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Abstract 

Five-axis machining has been widely adopted manufacturing parts with sculptured 

surfaces in the aerospace, die and mold and other industries. Five-axis machine tools have a 

kinematic structure compromising three Cartesian axes couples with two rotary joints 

enabling the tool to reach any given position and the orientation on the workpiece surface. 

Five-axis motion allows the orientation of the tool along the toolpaths with varying 

curvatures and sculptured surfaces. However, optimal trajectory generation methods are 

required in achieving a smooth coordinated motion of the tool tip and tool axis orientation, 

which is essential in reducing the fluctuations in the feed, accelerate and jerk of the drives. 

In this thesis, a toolpath generation algorithm has been developed for smooth trajectories 

based on compressing the C° continuous Numerical Control (NC) motion commands into 

continuous b-spline format. With the aid of the b-spline toolpath representation, the 

discontinuities and unwanted acceleration harmonic in the multi-axis motion are reduces. The 

tool position and orientation vectors are interpolated continuously enabling a smooth and 

synchronized motion of the drives. In order to achieve higher smoothness in the change of 

feed direction, the spline toolpath is optimized by solving the linear quadratic minimization 

problem during the least squares fit. The resultant angular motion of the tool is further 

smoothed by minimizing the integral square of third derivative of the orientation spline using 

a non-linear optimization technique. 

The Feed Correction Polynomial algorithm is implemented in the real time interpolation 

of the generated b-spline toolpath yielding a consistent feedrate profile during contouring 

operations. It is shown that feed correction method exhibits reduced feedrate fluctuations 

when compared to the widely used Taylor Series approximations. 

A jerk continuous feedrate profile in terms of C 3 quintic spline is adapted for five-axis 

trajectory generation. The feedrate profile is generated utilizing the minimum jerk criteria for 

the smoothness of the motion and tracking accuracy. The feed profile is then optimized to 

achieve minimum cycle time while adhering to the machine tool's velocity, acceleration and 

jerk limitations. 

The developed trajectory generation algorithms have been simulated using the kinematics 

of a widely used five-axis machine tool promising potential applications in rough machining. 
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Chapter 1 

Introduction 

The Computer Aided Design (CAD) technology has led to smooth spline representation 

of space curves and complex free-form surfaces with steep curvatures, commonly used in 

designing dies, mold and aerospace parts with sculptures surfaces. Bezier splines (b-splines) 

and non-uniform rational b-splines (NURBS) are extensively used because of their dexterity 

in modifying and representing curved geometries with high smoothness. Sculptured 

machining of free-form surfaces by five-axis computer-numerically-controlled (CNC) 

machine tools has received significant attention in recent years since it provides optimal tool 

posture and orientation, not possible with three-axis Cartesian machines. In particular, 

surfaces with varying curvatures are machined on five-axis machining centers where the tool 

orientation is adjusted with varying curvatures are machined on five-axis machining centers 

where the tool orientation is adjusted continuously resulting in a smoother surface finish. 

Furthermore, on such machines, machining of deep cavities and inclined drilling are 

performed using shorter cutters, leading to less vibrations and higher material removal rates. 

However, current practice in five-Axis machining approximates the contours with 

straight line segments yielding large C° continuous NC toolpaths, composed of tool position 

and orientation vectors. The linear segmentation technique leads to a rough surface finish and 

forces the machine tool to decelerate, accelerate or stop at each segment junction. In 

particular, for machines with rotary axes located on the table, the axes have to move and 

support significant masses during machining. As a result, the acceleration limits of such five-

axis machines are reduces, increasing the machining cycle times. 

Tool motion with abrupt deceleration and accelerations cause contouring errors found at 

locations where the transients such as tangency or curvature discontinuities occur in the 

reference trajectory. Such discontinuous feed motions may excite the natural modes of the 

mechanical structure of the mechanical structure and servo control system, characterized by 

vibration marks on the part surface and degradation of the axis tracking performance. The 

discontinuous toolpath must, therefore, be replaced with spline representations for smooth 

trajectory generation spline toolpaths facilitate the delivery of the desired, smooth, high 
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speed feed motion by enforcing acceleration and jerk continuity in the trajectory. In this 

thesis, the smooth and continuous toolpath requirements are implemented using b-splines that 

are capable of interpolating tool position and orientation vectors, and generated by 

compressing the original NC codes. 

Unfortunately, spline trajectories exhibit undesirable feedrate fluctuations during real 

time interpolation. When the curves are interpolated at constant parameter increment, 

fluctuations in the tangential feedrate occur, which reduce the smoothness of the coordinated 

multi-axis motion. The appropriate spline parameter must be calculated in order to realize the 

desired feed profile during machining operation, b-spline toolpaths are used with the Feed 

Correction Polynomial method in order to smoothly parameterize the curved paths for fast 

and accurate real time interpolation. 

The feedrate profile of the trajectory must also maximize smoothness for tracking 

performance and minimize cycle time for productivity. The optimized smoothness can be 

achieved by minimizing the jerk discontinuity of the overall trajectory. However, due to the 

kinematic limits of the drives and tracking performance of the servo system, the tangential 

feedrate profile is generated conservatively, compromising the minimum cycle time 

objective. The inverse kinematics transformation of the five-axis machine tool structure 

further diminishes the linear relationship between the tool motion in workpiece coordinates 

and axis kinematic profiles. As a result, the optimum scheduling of the feedrate can only be 

achieved by considering the curvature of the toolpath, the change in the orientation and the 

kinematic transformation, while adhering the machine tool's velocity, acceleration and jerk 

limitations. By adapting the feedrate profiling to accommodate these non-linear factors, the 

high speed tracking and contouring accuracy during the execution of the optimal feed motion 

can be preserved. 

The thesis is organized as follows: The review of the related literature is presented in 

Chapter 2, followed by smooth spline toolpath generation method in Chapter 3. The real time 

interpolation of the b-spline toolpath and the feedrate scheduling algorithm for five-axis 

Machining is given in Chapter 4. The conclusions and possible future research directions are 

discussed in Chapter 5. 
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Chapter 2 

Literature Review 

2.1. Overview 

Reference trajectory generation plays a significant role in five-axis computer numerical 

controlled (CNC) machine tools to acquire the desired part quality. Generation of the 

reference motion commands to the machine tool's axis drives consist of three main stages: 

Planning the machining toolpath on the part, imposing the tangential feedrate profile and real 

time interpolation of the position commands within the servo loop control frequency. 

o 
CD 
Q . 
O 

.O 

NC 
Code 

T O O L P A T H G E O M E T R Y 

Toolpath Planning 
Position - P(u)=x(u)i+y(u)j+z(u)k .;. 

Oriehtatioh-0(u)=Ox(u;/H-Oy(ujy+Oz(t/JAc| 
-linear 
-circular 
-spline(Quintic,Bezier 

B-spline...) 

c o 

TD 
CD 
CD 

O 
W 
CD 
Q 

F E E D M O T I O N 

vy vy 

I N T E R P O L A T I O N 

Inverse Kinematics& 
Real Time Interpolation] 

X = x(t),Y = y(t),Z = z(t) 
A = a(f),C = c(f) 

MACHINE TOOL 

Figure 2.1: Reference Trajectory Generation 
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The attempt in generating a smooth trajectory starts at the toolpath planning step. Small 

discontinuities in reference toolpaths can result in undesirable high frequency harmonics in 

reference trajectory that excite the natural modes of the mechanical structure or servo control 

system. The resultant high frequency components can cause actuator saturations and axis 

tracking errors causing violations of the machining tolerances on the manufactured parts. 

Furthermore, employing only linear and circular interpolation techniques to machine 

complex shapes such as dies, molds, turbine blades, and aerospace parts has serious 

limitations in productivity since the machine tool must decelerate/accelerate or stop between 

consecutive G codes [42]. Some amount of work has been done to overcome these problems 

by developing spline tool path definitions for 3 [78, 79, 80] and five-axis machine tools [1, 

29, 55]. Spline toolpaths are parametric curves where the spline parameter does not have an 

explicit relationship to the total travel arc length. Therefore, ensuring the desired feedrate 

profile on a spline tool path requires precise calculation of the spline parameter increment 

during real time interpolation. Feed fluctuations posed by improper calculation of the curve 

parameter increase the contouring errors. A significant amount of research has been done in 

real time spline interpolation techniques [20, 42, 50]. On the other hand, the kinematic 

profiles of individual axes are defined by the feedrate profile of the trajectory. Thus, the 

feedrate profile must avoid any discontinuity in velocity, acceleration and jerk. To enhance 

the tracking performance of the servo systems, overall jerk content of the trajectory needs to 

be minimized and to increase the productivity the feed profile must be scheduled for 

minimum cycle time [3] while respecting the machine tool's kinematic limits. This is a 

challenge particularly required to be tacked in five-axis high speed machining centers where 

the kinematic transformations are significant. The literature reviewed about the trajectory 

generation techniques for multi axis machining is presented in the following sections. 

This chapter organized as follows: the spline properties used in tool path definition are 

introduced in Section 2.2. This is followed by a literature survey of the spline fitting 

techniques for sculptured surface machining. The research on trajectory generation for 3-

Axis machining is briefly presented in Section 2.3. A literature review on 5-Axis spline 

interpolation and motion generation is covered in Section 2.4. 
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2.2. Spline Properties 

Splines are powerful tools that have intensively being used to design smooth and 

complex geometries such as dies, molds, gas tribune blades and aeronautical parts in the 

computer aided design (CAD) stage. The most conventional method of presenting spline 

curves is using implicit equations [27] and parametric functions [58]. However, the majority 

of CAD systems use the parametric forms of curves instead of implicit since it is practical for 

part design and control of multi axis machine tools where each axis can be driven 

individually. Independent from their parametric representation, splines in computer aided 

design and manufacturing (CAM) systems can be grouped in three main categories: 

• Polynomial splines, 

• Bezier Curves and 

• B-splines. 

Cubic and Quintic splines are extensively used curve formats included in the polynomial 

spline category. Their definition bases on exactly interpolating certain design points (control 

knots) with piecewise polynomials. The polynomial curve segments are constructed in a way 

that the position and derivative continuity throughout the composite curve is preserved. A 

part from the cubic polynomial splines, quintic spline has taken emphasis in the area of CNC 

tool path generation from the researchers because of their advantageous parameterization 

[78] for real time interpolation and third order (C3) continuity allowing implementation of 

jerk continuous trajectories [80]. The quintic spline represented in Fig. 2.2 is composed of N 

- 1 piecewise curve segments Sl ...,SN interpolating the Preference p o i n t s P l P N _ \ . It is 

well defined in the polynomial form of 

P{u) = Ap5 + B.U + C,u3 + Diu1 + EJU + F, 

where for two axis cartesian case, St = [Sxi Syif and At = [Axi Ay^,...,FT = [FXI FyiJ. 

The unknown coefficients of quintic splines (Aj,BI,...,FJ) are found by imposing position 

(C°), and higher order continuity boundary conditions between consecutive piecewise curve 
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segments. However, the affect of coefficients on the spline shape is totally unpredictable, 

which makes the polynomial splines unsuitable for geometric design. 

Figure 2.2: Quintic Polynomial Spline 

Bezier curves are being extensively exploited in CAD because it merges the 

comprehensiveness of the parametrical format with the design functionality. Their definition 

is clearly presented by Piegl [26] in terms of basis (blending) functions Bjp(u) and control 

points />=[/>„ P y / f a s , 

;=o 

where p is the degree of the curve, which also specifies the number of total control points 

included in the curve definition. The blending functions are given in Bernstein form [26] by: 

5,,,W = -7^:« ' ( l -^r ue[0 1] 
i\(p-if. 
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As shown in Fig. 2.3, the Bezier curve interpolates only the first and last control points. 

Its complete shape is determined by the positions of the remaining points. Therefore, the 

shape can easily be adjusted by modification of any control point making it practical for 

geometric design. 

Figure 2.3: Bezier Curve 

On the other hand, large number of control points is required to generate complex 

surfaces resulting higher order Bezier curves. This drawback is defeated with b-splines 

introduced by de Boor [58]. Similar to Bezier curves, b-splines (See Fig. 2.4) are also defined 

by control points and basis functions. However, the number of control points and the degree 

can be selected independently allowing designers to work with lower degree curves. 

Furthermore, the complete spline is segmented into parameter intervals by a knot vector (U), 

which enables local modification of the curve by using the nearest control points (local 

modification property). A p t h order b-spline curve is defined by, 

where Nin(u) are the new basis functions evaluated recursively using the de Boor algorithm 

[58]. 
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Figure 2.4: B-spline curve 

2.3. Spline Fitting for Sculptured Machining 

It was a milestone for sculptured machining to represent complex parts with smooth 

curves, namely quintic, Bezier and the b-splines. But sending this geometric information with 

minimal lost to the machine tool in smooth recognizable formats such as splines is vital for 

high speed machining, since higher and smoother feedrate profiles as well as better tracking 

performance can be obtained. 

However, the common practice in generating toolpaths for machining sculptured surfaces 

on 3 and five-axis machining centers bases on approximating the original surface with lines 

and sending this cutter location data stacked in a G code to the CNC Executive [62, 63]. 

Previous researchers Koren and Lo [42], and Yang and Kong [86] have demonstrated the 

following limitations of this linear interpolation method: Velocity discontinuities at the linear 

segment junctions lead to higher accelerations, poor surface finish, lower part accuracy and 

longer machining times. 

Jouaneh et. al. [35] suggested using arc segments to connect the linear segments and to 

smooth the corner of the tool path in order to obtain the velocity continuity (C1) at the 



Chapter 2. Literature Review 9 

junctions making it easier to track. Similarly, Hua et. al. [61] used only arcs to discretize the 

curved contours for 3-Axis high speed machining. Yeung [91] pointed out that quintic splines 

can be used to connect linear segments, which allows acceleration continuity at the 

transitions and showed that the tracking performance of the servo system is improved 

tremendously. 

Instead of linear and arc interpolation techniques, spline refitting and direct spline 

trajectory generation methods have been widely adapted in machining sculptured surfaces for 

HSM. Especially, cubic and quintic splines trajectories are utilized for real time toolpath 

interpolation because of their advantages in real time interpolation. Wang and Yang [78] 

introduced C 2 cubic and quintic splines enabling acceleration continuous feed profiles. They 

pointed out that when splines are interpolated with constant chord length increment, feedrate 

fluctuations occur due to the discrepancy between the chord length parameter and the 

traveled arc length increment. They brought up the idea of fitting quintic splines with Near-

Arc Length parameterization resulting in smaller feedrate fluctuations and smoother 

geometric derivatives. Later, Wang et. al. [79, 80] improved this methodology by preserving 

the continuity of third derivatives at the consecutive spline segment junctions. This improved 

technique is called Approximately Arc-Length Parameterization with C 3 and reduced the 

feedrate fluctuations yielding smoother geometric derivatives. Erkorkmaz and Altintas [23] 

proposed Optimally Arc Length Parameterized quintic splines. This approach is based on 

optimizing the spline parameters in such a way that the discrepancy between the spline chord 

length parameter and traveled arc length increment is minimized, resulting less feedrate 

fluctuations compared to Near Arc Length parameterization. 

Furthermore, research has been done in interpolating the quintic spline toolpath in real 

time when the parameterization is arbitrary. Shipitalni et. al. [67] proposed an iterative 

interpolation technique using the first order Taylor series approximation in order to 

determine the spline parameter at constant feedrate. However, this approach was not capable 

of eliminating the feed fluctuations in case of sharp curvature changes. Later, Lin [50] used 

second order approximation reporting two order of magnitude reduction in the feed 

fluctuations compared to the first order. Altintas and Erkorkmaz [21] developed an iterative 

method requiring the numerical solution of the root of a high order polynomial relating the 

arc increment to the parameter increment. They also used an additional polynomial to express 
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the nonlinearity between the spline parameter and the arc length, which is called Feed 

Correction Polynomial [19] . By the aid of this polynomial, the spline parameter can be 

computed efficiently in real time acquiring minimum feed fluctuation. 

Besides the quintic polynomial splines, b-splines are widely used in generating 

parametric surfaces from discrete measurement data in reverse engineering [43, 65, 66], and 

b-spline trajectories for machine tools [5, 33, 47, 48] and robots [24, 92]. Since b-splines are 

capable of representing geometries with higher smoothness and continuity [73] compared to 

quintic polynomials, they are more suitable for high speed machining purposes. Lai et. al. 

[46] utilized b-splines to generate sculpture surfaces from laser-scan measurement data and 

extracted toolpaths for 3-Axis machining. He used a non-linear least squares technique to fit 

the axis splines within acceptable fitting tolerances. Later, Elkeran and El-Baz [17] used the 

idea to directly generate non uniform rational b-splines (NURBS) linear G code blocks using 

least squares. They fed the NC unit with NURBS and showed that consistent feed rates can 

be achieved as compared to the linear interpolation. Yau and Kuo [89] used the same method 

to compress G codes into b-spline formats, which can be accepted by different machine tool 

NC units such as Fanuc and Siemens. Even those sophisticated CNC executives are equipped 

nowadays with build - in functions that compress numerous blocks of G codes into smooth 

axis b-splines for HSM [70]. 

However, the quality of the curves as well as their real time interpolation technique is 

very important for the tracking performance and surface quality. These problems are 

addressed from two directions: generation of smooth axis splines and accurate interpolation 

of the b-splines in real time. Generally speaking, smooth curves with less change in the 

curvature and jerk content are desired since they are easier to track by the servo system 

especially when traveled at high feedrates. The problem of curve quality is first addressed by 

Horn [32]. He showed that maximum smoothness of the curve is achieved when the square 

integral of the curvature is minimized. Hohenberger and Reudig [31] used the curvature cost 

function and proposed an unconstrained iterative optimization scheme to approximate 

measurement data with smooth b-spline surfaces. They pointed out that smoother curves can 

be obtained while sacrificing from the fitting accuracy. Bercover [2, 30] used various energy 

functionals for curve smoothness based on optimizing the b-spline control points as well as 

the knot vectors. On the other hand, Vassilev [75] and others [26, 56] studied the b-spline 
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fitting while pursuing less computationally expensive methods for computer graphics. They 

investigated the affect of cost functions formulated by square sum of derivatives with respect 

to the curve parameter for smoothness. The oscillations on the b-spline are eliminated by 

adding energy cost functions including first and second derivatives. In these methods, the 

curve smoothness and fitting accuracy is controlled using several parameters, which are 

tuned by trial and error during approximation making it unfavorable to implement. 

The real time interpolation of the b-splines has become an important research area in 

relation to curve fitting. Greenway and Zhang [92] first put in practice a b-spline curve 

motion interpolator for a six-axis robot based on Taylor's first-order expansion and compared 

the feed consistency to linear interpolators. Yang and Park [87] implemented a b-spline 

interpolator for wire electrical discharge machining (WEDM) also based on Taylor's first 

order expansion on a open architecture control system. Zhiming et. al. [93] used the first and 

second order Taylor's expansion with variable feedrate for real time b-spline interpolation. 

