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Abstract 

This thesis details a scheme, based on finite element methods, for modeling of the 

ballscrew drives of Cartesian-configured machine tools. Using this scheme, the structural 

dynamics of the ballscrew mechanism can be incorporated into the feed drive model, and 

thereby considered during high-bandwidth controller design, and interactive simulation of 

feed drive-controller performance in the virtual environment. 

The finite element method used in this thesis for modeling is a hybrid kind, whereby the 

more rigid components of the feed drive are modeled as lumped-parameter rigid bodies, 

while the flexible members, like the ballscrew, are modeled using distributed-parameter 

structural members. As a result, a feed drive model is developed which both maintains a 

reasonably low level of complexity while adequately capturing the relevant dynamics needed 

for controller design and simulation. 

This scheme also pays close attention to the modeling of the screw-nut interface, 

because it plays an important role in the functioning of ballscrew drives. Two methods are 

proposed for deriving the stiffness matrix of this interface - the Rigid Ballscrew Method and 

the Shape Function Method. The former method is shown to capture interesting dynamics of 

the interface, while the latter is derived in anticipation of situations where the former may not 

perform satisfactorily. 

In order to show the benefits of this modeling scheme, three high-bandwidth controllers 

are designed. The first controller is designed based on the traditional technique which 

considers only the rigid-body dynamics of the drive. On the other hand, the second and third 

controllers are designed considering the rigid-body and structural dynamics information 

obtained from the proposed modeling scheme. Analyses performed on the three controllers 

reveal that the two controllers designed based on the proposed scheme outperform that which 

is designed following the traditional technique. 

Finally, a simulation strategy is designed which allows the feed drive model, together 

with its non-linear dynamics to be combined with the controller dynamics and other 

dynamics of the feed drive system. In order to reduce simulation time, a novel method of 

performing model reduction based on a Component Mode Synthesis technique combined 
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with Modal Acceleration recovery is described. This method is used to achieve an efficient 

reduction without compromising relevant dynamic properties of the full model. 

The potentials of the scheme presented in this thesis are demonstrated partly by 

experiments conducted on a test bed, and in other cases, by simulations performed on a 

model generated from the test bed. 
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Chapter 1 

Introduction 

For many years, control engineers in the machine tool sector have assumed that the 

coupling between feed drive structural dynamics and controls is negligible, permitting them 

to model the dynamics of feed drives based on rigid-body assumptions. A very common 

example of such rigid-body models is shown in Figure 1.1, where a ballscrew feed drive 

mechanism is modeled as a lumped inertia, J and equivalent viscous damping, B, both 

reflected at the motor shaft. As a result, the dynamics of the mechanism can be 

mathematically expressed as an uncomplicated linear differential equation (Figure 1.1). Such 

models, even though simple, have been successfully used for controller design, analysis and 

simulation, and have yielded excellent results because of the validity of the rigid-body 

assumptions under which they were derived. 

Physical Model 
Angular 

Displacement (9) 

Machine Tool Feed Drive 

Mathematical Model 

T=J'6+BQ 

Figure 1.1: Modeling of a Feed Drive based on Rigid-Body Assumptions 

However, the growing pressure in recent years towards increased productivity and 

reduced time-to-market has created enormous demands on the manufacturing industry for 

faster machine tools which can increase the metal removal rates in machining operations. On 

the other hand, demands for higher part tolerances and better surface quality of machined 

products have provoked a conflicting requirement for the highest tool positioning accuracy in 

such operations. In response to these demands, machine tool producers have pushed the 

frontiers of High Speed Machining (HSM) to a point beyond which these desirable but 
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Chapter 1. Introduction 2 

otherwise unattainable results can be reached. This has come as a result of advances in 

various areas of machine tool engineering. For instance, the advent of tooling materials such 

as carbide, ceramic, polycrystalline diamond, and cubic boron nitride, has significantly 

increased metal removal rate potential. In a similar vein, the use of ceramic balls in spindle 

bearing systems have increased the achievable speeds of machine tool spindles to values 

exceeding 20,000 [rpm]. 

In order to compliment the advances in these other areas, machine tool feed drives have 

also been improved such that they are able to achieve high feedrates (typically greater than 

50 [m/min]) and accelerations that exceed 1 [G] while aiming to attain sub-micron 

positioning accuracy. These improvements are realized by designing rigid but light 

mechanical structures actuated by high-bandwidth drives and equipped with low-friction 

roller or hydrostatic guideways. Furthermore, these feed drives are furnished with high-

resolution feedback devices and controlled with sophisticated hardware and software. 

However, higher feedrates and, in particular, higher accelerations lead to a proportional 

increase in the amount of inertial reactions borne by the drives. On the other hand, reduction 

in material usage may lead to loss of stiffness in some parts of the mechanical structure, 

while low friction in the guideways reduces the amount of damping in the system. A l l these 

factors put together result in increase in the oscillatory excitations of the drives and structural 

components which are easily picked up by the feedback devices and fed into the controllers. 

The result of this is that structural vibrations and controls become closely coupled and rigid-

body models become unable to provide an accurate model of feed drive dynamics for control 

purposes. 

Consequently, in order to exploit the full potential of such machines, the structural 

dynamics of the feed drives have to be identified and modeled in such a way that this 

dynamic interaction between structural vibrations and controls to be analyzed and 

incorporated into controller design and performance simulation. 

Moreover, because of the increasing power of computer tools, the growing trend these 

days in machine tool engineering is to shift the validation of machine design and process 

optimization to so called virtual prototypes through numerical simulation. In this way, costly 

and time-consuming experimental validation on actual prototypes can be reduced. Therefore, 
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in order for feed drive dynamics and numeric control to be incorporated in such a virtual 

prototype, the feed drive modeling has to be performed using Computer-Aided Engineering 

(CAE) tools as opposed to experiments. Furthermore, the modeling has to be carried out in 

such a way that the feed drive model, together with the controls for each axis can be 

integrated into the virtual prototype to interact with its other subsystems, for instance the 

process dynamics. 

Virtual Prototype 

Figure 1.2: Modeling Scheme for Ballscrew Drives Presented in this Thesis 

In response to the aforementioned challenges, this thesis proposes a modeling scheme 

(shown in Figure 1.2) for Cartesian-configured ballscrew feed drives, whereby the dynamics 

of the concept feed drive for a high-speed machine tool can be modeled using a hybrid finite 

element technique, resulting in both lumped rigid-body components and distributed-

parameter components. In this way, the structural dynamics of the feed drive can be captured 

in the model, while endeavouring to keep the model complexity minimal. Such a model can 

then be analyzed in order to extract the relevant dynamic information (for instance, in the 

form of frequency response functions) needed for controller design. By introducing this 

information into a controller design block, a suitable controller can be designed that will 

achieve the desired performance specifications of the drive. In addition, the model can be 

reconfigured in such a way that it is able to interact with a virtual prototype of the machine 
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tool, along with the controller dynamics, in order to perform time-domain performance 

simulations. The results of such simulations can then be used to validate or improve the feed 

drive design by iterating through the entire process until optimum performance 

characteristics are obtained. 

Henceforth, the thesis is organized as follows: Firstly, a review of related literature is 

presented in Chapter Two, then a full description of the hybrid finite element modeling 

scheme for ballscrew drives is given in Chapter Three. Chapter Four then shows how the 

model resulting from Chapter Three can be analyzed and used to design high-performance 

controllers. Following this, Chapter Five gives a detailed methodology for generating a 

comprehensive simulation model based on the hybrid finite element model of Chapter Three, 

and using it for time-domain simulations of feed drive-controller performance. Finally, the 

conclusions and possible research directions are discussed in Chapter Six, while additional 

pieces of information needed to understand the content of the thesis are detailed in the 

ensuing bibliography and appendices. 



Chapter 2 

Literature Review 

2.1 Overview 

In the previous chapter, the challenge faced by machine tool designers and control 

engineers, due to the enormous demands from high-speed machine tools, was explained in 

detail. Machine tool designers were seen to be striving to reach a compromise between 

increasing the metal removal rates and satisfying the high-precision requirements for their 

machine tools. On the other hand, machine tool control engineers were coming to a 

realization that the ambitions of their colleagues in the design team render their simplified 

models for controller design and simulation invalid. 

As is always the case, these needs in the industry have aroused the interest of researchers 

in the concerned fields of study in a bid to find solutions to the problems arising from them. 

This chapter is therefore aimed at reviewing the work done by other researchers, which bear 

relevance to the topics and contributions of this thesis. Section 2.2 takes a look at research in 

the area of modeling of feed drives, including their flexibilities, while Section 2.3 covers 

research related to controller design based on these improved models. Work done on the 

integrated simulation of feed drive and controller performance is reviewed in Section 2.4, 

and then a summary of the contents of this chapter is presented in the last section. 

2.2 Modeling of Feed Drives including their Flexibilities 

As the speed and precision requirements from machine tools increase, the effects of the 

structural flexibility of the drives on controller performance are becoming increasingly 

significant. This trend has prompted researchers to look into ways of identifying and 

incorporating drive flexibility into feed drive model for controls. 

Allotta et al [1] used modal identification and updating techniques to identify the 

position dependent boundary conditions of a ballscrew system. This they achieved by first 

creating a free-free finite element (FE) model (without physical constraints) of the screw. 

Then, using scalar springs with unknown stiffness in different directions, they applied 

5 
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boundary conditions corresponding to the bearings and nut supports. By matching the 

resonance and anti-resonance frequencies of the model and experimental measurements, 

using an iterative technique, the unknown stiffness coefficients of the constraints were 

identified. This model was then used to demonstrate, by simulation, a possible vibration 

suppression technique using derivative control, with piezo-actuators placed at the bearing 

locations. Also using experimental techniques, Erkormaz [13] identified the inertia, damping 

parameters, guideway friction and the structural dynamics of a ballscrew feed drive. Based 

on this information, he derived a comprehensive model, suitable for controller design and 

simulation, which includes all these effects. Lee et al [28] proposed an experimental 

technique for identifying the parameters of a feed drive model including some structural 

dynamics based on contour error measurements using a cross grid encoder. Using this model, 

and the same contour error measurements, they outlined a procedure for tuning the controller 

parameters in order to reduce the structural vibrations of the machine tool in order to improve 

its overall contouring accuracy. 

Reinhart and Weissenberger [38] explain that the interaction between controls and 

mechanical structure in present-day machine tools makes them characteristic examples of 

complex mechatronic systems and so they have to be designed as such. They suggest a two-

stage process in the early phases of design where firstly, various functional subsystems are 

designed separately, and then, these separate subsystems are combined and optimized 

integrally as a complete mechatronic system using a Multi-Body System (MBS) modeling 

and simulation approach. 

Varanasi [47] has derived a feed drive model, which considers the distributed inertia and 

compliance of the ballscrew together with the compliance and damping of all of the major 

elements of the feed drive. This distributed-parameter beam model of the ball screw drive 

system is reduced to a low-order model using a Galerkin's procedure based on shape 

functions derived from the quasi-static deformation of the system, and is shown to give good 

prediction of the open-loop transfer function of the drive when compared to experimental 

results. Following simplifying assumptions made on the design, he applies a perturbation 

expansion to obtain approximate expressions relating the open-loop poles to the design 

parameters, thereby forming a link between the mechanical and controller design. This then 



Chapter 2. Literature Review 7 

enables him to derive relationships which enable optimal drive structural design parameters 

to be selected based on the desired closed-loop performance characteristics. 

Pislaru et al [35] suggest a hybrid methodology for modeling machine tool feed drives 

whereby the ballscrew is modeled using distributed parameters whiles the other components 

are modeled using lumped parameters. The distributed-parameter model of the ballscrew 

consists of a bunch of masses/inertias and springs which represent various sections of the 

ballscrew. One problem with this method however is that it cannot capture the changing 

dynamics of the feed drive system as the nut moves along the ballscrew due to the fact that 

the value of the ballscrew's parameters are apparently obtained for only one position of the 

nut. 

