimation 

The external forces that can cause longimdinal or lateral motion of the vehicle are 

mainly generated at the tires. Research on the force and moments generated by tires on 

roads has been conducted using different analysis and measurements. This section 

introduces the approach to estimate the lateral force developed in [27]. As shown in 

Figure A.1, there are three forces and three moments which can be generated at the 

tire/road contact area. Among them, The lateral tire force F y is very important for the 

lateral stability and steering behaviour of road vehicles. This force depends on the slip 

angle a, the vertical tire load F z , and also the friction coefficient u. 

a 

Figure A . 1: Lateral tire force and aligning moment 
characteristic curves on hard surfaces [27] 
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Because the effective line of action of the lateral force F y does not intersect the 

centre of the wheel axis system, a self-aligning moment is produced. The moment arm is 

known as pneumatic trail, which decreases once sliding beings and approaches zero at 

higher slip angles. Typical on-road tire force and moment characteristics in the form of 

F y and M z versus curves a are represented inFigure A . 1. And the lateral slip stiffness or 

cornering stiffness CFO. can be computed as: 

CFa=ABFz 

Equation A . 1 

where B is determined for a specific conditions of the tire and surface by the 

following equation: 

Ay F/ A 
Equation A.2 

FZT is the rated tire load and m is an exponent equal to 0.14. For different contact 

surface the coefficients of A , C and D are given in Table A . 1. 

Surface A C D 
H i g h way 0.67 0.677 -0.563 

Plowed F i e l d 0.65 0.267 -0.222 

G r a v e l 0.52 0.588 -0.49 

C o r n F i e l d 0.53 0.440 -0.365 

M e a d o w 0.88 0.784 -0.652 

Table A . 1: Metz's Coefficients For Different Surfaces 
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Then aligning stiffness d a , which is also the negative slope of M z versus curves a 

at zero slip angle, can be predicted by 

c = 
C I 

6 
Equation A.3 

where It is the tire contact length. 

Therefore for small slip angle, self-aligning moment is 

M=-CTaa 
Equation A.4 

And since the wheel is not turning around its centre but a pivot aside, there is wheel 

turning inertia torque: 

Equation A . 5 

where J w is the wheel's moment of inertia and a w is the wheel's angular acceleration. 

Then the force applied by the wheels on the steering rack can be obtained by 

M.+M,., 
F =2 " z 

r load A 

Equation A.6 

where l c is the distance between the wheel centre and tie rod's end. 
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Appendix B: Health Monitoring Software 
Documentation 

This appendix provides a detailed description of the classes from which the Health 

Monitoring utilities are instantiated. It is meant to supplement the description given in 4.2. 

Table B . l : Input and Feedback Class Description 

InputandFeedback 

Inherits from: none 

Instance Variables 

Class: InputandFeedback 

Name Type Description 

r l var (integer) Acquired position reference input at 0 ms. 

r2 var (integer) Acquired position reference input at 10 ms. 

r3 var (integer) Acquired position reference input at 20 ms. 

r4 var (integer) Acquired position reference input at 30 ms. 

r5 var (integer) Acquired position reference input at 40 ms. 

Fy var (integer) Acquired position feedback at 100ms from sensors. 

H P T constant (integer) Loop closing interval (10 ms). 

Methods 

Class: InputandFeedback 

Name Stack Diagram Description 

Acquire: ( current_time — ) Obtain reference input at each loop closing and feedback 

Get_rl: ( - r l ) Fetch the value from the beginning point. 

Get_r3: ( - r 3 ) Fetch the value from the middle point. 

Get_r5: ( - r 5 ) Fetch the value from the end point. 
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Methods 
Class: InputandFeedback 

Name Stack Diagram Description 

Get_fy: ( - F y ) Fetch the value from the feedback. 

Classlnit: ( ~ ) Execute initiation when the class is instantiated. 

Table B.2: Parabolic Class Description 

Parabolic 
Inherits from: InputandFeedback 

Instance Variables 

Class: Parabolic 

Name Type Description 

al Fvar (float) Parabolic curve parameter. 

a2 Fvar (float) Parabolic curve parameter. 

a3 Fvar (float) Parabolic curve parameter. 

deta Fvar (float) Parabolic curve time step. 

paraTs Fvar (float) Time sample. 

num var (integer) Number of data in a segment of parabolic curve. 

Methods 

Class: Parabolic 

Name Stack Diagram Description 

Acquire: ( current_time — ) Obtain reference input at each loop closing and feedback 

Get_rl: ( - r l ) Fetch the value from the beginning point. 

Get_r3: ( - r 3 ) Fetch the value from the middle point. 