They adjusted the feedrate with respect to the curvature of the toolpath in order to consider 

the machine tool's dynamics. Tsai et. al. [74] compared several real time interpolation 

methods of b-splines such as the first and second order Taylor expansion, fourth order Runge 

- Kutta and an iterative parameter correction scheme. They indicated that second order 

• Taylor's expansion gives less feedrate command errors and requires relatively less 

computational power among the others. However, performing calculations for the necessary 

derivatives of b-splines is a computationally expensive duty within the servo system 

sampling interval. Later, Cheng et. al.[12] focused on this problem and proposed a more 

efficient b-spline evaluation structure for faster computation. The structure reduced the total 

number of computations for b-spline derivatives by half. 

In this work, least squares approximation method is utilized to compress the G code 

blocks and to generate a smooth b-spline toolpath for five-axis machining. The toolpath is 

defined inverse kinematics independent enabling interpolation of the tool axis orientation 

vectors. Moreover, the generated tool path is smoothened, and its jerk content is reduced 

using linear and nonlinear optimization techniques to enhance the tracking performance of 

the servo system. 
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2.4. Trajectory Generation for 3-Axis Motions 

Trajectory generation is vital for manufactured part quality. The generated trajectories 

must have continuous derivatives at least up to the second order to enable better tracking 

performance of the feed drive servo loop. Furthermore, acceleration and jerk profiles should 

have pre-specified limits in order to avoid saturating the actuators, or exciting unwanted 

dynamics in the servo or the mechanical structure. Various trajectory generation methods for 

3 - Axis machining are summarized in the following. 

Prithschow [59] brought up jerk limited trajectories with trapezoidal or sine square 

acceleration profiles for better tracking. Makino and Ohde [53] used a universal Cam curve 

for jerk limited trajectory. Later, Simon and Isik [68] also used trigonometric functions for 

the same purpose. Similarly, Macfarlane and Croft [52] designed a jerk limited trajectory 

generation method where they utilized a sine wave approximation to determine the velocity 

ramp from zero acceleration to non-zero acceleration for robots. Especially, for 3 - Axis 

machining, quintic spline [78, 79, 80] and b-spline trajectory generation [38] methods are 

used, which enable acceleration and jerk continuity. Altintas and Erkorkmaz [18] used a 

similar trapezoidal acceleration profile to generate online jerk limited trajectories on quintic 

spline toolpaths. Particularly, jerk limited trajectories have high smoothness making it easier 

to track but also avoid high frequency harmonics in the acceleration profile that would result 

in degrading the tracking and contouring accuracy. Same researchers also used second 

quintic spline in their work to further smoothen the reference position commands interpolated 

at varying time period and reconstructed it at servo loop frequency. Pritschow and Rogers 

[60] implemented the resampling as micro decentralized interpolation within the advanced 

digital feed drives. Later, Altintas and Erkorkmaz [20] developed a trajectory generation 

method with cubic acceleration profiles for high speed milling operations. 

In this thesis, the fundamental requirements of the smooth trajectory such as acceleration 

and jerk continuity conditions are deployed to generate feedrate profiles for 5 - Axis 

machining. The research on generation trajectories for 5-Axis machine machining is 

presented with its critical issues in the following section. 
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2.5. Critical Issues on 5-Axis Spline Trajectory Generation 

The implementation of such C 2 and C 3 jerk limited spline trajectory techniques into 5-

Axis is vital to adapt the process for HSM. Unlike to 3 - Axis, 5 - Axis machining centers 

have a non - cartesian kinematic structure [7,'64] that requires transformation of the tool tip 

position and tool axis orientations extracted by C A M systems into reference joint position 

commands using the inverse kinematics [51]. Some research has been done in robotic area on 

spline fitting and smooth trajectory generation techniques applied in the joint space [9, 39, 

76]. Besides the robotic area, Chou and Yang [13, 14] presented an analytical study on the 

smooth command generation for 5 - Axis CNC machining by interpolating the joint angles 

with separate n t h order polynomials that are related to a single tool path parameter. In their 

work, they scheduled the curve parameter for smooth tool tip acceleration and constant 

velocity. Nevertheless, the kinematic limitations of machine tool's axes are not included in 

the study and can be violated because of tool path curvature and inverse kinematics 

transformation. Later, same researchers addressed that problem by using composite Hermite 

curves to generate piecewise constant velocity connected with smooth acceleration segments 

[15]. They included the machine tool's dynamic torque equation and axis jerk limitations to 

obtain the boundary conditions at the segment junctions and the maximum speed at the 

constant feed sections of the trajectory. Yang and Golub [85] also included a cutting forces 

predictor into the trajectory generation scheme and used inverse dynamics to enhance the 

tracking performance. 

On the other hand, these methods require a machine dependent post processing step at 

C A M systems to generate offline joint splines that must be updated for each kinematic 

structure. A more general and efficient method is pursued to interpolate the toolpath position 

and tool orientation (See Fig. 2.5) regardless of the machine tool and surface type. The 

primary obstacle is the interpolation of the orientation vectors, while ensuring that the entire 

interpolated orientation spline remains on the unit sphere. The standard mathematical tools to 

interpolate the tool orientation are based on homogeneous transformation matrices, Euler 

angles [51], Frenet frames [77, 82], ruled [37] and implicit surfaces [83] as well as 

quaternions. For instance, Siraivasan and Ge [71, 72] and Jutter [36] used quaternions to 

generate a dual three-space called the Image Space. They reflected the toolpath vectors into 

the image space and interpolated using rational Bezier and b-spline curves at C 3 continuity. 
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Cebula et. A l . [10] utilized the same idea using Nurbs and modified the orientation vectors in 

order to eliminate any singular location on the toolpath. 

To tackle the problem of tool orientation interpolation, Lin and Koren [40, 41] 

implemented the ruled surface technique on 5 - Axis machining. They have first extracted a 

path curve on the part surface and used the normal or the ruling of the surface directly as the 

tool orientation vector during point and flank milling operations along the curve. Since the 

surface is already expressed in a parametric form, the tool orientation can be computed 

continuously for each parameter in real time by the NC unit. The tool tip velocity is then held 

constant by the aid of first order Taylor expansion. 

Spence et.al. [29] proposed a novel technique for smooth tool position and orientation 

interpolation using two nearly arc length parameterized quintic splines. The first quintic 

polynomial spline is used to interpolate the tool tip position vectors in cartesian coordinates. 

In addition to the tool tip spline, he defined a C 2 quintic Bezier curve on the spherical 

coordinates to be able to interpolate the unit tool axis orientation vectors (See Fig. 2.6). The 

spherical Bezier is also nearly arc length parameterized so that the constant tool rotation is 

achieved at equal curve parameter increment. He connected the travel distance to the tool 

orientation angle by the aid of a monotonic rational spline to achieve synchronized motion. 

This approach allowed generation of inverse kinematic independent trajectories for 5-Axis 

/ o = [o xo yo 2]T 
Tool Orientation 

\ Vector 

Figure 2.5: Tool Tip and Tool Orientation Vectors 
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machining where the NC unit only applies transformation to compute the joint angles during 

real time interpolation. 

a) b) 

Figure 2.6: a) Position Spline — b) Orientation Spline 

Due et. al. [47] addressed the tool orientation interpolation problem by using double b-

splines defined practically in the workpiece coordinate system at the C A M stage. They 

presented the tool tip position vectors using a cubic b-spline. In addition, a second b-spline is 

employed in order to interpolate the position vectors of another point on the tool axis where 

the vector between the curves enables interpolation of continuous orientation vectors 

throughout the tool path. This method eliminates the need for a third curve definition for the 

coordination since both b-splines. are .parameterized by the same knot vector. Furthermore, 

the orientation of the tool can be modified using second b-spline to avoid singularities [1] or 

optimized [48] for flank milling operations. The double b-spline interpolation technique is 

also recognized by the Siemens NC units [69]. 

Parallel to the implementation of various spline interpolation techniques, development of 

feed optimal trajectory is necessary for five-axis high speed machining have gained high 

importance. It is a challenge to generate a smooth trajectory that enables the spline tool path 

to be traveled in minimum time without violating the physical limits of the axes drives. A 

significant amount of research has been done on time optimal trajectory generation for robots 

[6] and Cartesian machine tools [8]. However, those trajectories considered the maximum 



Chapter 2. Literature Review 16 

torque or accelerations limitations resulting in a non-smooth trajectory that leads higher 

contouring errors. Constantinescu and Croft [16] used joint variables expressed as cubic 

polynomials for continuity. They optimized the cubic spline trajectory with respect to the 

torque rates for minimum cycle time. Results have showed enhanced tracking performance. 

On the other hand, the implementation of such optimization architecture is not adequate for 

machine tools' NC units because of its computational expense. 

Week et. al.[81] addressed that problem and developed a practical method to be used for 

machine tools processing spline toolpaths. He considered the worst curvature case in each 

spline segment to determine the maximum feedrate for that segment and connected the 

piecewise constant feed segments together with smooth accelerations transients. Although his 

method was easy to implement, higher velocities would be achieved in non-critical sections 

of the segments by using a continuously varying smooth feed profiles instead of piecewise 

constant. 

If continuously varying feed profiles are preferred to use instead of piecewise constant 

velocity segments, the difficult task is obtaining a smooth velocity profile, which can tracked 

with less error by the drives. Flash and Hogan [28] first suggested minimum jerk trajectories 

for describing the smoothness of unconstrained human arm movements. Later, Kyriakopoulis 

and Saridis [44] proved that tracking performance is enhanced by minimizing the jerk 

content and implemented minimum jerk trajectories for robotic manipulators. Later they, 

focused on practically optimizing the trajectory for both minimum jerk and cycle time and 

minimized the maximum jerk value of the trajectory [45]. Piazzi and Visioli [57] also worked 

on minimizing the maximum magnitude of jerk using a global optimization algorithm for 

cubic trajectories by modulating the time durations of spline segments. In addition, Simon 

and Isik [68] used trigonometric splines for minimum jerk trajectory. They showed that the 

problem can be reduced into quadratic minimization problem, which makes it possible for 

practical implementation. , 

Altintas and Erkorkmaz [3] developed an efficient trajectory generation method for 

quintic spline tool paths, where the vitality of minimum jerk feed profile is combined with 

the cycle time objective. In order to schedule the feedrate continuously on the toolpath, they 

defined the displacement profile as a C 3 quintic spline of time and optimized its coefficients 

for minimum jerk. The minimum cycle time objective is then injected by modulating the time 
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durations of each spline segment while respecting the machine tool's torque, velocity and 

jerk limits using an iterative algorithm. The algorithm is applied with a windowing technique 

for efficient processing and real time application. 

A b-spline toolpath generation algorithm has developed in this thesis for 5-Axis 

machining based on the fitting a double spline toolpath on discrete data. The position and 

tool orientation errors are limited by user specified tolerances. Furthermore, a minimum jerk, 

minimum time trajectory is generated optimizing the quintic spline feed profile with respect 

to the machine tool's axis drive limits for the b-spline toolpath. The generated trajectory is 

then interpolated using the feed correction polynomial idea in real time. 
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Chapter 3 

Spline Toolpath Generation from Discrete Toolpath Data for 5-Axis 

Machining 

3.1. Introduction 

Reference trajectory generation plays a key role in the computer control of machine tools. 

Generated trajectories must have smooth'kinematic profiles in order to maintain high 

tracking accuracy, and to avoid exciting the natural modes of the mechanical structure or 

servo control system. Especially for five-axis machining, the generation of a smooth 

trajectory is vital for the part quality. 

For five-axis machining, after the design of the part, the primary machining toolpath is 

sampled for linear or circular interpolation by C A M software. For instance, these sampling 

algorithms extract relatively large number of points from the toolpath where the rate of 

change of curvature change is high and fewer points where the rate of change of curvature is 

low. This results in a G code containing thousands of polygonal segments to machine a 

sculptured surface. Feeding the machine tool with large number of discrete points leads to 

discontinuous movements of the axes for high speed machining since the line segmentation 

does not ensure continuity of the kinematic profiles. Therefore, spline trajectory generation 

techniques have become widely adopted in machining aerospace parts, dies, and molds. Their 

main advantage is that they provide more continuous feed motion than multiple linear or 

circular segments, and result in shorter machining time as well as better surface geometry. 

The objective of the work presented in this chapter is to generate spline toolpaths for 

five-axis machine tools from initially sampled discrete toolpath data. The desired spline 

toolpaths are defined in terms of double b-splines [47]. The position and orientation of the 

tool can be interpolated directly using the toolpath format. Furthermore, two optimization 

techniques are presented in order to smooth the motion of a five-axis machine tool following 

the b-spline toolpath. 

Herein, a b-spline toolpath fitting algorithm is developed by utilizing constrained least 

squares techniques in the toolpath generation part. It accepts discrete toolpath data consisting 
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of Tool Center Points (TCP) with tool orientations and generates two b-splines for a specified 

machining tolerance. The first b-spline is fitted to the translational component of the 

toolpath. It is used for the interpolation of the tool tip position. The second B-Spline fitted to 

the second set of points is used to interpolate the orientation component of the trajectory. 

In the following optimization work, the quality of the b-spline tool path is improved. For 

smoother motion of the tool tip, the third derivative (i.e. Jerk) minimization objective is 

inserted into the least squares algorithm that delivers a smoother geometric profile of the tool 

tip to the machine tool. In addition, a nonlinear optimization algorithm is proposed for the 

upper b-spline path. This algorithm modifies the upper b-spline path by penalizing the 

angular jerk component of the toolpath. The resultant geometrical toolpath will enhance the 

tracking performance of the machine tool. 

CAD Model 
I 

Discretization 

Tool Orientation Data Tool Center Points 
— 

—k 
Generate Tool 

Tip (Lower) B-spline 

y t j 
Generate Second (Upper) [ 

B-spline for the Tool Orientation i 

Generation of the J 
Double B-spline Tooj-pathj 

Figure 3.1: Flow Chart of Optimal B-spline Toolpath Generation 

Firstly, a brief background is given for the b-spline representations and computations 

followed by the double b-spline polynomial representation of the toolpath in Section 3.2. The 

least squares based fitting of the double b-spline toolpath is presented in Section 3.3. The 

optimization algorithms applied on the spline toolpath are presented in the last section. 

Optimize the i 
1 > Tool Tip spline i * 
1 
i 

Optimize the [ 
Tool Orientation spline j 

Minumum Jerk | 
spline Tool-path ! 
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3.2. B-Spline Background 

Cubic and quintic splines are being widely used for NC toolpath generation [78, 79, 80] 

as a replacement of line segmentation. For smoother trajectories, cubic polynomial splines 

are employed since they can ensure C 2 continuity allowing interpolation of acceleration 

continuous kinematic profiles. Similarly, quintic splines are utilized in the toolpath 

generation for a more consistent parameterization [78]. Unlike cubic and quintic polynomial 

splines, b-splines have only recently been adapted into the NC toolpath generation for 

machining because of their higher computational cost. However, b-splines overcome various 

deficiencies of previous splining techniques as follows: 

• B-splines are compatible with the CAD Systems, since most parts are designed 

using surfaces generated by b-splines. 

• B-splines are smoother curves. 

• It is easier to modify and predict the shape of the curve with the aid of control 

points. 

• The curve can be modified locally without affecting the shape of the complete 

spline. 

A b-spline is illustrated in Fig. 3.2. b-splines are a generalization of Bezier curves. They 

are defined by a control polygon consisting of n +1 control points Pn i = 0,... n that form 

the shape of the curve. 
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y 
Control Points 

p+1 Knot Vector 1 +̂1 ' 

Figure 3.2: B-spline Toolpath 

By definition, a p t h degree b-spline constructed between points P0 and Pn is 

parameterized in the interval of [0 l] by a knot vector, U. The knot vector contains 

m = n + p + \ knots (//) that are initially allocated spline parameters (w) for certain positions 

on the b-spline (See Fig. 3.2). The knot vector of the b-spline is given as: 

Repetitive p+1 Knots Repetitive p+1 Knots 

where (3.1) 

Mj < fij+i,j = 0,1,...,m, ps[0 1]. 

The consecutive knots [jUj pJ+l ] in the knot vector are called as knot spans. In addition, 

the knot vector contains p + l repeated knots at the beginning and end of the knot vector in 
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order to anchor the b-spline at those control points. For instance, the knot vector of a cubic 

(p=3) b-spline is given as: 

U = [0,0,0,0,pp + i,pp + 2,...pj,...,//„_!,fi„,U,U ] • 

The evaluation of b-spline is a computationally expensive. Any position on cubic or 

quintic splines are expressed by a single explicit polynomial equation such as: 

sx(u) = axy + axn_y-[ +...+axS)u0 

Sy(u) = aynu" + ayn_xun~x +... + ayQu°. 

However, since b-splines are built up by intermittent piecewise polynomials (basis 

functions) that blend the control points. A recursive algorithm is used in order to compute the 

basis functions. The i t h b-spline basis function of degree p is denoted by Nip. For example 

a zero degree basis functions is defined as: 

N (U)=\Uf ̂ -U~^M ( 3 2 ) 
1 , 0 0 otherwise. 

As indicated in Eq.(3.2), zero degree basis functions are step functions. Higher degree 

basis functions [NiX,Ni2,...,Nip] are linear combinations of two lower degree basis 

functions expressed according to the following recursive scheme: 
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MM ~Mi 

M « ) = ^ - " , > ) + 
MM -M> 

M,+P+l ~u 

Mi+p+\ — MM 

Mi+P+\ ~u 

Mi+p+\ — MM 

MM -Mi 

Ni.P(u) = ^ ^ N ^ ( u ) + 

Mi+P+x -u 

Mi+P+i ~MM 

Mi+P+i~u 

MM -M Mi+P+i MM 

NM.PM 

(3.3) 
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and various basis functions are illustrated in Fig. 3.3. 

a) Step Basis Functions 

~ ~3 r 

b) 1st Degree Basis Functions 
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c) 2nd Degree Basis Functions 
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Figure 3.3: B-spline Basis Functions 

Once the non-zero basis functions are computed for the spline parameter (w), a position 

on the b-spline is obtained by the sum of only the p t h degree basis functions and control 

points as: 
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P(u) = N^p{u)-P0+Nhp{u)-Pv + ... + N n _ x ^ 
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(3.4) 

Similarly, derivatives of the b-spline curves are calculated using the derivatives of basis 

functions. The first derivative of the p t h degree basis function with respect to the curve 

parameter is given by a similar recursive scheme: 

d w Ml+P-Mi 
— ^ w » . 

Mi+p+i Mi+i 
(3.5) 

and the k t h derivative of the basis functions is expressed as: 

du (k) = P 
) > 

Mi+p+i Mi+i 
(3.6) 

Then, the derivative of the b-spline is obtained by: 

d<M")_d(X>) „ d^Nlp(u) d^N„_hp(u) d^Nn,p{u) 

du du du du 

^d ( k x>) p 

du (k) 

(3.7) 

3.3. Double B-Spline Polynomial Representation 

A toolpath consists of the tool tip position and associated orientations of the tool axis in 

five-axis machining. In order to maintain this information of the tool motion, a spline 

toolpath format is put forward by Lartigue at. al.[47]. The proposed toolpath consists of two 

splines, which are dedicated for the following: 
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• The locus of the tool tip position (x',y',z') is given by a spline, P(u) in part 

coordinates. 