As an alternative or complement to the methods for modeling machine tools proposed by 

the researchers mentioned above, finite element methods (FEM) have attracted the attention 

of many researchers. Van Brussel et al [46] employed F E M to model a three-axis milling 

machine including the feed drive. Using component mode reduction procedures in two steps, 

the original FE model was reduced to a state-space model suitable for control design and 

simulation. Their model was able to capture the position-dependent dynamics of the drives. 

Zaeh, Oertli and Milberg [51] picked up the challenge of creating a more realistic FE model 

of ballscrews using universal F E M codes. They aimed at adequately capturing the 

force/torque straining during transmission, and also incorporating the total stiffness of the 

rolling balls between the ballscrew and the nut. Based on a reduced state-space model 

derived from their FE model, they also simulated the behavior of the control loop. 

As a step towards predicting the thermal behavior of ballscrews, Holroyd et al [18] also 

used F E M to model and simulate the dynamics of a ballscrew, taking into account the time-

changing boundary conditions. By assuming that the displacement response at each time step 

can be approximated by a power series, the coefficients of the series were determined based 

on mass, damping and stiffness matrices, which were assumed to remain constant during 

each time step but were updated after the step. The analysis accuracy, which was improved 

by integrating data acquired from experimental modal analysis, gave results that show a close 

match to experimental measurements. Smith [42], Berkemer [4] and Schafers et al [40], have 

also used F E M in modeling machine tool feed drives for control purposes. 
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One aspect of ballscrew drives that requires a great deal of attention when modeling is 

the interface between the ballscrew and nut. This is because it plays an important role in the 

transmission of motion, vibrations and forces from the ballscrew to the table. Lin et al [31], 

by studying the kinematics of the balls as they travel within the raceways of a ballscrew 

mechanism have established that the balls always undergo micro-scale slip along constant 

sliding lines during motion transmission. Wei and Lin [48] have furthered this study by 

modifying the assumptions made with regard to the friction coefficients, normal forces and 

contact angles created at the ball/screw and ball/nut contact interfaces. Furthermore, they 

have included the effects of the drag force generated as the ball moves in an oil lubricant in 

their model. Based on these modifications, they have noted significant differences between 

the modified model and the previous model by Lin et al [31], particularly at high rotational 

speeds. In the same vein, Cuttino et al [9,10] have used F E M to derive a relationship between 

the torque generated as the ball rotates in the raceway and the angle of rotation. Relying on 

this relationship, they have successfully predicted the micro-scale hysteretic behavior 

observed in the torque and displacement transmission characteristics of the preloaded nut 

interface. 

In deriving a stiffness for the screw-nut interface, many of the researchers mentioned 

above [1,4,18,35,42,47] have considered only the axial and/or torsional deflections of the 

ballscrew. Zaeh et al [51] go a step further to include the effects of the ballscrew's bending 

deformations through 3-D transformations of the stiffness of each individual ball. However, 

their method falls short of determining some cross coupling terms between deformations in 

the bending, axial and torsional directions of the ballscrew and nut which may be significant 

to the dynamics of ballscrew drives. 

In modeling ballscrew drives, this thesis employs a hybrid FE methodology whereby the 

ballscrew is modeled as a Timoshenko beam, while the other more rigid components are 

modeled as lumped masses/inertias connected by springs. Furthermore, the screw-nut 

interface formulations are derived in such a way that they include the bending deformations 

of the ballscrew, and also capture the additional cross coupling terms between the 

deformations in the bending, axial and torsional directions of the ballscrew and nut. 
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2.3 Controller Design for Flexible Feed Drives 

Controller designs considering the mechanical resonances of the controlled system have 

been widely performed on robot manipulators with flexible joint and/or links [5,11,20,26,27]; 

however, their application to machine tool feed drives is a more recent development. Lim et 

al [29] have reported that a torsional displacement feedback control scheme similar to the 

joint torque feedback method in robot systems, which is based on an estimation of torsional 

displacement of flexible ballscrews with known stiffness properties, leads to a significant 

reduction in the error of the table position. Chen and Tlusty [7] showed by simulation that 

applying accelerometric feedback combined with a feed-forward compensator on a flexible 

feed drive improved the transient response at the machine tool table and chatter vibration 

characteristics between the cutting force and machined part. 

Erkorkmaz [13] designed two controllers based on his feed drive model described in the 

previous section. The first was an elaborate Sliding Mode Controller (SMC) designed to 

actively compensate the effect of the first torsional mode of the ball screw. The second was 

much simpler than yet as effective as the first. It was performed by filtering out the first 

torsional mode using a notch filter and then designing a SMC based on rigid body dynamics 

alone. Both controllers were shown to improve the high speed tracking and contouring 

performance of the drives significantly when compared to similar designs which did not 

consider the flexibility of the drives. Smith [42] has also implemented notch filtering of the 

problematic modes arising from the ballscrew, making it possible to increase the bandwidth 

of the feed drive, hence improve its performance. Another method of reducing the vibrations 

of the drive, utilized by researchers, is the shaping of input commands in order to remove the 

frequency contents in the axis commands that may excite the structural resonances of the 

feed drive system [22]. 

Due to the changing support conditions as the table moves within the workspace, the 

structural dynamics of flexible feed drives change depending on the position of the table. 

This poses a great challenge from the controller design stand point, as the plant can no longer 

be characterized as a Linear Time-Invariant (LTI) system. In order to achieve robust stability 

and high-performance control for a direct driven machine tool, Symens et al [45] have 

applied gain-scheduling as an alternative to classical fixed-parameter controllers which do 
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not perform well for such machine tools with varying structural flexibility. They employed 

two different scheduling schemes - one ad-hoc and the other analytically derived - on Hoo 

controllers designed for various positions of a machine tool with position-dependent 

structural dynamics. Their experiments yield good results from the ad-hoc scheme but the 

analytically derived Linear Parameter Varying (LPV) scheduling scheme requires some 

improvements. 

Instead of scheduling the controller parameters, Van Brussel et al [46] capitalize on the 

robustness of the Hoo controller, by performing a design based on the nominal position of the 

machine tool, while factoring in the information regarding the position-dependent variation 

of dynamics into the uncertainty model of the controller. This controller, which considers the 

flexibilities of the machine, is shown to outperform a reference PID controller which is 

designed based on only rigid-body dynamics, in tracking performance. However, when it 

comes to disturbance rejection, the Hoo controller is seen to perform poorly. Its disturbance 

rejection performance is improved by building it around a velocity loop closed with a PI-

Controller which adds more damping to the system. 

Smith et al [43], also on the control of machine tools with changing or unknown 

parameters, designed three adaptive controllers - an adaptive PID, an adaptive phase 

compensator and an adaptive phase compensator that explicitly consider input constraints 

(saturation) - which they implemented on a prototype machine tool axis. The results show 

that the adaptive control schemes offer greater robustness to parameter variation and better 

overall performance than an ordinary PID controller. Furthermore, implementing them does 

not involve much more than a PID controller. However, their controllers did not include the 

structural dynamics of the feed drive. 

Schafers et al [40] explain that while tackling the problems caused by structural 

dynamics interacting with controls, control related measures are not enough. They suggest 

making improvements on the mechanical design of the machine tool as an alternative means 

of dealing with these problems. 

This thesis shows that considering the flexibility of drives in controller design through 

either mode compensation or notch filtering, together with modifying the mechanical design, 
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go a long way to improve the performance of the feed drive, when compared to a design 

based on rigid-body dynamics. 

2.4 Integrated Simulation of Control Loop and Flexible Feed Drive Model 

In order to better analyze the interaction between the control and structural dynamics of 

a flexible feed drive, it is desirable to incorporate the flexible feed drive model into the 

control loop in a way that that both the mechanical design and control design can be 

optimized as a whole. Yeung [49] has developed a comprehensive design and simulation 

environment for CNC machine tools with Cartesian drive configurations, which includes 

trajectory generations modules, feed drive rigid-body dynamic properties, system non-

linearities (such as Coulomb friction, actuator saturation and backlash), and various axis 

control laws. Using this simulation scheme, various feed drive performance criteria can be 

investigated in the virtual environment. 

A similar venture was undertaken by Pislaru et al [35], using the hybrid model they 

developed for feed drive systems. They also accounted for the distributed loads, explicit 

damping factors and measured non-linear effects like friction and backlash of the various 

components of the drive system. In addition to obtaining simulation results which compared 

favorably with experimental results, their model was able to produce data useful for the 

prediction of interactions between components, which is needful for the mechanical design. 

In describing the MBS simulation approach, Reinhart and Weissenberger [38] suggest that 

the control loop could be reconfigured such that it acts as an external force element with in­

built dynamics that can interact with the MBS. In this way, the actuation force is made to act 

on the MBS and, in return, state variables like position, velocity and acceleration are returned 

to the control loop as feedback. Thereby, an interactive simulation scheme between the 

control loop and mechanical structure can be achieved. 

In order to successfully incorporate a prototype of a real-time virtual machine tool, 

which is capable of simulating the drive dynamics and mechanical components, into the 

control loop, Pritschow and Rock [36] have pinpointed that the simulation step must be kept 

constant. However, this gives rise to certain hardware and algorithmic challenges. They 

tackled the hardware problems by inserting a second real-time extension kernel between the 

hardware and kernel of standard operating systems. On the other hand, the algorithmic 
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difficulties were solved by predetermining a step-size and algorithm order that will ensure 

absolute numerical stability in the chosen algorithm, while keeping the step-size and number 

of operations within the simulation step constant. With these problems overcome, they were 

able to perform real-time simulations using a virtual prototype planted within the control 

loop of an actual CNC machine and obtain results comparable with those from the real 

machine. 

The issue of lessening of simulation time through model reduction is also an important 

issue in performance simulation of feed drives, this is particularly so for FE models which 

are usually large and complex with a lot of redundant information. Van Brussel et al [46] 

have used Component Mode Synthesis (CMS) methods with Modal Displacement (MD) 

recovery to achieve a reduction of their FE model of a machine tool. However, they 

encounter a problem because the M D recovery method does not allow for a full reduction of 

the model due to the need to capture the changing dynamics of the machine tool, as the 

position of the table varies. 

In this thesis, a simulation strategy which allows the incorporation of the drive's non­

linear effects, including the position-dependent variations in structural dynamics, and at the 

same time permits a full reduction of the FE model is presented. This is achieved by using a 

CMS method together with Modal Acceleration (MA) recovery. 

2.5 Summary 

In this chapter, literature related to modeling, control and simulation of flexible feed 

drives has been highlighted. The motivation for research into this area has been explained 

and various alternatives put forward by other researchers have been mentioned in order to 

place the work that follows in perspective, and provide a background for further research into 

this area. 



Chapter 3 

Modeling of Ballscrew Drive Mechanism 

3.1 Introduction and Overview 

Feed drives constitute one of the core systems in machine tools because they are 

responsible for the rapid and accurate realization of the complex motion commands required 

in High Speed Machining (HSM). At the same time, they also have to withstand the high 

forces resulting from this motion, and from the machining process being carried out. 

A typical feed drive can be divided into two main sub-systems which perform 

complimentary functions - the electrical and mechanical sub-systems. As shown in Figure 

3.1, the electrical sub-system is responsible for converting control signals coming from the 

CNC (Computer Numerically Controlled) unit into some kind of actuation force. It usually 

consists of components such as Digital-to-Analog (D/A) conversion circuitry, servo-

amplifiers, and an actuator which could be a linear or rotary motor. 

