
IMPLEMENTATION OF A HEALTH

MONITORING SYSTEM WITHIN A FAULT

TOLERANT STEER-BY-WIRE SYSTEM

by

M O LI

B . S c , Beijing University of Aeronautics and Astronautics, 2004

A T H E S I S S U B M I T T E D I N P A R T I A L F U L F I L M E N T O F

T H E R E Q U I R E M E N T S F O R T H E D E G R E E O F

M A S T E R O F A P P L I E D S C I E N C E

in

T H E F A C U L T Y O F G R A D U A T E S T U D I E S

(Mechanical Engineering)

T H E U N I V E R S I T Y OF BRITISH C O L U M B I A

July, 2007

© M o L i , 2007

11

Abstract

The objective of this thesis is to examine the improvement of the design and

implementation of a fault tolerant Steer-by-Wire system. This application integrates the

methods of multi-level redundancy developed in previous work with a tool set for

monitoring the health of the computer controlled system. It allows the system to tolerate

faults at all levels of its organization.

The health monitoring system adopted is based on a simplified representation of the

dynamic model of the Steer-by-Wire application. By comparing the output of a system

model to the actual output achieved by the application, it provides three measures of

component health, all of which indicate errors based on the performance of a system state

relative to a base model. The analytical redundancy provided by the health monitoring

system may be used to either reduce overall system cost through replacement of a

physical sensor, or as an additional sensor to allow continued voting after the first failure

of a physical sensor thus avoiding significant system degradation.

The health monitoring system has been implemented on a prototype of a three-

wheeled vehicle. The vehicle has two "independent" steering systems: the first resembles

a conventional power assist, the second a Steer-by-Wire configuration.

iii

Table of Contents

Abstract i i

Table of Contents i i i

List o f Tables v i

List o f Figures v i i

List o f Symbols and Acronyms ix

Acknowledgements x i

Chapter 1: Introduction 1

1.1 Safety Critical Function 1
1.1.1 Introduction 1

1.1.2 Passive / Active Safety System 2

1.1.3 Dependability 2

1.2 Recent Developments of Steering Systems 3

1.2.1 Conventional Steering System 3

1.2.2 Power Steering 4

1.2.3 Steer By Wire 6

1.2.4 Challenge 8

1.3 Objective 9
1.4 Outline 10

Chapter 2: Achieving Fault-tolerance 12

2.1 Introduction 12

iv

2.2 Terminology 12
2.3 Fault Sources 14

2.3.1 Sensors 14

2.3.2 Actuators 15

2.3.3 Electronic Controller Units 15

2.3.4 Communication Channels 16

2.4 Existing Approaches to Achieve Fault-tolerance 17

2.4.1 Redundancy 17

2.4.2 Fly-by-Wire 19

2.4.3 X-by-Wire 20

2.4.4 Error Detection 22

2.4.5 Reconfiguration 24

2.4.6 Graceful Degradation 25

2.5 Health Monitoring 26

2.5.1 Condition Monitoring 27

2.5.2 Parameter Identification 28

2.5.3 State Estimation 28

2.6 Summary 29

Chapter 3: System Architecture and Dynamic Modell ing 31

3.1 Introduction 31
3.2 Steering Actuation Design and Control Strategy 32

3.2.1 Steer By Wire Actuation 35

3.2.2 Electric Power Steering Actuation 35

3.3 Fault-tolerant Framework 36
3.4 Health Monitoring System Development 41

3.4.1 Model-based Approaches and Model Selection 42

3.4.2 Indicator Selection 43

3.4.3 State Estimation Process 45

3.5 System Dynamics Modelling 48
3.5.1 Steer-by-wire Motion Control 48

3.5.2 Power Assist Motion Control 53

V

3.5.3 Dynamic Performance Simulation 54

3.6 Health Monitoring Framework 58

3.7 Summary 59

Chapter 4: Design and Test of a Laboratory Steer-by-wire System 61

4.1 Introduction 61
4.2 Description of Steer-by-wire Setup 62

4.2.1 Embedded System Configuration 62

4.2.2 Electrical Actuation Circuit 66

4.2.3 Laboratory Steering Assembly 67

4.3 Instantiation of Health Monitoring System 69
4.4 Test Setup and Results Achieved 71

4.4.1 Health Monitoring Configuration 71

4.4.2 Test Results of Injected Failures 72

4.5 Summary 80

Chapter 5: Summary 82

5.1 Conclusions 82
5.2 Recommendations for Future Work 83

Bibliography 85

Appendix A: Tire Lateral Force and Steering Rack Load Estimation 88

Appendix B: Health Monitoring Software Documentation 91

Appendix C: Software Configuration and Vehicle Parameters 98

Appendix D: Amplifier and Motors Parameters 99

vi

List of Tables

Table 4.1: MIPS Processors Parameters 64
Table 4.2: Health Monitoring Parameters 72
Table A . 1: Metz's Coefficients For Different Surfaces 89
Table B. 1: Input and Feedback Class Description 91
Table B.2: Parabolic Class Description 92
Table B.3: Physical System Class Description 93
Table B.4: Lead/LagHealth Class Description 94
Table B.5: PIDHealth Class Description 96
Table C. 1: Health Monitor Parameters 98
Table D. 1: DC Brushless Servo Amplifier 99
Table D.2: Brushed Servo Motor Applied in Position Loop 100
Table D.3: DC Servo Gearmotor Applied in Torque Loop 100

List of Figures

Figure 1.1: Conventional Steering System 4
Figure 1.2: Four Types of Electric Power Steering Configurations 6
Figure 1.3: Automotive Applications for By-wire Technology. Source: Motorola. 8
Figure 2.1: Structure of a Fault-tolerant Unit 21
Figure 3.1: Two-actuator System Schematic Illustration 35
Figure 3.2: Fault-Tolerant System Architecture 40
Figure 3.3: Multiple State Estimation Intervals 45
Figure 3.4: Single State Estimation Interval 46
Figure 3.5: Closed-loop Position Control for Steer-by-wire Actuation 48
Figure 3.6: DC Motor and Servo Amplifier Control Algorithm 49
Figure 3.7: Lead/lag Filter in Closed-loop Position Control 50
Figure 3.8: Open-loop Torque Control 53
Figure 3.9: Ballscrew and Pinion, Rack Coupling Mechanism 54
Figure 3.10: Block Diagram of Steer-by-wire and Power Assist Application 55
Figure 3.11: Simulation of Output States in Matlab 56
Figure 3.12: Health Monitoring System Data Flow 58
Figure 4.1: Embedded Computer Configuration 62
Figure 4.2: Circuit Diagram of Actuators 65
Figure 4.3: Steer-by-wire with Power Assist Testbed 67
Figure 4.4: Health Monitoring Classes Description 70
Figure 4.5: Steer-by-wire In Normal Status 72
Figure 4.6: Steer-by-wire With Varying Input Frequency 73
Figure 4.7: Flexible Coupling Between Motor and Ballscrew 74
Figure 4.8: Steer-by-wire With Loose Coupling 75
Figure 4.9: Power-Assisted Steer-by-wire In Normal Status 77
Figure 4.10: Power-Assisted Steer-by-wire With Resistance On One Side 78

Figure A . 1: Lateral tire force and aligning moment characteristic curves on hard
surfaces 87

List of Symbols and Acronyms

u(t) current system output state with respect to time, t
y(t) estimate of the system output state at time, t
A discrete time interval
hd system dynamics health indicator
hi instantaneous error health indicator
h a average state change health indicator
C0n closed position loop natural frequency

£ damping ratio
Kiead,iag lead/lag filter gain.
a lead parameter in continuous time
b lag parameter in continuous time
A lead parameter in discrete time
B lag parameter in discrete time
kref reference gain
kbop loop gain of adjustable drive amplifier velocity control
k,ach tachometer gain of adjustable drive amplifier velocity control
Tvei first order transfer function time constant
T s sampling time
Ti torque output from the first drive
T 2 torque output from the second drive
KT motor torque constant
K A amplifier gain
Ktorque torque loop gain
F | o a d steering rack load
F y lateral tire force
F z vertical tire force

X

a tire slip angle
CFU cornering stiffness
FzT rated tire load
CTa alignment stiffness
It tire contact length
M z self-aligning momentum
M w wheel turning momentum

wheel inertia
a w steering rack acceleration
lc distance between wheel centre and pivot

A R I Average Response Indicator
C A N Controller Area Network
C P U Central Processing Unit
DRI Dynamics Response Indicator
E C U Electronic Control Unit
F S U Fail-Silent Unit
F T U Fault-Tolerant Unit
IRI Instantaneous Response Indicator
P W M Pulse Width Modulated
S C M Smart Control Moduler
T M D O Digital Output Module
T M D I Digital Input Module
T M A O Analog Output Module
T M A I Analog Iutput Module
T M A C F P G A Based Motion Control Module

xi

Acknowledgements

First, I would like to thank Dr. Ian Yellowley, my supervisor, for his continuous

support and invaluable advice during the completion of this work. Many of the ideas in

this thesis were developed at his suggestion. His expertise and constant guidance have led

me through the M.A.Sc program and made it a rewarding academic experience of my life.

And without his financial assistance, my dream of studying overseas would not have been

possible.

I would also like to thank my second reader, Paul Winkelman, for taking the time to

proofread and give helpful comments on a very short notice.

A special thanks to Green College, and its founder Dr. Cecil H . Green, for the

amazing accommodation and fabulous community. The friendships with people having

diverse backgrounds and interests are my precious asset forever.

I am grateful to my parents for always standing behind me with their love whenever

1 was depressed or happy. Their encouragement was indispensable to my dream pursuing.

They have been like a beacon of light letting me see the happiness on the road to the

future.

1

Chapter 1: Introduction

1.2 Safety Critical Function

1.2.1 Introduction

A safety critical function is a function whose failure necessarily causes unsafe

operating conditions; any unhandled error will lead to elevated risk to the system, its users,

or environs. For example, unanticipated catastrophic failure of a car's steering system will

cause a loss of vehicle control leading to the possibility of accidents, injuries and damage.

A safety-critical system must ensure that system functions deemed safety critical have no

possibility of failure.

A number of techniques are used to achieve service dependability. During the

design phase, the engineer can design to fault avoidance. This involves using various

design methodologies, modelling, and validation techniques to prevent fault from being

incorporated in the initial design. Then the designer looks to fault removal techniques.

This involves system testing or prototyping to discover faults, which are then removed

from the design.

Once a system prototype is produced, the engineer can implement fault tolerance

techniques. This means the inclusion of fail-operational behaviour within the device by

having control that can detect, diagnose, treat and recover from errors that occur. This also

2

includes fault detection and fault diagnosis mechanisms as well as protection, supervision

and appropriate safety actions.

1.2.2 Passive / Active Safety System

While a number of potential strategies for improving application safety exist,

generally strategies can be classified as either active or passive safety systems.

Passive safety systems operate by attempting to minimize harm caused by a failure.

These systems attempt to make the system react to failure in a particular way, or constrain

errors in a particular way. Examples of passive safety systems include seatbelts,

compound glass, airbags, and surge protectors.

Active safety systems change system operating-conditions to reduce the probability

of failure. Examples of active safety systems include A B S , Electronic Traction Control,

and Electronic Stability Protection.

In brief then, a passive safety system seeks to manage the results of failure, whereas

an active system seeks to reduce the incidence of failure.

1.2.3 Dependability

Safety critical functions have to be dependable regardless of implementation.

Dependability is that property of a computing system which allows reliance to be

justifiably placed on the service it delivers. It is usually expressed in terms of other

measures such as safety, reliability and availability. Laprie [1] defines these terms as

follows:

Safety is a measure of the continuous delivery of service free from occurrences

of catastrophic failures.

3

• Reliability is a measure of the continuous delivery of proper service.

• Availability is a measure of the readiness for correct service.

1.3 Recent Developments of Steering Systems

The proliferation of electronic control systems is nowhere more apparent than in the

modem automobile. Automotive systems are increasingly being designed with integrated

electronic sensors, actuators, microcomputers, information processing for single

component, and engine, drivetrain, suspension, and brake systems. During the last two

decades, advances in electronics have revolutionized many aspects of automotive

engineering, especially in the areas of engine combustion management and vehicle safety

systems such as anti-lock brakes (ABS) and electronic stability control (ESC). However,

only recently has the electronic revolution begun to find its way into automotive steering

systems in the form of electronically controlled variable assist and, within the past two

years, fully electric power assisted steering systems.

1.3.1 Conventional Steering System

The basic design of automotive steering systems has changed little since the

invention of the steering wheel: a conventional steering system as shown in Figure 1.1 [2]

typically consists of the handwheel (steering wheel), the steering column, intermediate

shaft, rotary spool valve (an integral part of the hydraulic power assist system), the rack and

pinion, and the steering linkages. Since the steering column and pinion are almost never

collinear, they are joined to the intermediate shaft via two universal joints matched to

rninirnize torque and speed variations between steering column and pinion.

4

Figure 1.1: Conventional Steering System

1.3.2 Power Steering

Power steering is a system for reducing the steering effort by using an external

power source to assist in turning the wheels. Power steering technology was first

introduced to the mass market in the 1950's and has continued to use hydraulic systems.

These systems have achieved a remarkable performance in regard to ride and handling,

cost and comfort and power assist has become a standard component in modem

automotive steering systems. Using hydraulic pressure supplied by an engine-driven

pump, power steering amplifies and supplements the driver-applied torque at the steering

wheel so that steering effort is reduced. In addiction to improved comfort, reducing

steering effort has important safety implications as well, such as allowing a driver to more

easily swerve to avoid an accident.