• Another point on the tool axis (xh,yh,zh) is represented by a second spline, 

Q{u). 

Figure 3.4: Double B-Spline Toolpath Representation 

The overall representation of the spline toolpath is illustrated in Fig. 3.4. The lower 

spline P(u) is used to express only the tool tip position as in regular 3-Axis machining and 

the upper spline Q{u) interpolates another point on the tool axis. 

The relative distance between P(u) and Q{u) is defined as H, which can be defined 

depending on the machining operation such as flank or point milling. For flank milling, the 

relative distance refers to the metal cutting contact height that corresponds to the active part 

of the tool or depth of cut. Similarly, for point milling H is the diameter of the tool's ball-

end as illustrated in Fig. 3.5. 
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Figure 3.5: Upper and Lower B-splines 

The splines of the toolpath, P(u) and Q{u) are given in non-uniform b-spline form. The 

expression of lower and upper b-splines defined on the same knot vector, (U) is expressed as: 

P(u) = 

Q(u) = 

x'{u) 

y'(u) 

z'(u)_ 

xh(u) 

yh(u) 
zh{u) 

1=0 /=<) 

,<=0 1=0 

fix 

Qy 

u eU 

ueU 

(3.8) 

where PT =[PX PY PZJ and Qt =[QX Qy Q2f, i = 0,..,n are the n + 1 set control 

points of the lower and upper b-splines, respectively. The degree of the b-splines is selected 

either p=3 or higher depending on the continuity requirement. For instance, the cubic double 

B-Spline toolpath allows definition of a (c 2) continuous motion. Similarly, a 5th degree 

(quintic) b-spline toolpath enables interpolation of jerk continuous (c 4) motion. 

The tool tip position is directly interpolated by P(u). However, in order to interpolate the 

tool orientation, both b-splines are utilized. As shown in Fig. 3.5, the vector A(u) defines the 
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tool axis. It can be expressed for each spline parameter simply by subtracting the lower b-

spline from the upper one as: 

~xh-x'~ X ~ 
A(u) = Q{u)-P{u) = yh-y' = 

A> 

zh-z' A . 

= Axi + Ayj + Atk. (3.9) 

The unit orientation vector of the tool axis,0(w) is computed similarly when A(u) is 

normalized by the relative distance between P{u) and Q(u) as: 

0(«) = 
o. 

r>' r,7 Ax(")' Ay(u)-- 4 f X > 7 Oxi + Ovj + Ozk = ^=^i + ^ - ^ j + ^ r ^ k (3.10) 

where 0(u) is also called orientation spline of the trajectory. It is expressed in terms of the 

upper and lower b-spline control points by: 

ix»-fe -pi) 
0{u) = f^ i r , M e c 7 . 

1=0 

(3.11) 

Hence, the objective of continuously expressing the tool axis orientation and tool tip 

position is achieved during simultaneous interpolation of both splines using Eq. (3.8). 

3.4. Generation of Lower B-Spline 

The tool tip positions are initially given as a batch of discrete tool center points (TCP) by 

C A M systems. The fitting algorithm for generation of the lower b-spline through TCP data is 

presented in this section. For 5 - Axis machining of free-form surfaces, large number of 

TCPs is needed and interpolating all the data may result in a non-smooth spline. In order to 
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generate a smooth b-spline toolpath, a least squares approximation is used instead of the 

exact interpolation. A tolerance band is defined to limit the least squares fitting errors to 

respect the machining tolerances. Furthermore, the algorithm is extended as a general least 

squares to impose any specific position, tangent and higher derivative constraints onto the 

toolpath. 

The lower b-spline is already defined in Eq.(3.8) as, 

P(u) = 

x'{u) 

z'(u) 
u e U, 

and the above expression shows that modification of a control point affects only the 

associated axes components of the b-spline. Therefore, the least squares can be applied to 

each axis component separately. The formulation used for fitting the x' component of the 

lower b-spline is presented here and same formulation is then applied to the rest of the b-

spline components. 

B-spline 

u=u0=o 

Figure 3.6: Initial Spline Parameter Calculation 

The tool tip position (q'k) is given by M + l data points, q'0> q[ q[, q'M where 

q[ = [q'xk Vy, <lzk J • The least squares algorithm starts with seeking the best prediction, 

q'x for any tool tip point q'x at x'(u\ _ on the lower b-spline, 
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<7 = fc„ k\ C 2 - q'J ^xl{uhNQtP{u)-Px0+NlJu)-Pxl+... + NnJu)-Px„(^2) 

where u = [w0 u{ u2 ... uM] are the parameter values on the b-spline corresponding to 

the given tool center points (q'k) shown in Fig. 3.6. The chord length parameterization 

method [58] is applied to calculate the initial spline parameters. This method is used for most 

of the data distributions and gives a rough estimation of the spline parameters while only 

considering the Euclidian distance between the points. 

The total cord length between the given data points is defined as, 

Sc = t\q'k ~ql\ = t M - < J + ( < ~ < J + ( < - < J • <3"13) 
k=\ k=\ 

The initial and final parameter values are set as u0 = 0 , uM = 1 and the internal spline 

parameters are allocated proportional to the consecutive chord lengths as: 

uk=uk_t+- k = l,...M-l. (3.14) 

Thereafter, the knot vector, (U) of the b-spline is required for the parameterization and 

setting up the equations for the least squares fitting. The initial and final repetitive knots in 

the knot vector are defined by Eq.(3.1) initially as: 

Mo= — = Mo=° a n d M„+l =--- = / W i = 1 -

The remaining knots are obtained as described by Piegl [58]. Defining d as a positive 

real number, denoted by / = int(^) the largest integer such that i<d, 
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n-p + l 
(3.15) 

where n is the number of control points, p is the degree of the b-spline and m = n + p +1 

The internal knots in the knot vector are calculated by: 

i = int(j-d) 
a - j -d — i 
MP+j = (l - j = h...,n-p 

(3.16) 

Using Eq.(3.16) and Eq.(3.1) the knot vector of the spline toolpath is formed. 

Corresponding position predictions for the data points are obtained on the b-spline using Eq. 

(3.14), which results in the following system of equations: 

^ I , P ( " O ) 

*; = ^ 0 , „ ( « 2 ) • Nnp(u2) 

_^0.p("«) 

(3.17) 

where 0 is a M +1 x « +1 matrix consist of basis functions (iV, («)) evaluated at each uk, 

and Px is the unknown control point vector. The errors (residues) of the predictions are 

defined as the deviation of the approximated points q'Xt = x' (w)| _ on the b-spline from the 

actual tool tip positions, -q' expressed as: 

ex-q[-q'x=q'x-Y^N,p{u)Pxi=q'x-0PX (3.18) 
/=o 

The objective function of the least squares to be minimized is then; 
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1 T 1 
2 " " 2 

<?: -tNJ")P>] U-£Nju)Px} = Uq'x-0PX )T(q'x-0PX ). (3.19) 

The formulation of least squares implies that the derivative of the objective function with 

respect to the control points Px is set to zero. 

dJ, 
= -0T(q'x-0Px) dP 

0T0PX =0q[ 

Px ^ 0 ] X 0 q ' x 

(3.20) 

Eq.(3.20) gives the control points for a regular least squares fit. The b-spline can also be 

constrained at some certain points. For instance, position constraints at tool tip points can be 

introduced in order to eliminate any fitting errors. In addition, tangents or possibly higher 

derivatives required to be imposed on the curve. In order to enforce the desired shape 

constraints, a general linear system of equations is composed in the constrained least squares 

algorithm. 

For the specific position constraints x'(w)| _ = 4(o) ,k = 0...l0, linear equations are 

grouped as follows: 

3 (o) 

N0,P(uo) NiP(uo) N2p{u0) ... N„p{u0) 

N0,Pk) tf.,(«J N2,Pk) - N».Pk) 
L<°> 

(3.21) 

Tangent, 
dx'(w) 

du 
' = $ \ k = 0...l1 and normal 

d2x'{u) 
du2 

= £ \ k = 0...l2 

constraints can be further imposed in the following matrix equations (Eq.(3.7)) by using the 
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derivatives of the basis functions given as Njpu(uk) = 
AN; 

I.P 

d2N 
I.P 

du2 
, which are calculated by Eq. (3.6), 

du 
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and 

ho 

(1) 

N Q , P u M Nlpu{u0) N2pu{u0) ... Nnpu{u0) 

XO.PM) ^.PM) n2,pM) - N » , A ) 

4, 

N 0 . P u u M N l p » u M N2.puuM ••• N n . p u u M 

N0,p«u(u,2) NlPuu{u,2) N2.puu(u,2) • • • N n . p U U ( » , 2 ) 

P. 

The resultant constraint matrix is L = 

L(oy 

(3.22) 

where r = (/„ +1)+ (/, +1)+ (l2 +1) and the 

Jrxn+1 

overall constraint vector containing position and derivative constraints is £ = 

Hence, the lower b-spline is obtained by solving the following optimization problem: 

JL = m i n i f e - 0PX J(q'x - 0PX) Subject to: L-Px=£, 

£(2) 

(3.23) 

which is a linear quadratic minimization problem, and can be solved using Lagrange 

Multipliers method. Introducing the Lagrange multipliers: A - [4> 4 Ai '" 4-]> t n e 

augmented objective function is written as: 
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JL, {P,A) = i f e - 0PX J(q'x - 0PX )+ A(L -Px-$) (3.24) 

Equating the partial derivatives to zero 

system: 

dP dA 
yields the linear equation 

J 

0T0PX +LTA = 0Tq'x 

LP, = £ 

~0T0 LT~ ~0Tq'x~ 

L 0 A 
(3.25) 

From Eq.(3.25), a solution can be obtained only if 0-0T is positive-definite and non-

singular. Every knot span, [Pj,pj+X\ must contain one u to satisfy the non-singularity 

condition of 0-0T. Eq.(3.16) guarantees that every knot span contains at least one u , 

which eliminates the possibility of singularity. Furthermore, provided that the constraints are 

linearly independent and less than the unknowns (r < n), a unique solution is obtained for the 

constrained least squares fit. 

3.4.1. Tolerance Definition and Parameter Correction 

The general least square algorithms are simply based on minimizing the total vertical 

errors in each axis component of the b-spline. However, in this application, it must be 

ensured that the approximated b-spline stays within a specified accuracy, namely the 

machining tolerance. A fitting error limit (emax) is defined to control deviation (e) on the 

lower b-spline from the reference tool center points. In Fig. 3.7, the tool center points, the 

proposed b-spline fit and the definition of the tolerance band to limit the errors can be seen. 

The tolerance band is defined as a pipe with a radius of (emax) in 3 dimensional space 

covering the fitted b-spline. 
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6 Error (e) 

Figure 3.7: Tolerance Definition for Lower B-spline Generation 

The deviation on the lower b-spline from every tool center point is required to check the 

errors. Corresponding spline parameters («) to the tool center points [q') are already 

obtained by the chord length approximation. However, as shown in Fig. 3.8, this 

approximation does not ensure the correct spline parameter for each tool center point on the 

generated b-spline. The closest spline parameters must be identified in order to calculate 

accurate norm of deviation from given points, which is done by scanning throughout b-spline 

for the correct parameter. 

The vector between the lower b-spline P = \x y' z'J and the given tool tip point 

§' - [q'x q'y q'z J *s written as: 

D = (x<-q'x) + (y>-q')j + (z'-q:yc. (3.26) 
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It is known that the vector D must be perpendicular to tangent of the spline at u for 
the closest point. A dot product function is formed to ensure the condition as shown in Fig. 
3.8; 

f(u)=«M\P(u)-q'). (3.27) 

Figure 3.8: Spline Parameter Correction 

The root of the Eq. (3.27) is found by Newton Raphson iteration. Parameter w. is obtained 

by the i'h iteration, 

-u. / ( « ) 

du 

• u, -

dP(u) 
du 

(P(u)-a>) 

d2P{u) 
du2 

(P(u)-q')+ 
d/>(«)/ 

x d w 

(3.28) 

The convergence of the iteration in Eq. (3.28) to the correct spline parameter depends on 
the initial guess. A very close initial guess is simply thew values computed initially by the 
chord length approximation by Eq. (3.14). Two zero tolerances, shown on Fig. 3.9, are 
defined to indicate the convergence: 

s, is the measure of the Euclidean distance and 

s2 is to indicate zero cosine value. 
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a) Measure of j q 
Zero Cosinefed 

D 

t Tool - Tip Point 

Accurate 
Spline Parameter 

b) Measure of 
Euclidean Distance^) 

Tool - Tip 
Point 

Accurate 
Spline Parameter 

Figure 3.9: Zero Tolerance Definitions a) Zero Cosine — b) Point Coincidence 

Using the above zero tolerances, the criteria to terminate the iteration is as follows: 

d)if P(4u=u-<l' (3.29) 

the point lies on the b-spline at the calculated parameter (point coincidence) or, 

(2) if 

dP{u) 
du 

(P(u)-q') 

dP{u) 
du (Pi")-*'] 

(3.30) 

the vector D is the normal of the curve at the spline parameter and condition for Eq.(3.27) is 

satisfied or, 

(3) if 
dP{u) 

du . 
(3.31) 
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the spline parameter does not change significantly during the Newton Raphson iteration (Eq. 

(3.28)). 

For basic machining operations, sx in Eq. (3.29) and Eq. (3.31) can be taken as 

1(T6 [mm] to indicate that the point lies on the b-spline at the searched spline parameter. On 

the other hand, for precision machining this threshold value should be selected more 

conservatively. The zero cosine measure, e2 in Eq.(3.30) is selected less than ex such as 

1(T8. 

If any of the above conditions is satisfied (Eq. (3.29), Eq. (3.30) or Eq. (3.31) ), the 

iteration is terminated and correct norm of the error is found at u, as: 

Dl 

Increasing the number of control points, n improves the control on the spline shape. 

Eventually, the maximum norm of the error can be reduced to the desired value by increasing 

the total number of control points in an iterative approach during least squares fit. The 

procedure is shown in Fig. 3.10. 
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3̂ - Tool Center Points (ql) 
0 - , 

- Max Position Tolerance (emax)| 

Control Points 
n = M+1 / 20 

n 
Insert an 
extra Knotf-H 

Arc Length Parameterization for 
Initial Knot Vector (U) 
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Find the 1 
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pheck errors (e)J 

if e<e„ Yes 
End 

Figure 3.10: Lower B-spline Fitting Algorithm 

The fitting process of the lower b-spline starts with less number of control points. The 

number of initial control points can be judged for free-form surface machining as 5[%] of the 

total given TCP (n = (M + l)/20). Using Eq. (3.1), Eq. (3.16), the knot vector is generated 

and the lower b-spline is fitted using Eq. (3.25). Following that, resultant errors are checked 

using Eq. (3.27) and Eq. (3.32). The knot span, where the maximum tolerance violation 

occurs, is recorded as un-converged. An extra knot, ju is added in the middle of the un-

converged knot span by averaging the neighbouring knots as: 

Mj+MJ+i (3.33) 

Adding extra knots only into the specific knot spans will assist reducing the errors 

focused mainly at this portion of the b-spline. The b-spline is then fitted again with the new 

knot vector using Eq. (3.25). Errors are checked after each fit until all the knot spans are 

converged and the max error is kept under given limit. 
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3.5. Generation of the Upper Spline 

The fitting of P{u) through the set of tool center points in the previous section. Similarly, 

a second set of points on the tool axis is required to generate the upper b-spline Q(u). Firstly, 

the reference tool center points are updated on the lower b-spline using spline parameters 

obtained from Eq. (3.28). The updated points are offset in the direction of reference 

orientation vectors Or = [Or

x Or Or

z]T by the amount of H as, 

qh

k=P{uk)+H-Or

k k = 0,...,M (3.34) 

where qh is the new set of reference points in cartesian coordinates for another location on 

the tool axis. The upper b-spline Q(u) is then fitted through qh using Eq. (3.25) while 

checking only for the orientation errors ee. The orientation error is defined as angle between 

given reference orientation Or and the approximated orientation, O as: 

. / \ \Or

kxOk\ , , or

k-Ot 

ee =tan" f s i n ( e J 
cos(eek), 

- tan" 
K<Z-okj 

where 

(3.35) 
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An angular tolerance cone is illustrated in Fig. 3.11 to indicate the limits of tool 

orientation errors. Similar to the upper b-spline generation, an iterative fitting process is 

applied until the maximum tool orientation error is below ee . 

1 Upper B-Spline Data Points (qh) 
2 Upper B-Spline (Q(u)) 
3 Angular Tolerance Cone 
4 Orientation Error(e0) 
5 Tool Orientation(O) 
6 Reference Orientation(O r) 

Figure 3.11: Upper B-spline Generation and Tolerance Cone Definition for Orientation 

The algorithm shown in Fig. 3.12 summarizes the least squares fitting of the double b-

spline toolpath. The resulting knot vector of the upper spline might have more knots then the 

lower one or the vice versa. To make the trajectories synchronized, both of the knot vectors 

must be equal. Therefore, abundant knots are inserted into the knot vector of the b-splines. 

The method by Piegl [58] can be used to insert sparse knots into the knot vectors. Added 

redundant control points do not change the shape of the curve or the parameterization, and 

the resultant knot vector will preserve desired synchronization. 
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Figure 3.12: Double B-spline Generation Algorithm 



Chapter 3. Spline Toolpath Generation from Discrete Toolpath Data for 5-Axis 42 
Machining 

3.6. Smoothing the Double Spline Toolpath 

3.6.1. Introduction 

The quality of the fitted curves is crucial for high speed machining. When machining at 

very high feedrates, the geometrical properties of the curved toolpath directly affects the 

tracking performance of machine tool. For an improved tracking of the toolpath, the resultant 

trajectory should deliver very smooth kinematic profiles to the drives. 

The dominant factor affecting the tracking performance is identified as the jerk 

component [28] of the trajectory. The total jerk depends on both the geometric properties of 

the toolpath such as the change of the curvature, as well as the applied kinematic profiles that 

build up the complete trajectory. For instance, if the geometric profile shows sharp changes 

and high roughness, a varying or very conservative feedrate must be applied in the trajectory 

generation to avoid contouring errors and possible kinematic limit violations of the drives 

causing possible actuator saturations. Therefore, the geometric toolpath is desired to be as 

smooth as possible containing minimum changes in the curvature i.e. jerk components. This 

allows imposing more constant and smooth feed sections in the kinematic profile at the 

trajectory generation step. As a result, the total machining time will be reduced and the 

tracking performance of the drives is improved. 

Geometric jerk is the third derivative of the position vector, P(u) with respect to the arc 

length (s). Minimization of a cost function based on geometric jerk can be obtained through 

nonlinear optimization methods. However, this process introduces a significant 

computational load to the trajectory generation. In [22] it was proposed that minimizing the 

third derivative of the position vector with respect to the spline parameter (w) results in 

significantly reduced jerk profiles as well. Therefore, this approach is adapted in order to 

minimize the jerk content of the trajectory. 