Electrical Sub-System 
D/A converters, amplifiers, 

motors, etc 

Mechanical Sub-System 

control 
signal 

Electrical Sub-System 
D/A converters, amplifiers, 

motors, etc actuation 
force 

guideways, ballscrew, nut, 

couplings, rotor, etc feed motion 
and force 

Figure 3.1: Sub-Systems of a Typical Feed Drive 

The mechanical sub-system, on the other hand, serves the purpose of transforming the 

actuation force into useful motion and force at the machine tool table where it is needed. Its 

configuration and constituent components highly depend on what kind of drive technique is 

employed in the feed drive. The two most commonly used techniques are the direct drives, 

based on linear motor technology, and the indirect or ballscrew drives. 

Direct drives, as the name suggests, directly supply linear motion and force at the 

machine tool table without any need of an intermediary conversion. Therefore they have an 

advantage over the ballscrew drives because they involve fewer components and so are 

simpler to design and assemble. In addition, they can achieve higher speeds and accelerations 
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with minimal backlash and friction, and they have an unlimited travel range. However, they 

have some significant drawbacks. The absence of a gear reduction between the linear motor 

and table, in direct drives, makes them sensitive to changes in workpiece inertia and 

disturbance forces. Furthermore, their stiffness depends mainly on the controller settings, and 

has little re-enforcement from the mechanical structure. The deceleration of the drive in a 

case of power outage is also a challenge when using linear drives, since they do not generate 

any back thrust and only depend on guideway friction for deceleration forces. This can result 

in destructive collisions with the spindle, workpiece and tooling. 

The ballscrew drive overcomes most of the shortcomings of the direct drive because it 

provides thrust and linear motion at the table by converting power from a rotary motor 

through a ballscrew mechanism. This gives it the ability to be relatively insensitive to 

changes in workpiece inertia and disturbance forces, while deriving some stiffness from the 

mechanism. In addition, in the case of a power outage, the mechanical system back-drives 

the ballscrew and motor causing the drive to decelerate rapidly.. 

The characteristics mentioned above, coupled with improvements in indirect drive 

technology which have resulted in ballscrew drives that can attain up to 60 [m/min] rapid 

traverse speeds and accelerations that exceed 1 [G], have made ballscrew feed drives to 

remain a favourable choice for many machine tool designers. However, these improvements 

have also necessitated a modeling scheme which addresses the dynamic interactions, 

discussed in Chapter One, between their mechanical structure and controllers. 

Consequently, this chapter describes the components of a typical ballscrew drive in 

Section 3.2, followed by a hybrid finite element methodology for modeling these components 

using a combination of structural members and rigid bodies, in Sections 3.3 to 3.4. This is 

followed by a step-by-step experimental validation of the model in Section 3.5, and then 

some concluding remarks in Section 3.6. 

3.2 General Structure of a Typical Ballscrew Drive 

A diagram of one axis of a ball screw drive is shown in Figure 3.2. Its main component 

is the ballscrew which is attached to the rotor through a coupling. The screw is usually 

supported at both ends. At the end proximal to the motor, it is supported by thrust bearings 
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which constrain it axially and radially. On the other side distal to the motor, it is either 

unsupported or is supported by a radial bearing which is axially unconstrained in order to 

permit the thermal expansion of the screw. Pre-tensioned ballscrews also exist for which the 

distal end of the screw is also supported axially in order to keep it in tension. This way, 

stresses resulting from thermal growth are reduced. 

couplings 

screw-nut 
interface fastener 

table 

guideway 

rotor 

motor 

thrust frame 
bearing 

nut ballscrew 
radial 

bearing 

Figure 3.2: Mechanical Components of a Ballscrew Feed Drive 

As depicted in the figure, the rotary motion from the screw is converted to a translation 

at the nut through the constrained relative motion of the screw-nut interface. Fasteners are 

used to connect the nut to the table, while the guideways direct and support the table. The 

machine tool frame provides the supporting structure for all the components in the assembly. 

The components are either rigidly connected to the frame, or they are connected to it using 

fasteners. 

3.3 Modeling of Drive Components 

In modeling the drive components described above, a hybrid finite element method 

consisting of structural members for flexible components and lumped-parameter models for 

relatively more rigid parts has been employed. Figure 3.3 gives a schematic overview of the 

method, for a single-axis ballscrew drive. 
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Figure 3.3: Overview of Hybrid-Finite-Element Ballscrew Drive Model 

As shown in the figure, the ballscrew is modeled using Timoshenko beam finite 

elements, while the rotor, table and nut are modeled as lumped masses and inertias. The 

couplings, bearings, fasteners and guideways are modeled using linear and rotary spring 

elements. As for the frame, it is assumed to be rigid and fixed to the ground since all 

measurements are taken relative to it. The interface between screw and nut is modeled using 

a special spring element having 6 degrees-of-freedom (DOF). 

A detailed breakdown of this methodology is presented in the following sections. 

3.3.1 Ballscrew 

The ballscrew has a simple geometry for most of its cross-sections; therefore, it can be 

readily modeled using beam finite elements. However, the threaded section, as shown in 

Figure 3.4 poses a significant challenge because the threads create a varying and complicated 

cross-section which can only be captured using 3-D finite elements. 

d 

Threaded Section 

k - — L — -+I 

Figure 3.4: Ballscrew Geometry 
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However, previous researchers [42] have found out that the threads do not make any 

substantial contribution to the stiffness of the ballscrew; although, they affect its inertia 

properties significantly. Consequently, the threaded section can be approximated using beam 

elements by introducing the mass of the threads into the mass matrix calculations while 

excluding their effects from the stiffness matrix calculations. 

In order to do this, for the threaded section, the root diameter, dr is used to derive the 

stiffness matrix of the finite element, while an equivalent diameter; de is used to calculate the 

mass matrix. The equivalent diameter is obtained by equating the mass of a cylinder having a 

diameter, de to the mass of the threaded section including the threads. It is expressed as, 

where L represents the length of the threaded section, and Vthreads is the total volume of 

the threads which can be estimated from the geometry of the thread. 

The Timoshenko beam element is preferred over its Euler-Bernoulli counterpart because 

it considers shear effects in its bending deformation formulations. Stemming from this, the 

Timoshenko beam elements yield more accurate results at higher frequencies, than the Euler-

Bernoulli beam elements. Furthermore, they can be used to model short and stubby beams 

more accurately. 

(3.1) 

x,u 

Figure 3.5: Timoshenko Beam Element 
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Each beam element has six DOF on each of its two nodes; three translations, u, v, w, and 

three rotations 6X, 6y, 0Z, as shown in Figure 3.5. Each section of the ballscrew is divided into 

equal-sized elements. Element sizes with a length-diameter ratio of 0.3-0.5 have been found 

to give reasonably consistent results. The expressions for the element stiffness and mass 

matrices of a Timoshenko beam are given in Appendix A. 

3.3.2 Rotor, Nut and Table 

The rotor, nut and table, being relatively more rigid than other elements such as the 

ballscrew and joint interfaces, are adequately approximated by lumped inertia properties 

defined at their Centres of Mass (COM). In the most general case, the model for each of 

these elements consists of a mass matrix comprising a translating mass, m, and nine rotary 

inertias {Ixx, Iyy, Izz, Ixy, Iyx, IX2, Izx, Iyz and Izy) expressed in matrix form as, 

M = 

m 0 0 0 0 0 
0 m 0 0 0 0 
0 0 III 0 0 0 

0 0 0 4 4 4 
0 0 0 4 4 4 
0 0 0 4 4 4 

However, in specific cases like the case of the rotor which is assumed to only rotate 

about the z-axis (i.e. axis of rotation), the mass matrix given in Eq.(3.2) can be reduced such 

that only Izz is retained. Furthermore, in cases where information in the form of displacements 

and forces are desired at locations other than the C O M , as depicted in Figure 3.6, rigid-body 

transformations can be used to map the information at the C O M to the desired location, P. 

Figure 3.6: Rigid-body Transformations from the C O M to any Point P 
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The transformation matrix, TP.COM of displacements from the C O M to P is derived as, 

\e\ 
-sir) *3x3 

^3x3 I3x3 
H 
W . 

(3.3) 
COM 

1 P-COM 

where u and 6 are the displacement and rotation vectors at a given location, expressed as 

u = {ux uy uz}T and 0 = {dx 6y dz}T, respectively, r is the position vector from the C O M to 

point P given by, r - {rx ry rz)T while S(r) is the tensorial representation of r given by, 

S(r) = 
0 ry 

0 

~ry 0 

(3.4) 

The transformations used here are based on small angle rotations, since the components 

for which these transformations are required, namely the table and nut, do not undergo large 

rotations, because their only rigid-body motions are translations along the feed axis. 

The generalized force vector, Fp = {Fx Fy Fz Mx My Mz)T, consisting of forces and 

moments applied at point P, can also be transformed from the point P to the C O M by using 

the transpose of the transformation matrix, TP.QOM as, 

^COM = TP-COM Fp (3.5) 

3.3.3 Couplings, Bearings, Fasteners and Guideways 

Joint interfaces such as couplings, bearings, fasteners and guideways are typically areas 

of significant compliance; therefore they play an important role in the dynamics of any 

mechanical system. Even though some of these elements show varying degrees of non-linear 

characteristics, it is customary to model them using linear spring elements. More details 

about the modeling of these joint interfaces are presented in the following sub-sections. 

http://Tp.com
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3.3.3.1 Couplings 

Couplings used in machine tool feed drives vary in design. Some of the commonly used 

designs include jaw couplings, bellow-type couplings and disc servo couplings. However, 

irrespective of the design, one of the most desirable characteristic in such couplings is a high 

torsional stiffness, because this property plays an important role in the feed drive's dynamics. 

Therefore, ballscrew drive couplings are usually modeled as torsional springs with a spring 

constant which can be readily obtained from manufacturer catalogs. 

(a) Jaw Coupling Set (b) Model of Coupling 

Figure 3.7: Model of a Typical Coupling 

Figure 3.7 shows a jaw type coupling and how its compliance is modeled using a 

torsional spring with stiffness kj. As shown in the figure, in situations where the coupling has 

significant inertia (for instance the jaw inertias in this case), these properties can be lumped 

at either end of the torsional spring as Ji and J2, and then subsequently attached to the 

adjoining components. 

3.3.3.2 Bearings 

A lot of work has been done on the modeling of bearings by previous researchers 

[12,21,23,30,34]. These analytical models usually take the form of simple or complex non­

linear expressions for bearing stiffness as a function of applied forces, the resulting 

deformations, and even rotation speed, i f centrifugal and gyroscopic effects are included. 

However, when sufficient preload is applied and the rotation speeds are moderate, the non-

linearity in the bearing stiffness can be neglected such that a stiffness value can be assigned 

to the bearing for a given preload. This information is usually available in manufacturer 

catalogs for various bearing types and arrangements. For angular thrust bearings, stiffness 
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data are available as an axial stiffness and radial stiffness as shown in Figure 3.3, while for 

radial bearings, they are expressed as a single radial stiffness. 

As an alternative to the information provided in the bearing catalogs, bearing stiffness 

could be measured in various ways [19,24] or obtained using dedicated software [6,44]. 

3.3.3.3 Fasteners 

A variety of fasteners are used joint components in a feed drive system. However, only 

few of these have to be considered in the model because most of them do not play a 

significant role in the machine's dynamics. Generally, any fastener which is considered weak 

enough to constitute a significant compliance between two components should be included in 

the model. 

One fastened joint which often falls into the aforementioned category is that between the 

nut and table in a feed drive system. This is because the table is usually heavy; therefore the 

joint linking the nut to it undergoes appreciable deformations. 

The most commonly used fastener in machine tool feed drives is the nut and bolt which 

is conveniently modeled as a linear spring having a stiffness which comprises the stiffness of 

the bolt and that of the bolted members combined in series. This stiffness can be calculated 

given all material and geometric properties of the bolts and members as explained in [41]. 

Experimental measurement of the joint stiffness can also be performed as an alternative 

to analytic methods [39]. 