5

Electric Power Steering arrived first on small cars in Europe in the mid-1990s, and

is now found on cars such as the Chevrolet Cobalt, Acura N S X , Saturn V U E V6, and on

most FIAT and Lancia cars. The basic system uses sensors to detect the motion and

torque applied to the steering column and a computer module to generate torque

commands to an amplifier motor system based on position error and torque input [3].

Compared to hydraulic systems, electric systems are significantly more efficient,

(because the hydraulic pump used in conventional systems is usually running constantly),

and this is the main reason for their introduction. The assist level is also easily tunable to

the vehicle type, road speed and even driver preference [4]. A n added benefit is the

elimination of the environmental hazard posed by leakage and disposal of hydraulic

power steering fluid. Due to all these advantages, electric power steering likely to gain a

considerable proportion of the power steering system market.

Electric power steering is currently limited to smaller vehicles. This is because of

the 12 volt electrical system and typical current limits of around 80 amps. Larger vehicles

such as trucks and SUVs require a larger power output than the 1 K w currently available.

A new 42 volt electrical system standard should enable use of electric power steering on

larger vehicles.

Four basic variants of electrical steering system are being developed and can be

separated into categories based on the location of the electric motor that provides steering

assistance [5]. Each of the four solutions focuses on one type of operation, drives of

steering column, pinion, double pinion (gear, double gear) and rack Figure 1.2.

6

Motor at Column Motor at Pinion Motor with Double-Pinion Motor at Rack

Figure 1.2: Four Types of Electric Power Steering Configurations

1.3.3 Steer By Wire

The Next step in steering system evolution is termed "Steer-by-Wire" and involves

the complete removal of the steering column and shaft. This represents a dramatic

departure from traditional automotive design practice. The term "By-wire" refers to the

lack of physical connection between the steering wheel and the steering mechanism, brake

pedal and the brake actuators or accelerator pedal and engine controller. This project

focuses on the health monitoring of a Steer-by-Wire system. This idea is not new as

many modem aircraft, both commercial and military, rely completely on fly-by-wire fight

control systems [6].

The main difference between the conventional steering systems and the "Steer-by-

Wire" systems is the connection between the steering wheel and the steering actuator. One

may view the steering system as having two main subsystems:

1). Command input subsystem (steering wheel),

7

2). Steering power circuit (e.g., the pump, cylinder, and valves of electro-hydraulic

power steering).

The conventional systems include different forms of mechanical and hydraulic

connections between the steering wheel and the steering actuator. In simplest terms, the

steering wheel rotation is proportionally amplified by the steering actuator to obtain a

proportional articulation angle. Since the two systems are mechanically coupled, there is a

built in inherent force feedback to the operator at the steering wheel proportional to the

steering conditions. A "Steer-by-Wire" system has only electrical signal connection

between the steering wheel sub-system and the steering power sub-systems and cannot

provide "natural" force feedback.

A number of current production vehicles already employ by-wire technology for the

throttle and brakes Figure 1.3 [7]. One of the main advantages of By-Wire systems is the

opportunity for performance improvement. Using software, it is considerably easier to

implement more flexible control strategies, which also allow for better tunability and

performance of the control systems. As an example, in the conventional car steering

combined with mechanical linkage and hydraulic power steering, the effort required to

manoeuvre a car is inversely proportional to the vehicle's speed, and therefore turning the

steering wheel for parking always requires more torque than that required in high-speed

situation. With a Steer-by-Wire system, it is easy to incorporate the vehicle's speed into

the control loop running in the embedded application, and thereby adjust the tactile force

feedback to guarantee effortless use to the user. The absence of a steering column also

greatly simplifies the design of car interiors. The absence of a steering column allows

8

better space utilization in the engine compartment. Without a direct mechanical

connection between the steering wheel and the road wheels, noise, vibration, and

harshness from the road no longer have a path to the driver's hands and arms through the

steering wheel.

Figure 1.3: Automotive Applications for By-wire Technology. Source: Motorola

1.3.4 Challenge

Despite the potential benefits outlined in section above, the Steer-by-Wire concept

also brings many challenges to the control engineer. Safety considerations and fault

9

tolerance become major issues. One of the risks of embedded computing systems is the

binary failure mode of an electronic component: either it works, or it does not. The design

of an integrated embedded system must consider the system's ability to cope with such

faults. The greatest challenge in design is to guarantee that the system will continue to

perform safely even if one or more components fail.

Existing technological solutions to the problem are dependent on high levels of

redundancy and high costs correspondingly. This type of solution is not appropriate for the

development of products in cost sensitive markets such as consumer devices, automobiles,

and pleasure boats, nor is it ideal for industrial or military applications. Thus the special

constraints of the automobile industry (mass production, certification rules etc.) have also

to be taken into account.

1.4 Objective

The objective of this thesis is to examine the implementation of a health monitoring

system and to develop this within a fault-tolerant Steer-by-Wire environment. The

complete framework will then integrate multi-level redundancy, perform both local and

distributed error detection, and allow the system to tolerate faults at all levels of its

organization. With certain levels of redundancy of both hardware and software, each

E C U could perform both local and distributed error detection, (in conjunction with its

peers), to detect sensor, E C U , and communication errors.

The thesis introduces a Steer-by-Wire/Power Assist prototype steering system

installed on an existing three-wheeled chassis. The dynamic model of the complete

system is analyzed and used to track physical vehicle performance. The overall control of

10

the system is performed using a highly object-oriented software framework that

incorporates data acquisition, control and communication functions.

The thesis examines the creation of the health monitoring system and use of this as

an "analytical sensor". The idea behind the use of the analytical sensor is to provide an

additional level of security to augment the normal 3 sensor voting routines.

(Alternatively in very cost sensitive and non threatening applications one may wish to use

this to reduce cost). The development and testing of an appropriate set of software

measures to recognize different forms of error is also presented.

1.5 Outline

This thesis is organized into five chapters. Chapter 2 provides a review of previous

research and development efforts in the design of fault-tolerant, safety-critical systems.

The chapter discusses the existing technologies that are used in implementing fault-

tolerant features among sensors, actuators and communications from both hardware and

software point of view.

Chapter 3 addresses the architecture of the proposed system. It specifies the

approach adopted to build a dynamic model for the specific application, provides the

background to the health monitoring system proposed in [8], and describes the approach

taken to create the health indicators.

Chapter 4 describes assembly and implementation of a laboratory automotive Steer-

by-Wire system, which was designed and built to illustrate the concepts developed within

this thesis. This is followed by the experimental results. A n analysis of the health

11

monitoring system compared with physical sensors state values shows that system failure

modes can be detected and diagnosed through a combination of selected health indicators.

Chapter 5 presents the overall conclusions of the work and makes recommendations

for further work.

12

Chapter 2: Achieving Fault-tolerance

2.1 Introduction

Fault-tolerance is the property that enables a system to continue operating properly

in the event of the failure of one or more of its components. Complex safety-related

functions in future automotive systems will be increasingly based on electronic

components, which are susceptible to a variety of failure modes caused by either interior

or exterior factors. Consequendy fault-tolerance is emerging as a key technology which

needs to be applied to the design of By-wire systems. The goal for a By-Wire system

designer should be to create as robust and reliable a system as possible within reasonable

cost constraints; Ideally, the range of faults tolerated by the system should be as wide as

possible, so that the probability of the catastrophic failure can be minimized.

2.2 Terminology

Hiller [9] provides a good summary of terms used in fault-tolerant system design.

Although his work concentrates on software fault-tolerance, an identical terminology is

applicable to the whole electro-mechanical system. The three most important terms are

fault, error and failure.

13

A fault exists when there exists a state of operation in a system that leads it to

non-conformance of its specifications. Faults are classified by their duration,

as either transient or permanent, and their realization, as dormant or active.

• A n error is the manifestation of an active fault; it is an occurrence of the

system entering a state of non-conformance to its specification. Undetected

errors are termed latent [10]. The key difference between a fault and an error

is that whereas errors are the results of faults, only an error is measurable.

A failure is the result of an unresolved error. Note that a failure of a low-level

system might be considered a fault by a higher level system, which could in

turn trigger a different error. In a safety-critical system, a failure will be called

catastrophic i f it happens at a high enough level to put the user's safety at risk.

Since typical By-Wire system requires the correct action to be taken at the correct

time, one needs only consider terminology commonly used in the discussion of real time

systems. Kopetz defines a real-time system as follows [11]:

• A real-time system is a computer system in which the correctness of the

system behaviour depends not only on the logical results of the computations,

but also on the physical time when the results are produced.

In addition to this, a hard real-time system - as opposed to soft real-time system - is

one for which a missed deadline implies a failure. In general, real-time computer systems

interact with a physical environment, such as sensors and actuators. Safety-critical systems

such as Steer-by-Wire are typical examples of hard real-time systems: a missed execution

14

deadline is not tolerable since it may lead to global catastrophic failure. So in a hard real

time application, the system must always produce the correct value at the correct time. The

manifestation of an active time fault will be called a time error and defined as a

computation result which is: either never produced or produced outside its allowed

predefined time zone.

2.3 Fault Sources

A typical Steer-by-Wire system normally includes physical components such as

sensors and actuators. Usually, these are monitored and controlled by a distributed

computing platform, hence one must also consider the ECU's and communication

channels. Before one may examine the architecture of a fault-tolerance system, it is

necessary to have a good understanding of the nature of the potential faults for each of

these components.

2.3.1 Sensors

In general, faults that can be expected in sensors are either due to mechanical failure

of some components (e.g., fatigue or accidental impact) or to environmental disturbances

(e.g., vibrations, electromagnetic interferences, etc). Mechanical failures usually lead to

permanent faults, while electrical disturbances or vibrations may cause transient faults.

"Intelligent" sensing units, which are combined with a dedicated microprocessor and

memory at the sensor level, should obviously be considered separately, since they feature

logic components, which are themselves subject to electromagnetic interferences and

other environment-caused disturbances. Although the use of intelligent sensing units

15

simplifies the system from a global perspective, it adds a degree of complexity at the local

level and therefore introduces additional fault sources in the system.

2.3.2 Actuators

D C motors are extensively applied into the area of Electric Power Steering and

Steer-by-Wire. Common D C motor failures are due to wear of the brushes and integrity

of armature insulation. The brushes tend to wear quickly because of their friction on the

commutator ring. For applications where system reliability and longevity are important

requirements, it may be preferable to use brushless D C motors. The amplifier now

becomes more complex and sensors are needed to synchronize current with rotation. Other

typical D C motor failure sources include bearings or seal failure, insulation breakdown,

demagnetization and damaged connections.

2.3.3 Electronic Controller Units

When examining faults on ECU's, it is necessary to distinguish physical hardware

failures from software faults. Indeed, although an E C U can be considered "just another

physical component" in the system, it also runs a soft application, which is itself subject to

faults.

Apart from accidental physical damage to the E C U hardware, which is obviously

outside of the scope of normal operation, E C U hardware faults are typically caused by

electromagnetic interferences, temperature changes or vibrations [12] and are therefore

transient by nature. Such faults may corrupt the values present in memory or inside the

processor's registers, and may lead to failure of the E C U if no mechanisms are

16

implemented to detect and tolerate them. They can lead to software errors in both the

time and value domains.

Software design faults ("bugs") should also be considered. Design faults exist

"when the design of the system does not match the specifications" [12]. Therefore, they

are not locally detectable (since the software performs according to its own erroneous

specifications). However, especially in complex software systems, guaranteeing the

absence of design faults implies that exponential numbers of combinations need to be

considered and tested; this may often be impossible. Ways to detect and treat software

design errors are therefore required. This is usually achieved through the use of diverse

redundancy.

In the context of distributed computing systems, malicious processor behaviour, i.e.,

a fault which results in a processor outputting inconsistent and incorrect data at correct

times, is called a "Byzantine" error. This refers to the classic Byzantine generals problem

[13].

2.3.4 Communication Channels

A communication channel is faulty i f the data it carries is corrupted during

transmission or not transmitted. The most likely cause for corruption of the signal is

electro-magnetic noise. Many communication protocols have built-in checks (typically

Cyclic Redundancy Check), which detect i f a message has been corrupted during its

transmission. These faults are by definition transient, but they can cause higher level time

faults, since the recovery mechanism may introduce nori-^eterrninistic transmission times.

17

Other types of faults can be caused by failure of the communication controller chips

themselves, e.g., from the effects of electromagnetic interferences or ageing. Finally

damage to the physical medium itself (e.g., a broken wire) wil l induce a permanent

communication fault.

In a computing network, a faulty node, which attempts to gain access to the bus

repetitively and thereby prevents the remaining fault-free nodes to communicate, is said to

exhibit a babbling idiot behaviour. Such behaviour must absolutely be avoided in hard

real-time, safety-critical applications, for obvious reasons.

Sensor measurements acquired by ECU's can be erroneous because the analog or

digital link from the considered sensor to the considered E C U is physically damaged.

Possible damages can include broken wires or damaged contacts. In a similar manner, it

is possible that a correct analog command is sent in an incorrect manner to a non-faulty

actuator because of a damaged link, thereby triggering an actuation error.

2.4 Existing Approaches to Achieve Fault-tolerance

In this section different approaches taken to design fault-tolerant safety-critical

systems are examined and contrasted. Although the projects reviewed rely on different

methodologies, one concept is universal and compulsory in fault-tolerant system design:

redundancy.