As mentioned, the motivation of this section is to generate a smoother geometric profile 

of the toolpath, which is easier to track. Two optimization algorithms are presented to modify 

the double b-spline toolpath. Firstly, the lower b-spline is addressed. Secondly, the 

orientation of the tool is optimized by modifying the upper spline for smoother rotation of the 

tool. 
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3.6.2. Smoothing the Lower B-Spline 

In the linear least squares fitting process, the quality of the curves mainly depends on the 

constructed knot vector and the control point positions. The initial knot vector is created by 

the chord length method that might cause oscillations or twists on the b-spline [56]. 

Moreover, during the least squares fitting process of the b-spline toolpath, extra knots are 

added into the knot vector (see Fig. 3.12). This can distort the knot distribution and may 

cause severe fluctuations on the b-spline derivatives. These shortcomings of the least squares 

approximation are addressed, and the overall smoothness of the toolpath is improved in the 

following using the jerk minimization objective. The objective in this section is to smooth the 

lower b-spline of the toolpath by a linear optimization algorithm, which mainly contributes to 

the motion of cartesian axes of the machine tool. 

The tool tip position is given by the lower b-spline as P(u) = [x' (u) y' («) z (u)f . The 

geometric jerk is defined as the third derivative of P(u) with respect to the spline parameter 

and its minimization can be posed as an integrated square minimization problem as; 

JK=mm[(pl-Pmuyu. (3.36) 

d, is the vector of b-spline control points, ( \PX PY P^) and PUUU is the third derivative of 

the lower b-spline calculates as, 
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P. = 
y uuu where 

N, 
dwJ 

= P(P~1XP-2) 

N i+lp-3 to N Z+l.p-3 to Nl+2.p-3(«) 

Mnp-3 ~ Mi Mi+P-2 ~ MM Mi+p2 ~ MM Mi+P-i ~ MM 

[Pi*P -MilMi+p-t -Mi) { M , + p -MilMi+P 'Mi) 

j y 3 ( » ) Ni+hpJu) NMtPJu) NMtP_3(u) 
Mi+p-i-p, MI+P-I-MM ; Mi+P-i-Mi+2 Mi+p-MM 

[MI+P+I — Mi+\\Mi+p — Mi+\) [MI+P+I — Mi+i^Mi+p+i — Mi+2) 
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(3.37) 

Expressed in Eq.(3.37), the axis control points [[Px Py Pz\) affect only the third 

derivatives of associated axis components. For instance, modifying the control point Px 

would change the derivatives of only x axis components. Therefore, Puuu in each direction 

can be minimized separately. The jerk objective function JK in Eq. (3.36) is then expressed 

separately for each axis component as follows: 

^ ^ " l [(Puuu-Puuu)du 
P P P « 

<=> 
J k ' = m

P
i n i (X"»» ^ d " ' J*> = m

P
i n 1 ̂ '""u ^ d " ' 

and JKz =min | ( z^„ ) 2 d M 

(3.38) 

where x'um, y'um, y'um are the axis derivative components (Eq.(3.37)) of lower b-spline and 

the JK , JK , J K are the objective functions to be minimized for each axis component, 

respectively. The solution process of minimizing the jerk objective function JK for the JC 

component is shown in the following. The integral square of the third derivative (jerk) 

throughout the b-spline (« e [0 l]) is written as, 

J K t - min ^[x'uuJ • x'uuu)du . (3.39) 
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Substituting the expression for x'uuu from Eq. (3.37), the above integral is rewritten as: 

JK, =(PX ) r(f -Km)dujpx )=(PX )T{KtPx) (3.40) 

where NUUU = [N0PUUU(U) Nlpum{u) NXpuuu{u) ... NNPuuu{u)] and K is a n + \xn + l 

symmetric weight matrix, which is only a function of the integral of basis function 

derivatives. For any given knot distribution, K matrix is constructed for the b-spline 

parameter interval u e [0 l] as: 

K 

| No,P uuu ( «K. P uuu (")d" I ô,p uuu ( " K p „„ (")d" | N 0 P u m [u)N2P u m {u)du 

l NUp m u (u)NLP uuu [uYu | N I P uuu {u)N2P uuu (u)du 

lN2.Puuu(u)N2,Puuu(u)du 

SYM 

tN0.puuu{u)N„,puuu{u)du 

tNlpuMN„,pmu(u)du 

iN2.pu„u{u)Nn,pmu{u)Au 

lNn,puM^n.pmu{u)du 

• (3-41) 

When the basis functions are in Bezier form, the weight matrix (K) can be expressed 

analytically since the knot vector is uniform and basis functions are repetitive. Identifying an 

analytical form for a single basis function will be enough to compute the integrals. On the 

other hand, during the fitting process of non-uniform b-splines, the knot vector changes at 

each iteration when extra knots are added. It is computationally expensive to calculate each 

basis function analytically during the least squares fitting. Therefore, the K matrix is 

computed by numerical integration methods such as using Simpson's 3/8 rule, which is 

relatively efficient. 
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The previous optimization problem for the least squares fitting was given by Eq. (3.25) as 

A (P'A) = \ k - ®p* J - )+ A(L -PX-Z), 

and it is modified by adding the minimum jerk objective function defined in Eq. (3.40) for 

the smoothing action. The augmented minimization problem can be represented as: 

minfj, +J i.l=min— 

Subject to: L • Px = % 

r(q'x-*Px f fc-®P X )+a(Px }{KiPx) 
Fitting Affect Smootheing Affect 

(3.42) 

which is also a linear quadratic minimization problem, and can be solved by Introducing the 

Lagrange multipliers: A = [AQ 4 4 4]> the resultant linear system of equation is 

obtained as, 

(r0T0 + aK)Px + LT A = y0Tq'x 

L-Px=$ 

LT~ 'y0Tq'x 

0 A 4 
(3.43) 

where a and y are the weights of the multi-objective minimization problem, a is the weight 

for smoothing effect and y specifies the fitting effect. Increasing y would increase the 

fitting affect. Therefore, the overall errors will decrease but the smoothness of the resultant 

spline would decline. Respectively, a increases the smoothing affect during fitting. The two 

parameters must be tuned for the fitting requirement. By experience, the parameters can be 

selected around^ = 106 ~107 and « = 10"3 ~10"2. where their affect is investigated during 

simulations in Section 3.7. 
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3.6.3. Angular Jerk Minimization 

In a similar manner to the optimization objective mentioned in the previous section, the 

angular jerk profile throughout the toolpath can be augmented. Similarly, angular Jerk is 

defined as the third derivative of the orientation spline Ouuu(u) = d30(w)/du3 . Minimizing the 

3 r d derivative of the orientation spline helps smoothing the rotational motion of the tool. 

Upper Control Points(Ph) 

Figure 3.13: Tool Axis Vector 

The orientation spline was defined in section 3.3 as, 

0(u) (3.44) 

where the tool axis vector A = A(u) shown in Fig. 3.13 is defined between the upper and 

lower b-splines of the toolpath as, 

'< 
( 1 

>," 
\\ 

A{u) = 
A> 

= Q{u)-P(u) = Jj Nijuf - Qy 
Az 

i=0 P, JJ 
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where [PX PY PZ ] r and [QX QY QZ ] r are the control points of lower and the upper b-

splines, respectively. In order to obtain the derivatives of 0(u), the norm of the tool axis 

= ̂ Ax + A2 + A2

Z in Eq. (3.44) and its derivatives with respect to the spline vector 

parameter must be computed. The resultant 1st, 2 n d and 3 r d derivatives of 

the orientation spline are expressed as: 

dO 
du 

d2Q 
du2 

d3Q 
du3 

o. 

Oy 
o. 

°y 
o. 

A A A -2AA A A ' 
u uu " u _j_ 2 w_ 

A Ul2 Ul3 

(3.46) 

(3.47) 

AUUU\A\-A\A\ 2\A\A\ A\A\ +2(A\A\ + A\A\ )A\2 - 4A\A\ 2\A\) 
_ uuu\ I uu\ \ u I || U I \m, V »l \uu »»l \uft I \ "I \u I 1/ 

A\A\ +A\A\ +2(A\A\2+2A\A\\A\ )A\3-6(A\A\3\A\2) 
"I \uu I \uuu V " I \u I Iwl \uu A I \ I I H I I / 

(3.48) 

As shown in Eq. (3.48), the third derivative of the angular spline in each direction 

depends on \A\, \A\ , \A\ and Ul , which are functions of the upper and lower b-spline axis 

components i.e. the control points ([PX PY P z ] r and [QX QY Q^)- Modifying any 

control point of the upper b-spline in one direction affects the three axis components 

(Ox,Oy,Oz) of the orientation spline since norm of tool axis vector (ĵ 4|) changes. Therefore, 

the problem is formulated as integral sum of all three derivative components of the 

orientation spline Oxum,Oyuuu,Ozuuu on the unit sphere. The new cost function for the angular 

jerk minimization process can be written as: 
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Jo„ = p L u +02

yuuu +02

zump\u: (3.49) 
u 

After the whole toolpath is fitted, the resultant knot vector is known and fixed. Control 

points of the upper spline ([Qx Qy Qz ]T) are the free optimization parameters that can be 

used to modify the upper b-spline in order to penalize the cost function defined in Eq. (3.49) 

for the angular jerk. The vector of optimization variables is presented below; 

0, = [ao a, - a. '• Qya e„ e,. QH a, - Q J - 0.50) 

The constraints of the optimization problem are: 

(1) The max angular error, ee and 

(2) the Euclidian distance between upper and lower b-splines {\A\). 

The constraints on orientation error (ef) are imposed in order to respect the machining 

tolerances and restrict the change in the upper b-spline. The limit on will help to constrain 

the relative distance between the splines near to H, which was pre-defined by the machining 

process. Since it is difficult to satisfy an equality constraint in nonlinear optimization 

process, a relaxation band is defined for \A\ of e = 0.01 ~ 0.25 mm so that the convergence is 

obtained faster by imposing inequality constraints instead of equalities. Given for ee , H 

and s, the constraints to be imposed are: 

ee - eemax | 
H-£<\A\<H + s\ 

(3.51) 

Above constraints can be separated into individual inequalities; 
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Ce(uk) = eg -e9max <0, 

C,-, (uk) = H-s-\A\ < 0, (uk) = \A\-H-s<0 
(3.52) 

and they are grouped as a compact constraint vector as. 

C{u)=[ceo C,-, C{J f o r0<i /< l . (3.53) 

The optimization problem is then (Eq. (3.49) and Eq. (3.53)) 

Jn = min 
[Q, Qy &] 

U~\o2

xmu+02

yuuu+02

zuuuYu Subjectto: C(W)<0 for 0 < u < 1 (3.54) 
u=0 

Since the objective function and the constraints have nonlinear relationship with the 

design variables, the formulation in Eq. (3.54) results in a nonlinear optimization problem 

unlike in Eq. (3.36). It is solved using MATLAB's Optimization Toolbox. The cost function 

and its gradients can be calculated analytically when the basis functions are given in 

analytical form after b-spline fitting for the angular optimization. Otherwise, numerical 

integration methods are used to evaluate the integral in Eq. (3.54) where adaptive Gauss 

Quadrature or a simpler method such as Simpson's 3/8 can be employed. Constraints are 

checked only at pre-calculated parameter values (w) obtained from Eq. (3.28). The gradient 

of the constraints can easily be supplied analytically to the algorithm, since they are simply a 

function of basis functions, N.Ju), . For the algorithm, the evaluated basis functions are 
•P \u=uk 

computed once and stored to be called by the algorithm each iteration. 

3.7. Simulation Results 

The feasibility of the toolpath generation algorithm presented in this thesis is shown 

using simulations. The aim of the first step is to fit the double b-spline toolpath to given 

discrete toolpath points (G01 Commands) with respect to specified tolerance limits. The 
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machining tolerance applied on aeronautical parts is given around ~0.025 [mm] [1]. The 

conventional spline fitting algorithms build in CNCs for high speed machining recommend 

fitting tolerances 0.1 [mm] for rough machining and from 0.05 [mm] to 0.01 [mm] for 

finishing operations of free form surfaces [69]. In order to show the potential of the presented 

fitting algorithm, two fitting tests are presented in the following. The b-splines of the 

generated toolpaths are selected at 5 t h degree. 

The error limit for the first b-spline toolpath generation test is set 0.02 [mm] for tool tip 

and 0.001 [rad] for the tool axis orientation. The test toolpath is initially discretized by C A M 

software for five-axis machining using 584 G01 points. The discrete points of the toolpath 

and the fitted b-splines can be seen on the Fig. 3.14 (a). Since the error bounds are selected 

tight, the curve and points are overlapping. The fitting process started with 29 initial control 

points and required -2.82 [min] on a P4 2.6 desktop computer running M A T L A B to result a 

b-spline toolpath consisting of 42 control points. The error distributions for the tool - tip 

positioning and tool axis orientation are given in Fig. 3.15 (a). On straight sections, the fitting 

error for the tool - tip drops down to 0.002 [mm] and less than 0.0001 [rad] for the tool 

orientation, which indicates that especially on smooth parts, tighter tolerances can be 

achieved. However, towards the end of the toolpath where there is sharp change in the 

curvature, the fitting errors are on limits. The resultant maximum positioning error is found 
as emax = 0.018941 [mm] for the tool tip and orientation error is calculated 

ase^ = 5.22 x 10^ [rad] = 0.029 [deg] using Eq. (3.32) and Eq. (3.35). 

The toolpath for the second test is shown in Fig. 3.14 (b). It is a round shape with 

constant change in the curvature that is initially defined with 183 TCP. The b-spline fitting 

algorithm shown in Fig. 3.15 started with 9 control points and required 25 control points to 

ensure specified 0.01 [mm] tool tip and 0.0005 [rad] tool orientation tolerances. Unlike the 

first fitting test, the errors are distributed evenly as shown in Fig. 3.15 (b). The maximum 

tool tip error is computed as emax = 0.009 [mm] and the max tool orientation error is found as 

ee = 4.58xlO"4 [rad] = 0.026 [deg]. 
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The results indicate that very tight tolerances can be achieved by the proposed fitting 

algorithm in Section 3.5. Especially, for roughing and pre-finishing operations, the method 

allows generation of b-spline toolpaths for high speed five-axis machining. 

Figure 3.14: Test Double B-spline Toolpaths Generated from Discrete Points 
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Figure 3.15: Fitting Errors of the B-Spline Toolpaths 
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The effect of smoothing objective presented in Section 3.6.1 is investigated in the 

following simulations. Firstly, the influence of smoothing coefficients is studied on 45 two 

dimensional data points shown in Fig. 3.16 for an X - Y table. The fitted b-splines have 20 

control points and constrained at both ends to the data points. 

In Fig. 3.16 (a) a regular least squares fit without any smoothening affect can be seen. 

The curve is deteriorated especially at the start section because of the incompetent knot 

distribution estimated by arc the length approximation. The average error of the fit is 
emean

 = 0.211 [mm]. In Fig. 3.16 (b), the presented jerk minimization objective is 

implemented into the least squares algorithm using Eq. (3.43). Fitting and smoothening 

coefficients are selected as y = le6 and a = 0.01 respectively. As a result, he curve shows 

higher average fitting error of em e a n = 0.404 [mm]. But the oscillation at the beginning is 

eliminated and it displays improved change in the curvature (See Table 3.1). Furthermore, it 

can be observed by eye-inspection that the optimized curve is smoother. In Fig. 3.16 (c), the 

fitting coefficient is increased to y = lei. As result of this, the average error is decreased to 

emean
 = 0.255 [mm] with some loss of the curve smoothness. In the last simulation Fig. 3.16 

(c), the fitting weight is further increased to y = leS, which reduces the average errors down 

to em e a n =0.217 [mm]. The resultant b-spline is almost identical to the regular least squares 

fit. Furthermore, in Fig. 3.17, the third derivatives of the fitted curves can be compared to 

judge the smoothness quality of the curve. Reducing the fitting coefficient diminishes clearly 

the fluctuations in the 3 r d derivative of the spline resulting in a smoother curve. As a result, 

the acceleration components (2 n d derivative) on the b-spline ( See Fig. 3.17 (a) and Fig. 3.17 

(b) ) contains less change. As observed from the simulations, the most suitable coefficients 

can be selected as y = lei and a = 0.01 in order to smooth the curve while still preserving 

an acceptable fitting effect. The comparison of curvature changes is presented in Table 3.1. 
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— Optimized Least Squares Fit — Regular Least Square Fit » Shape Points 

Knot 

c) gamma = 1e7, alpha = 0.01, d) gamma = 1e8, alpha = 0.01, 
Mean Error = 0.255[mm] Mean Error = 0.217[mm] 

Figure 3.16: Multi Objective Least Squares Smoothening of a B-spline - a) Regular Least 
Squares Fit, b-d) Optimized Least Squares Fit Comparisons 
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Fitting & Smoothing 

Coefficients 

(( / ,«)) 

Integral of Rate of Change of the 

Curvature 

y = 1, a = 0 1.409 e17 

Y = le6,a = 0.01 8.57 e15 

y = \e7,a = 0.0\ 1.259 e16 

y = \e8,a = 0.0\ 1.04 e17 

Table 3.1: Comparison of Curvatures 
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Figure 3.17: 2 n d and 3rd Derivative Comparison of Smoothened B-splines 
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The smoothing effect is applied to the generation of lower b-spline for the first test 

toolpath shown in Fig. 3.14 (a). The weights for fitting and smoothening effects are chosen as 

y = \e7 and a = 0.01 while setting the maximum error tolerance as emax = 0.02 [mm]. 

However, using the above fitting and smoothing coefficients, the algorithm did not converge 

to satisfy the specified tolerance band. Consequently, the weight for smoothing effect is 

further reduced to or = 0.001. The smoothness of the b-spline fits for the toolpath is 

measured by comparing the 3 r d derivatives of regular and optimized fits shown in Fig. 3.18. 

As inspected, the quality of fitted b-splines is very close. Because of the tight error 

limitations and reduced smoothening coefficient, both of the b-splines follow almost the 

same pattern. As a result, tuning of the smoothening effect is quite difficult in case of tight 

tolerance specifications and larger number of tool center points. For machining operations, 

the fitted b-spline is overly constrained by tolerance requirements allowing less change in the 

quality. Therefore, the optimization technique should be employed for generation of 

toolpaths with relaxed tolerance specifications. 



Chapter 3. Spline Toolpath Generation from Discrete Toolpath Data for 5-Axis 
Machining 

58 

x 105 

CD 2 
> 
CO 

o 
0 T3 

Q X 
0 % -2 

"5. 

0 
> 
ro 

0 "O 
Q >, 
0 ^ 

" Q . 
CO 

x 105 

0 
> 
ro 
> m 
0 "O 

Q "N 
0<^ 
"5. 
CO 

-10 
0 

x 105 

4 r 

0.1 

0.1 

Optimzed - - Un-Optimzed 

02 

02 

0.3 0.4 0.5 .0.6 0.7 

0.3 0.4 0.5 0.6 0.7 

0.1 02 03 0.4 0.5 0.6 0.7 

Spline Parameter [u] 

0.8 

0.8 

0.8 

0.9 

0.9 

OS 
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The angular jerk optimization technique presented in. Section 3.6.2 was applied on the 

first b-spline toolpath shown in Fig. 3.14 (a) to inspect its effectiveness. Optimizing this long 

toolpath at once proved to be a very slow and inefficient process when considering the large 

number of control variables and constraints. In order to reduce the total processing time of 

the non-linear optimization, a technique similar to windowing scheme was implemented. The 

local modification property [58] of b-splines makes it possible that modifying a control point 

Pi affects the curve only in the parameter range of u e [p. pi+p+] ]. The upper b-spline is 

optimized locally at each step without altering shape of the whole curve. Hence, an 

optimization window size is set as with 5 control points. The window is shifted from the start 

towards the end of the toolpath while optimizing the section affected only by those control 

points. In case of non-convergence; the size of the window was increased by including one 

more control point from the un-optimized region. 