Get_r5: ( ~ r 5 ) Fetch the value from the end point. 

Get_fy: ( - F y ) Fetch the value from the feedback. 

Compute_ 
parameters: ( - ) 

Compute parameters for parabolic form. 

Compute_x ( — x4 x3 x2 x l xO) Compute estimated reference positions 

Classlnit: ( - ) Execute initiation when the class is instantiated. 
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Table B.3: Physical System Class Description 

Physicalsystem 

Inherits from: none 

Instance Variables 

Class: Physicalsystem 

Name Type Description 

der2y Fvar (float) Steering rack's acceleration 

dery Fvar (float) Steering rack's velocity 

y Fvar (float) Steering rack's position 

e Fvar (float) Velocity's sign 

Pi Fconstant(float) 71 

Is Fconstant(float) Screw lead 

nse Fconstant(float) Ballscrew efficiency 

Dp Fconstant(float) Pinion diameter 

nre Fconstant(float) Pinion efficiency 

G2 Fconstant(float) Pulley ratio 

Wr Fconstant(float) Rack weight 

Ft Fconstant(float) External force 

Jml Fconstant(float) Motor l's inertia 

Js Fconstant(float) Screw's inertia 

Jm2 Fconstant(float) Motor 2's inertia 

Jp Fconstant(float) Pinion's inertia 

Kpos Fconstant(float) Position feedback gain 

Methods 

Class: Physicalsystem 

Name Stack Diagram Description 

Compute_ac: ( T l T2 — der2y) Calculate acceleration from torques. 

Computevel: ( der2y — dery) Calculate velocity from acceleration. 

Compute_pos:: ( dery — y) Calculate position from velocity. 

Getdery: ( — dery) Fetch the velocity value. 

Put_dery: ( dery — ) Store the velocity value. 



93 

Methods 

Class: Physicalsystem 

Name Stack Diagram Description 

Get_y: ( - y) Fetch the position value. 

Put_y: ( y - ) Store the position value. 

Reset: ( - ) Reset the position and velocity. 

Classlnit: ( - ) Execute initiation when the class is instantiated. 

Table B.4: Lead/Lag_Health Class Description 

LeadLag_Health 

Inherits from: Physicalsystem 

Instance Variables 

Class: LeadLag_Health 

Name Type Description 

K l l Fvar (float) LeadLag gain. 

A c Fvar (float) LeadLag coefficient a (continuous time ) 

Be Fvar (float) LeadLag coefficient b ( continuous time) 

K p l Fvar (float) TMAC's voltage/PWM 

Ktach Fvar (float) Velocity feedback gain 

K i Fvar (float) Amplifier gain 

sat_high Fvar (float) Saturation high limit 

s a l l o w Fvar (float) Saturation low limit 

A d Fvar (float) LeadLag coefficient a (discrete time ) 

B d Fvar (float) LeadLag coefficient b ( discrete time) 

T l Fvar (float) Torque output from position loop 

in Fvar (float) Current input to LeadLag filter 

out. Fvar (float) Current output from LeadLag filter 

last_in Fvar (float) Last input to LeadLag filter 

lastout Fvar (float) Last output from LeadLag filter 
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Methods 

Class: LeadLagHealth 

Name Stack Diagram Description 

ComputeAd: ( - ) Calculate the discrete time coefficient a. 

Compute_Bd: ( - ) Calculate the discrete time coefficient b. 

Compute_ 
LeadLag: 

( i n — out) Calculate LeadLag filter's output. 

Computeout: ( out — T l ) Calculate torque output from position loop 

Compute_ac: ( T l T2 — der2y) Calculate acceleration from torques. 

Computevel: ( der2y — dery) Calculate velocity from acceleration. 

Compute_pos:: ( dery — y) Calculate position from velocity. 

Getdery: ( — dery) Fetch the velocity value. 

Put_dery: ( dery —) Store the velocity value. 

Get_y: ( - y) Fetch the position value. 

Put_y: ( y - ) Store the position value. 

Get_last_in: ( — lastin) Fetch the value of last input to LeadLag. 

P u t l a s t i n : ( last_in —) Store the value of last input to LeadLag. 

Get_last_out: ( — last_out) Fetch the value of last output from LeadLag. 

Put_last_out: ( last_out —) Store the value of last output from LeadLag. 

Get_Tl: ( — T l ) Fetch the torque value. 

Classlnit: ( — ) Execute initiation when the class is instantiated. 