2.4.1 Redundancy

In the event of a failure of one or more components of an embedded system is

detected, alternate hardware must be available to allow the system to tolerate the faults).

18

Redundancy is necessary then for error treatment as well as for error diagnosis, (which

uses a voting arrangement between alternate components).

Redundancy is often described as being either "hot" or "cold". A cold redundant

component does not run in normal operation, but can be activated and take over i f the

primary component fails. A hot redundant unit or component, on the other hand, runs in

parallel with its primary counterpart. Hot redundancy is advisable in hard real-time

safety-critical environments, where the switching time must meet stringent requirements.

"Redundancy" will therefore refer to "hot redundancy" in this chapter.

Redundancy can also be categorized as exact or diverse. Exactly redundant units

are identical in all points, perform the same tasks at the same times, and are therefore

expected to produce identical results at a given time. On the other hand, diversely

redundant units use separate methods to perform a given task. Examples of diversely

redundant units for position sensing are a potentiometer and an optical encoder both used

for position sensing (but with different characteristics and different methods required for

their use). Unlike the tolerances of identically redundant units, acceptable tolerances of

diversely redundant units must be judged individually to account for each unit's unique

physical characteristics, such as speed, accuracy and environmental effects.

The use of diversity allows a system to tolerate software design faults, which are not

detectable using exact redundancy. Diversity also decreases the probability of

environmentally caused simultaneous failures of the redundant units, by allowing the

selection of physically different units. Finally, it aids in cost reduction, since high-quality,

expensive units can be used in conjunction with lower performance redundant units.

19

2.4.2 Fly-by-Wire

Fly-By-Wire systems are common in commercial aerospace applications, and have

been in use since the late 1980s. The first commercial airplane to be equipped with a total

Fly-By-Wire system, with no mechanical back-up, was the Airbus A320, in 1988. Since

then, Boeing has developed its own Fly-By-Wire aircraft, the Boeing 777, and Airbus has

expanded its technology to newer models, such as the A330 and A340. Although the

aeronautics example provides a good starting point for personal vehicle By-Wire systems

design, the technological solutions adopted in Fly-By-Wire applications are not

necessarily directly transferable to large scale, cost-sensitive markets.

Fault-tolerance of the Boeing 777 Primary Flight Computers (PFCs) is

accomplished using triple-triple redundancy [14]. This means that T M R , which consists

of three redundant units, coupled with a voter [12], is used at two levels in the PFCs: each

of the three redundant computing units which form the PFC is itself comprised of 3

diversely redundant computers. Diversity is ensured at the hardware level by selecting

hardware processors from different manufacturers (namely A M D , Intel and Motorola),

and at the software level by compiling the Ada source code using three different Ada

compilers.

20

2.4.3 X-by-Wire

The "X-By-Wire : Safety Related Fault Tolerant Systems in Vehicles" project was

conducted in Europe from 1996 to 1998 and involved members of both the automobile

industry and academia: Daimler-Benz, Centro Ricerche Fiat (CRF), Ford Europe, Volvo,

Magneti Marelli, Bosch, Mecel, Technical University of Vienna, and Chalmers University

of Technology [15].

The objective of this project was to achieve a framework for the introduction of

safety related fault tolerant electronic systems without mechanical backup in vehicles.

The " X " in "X-by-Wire" (XBW) represents the basis of any safety related application,such

as steering, braking, power train or suspension control or multi-airbag systems. These

applications will greatly increase overall vehicle safety by liberating the driver from

routine tasks and assisting the driver to find solutions in critical situations.

The approach taken by the X B W team is based on exact redundancy and fail-

silence, at all levels in the system's organization. In a Fail-Silent Unit (FSU), the

component must be able to self check and output either the correct value or nothing at all.

Furthermore, each atomic subsystem is a fault-tolerant unit (FTU), which is composed of

two exactly redundant FSUs Figure 2.1. This is valid for both sensor level and E C U level.

21

Csensors/actuators>

FTU

FSU

rC^ power supply

y

FSU

bus channels

Figure 2.1: Structure of a Fault-tolerant Unit
X-by-Wire Project

The fail-silent property is likewise enforced for each of the two bus channels, based

on error detection coding and checking for compliance with expected communication

behaviour. Thus, the architecture is capable of tolerating a failure of any bus channel.

In X B W s implementation prototype, actuation was achieved by having three

redundant D C motors connected to a specialized gear box. Each actuator provides one

third of the required torque in normal operation, and half of the required torque in an error

state. The report concluded that it was more cost effective to have three motors capable of

delivering 50% of the required torque than two that deliver output 100% of required

torque.

The X B W project was conducted in parallel and in close partnership with the Time

Triggered Architecture project, which also aimed at demonstrating an architecture of

fault-tolerant distributed real-time systems in safety-critical transportation application. As

22

Time Triggered Protocol supports the use of a duplicate physical communication channel,

it employs exact redundancy.

Achieving the desired fail-silence property appears, however, particularly

challenging and costly. For example, at the E C U level, fail-silence implies that each F S U

is able to perform self error detection, and is able to shut itself down. In practice, only the

combination of two ECU's can make this possible. Hence, quadruple redundancy is

required to form a single Electronic Controller F T U . The increased cost makes it

unsuitable for large scale production in cost-sensitive markets. Furthermore, the

architecture is extremely rigid and does not make optimal use of the available resources.

However, some of the techniques used for software error detection and for fault-tolerant

actuating are quite ingenious.

2.4.4 Error Detection

While some redundancy is required, many projects avoid the use of total hardware

redundancy in an effort to reduce costs. For example, at the sensor or actuator levels,

model-based methods have been developed which exploit the "inherent redundancy

contained in the dynamic system equations that relate the different sensors outputs" [16].

This is called analytical redundancy. It essentially takes two forms:

Direct redundancy (the relationship among instantaneous outputs of sensors)

Temporal redundancy (the relationship among the histories of sensor outputs

and actuator inputs).

Analytical redundancy allows the outputs of dissimilar sensors to be compared.

The residuals resulting from these comparisons are then measures of the discrepancy

23

between the behaviour of observed sensor outputs and the behaviour that should result

under normal conditions. [17] gives an example of a triple redundant unit replaced by a

double redundant hardware system used jointly with analytical redundancy, resulting in

significant cost reduction.

Error detection can take on different forms, but these are generally classified as

either data replication or executable assertions. Data can be replicated through analytical

redundancy, double execution, and hardware replication. Executable assertions include

limit checking, certification, signature checking, self-tests, and watchdog timers [18].

Furthermore, detection can be performed within a component or via a network by peer-to-

peer checking or supervisory elements. Distributed environments require a mechanism to

synchronize their timing, and when error detection is performed in a distributed

environment, errors may be detected in the time domain: each computer can check the

communication timing of the other computers.

The E C U level of the system has been the subject of many research efforts on error

detection. Some workers have attempted to design processor architectures, which

inherently provide on-line self-testing capabilities [19]. In the latter example, a primary

and back-up microprocessors are integrated in a single element. Other approaches use

codes to detect hardware E C U failures [20]. In these applications, computation results are

coded using a code generator, and later checked by a code checker, thereby providing self-

test capabilities. This concept is similar to methods used for communication error

detection, such as CRC. Unfortunately, it requires development of additional logic

circuits, and can therefore not be directly used with off-the-shelf components. The latter

24

works are mainly targeted at the fault tolerance of large computer networks, and are

relatively poorly adapted to smaller embedded applications.

In an effort to minimize the overall system cost Bouvier [21] reduced the number

of components and optimized the use of the components. Bouvier developed a distributed

fault-tolerant architecture and demonstrated it in a Steer-by-Wire application. In his

system triple hardware diverse redundancy was used at both the sensor and E C U levels

while the object-oriented model of the system was combined with on-line error detection

and both software and hardware dynamic reconfiguration1 utilities. Each E C U could

perform local error detection on the data it acquired, and also a distributed error detection

with its peers to detect sensor, E C U , and communication errors. The system response

strategy uses a dynamic reconfiguration approach, in which the system can reconfigure

resources at run-time. This architecture uses an abstraction of system hardware and

resources in combination with an execution task flow chart to select tasks. The fail-

silence property described by the X-By-Wire project is also implemented on each E C U .

Each E C U is connected to a second set of channels called state-lines, which operates as a

voting mechanism, where two peers must validate the local E C U as being functional to

allow it to broadcast data over the communications bus. This research uses and enhances

the fault-tolerant architecture developed by Bouvier.

2.4.5 Reconfiguration

Dynamic reconfiguration is the process of making changes to an executing system

without requiring that the system be temporarily shut down. This feature should be built

into systems that have requirements for adaptability and/or high availability.

1 See section 2.4.5

25

A distributed reconfigurable network of ECU's to control hyper-redundant space

robot manipulators was developed in [22]. Their system is able to adapt itself in real-time

to partial failures and to the changing operating conditions through the use of a distributed

consensus algorithm. The inverse kinematics problem is solved on all ECU's, and the

optimal solution is selected and applied after exchanges over the communication channel

have led to an agreement.

Oldknow has developed a dynamically reconfigurable architecture for machining

applications [23]. The goal of his work is to optimize the machining process from an

economic point of view. Depending on the operating conditions, different constraints are

active. Relying on reconfigurable architecture, the system is able to adapt itself to the

current active constraint, in real-time.

A further application of reconfigurable systems lies in possibilities for off-line

modifications. If the system's architecture is flexible enough, modifications such as sensor

upgrades are possible in a way that is transparent to higher-level software. [23] in

particular details a way to use self-instantiating intelligent components, from which the

code required to use them is uploaded to the high-level controller, hence providing "plug

and play" functionality.

2.4.6 Graceful Degradation

To cope with failures, a system may reduce performance capabilities, cancel less

important tasks, or switch to different control algorithms. This method of tolerating errors

is called Graceful Degradation.

26

The most active research group currently tackling graceful degradation issues in

distributed embedded real-time systems is RoSES (Robust Self-configuring Embedded

Systems). The RoSES project was started at Carnegie Mellon University in 2000, under

the supervision of Dr. Phil Koopman [24]. The RoSES approach to graceful degradation

is based on Product Family Architecture (PFA). A P F A can be thought of as the whole

range of offerings of a given manufacturer for one type of products. The idea behind the

RoSES project is that upon failure of some of the components of a system, it is possible to

shift to another configuration, i.e., to another "product" in the PFA.

However, the initial effort of the RoSES team concentrates on off-line

reconfiguration of non safety-critical systems, and is therefore not directly applicable to

the problem described here.

2.5 Health Monitoring

The majority of work in fault-tolerant systems discussed so far relates to the

detection and handling of errors, where errors are classified as existing in a binary state:

either the error exists (the system is in a state of non-conformance with specification), or

the error does not exist. A weakness with the binary error approach of these fault-tolerant

systems is the lack of error predictability. The ability to predict impending failure allows

the operator or system to take preemptive action to prevent failure by altering system

functionality or scheduling maintenance. Indicators of system health give insight into the

likelihood of failure.

Health indication seeks to represent the system's health state by selecting indicators

which describe system performance or correlate to known failure modes. There are a

27

number of approaches that have been used to develop health indicators, which can be

classified as either Condition Monitoring, Parameter Identification, or State Estimation.

2.5.1 Condition Monitoring

Condition monitoring can be defined as a technique or a process of monitoring the

operating characteristics of machine in such a way that changes and trends of the

monitored characteristics can be used to predict the need for maintenance before serious

deterioration or breakdown occurs, and/or to estimate system's health.

In general, the condition monitoring approach involves adding physical sensors to

measure a direct indicator of health. Condition monitoring will often require the creation

or addition of new sensors to measure signals which directly indicate system performance.

These sensors are specific to each application, and each recorded signal is usually

indicative of a specific fault or operating condition.

A variety of internal system parameters may indicate errors; temperature can reveal

lubrication problems, misalignment, or overload; noise may indicate valve, gear, or

bearing wear. The use of these internal states to predict failure is discussed in, Goode

[25], who proposes a prediction model theory based on statistical process control, and a

failure model using a stable zone and failure zone to predict time to failure.

Condition monitoring systems are programmed with awareness of a number of fault

conditions, and a diagnosis mechanism compares the system state with the condition

signals to provide a diagnosis of system health.

28

2.5.2 Parameter Identification

Parameter identification techniques seek to determine and monitor the model

parameters for the system over time; a common way to do this is to use observers.

Usually, a system model of a given order is defined, and then a least squares regression is

performed to determine the parameters for the given relationship between system input

states and measured system output states. The system parameters can then have limit

values applied to them that describe acceptable operation.

Isermann [26], describes the parameter estimation method for linear systems and

how significant parameter changes can be detected by reference to the normal values

using statistical methods like the Two-Probe T-Test.

One weakness in this method is that the parameters of a given order model may not

represent system characteristics in a predictable way. Typically, these systems would then

need to be developed for each application experimentally, and the limits must also be set

experimentally. This reduces the potential design benefits of using a system model.

2.5.3 State Estimation

The process of state estimation involves using a known system model, and applying

a set of inputs to known system states to predict the output state at a given interval. The

health indicators that are built from state estimation are generally composed of the residual

error between the predicted state and the measured state.

State estimation techniques such as Kalman filters or various other tracking filters

can also be implemented as a prognostic technique. The Kalman filter is a dynamical

systems tool for estimating unknown states by combining current measurements with the

29

most recent state estimate. It can be considered as a virtual sensor in that it takes current

available sensor measurements and provides optimal estimates (or predictions) of

quantities of interest that may in themselves not be directly be measurable. It is typically

implemented with the use of a linear system model, but can also be extended to non-linear

systems through the use of the extended Kalman filter algorithm that linearizes the system

about an operating point. The linearization allows the application of other linear algebra

techniques.