3.3.3.4 Guideways 

Traditionally, CNC machine tables have been guided using the so called boxways 

consisting of precision-ground surfaces, which provide reference edges along which the table 

slides. These box ways typically come in various designs, typical of which are the dove-tail 

and square-edge configurations. 

Even though box ways are simple in operation and design, they are plagued by certain 

limitations like high friction and low speed capability which have made them unsuitable for 

high-speed machine tools. Consequently, linear guides are preferred for such machines tools. 
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Figure 3.8: A Linear Guide Unit Consisting of a Slide and Rail 

Figure 3.8 shows a typical linear guide unit which consists of a slide and rail assembled 

together. Depending on how the interface between the slide and rail is filled, the linear guides 

can be categorized as either hydrostatic or anti-friction guideways. The hydrostatic 

guideways employ a pressurized fluid film at the interface to reduce friction, thereby increase 

achievable speeds. In the case of anti-friction guideways, rollers are inserted at the interface 

to achieve the same purpose. 

springs 

Figure 3.9: Model of Linear Guides using Vertical and Lateral Springs 

Linear guides are typically modeled as linear springs in the vertical and lateral directions 

as shown in Figure 3.9. Even though each unit has stiffness in the three rotational directions, 

these are not considered since machine tools generally use two rails and four slides as shown 

in the figure. The stiffness constants for the springs are usually provided in manufacturers' 
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catalogs as a function of preload force and pressure for the anti-friction and hydrostatic 

guides, respectively. 

3.3.4 Screw-Nut Interface 

The screw-nut interface of a ballscrew drive is very important because it is where rotary 

motion and torques from the ballscrew are converted to linear motion and thrust that is 

transmitted to the table. Even though functionally similar to the interface in conventional 

leadscrews, the distinguishing feature in the case of a ballscrew is that balls are inserted at 

this interface in order to convert the sliding friction present in leadscrews to rolling friction. 

Due to this improvement, up to 98% reduction in friction and a proportionate increase in 

efficiency are achieved [33]. 

Moreover, a preload is often applied at this interface in order to mitigate backlash effects 

and increase the rigidity of the drive. Three types of preload mechanisms are typical in 

machine tool feed drives. They are the spacer, offset and oversize-ball preload [33]. 

Spacer Preload Offset Preload Oversize-ball Preload 

Figure 3.10: Common Preload Mechanisms used in Machine Tool Feed Drives 

As shown in Figure 3.10, in the spacer preload mechanism, a spacer is inserted between 

two nuts in order to apply a preload. By varying the thickness of the spacer, the preload 

applied to the interface can be conveniently adjusted. In the offset preload, instead of two 

nuts, only one nut is used. However the lead is increased by a small amount, 5 in the middle 

portion of the nut in order to achieve the same preloading effect as the spacer. In the 
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oversize-ball preload, as the name suggests, the balls are made a little larger in size than the 

grooves thereby creating a preload force at the interface. 

At this juncture, it is necessary to mention that in the first two preload mechanisms, each 

ball has a two-point contact, while in the third, the contact is four-point (see Figure 3.10). In 

the mechanisms with two-point contact, half of the balls contact the ballscrew at the lower 

(right) side of its thread, while the other half make contact with the ballscrew thread on its 

upper (left) side. On the other hand, in the case of the oversize-ball preload, all the balls in 

contact make contact with both the lower and upper side of the ballscrew thread. The nature 

of the contact plays an influential role in the interface model explained in following sections. 

3.3.4.1 Modeling of Interface Stiffness 

In modeling the screw-nut interface, the mass of the balls is assumed to be negligible, 

while all the compliance is assumed to come from their point of contact with the screw and 

nut. Therefore, the balls are modeled as massless springs having a stiffness ksaii aligned along 

the common line of contact (contact normal) between screw and nut as depicted in Figure 

However, in order for this stiffness for each ball to be applied to the FE beam model of 

the ballscrew and lumped-inertia model of the nut, it has to undergo a two-stage 

transformation. The first stage of the transformation is necessary in order to convert ksait from 

a local coordinate system established for each ball, to the global coordinate system defined 

for the ballscrew drive as shown in Figure 3.5. Then, the second stage of the transformation 

is developed in order to lump the stiffness of all the balls distributed all around the screw-nut 

interface such that they can be connected to the nut node, and to one or more nodes on the 

ballscrew. The stiffness matrices for the screw-nut interface are then obtained by applying 

3.11. 

Figure 3.11: Spring Model of Balls in the Screw-Nut Interface 
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this two-stage transformation to ksaii- Sections 3.3.4.2 to 3.3.4.5 present a detailed 

explanation of these steps. 

3.3.4.2 First Stage of Transformation: Local to Global Coordinates 

In order to derive this transformation, it is necessary to define the orientation of the 

contact normal along which the spring stiffness described above is aligned. This orientation 

is best described by the two angles a and 13 shown in Figure 3.12. 

I 0 d p I 

Figure 3.12: Orientation of Contact Normal 

Here, a is the pitch angle of the ballscrew given by the expression, 

( \ 

where p is the pitch and dp is the pitch diameter of the ballscrew. /3, on the other hand, is 

the mean thread angle at the ball contact point. Hthr and Lthr are the height and length of the 

thread, respectively. 

In order to simplify the analysis, the ballscrew thread is unwrapped and represented as a 

double-inclined plane, inclined at angles a and /3, as shown in Figure 3.13(a). Two 

coordinate systems, CSu and GS^, are attached to the centre of each ball resting on the 

plane. CSjL is aligned such that its z-axis points along the contact line of the ball, normal to 

the plane (i.e. the direction of kBaii), while C & i is established so that its z-axis is parallel to 

the ballscrew's axis (global z-axis), and its y-axis lies along the radial line from the ball's 

centre to the axis of the ballscrew (see Figure 3.14 for clarity). 

H,hr 

contact 
normal 

U h r 
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(a) (b) 

C S i L : { X I L , y i L ; Z I L } 

C S 2 L : {X2L> y ^ L » Z 2 L J 

Figure 3.13: Inclined Plane Representation of Ballscrew Thread 

The coordinates, CSw and CSw on Figure 3.13(b) are established following the same 

logic, except that they represent the case where the ball-contact configuration is reversed as 

shown in the figure. The subscripts L and U are used to differentiate the ball-contact 

configurations as "lower" and "upper" respectively. 

For the L-configuration, the transformation T2L-1L that obtains CS2L from CSu is derived 

by a current-frame rotation of -a and § about the y and x-axis, respectively. This is 

represented mathematically as, 

where Rot represents a rotation matrix about the axis specified by the accompanying 

subscript. Their expressions and some information about current-frame rotations are given in 

Appendix A . 

The transformation Tzu-m, which obtains CS2U from CSw is calculated in a similar 

fashion, except this time the current-frame rotation is first a about the y-axis and then -/3 

about the x-axis. The mathematical expression is given by, 

T2L_lL=Roty(-a)-Rotx(J3) (3.7) 

7; 2U-\U = Rot(a)-Rotx(-B-) (3.8) 
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Since the spring deformation always occurs along the zi-axis in both configurations, then 

the transformations T21.-ZIL. and J^-z/jyare given by post-multiplying T21-11 and T2U-1U by a 

unit vector in the zi-direction, as, 

T2L-ZIL=T2L_U-{0 0 1}T 

T =T -(0 0 l l r ( - 3 - 9 ' ) 

Here T2L-ZIL is the transformation which obtains CS2L from ZIL, while T2u-ziu is the 

transformation that obtains CS2U from zm. To avoid repetition, this same notation is used for 

all the transformation matrices in this chapter. 

: 4 
Figure 3.14: Relationship between Ball Coordinates and Screw Coordinates 

Figure 3.14 shows the relationship between the previously described coordinate systems 

CS2L and CS2U and a new coordinate system, CS4. CS4 is centered at a specified point, P4 

along the axis of the screw, and aligned in such a way that its three axes are parallel to the 

global axes of the ballscrew drive shown in Figure 3.5. Another coordinate system CS3 (not 

shown in the figure) is established such that it has all its axes parallel to CS4 but its origin is 

located at the centre of each ball. In order words, CS3 is a ball-centered global coordinate 

system. The transformation T3.2L is simply a rotation about the z3-axis (or Z4-axis) by an 

amount (j). Here the azimuth angle, 0 represents the angle measured in the counter-clockwise 

direction from the X3-axis (or X4-axis) to the X2L or x2u-axis. As will be explained later, the 

angle <j> specifies the location of the centre of each ball along the ballscrew thread. 
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In order to obtain T3.2U, first the y2u and Z2u-axes are flipped by using a Boolean matrix 

so that they coincide with their corresponding axes in GS2L. This is then followed by a 

rotation about the Z3-axis by the angle <b. Mathematically, these transformations are 

expressed as, 

T3_2L=Rotz(0) 

l3-2U Rot,(<£)• 

1 0 0 
0 - 1 0 
0 0 - 1 

(3-10) 

Therefore, the transformation from each local coordinate system to the global coordinate 

system, for the L and U-configurations, T3.zlL and Ts-Zw, are given by multiplying all the 

transformations described above as, 

T = T T 

T — T T 
lT,-z\U A 3-2(7 A2U-z\U 

(3.11) 

It is worth mentioning here that since these transformation matrices are orthonormal, the 

inverse transformations Tzn-3 and Tzius are simply given by the transpose of their 

corresponding forward transforms, Tj-z/z. and Ti.zw. 

3.3.4.3 Second Stage of Transformation: Lumping to Nodes 

It is obvious from the previous section that each ball in the screw-nut interface has a 

unique local-global transformation matrix which depends on its contact configuration (L or 

U) and its azimuth angle, (b (Figure 3.14). However, the nut is modeled as a lumped mass 

represented by a single node located at its C O M , whiles the ballscrew, being an FE beam, has 

discrete nodes along its axis. The aim of the lumping explained in this section is therefore to 

develop transformation matrices between the ball-centered global coordinate systems for 

each ball, to node-centered global coordinate systems attached to the nut and ballscrew 

nodes. This way, the ball stiffness matrices distributed all around the contact interface can be 

connected to the nodes of the nut and ballscrew. 

Two methods have been developed here in order to perform this lumping - the Rigid-

Ballscrew Method and the Shape-Function Method. They are described in detail below. 
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(A) Rigid-Ballscrew Method 

In this method, the region of the ballscrew within the screw-nut interface is assumed to 

move as a rigid body. In order words, as shown in Figure 3.15, the motion of the screw is 

assumed to be characterized by a translation UBS measured at a point P located within the nut, 

and a rotation OBS- Point P is the origin of the CS coordinate system, and represents a node on 

the ballscrew. Since the nut is also modeled as a rigid body, it translates and rotates by an 

amount «^and ON measured from P, respectively. For convenience, P is chosen to coincide 

with the C O M (node) of the nut, since this is where all its inertia properties are lumped, r is 

the position vector measured from P to the centre of any of the balls in the interface. 

x 

Figure 3.15: Rigid-Ballscrew Method 

If the coordinate system, CSV in Figure 3.14 is chosen such that it coincides with CS, 

then the position vector, r for each ball can be expressed as a function of <b as, 

V Rs'm(<p) " 
r - • ry • = • -Rcos(0) • 

A, 

This function is derived from the parametric equation of helix having a pitch, p equal to 

the pitch of the ballscrew. R is the constant radius measured from the axis of the screw to the 

centre of each ball while rg is the gear reduction ratio of the ballscrew given by, 
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_P_ 
In (3.13) 

Figure 3.16 shows the relationship between r, rN and rBs for the L and U -

Configurations. rN and rBs are the position vectors measured from P to the ball-nut and ball-

screw contact points, PN and PBS, of each ball, respectively. 

nut 

a) L -Conf igura t ion 

nut 

b) U - C o n f i g u r a t i o n 

Figure 3.16: Position Vectors for Ball Contact Points 

If rsaii is defined as the position vector from the ball's centre, P3 to PN for both the L and 

U-Configurations, then rBs and rN are given by, 

' BS r-r, Ball 

r N = r + rBal, 
(3.14) 

The vector rBaii for the L and U-Configurations is obtained by transforming the radius of 

the ball, RBaii, to the global coordinates using T3.zn and T3.ZJU, as, 

rBall ~ ' 
' R-Ball 

for the L-Configuration 

for the U-Configuration (3.15) 

Since the ballscrew and nut are considered rigid bodies, and the rotations involved in 

vibratory motions are small, the transformations, Jj-^and T3.Nbetween the displacements in 

CS3, and displacements and rotations in CS, for the nut and ballscrew can then be written as, 
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« j / 3 , 3 SirBS)\ 

(3.16) 3-BS 

u 

Here U^BS and Um are the displacements of P ^ a n d PN measured in the CS3 coordinate 

system. S(.) is a function which converts the vector enclosed in the parenthesis to its tensorial 

form as explained in Section 3.3.2. 