Table B.5: PID_Health Class Description 

PID Health 
Inherits from: None 

Instance Variables 
Class: PID Health 

Name Type Description 

K2 Fvar (float) Torque loop gain 

Kp Fvar (float) PID proportion gain 
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PID_Health 

Inherits from: None 

Instance Variables 

K d Fvar (float) PID derivative gain 

K i Fvar (float) PID integral gain 

Kp2 Fvar (float) TMAO's voltage/PWM 

K A 2 Fvar (float) Amplifier gain 

KT2 Fvar (float) Motor torque constant 

G l Fvar (float) Gear ratio 

e_prev Fvar (float) Last error value 

i_prev Fvar (float) Last sum value 

kds Fvar (float) Kd/time step 

sathigh Fvar (float) Saturation high limit 

satlow Fvar (float) Saturation low limit 

T2 Fvar (float) Torque output from torque loop 

Methods 
Class: PIDHealth 

Name Stack Diagram Description 

Computeout: ( out—-T2) Calculate torque output from torque loop 

Get_e_prev: ( — e_prev) Fetch the value of last error value. 

Put_e_prev: ( e_prev —) Store the value of last error value. 

G e t T l : ( — T l ) Fetch the torque value. 

Reset: ( ~ ) Reset the values of error and error sum. 

Classlnit: ( - ) Execute initiation when the class is instantiated. 
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Appendix C: Software Configuration and 
Vehicle Parameters 

Table C. 1: Health Monitor Parameters 

Parameter Value Unit Parameter Value Unit 
Software Configuration Vehicle Parameters 

Position loop Vehicle weight 800 Kg 
Gain of velocity/PWM 0.02 V Wheelbase 2 M 
Velocity loop gain 0.0476 V/rad/s Front wheels distance 1 M 
Amplifier gain 0.62 A/V Steering ratio 11 
Position loop feedback gain 315117 BLU/m Tire max Load (sure trail 4.80) 2575 N 
Natural frequency 18 rad/s Tire weight 4 Kg 
Damping ratio 0.75 Tire contact length 0.08 M 
LeadLag gain 0.06 Pivot and centre distance 0.15 M 
Lead 22 Slip angle 6 Degree 
Lag 27 Rack transverse Acceleration 0.03 m/s*2 

Torque loop Total weight of steering rack 10 Kg 
Torque loop gain 0.02 Pinion diameter 0.015 M 
Gain of velocity/PWM 0.005 V Pinion length 0.2 M 
Amplifier gain 4 A/V Rack slide friction coefficient 0.1 
Motor torque constant 0.0612 Nm/A Rack and pinion efficiency 80 % 
Motor gearhead 19.7 Friction torque of pinion 0.1 Nm 
Pulley ratio 3 Friction force of bearings 30 N 
PID proportion gain 0.06 Ballscrew diameter 0.0127 M 
PID derivative gain 0 Screw length 0.5 M 
PID integral gain 0 Ballscrew friction coefficient 0.02 

Ballscrew efficiency 0.9 
Screw lead 0.0127 M 
Pulley ratio 3 
Motor l's inertia 1.4*10M Kg*mA2 
Screw's inertia 10̂ -5 Kg*mA2 
Motor 2's inertia 10̂ 6 Kg*mA2 
Pinion's inertia 7.85* 10̂ -6 Kg*mA2 



Appendix D: Amplifier and Motors 
Parameters 

Power supply +24V-+90V 

Output power Continuous: 13A,2360W 
Peak: 20A, 3600W 

Copley Controls Inc. Bandwidth 25kHz 

513,DCbrushless 
servo amplifier 

Resolver option Tachometer emulation 
Encoder emulation 

P W M transconductance 
stage 

4A/V 

Monitor output ±6.5V @ ±26A (4A/volt) 

Table D. 1: D C Brushless Servo Amplifier 



Magmotor Power Supply 2 4 - 1 2 0 V D C 
S28-I-300ET1, 
with coupled 
tachometer and 

Rotor inertia 0.025oz-in-sec2 S28-I-300ET1, 
with coupled 
tachometer and Continuous torque 200oz-in 

optical encoder. Peak torque 1500oz-in 

Power range 200W 

Back E M F 48.5V/krpm 

Max current 23A 

Torque constant 65.6oz-in/amp 

Table D.2: Brushed Servo Motor Applied in Position Loop 

Power supply 24VDC 

Rotor inertia 3.7 E-03oz-in-sec2 

Continuous torque 374oz-in 

Pittman Gearmotor Peak torque 2934oz-in 

GM14904S016, Power range 100W 

with gearbox Back E M F 6.41V/krpm 

Max current 23.8A 

Torque constant 8.67oz-in/amp 

Gearbox reduction ratio 19.7 

Table D.3: D C Servo Gearmotor Applied in Torque Loop 