Other parameter estimation techniques rely on models to predict future state values.

If the observer output states reconstruct measurements of the process, then the observer

creates analytical redundancy of those states. Typically, a diagnostic observer generates

output states that are indicative of faults, whereas the state observers generate data needed

for control. Control observers also tend to operate within a closed-loop environment,

whereas a diagnostic observer tends to operate in an open-loop configuration. This

requires the diagnostic observer to be more complete, or more robust when considering

model uncertainties.

2.6 Summary

The main challenge of developing "By-wire" systems is the achievement of suitable

levels of fault-tolerance at a cost which is acceptable to the market. One must be able to

guarantee that continued functionality is provided even if one or more of the system

components is faulty.

30

This chapter first described the terminology used to define faults together with the

common fault sources for each of the typical components of a Steer-by-Wire system. It

then reviewed previous research projects and approaches of fault-tolerance systems.

Finally health monitoring was introduced in the main areas of condition monitoring,

parameter estimation and state estimation.

31

Chapter 3: System Architecture and Dynamic
Modelling

3.1 Introduction

The steering system was chosen to be used as an example in this thesis is the

steering system on a prototype three-wheeled urban vehicle designed in the laboratory.

The steering systems transmits the input from the steering wheel to the steering actuators,

which in turn move the steering rack and tie rods to steer the wheels.

The steering action is usually achieved using a mechanical connection often assisted

with hydraulic or electrical components ("Power Assist"). In this particular case it was

deemed advantageous to build a modular steering system that can accommodate manual

steering, a power assisted mode and a steer by wire mode, each either alone or in parallel.

This complicates the overall design, but provides considerable flexibility in the provision

of performance and robustness. In order to simplify the building of the initial prototype

and to expedite the experimental part of this project, the experiments were conducted

using a torque command rather than manual torque supplied by the steering wheel. The

torque command to the power steering system was generated by the error signal in the

steer by wire position loop. Additional discussion of this arrangement is given later in the

Chapter.

32

Next section provides a detailed description of the parallel power steering and steer

by wire actuators together with a discussion of suitable control strategies. This is followed

by an introduction to the idea of Health Monitoring developed in previous work by

Nicholas Cullingham [8] in the laboratory (concerned with the monitoring of hydro-

mechanical marine steering systems) and the provision of improved fault tolerance

through the use of soft sensors. The basic premise here is that one may utilize a virtual

model of the system dynamics, together with the inputs to the real system, to track the

expected values of major physical states within the system and to make comparison with

actual values.

Finally in this chapter, the dynamics of the steering system are modelled by

analyzing the control loops of the parallel steering actuators and an initial simulation of

the behaviour of the proposed health monitor is developed. This then allows the

development of suitable approaches to the design and implementation of the real time

software system which will be embedded within the experimental steering system.

3.2 Steering Actuation Design and Control Strategy

Steer-by-wire and power steering are both safety-critical functions. While power

steering does have mechanical backup, the loss of the power assistance can cause

significant problems. A true steer by wire system poses even greater risks and it is likely

that this wil l require the use of redundant actuation components as well as redundant

sensors and computational elements. It is not necessary however that these redundant

systems be duplicates and in many cases one may achieve both a lowering of cost and

improvement in reliability by having different types of actuator and drive. Some systems

33

performance may suffer as a result of not simply duplicating the best alternative.

However, in the case of steering, the required performance parameters are quite easily

satisfied and exceeded by a wide variety of approaches.

Within the steering system the following major groups of elements need to be

considered:

a) Actuators and associated elements, (drive trains, amplifiers, etc)

b) Sensors

c) Communication networks

d) Computation and logic elements

e) Power supplies and associated wiring

Ideally, to maintain system functionality in the case of single component's failure

and prevent catastrophic failures, each component should be fault-tolerant, reliable, and to

achieve this will require some degree of redundancy. The major interest in this research is

to find ways to minimize the increased cost of redundancy by incorporating a parallel

software system which can offer "analytical redundancy".

Among the electronic components needed in the application, actuators are almost

always the most expensive to duplicate, hence the consideration of alternate approaches to

actuator redundancy is one of the major issues to be considered during the prototype

design phase. A fault-tolerant system with a single motor drive may overcome most of

the problems in critical applications by having redundant and reliable controllers, the

result of a complete motor failure is of great concern.

34

As with any design problem there are many ways to achieve actuator redundancy,

X-By-Wire project's prototype had three D C motors connected to a specialized gear box.

Each actuator would provide one third of the required torque in normal operation, and half

of the required torque in an error state. The report concluded that it was more cost

effective to have three motors capable of delivering 50% of the required torque than two

each delivering 100% of the required torque. However, to support a high number of

redundant actuators, more controllers, feedback systems and communication systems have

to be considered for reliable operation. At the same time one may wish to anticipate

potential transmission failure and provide alternate drive possibilities. This research

suggests that a triplicate system including the necessary sensors and

actuators/transmission elements is unlikely to be cost effective.

For research purposes, the prototype vehicle in the laboratory uses two actuators

with different means of transmission. The provision wil l be made for the possibility of

manual override in the limit case, which in practice would require a flexible transmission

element to take full advantages of Steer-by-Wire system (This is likely practical on a

temporary "limp home" basis). The motors will also utilize different control modes, one

in position mode (steer by wire), the second in torque mode (power steering).

Realistically, the power steering would be driven by either torque applied to the steering

wheel or a combination of torque and position. The prototype vehicle does not have the

rigid connection between steering wheel and steering mechanism so output from the first

motor amplifier (torque signal) is used to drive the second loop, as shown in Figure 3.1:

35

Steering Unit Control Unit Drive Unit

Steer-by-Wire
Controller w

Steer-by-Wire
Controller

Power Assist
Controller

Position Sensoi
Velocity Sensor]
Current Sensor

Motor 1

Motor 2

Figure 3.1: Two-actuator System Schematic Illustration

3.2.1 Steer by Wire Actuation

The first control loop in the system (Steer-by-Wire) receives commands from the

user by measuring the position sensors mounted at the steering wheel and controls an

actuator driving the pinion and the steering rack. This controller implements closed loop

position control and has position and velocity sensors to measure the rack's movements.

To facilitate the operation of the second control loop (power steering), it also measures

the current output supplied to the actuator.

3.2.2 Electric Power Steering Actuation

Most modem conventional power steering systems consist of an engine driven

hydraulic pump and a hydraulic actuator. However, electric power steering systems are

more compatible with Steer-by-Wire applications. In addition, electric power steering

36

systems offer better fuel economy, are more compact and more environmentally friendly

than traditional hydraulic systems.

To simplify the building and controlling of the experimental prototype, the input to

the power assist mode in this case comes from the first motor amplifier's output. As

shown in Figure 3.1, the current output from the first motor amplifier is detected and

transferred to the power assist controller; this in turn determines the appropriate output

magnitude and drives the motor (i.e., the power steering actuation is operated in an open

loop torque mode). With the power assist, the amount of steering torque required by

Steer-by-Wire actuator can be significantly reduced.

In the normal situation, these double actuators will be operated in their different

modes. Should the position mode motor fail, the other motor would still be able to acquire

the current output from the amplifier in the position control loop, steer the wheels itself

and back-drive the other actuator. This guarantees the fail-safe capability of the overall

system at the actuation level.

3.3 Fault-tolerant Framework

Before presenting the Health Monitoring concept, it is useful to provide an

introduction to the fault-tolerant framework which is to be used as a platform for the

Health Monitoring system. This fault-tolerant system architecture is based on Bouvier's

multiple embedded hardware [21].

To achieve a particular system function, a fault-tolerant system relies on having

redundant methods, which consist of software or analytical replication, and hardware or

physical replication. Each system function can be thought of as a causal system that has a

37

set of input states, parameters, output states, and relations between each of those states.

Redundancy is needed to maintain any high level function when that function depends on

generating a defined output from a given set of inputs even i f a sub-component fails.

Input states are replicated through analytical or physical redundancy; the relationship

between input and output, the actuators or plant, are replicated only through physical

redundancy.

To facilitate fault-tolerant management and system reconfiguration, object oriented

programming techniques are used in the development environment. Thus each

component can be described by a software class whose attributes and methods provide an

abstraction of that component. Where components are replicated, each class can be

instantiated as a software object, whose attributes describe that particular component. The

inheritance property, which allows a class to by defined as a child of a previously

designed class, causes the child class to include all of the attributes and methods of the

parent. This property is particularly useful when designing for diverse redundancy, where

each replication has similar attributes, or may require more attributes, and has similar

methods, which need to be slightly altered for each case. As in terms of the whole system,

this allows one to isolate the high-level software from the low-level redundant sensors and

actuators. By doing this, one can allow the high-level software to be "unaware" of the

low-level redundancy and to be unaware of where the information originated from. Thus,

programming and many kinds of error detection can be done in a relatively simple

manner.

38

A representation of the fault-tolerant framework in Bouvier"s work is shown in

Figure 3.2, which displays the hierarchical nature of software configuration including

atomic methods, mid-level methods or high-level methods. The architecture shown here

is representative of one Electronic Control Unit (ECU).

Atomic methods describe the actual instantiation of components available to the

system. Each atomic method has a one-to-one relationship with an input component (a

sensor) or an output component (an actuator). Atomic methods make up the system

description and the hardware abstraction layer.

The mid-level methods make up the redundancy manager, where the treatment of

sensor and actuator errors is done locally. These methods include the error detection,

masking, and error response functionality. Redundancy manager is used to determine the

state of all physical devices in the system, and provide a correct, single reading from

redundant sensors , even if one of them is faulty.

The high level methods sit at the highest level in the system, and are independent of

the low-level hardware. Their inputs and outputs rely solely on fault-tolerant methods and

data that have been checked against errors in the mid-level methods. A typical example of

a high-level method is one that performs a closed-loop control action: it takes a reference

value and a feedback value, compares them, applies a control strategy and outputs a

command.

39

The architecture utilize triple hardware diverse redundancy at both the sensor and

E C U levels while the object-oriented model of the hierarchical system is implemented to

allow the dynamic reconfiguration of both software and hardware utilities.

3.4 Health Monitoring System Development

As seen from Bouvier's work, at least three components are needed for every level

of fault tolerance, as 3 is the smallest number which allows majority voting. Should one

of these components fail or become isolated, voting can no longer be used.

Ideally, the system should provide some protection and allow for modifications

following initial failure, without increasing the level of redundancy. Wherever possible,

protection should be provided by the software since it has lower value. This is achieved

by building models of the system and using the relationships between input and output as

an auxiliary check on system performance. In this way, one can develop a fault-tolerant

as well as cost-effective system by further reducing the amount of hardware while

maintaining system's fail-safe functions. This model based detection as well as the

treatment procedures is termed a Health Monitoring system.

The following section introduces the particular Health Monitoring concept

developed in Cullingham's thesis project. Cullingham implemented this approach to

provide additional software redundancy within an electro-hydraulic marine steering

system [8]. The system is adapted here for the dual actuator electro-mechanical

automobile steering system.

Electronic Control Unit 1

High Level Methods <

High Level Service Control

Control

Execution
Table

Redundancy Manager

Distributed Error Detection

Local Error Detection] A

System Description
Hardware Abstraction's

Atomic Methods

<

Local Error Detection B Actuation Manager C

•X3

3 V

Physical Components

Communications Channels

Actuators<Cl> <C2

Synchronization Lines

State Lines

. to other ECU's

41

3.4.1 Model-based Approaches and Model Selection

Section 2.5 discussed a number of approaches to achieving health awareness:

condition monitoring, parameter identification, and state estimation. In general, the

condition monitoring approach involves adding physical sensors to measure a direct

indicator of health. Alternatively, parameter identification and state estimation use model-

based approaches, and sensors that may already exist for control purposes, to create a

measure of health. Model-based approaches are preferred for this project because they

allow the use of existing hardware.

The greatest difficulty with parameter estimation occurs when the system model is

non-linear. Typically, parameter identification approaches rely on the least squares

algorithm to determine the parameters, and this algorithm requires the model to be not

only constant, but also linear.

Most real mechanical systems cannot be accurately represented by a single linear

model. Mechanical systems typically have a number of non-linearities (e.g. saturations,

relays, friction). Furthermore, a number of mechanical systems are not time-invariant;

they change not only with their internal parameters, but also with time. To accurately

model such system, non-linear model elements and multiple model states are required.

Although there are few non-linearities (saturations, dead-bands) in the prototype

steering system, state estimation approach is still more compatible with this application.

First, it is straightforward to compare the analytical sensor with physical sensors to assess

system health. Second, state estimation is also the best approach for systems controlled in

real time since it mmimizes memory requirements and is computationally efficient.

42

For this study, a complete simulation model is constructed from a number of system

parameters and second-order transfer-functions, including gains, filters as well as

integrals. In this manner, a number of small processes or system components can be

individually modelled, and then cascaded in series to produce an overall model of the

system. This facilitates the process integrating both control loops, (closed position loop

and open torque loop), and to simplify the modelling. The use of a second-order system

model to estimate system dynamics has a number of benefits. In particular, reducing the

system to its dominant second order model allows its performance to be specified simply

in terms of gain, damping and natural frequency.

To allow the dynamic model to continue to accurately replicate application's

behaviour, the closed loop state estimation is updated in the real time. The model is

adjusted after each comparison with the physical system to ensure that the starting values

of the parameters for the next period correspond to the actual values observed. The details

of this procedure are to be detailed in section 3.4.3.