Therefore, using the transformations T3.Bs and T3.N, displacements at the ball-screw and 

ball-nut contact points for all balls can be combined into equivalent nodal displacements and 

rotations at a point, P for the ballscrew and nut, respectively. 

(B) Shape-Function Method 

In the Rigid-Ballscrew Method described above, it was assumed that the section of the 

ballscrew within the screw-nut interface acts as a rigid body. However, in some cases where 

the nut is significantly long, for instance in the spacer and offset preload mechanisms, this 

assumption may not be realistic since the ballscrew may undergo significant deformations 

within the screw-nut interface. In such cases, the Shape-Function Method described in this 

section provides a more realistic means of lumping the distributed interface stiffness unto the 

ballscrew nodes. 

x 

nut 

V * 

* Z 

Figure 3.17: Shape-Function Method 
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Figure 3.17 gives a pictorial representation of the Shape-Function Method. As shown, 

the nut is still assumed to perform a rigid-body translation and rotation, UN and $N measured 

from P. However, this time, the deformations of the ballscrew at each of its AWe nodes 

within the screw-nut interface are considered. A new global coordinate system CSt, centered 

at point Pt, the undeformed location of the ith node of the ballscrew, has also been 

established. Here, UBSI and 6BSI are the translational and rotational displacements of the i 

node. 

•th 

node i-1 

Figure 3.18: More Details of Shape-Function Method 

Figure 3.18 shows a more detailed representation of the method for two adjacent FE 

beam elements of the ballscrew. The coordinate axes have been omitted for clarity. Here, it is 

assumed, without loss of generality, that the elements within the screw-nut interface have 

equal lengths, L,£im. i- is the non-dimensional distance measured from the left to the right node 

of each element such that its value ranges from 0 to 1 for a distance 0 to a distance Z,£/m. The 

node of interest is labeled as the i'h node, while the nodes to its left and right are respectively 

labeled as the UI and i+lth nodes. 

In addition to the position vector r explained above, three more position vectors have 

been introduced here, r^odet is the vector from P to the location of the node of interest P„ rsimi 

is the vector from Pt to an arbitrary point P% within the region around each node, while rt is 

the vector from P$. to P3, the location of the centre of any particular ball in the interface. A 
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global coordinate system, GSt (not shown in the figure) is established at every point P$ from 

which the displacements, UBSH a n a " rotations, dBs% of the ballscrew are measured. Furthermore, 

similar to the coordinate system C5„ established on the i'h node, CSi-i and CSi+i have been 

established on the i-lth and i+lth nodes, respectively. 

The region around each node is divided into two. Region I is the portion to the left of the 

ith node up to halfway into the element on its left, while Region II is the portion on its right 

up to halfway into the element on the right. These two regions have to be considered 

separately in the analysis. 

In Region I, the vector rEimi is always pointing in the negative z-direction. Hence it is 

given by, 

rEimi=rElmi-{Q 0 - i f (3. 1 7 ) 

where rEimi is the scalar distance from Pt to P%, given as a function of £ by, 

rElmi ~ ^Elm G ~ <3 ) (3.18) 

But £ is linearly dependent on the azimuth angle <j>, and so can be expressed by the linear 

function, 

£ = mtj) + c 
1 

m • c = l-m</>end (3-19) 

(f)st and (pendheve are the azimuth angles at the start and end of Region I (Figure 3.18). 

For Region II, the derivations follow the same pattern, except that rEimi is now always in 

the positive z-direction. It is given by, 

| , f l « . -=w{0 0 lY (3.20) 

This time rEimi is expressed as, 

rElmi = LU,,6 • . " (3.21) 

while the constants c and m in the linear function relating £ to <f> is given by, 
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1 , 

This time, <f)st and are the azimuth angles at the start and end of Region II. 

The vector rNodei is also always directed along the z-axis. However, its sense depends on 

the sign of the azimuth angle, (/>>, at the node of interest. Hence it is expressed for both 

regions as, 

^Nodei ̂ Nodei 

{0 0 sgn(faj\ (3.23) 

Similar to the rEimi case, rNodei is the scalar displacement between P and Pt. 

The vector can then be expressed in terms oi rEimi-, rNodei and r, for both regions as, 
ri = r ' rNodei ~ rElmi (3.24) 

Following the explanation in the previous method, the vectors rBsi and rN respectively 

from and P, to the screw and nut contact points, as opposed to the ball-centre, can be 

obtained from the vectors r, and r as, 

rBSi =ri~ rBall 

r =r + r <3-25) 
rN r ^ rBall 

where rBaii retains its definition as given by Eq.(3.15). This expression holds true for 

both regions. 

From the above derivations, it can be seen that since the flexibility of the ballscrew at 

every point is considered, the transformation matrix given for the ballscrew in Eq.(3.16) for 

the rigid-ballscrew method, now becomes a transformation between displacements in CS3 to 

displacements and rotations in C3$. This transformation, Tssst for both regions becomes, 

- « - [ / « - s c » > ] J ! H ( 3 - 2 6 ) 

- * 3 - f l S £ 

The transformation J^.^for the nut remains the same. 
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In order to lump the distributed stiffness on the ballscrew side, another transformation is 

needed between CS% and the global coordinate systems attached to the nodes. This is 

achieved by making use of the Shape-Function Matrix for the FE Beam Element given by, 

BSZ-BSi ~ 

0 0 0 0 0 0 0 TV 0 

0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 Nuz2 

0 0 0 
0 0 N9x2 

0 0 0 0 0 0 
0 0 0 0 0 0 0 N 0 

0 0 0 0 0 0 0 0 0 0 

(3.27) 

The expression for the Shape-Function matrix, TBSZ-BS,^ given in Eq.(3.27) is valid both 

Regions I and II. Its elements are all functions of £, and they represent spatial interpolation 

functions from displacements and rotations at the two nodes of an FE beam element to 

displacements and rotations anywhere within the element. The expressions for these 

functions are presented in Appendix A . 

Since the Shape-Function matrix is only valid for the nodes of a particular element, in 

Region I, it a transformation from CSi.j and CS, to CS% while in Region II it is from CSt and 

CSi+i to CS%. Mathematically, this is expressed as, 

for Region I 

(3.28) 

for Region 11 

u BS$ 

0 BS% 
BSl;-BSi 

u BSi-l 

0 BSi-l 

BSi 

BSi J 

u BS$ 

0 BS4 
BS$-BSi 

UBSi 

0BSi 

BSi+l 

BSi+l 

Hence the transformation between CS3 and the node-centered global coordinate systems 

CSi-i, CSj and CSj+i for the ballscrew is given by, 
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U3BS ~ [^3 T 
3-BS£ 1 BS^-BSi 

' 3-BSi 

U3BS ~ [^3x6 l3-BS4 *BS%-BSi_ 

12-BSi 

BSi-l 

BSi-l 

UBSi 

6BSi 

BSi+\ 

BSi+\ J 

U BSi-] 

&BSi-\ 

UBSi 

^BSi 

u BSi+\ 

0 BSi+\ 

for Region I 

(3.29) 

for Region II 

Though these transformations are functions of £, they can easily be transformed into 

functions of (j) by using the linear relationship between £ and 0 derived above. 

3.3.4.4 Derivation of Interface Stiffness Matrix 

After the necessary transformations between the ball-centered local coordinate system z\ 

aligned in the direction of ksaii, and the node-centered global coordinate systems have been 

obtained, the derivation of the interface stiffness matrix follows quite simply. 

The stiffness matrix in the ksaii direction between the screw-ball and screw-nut contact 

points, PBS and PN (see Figure 3.16) is given by, 

K -k 
Ball ~ 1 1 Ball 

1 -1 

-1 1 
(3.30). 

For the Rigid-Ballscrew Method, the transformation matrix between the displacements at 

PBS and PN in the z\ coordinate direction, and the displacements and rotations at the screw 

node and nut node is expressed for the L-Configuration as, 

T = T T 
T — T . T (3.31) 
Az\L-N ~ *z\L-3 *3-N 

Similarly, for the U-Configuration, the transformations are given by, 
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T -T T 
Az\U-BS Az\U-3 *3-BS 
T = T T (3.32) 

As explained in Section 3.3.4.3(A), it is worth noting again that in calculating the rsati 

used in T^.s^and T3.N, the contact configuration of the ball must also be taken into account. 

The combined transformation matrix for the ballscrew and nut is given by the block 

diagonal matrix TZ1L.BSN for the L-Configuration, and TZ1U.BSN for the U-Configuration. 

Mathematically, this is expressed as, 

lz\L-BSN 

T 
1z\L- BS 0, 1x6 

0 T 
VU6 xz\L-N 

lzlU-BSN 

T 0 
*zlU-BS VU6 

0 T 
u\x6 Az\U-N 

(3.33) 

The screw-nut interface stiffness matrices for each ball as a function of the azimuth 

angle, 0 are calculated by transforming Ksaii- These matrices KL and Ku, respectively for the 

L and U-Configurations are given by, 

K = TT K T 
"-L 1 z\L-BSN ' -*1 Ball ' 1 zlL-BSN' 

K = T K T 
"•U Az\U-BSN ' ABall'1 zlU-BSN (3.34) 

Since these stiffness matrices have all been transformed into the same coordinate 

systems for all the balls, they can be combined by averaging each matrix over the whole 

motion range for the ball concerned, and then adding them all algebraically. Mathematically, 

this is expressed as, 

KSN = X 
*=1 

1 
(3.35) 

where KSN is the interface stiffness matrix and Nsait is the total number of balls in contact 

in the interface, while <f^iSt and ^>k,end are the azimuth angles of kth ball at the beginning and 

end of its motion range. The notation KL/u is used to indicate a choice between KL and Ku 

depending on the contact configuration of the k"1 ball. 

For the Shape-Function Method, the derivation follows the same sequence. To avoid 

repetition here, the derivations will be shown for only the L-configuration. For the U -

Configuration, all that needs to be changed are the subscripts from L to U . 
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The transformation between the displacements at the contact points PN and PBS 

expressed for the Rigid-Body Method in Eq.(3.31) becomes, 

T = I T 
Az\L-BSi Az\L-i ±i-BSi 
T =T T (3.36) 

for the Shape-Function Method. Notice that the transformation for the nut remains the 

same. This is because the nut is still assumed to be a rigid-body in the Shape-Function 

Method. 

The block diagonal matrix for the combined transformation in this case is given by, 

(3.37) T 
±z\L-BSiN 

T 0 
1 z\L-BSi "1x6 

0 T 
VU\2 *zlL-N 

Using this, the /"'-node interface stiffness for each ball is obtained as, 

^Li ~Tz\L-BSiN '^Ball '^z\L-BSiN (3.38) 

In order to combine these, again the stiffness for each ball is averaged over its motion 

range and then all the stiffness matrices are summed over the total number of balls. This is 

mathematically expressed as, 

- _ tsani 
KSNi = X *=1 

\ KLi/Ui(<p)d<{> (3.39) 

Here, KSNI is the interface stiffness connecting the Ith and i+lth nodes on the 

ballscrew to the nut node. Noaiii is the number of balls in the region around the i'h node while 

(f)kitSt and 4>ki,end are the azimuth angles at the beginning and end of the motion path of the kth 

ball within the region around the Ith node. Again, Ku/ui indicates a choice between either 

stiffness matrix depending on the contact configuration of the ball concerned. 