The optimization procedure for this toolpath consists of 42 variables described above and 

3x584 constraints to be checked. Using the windowing technique; ~5.1 [mins] are required 

on P4 2.6 desktop computer running M A T L A B resulting in a feasible offline optimization 

procedure. 

The results for the optimized kinematic profiles of the tool at constant feedrate of 35 

[mm/sec] are presented in Fig. 3.19. The angular acceleration profile presents fluent changes 

with less fluctuations resulting in a smoother trajectory. Hence, less vibration components are 

injected into the system while improving the overall tracking performance. The mean angular 

acceleration and jerk values at constant feed are smoothened and reduced by 9 [%] and 37 

[%] respectively. The max angular acceleration is reduced by 54 [%] and the max angular 

jerk is brought down 79 [%] after the optimization. The effect of the angular jerk 

optimization on individual rotary axis profiles is presented in Fig. 3.20 and smoothened 

linear axis profiles are given in Fig. 3.21. Spikes in the linear axis acceleration and jerk 

profiles causing possible actuator saturations as well as excessive tracking errors are 

annihilated. For instance, the highest reduction is observed in the Y axis jerk profile by 80 

[%]. Results indicate that the angular jerk optimization process reduces the overall jerk 

content of the toolpath efficiently allowing operating the machine tool at higher feedrate 

without violating the drive's kinematic limits. 
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Figure 3.19: Angular Kinematic Profiles 
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Figure 3.20: Rotary Axis Kinematic Profiles 
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Figure 3.21: Linear Axis Kinematic Profiles 
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3.8. Summary 

A continuous smooth representation of the toolpath is significant for higher part quality 

in high speed five-axis machining. In this chapter, a continuous toolpath consisting of double 

b-splines is generated from discrete tool path data. The fitting errors are limited depending on 

the given number of points and toolpath complexity as low in the range of 0.01 - 0.05 [mm]. 

Therefore, the implementation of such offline b-spline toolpath generation is suitable for 

most rough, as well as various finishing operations. In addition, smoothing of the toolpath is 

investigated for part quality and tracking performance by utilizing jerk objectives. The first 

optimization scheme for the tool tip spline did not found feasible because of tight tolerance 

specifications applied on the curve. However, the angular jerk of the toolpath is reduced 

using nonlinear optimization procedure. It is applied after the toolpath is fit and can handle 

long toolpaths time efficiently. The resultant angular acceleration profile shows smoother 

trends that enhances the tracking performance of the machine tool, allows increasing the 

overall feedrate. 
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Chapter 4 

Interpolation and Feedrate Profiling for 5-Axis Machining 

4.1. Introduction 

A toolpath in terms of b-splines is defined for five-axis machine tools in Chapter 3 of the 

thesis. The next step is to generate an optimum feedrate profile for five-axis machine tools 

processing this b-spline toolpath, and interpolate those feed commands to the machine tool 

axes. The real time interpolation of b-spline toolpaths with minimal feed fluctuation is 

investigated in this Chapter. Furthermore, a jerk continuous and smooth cycle time optimal 

feedrate profile is generated for five-axis machining. 

Feedrate fluctuations arising from incorrect spline parameter calculation is discussed in 

the Section 4.2, and the 'Feed Correction Polynomial' method, developed by Erkorkmaz and 

Altintas [22] is implemented on b-spline toolpaths for feed consistent interpolation. Results 

from the 'Feedrate Correction Polynomial' approach are compared to the widely used, 

'Taylor Series Expansion' [50] method in the simulations section. The Taylor approximation 

is also briefly explained. 

A feedrate scheduling algorithm was proposed by the same authors processing quintic 

spline toolpaths on Cartesian machines [3]. In the feedrate profiling work, the algorithm is 

modified for the double B-Spline toolpaths and implemented considering the 5-Axis 

machine tool's kinematic transformation and drive limits. The algorithm generates smooth 

kinematic profiles that consider machine tool's kinematic limits such as velocity, 

acceleration, jerk for minimum cycle time while aiming for better tracking performance. 

4.2. Interpolation with Minimal Feed Fluctuation 

For a specified feedrate profile V = V(t), a resulting displacement profile s = s(t) is 

obtained. Then, the position commands to the drives are calculated in order to track the 
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specified displacement profile during the machining operation. This task is performed by the 

real time feedrate interpolator embedded within the machine tool controller. The 

displacement profile can be provided in a linear, circular or a spline toolpath [42] format. For 

any of these provided toolpaths, the feedrate interpolator must calculate the axis increments 

as reference commands to the control loop at each sampling interval (j^). This task becomes 

computationally expensive when processing spline toolpaths [74]. 

In Fig. 4.1, a parametric b-spline toolpath is illustrated with a given displacement profile. 

As the spline parameter is incremented (Au) this corresponds to an arc increment (As) on 

the b-spline. The travel distances (i.e., the arc increments, (As)) at sampling intervals are 

scheduled during the feedrate generation step. Hence, the task of the real-time interpolator is 

basically to increment the spline parameter u = u(t) accurately to satisfy the desired arc 

increment s = s{t). 

Figure 4.1: Real-time Spline Interpolation 

In particular, b-spline toolpaths are defined in the parameter interval of we[0 l]. A 

straightforward approach for real-time interpolators is to linearly increment the b-spline 

parameter proportional to the ratio of the arc increment to the total arc length (Slotal) (i.e., 
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Au -l/Sl0!al • As). However, this linear relationship between spline parameter (w) and arc 

displacement (s) is not valid over the entire b-spline [21]. An imperfect calculation of the 

spline parameter would cause fluctuations on the actual feedrate. Such fluctuations would 

result in higher accelerations and jerk components on the drives, causing unwanted vibrations 

of the tool and deterioration from the part quality. 

4.2.1. Taylor Series Approximation 

The Taylor series approximation for real time spline interpolation was first introduced by 

Shipitalni et. al. [67] to estimate the next point along a spline toolpath on constant feedrate. 

In the literature, this method is widely used for interpolation of the b-spline toolpaths [74, 87, 

92, 93]. It is based on calculating the curve parameter by using the differential relationship 

between the arc length (s) and spline parameter (w) when the sampling interval is 

sufficiently small. 

In the practice of five-axis machining, the feedrate is practically defined on the tool tip, 

along the lower b-spline (tool tip spline) of the toolpath P(u), the feedrate can be related to 

the spline parameter (w) using differential geometry as follows: 

v(th 
ds _ ds dw du _ fit) 
dt du dt dt ds 

(4-1) 
du 

The differential relationship between the arc length and spline parameter on 

P(u) = [x1 (w) y' (w) z' (w)]T can be expressed as: 

ds = 

dw 

dP{u) 
du 

1 

du = \PU (w \ du = ^(x'Xu)) + {y'u{u)) +(z'u{u))du 

(4.2) 

The subscript variables are used to denote differentiation with respect to that variable as, 
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x:=dx'/du = ZNl:l(u)-Pxi=Z 
i=0 

X = d y / d u = x^S(")-^ = Z 

i=0 

' d t f , » p > 

/=0 
xt du 

du " y i 

z;=dz'/du=5:^S(«)-^ = Z 
;=0 du ' z > 

(4.3) 

and similarly, 

x:„=dv/du2=x<)(M).p,=x 
i=0 1=0 

^ = d V / d u 2 = t < ) ( i i ) . ^ = £ 
1=0 1=0 

z:„=dv/du 2=x^ 2»-p,=l: 

V 
^ 2 

du 2 ATI 

y 

du2 

v — y 
A J 2 A T / ' .A A d 2 w, » 

du 2 ' z i 

(4.4) 

where Nip(u) is the p t h degree basis functions, N\k

p\u) is the k th derivative computed as 

expressed in Chapter 3 by, 

MM'Mi 

Mi+P+i-" 

Mi+P+\ ~ Mi+i 
N, (4.5) 

and 
d^NLp(«) rd^-'w,^( w)/dW^ [) d ^ l + 1 ^ M / W * -

d w = P 
Mi+P -Mi Mi+P+i ~Mi-

(4.6) 

Substituting Eq. (4.2) into Eq. (4.1) yields, 

d w V(t) 
dt M»)J+k(4' 

(4.7) 
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A computationally efficient solution for Eq. (4.7) is necessary in order to achieve a real

time interpolation of the parametric curve; an approximation based on Taylor's expansion is 

used. For instance, when the curve has a large radius of curvature and the sampling interval is 

sufficiently small enough (e.g., Ts = 1 msec) a first order approximation is usually adequate 

at constant feedrate; 

, rp du 
dt = U; + 

V-T. (4.8) 

However, when the curve has small radii of curvature, the second order approximation is 

necessary, which is expressed as, 

T2 d2u 
+ -

2 dt2 

(4.9) 

where (d2u/dt2) is calculated by taking the derivative of Eq. (4.2): 

du 
dt2 du dt' 

vit) 

(< (u)J + (y'u (u))2
 + (u)f f A<{u))2

 +(y[{u))2 + (z[{uf 

.(4.10) 

Substituting Eq.(4.10) into Eq.(4.9) yields the second order Taylor series approximation: 

uM = u, + 
V_J\ 

(V • Ts f x'u{Ui)x'uu(«,)+ y'u{Ui)yj{«,) + z[{ut)z'm{«,) 
2 kk))2+ti(«,)J PM)2 

(4.11) 



Chapter 4. Interpolation and Feedrate Profiling for 5-Axis Machining 69 

At each time step, the spline parameter is calculated by the first order approximation 

using Eq.(4.8), or for the second order approximation by Eq.(4.11). Following that, the 

calculated spline parameter is simply used in order to compute the position and orientation 

values on the b-spline toolpath for 5-Axis machining as mentioned in Chapter 3 of the thesis. 

However, the Taylor series expansion is not reliable when the feedrate is varying and 

results in an imperfect curve parameter calculation for toolpaths having sharp changes in the 

curvature. Furthermore, its real time implementation is quite computationally expensive for 

b-spline toolpaths [12] because of the calculation of basis functions and their derivatives. For 

instance, the basis functions and their k t h derivatives are calculated recursively by Eq.(4.5) 

and Eq.(4.6). 

a) N l i P (u) b) N l i P (u) 

U - U; 

U i + P-1 " ^ 

N, l P . i (u) 

U I+P - U 

U i + P - U i + 1 

P -1 -(P-1) 
U i + P - 1 " u i , 

(k-1) 
N i ,p- l ( U ) 

U i + P - U i + 1 
(k-1) 

N i + 1 , P » N i + 1, p -1 ( u ) 

/ \ / \ 
N i p . 2 ( u ) N i + 1 p . 2 ( u ) N j + 2 p . 2 ( u ) 

N l i 0 (u ) N i + 1 0 ( u ) N i + p . 1 Q ( u ) N i + p 0 ( u ) N i p . k ( u ) N | + 1 p . k (u) N | + M p _ k ( u ) N i + p p . k ( u ) 

Figure 4.2: Basis Function Computation a) Recursive Calculation of Basis Functions — b) 
Recursive Calculation of Basis Function Derivatives 

As illustrated in Fig. 4.2, the recursive computation of the basis function Njp (u) requires 

(2P - l ) function calls to Eq.(4.5) [12]. In addition, regarding to the recursive computation 

scheme, the calculation the k t h derivative of a basis function N.p(u) requires (2* - l ) 

function calls to Eq.(4.6) and 2k(2"'k - l ) function calls to Eq.(4.5). Hence, for the k t h 

derivative of a basis function, total number of {lp - l ) function calls to Eq. (4.5) and Eq. 

(4.6) are required. Using Eq.(4.3), for a b-spline consisting of n + 1 control points, the 
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computation of a derivative at one point on the b-spline demands (« + 1^2 p -1) function call 

to Eq. (4.5) and Eq. (4.6). The computational load is quite significant when the degree of the 

b-spline and number of axis are increased. For example, the computation of a point on a 

cubic b-spline (p = 3) with 5 control points (n = 6), 49 number of function calls are required 

where a quintic b-spline with the same number of control points demands 217 function calls. 

4.2.2. Feed Correction Polynomial Method 

Due to the deficiencies imposed by the Taylor's approximation, the feed correction 

polynomial method is introduced by Erkorkmaz and Altintas [22] for real time spline 

interpolation. In this subsection, the feed correction polynomial interpolation method is 

explained and applied specifically to the b-spline toolpaths. 

The feedrate is defined on the lower spline of the toolpath, which is a p t h degree b-spline 

parameterized by a knot vector (U) consisting of n + p + 2 knots (pi). Subtracting the p + l 

repetitive knots at the beginning and the end of the knot vector, there are in total n-p 

internal knots in U. This yields to Ns = n-p + l internal knot spans in the b-spline 

representation. The knot spans of the b-spline and their parameter ranges are given as 

k=Q ^ k = n ~ P ^ 

.C/ = [0...0, pp, pp+l,...,pn_l,pn,; 
k=\ 

and illustrated in following Fig. 4.3. 



Chapter 4. Interpolation and Feedrate Profiling for 5-Axis Machining 71 

p+1 Knot Vector P+1 

Figure 4.3: B-spline Knot Spans and Segmentation 

Since the parameter ranges are fixed by the consecutive knots, each internal knot span 

can be assessed as a piecewise spline segment. Therefore, the whole b-spline representation 

is divided into n - p +1 curve segments (See Fig. 4.3). As given in Eq.(4.12), the parameter 

range for the k t h segment of the b-spline is presented as: 

Mk+p — u — Mk+P+i 
where . (4.12) 

k = 0,..., n-p 
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The arc length, Sk for k t h segment is calculated by dividing each knot span into 

( M ^ l O O ) subdivisions proportional to its .parameter range and computing the 

corresponding axis positions as: 

<e=zZNi.P(Mk+P+z-Aukypxi 

i=0 

i=0 

i=0 

Auk =• +p 

I = 0,1,2,... M^ 
(4.13) 

The segment lengths are computed by summing up the arc increments as: 

n-p 

Z S k 'total ~ ^k 
k=0 

(4.14) 

The non-linear relationship between the b-spline parameter (w) and the arc increment 

(As) was already expressed in Eq.(4.2). According to the feed correction polynomial method, 

this non-linear relationship can be expressed by another polynomial. The objective is to use 

the feed correction polynomial in order to calculate the spline parameter as accurately as 

possible and with less computational load during real time interpolation of b-splines. 

Following that, the computed spline parameter is used to extract the orientation and position 

values on the double b-spline toolpath. 
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a) Feed Correction Polynomial 

XActual Displacement- Feed Correction Polynomial 

Arc Displacement [s] 

b) Fitted Polynomials Over Knot Spans 

CD CD 
.E <D 
a. E 

CO CD CD CD 
0- 0 

Hn+1 

"p+k 
0 [s] b i 

Arc Displacement 
of Knot Span(k) -

Figure 4.4: Feed Correction Polynomial for B-spline Toolpath 

The feed correction polynomial is illustrated in Fig. 4.4 (a). For a b-spline toolpath, it is 

specifically defined between the arc increments (As) and corresponding parameter changes 

(Au) of individual knot spans (segments) as shown in Fig. 4.4 (b). The feed correction 

polynomial segments in Fig. 4.4 (b) are connected to each other by continuity conditions in 

order to retain a single polynomial for the whole b-spline. 

Using seventh order polynomial spline [19], the feed correction polynomial for the k th 

segment of the b-spline is written as: 

u = A[s1 +B{s6 +...H{ 

where 

Mk+P pk+p+i and 

0 < s < S, 

(4.15) 
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The feed polynomial defined in Eq.(4.15) basically supplies an accurate estimate of the 

b-spline parameter u to achieve the desired arc increment within each knot span during the 

interpolation. The parameter range (s) is bounded by the arc length of knot span (Sk). 

Considering Eq.(4.13) and Eq.(4.14) for the k t h segment, the parameter increment and 

associated arc travels are obtained offline, while computing the arc lengths as: 

Mk+P 
0 

Mk+P + Aw* 
u - Mk+P + 2Aw, ^>s = s2 

Mk+P+\ _SMk _ 

where 

Ask ( ~ ijfakj Xk,e-l ) + k« --y'k.t 

se = 
zz2&skn 

t=\ 

(4.16) 

In order to avoid any ill conditioning, the parameter ranges in the feed correction 

polynomial are normalized by the arc length of each knot span (Sk), 

u = a[a1 +b[a6 +...hJ

k 

Mk+P ^ u ^ Mk+P+i 

and 
0< <7<1 

(4.17) 

where cr = s/Sk and that results the upper bound of the arc displacement as 1. The 

normalized polynomial coefficients are written as a{ = S\Af

k , b{ = S\B{ ,...,/?/= H(. The 
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first and second derivatives of the spline parameter with respect to the arc displacement 

(us - du/ds and us = d2u/ds2) are also expressed in normalized formulation: 

us=f = ^[7a{cr6

+6b{^+... + g{] 
ds bi. 

d2u 1 
ds2 Si 

[42a{o-6+30b{a5+... + 2f/] 
(4.18) 

The feed correction polynomial is simply obtained by applying a least squares fit over the 

normalized arc displacements and the spline parameter values (Eq.(4.16)) at each knot span 

as: 

(4.19) 

Mk+p ' 0 0 0 . .. f 

j • .. 1 H 
«* = Mk+P+\ + 2 A u k = o-\ • .. 1 

•. 1 

1 1 1 . .. 1 H . 

Referring to the least squares method, the objective function to be minimized is: 

J = ±fe = ±(u-00fy(u-<Mf). (4.20) 

The first and second derivatives of the spline parameter with respect to the arc length can 

be written as: 

du dzu x'ux'uu + y'uy'uu+z'uz' 
u, - (4.21) 

Therefore, the first and second order constraints at the beginning and the end of the k' 

knot span are given as: 
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mu U, = 

final 

,M, _xuxuu+yuyuu+zuzw 

(4.22) 

final
 XuXuu + yuym

 + Z n Z w 

- " kJ+kf+kJ 

The continuity boundary constraints have to be matched by the feed correction 

polynomial in order to connect individual polynomials fitted for knot spans over the b-spline 

toolpath. Accordingly, the ranges for b-spline parameter and arc travels are defined as zero 

boundary conditions on the polynomial. Those zero boundary conditions for k t h knot span are 

given as: 

cr = 0 <=> u = pk+p ' 

a = 1 ^ u = pk+p+i 

(4-23) 

Using Eq.(4.17) and Eq.(4.23), the zero, first and second boundary conditions are written 

in matrix form as: 

'a{ 
0 0 0 0 0 0 0 f bi 
0 0 0 0 0 0 1 0 ci skuT 
0 0 0 0 0 2 0 0 di sW:;1 

1 1 1 1 1 1 1 1 ei 
7 6 5 4 3 2 1 0 fl s k U r 
42 30 20 12 6 2 0 0 si 

H 

Ci,. final 

(4-24) 

Hence, the feed correction polynomial is obtained by solving the linear quadratic 

optimization problem similar to the one in the Chapter 3 by introducing the vector of 

Lagrange multipliers, A = [A{ A\ ... A\]T. The resultant linear equation system is: 
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0T00f+LTA = 0Tu\ 

L6r 

~0T0 LT~ ~0TU 
L 0 

(4.25) 

Solution of Eq. (4.25) gives the coefficients 6f of the feed correction polynomial. 