3.4.2 Indicator Selection

The model-based approach used by Cullingham [8] re-used the existing control,

sensors and ran the system model in parallel with the physical plant. Differences in

performance then needed to be identified that would provide meaningful information

about failures or impending failures of the system. The study of potential failures of the

marine steering system lead Cullingham to propose three different indicators of failure:

the Instantaneous Response Indicator, the Dynamics Response Indicator and the Average

Response Indicator.

43

The Instantaneous Response Indicator is the current error between input and

output to the system. Obviously a lower absolute value of the indicator indicates a healthy

measure for the system, whereas a high absolute value indicates that the system health

may have deteriorated. In this research, the IRI represents the error between command

and actual positions of the steering rack. The instantaneous error is a good initial

indicator of system health, for one can only tolerate a set amount of error. However the

instantaneous error does not always provide enough information to localize component

problems. Typically one needs to examine the change in these parameters over time and

to incorporate reasonable dynamic models so that one can compensate for transient

periods of high error which are normally the result of the input transients.

The Dynamics Response Indicator is determined from errors between the actual

system states and those estimated from a system model. This process requires that the

model know the inputs to the system and that the model be restarted with actual physical

values at regular intervals to prevent errors in the output from the system model being

confused with deterioration of the system. The procedure is described in detail in the next

section. The model developed for the prototype estimates the expected amplifier output

to the drive motor which is then compared to the actual output of the amplifier within the

steer by wire loop. Since the Dynamics Response Indicator is run over a short period of

time and its states are reset with measured states on a regular basis, health errors arising

from slow changes in the system may be missed. The third type of response indicator is

used to verify system health.

44

The Average Response Indicator is the difference between expected change and

the measured change over a period of time. The response to a slow moving input is

checked over a period of time that is significantly longer than the settling time of the

dominant system dynamics. For the purpose of this thesis, this indicator is the difference

between motor's expected average velocity and actual average velocity over the time

window. A large error signal here indicates that the system is not responding as expected.

A change in performance can be attributed to either the input (actuator fault) being

incorrect, or that the model structure or model parameters no longer adequately

approximates the actual system (mechanical fault).

3.4.3 State Estimation Process

The Health Monitoring System has three available inputs: the system state vector,

system reference vector, and control signal vector.

The model is not design to be run continuously, instead it is only operated over

short intervals at which comparisons are made between the model and physical system

states. Once the comparison is made, the model is reset with current system states and

allowed again to run for a short time. This principle described in the previous paragraph

is shown in Figure 3.3. In this figure, a single estimation process is shown. The model

is updated at each loop closing to include all of the inputs, u(t), u(t+A) ... u(t+nA) and the

starting states of the system, y(t); it then produces the system end point, y(t+nA). After

each estimation, the actual system states are stored by the model and used to generates the

state value at the end of the next period.

45

state
Single estimation interval

loop closing
r , u(f) Reference Input

y(t) Estimated Output

t

Figure 3.3: Single State Estimation Interval

In Figure 3.3, the period of estimation is significantly longer than the loop-closing

interval, but the system health indicators are required to be updated at each loop closing.

Then when an estimation occurs at each loop closing, it shares the same inputs with other

estimations in the same interval and acquires the starting state generated by the dynamic

model from previous estimations, as shown in Figure 3.4. During this multiple estimation

process, each set of estimation then represents results for a window of system data that

moves with time. When an estimation occurs at each loop closing, the moving windows

overlap with previous estimations.

To accurately simulate the actual system's behaviour and prevent the tolerated errors

in the model estimation being confused with deterioration of the system, at the end of

each estimation interval, (e.g. 5 times of loop closing), the dynamic model is restarted to

the actual system states and performs another interval's estimation after being

synchronized with the actual system inputs and states.

46

state

loop closing
N piediction

A

state
N+l prediction

loop closing ,v

state
N+2 prediction

, «(/) Refermce Input

)'(>) Estimated Output

, u(t) Reference Input

v(0 Estimated Output

u(t) Reference Input

v(0 Estimated Output

Figure 3.4: Multiple State Estimation Intervals

A parabolic approximation is applied to estimate a history of inputs, as shown in

Equation 3.1. In this case, three of the input points are used: the start point, end point, and

mid point. The parabolic input was tested in an algebraic solution to the equation of a

47

second order system by Cullingham [8] and it is proved that the parabolic approximation

is fairly accurate across the entire range of the sine wave input signal and adequate when the

system input is a continuous function.

u(t) = \ att2 + a2t + a3

« 0 - 2 w , + « 2 — 3 w 0 + 4 w , — l u 2

« , = — 2 . " 2 = J Z ' 0 3 ~ U °

Equation 3.1

Where:

A is a discrete time interval representing half the estimation period.

uv=u{t), U\=u{t+A), and ui=u(t+2A)

3.5 System Dynamics Modelling

To implement the Health Monitoring System one must first build the models of the

various steering elements and extract the equations relating the states of interest. Both the

Steer-by-Wire and power assist loops are implemented using Microprocessor without

Interlocked Pipeline Stages (MIPS) processors with high speed serial communication to

the control and data acquisition modules. A detailed description of the actual components

is included in Chapter 4.

3.5.1 Steer-by-wire Motion Control

Motion control of the Steer-by-Wire actuation is achieved using the F P G A Based

Motion Control Module (TMAC), an F P G A based motion control module. The module

performs closed loop servo position control of up to 2-axes and it executes both the

interpolation task and the measurement of quadrature encoder input, and outputs the

48

required analog voltage to the amplifiers. A layout of this control process is shown in

Figure 3.5.

A supervisory P C is used to communicate with the embedded system. This system

operates using a highly object oriented framework of methods running within the MIPS

master which allows simple motion, monitoring and communication tasks to be easily

achieved. The motion commands result in coarse increments being transmitted to the

F P G A module which in turn interpolates these and performs the functions already

described. The current amplifier within the control loop utilizes tachometer feedback to

allow easier and more robust tuning of the system.

SCMxx D
Supervisory System Servo

Amplifier
Servo
Motor TMAC

(Tach)

Quad
Encoder

Figure 3.5: Closed-loop Position Control for Steer-by-wire Actuation

Velocity Loop

The block diagram of the internal velocity loop is shown below in Figure 3.6 and has

3 variable gains, (K r e f , Kioop and Kach)•

49

amplifier DC motor

V (s) +
loop K

k
tach

K
tacli-D

k
tach

K
tacli-D

K
T

Js

fi(s)

Figure 3.6: D C Motor and Servo Amplifier Control Algorithm

The velocity response of the servo drive can then be modelled as a first-order lag as

shown in Equation 3.2.

Q{s) _ K vel

VD,a{s) l + T v e / (s)
Equation 3.2

where

Kvel~
'ref

k k

J
vel' KTKAkf00pktachktach D

Equation 3.3

The parameters of this firs-order function can be verified by applying a step input

to the actuator and measuring the steady-state gain and rise time.

Position Loop

The controller used by T M A C is a "lead/lag" filter. After having identified the

parameters for the velocity loop, the lead/lag filter parameters are chosen so that the

50

closed position loop response is a second-order lag with a natural frequency of (o„ and a

damping ratio of £. The lead/lag filter can be represented by the following transfer

function in the Laplace domain:

U (A-V (5 + g)
n lead, lag\A >~ ^ lead .lag +

Equation 3.4

Proper tuning of the lead/lag filter can greatly simplify the analysis of the system's

behaviour. Including the first-order transfer function of servo amplifier and D C motor as

shown above results in the continuous-time block diagram of position control in the

Laplace domain, as shown in Figure 3.7.

e (s)

fail
K K i + i

11 s+b
K

D/A.D

K

1+T S

8 (s)

K
A'DDJ

K K
A'DDJ

A*. _
poLD

Figure 3.7: Lead/lag Filter in Closed-loop Position Control

The global transfer function of this control loop can be expressed as:

51

H(S):

K vel KDjAi p & had,lag (S + a) ^ n A ^ polH & AID, H, 0

s{l-Tvels){s+b)

j | K v e l K D I A D K l e a d lag(s+a)Kpot D K A ! D D e

S{\-Tvels){s + b)

Equation 3.5

By choosing a = —-— , the effect of Xxi is cancelled. Furthermore, it is possible
Tvel

to obtain a second order global transfer function characterized by its natural frequency co„

and the damping ratio of £, by selecting b and Ki^d, lag in the following manner :

WnTvel
lead Jag V~ V V Tf

&pot,D^AID,D,O^DlA,D^vel ^

In order to adapt this analysis to discrete time (Z-transform) form, the following

simple transformation is used, where Ts is the loop-closing period :

s = z ~ l

T

Equation 3.7

This gives the following discrete expression for the controller :

52

s + a

s + b

z-A

z-B

A = l
K lead, lag = K lead, lag , where

B = \

Equation 3.8

The filter can now be implemented as a digital controller for numerical integration

within the object-oriented software environment.

3.5.2 Power Assist Motion Control

A separate power assisted steering system is used to supplement the steering torque

of the Steer-by-Wire system and to act as a back up system in case the Steer-by-Wire loop

fails. Ideally, the steering system would be modular and the power steering system would

input from a torque sensor mounted on the steering wheel and knowledge of current

position error in the system; this enables easy motion of the system from rest and

enhanced dynamics during transients. However the prototype used for this research has

only two loops and the manual steering component is not physically available. In order to

approximate the ideal system, the required steering torque from the power steering system

is assumed to be proportional to the current position error.

T = k torsion •AO

Equation 3.9

Where

AG : current position error,

T : the steering torque and

53

Ktoreion : the steering column stiffness or the ratio between them.

This approximation allows the input of what is essentially a torque reference input

without requiring an additional torque sensor. At the same time, one can adjust its

magnitude by simply modifying the gain in this open torque loop, as shown below:

-D,d

K DiA. D
1

Js K DiA. D
1

Js

Figure 3.8: Open-loop Torque Control

The input is position error and output is position. KG , KD/A,D, KA, KT, J represent

torque loop gain, drive unit D A C gain, amplifier gain, torque constant and inertia of servo

system respectively. Since the position loop and torque loop are mechanically connected,

the first step in the design of the system is to model the dynamics and examine the

required torques in the various modes of operation.

3.5.3 Dynamic Performance Simulation

A n off-line simulation of system dynamics offers an opportunity to examine the

dynamic performance, to verify the parameters and balance the control loops. This

modelling was performed by using MatLab/Simulink before it was implemented within

the embedded system.

The Steer-by-Wire loop includes a D C brush motor and a ball screw connected to

the steering rack to move the wheels according to position reference. The power assist

loop includes a second D C brush motor connected to the same steering rack and pinion

54

mechanism through a pair of pulleys. Thus, the steering rack is moved by the combined

outputs of both motors. The complete system diagram is shown in Figure 3.9, T, and T 2

represent the torque outputs from the two driving motors. The reaction force from the

tires is included in F|o ad, which is estimated using approaches adopted in [27] , see

Appendix A .

T,

Moiorl mul Screw's
Inertia

CO.

Ballscrew

load

4 +

Gear Pinion
•1 — •

Gear Pinion
A;

Motor2 iincl Pinion's
im-rlia

CO,,

1
w.

a
If

Position

Figure 3.9: Ballscrew and Pinion, Rack Coupling Mechanism

The integration of both of the control loops and the actuation mechanisms results in

a continuous-time block diagram of the overall system model as shown in Figure 3.10.

Primarily reference input is sinusoidal wave, which represents the common input from

steering wheel. Closed-loop position control and open-loop torque control are coupled by

the actuation mechanism developed in the application design. To protect against motor

overload, saturation is used to limit the current outputs from amplifiers.

©

s
a

OS
to
3
o

•

3'
3
a.
O
-I

o'
o'
3

Reference Input
Sine Wave

m f \ P \ l \ n K ^ .
- n ^ - * 2 C l ' 4 0 9 6 > — • 4 > * 0 . 0 6 > • 19.7 • 3 r- 120 • 0.006 > » J »i2Q'4096

torque gain Quantizer KA KT Motor Gear Saturation 2 Puby Ratio pinion

^-1
< ' 139-4*-

q - / j
Motor2 and Pinion's inertia pinion gain

0.9
s+70

s+90

L l a g g d n "lagfflter D i ^ | , o A „ d o g
Saturation!

V
471 >

baJbersw

<T8.6e-5*-

-<^0.083

Ktach

Motorl and Screw 'o inertia!

<^495

<^636.6 -4-

rad-BLU

-<^495^

m-rad

iris - rod's

rack weight

:"1
< -K-

Screw gain

Integration Integration

Product

Tires'reaclion force

56

Reference Input and Position Feedback Position Error

Time / s

Torque Output from Position Loop

20 25 30

Time / s

Steering Rack's Velocity

Time / s

S 0

• 6

0.6

E
0.4

02 Z

0.4

02

a 0
3
? -02 O -02

1-
•0.4

•0.6

-0.6

Time / s

Torque Output from Torque Loop

Time / s

Figure 3.11: Simulation of Output States in Matlab

After initially identifying all the parameters, and running the simulation in Matlab,

the system's dynamic performance can be assessed with the reference to the position

57

feedback, position error, torque outputs from both loops as well as the steering rack's

travelling status. A simulation of these output states is shown in Figure 3.11 with a

sinusoidal input at 1Hz.