Each of the A V 0 j e nodes within the screw-nut interface has its Ksm matrix, and each 

matrix is derived following the steps explained above. 

As can be seen, the Rigid-Body Method requires fewer computations and yields one 

stiffness matrix. Therefore, it provides a simple but for most cases, good enough 

approximation for the interface stiffness. The Shape-Function method, on the other hand, 
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even though more accurate, is more involved but may be necessary in situations where the 

Rigid-Body Method proves to be an unrealistic approximation. Therefore, by way of 

recommendation, it is better to consider using the Rigid-Body Method for short nuts and 

more rigid ballscrews, and to use the Shape-Function method for long nuts and less rigid 

ballscrews. 

3.3.4.5 Determination of Ball Stiffness 

The ball stiffness, kBaii is not usually provided in the manufacturers' catalogs. However, 

a value is often provided for the axial stiffness of the screw-nut interface, kAX. This value can 

be used to calculate kBa\i by noting that based on the geometrical transformations described 

above, the direct stiffness in the axial direction always turns out to be, 

= kBa,lNBa„ ^ <* ^ P (3.40) 

for the spacer and offset preload mechanisms, and, 

kAx = kBallNBall 2 cos2 a cos2 p ( 3 4 x) 

for the oversize-balls preload mechanism because each ball consists of two springs, one 

in the L and the other in the U-configuration. 

Consequently, given 04 13 and A W , kBaii can easily be estimated from kAX. 

In cases where the value of kxx is not provided by the manufacturers, it can be calculated 

as explained in [39] based on Hertzian contact analysis as, 

1500^ a ; / cos 2 acos 2 yg3/>F; 
*Ax ~ Q (3-42) 

where Fprd [daN] is the external preload force applied to the interface and C, the elastic 

coefficient from Hertzian formula for contact deformation is given by, 

C = Q.115}\EBa"+E'hr 

^Ball^thr 

1 
(3.43) 

Here, EBaii and Ethr are the Young's Moduli for the ball and thread, while RBaii and Rthr 

are the radii of curvature of the ball and thread, respectively. 
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3.4 Overall Structure of the Mathematical Model 

At the end of all the modeling described in Section 3.3, a mathematical model is derived 

for the ballscrew drive which essentially consists of a mass matrix Mmodei and a stiffness 

matrix Kmodei for the entire model, made up of the mass and stiffness matrices of all the 

components in the model. The damping matrix Cmodei for the model is obtained from modal 

damping values obtained from experiments or experience from similar ballscrew drives. A 

method of transforming these modal damping constants to a damping matrix based on a 

proportional damping assumption is described in Appendix A . 

The linear second-order differential equation for the multi-degree-of-freedom (MDOF) 

system is given by, 

Mmodei'd' + Cmodeld + Kmodeld -F (3 

where d is the generalized vector of displacements and rotations of all the nodes in the 

model, while F is the generalized vector of forces applied to all the nodes in the model. From 

the mathematical model expressed in the above equation, information about the natural 

frequencies and frequency response functions (FRF) of the system can readily be obtained. 

This kind of information is useful for the verification of the model, as shown in Section 3.5. 

Furthermore, Eq.(3.44) can be converted into transfer function (TF) and state-space (SS) 

representations, which can be used for controller design and non-linear time-domain 

simulation as explained in Chapters 4 and 5, respectively. 

3.5 Experimental Verification of Model 

In this section, an experimental test-bed consisting of the x-axis of a 3-axis milling 

machine will be described, followed by a comparison of its measured to its modeled 

dynamics. Details on the measurement and/or estimation of the various model parameters 

used for the experimental test-bed are given in Appendix B. 

3.5.1 Description of the Experimental Test-Bed 

The experimental set-up used to verify the modeling technique presented in this chapter 

is the x-axis drive of the Fadal V M C 2216 three-axis milling machine shown in Figure 3.19. 
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Figure 3.19: Experimental Test-Bed 

This machine is capable of achieving a maximum feed rate of 23 [m/min] with a 

positioning accuracy of 5 [microns] on its x-axis. 

The method presented in this chapter has been used to model this test-bed (refer to 

Figure 3.3). The ballscrew is modeled as FE beam while the nut is modeled as a 6x6 inertial 

matrix. The rotor is modeled as a single rotary inertia about the axis of rotation because its 

vibrations in the other directions are considered to be irrelevant due to the fact that the kind 

of coupling used does not permit the transmission of these vibrations to the rest of the 

system. The test-bed's jaw-type coupling is modeled as a torsional spring with spring 

constant kj, together with rotary inertia Ji and J2 representing the inertia of the jaws. Two 

bearings are used to support the ballscrew - an angular-contact bearing at the end proximal to 

the motor and a deep-groove ball bearing at the other end. The angular-contact bearing 

(bearing 1) is modeled as with spring constants kgiax in the z, and ksirad in the x and y 

directions. The deep-groove ball bearing (bearing 2), on the other hand, is modeled with a 

spring constant kB2md in the x and y-directions. 

The test-bed uses a box way to guide the table. Even though the box way has significant 

compliance, because of insufficient information from the manufacturers and the difficulty of 

measuring its stiffness, it is assumed to be perfectly rigid. For this reason, the table is 

assumed to move only in the feed (z) direction, and so is modeled as a single mass, mtabie-
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For the screw-nut interface, the rigid-ballscrew method is employed. This is because, 

due to insufficient information about the interface, a lot of approximations have been made. 

For instance, since the distribution of the balls in the interface is unknown, they have been 

assumed to be uniformly distributed within the entire interface. With such assumptions, the 

degree of modeling accuracy provided by the shape-function method is unnecessary. In fact, 

the shape-function method does not work as well as the rigid-ballscrew method in this 

situation. Furthermore, since a single nut is used in the set-up, the rigid-ballscrew method is a 

good enough approximation. 

The values of all the model parameters are summarized in Table 3.1. Due to a lack of 

information from the manufacturers of the test-bed because of proprietary reasons, most of 

the parameters have either been measured or estimated (see Appendix B). 

Ballscrew 

Total Length = 921 [mm]; p = 10 [mm]; NElm = 47; dr = 40 [mm] 

. •'; ~ ' : ' '. ' Nut 

mnut= 1.49 [kg]; /„,„„,= /W # I 1 I,= 2.56x10'3 [kgm2]; Izz,nut= 1.3lxl0' 3 [kgm2] 

Rotor and Table 

/zz, r a ( o r=5.98xl0- 3 [kgm2]; w, f l W e=250 [kg] 

Coupling 

£ r = 3.94xl0 3 [Nm/rad]; J / = 3.09xl0"4 [kgm2]; J 2=3.06xl0" 4 [kgm2] 

Bearings 

W = 2.70x10" [N/m]; kBlrad= 1.9x10s [N/m]; kB2rad= AKIO1 [N/m] 

Screw-Nut Interface (Over-size Ball Preload) 

NBaii= 100; kBaU = 20.7 [N/iim]; a = 4.55°; /3 = 50° 

Table 3.1: Parameters for Model of Experimental Test-Bed 

In order to better understand the structure of the interface stiffness matrix, the first six 

rows and columns of the stiffness matrix K$N, for the interface of the experimental test-bed 

are given in Eq.(3.45) in terms of kBaii-- This portion of the matrix is sufficient to understand 

its structure, since the other portions have more or less the same structure and values. 
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K •SVl-6,1-6 

x,x 
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0 

0 

0 
0 

x6x,z 

0 

W z 

x,Ox 

0 

z,0* 

x6xfix 

0 

v 0 z , 0 x 

0 

0 

0 

0 

0 

0 

^ z , 0 z 

x6x,0z 

0 
Vfjz,0z 

Direct Terms: ^ 45) 
~ kyy

 = 58.9A:Sa//; &z z = 82.1 kBall; k6x6x = 0.0651 kBall; 

^ = 0.0653£ B a / /; kBzfit = 0.000208*™; 

Cross-Coupling Terms: 

k$x,x

 = kxfix

 = 0-01 %%kBai,; kgyy = kydy = 0.11 lkBall; 

kdx,z = = -0.0104*^; kexfiz =kezfix = 0.0000165*Sa/ /; 

kez,z
 = kzfiz

 = -0.130& B a / ; 

From the equation, it can be deduced that apart from the direct stiffness (diagonal terms) 

in each of the six directions, cross-coupling (off-diagonal) terms also exist, which couple 

radial and axial displacements to various rotations. Particularly, the coupling between the 

axial DOF and torsional DOF can be seen through the kZi$z and k$ZiZ terms. This coupling 

enables the rotary motion and vibrations of the ballscrew to be transmitted to linear motion 

and vibrations of the nut along the axis of the ballscrew. Most researchers ([4,42,47,51]) have 

also come up with this coupling in one form or the other in their screw-nut interface stiffness 

matrix formulations. 

However, the cross-coupling terms between the axial, torsional and bending DOF (kex,x, 

key,y, kex,z, kex,0Z), have not been derived or used by these researchers. In fact, most of them 

have totally ignored the effects of bending, with exception of [51], who have used a screw-

nut interface stiffness matrix of the form shown in Eq.(3.46), which includes all the direct 

terms, and only the cross-coupling terms between the axial and torsional DOF. 
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K 
1—6,1—6 

0 0 0 0 0 
0 ky,y 

0 0 0 0 
0 0 0 0 kz,ez 

0 0 0 - 0 0 

0 0 0 0 k 
8y,0y 

0 
0 0 Kz,z 0 0 K6zfiz 

(3.46) 

In order to ascertain the effect of the cross-coupling terms between the axial, torsional 

and bending DOF derived in this thesis, the screw-nut interface stiffness matrix of Eq.(3.45) 

has been compared to that of Eq.(3.46) in a study presented in Appendix C. This simulation-

based study shows that the cross-coupling terms are needed to capture the influence of some 

of the ballscrew bending deformation modes on the table position, and also the interaction 

between axial/torsional and bending deformations of the ballscrew. 

3.5.2 Step-by-Step Verification of Model 

3.5.2.1 Free-Free Ballscrew 

The first step in the verification process is to validate the Timoshenko FE beam model of 

the ballscrew. The figures below show FRFs of the ballscrew in its free-free condition 

measured in the axial, torsional and radial directions. 
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Figure 3.22: Radial F R F of Free-Free Ballscrew 

The figures show a good match between experimental measurements and F E M 

simulation in the three directions. Hence, the FE beam approximation of the ballscrew is 

good enough. 

3.5.2.2 Ballscrew and Nut 

In order to verify the interface stiffness and nut models, the nut is attached to the free-

free ballscrew and FRF measurements are made in the same three directions, as shown in the 

figures below. 
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Figure 3.24: Torsional FRF for Free-Free Ballscrew-Nut Assembly 



Chapter 3. Modeling of Ballscrew Drive Mechanism 48 

x 10' 

0. 
hrLJn 4 -

Measured 
FEM 

200 300 400 500 600 700 800 900 1000 1100 

x 10' 

2-

S-2 

200 300 400 500 600 700 800 900 1000 1100 
Frequency [Hz] 

Figure 3.25: Radial F R F for Free-Free Ballscrew-Nut Assembly 

As seen from the figures, FE Simulations based on the nut and interface models 

presented above give a good agreement with the experimental measurements in the three 

directions. 