Following the solution, the coefficients are de-normalized as; 

A{=a{/Sl. B{=b{/Sl H[=h{. 

4.2.3. Iterative Solution of the Spline Parameter 

The feed correction polynomial is defined by Eq.(4.17) and the coefficients of the 

polynomial {A(,B{,..., H{) are obtained from Eq.(4.25). However, when the feed 

correction polynomial is directly used in the real time interpolation; it introduces 

imperfection into the b-spline parameter calculation because of the residual errors in the least 

squares fit. Therefore, the feed correction polynomial interpolation method can be combined 

with an iterative method in order to solve for the exact b-spline parameter during real-time 

interpolation as shown in Fig. 4.5 (c). 

a) Taylor's Approximation 

s(t). u =u + 
i+i i 

V(t)T s 

x 2(u>y 2(u>z 2( U i) 

b) Feed Correction Interpolation 

s(t)| 
u(t)=A fs 7 + B f s 6 + ... + H f 

u(t), B-Spline 
Toolpath 

u(t) u(t) B-Spline 
Toolpath 

c) Feed Correction with Raphson Iteration 
lu s(t) 

u(t)=A fs7+B fs6

+...H u. init 
Newton 
Raphson 
Iteration 

test B-Spline 
Toolpath 

As des 

A t e s t 

' y t e s t 

' z t e s t 

^ A s t e s t Arc | 
Estimate 

prev 
prev 
prev 

Figure 4.5: Real Time Interpolation Methods 
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From the feed correction polynomial, the initial guess uinil = u for the b-spline parameter 

is obtained. Following that, the desired arc displacement Asdes for the control interval is 

calculated using backward differencing of the displacement profile s(t). The arc increment 

Aslesl corresponding to the tested spline parameter utest is estimated by computing the 

resulting axis increments: 

where: 

^test. ~ Xtest ~ Xprev • 4V'lest ' }'lest ~ }'prev a n t ^ ^ test ~ Ztest ~ Z prev 

n 

X'es, =Y.N'AU>est)P*i • 

n 

y'les,=TuNiAUles,)Pyi-
i=0 

1=0 

(4.26) 

where x'prev, y'prev and z'prev are the axis commands applied in the previous control sample. 

The error between the desired and tested arc increments is: 

(4.27) 

and its gradient with respect to the tested spline parameter is derived using Eq. (4.26) and Eq. 

(4.27), 

de = Ax'lesl • (dxl, /du)+ Ayj, • [dy'tesl /du)+ Az'tes, • Wtes, /du) 
du,„<, As,„, 

(4.28) 
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where \dx'lest / du), \dy\esJdu) and \dz'tesJdu) are simply obtained by substituting the 

calculated value of ulesl into the derivative expressions given in Eq.(4.3) and (4.4). The 

correct value of the spline parameter is computed regards the convergence of the below 

iteration (z): 

k , , L =(»,«, ),•-/, w (4-29) 

The desired convergence is achieved when the arc increment error e is below 10~8 as in 

Eq. (3.28). The fact that a very close guess («) is given by the feed correction polynomial 

and the analytical gradient (de/dutest), the above iteration converges within 2 to 3 iterations, 

which is convenient for real time interpolation of b-spline toolpaths. 

4.3. Feedrate Profiling for 5-Axis Machine Tools 

The feedrate profile of the trajectory is crucial for the quality of the machining process. 

In high speed machining, discontinuities and high frequency harmonics of the reference 

trajectory can easily excite the natural modes of the structure and servo system causing 

degradation from axis tracking and contouring performance. Therefore, the tangential feed 

profile defined together with the spline toolpath must ensure high continuity and smoothness 

allowing the axis servo drives to track the input reference kinematic profiles better. 

For basic linear and circular toolpaths, the feedrate profile consists of 3 main sections: 

acceleration, constant velocity (cruise) and deceleration. The starting acceleration and ending 

deceleration segments are defined with high smoothness, and their maximum values are 

determined with respect to individual servo drives acceleration and jerk limits. The cruise 

velocity is selected as high possible determined by the process parameters and axis kinematic 

limits aiming for the minimum machining time. On the other hand, b-spline toolpaths enable 

continuous change in the direction of the tool tip velocity and the tool axis orientation. Even 

interpolation at constant feedrate can produce excessive acceleration and jerk components on 

the drives when there is a sharp change in the tool orientation or in the spline curvature. 
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Therefore, the feed must be scheduled optimally in a smooth way throughout the spline 

toolpath to avoid violating any axis kinematic limits. For instance, the tangential feedrate at 

the tool tip must be reduced at sections where the change in the curvature is sudden to 

prevent exceeding acceleration limits of the drives and increased at straight sections to 

reduce the overall machining time. In addition, the non-linear inverse kinematics 

transformation from the workpiece coordinates to the axis commands must be considered for 

the five-axis machine tools. 

Minimum Jerk Double 
B-spline Toolpath 

Toolpath 
Points 

Velocity, 
Acceleration, 
and Jerk Limits 

Feedrate Opt imizat ion 

Toolpath 
Feed Description 
Correction P=P(u),0=0(u) 
Polynomial 

5-Axis 
Inverse 
Kinematics 

Constant Arc 
Increment (As) 
Interpolation 

x> 
Axis Geometric Profiles 
M=M(s), Ms, Msss, Mssss 

Solution of Quadratic 
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I 

itervt^... Minimum 
Cycle Time 

Axis Kinematic 
Profiles 
M=M(t),M,M,M 

Minimum Jerk 
Feed Profile 

Kinematic Profiles 
s, s, s 

Figure 4.6: Overview of Feedrate Profiling 

In order to generate a continuously varying feedrate profile, Altintas and Erkorkmaz [3] 

defined the arc displacement profile as a jerk continuous (C3) fifth degree spline over the 

specified travel distances on the spline toolpath, and optimized the feed profile for minimum 

cycle time. They also employed the minimum jerk criteria in the formulation for a smoother 

displacement profile. Similarly, a quintic displacement profile can be generated as a function 

of the time durations required to travel each knot span for the b-spline toolpaths. The overall 

feedrate profile can then be optimized by modulating the knot span durations in an iterative 

manner where the objective of the feed optimization is basically minimizing the total cycle 

time without violating any of the axis limits. The five-axis machine tool kinematic 

transformation is used to obtain the individual axis velocity, acceleration and jerk profiles on 
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the path. As a result of the iterative optimization process, a time optimal feedrate profile is 

generated that respects the velocity, acceleration and jerk limitations of the servo drives. The 

overall scheme of the feedrate profiling is shown in Fig. 4.6. 

4.3.1. Minimum Jerk Feed Profile 

As mentioned in the previous section, the complete b-spline can be partitioned into 

Ns =n-p + l parameter segments with arc lengths of S0,...Sk ...,SN_,. The spline feed 

profile is then generated through the specified time durations, r o , . . . , r t ) . . . , 7 ^ _ , required to 

travel the corresponding knot span segment distances. The overall C 3 displacement profile 

fitted on the toolpath as a function time s = s(t), and the resulting kinematic profiles are 

shown in Fig 4.7. The displacement profile for the k t h knot span segment of the path is 

defined by a quintic polynomial of time as: 

sk{r) = Akr5 +Bkr4 +Ckr3 + Dkr2 +Ekr + Fk ,0<r<Tk. (4.30) 

The resulting velocity ( i ) , tangential acceleration (s) and jerk ("i") profiles are obtained 

simply by differentiation with respect to r ; 

sk{r )=5Akr4 +4Bkr3 + 3Ckr2 + 2Dkr + Ek} 
S\(T)= 20 Akr3 +\2Bkr2 +6Ckr + 2Dk 

sk (T) = 60Akr2 + 245, r + 6Ck 

(4.31) 

In order to generate the jerk continuous (C3) feedrate profile, the piecewise fifth degree 

displacement profiles for consecutive knot spans segments are connected to each other by 

imposing the position (s ), velocity ( i ) , acceleration (s) and jerk ('s ) boundary conditions, 

sk{Tk) = sk+X0)\ 5AkTk\x +4Bk+]T?+] +3CkT2

+i +2DkTk +Ek=Ek+l 

Sk fa ) = (°) ^ 20^ t7; 3 + 12BJ2 + 6CkTk + 2Dk = 2Dk+l 

's'k fak) = 's'k+i (°)J 6 0 4 ^ + 24BkTk + 6Ck = 6Ck+l 
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Furthermore, as indicated in Chapter 3 of the thesis, smoothing of the generated profiles 

can be achieved by minimizing the overall jerk content. The objective function is the integral 

square of jerk throughout the whole motion expressed as: 

(4.33) 

Afc,-1 

where Tz - £~^Tk is the total motion time. The overall jerk objective given in Eq.(4.33) 

is written for Ns local objectives corresponding to each segment as, 

Jv = f D*o(j)]2dr + ('[S;(r)] 2dr + ...+ (*"[s^(r)f dt (4.34) 

where the substitution of Eq.(4.31) in Eq.(4.34) results; 

Jvk=] 
360042r4 + 2%%0AkBkt3 + 

(l20AkCk + 516Bl)u2 + 2S8BkCkr + 36C2 J 
dr. (4.35) 

The coefficients of the minimum jerk C quintic displacement profile 

(Ak, Bk,Ck,Dk,Ek,Fk) segment are obtained by solving the linear quadratic optimization 

problem similar to the Eq. (4.25), resulting from jerk minimization objective given in 

Eq.(4.35) and constrained by the continuity conditions (C°, C 1 , C 2 , C 3) expressed by 

Eq.(4.32). The complete formulation and generation of the minimum jerk displacement 

profile is presented in Appendix A of the thesis. 

The minimum jerk C 3 displacement profile is obtained after the computation of the 

coefficients. The objective of the feedrate optimization is then minimizing the total motion 

time (TE) within the kinematic limits of the machine tool. In order to optimize the total cycle 

time, a second cost function is formulated as the sum of the feed spline motion durations: 
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Ns-\ 

Tz = ZT*- (4-36) 

4.3.2. Velocity, Acceleration and Jerk Constraints 

Constraints on the motion duration cost function in Eq.(4.36) are defined with respect to 

the kinematic limits of the five-axis machine tool's drives. For instance, the velocity 

constraints are defined to indicate the maximum allowable speed of each axis and the given 

tangential feedrate. In addition, in 5-Axis machine tool structures, the rotary axes have 

relatively low acceleration thresholds in contrast to Cartesian axes, which can cause actuator 

saturations at sharp curvatures and orientation changes. Therefore, acceleration limits are 

imposed to constrain the maximum reachable feed on the given toolpath. The jerk limits help 

to contain the frequency content of acceleration below the natural modes of the feed drives 

avoiding unwanted structural vibrations as well as excessive tracking error. 

4.3.3. Inverse Kinematics of a Rotary Tilting Table 5-Axis Machine Tool 

The tool tip position [x1 y* z' f and tool orientation [ox Oy Oz J vectors are 

obtained along the double b-spline toolpath with respect to the generated position profile, 

s = s(t). Following that, the structure dependent inverse kinematics transformation must be 

employed to generate the Cartesian and rotary axis reference commands from position and 

orientation commands in real time. Commonly, five-axis machine tools have a kinematic 

structure based on a 3-Axis Cartesian machine with addition of two rotary axes as shown in 

Fig.4.8. The two rotary axes accomplish the desired orientation and the Cartesian axes 

perform the linear motion of the tool to the desired location. 

The five-axis machine tool configuration to be modelled is illustrated in Fig.4.8. It has a 

rotary-tilting table placed on the top of sliding the x-y table. The x-y table shows intended 

motion only along the X and Y directions, leaving the spindle to move the tool up and down. 

By utilizing a rotary-tilting table, two rotational degrees of freedom are added to the 

structure. The notation for this configuration is as follows: the rotary axis indicated with A 
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(tilting axis) introduces a rotational degree of freedom around the X axis. On the top of it, the 

C (rotary axis) axis is located that introduces another rotational degree of freedom around the 

Z axis (tool axis). Since the cutting tool is symmetric about the tool frame, a five-axis 

machine tool can achieve any demanded orientation. 

Figure 4.8: Kinematic Chain of the Rotary Tilting Table 5-Axis Machine Tool 

In order to define the inverse kinematics transformation of this structure, the decoupling 

method [41] is used, and rotary joint angles are derived by the aid of homogeneous 

transformation matrices [51]. Firstly, frames (coordinates systems) are assigned for machine 

tool's elements such as the table, spindle, base and cutting tool shown (See Fig.4.8). The 

frame S is assigned for the sliding x-y table, which is connected to the base of the machine 

tool with a prismatic joint. The frame T is assigned for the tilting axis (A), which is a 

rotational joint fixed to the x-y table. Similarly, R is assigned for the rotary axis (C) attached 

to the tilting axis. W is assigned for the workpiece sitting on the rotary table. The frame SP 
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is assigned to the spindle that is connected to the column of the machine tool with a prismatic 

joint. It has a degree of freedom only along the Z direction. Another frame, OT is defined for 

the cutting tool. Finally, a fixed reference coordinate system, Ref is placed on the machine 

tool's base, which is rigidly connected to the column. 

<—• X+5x 

a) b) 

Figure 4.9: a) Translation Motion — b) Rotational Motion 

The rotational and translational relationship between these individual frames is presented 

using homogeneous transformation matrices. For example; pure translations along X, Y and 

Z directions at the amount of Sx, Sy, Sz between two frames is given by a homogeneous 

transformation matrix as, 

H, translation 

1 0 0 X + Sx 
0 1 0 Y + dy 
0 0 1 Z + & 
0 0 0 1 

(4.37) 

where X, Y, Z are the initial offset values between the origins of frames. Considering 

Eq.(4.37), the pure translation is illustrated in Fig.4.9 (a). The machining point is defined by 

the vector P = [x' y' z' ]T with respect to the workpiece frame ) that is located on the 
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x-y table. Using Eq.(4.37), the transformed tool tip vector is represented with respect to the 

reference (Ref) coordinate system as: 

F 
1 

= H translation 
y 
z ' 

(4.38) 

Similarly, if the workpiece is located on the rotating table of the machine tool, the 

relationship between the reference and the workpiece frames is given by a pure rotation 

matrix. As shown in Fig 4.9 (b), a rotation around Z axis of the workpiece coordinate system 

by the angle of 86z can be represented by a pure 3x3 rotation matrix as, 

cos (6Z+80Z) -sin(dz+86z) 0" 
R = \- sin(6z + 50z) cos{0z +S6Z) 0 

0 . 0 1 
(4.39) 

where 6Z is the initial relative rotation between the frames. This rotation can also be defined 

by the augmented 4x4 homogeneous transformation matrix as: 

H. 

cos{ez+5Gz) -sin(9z+S9z) 0 0" 

sin{dz+S6z) cos[9z+S9z) 0 0 
0 0 1 0 
0 0 0 1 

(4.40) 

After the rotation is performed, the transformed tool tip vector in the reference coordinate 

system is expressed as: 
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x 
P y 
1 rotation (4.41) 

z 

1 

Respectively, intended rotations around X and Y axes are represented by similar 

homogeneous transformation matrices [51]. By the current frame approach, the homogeneous 

transformation matrices can be multiplied in a sequence in order to express the relative 

motion of the end frame with respect to any given reference frame. For instance, if N rigid 

bodies are connected in series and the corresponding homogenous transformation matrices 

between connecting axes are known, relation between the last coordinate system (N t h frame) 

in terms of the reference coordinate system is the sequential product of all of the 

homogenous transformation matrices: 

4.3.3.1 Rotational Motions 

The objective in five-axis machining is to keep the tool axis always aligned to the 

specified orientation and the tool tip placed at the reference machining point. In this 

modelled configuration, two rotary axes rotate the workpiece to align the orientation vector 

with the tool axis. Hence, the rotary axis rotation values are first calculated to establish the 

correct orientation of the tool. 

N 

H^Y\H^=H\HlHlH\...H N-l 
N • (4.42) 
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+ [0 0 1] [0 0 1] 

[Ox, O y, Oz] ^ 
. W p z 

Vef a) xr e f b) 

Figure 4.10: a) Table Orientation Before Cutting — b) Table Orientation During Cutting 

In Fig. 4.10, the rotational motion of the table is shown. During the machining operation, 

the workpiece is continuously rotated to align the orientation vector 

0(u)=[ox(u) Oy(u) Oz(u)f with respect to workpiece frame to the given tool orientation 

vector 0To0'. The tool orientation is already fixed as 0To0' = [0 0 l] r along the Z axis with 

respect to the reference coordinate system. As shown in Fig. 4.10 (b), two rotations are 

performed in a sequence to accomplish this task. The first rotation is carried out by the tilting 

axis A by the angle of 0A and followed by the rotary axis C by the amount of 0C. The 

rotation of the A axis is given by a homogeneous transformation matrix as: 

1 0 0 0' 

0 cosi 

0 sin(0j 

0 0 

i{0A) -sinfo) 0 
cos(0j- 0 

0 1 

(4.43) 

and the pure rotation of the C axis can be written as: 
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cos{0c) -sin(0 c) 0 0" 

H e c = 
sin(0c) 

0 

cos(#c) 

0 

0 

1 

0 

0 
(4.44) 

0 0 0 1 

Hence, the relative rotation between the workpiece and the reference frames is composed 

of these two sequential rotations. In order to achieve the correct orientation, the 

representation of the orientation vector respect to the reference coordinate system must equal 

to the fixed orientation of the tool vector. Using the current frame approach, the 

transformation matrices ( Eq. (4.43) and Eq. (4.44)) are multiplied in a sequence resulting in 

the following motion equation: 

H0A -H0C 0 = 0 T O 0 ' . (4.45) 

Eq. (4.45) can be written as a set of equations in the matrix form as: -

1 0 0 0" cos(ec) - sin[dc) 0 0" "0" 

0 cos(eA) -sin(6A) 0 sin(6C) cos(ec) 0 0 Oy{u) QTOOI 0 

0 sin{eA) cos(eA) 0 0 0 1 0 02{u) 1 1 

0 0 0 1 0 0 0 1 1 1 

(4.46) 

Rotation angles 0 A and 6 C are obtained by solving the first two rows of Eq. (4.46), and 

this decoupling method gives solutions for the rotary axes shown in Table 4.1. 
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Table 4.1 Rotary Axis Joint Angles 

oy<o o,=o oy>o 
Ox<0 Ox=0 Ox>0 

ec{u) J0x(u)) tan x) ( +7t -It/2 Undefined Till tan 1 -A4 

, _,(0l(u)+0l{u)) 
tan r^r tan~[ 

{ Oz{u) j 
j0l(u)+02(u)) 

tan -rx-— 

4.3.3.2 Cartesian Motions: 

Following the rotary joint angles, the Cartesian axis position commands are calculated to 

position the tool tip at the specified machining point. Homogeneous transformation matrices 

are defined to express the intended translations and the fixed offsets between the assigned 

frames. The time varying homogeneous transformation matrix between reference and x-y 

table frames can be written as, 

HRef 
1 1 s 

" 1 0 0 X(u) + Sx 

0 1 0 Y(u)+Sy 

0 0 1 Sz 

0 0 0 1 

(4.47) 

where X(u) and 7(u) are time varying (w = u{f)) position of x-y table frame origin from the 

reference frame origin. Sx, Sy, and Sz are the initial offset values between those frames, and 

can be selected depending on the initial position. 