Off-line simulation allows one to check system performance and stability, to tune

the system parameters, and at the same time create a benchmark for implementing the

Health Monitoring System in the embedded application

3.6 Health Monitoring Framework

The desired output from a health monitoring layer is a set of values that are

indicative of the current status for a given component. Each unique health monitor should

aggregate a set of indicators, as well as all of the methods that describe those indicators.

The Health Monitoring indicators are model-based, as described in Section 3.4, which

makes each indicator dependent on the current system state and the input applied over a

period. The Health Monitoring layer necessarily relies on the systems' sensors,

observable states, and controller inputs. Thus an abstraction of the hardware system as

well as the current error status of all the state variables are needed i f the Health

Monitoring layer is to function properly.

The Health Monitoring needs to be integrated with the error detection functions so

that the health indicators can be generated and, i f disagreements are found, faulty sensor

can be detected and disabled.

Figure 3.12 shows a flow chart of the data used by the health monitoring system

during normal operation. During the first step, the RunModel method is used, which

updates the model elements, and generates an estimation for system states. In this

58

application, the estimated states include steering rack's position and velocity as well as

current outputs from amplifiers. At the same time, by acquiring the physical sensors,

(such as the tachometer, encoder and potentiometer), one can also obtain the actual

physical states of the system. Data from the health monitoring system and the sensors

must then be compared.

Reference h

1. RunModel

• © — r

State

2. Update States

Health Monitoring System

Redundant Physical Sensors

Controller

Dynamic
model

r 4 - «

Physical current
Analytical current

I I Physical Velocity
Analytical Velocity

Implement specific model

S X | Physic 3 1 Position |_ / '
Analytical Position

Redundant Analytical Sensor

Distributed

Error Detection

Local

Error Detection
-Health indicators

Figure 3.12: Health Monitoring System Data Flow

The second step in the data flow for the Health Monitoring system is updating the

system states with the values produced by the Distributed Error Detection routine. This

then allows the calculation of the output values for each of the Health Indicators.

3.7 Summary

A combination of Steer-by-Wire mode and power assisted mode is proposed as the

steering strategy for the purpose of experiment. Then it introduces the fault-tolerant

59

platform that the health monitoring functions are designed to interface with. This platform

runs on multiple embedded hardware.

The development and potential benefits of the Health Monitoring platform are

discussed and the three health indicators introduced by Cullingham are defined and

integrated into the system.

This chapter also explains the process of building simulation models to examine the

behaviour of the combined steering system and shows how these may be utilized to

detennine the effectiveness of the proposed system models. System response to a typical

sinusoidal input are presented.

Finally the Chapter describes how health monitoring is integrated with the physical

fault-tolerant system and how the health indicators are obtained from the comparisons of

physical sensors and analytical sensors within the error detection process.

60

Chapter 4: Design and Test of a Laboratory
Steer-by-wire System

4.1 Introduction

Model-based Health Monitoring is performed by comparing the outputs of a real

time model with actual sensor values. Demonstration of the Health Monitoring scheme

then requires a realistic prototype steering system with suitable sensors and monitoring

equipment.

This chapter first provides a detailed description of hardware components of the

Steer-by-Wire application with the power assist, and the assembly and setup for the

steering and actuating function. This experimental system has been implemented in the

Product Development Laboratory at U B C . The second part describes the experiments

used to demonstrate performance of the Health Monitoring, which is designed to detect

failure modes in different scenarios. At last, a fault diagnosis strategy is proposed to

verify the fault symptoms and causes and supervise the overall behaviour of the specified

application.

61

4.2 Description of Steer-by-wire Setup

4.2.1 Embedded System Configuration

The Health Monitoring system described in this thesis sits atop a prototype

embedded system that was developed for the fault-tolerant system architecture in Mathew

Bowler's previous research [21]. It is a distributed computing platform based on the

exact redundancy strategy, which is applied to all the levels of configuration, including

sensors, actuators and ECUs. However, in this thesis, the major objective is to provide a

model based software system with the ability to monitor the health conditions of the

physical hardware in real time. The idea is to allow additional redundancy to be achieved

at a lower cost and provide a flexible tool for a variety of apphcations.

Under normal operating conditions, it is expected that the Steer-by-Wire system

must be controlled by multiple computers. The distributed computing environment

introduced by Bouvier included error checking and data sharing via C A N bus network

communications. To isolate and test the health monitoring functions, the experiments

done described in this Chapter involve only one ECU's however no network based

exchange of fault data is transmitted between them. Figure 4.1 shows the ECU's and

other electronic components such as amplifier, power supply and communication interface

used in the system. The majority of the embedded computer configuration and basic

programming was completed by Bouvier, who set up a distributed fault tolerant

architecture with the ability to tolerate faults at both sensor and ECU's levels.

62

Figure 4.1: Embedded Computer Configuration

Embedded Computing Platform

The embedded computing platform is based on MIPS processors of varying

performance. The characteristics of the SCM20 and SCM40 modules are shown in Table

4.1.

63

Parameter S C M 2 0 S C M 4 0
CPU speed 33MHz 200MHz

Bit size 32 64
SDRAM 8MB 16MB

Flash disk 16MB 16MB
Power supply 24VDC . 24VDC

Table 4.1: MIPS Processors Parameters

Each module is mounted on a carrier board which provides Ethernet 10 Base-T, and

CAN2.0 network support. The modules communicate with I/O modules from the same

manufacturer over a proprietary high speed serial link. The I/O modules used here are:

Digital output module, 16 channels, each capable of 12 bit P W M output. The

board is configured to provide 4 channels of P W M output, and 12 channels of

controlled output.

Digital input module, 16 channels of digital input.

Analog input module, 12 bit, 4/8 channel, programmable input range to +/-10V.

• Analog output module, 12 bit, 8 output channels of-10V to 10V.

2 axis position controller, F P G A based, loop closing 4KHz, incorporates

encoder feedback and analog out to amplifier.

Software Environment

The Steer-by-wire and the health monitor applications are developed in Forth and

run under a real time operating system on th MIPS modules. In order to ensure portability

64

of the application over multiple hardware platforms, the A N S Forth standard was selected.

The object oriented extension used was developed by McKewan, and is A N S Forth

compliant; the resulting language supports the major object-oriented concepts such as

inheritance, polymorphism, and aggregation.

Within this object-oriented extension, classes are defined between the delimiting

words :Class and ;Class. Inside each class definition, instance variables may be declared

as any A N S Forth variable, or as an aggregated class. The scope of these variables is

limited to the each object declared, and cannot be accessed directly from other objects of

the same type. Also inside each class definition, methods are defined between the

delirmting words : M and ; M , and the last character of every method name must be a colon

(":"). After defining a class (e.g. Classl), an object (e.g. Objectl) can be instanced by

calling the command Classl Objectl. It is then possible to access a method within that

object (e.g. Methodl:) by calling the command Methodl: Objectl. The method Classlnit:

is automatically called when the class is instantiated. The method's definition may be

changed, which allows the developer to initialize the object's instance variables to a set of

initial values.

4.2.2 Electrical Actuation Circuit

As described in section 3.2 the steering actuation strategy adopted for the initial

prototype provides both Steer-by-Wire and electrical power assist loops but no manual

steering facility. The two actuators are connected through different means to the steering

mechanism operated in parallel so that the steering functionality is improved and actuator

fault tolerance is achieved. To meet this requirement, each actuator includes its own

65

E C U , digital and analog input/output, power amplifier and necessary sensors. The

embedded computer platform interfaces with the steering system via the actuation circuit

shown in Figure 4.2.

Steering
v Input

SCM20 Dl/O Al TMAC

SCM40 Dl/O Al AO

jAm.p1 f MOtOM T̂ IITcnD
n ir, . J Tacn End]

UPosition mode).

]Amp2-+- Motor2 ~ Q
[(torque mode) ^ J

Figure 4.2: Circuit Diagram of Actuators

The SCM20 runs the first motor in the closed loop position control; this motor

drives a ballscrew which in turn powers the steering rack, (Steer-by-Wire loop). The

command position of the steering wheel is measured by the analog input module and

passed by the E C U to the motion control module. The motion control module performs

smoothing of the position input and closes the position loop, (outputting an analog voltage

to the power amplifier). The brush type D C motor actuator provides both position

feedback to the motion control module through an encoder and velocity feedback direct to

the power amplifier through a tachometer.

The SCM40 operates the second motor in the open loop torque control mode,

(power assist loop). In most modes of operation the torque command would be provided

http://jAm.p1

66

by a torque sensor attached to the steering wheel, (whether or not the steering wheel is

physically connected to the rack) and the complete steering system would then have

parallel torque and position inputs. In this case there is no input torque signal from the

steering wheel. For the purpose of testing the health monitoring system, the torque

reference signal was taken from the applied torque exerted by the Steer-by-Wire loop

actuator. The SCM40 module determines the magnitude of the torque being commanded

from the analog input module, which is used to detect the current output from the first

motor's amplifier.

Two amplifiers used in the application are identical and the motors driven by them

are different. The description of these components are shown in the tables of Appendix D.

4.2.3 Laboratory Steering Assembly

The experimental steering system is built on a three-wheeled chassis as shown in

Figure 4.3, where it gives side view and front view. This testbed includes all required

electrical steering components such as motors, ballscew or pulley, rack and pinion as well

as steering rack and tie rods.

Figure 4.3: Steer-by-Wire with Power Assist Testbed

68

In this assembly, the leftmost motor in the picture is operated in position mode,

(Steer-by-Wire loop). This motor is coupled to a ballscew and the rotational displacement

of this ball screw is converted into linear motion of a nut, which moves the steering rack

and therefore steers the two front wheels. The ballscew used is 0.5 inches diameter with

a lead of 0.5 inches, the large lead angle allows easy back driving of the ballscrew, (this is

a required feature of the design and forces the selection of a drive motor with high torque

capacity).

The second motor sitting on the chassis is the one running as power assist. The

motor is much smaller but has both an integral epicyclic gearbox (ratio 1:19.7) and is

driving a steering pinion via a pair of pulleys with ratio 1:3 so that enough driving torque

is available.

The steering column has no direct connection with steering rack, its displacement is

measured by double potentiometers, which are read by the analog input module.

4.3 Instantiation of Health Monitoring System

Health Monitoring is a model based approach that detects the system's faults and

diagnoses the failure modes by comparing the output of a system model to the actual

output from system, and generating the differences between them. To monitor the health

conditions of the physical hardware in real time, a real time 'Virtual system model" must

be programmed and implemented in the embedded computing system. The control loops

and vehicle dynamics of the system are approximated in this case as a simple second order

system with the undamped natural frequency and damping ratio being determined by

experiment.

69

Each element of the model previously simulated in MatLab/Simulink is

implemented as a software object within an objected-oriented Forth language framework,

which resides in the ECU's and is capable of real-time operation. The overall behaviour of

the power assisted Steer-by-Wire system is thus provided by a collection of software

objects. These objects do not need to be coded, they are instantiated from class definitions.

The class definition of an object defines it completely, and specify its instance variables

and methods. Multiple objects (with different names) can be instantiated from the same

class definition within a given object-oriented model.

Figure 4.4 shows the detailed description of the classes from which the on-line

Health Monitoring utilities are instantiated and executed.

Objects instantiated from the classes, variables as well as methods are directly used

for data processing by passing the data via the stack according to the control flow.

Instance variables and methods of the classes are specifically introduced in Appendix B.

Counterparts of actual outputs of physical sensors can be obtained from the instance

variables defined in the corresponding objects. This is known as the analytical redundant

sensor, which joins in the detection of sensor faults and protect against continuous system

degradation. As discussed in section 3.6, the output from the analytical sensor can be used

by the Local Error Detection object and the redundancy management architecture. In a

normal operation, each state used by the model is dependent on a previous model

estimate. The model adapts to small deviations between these expected and observed

values, and it treats large differences as faults.

70

Health Monitoring
Classes

Description

InputandFeedback Acquire sensors information from the input and feedback
source (every 10 msjand make a record of them

Parabolic Perform the parabolic approximation based on Equation 3.1
and prepare for the numerical integration

LeadLag_Health Represent the position loop's Lead Lag filter, gains and
saturation in discrete expression based on Equation 3.8

PID_Health Represent the torque loop's PID filter (only proportion normally)
and gains

Physicalsystem Aggregate results from both loops, apply vehicle dynamics
and numerical integration of acceleration and velocity

Execinst Instantiate the classes above, execute the methods and dose
the position loop

Figure 4.4: Health Monitoring Classes Description

4.4 Test Setup and Results Achieved

4.4.1 Health Monitoring Configuration

The embedded computing system was run with a loop closing and sampling interval

of 10 ms. The health monitoring model was configured with an estimation scale of 5

samples, for an estimation interval of 50 ms. The parameters used by the dynamic model

for the tests are shown in Table 4.2. A complete list of model parameters is given in

T a b l e d .

71

Parameter Value Unit
Position Loop

°n 18 rad/s
Z 0.75

0.06
A 22 Sec"1

B 27 Sec"1

Torque loop
is

torque 0.06

Table 4.2: Health Monitoring Parameters

So as to have a well controlled position reference input for these tests then this has

been generated in software rather than trying to provide a regulated input from the steering

column via the analog input module.

4.4.2 Test Results of Injected Failures

The health monitoring system is used to identify when system performance deviates

from that expected. From a safety standpoint one can identify a number of potential

failure modes and focus the experimental investigation. It might be noted that one is not

concerned here with a problem of lack of performance (e.g. not tracking fast transients

etc), one is simply concerned with the health of the system as designed.