Since, often times, it is of interest to know the dynamic response measured from a torque 

applied to the ballscrew end (by the motor) to the displacement measured at the table (which 

is coupled to the nut), Figure 3.26 shows the FRF measured from a torque at the ballscrew 

end to the displacement at the nut. As seen from the figure, the axial and torsional modes 

(shown above) are dominant, for this particular ballscrew, while the radial modes are not. 

The second mode in the figure shows a mismatch between the experimental measurement 

and the FE simulation due to time delays stemming from the backlash in the nut. 
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Figure 3.26: F R F Between Torque at Screw End and Axial Displacement at Nut 

It is also of interest to know if the model is able to capture the changes in dynamics as 

the nut travels along the ballscrew. The figures below show a comparison between FRFs 

measured and simulated at three different nut positions (shown on the figure) on the 

ballscrew shaft for the first axial and torsional mode of the assembly. The radial direction is 

not shown because there are no significant changes in that direction. 
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Figure 3.28: Position-Dependent Dynamics (Simulated) 

As indicated by the figures, the interface model presented above is able to capture the 

changing dynamics of the system as the nut moves from position to position along the 

ballscrew. 



Chapter 3. Modeling of Ballscrew Drive Mechanism 51 

SOURCE 
Natural Frequency of First Axial Mode [Hz] 

SOURCE Position 1 Position 2 Position 3 

Measurement 2493 2914 2532 

Simulation 2489 2904 2528 

Table 3.2: Position-Dependent Variation of First Axial Natural Frequency 

SOURCE 
Natural Frequency of First Torsional Mode [Hz] 

SOURCE Position 1 Position 2 Position 3 

Measurement 1812 1828 1812 

Simulation 1807 1812 1807 

Table 3.3: Position-Dependent Variation of First Torsional Natural Frequency 

Table 3.2 shows the variation of the system's axial natural frequencies from one position 

to the other. As seen, the measurements show a change in axial natural frequencies from 

2493 to 2914 [Hz] (a difference of 421 [Hz]) as the nut moves from position 1 to 2, while the 

simulations capture this variation as a change from 2489 to 2904 [Hz] (a difference of 415 

[Hz]). At position 3, the natural frequency drops to 2532 [Hz] in the measured FRF, and to 

2528 [Hz] in the simulated one. Table 3.3 indicates that the variations in torsional natural 

frequencies are much smaller; which is due to the weaker stiffness coupling provided by the 

screw-nut interface in that direction. 

As will be shown in the subsequent chapters, this position-dependent variation in 

structural dynamics plays an important role in controller design and performance simulation 

based on the feed drive model, hence the need to model the ballscrew using F E M and to 

elaborately derive a screw-nut interface stiffness matrix in order to capture it as precisely as 

possible. 

3.5.2.3 Full System without Table, Coupling and Rotor 

As a penultimate step, the entire system is assembled onto the frame with the exception 

of the table, coupling and rotor. The reason for this is to see how the model behaves before 



Chapter 3. Modeling of Ballscrew Drive Mechanism 52 

the table, which introduces a lot of non-linearities like friction and increased backlash, is 

mounted. Furthermore, the motor is not used for providing excitations, also to eliminate the 

effects of the dynamics coming from the electrical components of the drive which have not 

been included into this model. The figures below show a comparison between the FE 

simulations and measurements on the test-bed. 
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Figure 3.29: Axial FRF of Full System Except Table, Coupling and Rotor 
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Figure 3.31: Radial FRF of Full System Except Table, Coupling and Rotor 

As seen from the figures, even though the model is still able to capture the dynamics in 

the three directions, the match between measurement and simulations has declined 
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significantly. The axial modes show a slight shift in frequency, and also a bit of mismatch in 

amplitude. This is probably due to the approximations made regarding the axial stiffness of 

the angular-contact ball bearing (see Appendix B). 

The torsional modes match quite well in amplitude, but show a constant shift in 

frequencies. A possible reason for this is the effect of the inertia of the bearing rings and balls 

which are not included in the bearing model. 

As for the radial modes (Figure 3.31), the model seems to be good in predicting the 

second, third and fifth modes of the system. However, the first and last modes show a poor 

match, while the fourth mode is totally missed out. Definitely, the approximations made in 

the radial stiffness of both bearings plays a role in affecting the accuracy of the model. 

Furthermore, the angular-contact bearing has a housing consisting of a huge block within 

which the bearing sits. This block is connected to the machine's frame using fasteners. With 

more information about the housing, particularly about the spring stiffness of the fasteners, 

this housing should have been more realistically modeled as a lumped mass attached to the 

frame by springs. However, here, this compliance has been neglected, and the housing 

assumed to be rigidly connected to the frame. This is probably the reason for the mode 

missing from the model. 

3.5.2.4 Ful l System 

Finally, in order to test the full model, the motor is connected to the rest of the system 

through the coupling, and the table is attached to the nut. As mentioned earlier, due to the 

lack of information about the guideways, they are assumed to be perfectly rigid. 

A l l of the FRF measurements above have been made using an impulse harnmer-

accelerometer set. However, for the full model, this technique cannot provide sufficient 

excitation for the system, therefore a stepped sine wave approach is used. Sine waves are 

applied to the motor as control signals through the electrical components of the drive, while 

angular position measurements are taken from an angular encoder mounted on the end of the 

ballscrew distal from the motor. In addition, linear position measurements are taken from a 

linear encoder mounted on the table. The dynamics of the electrical components between 

control signal and the motor torque (see Figure 3.1) are modeled as a constant gain, due to 
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the fact that the amplifiers are set to the current-controlled mode. For more information about 

these measurements, see [13]. 

The figures below show the comparison between the full FE model simulations and 

experimental measurements. 
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As observed from the figures, there are significant deviations between the prediction of 

the FE model and the measured responses. The torsional modes show a reasonable 

comparison, particularly for the first mode which comes from the coupling. Even though the 

other modes show a reasonable match in frequency, the measured results show huge reversals 

and amplitude deviations. These are partly as a result of the non-linear friction and backlash 

which have been greatly amplified by the addition of the table. Furthermore, the dynamics of 

the electronic components definitely add a time delay to the response due to the influence of 

the D/A converters. 

In the second FRF from motor torque to linear accelerations at the table, the model again 

gives a somewhat reasonable prediction at the low frequency modes. However, the mode at 

about 900 [Hz] is not captured by the model. This is probably arising from the influence of 

the guideway compliance which has not been modeled. The FE model indicates radial modes 

of the ballscrew at about the same frequency. However, these cannot be transmitted to the 

table when the guideway is assumed to be perfectly rigid. Another significant factor 

influencing the results is the compliance between the table and nut via fasteners, which has 

not been considered due to insufficient information. 

3.6 Summary 

In this chapter, a hybrid finite element modeling technique combining FE structures with 

lumped-parameter has been presented for ballscrew drives. In particular, the screw-nut 

interface, which plays a key role in the dynamics of ballscrew drives, has been looked into 

more closely. As an improvement to the models already in existence for this interface, two 

methods - the rigid-ballscrew method and the shape function method - have been developed. 

Judging from the foregoing, it can be said that the modeling technique presented here is 

potentially good enough for capturing linear dynamics within the frequency range for control 

engineering purposes, given that sufficient information is provided about the system 

parameters. The discrepancies that show up in the full model are to be expected because the 

experimental test-bed used here does not reflect the class of machine tool feed drives to 

which the modeling technique presented here is applicable. High speed machine tool 

ballscrew drives which require this type of modeling are often built such that non-linear 

effects such as friction and backlash are highly minimized. Consequently, for such ballscrew 
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drives, a linear model is sufficient to capture the necessary dynamics needed for controller 

design, which is the topic of Chapter Four. Furthermore, the remaining non-linearities in the 

system, which cannot be captured by the linear model, can be included in a time-domain 

simulation model in order to be able to investigate their effects on the feed drive and 

controller performance. This is the topic of Chapter Five. 



Chapter 4 

Model Analysis and Controller Design 

4.1 Overview 

In this chapter, the model for the experimental test-bed presented in the previous chapter 

is analyzed to obtain the information needed for controller design. Using this information, 

two types of high-bandwidth controllers are designed for the feed drive system. The first 

controller is designed following the traditional technique which is based on only the rigid-

body dynamics of the drive. However, it is shown that modifications have to made in order to 

successfully implement such a controller on a feed drive system which has significant 

flexibilities. Furthermore, a second controller is presented, in which the high-order dynamics 

of the feed drive are considered in the controller design process. The performance 

characteristics of these two designs are analyzed using frequency and time-domain methods, 

mainly with an aim of underlining the necessity of the modeling technique presented in 

Chapter Three. 

A pre-controller-design analysis of the open-loop dynamics of the feed drive system is 

presented in Section 4.2. This is followed by the design of the first controller based on rigid-

body dynamics in Section 4.3. Section 4.4 shows the short-comings of this design when 

implemented on a feed drive with significant flexibilities, and proffers two commonly used 

solutions to the problem. In Section 4.5, the second controller is presented, and then some 

concluding remarks are given in the last section. 

4.2 Extraction of Open Loop Transfer Function of Feed Drive Model 

There are many ways of representing the modeled dynamics of a system for which a 

controller is to be designed. Two of the most common ones are the transfer function (TF) and 

state-space (SS) methods. In some cases, choice between the two depends on the kind of 

controller design and analysis that is intended, while in other cases, either representation 

works as well as the other. 

58 
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In this chapter, the transfer function method is preferred for controller design and 

analysis because it gives a compact and rather intuitive representation of the feed drive 

dynamics. In addition, it provides simpler and more effective formulations for the controllers 

considered here. 
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Figure 4.1: Open-Loop Dynamics of Feed Drive Axis 

Figure 4.1 shows a block diagram of the open-loop (OL) dynamics for the feed drive 

axis of the experimental set-up in the previous chapter (hereinafter described as the set-up). 

Ge(s) is the transfer function of the electrical system (with the exception of the D/A 

converter). It represents the dynamics between the analog control signal, w(s) and the 

actuation torque applied to the motor, T{S). For this set-up, this dynamics is assumed to be 

much faster than that.of the mechanical sub-system. Therefore it is approximated as, 

(4.1) 

where ^=6.4898 [A/V] is the current amplifier gain, and £,=0.4769 [Nm/A] is the 

motor's torque constant. 

The mechanical system can be considered to consist of three transfer functions. The first, 

GOJ(S), represents the dynamics between the motor torque and the motor's angular velocity, 

co(s), while Gx(s), the second transfer function, describes the dynamics between w(s) andx(s), 

the position of the table. The third transfer function, Gd(s), on the other hand, represents the 

effect any kind of disturbance force applied to the table (cutting forces, friction forces, etc), 

Fd(s) has on co(s). These three transfer functions can either be used to express the rigid-body 
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dynamics of the drive, or they can be used to describe a combination of both the rigid-body 

and structural dynamics of the drive. These two options are explained in the sections below. 

4.2.1 Rigid-Body Dynamics 

The transfer functions for the rigid-body dynamics of the feed drive are given by, 

Js + B s Js + B v / 

Here, .7=8.55x10"3 [kgm2] is the total inertia of the feed drive reflected at the motor shaft. 

It can easily be obtained from the modal mass mq of the rigid body mode of the drive (see 

Appendix A). 5=0.0321 [kgm2/s] is the equivalent viscous damping of the drive system, also 

reflected at the motor shaft. Its value is obtained experimentally. rg=1.59 xlO" 3 [m/rad] is the 

gear reduction ratio of the drive's ballscrew, which represents the amount of linear motion 

obtained at the table per unit rotation of the motor shaft. The superscript, r on each of the 

transfer functions in Eq.(4.2) indicates that they represent only rigid-body dynamics. 

4.2.2 Inclusion of Structural Dynamics 

Theoretically, the feed drive system, just like any structural system, has infinite degrees-

of-freedom (DOF), meaning that it has an infinite number of normal (vibration) modes 

besides its rigid-body modes. When the finite element method is used to model the system, 

the number of normal modes is reduced to a finite value given by the number of DOF 

considered in the model. However, in controller design, it is often unnecessary to consider 

vibration modes at frequencies that are far higher than the desired bandwidth of the drive. 