Similarly, a fixed homogeneous transformation matrix is defined between table frame 

and tilting axis frame origins in terms of the offset values Tx, Ty, Tz: 



Chapter 4. Interpolation and Feedrate Profiling for 5-Axis Machining 92 

1 0 0 T 
0 1 0 7 ; 

0 0 1 7 ; 

0 0 0 1 

(4.48) 

Another homogeneous transformation matrix between tilting and rotary axis frames is 

written as, 

Hl = 

1 0 0 * , 
0 1 0 ^ 
0 0 1 Rz 

0 0 0 1 

(4.49) 

where Rx, Ry, Rz are fixed offsets between frame origins. The workpiece is located on the 

rotary table. The transformation matrix between rotary axis and workpiece frame origins is 

similarly given by: 

HWp 

1 0 0 Wpx 

0 1 0 Wpy 

0 0 1 WPz 

0 0 0 1 

(4.50) 

where Wpx, Wpy and Wpz are the offsets. The transformation matrix between the spindle and 

tool frame is defined as: 

1 0 0 OT 

TTSP _ I 
TJ nr 1 OT 

0 1 0 OTy 

0 0 1 OTz 

0 0 0 1 

(4-51) 

where OTx, OTy and OTz are the tool offsets. At last the homogeneous transformation matrix 

between spindle and the reference frame is given as: 
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HRef 
1 1 SP 

SPX 

SP, 

1 0 0 

0 1 0 

0 0 1 Z(u)+SPz 

0 0 0 1 

(4.52) 

where Z(u) is the varying spindle frame origin's distance from the reference coordinate 

system. SPX, SPy and SPZ are the initial offset values. 

The resultant homogeneous transformation matrix between the fixed reference and 

varying spindle frames is written by the use of Eq.(4.51) and Eq.(4.52) as: 

jrRef _ TrRef TTSP 
n OT SP ' OT ' (4.53) 

Similarly, the homogeneous transformation matrix between the workpiece and reference 

frames can be written by employing the transformation matrices from Eq. (4.47) to Eq. 

(4.50), and Eq. (4.43), Eq. (4.44) in a sequence starting from reference to workpiece frames 

as: 

HwP

f = Hsef - H T - H e A - H R - H t 
JTR (4.54) 

The correct positioning of the tool tip to the given machining point is achieved by the 

motion of x-y table and the spindle. Consequently, the tool tip position is given in tool frame 

as PTo°l = [0 0 Of, and it is written with respect to the reference coordinate frame using 

Eq.(4.53). The machining point P = [x'(w) y'(u) z'(u)J is also transformed from 

workpiece coordinate system to the reference coordinate system using Eq.(4.54). 



Chapter 4. Interpolation and Feedrate Profiling for 5-Axis Machining 94 

Frame 

Figure 4.11: Kinematic Transformation 

Hence, the correct positioning is achieved as illustrated in Fig 4.11 by matching the 

representation of these two vectors with respect to the reference frame using Eq.(4.53) and 

Eq.(4.54) as: 

x'{u) "0" 

HRef _ / ( « ) 
z'(u) 

1 

= HRef • 
0 

0 

1 

(4.55) 

Machinig Position Vector Tool Tip Position Vector 

The solution of Eq (4.55) yields the resultant equations for the X, Y, Z Cartesian axis 

commands: 
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X{u)=OTX+SPX-RX-TX-SX-cos{eM^'(u) + sin{0M)-y'(")-^M-Wpx ' 

+ sin{0c{u))Wpy 

Y{u) = 0 T Y + SPY - T Y - S Y - cos{ea («)) • sin(6C (u)) • x' (u)-cos{0a («)) • cos{0c (M)) • y' («) + 

sin{0a (u))-x' (u)- cos(Oa («)) • sin{OC («))• ^ - COJ(^„ («)) • cos(Oc («))• ^ 

+ swfo • *Fpz - cos(9A ( « ) ) • + « / i (0 f l («)) • tfz 

Z(u) = - 0 T Z - SPZ + T Z + S Z + sin{6A (u)) • sin(0C (u))-x'(u) + sin(6A («)) • cos{dc («))• / («) 

+ cos(6A (u))-z' (u) + sin{ea ( w ) ) • sin(6C (u)) • Wpx + sin{OA («)) • «w(0c («)) • ^ 

+ cos{Oa («)) • ^ z + s«(<90 («)) • i?̂  + cos(6A («)) • i?z 

(4.56) 

4.3.4. Formulation of the Constraints 

The Joint variable vector, M(U)=\X{U) Y(ii) Z(U) 6A{U) 6C{U)J is obtained after 

the inverse kinematics transformation using Eq.(4.46) and Eq.(4.56). Following that, the axis 

velocity, acceleration, and jerk profiles (M(t), M(t), M(t)) with respect to the displacement 

profile 5 = s(t) are expressed as, 

M(t) = Ms-s(t) 

M(t) = Mss-s(tf+Ms-s(t) 

M(t) = Msss-sit)' +3MSS •s{t)-s(t)yMs-sit) 

(4-57) 

where Ms Mss, Msss are the geometric derivatives of the toolpath computed over the axis 

reference commands by 
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M,(s) = 
AM AM du 
ds dw ds 

d 2 M d 2Mfdw^ 2 

ds2 

d 3 M 

dw2 

d 3 M 
ds3 dw3 

ds 

du 
\ds 

+ M. 
d2u 
ds2 

(4.58) 

d3w 

For the optimization process, the geometric derivatives of the toolpath are calculated 

once at the initialization stage by interpolating the toolpath with constant arc increments 

(As), stored in a look up table and retrieved during the optimization process for faster 

evaluation (See Fig.4.6). The limits for tangential feedrate / m a x , axis velocity 

^xmax^ymax,vZmax,v0Amax,vffcmax), acceleration (aXmax,aYmax,aZmax,a()Amax,a0cmax), and jerk 

{ j x m a x J Y r n a . J z m a x J e ^ a t J e ^ a * ) ,
 a r e t h e nonlinear constraints to be imposed during the 

optimization process expressed as: 

0 < s(t) < f 
J max 

~ V Xmax <X(t)<vXmax, - "Xmax X(t) aXmax ~ J Xmax ~ X(t) ^ Jxmax 

~ VYmax <Y(t)<vYmax, -aYmax £Y(t)<armax, ~ JYmax — Y(t) ^ JYmax 

— v , 
Z max 

£ Z(0 * vZmax, ~aZmax ^Z(t)<aZmax, J Z max ~ ^(0 — JZ max 

^! 9A max ^oA(t)<veAmax -affAmax<0A(t)<a6A max' J 0A max ~ ^A(0 — j9Amax 

^' 8C max <ec(t)<vecmax max' Jdc max ~ ^c(0 — J0C max 

(4.59) 

for 0<t<T£. The above constraints are normalized and separated into individual 

inequalities, 
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C}(0 = 
c-(0 = 
c;(t)= 
c+

z(0 = 

c;jo= 

C\(t) = 

C+y(0 = 

Cz(t) = 

cx(t) = 

C+y(0 = 

s(t)lfmax-\<Q, C-f(t) = -s(t)/fmax<0 

X(t)/vx max-\<0,Cx(t) = - X(t)/vx max -1 < 0 

Y(0/vrim -1 < 0, C-(t) = -Y(t)/vYmax -1 < 0 

Z(t)/vzmax -1 < 0, C~i(t) = -Z(t)/vzmax -1 < 0 
:eA(t)/veAmax-I<o, c-dA(t) = -eA(t)/veAmax-I<o 

• ec (t)/V0c max - I < o, c-c (t) = -ec (t)/v0c max - I < o 

X(t)laXmax -1 < 0, C~x(t) = -X(t)/aXmax -1 < 0 

Y(t)/aYmax -1 < 0, C~y(t) = -Y(t)/aYmax -1 < 0 

Z(t)/az max -1 < 0, C: C O = - Z(f ;/az mflI -1 < 0 

= $A(t)Kmax-1<o, c-Sk(t) = -eA(t)/veAmax-1<o 

=0c(t)hecmca - 1 * o, c: c = - < ? c r _ -1^0 

x(t)/jXmax - l <o, =-x(t)ijXma - i <o 

Y(0/jrma-l< 0, C~f<; = -Y(t)/jrma-l< 0 

Z(t)laZmm -1 < 0, C ~ . f O = -Z(t)/aZmax -1 < 0 

=̂  ^/S, „ -1 s o. c^/r ;= - ^ r - - 1 * 0 

= w / ^ _ -1 * o, q c r o = - 0C r o / v , c mai -1 < o 

Velocity, 

Acceleration, 

Jerk Constraints 
(4.60) 

The inequality constrains in Eq. (4.60) are grouped together and written in the vector 

form of 

c(/)=[c;(0 cx(t)... cx(t)... ct(t)... i c;(/) c^).. .f ,(5.6i) 

and formulated for the optimization process as: 

C(/)<0 for o</<r 2 }. (4.62) 

4 . 3 . 5 . Solution of the Optimization Problem 

The optimization problem is given by Eq. (4.36) and Eq. (4.62): 



Chapter 4. Interpolation and Feedrate Profiling for 5-Axis Machining 98 

Ns-l 

min T£ = min ]T Tk subject to C(t) < 0 for 0 < t < Tz, (4.63) 

which is a linear programming problem with non-linear constraints because of the fact that 

the derivative of the cost function respect to the optimization variables are linear. It is solved 

by MATLAB's Optimization toolbox. Each segment duration is divided into (-5...100) 

subdivisions proportional to its corresponding arc length Sk as shown in Fig. 4.12 and the 

look-up table for the geometric derivatives is prepared by Eq. (4.58). 

f 
Constraint Check 

Figure 4.12: Constraint Evaluation 

During the optimization process, the axis kinematic profiles are calculated using Eq. 

(4.57) over the look-up table and the constraints are checked at fixed subdivisions using Eq. 

(4.0) of the segment durations. As the segment durations are modulated, the number of 

constraints to be checked remains the same, but the evaluation locations change since the 

subdivisions are stretched out or compressed. Such a 'floating constraint' scheme allows 

analytical computation of the kinematic profile gradients with respect to the optimization 

variables (ds/dX, ds/dX, ds/dX, ds/dX), as well as the constraint gradient 

(dC(t)/dX), which enhances the convergence of the optimization given in Appendix B. 
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4.4. Simulation Results 

4.4.1. Comparison of the Interpolation Methods 

Four real time interpolation techniques of the b-spline toolpath are compared. The 

feedrate consistency and fluctuations are observed for the following interpolation methods: 

(1) 1st order Taylor's Approximation 

(2) 2n d order Taylor's Approximation 

(3) Feed correction polynomial interpolation 

(4) Feed correction with iterative interpolation 

In the literature, the interpolation of b-spline toolpaths is performed using Taylor series 

approximations [74, 87, 92, 93]. Therefore, the performance of the feed correction 

polynomial interpolation technique is compared to 1st and 2nd order Taylor's Approximation 

methods and summarized in Table 4.2. The b-spline toolpath for the tests is shown in Fig. 

4.13. It is a round arbitrary designed shape with sharp changes in the curvature near 

quadrants. 

The toolpath is run at constant feedrate of 100 [mm/sec] and interpolated at 1 [msec] 

sampling. Results are summarized for the velocity of the tool tip in Fig. 4.14. Interpolation 

result of the toolpath with 1st order Taylor approximation is shown in Fig. 4.14 (a). The 

fluctuation on the tangential feedrate of the tool tip is observed as maximum 0.47 [%]. Since 

calculation of b-spline derivatives demand high computational load, each iteration needs ~ 4 

[msec] on a P4 2.6 GHz desktop computer running MATLAB. However, it can be 

implemented by a much more efficient computational platform for real time interpolation. In 

Fig. 4.15 (b) results for the 2n d order Taylor Approximation can be seen. The maximum 

fluctuation is reduced by 0.017 [%]. Since more terms are included in the approximation, the 

resultant time expense is increased to ~6 [msec]. In Fig. 4.14 (c), the same toolpath is 

interpolated using the feed correction polynomial. The correction polynomial is initially 

fitted offline and the real - time interpolation is performed without any recursive calculation 

of the spline parameter. Therefore, the computational load can be neglected (<0.02 [msec]). 

The maximum fluctuation in the feedrate is 0.03 [%], which is closer to the 2n d Order Taylor 
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approximation. This indicates that the method can be used for real time b-spline interpolation 

as compared to computationally expensive Taylor approximation techniques. In the last 

simulation, the toolpath is interpolated with the recursive interpolation combined with feed 

correction polynomial guess. There is practically no feedrate fluctuation for the b-spline 

toolpath. However, at least 2 iterations are needed, which increases the computational time 

up to ~8 [msec]. In contrast to any Taylor approximation method, it guarantees higher 

accuracy at for parameter calculation. 

Table 4.2 Summary of Interpolation Results 

Interpolation Method Feed Fluctuation 
[%] 

Time Expense 
[msec] 

1st order Taylor Series Apprx. 0.47 = 4 

2 n d order Taylor Series Apprx. 0.017 = 6 

Feed Correction Poly. 0.03 <0.02 

Feed Correction Poly, with iterative solution 0.0001 = 8 
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Upper B-spline 

Figure 4.13: B-spline Toolpath 
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Figure 4.14: Feedrate Fluctuations 
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4.4.2. Comparison of Constant and Optimized Feedrate Profiles 

The feedrate optimization algorithm is tested on the toolpath that is generated in chapter 

3 and shown in Fig. 4.15. It consists of b-splines defined by 42 control points which contains 

mildly varying curvature and orientation at the start section as well as sharp changes towards 

the end. The simulations are performed with respect to the kinematic limits of the HELLER 

MC 25 five-axis machining center. The velocity, acceleration and jerk limits are given in the 

following Table 4.3. 

The maximum feedrate limit on the toolpath is set as fmax = 200 [ mm/sec]. The 

optimization of the toolpath required 120 [sec] using a windowing technique [19] at P2.6 

Ghz desktop computer running MATLAB and resulted in a motion duration of 2.09 [sec]. 

Trying to travel the same toolpath without violating any of the axis kinematic limits results in 

using a feedrate profile of 53 [mm/sec] with cubic acceleration/decelerations of 1250 

[mm/sec2], and a tangential jerk of 15000 [mm/sec3] having an overall motion duration of 

3.751 [sec]. With the optimized feed profile, the improvement on the total cycle time is 44 

[%]. The feedrate profile is shown in Fig. 4.16, which indicates that the tool tip velocity can 

be increased up to 200 [mm/sec] at the start section of the toolpath while taking the 

advantage of the straight feasible region. On the other hand, it is scheduled conservatively 

towards the end where the change of tool orientation and curvature is quite sharp. The linear 

and rotary axis kinematic profiles are shown in Fig. 4.17 and Fig. 4.18 indicating that the 

major applied limits are the axis acceleration and jerk. 
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Table 4.3: Kinematic Limits of 5-Axis Machine Tool 

Heller MC25 Axis 
Limits Velocity Limits Acceleration 

Limits Jerk Limits 

Linear 
Axis(X,Y,Z) 

v m , = 1 0 0 0 W W 

maz 

sec 

mm 
= 1 0 0 0 0 — 

sec 
u- 30000 -

sec 

Rotary Axis (A) 
. _ rad 

veAmax =4-2 

sec 

rad 
sec 

4ns - 62.8 
sec 

Rotary Axis (C) 1 n <: r a d 

vecma* =10-5 

sec 
, _ . rad 

«* c M «=17.3 2 sec 
- 9S1 ra<^ 

Jermax ^ 1 3 

sec 

Figure 4.15: B-spline Toolpath 
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Figure 4.16: Optimized and Unoptimized Feedrate Profiles 
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Figure 4.17: Optimized and Unoptimized Cartesian Axis Profiles 
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Figure 4.18: Optimized and Unoptimized Rotary Axis Profiles 

4.4.3. Summary 

The interpolation of b-spline toolpaths and optimal feedrate profiling are investigated in 

this section. By utilizing the feedrate correction polynomial, it is shown that b-spline 

toolpaths are interpolated in real time efficiently. Feed fluctuations arising from inaccurate 

calculation of the spline parameter is further eliminated using the recursive interpolation 

scheme. For 5 - axis machining, the feed correction polynomial interpolation method allows 

tangential velocity at the tool tip to be kept consistent. However, the effective feedrate is 

changing along the tool axis because of the angular velocity of tool. Therefore, during flank 

milling operation, feedrate variations can be encountered along tool axis. In contrast, in 3 -
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axis machining this method can easily be employed for interpolation of any b-spline and 

Nurbs toolpaths in order to eliminate unwanted feed fluctuations. 

Furthermore, a feedrate scheduling algorithm for 5-Axis machine tool is implemented. 

The feedrate curve is defined as a fifth order C 3 continuous spline providing jerk continuous 

kinematic profiles to the drives. Furthermore, the optimized feedrate profile intends 

minimum cycle time while not violating the axes' velocity, acceleration and jerk limits. The 

algorithm can be used for high speed machining where continuously alteration of the feedrate 

profile is not crucial for the manufacturing process. For instance, its implementation is 

suitable for rough machining and pre-finishing of dies and molds combined with the 

previously presented b-spline toolpath. 
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Chapter 5 

Conclusions 

5.1. Conclusions 

In this thesis, a smooth and optimal trajectory generation algorithm is presented for five-

axis high speed machining. A b-spline toolpath has been generated in order to deliver 

continuous tool motion for five-axis machining by compressing linear GI blocks assigned in 

the initial NC program. The real time interpolation of the b-spline toolpath is realized usigng 

the Feed Correction Polynomial method for minimal feedrate fluctuation. A jerk continuous 

feedrate optimization technique has been formulated for traveling along the b-spline toolpath 

in minimum time while adhering to the machine tool's kinematic limits such as velocity, 

acceleration and jerk. The thesis has the following contributions: 

The spline toolpath generation algorithm employs discrete toolpath position and 

orientation vectors extracted from the CAM system and generates a smooth toolpath 

composed of two b-splines with respect to the user given position and angular tolerance 

specifications. The double spline toolpath format is capable of interpolating tool position as 

well as the orientation vectors continuously in a synchronized way, decreasing the need for a 

machine tool dependent inverse kinematics post processing. The toolpath format is 

convenient for five-Axis high speed machining purposes and accepted by conventional CNC 

systems for real time interpolation. 