The steering system is tested in two different configurations; the first is the pure

Steer-by-Wire system without any power assist, the second is the complete system

including Steer-by-Wire and power assist loops. Clearly the model used in each case

simply reflects the components selected.

72

Pure Steer-by-wire

Figure 4.5 shows the behaviour of the Health Monitoring system in the pure Steer-

by-Wire operating condition in the absence of faults. The figure shows the comparisons

between states predicted by the Health Monitoring and those measured in the physical

system. The selected observers are the steering rack position, the position error (control

error signal), the current output from the amplifier (converted to torque), and the

velocity of the steering rack. Actual values of these observers are obtained from the

motor encoder, tachometer, and the amplifier current monitor.

floo
2QYi

' -3000

4nm

Position Feedback

A A

\

8 10
time / s«c

- HHallh Mrmilniinij
Physical State

1

I /
I

-1800

- Health Montlormq
Physical State

Amplifier t's Output Rack's Velocity

- Health Motiituurig

Physical State

ffrW IfWff WW

UkitJ Dakd Uill mkM ^ WPJ JrfW1^

2 4 6 6 10 12 14
time / sec

Figure 4.5: Steer-by-Wire in Normal Status

73

In Figure 4.5, input is a sinusoid wave with 6000 BLU at 0.33 Hz, which represents

a steering rate approximately 2.5 rad/s at the steering wheel.

One can see that when there is no failed component or external disturbance, the

system states estimated by the Health Monitoring follow their physical counterparts with

small error. One can assume then that the system models are fairly accurate and reliable.

Figure 4.6 is also in normal operation but its input has an increasing frequency from

roughly 0.5 to 2 Hz. With the varying frequency, we can further prove that Heath

Monitoring resembles the system dynamic well.

Figure 4.6: Steer-by-Wire With Varying Input Frequency

74

One failure fault was conducted on one of the transmission components, the flexible

coupling, which is used as the connection of motor and ballscrew's shafts Figure 4.7. It is

able to compensate for misalignment between shafts and prevent the transmission of

overload power. The failure mode is injected by loosing the coupling. A loose coupling

results in insufficient driving power transferred from the motor to the steering rack.

Consequently the steering rack is not able to travel at the commanded speed and the power

output from the motor is apparently reduced. Figure 4.8 shows the comparison results

with the injection of the loose coupling failure mode.

Figure 4.7: Flexible Coupling Between Motor and Ballscrew

75

Figure 4.8: Steer-by-Wire With Loose Coupling

One can see that this failure reflects on the position error, current output and rack's

velocity as big differences between Health Monitoring estimations and actual system

observations, since Health Monitoring is a representation of system in healthy status.

Both position error and amplifier's output have bigger Health Monitoring estimations than

actual sensors' values. Since the tachometer is coupled to the motor, so it gives a bigger

velocity output.

76

Steer-by-wire with Power Assist

With power assist, we have the second motor to supply the torque and the load on

the first motor is relieved. Figure 4.9 gives the normal operation of power assisted Steer-

by-Wire condition. To compare it with the normal status of pure Steer-by-Wire, we can

see that with the same input, the current output from the first amplifier (the one for the

motor in position mode) is reduced for half.

Another failure mode is tested under the power assisted Steer-by-Wire condition

and it is shown in Figure 4.10. A resistance force is applied to one side of the wheels,

which represents possible scenarios such as mechanical failure of steering rack, tie rods or

wheels. So in this case, there are always bigger actual outputs from both of amplifiers and

position error. Since the wheels are not able to travel to the required position, both of

position feedback and velocity from the sensors show smaller values on this side. Once

such faults detected, we may diagnose it as a failure mode similar to a resistance force.

Position Feedback

- Health Monitoring
Physical Stale

A A
/

16 18

Amplifier 1's output

* He»Hh Monnonng
Physical Grate

Position Error

I 0

- Health Monitoring
-Physical State

12 14

time/see

Amplifier 2's output

- Health Monitoring
- Physical State

Figure 4.9: Power-Assisted Steer-by-Wire In Normal Status

78

Position Feedback Position Error

- Health Monitoring

-Physical Stale

12
lime / sec

Amplifier 1's output

12
time / sec

- Health Monitoring
•Physical State

V

Amplifier 2's output

- Health Monitonng
Physical Slate

12 14
lime / sec

Figure 4.10: Power-Assisted Steer-by-Wire With Resistance On One Side

79

As shown above, by injecting faults such as mochfying system's components,

shutting down the power or disturbing data communication, one may be able to detect

different fault symptoms by simultaneously supervising different system states such as

position, velocity and force.

A subsequent fault diagnosis strategy can be developed by finding the best match

between fault symptom and cause. This requires one to develop an adequate system

model which characterizes the dynamics of vehicle steering, which means sufficient

system dynamical characteristics should be known during the process of steering. Then a

complete system model can allow one to distinguish different fault symptoms and locate

the fault causes among the failure modes which have been known. For example, in order

to have the ability to diagnose faults from external environment, one needs additional

force or torque sensor mounted on the wheels to have knowledge of external disturbances

acting on the vehicle. At the same time, a more sophisticated filter (e.g. Kalman filter) is

also required to improve the performance on estimating the external disturbance.

However, such developments are outside the scope of this thesis and no diagnostic module

has been introduced yet.

4.5 Summary

In this chapter, the concepts detailed in Chapter 2 and Chapter 3 are illustrated

through experiments conducted on a prototype steering system that was designed and built

as part of this thesis. The system has been operated in both Steer-by-Wire and "power

assisted steer-by-wire" modes.

80

The Health Monitoring system is implemented in as a virtual system environment

which runs in parallel with the control activities on MIPS based processors. This chapter

has given a brief account of the software development, the hardware design and the mode

of operation of the steering system.

Experiments have been performed to verify the system models used and to

demonstrate the ability to recognize component failure or unusual operating conditions.

These experiments have examined both a simple Steer-by-Wire arrangement as well as the

combination of power assist and Steer-by-Wire loops. The failure modes chosen are

simply and fairly gross in nature but were easily recognized by the system. Clearly a

precise method of examining outputs and assigning tolerances to the allowable errors

between model and measured states is still required.

81

Chapter 5: Summary

5.1 Conclusions

By-Wire systems and associated embedded computing applications are expected to

have wide-spread use in personal vehicles. This results from the improvements, that may

be attained in performance, flexibility and efficiency as well as the chance of providing

additional feature. However, the potential risk involved in these electrical systems, means

that one must guarantee vehicle and passengers safety. At the same time one must

provide the required level of safety efficiently, i.e., cost is an issue in these applications.

Previous approaches developed by other research groups to attain these goals have

relied on high redundancy levels. The Boeing 777 controller is comprised of three triple

redundant ECU's, while the X-by-Wire automobile project is controlled by three fault-

tolerant nodes, each of which is locally comprised of four ECU's. Most of the approaches

resort to exact redundancy, specific physical sensors to detect faults and computationally

expensive techniques.

The architecture presented in this thesis contains a health monitoring layer within

the overall framework; this framework functions as a fault detection and diagnosis

mechanism to protect the monitored system against degradation when one or more sensor

failure occurs. Since it is based on the system dynamic model, the health monitoring

82

system can provide the awareness of the health of the system's components by estimating

the performance of sensors and actuators and detecting their faults, without the burden of

adding extra physical sensors and without adding high computational loads.

Consequently its analytical redundancy feature provides the safe-critical system with the

fault tolerant capability at minimal cost.

The concepts and architecture described in this thesis are illustrated through

application to a prototype automobile Steer-by-Wire/Power Assisted system. The

experimental testbed was designed and assembled as part of this thesis. The health

monitoring architecture described was implemented within the object oriented

environment of the embedded computing platform. Testing has shown that the health

monitoring system is capable of representing normal behaviour, and also of detecting

component failure or unusual operating conditions. A fault diagnosis strategy was

proposed to match the fault symptoms and causes, and distinguish different failure modes.

5.2 Recommendations for Future Work

Three kinds of health indicators and a framework used to organize them were

introduced in this work. However, the existing fault-tolerant architecture does not include

this analytical redundancy within the local and distributed error detection procedures.

These fault detection functions should be established in order to implement a completed

health monitoring layer,

The sensitivity of the technique needs to be further tested. The accuracy of the

health indicators affects the thresholds observed when the outputs of the analytical sensor

represents the healthy status and are compared with the actual system states. A n analytical

83

sensor with low accuracy can not be trusted alone and it would be only involved in the

voting scheme to arbitrate between two sensors that do not agree after the third has failed.

Meanwhile, the communication of the health monitoring states needs to be implemented

so that the health monitoring system is able to collect data from multiple ECUs, where

each of the system states are measured and shared across a network. This requires a

distributed functionality of the system to be developed.

Non-linearities should also be taken into consideration in the health monitoring

system so that it can accurately represent the real system. These non-linearities include

saturation, friction, relay and backlash and have been incorporated in the health

monitoring system by Cullingham.

84

Bibliography

1 Laprie, J.C., Dependability: a unifying concept for reliable computing and fault tolerance.
A N D E R S O N , T. (Ed.): "Dependability of Resilient Computers", chapter 1. Blackwell
Scientific Publications, 1989

2 Paul Y i h , Thesis:, "Steer by wire: implications for vehicle handling and safety". Stanford
University, 2004

3 Kurishige, M . , T. Kifugu, N . Inoue, S. Zeniya, and S. Otagaki, A Control Strategy to
Reduce Steering Torque for Stationary Vehicles Equipped with EPS, S A E Technical
Papers, 1999

4 R. McCann, Variable effort steering for vehicle stability enhancement using an electric
power steering sytem, S A E Technical Paper Series 2000-01-0817, Mar. 6-9, 2000, p. 1-5.

5 D.Peter and R.Gerhard, Electric power steering - the fist step on the way to steer by wire,
S A E Technical Paper Series 1999-01-0401

6 C.L.Seacord and D.K.Vaughn, Preliminary design for a digital fly-by-wire flight control
system for an F-8C aircraft, N A S A Centre for Aerospace Information NASA-CR-2609,
1976

7 H.Inagaki, K.Akuzawa and M.Sato, Yaw rate feedback braking force distribution control
with control-by-wire braking system., In the Proceedings of the International Symposium
on Advanced Vehicle Control, Nagoya, Japan, 213-217, 1998

8 Nicholas Eoghan Cullingham, Thesis: "Definition of a Distributed Health Monitoring
System: Application to the Design of a Hydraulic Marine Steer-by-Wire System", The
University of British Columbia, 2005

9 Hiller, M , Using Software to Handle Data Errors in Embedded Control Systems, Chalmers
University of Technology, 1999

10 Laprie, J . C , "Dependability - Its Attributes, Impairments and Means", Predictably
Dependable Computing Systems, 3-24, Springer-Verlag, Berlin; Heidelberg; New York,
1995

11 Kopetz, H , Design Principles for Distributed Embedded Applications, Kluwer Academic
Publisher, 1997

85

12 P A L B U S team, PALBUS-Validation of Dependable Distributed Computing Systems,
Published on the internet, http://www.sp.se/electronics/md/palbus/ [accessed on
06/14/2005], 2001

13 Lamport, L.,R.Shostak and M.Pease, The Byzantine Generals Problem, A C M Transactions
on Programming Languages and Systems, 382-401, July, 1982

14 Yeh, Y . C, Design Considerations in Boeing 777 Fly-By-Wire Computers, In Proceedings
of the Third IEEE International High-Assurance SystemsEngineering Symposium, 64-72,
1998

15 X-By-Wire team, X-By-Wire, Safety Related Fault Tolerant Systems in Vehicles, Final
Report, http://www.vmars.tuwien.ac.at/projects/xbywire/docs/final.doc [accessed on
10/25/2005], 1998

16 Chow,E.Y. and A.S.Willsky, Analytical Redundancy and the Design of Robust Failure
Detection Systems, 1984

17 Chow,E.Y. and A.S.Willsky, Analytical Redundancy and the Design of Robust Failure
Detection Systems, IEEE Transactions onAutomatic Control, 603-514, 1984

18 Askerdal, O., Gafvert, M . , Hiller, M . , Suri, N . , Analyzing the Impact of Data Errors in
Safety-Critical Control Systems, IEICE Transactions on Information and Systems, E86-D,
12, 2623-2633,2003

19 Pflanz, M . , F. Pompsch, and H . T. Vierhaus, A n Efficient On-line-Test and Back-up
Scheme for Embedded Processors, In Proceedings of the International Test Conference,
964-972, 1999

20 Sogomonyan, E. S. and M . Gssel, Concurrently Self-Testing Embedded Checkers for
Ultra-Reliable Fault-Tolerant Systems, In Proceedings of the 14th V L S I Test Symposium,
138-144, 1996

21 Bouvier, M . , Thesis: "Definition of a Cost-Effecive, Fault-Tolerant Control Architecture:
Application to the Design of a Steer-by-Wire System", University of British Columbia,
2002

22 Kimura, S. and T. Okuyama, Consensus Making of M u l t i - C P U Control of Hyper-redundant
Manipulator, In IEEE International Conference on Systems, Man, and Cybernetics, volume
4, 3623-3628, 1998

23 Oldknow, K. D., Thesis: " A Dynamically Reconfigurable System Architecture and F P G A
Based Servo Controller for Distributed Machine Tool Control", University of British
Columbia, 2000

24 Nace, W. and P. Koopman, Graceful Degradation in Distributed Embedded Systems,
http ://www.ddj embedded.com/ressources/articles/200110106em00110106em001 a.htm
[accessed on 03/25/2006], 2001

http://www.sp.se/electronics/md/palbus/
http://www.vmars.tuwien.ac.at/projects/xbywire/docs/final.doc
http://www.ddj
http://embedded.com/ressources/articles/200

86

25 Goode, K. B., Moore, J . , Roylance, B. J . , Plant machinery working life prediction method
utilizing reliability and condition-monitoring data, Proc Instn Mech Engrs, Volum 214.E,
pp. 109-122, 2000

26 Isermann, R., Fault Diagnosis of Machines via Parameter Estimation and Knowledge
Processing, Automatica, Vol . 29.4, pp. 815-835, 1993

27 N . L. Azad, J . McPhee and A . Khajepour, Tire Forces and Moments and On-road Lateral
Stability of Articulated Steer Vehicles., S A E T E C H N I C A L P A P E R SERIES, 2005-01-
3597

87

Appendix A: Tire Lateral Force and
Steering Rack Load Estimation

The external forces that can cause longimdinal or lateral motion of the vehicle are

mainly generated at the tires. Research on the force and moments generated by tires on

roads has been conducted using different analysis and measurements. This section

introduces the approach to estimate the lateral force developed in [27]. As shown in

Figure A.1, there are three forces and three moments which can be generated at the

tire/road contact area. Among them, The lateral tire force F y is very important for the

lateral stability and steering behaviour of road vehicles. This force depends on the slip

angle a, the vertical tire load F z , and also the friction coefficient u.

a

Figure A . 1: Lateral tire force and aligning moment
characteristic curves on hard surfaces [27]

88

Because the effective line of action of the lateral force F y does not intersect the

centre of the wheel axis system, a self-aligning moment is produced. The moment arm is

known as pneumatic trail, which decreases once sliding beings and approaches zero at

higher slip angles. Typical on-road tire force and moment characteristics in the form of

F y and M z versus curves a are represented inFigure A . 1. And the lateral slip stiffness or

cornering stiffness CFO. can be computed as:

CFa=ABFz

Equation A . 1

where B is determined for a specific conditions of the tire and surface by the

following equation:

Ay F/ A
Equation A.2

FZT is the rated tire load and m is an exponent equal to 0.14. For different contact

surface the coefficients of A , C and D are given in Table A . 1.

Surface A C D
H i g h way 0.67 0.677 -0.563

Plowed F i e l d 0.65 0.267 -0.222

G r a v e l 0.52 0.588 -0.49

C o r n F i e l d 0.53 0.440 -0.365

M e a d o w 0.88 0.784 -0.652

Table A . 1: Metz's Coefficients For Different Surfaces

89

Then aligning stiffness d a , which is also the negative slope of M z versus curves a

at zero slip angle, can be predicted by

c =
C I

6
Equation A.3

where It is the tire contact length.

Therefore for small slip angle, self-aligning moment is

M=-CTaa
Equation A.4

And since the wheel is not turning around its centre but a pivot aside, there is wheel

turning inertia torque:

Equation A . 5

where J w is the wheel's moment of inertia and a w is the wheel's angular acceleration.

Then the force applied by the wheels on the steering rack can be obtained by

M.+M,.,
F =2 " z

r load A

Equation A.6

where l c is the distance between the wheel centre and tie rod's end.

90

Appendix B: Health Monitoring Software
Documentation

This appendix provides a detailed description of the classes from which the Health

Monitoring utilities are instantiated. It is meant to supplement the description given in 4.2.

Table B . l : Input and Feedback Class Description

InputandFeedback

Inherits from: none

Instance Variables

Class: InputandFeedback

Name Type Description

r l var (integer) Acquired position reference input at 0 ms.

r2 var (integer) Acquired position reference input at 10 ms.

r3 var (integer) Acquired position reference input at 20 ms.

r4 var (integer) Acquired position reference input at 30 ms.

r5 var (integer) Acquired position reference input at 40 ms.

Fy var (integer) Acquired position feedback at 100ms from sensors.

H P T constant (integer) Loop closing interval (10 ms).

Methods

Class: InputandFeedback

Name Stack Diagram Description

Acquire: (current_time —) Obtain reference input at each loop closing and feedback

Get_rl: (- r l) Fetch the value from the beginning point.

Get_r3: (- r 3) Fetch the value from the middle point.

Get_r5: (- r 5) Fetch the value from the end point.

91

Methods
Class: InputandFeedback

Name Stack Diagram Description

Get_fy: (- F y) Fetch the value from the feedback.

Classlnit: (~) Execute initiation when the class is instantiated.

Table B.2: Parabolic Class Description

Parabolic
Inherits from: InputandFeedback

Instance Variables

Class: Parabolic

Name Type Description

al Fvar (float) Parabolic curve parameter.

a2 Fvar (float) Parabolic curve parameter.

a3 Fvar (float) Parabolic curve parameter.

deta Fvar (float) Parabolic curve time step.

paraTs Fvar (float) Time sample.

num var (integer) Number of data in a segment of parabolic curve.

Methods

Class: Parabolic

Name Stack Diagram Description

Acquire: (current_time —) Obtain reference input at each loop closing and feedback

Get_rl: (- r l) Fetch the value from the beginning point.

Get_r3: (- r 3) Fetch the value from the middle point.

Get_r5: (~ r 5) Fetch the value from the end point.

Get_fy: (- F y) Fetch the value from the feedback.

Compute_
parameters: (-)

Compute parameters for parabolic form.

Compute_x (— x4 x3 x2 x l xO) Compute estimated reference positions

Classlnit: (-) Execute initiation when the class is instantiated.

92

Table B.3: Physical System Class Description

Physicalsystem

Inherits from: none

Instance Variables

Class: Physicalsystem

Name Type Description

der2y Fvar (float) Steering rack's acceleration

dery Fvar (float) Steering rack's velocity

y Fvar (float) Steering rack's position

e Fvar (float) Velocity's sign

Pi Fconstant(float) 71

Is Fconstant(float) Screw lead

nse Fconstant(float) Ballscrew efficiency

Dp Fconstant(float) Pinion diameter

nre Fconstant(float) Pinion efficiency

G2 Fconstant(float) Pulley ratio

Wr Fconstant(float) Rack weight

Ft Fconstant(float) External force

Jml Fconstant(float) Motor l's inertia

Js Fconstant(float) Screw's inertia

Jm2 Fconstant(float) Motor 2's inertia

Jp Fconstant(float) Pinion's inertia

Kpos Fconstant(float) Position feedback gain

Methods

Class: Physicalsystem

Name Stack Diagram Description

Compute_ac: (T l T2 — der2y) Calculate acceleration from torques.

Computevel: (der2y — dery) Calculate velocity from acceleration.

Compute_pos:: (dery — y) Calculate position from velocity.

Getdery: (— dery) Fetch the velocity value.

Put_dery: (dery —) Store the velocity value.

93

Methods

Class: Physicalsystem

Name Stack Diagram Description

Get_y: (- y) Fetch the position value.

Put_y: (y -) Store the position value.

Reset: (-) Reset the position and velocity.

Classlnit: (-) Execute initiation when the class is instantiated.

Table B.4: Lead/Lag_Health Class Description

LeadLag_Health

Inherits from: Physicalsystem

Instance Variables

Class: LeadLag_Health

Name Type Description

K l l Fvar (float) LeadLag gain.

A c Fvar (float) LeadLag coefficient a (continuous time)

Be Fvar (float) LeadLag coefficient b (continuous time)

K p l Fvar (float) TMAC's voltage/PWM

Ktach Fvar (float) Velocity feedback gain

K i Fvar (float) Amplifier gain

sat_high Fvar (float) Saturation high limit

s a l l o w Fvar (float) Saturation low limit

A d Fvar (float) LeadLag coefficient a (discrete time)

B d Fvar (float) LeadLag coefficient b (discrete time)

T l Fvar (float) Torque output from position loop

in Fvar (float) Current input to LeadLag filter

out. Fvar (float) Current output from LeadLag filter

last_in Fvar (float) Last input to LeadLag filter

lastout Fvar (float) Last output from LeadLag filter

94

Methods

Class: LeadLagHealth

Name Stack Diagram Description

ComputeAd: (-) Calculate the discrete time coefficient a.

Compute_Bd: (-) Calculate the discrete time coefficient b.

Compute_
LeadLag:

(i n — out) Calculate LeadLag filter's output.

Computeout: (out — T l) Calculate torque output from position loop

Compute_ac: (T l T2 — der2y) Calculate acceleration from torques.

Computevel: (der2y — dery) Calculate velocity from acceleration.

Compute_pos:: (dery — y) Calculate position from velocity.

Getdery: (— dery) Fetch the velocity value.

Put_dery: (dery —) Store the velocity value.

Get_y: (- y) Fetch the position value.

Put_y: (y -) Store the position value.

Get_last_in: (— lastin) Fetch the value of last input to LeadLag.

P u t l a s t i n : (last_in —) Store the value of last input to LeadLag.

Get_last_out: (— last_out) Fetch the value of last output from LeadLag.

Put_last_out: (last_out —) Store the value of last output from LeadLag.

Get_Tl: (— T l) Fetch the torque value.

Classlnit: (—) Execute initiation when the class is instantiated.

Table B.5: PID_Health Class Description

PID Health
Inherits from: None

Instance Variables
Class: PID Health

Name Type Description

K2 Fvar (float) Torque loop gain

Kp Fvar (float) PID proportion gain

95

PID_Health

Inherits from: None

Instance Variables

K d Fvar (float) PID derivative gain

K i Fvar (float) PID integral gain

Kp2 Fvar (float) TMAO's voltage/PWM

K A 2 Fvar (float) Amplifier gain

KT2 Fvar (float) Motor torque constant

G l Fvar (float) Gear ratio

e_prev Fvar (float) Last error value

i_prev Fvar (float) Last sum value

kds Fvar (float) Kd/time step

sathigh Fvar (float) Saturation high limit

satlow Fvar (float) Saturation low limit

T2 Fvar (float) Torque output from torque loop

Methods
Class: PIDHealth

Name Stack Diagram Description

Computeout: (out—-T2) Calculate torque output from torque loop

Get_e_prev: (— e_prev) Fetch the value of last error value.

Put_e_prev: (e_prev —) Store the value of last error value.

G e t T l : (— T l) Fetch the torque value.

Reset: (~) Reset the values of error and error sum.

Classlnit: (-) Execute initiation when the class is instantiated.

96

Appendix C: Software Configuration and
Vehicle Parameters

Table C. 1: Health Monitor Parameters

Parameter Value Unit Parameter Value Unit
Software Configuration Vehicle Parameters

Position loop Vehicle weight 800 Kg
Gain of velocity/PWM 0.02 V Wheelbase 2 M
Velocity loop gain 0.0476 V/rad/s Front wheels distance 1 M
Amplifier gain 0.62 A/V Steering ratio 11
Position loop feedback gain 315117 BLU/m Tire max Load (sure trail 4.80) 2575 N
Natural frequency 18 rad/s Tire weight 4 Kg
Damping ratio 0.75 Tire contact length 0.08 M
LeadLag gain 0.06 Pivot and centre distance 0.15 M
Lead 22 Slip angle 6 Degree
Lag 27 Rack transverse Acceleration 0.03 m/s*2

Torque loop Total weight of steering rack 10 Kg
Torque loop gain 0.02 Pinion diameter 0.015 M
Gain of velocity/PWM 0.005 V Pinion length 0.2 M
Amplifier gain 4 A/V Rack slide friction coefficient 0.1
Motor torque constant 0.0612 Nm/A Rack and pinion efficiency 80 %
Motor gearhead 19.7 Friction torque of pinion 0.1 Nm
Pulley ratio 3 Friction force of bearings 30 N
PID proportion gain 0.06 Ballscrew diameter 0.0127 M
PID derivative gain 0 Screw length 0.5 M
PID integral gain 0 Ballscrew friction coefficient 0.02

Ballscrew efficiency 0.9
Screw lead 0.0127 M
Pulley ratio 3
Motor l's inertia 1.4*10M Kg*mA2
Screw's inertia 10̂ -5 Kg*mA2
Motor 2's inertia 10̂ 6 Kg*mA2
Pinion's inertia 7.85* 10̂ -6 Kg*mA2

Appendix D: Amplifier and Motors
Parameters

Power supply +24V-+90V

Output power Continuous: 13A,2360W
Peak: 20A, 3600W

Copley Controls Inc. Bandwidth 25kHz

513,DCbrushless
servo amplifier

Resolver option Tachometer emulation
Encoder emulation

P W M transconductance
stage

4A/V

Monitor output ±6.5V @ ±26A (4A/volt)

Table D. 1: D C Brushless Servo Amplifier

Magmotor Power Supply 2 4 - 1 2 0 V D C
S28-I-300ET1,
with coupled
tachometer and

Rotor inertia 0.025oz-in-sec2 S28-I-300ET1,
with coupled
tachometer and Continuous torque 200oz-in

optical encoder. Peak torque 1500oz-in

Power range 200W

Back E M F 48.5V/krpm

Max current 23A

Torque constant 65.6oz-in/amp

Table D.2: Brushed Servo Motor Applied in Position Loop

Power supply 24VDC

Rotor inertia 3.7 E-03oz-in-sec2

Continuous torque 374oz-in

Pittman Gearmotor Peak torque 2934oz-in

GM14904S016, Power range 100W

with gearbox Back E M F 6.41V/krpm

Max current 23.8A

Torque constant 8.67oz-in/amp

Gearbox reduction ratio 19.7

Table D.3: D C Servo Gearmotor Applied in Torque Loop