The smoothness of the generated toolpath is further improved using two optimization 

procedures. The first linear optimization technique is applied during the least squares fitting 

of the tool tip position spline, and it modifies the spline for smoother motion of the machine 

tool's Cartesian axes. However, the linear optimization is not practical when the tolerance 

specifications are tight. On the other hand, because of the machine tool's kinematic structure, 

any irregularity in the angular motion of the tool is directly reflected to the complete multi-

axis motion. As an alternative the non-linear optimization algorithm addresses the angular 

motion of the tool, and eliminates any oscillation in the angular acceleration by modifying 

the orientation spline of the toolpath. The non-linear method the path to be more accurately 
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tracked given the limited controller bandwidth, since any excitation of the servo and 

structural dynamics are avoided. 

The real time interpolation of the b-spline toolpath is improved using Feed Correction 

Polynomial Method. As compared to the conventional b-spline interpolation algorithms 

based on first order Taylor Series' expansion series; the implemented method is 

computationally less expensive and provides better feedrate consistency. Furthermore, 

combined with the iterative parameter correction scheme, the feed correction polynomial 

method exhibits an order of magnitude less feed fluctuation at steep curvature regions in 

contrast to second order Taylor's approximation. 

The feedrate optimization algorithm utilizes a quintic C 3 spline as displacement profile in 

order to realize a jerk continuous trajectory in five-axis machining. The spline displacement 

profile is especially constructed using minimum jerk criteria ensuring a smooth and 

continuous change in the feedrate enabling better tracking performance of the drives. The 

minimum cycle time objective is injected into the generation of optimal feed profile, and is 

constrained with the distinctive velocity, acceleration and jerk limits of the cartesian and 

rotational axes. The minimum cycle time method combines the ability to continuously 

modulate the feed, acceleration and jerk profiles along the spline toolpath for five-Axis high 

speed machining, and smoothness nature enhances the tracking performance of the servo 

control system while taking the advantage of machine tool's physical limits. 

5.2. Future Research Directions 

The trajectory generation techniques presented in this thesis are practically applicable to 

the state of art five-Axis high speed machining. However, the proposed algorithms are tested 

only in virtual environment using the kinematic structures of widely used five-Axis machine 

tools. Experimental validations should to be conducted on physical test platforms, and the 

resulting contouring performance should be investigated including the tracking errors of each 

servo system using the nonlinear kinematic transformation between the joint space and 

workpiece coordinates. 

To expand the toolpath fitting technique to surface finish machining operations, limits for 

the position and orientation errors df the generated to.olpath must be readjusted by including 
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the tool geometry, such as the tool radius of hemispherical or toroidal cutters in order to 

eliminate any possible interference between the tool and the workpiece. For instance, in the 

case of toroidal tool, the tool tip position error is coupled to the orientation error. 

The feedrate varies along the tool axis because of the angular velocity leading to 

fluctuations and oscillations in the feed vector during flank milling operations especially 

where the angular velocity is more dominant then the tool tip velocity. To improve the 

overall feed consistency, the upper b-spline of the toolpath must be re-parameterized or the 

interpolation step size is required to be adjusted that will reduce the angular acceleration of 

the tool. 

The feedrate profiling algorithm uses a smooth quintic polynomial spline. However, the 

replacement of quintic polynomial with a b-spline feed profile would enhance the 

convergence of the algorithm by utilizing its local modification property as an effective 

windowing technique. The actuation dynamics should also be included in feedrate 

optimization, which will prevent exceeding the actuation torques. 
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Appendix A 

Formulation of the Minimum Jerk Feed Profile 

The displacement profile for the k knot span segment was expressed in Chapter 4 as: 

sk(r)= AkT5+BkT4+CkT3+DkT2+EkT + Fk ,0<r<Tk (A.l) 

In order to avoid any ill conditioning, the time parameter z and segment durations can be 

normalized by the longest expected segment duration Tmax at the beginning, resulting in the 

following feed spline equation, 

sk(v) = akv5 +bkv4 +ckv3 +dkv2 +ekv + fk , 0 < v < ̂  (A.2) 

where v = r/Tmax ,Xk = Tk/Tmax and ak = T*axAk,bk = T*axBk,...,fk =Fk. The 

normalized velocity, acceleration, and jerk equations of the given quintic time spline are as 

follows: 

sk (v) = (1 / ) [5a k v4 + 4bk v3 + 3ckv2 +2dkv + ek] 

^(v) = ( l / 0 [ 2 ( H v 3 +12V 2 +6ckv + 2dk] 

sk{v)=(l/Tix)[60akv2 +24bkv + 6ck] 

. (A.3) 

The local minimum jerk objective function was given in Eq. (4.35) (Chapter 4) is 

expressed using the normalized time spline parameters as: 

J Vk T5 J 
3600a2v4 + 2880a,Z>,v3 + 

[(l20akck + 576^2 )v2 + 2SSbkckv + 36c 
\dv. (A.4) 

The integration in Eq.(A.4) results in the following matrix formulation: 
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7204 36<HJ 1204 0 0 0 
3604 192^ 72% 0 0 0 a k 

1204 72^ 36\ 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 fk 

» v • 

0 0 0 0 0 0 

(A.5) 

where 9k = [ak bk fk]T is the normalized parameters of the displacement spline. By 

dropping the l/T^ at the beginning of Eq.(A.5) and replacing with 1/2 for mathematical 

convenience, the minimum jerk objective for the k t h feed segment can be rewritten as: 

JVk ' K k { \ ) - f t k ~ ~ j f k ' K k '&k (A.6) 

The overall minimum jerk objective in Eq.(A.6) can then be stacked for all the segments, 

where the local parameters and weighting matrices for local segments are 6k and Kk as: 

Ns-l 1 R 

Jv=HJk=-\01 
0! 

k=Q 

T 
Ns-\ \' 

0o 
0, 

9 Ns-l. 

*6Nsxl 

Position (C°), C 1 , C 2 and C 3 boundary conditions are imposed at the segment junctions to 

connect the time spline segments together over the complete toolpath. For the k th segment, 

the following position boundary conditions must hold, 

(A.8) 
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where Sk is the arc length of the k' segment. The boundary condition is rewritten in the 

matrix form as: 

0 0 0 0 o 1 

I 
Eft (A.9) 

The knot position constraints from all segments can be grouped together as: 

L° 

L"(i.) 

0 Ns-l 

' t°o ' 

(A.10) 

Following that, the jerk continuous feed profile is generated by imposing the velocity, 

acceleration, and jerk continuity constraints. For instance, at the junction of k t h and k+l s t 

segments the boundary conditions are given in Eq.(4.32) (Chapter 4) as, 

(0)1 
(0) 

sk{\)=sk+M, 

3A+1 

^(A)-^ + . (o)=o 

•s t(^)-S t +,(0) = 0 

sk{\)-sM{0) = 0\ 

(A.11) 

where k = 0,l,...,Ns - 2. Substituting the expressions for for sk, sk and s'k, from Eq. 

(A.3) into Eq. (A.l 1), the matrix equation is written, 
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5K 4 4 34 2 4 1 0 0 0 0 0 -1 0 "0" 
204 124 6 4 2 0 0 0 0 0 - 2 0 0 = 0 
604 244 6 0 0 0 0 0 - 6 0 0 0 0 

(A.12) 

42 3(4) 

The derivative boundary conditions for Ns-\ segment junctions (Eq. (A.12)) are 

grouped together and stacked in the following matrix equation as: 

~ L 1 2 3 0 
•^0 U 3x6 

0 L 1 2 3 

U 3x6 ^1 

0 

If initial conditions of velocity (i,„„), acceleration (sinjt), and jerk (s'in!t) are provided, 

they can be included into the formulation as, s0(o) = s ;m7, s0(o) = s,.„,., and '̂ (0) = 's-mil in the 

feed profile. The boundary conditions expressed using the Eq. (A.3) are given in the 

following matrix equation as: 

"0 0 0 0 1 0 : 
0 0 0 2 0 0 ; o w N ) 

0 0 6 0 0 0 ; 

Similarly, if final kinematic conditions of velocity (sfiml), acceleration (s'final), and jerk 

('sfmai) a r e provided at the end of the toolpath, they can be included as sNs_{ (A,Ns_}) = sfinal, 

Sfinal ' SNs-l sfmai a n d written in the matrix form: 

r123 
JAfc-2 

0, 

0, 

(A.13) 

0, 
0, 

0, 

T2 s' 

T3 s 
(A. 14) 
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0 3x6(/Vi-l) 

54,-i 44-i 34,-i 24,-i 1 0 
204,-1 124,-1 64,-i 2 0 0 
604-i 244-, 6 0 0 0 

il {^Ns ) 

O0 

0 ^max^f 

T2 s 
Ti ... 

(A.15) 

At the segment junctions; position, I s , 2n , and 3r derivative continuity constraints are 

given in Eq.(A.9) and Eq.(A.12). The initial and final boundary conditions are provided for 

the feed profile from Eq. (A. 14) and Eq. (A.15). All of the constraints are stacked together in 

the following matrix equation form: 

/l23(4 

L final (4,-1 ) 

•6 L(X)-0 = £ (A.16) 

The minimum jerk optimization problem can now be expressed using Eq. (A.7) and Eq. 

(A.16) as: 

min -6T-K(X)-0 subject to: L{X)-0 = £ (A.17) 
0 2 

The above constrained quadratic minimization problem can then be solved using the 

Lagrange Multipliers method. Introducing the vector of Lagrange multipliers 

A = [AQ A{ ... A5NS+2]T, the objective function can be expressed as, 

jv (0, A)=- 0T • K{X) -0+AT -0-4] (A.18) 
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By equating the partial derivatives to zero ( V/QQ = u a n d V/QA = ^ y^ds the linear 

equation system: 

K{X)-0 + LT{A)-A = 6\ 

L{X)-0 = Z J 

~K(X) LT(X) ~e 
0 A 

(A.19) 

which has full rank as long as all the segment durations are nonzero. The solution of the 

above matrix equation yields the coefficients (0) of the minimum jerk feed profile. The 

coefficients are de-normalized as Ak = 1 /7^ -ak,Bk = \/T*max •bk,...,Fk = fk and the feed 

profile is generated using Eq.(A.3). 
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Appendix B 

Computation of the Gradients in Feedrate Optimization 

B.l . Gradient of the Objective 

The minimum time objective was given in the Eq. (4.36) in Chapter 4 as: 

Ns-l 

k=0 

and in normalized form of 

Ns-l Ns-l ^ = Ẑ =̂ Z4 (B.l) 
k=0 k=0 

Hence, its gradient with respect to the normalized time duration of the k t h segment in the 

B-spline representation Xk is expressed as: 

^ r = T (B.2) 
dxT max y } 

The gradient with respect to the vector of all normalized segment durations 

X = [X0 Xx ... XNs_x]T is obtained in a vector form as: 

ff = ^ - [ l 1 l l * (B-3) 
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B.2. Gradient of the Feed Profile Coefficients 

The vector of the Quintic displacement profile coefficients: 0 is obtained by solving Eq. 

(A. 19) in Appendix A as: 

K(X) • 0 + LT {X) -A = Q\ ~K(X) LT{X) ~e "o" 

_L(X) o A A. 
(B.4) 

It is known that the b vector on the right side of Eq. (B.4) is a constant depending only on 

the toolpath arc lengths and the given boundary conditions. The differentiation of both sides 

of the Eq.(B.4) with respect to the design variables /I • yields the following equation: 

cU. 

dA 
X (B.5) 

A and X are obtained from the solution of Eq.(B.4), the gradient expression dA/dXj is 

constructed by considering the definitions of the K(X) and L{X) matrices given in Eq. (A.7) 

and (A. 19) (Appendix A). Basically, the expression for dX/BXj is obtained by solving the 

linear equation system in Eq.(B.5), and the gradient of the feed profile coefficients dd/dXj 

is extracted from: 

dX 
dX, 

= [deT/dXj dAT/dXjj (B.6) 

The gradient matrix, consisting of partial derivatives of the feed profile coefficients with 

respect to all normalized segment durations is constructed as: 
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36 

da0/dZ0 da01cU, 
dbJdXQ db0/dAl •• db0/dANa_ 

dfo/84 df/dA, . 
dax /dA0 daj8Al •• daJdANa. 
dbx /dA0 dbJdA, . •• d°JdANa_x 

8fi/dA0 df/dA, . •• dfld^Na-l 

SbNs.JdA0 dbNs_JdXx 

daNs-JdK-i 

dbNs_JdANs_{ 

dfNs-\ld4 dfNs-Jd^ dfNs-Jd^Ns-\ 16NsxNs 
(BJ) 

B.3. Gradient of the Kinematic Profiles 

The arc displacement, feedrate, tangential acceleration, and jerk profiles in the ktF 

segment have been given as: 

sk M = akv5 + bkv' + ckv3 + dkv2 +ekv + fk 

^(v) = ( l /^) (5f l t v 4 + 4 V 3 +3c,v2 + 2dkv + ek) 
^(v) = ( l / ^ ) ( 2 0 a , v 3 + I2bkv2+6ckv + 2dk) 
sk{v)=(l/TL)(60akv2 +24bkv + 6ck) 

(B.8) 

where 0 < v < Xk. The normalized time parameter v is redefined as: 

v = Akp where 0 < p < 1 (B.9) 
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The displacement profile is then written as: 

h = "XM5 + bXf* + CXS + dk£kp2 + ekXkp + fk 
(B.10) 

The gradient of the displacement profile in the k segment with respect to the vector of 

where the gradients dak/dAT, dbk/dAT, dfk/dXT are obtained form Eq.(B.7). The 

gradient of the k t h normalized segment duration with respect to all normalized segment 

durations is dAk/d/lT = [0 ... 0 1 0 ... 0] where only the k t h entry is one. 

Considering the definition of s in terms of normalized parameter in Eq.(B.8) and factoring 

out the p term out of the expression in Eq.(B.ll), the gradient of the displacement profile 

with respect to the normalized segment duration is obtained as: 

normalized segment durations X = [XQ /\ ... /\Ns_x] is obtained as: 

( B . H ) 

f + ^F + ^TmJk{v) 
dXk 

(B.12) 

Following a similar procedure, the gradients of the feedrate, tangential acceleration, and 

jerk profiles are also obtained as: 
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dXT 

dXT 

5v4 dak 3 dbk 2 dck k +4v — f r + 3v - r ^ + 2v 
dXT 

da. 

dXT dXT 

dc 

ddk dek 

dXT dXT " 
2 

maxSk 

,„ 3 , - 2 dbk dck „ddk _ 3 ... / N5/L 20vJ —%• +12vl — k

T + 6v — k - + 2 — k

T + uT'sk I v)—k-
QJT A1T t~ max k\ J dXT dXT dXJ dXT 

6 0 v 2 % + 24v % + 6 % + < B ^ ( v ) % 

5 4 
5^ r 

(B.13) 

B . 4 . Gradients of the Constraints 

The velocity, acceleration and jerk constraints have been given in Chapter 4, Eq.(4.60) 

as: 

-s(t)lfmca-\<Q, C-f(t) = -s(t)lfmax<0 

= X(t)/vXmax -\<0,Cx(t) = -X(t)/vXmax -1 <0 

= Y(t)/vYmax -1<0, CY(t) = -Y(t)/vYmai -1<0 

= Z(t)lvZmm -1 < 0, CTfO - - Z(t)/vZmax -1 < 0 

= 0,f 0 / ^ _ -1<o, c-jt) = -eA(t)/v6Amax -I<o 

= Oc(0/v6c max -1 < 0, C: c (t) = - 9C(t)/v0c max -1 < 0 

=x(t)jaXmax -1 < o, Q C ; = - i r o A ^ - iso 
= Y(t)/aYmax -1 < o, = - wKm a t -iso 
= Z(t)/aZma -1<0, C~(t) = -Z(t)/aZmax -1<0 

=<?,r o K - -1 * °- c^ ̂=- ̂ - -1 ̂ 0 

c;ro= 
cKo-

Cx(t) 

C+y(0-
C\(t)-

c;c (t) = ec (t)/vec max -1 < o, c~0jt)=- ec(t)/vBc max - I < o 

Cx(t) = X(t)ljXmax -1 <0, C'x(t) = -X(t)/jXmax -1 <o 

rO = Y (t)jjYmax — 1 < 0, Cy(t) = - Y(t)ljYmax -1 < 0 

c|ro=z(t)/aZ m a x -1<o, c=ro=-z'ro/«zmai -1so 

ciA 0) = eA (ofa max -1 < o, C~9a (t) = - eA (t)/v,A max -1 < o 

ci (t) = ec (t)/v,c max -1 < o, q c (t)=- ec (t)/v,c max -1 < o 

Velocity, 

Acceleration, 

Upper Bound Constraints Lower Bound Constraints 

Jerk Constraints (B.14) 
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The feedrate upper bound constraints C+

f{t) = s(t)/fmax -1 < 0, its gradient with 

respect to normalized segment durations s obtained as: 

OC} = 1 ds{t) 

^ La* 
(B.15) 

where the gradient of the feedrate profile is given in Eq.(B.13). The axis kinematic 

profiles have been given in Chapter 4, Eq. (5.58) as: 

M(t) = Ms-s{t) 

M(t) = Mss.s(t)2+Ms-s(t) 

M(t) = Msss-sitf +3MSS-s(t)-s(t)+MM-sit) 

(B.16) 

where M(s) = [x(s) Y(S) Z(S) 0a(S) 0c(s)J. The X axis velocity upper bound 

constraint can be obtained by combining Eq.(B.14) and (B.16) as: 

Q = — * « - ! = — Xs(s)-s(t)-l<0 (B.17) 

and its gradient with respect to normalized segment durations is obtained as: 

dCx_ 1 ./ \ ds ds (B.l 8) 

The X axis acceleration upper bound constraint is obtained from Eq.(B.14) and Eq. 

(B.16) as: 

C\ = — Xit)-1 = — [xss {s). s{t)2 + X, • s{t)]-1 < 0 (B.19) 
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and its gradient with respect to normalized segment duration is obtained as: 

dlT a. 
(Xsj(tf + Xj(t))^ + 2Xj(t)^r + Xs § (B.20) 

The X axis jerk upper bound constraint can also be obtained from Eq.(B.14) and Eq. 

(B.16) as: 

C+ =• 
X 

1 
^t)-l = ^[xJs)-s{ty+3Xss-s{ty-4t)+Xs-s{t)}-\<0 (B.21) 

A 

and its gradient with respect to the normalized segment durations is expressed as: 

dCx_ 1 
(*SSJ3 + 3XsJs + Xsss)-^r + 3(XSJ> + X j ) - ^ r + 3XJ | L + X. 

(B.22) 

„\ a? ., „ . a? . „ ds 

The gradients of the lower bound constraints have identical expressions to those of 

the upper bound constraints, with opposite sign (Eq.(B.14)). The gradients for the Y, Z, A 

and C axis constraints can be obtained by replacing the occurrences of 'X' with the rest of 

axis variables in Eq. (B.l8), (B.20), and (B.22). 