Furthermore, some vibration modes, even though within the frequency region of interest, do 

not affect the dynamics between the controlled input and the measured output because of 

their mode shapes, therefore they do not need to be considered for controller design. 

In order to find out which of the normal modes should be considered, it is helpful to 

inspect the frequency response functions (FRF) of the model between the controlled input(s) 

and measured output(s), within the frequency range of interest. 

For the particular feed drive considered here, it is desired to achieve a closed-loop (CL) 

bandwidth of 50 to 100 [Hz], therefore a frequency range of up to 300 [Hz] is examined. 
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Figure 4.2 shows the magnitudes of the FRFs between the two inputs i{s) and F^(s), and two 

outputs w (s) and x(s) of the set-up within this frequency range (0 - 300 [Hz]). 

x(s)to(o(s) xio"3 i^s) to co(s) 

0 100 200 300 0 100 200 300 
Frequency [Hz] 

Figure 4.2: Magnitudes of the FRFs between Feed Drive Inputs and Outputs 

As seen from the figure, there are two normal modes of interest within the considered 

frequency range. There is the mode at about 120 [Hz], which is dominant, and then another 

mode at about 270 [Hz] which is relatively weaker. As will be explained later, the 120-Hz 

mode corresponds to the axial deformation of the ballscrew between the fixed thrust bearing 

and the nut, while the 270-Hz mode is mainly due to the torsional deformation of the 

coupling between the motor shaft and ballscrew. 

It must be mentioned here that the plots shown in Figure 4.2 reflect the FRFs generated 

with the table positioned at the centre of its travel range. However, because of the position-

dependent structural dynamics variations explained in Section 3.5.2.2, it is also necessary to 

examine the same FRFs generated with the table positioned at the extremities of its travel 

range to check i f any additional modes show up. For the feed drive considered here, this 

analysis has been conducted, and it reveals that the same two modes are present, with only 

slight changes in their natural frequencies. The effects of this natural frequency variation will 

be looked into later. 
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Generally, the transfer function Gp(s) between an input force and output position for a 

linear system, including its structural dynamics (normal modes) can be expressed as, 

Gp(s) = Gr

p(s)+ 2 2 . , ; 7 , , 2 (4 3) 

where & is and (o)n)k are respectively the damping ratio and natural frequency of the kth 

normal mode and Nmode is the number of normal modes considered, while Gr

p(s) is the rigid-

body transfer function for the system, similar to those defined in Eq.(4.2). (Rp)k is the transfer 

function's residue for the kih mode given by, 

P P 

tp ^ _ rk,irkj 

yR
P)k--,—r— (4.4) 

Pk,m and Pk,n are respectively the ith and/ h elements of the kth normal mode shape vector, i 

represents the input node, while j represents the output node. (mq)k is the modal mass for the 

kth mode. 

Based on this information, the transfer function Gu(s), considering the rigid-body 

dynamics and the two normal modes mentioned above, is expressed as, 

G„(S)=G:(S)+ 2 ^ S — R + 2 * A I S

 2 ( 4 5 ) 

s2 + 2£,con]s + co1, s2 + 2^2(on2s + ofn2 ^ 

where the subscripts 1 and 2 represent the first and second normal modes. The extra S 

term appearing in the numerator is as a result of the derivative operation needed to convert a 

transfer function between an input force and output position to one between an input force 

and an output velocity. 

Similarly, G^(s) is given by, 

G A s ) = G ' A s ) + s > + 2 C % + ^ S^C^L <4-6> 

In order to calculate Gx(s), an intermediary transfer function Gm(s) must be defined 

between the motor torque, T(S) and the table position, x(s). This transfer function has the 

form, 
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Gm(s) = G'm(s) + • + -
s +2Clo)„is + conl s +2£2con2s + con2 

(4.7) 

Gr

m(s) is the rigid-body mode for the transfer function given by, 

G ; ( S ) = G ; ( S ) - G ; ( S ) = . 
Js +Bs 

Then the transfer function Gv(s) can be obtained as, 

Gm(s) 

(4.8) 

Gx(s) = 
GJs) (4.9) 

The numerical values for the modal parameters and residues appearing in Eq.(4.5) to 

Eq.(4.7) for three positions of the table are summarized in Table 4.1. The positions examined 

are the extreme left position (L-Position), centre position (C-Position) and extreme right 

position (R-Position) of the table within its travel range. 

PARAMETER 
VALUE 

PARAMETER 
L-Position C-Position R-Position 

fnl [HZ] 109.51 117.69 133.82 

f l [%] 6 6 6 

Rul [rad2/(Nms2)] " 13.75 14.52 16.25 

Rml [rad2/(Ns2)] -2.22x10"' -2.27x10"' -2,38x10"' 

Rdi [rad2/(Ns2)] -2.22x10"' -2.27x10"' -2.38x10"' 

fnl [HZ] 269.62 270.92 273.62 

& [%] 10 10 10 

Ru2 [rad2/(Nms2)] 28.06 27.29 25.56 

Rm2 [rad2/(Ns2)] 3.53xl0"2 4.06x10"2 5.19xl0"2 

Rd2 [rad2/(Ns2)] 3.53xl0"2 4.06x10"2 5.19xl0"2 

Table 4.1: Parameters for Mechanical Sub-System Transfer Functions 

The natural frequencies co„ in [rad/s] used in Eq.(4.5) to Eq.(4.7) can be obtained from 

the/, [Hz] values provided in Table 4.1 by simply multiplying them by a factor of 2ir. 
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4.3 High-Bandwidth Controller Design Based on Rigid-Body Dynamics 

Following the customary practice in feed drive controller design, controllers are often 

designed based on the rigid-body dynamics of the drive. One of the most common types of 

designs used in machine tool feed drives is the P-PI control scheme. As shown in Figure 4.3, 

this type of design consists of two cascaded control loops - a velocity loop with an analog 

Proportional-Integral (PI) controller, around which is wrapped a position loop consisting of a 

digital Proportional (P) controller. A Zero-Order Hold (ZOH) is placed between the digital P-

Controller and the analog Pi-Controller as a D/A converter. 

The rationale for this cascaded control scheme is that the Pi-Controller is used to provide 

more damping for the close-loop system, together with an integral action which helps to 

eliminate steady-state errors that could arise from constant disturbance forces. The digital P-

controller is then used as a tuning knob to adjust the overall gain of the closed-loop system. 

In this set-up, the analog angular velocity signals are measured using a tachometer with a 

conversion gain /fg=0.0668 [V/(rad/s)], attached to the motor shaft, while the table position is 

measured as digital signals using a linear encoder mounted on the table. 

table dist. 
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Xr(z) 
reference 

table 
position 

o 
eP(z)„ K0 ZOH 

up(s.) ^ e(s) 

x(z) 
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KyS+Kj 
s .control 
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Ge(s) 
T(S) 

Gd(s) 

electrical torque _ 
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lotor 
vel. 

Ho 
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*(s) 
table 

position] 

tachometer gain 
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Figure 4.3: P-PI Control Scheme 

In this design task, the objective is to appropriately select the controller gains, Kt, Kv and 

Kp, in order to achieve a high control bandwidth, while maintaining good reference tracking 

with adequate disturbance and noise rejection. 

Since only the rigid-body dynamics is considered in this design, the transfer functions 

Gco(s), Gx(s) and G^(s) in Figure 4.3 are replaced with Gr

u(s), Gr

x(s) and Gr<i(s), respectively. 
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The design is carried out in two stages. First the analog PI controller for the velocity loop is 

designed, and then the digital P-Controller is designed for the position loop. These two steps 

are explained in more detail below. 

4.3.1 Design of the Analog Pi-Controller 

The closed-loop transfer function of the velocity loop is expressed as, 

KaKlKiHg 

J 
-^ + ^ s 

s2 + 
B + KaKtKvHi 

J J 

KaK,KiHg 

v J 

(4.10) 

Since the denominator is second-order, it can be expressed in terms of co„ and f, the 

closed loop natural frequency and damping ratio, as, 

den(Gv(s)) = s2 + 
B + KaKlKvHl 

J J 

KaK,KtHg 

v 
J 

= s2 + 1Q(OnS + a>2 

(4.11) 

By comparing terms, Kt and Kv can be written in terms of co„ and fas, 

Jcot K.. = 
(2Ca>nJ-B) 

(4.12) 

For this set-up, it is desired to have a critically damped denominator dynamics with a 

natural frequency (fn) of 50 [Hz]. Based on these specifications, co„ and fare obtained as, 

£ = 0.7071; con=27tfn =314.16 [rad/s] ( 4 1 3 ) 

From these values, the gains of the Pi-Controller are obtained from Eq.(4.12) as, 

Kv = 18.217 [V/V]; Kt = 4081.2 [rad/s] ( 4 1 4 ) 

Figure 4.4 shows the unit step response for the closed-loop system. As seen, the system 

has a fast rise time of about 3 [ms] and a settling time of 16 [ms]. Even though the 

denominator dynamics is critically damped, the system still has an overshoot of about 16 

[%], arising because of the extra dynamics added by the zero in the numerator. However, a 
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small overshoot in the velocity loop is usually permissible since this does not necessarily 

affect the feed drive's positioning accuracy. 

0.01 0.015 
Time [s] 

Figure 4.4: Unit Step Response of Rigid-Body-Based Pi-Controlled Velocity Loop 

If the open-loop (OL) transfer function is denoted as Z(s), the sensitivity function ^(s) 

and complementary sensitivity function T(s) can be expressed as [25], 

S(s) = 
1 

1 + Z(s) 
T(s) = 

l + L(s) (4.15) 

These two functions play a very important role in control engineering. The sensitivity 

function gives an indication of the susceptibility of the closed-loop system to the effect of an 

external disturbance. At the same time, it also provides a measure of the relative change in 

closed-loop dynamics with respect to any relative change in the open-loop dynamics. The 

complementary sensitivity function, on the other hand, influences how much measurement 

noise is injected back into the closed-loop response. In practice, it is desirable to keep S(s) 

minimal in the low frequency range, so that external disturbances within the control 

bandwidth are effectively rejected, while T(s) should be kept low at frequencies beyond the 

control bandwidth in order to minimize the influence of high-frequency measurement noise. 

However, from Eq.(4.15), it can be seen that S(s) + T(s) = 1. This implies a trade off between 

achieving effective disturbance rejection and measurement noise sensitivity - which is one of 

the key challenges in any controller design problem [13]. 
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Figure 4.5 shows the magnitude Bode plots for the closed-loop, sensitivity function and 

complementary sensitivity function of the velocity loop. 

(a) Closed-Loop System 

(c) Complementary Sensitivity Function 

Frequency [Hz] 

Figure 4.5: Response Functions for Rigid-Body-Based Pi-Controlled Velocity Loop 

From plot (a), the closed-loop bandwidth is obtained as 102 [Hz]. The sensitivity 

function in plot (b) shows a good rejection of low frequency disturbance, with a maximum 

amplitude of-67.6 [dB] occurring at 48.4 [Hz]. The high-frequency noise attenuation is also 

good, as shown by the complementary sensitivity function in plot (c). The maximum value of 

T(s) is 2.02 [dB] and it occurs at 42.2 [Hz], after which it gently rolls off. 
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4.3.2 Design of the Digital P-Controller 

Following the design of the analog Pi-controller presented above, it now remains to 

close the position loop using a P-controller. Since the P-controller is implemented digitally, 

the position loop dynamics has to be transformed from continuous-time to discrete time using 

the z-transform. Noting that the dynamics of the ZOH is given by, 

1 — e~sT' 

ZOH = — - — (4.16) 

the discrete-time open-loop TF, L(z) for the position loop can be calculated as, 

L{z) = z\^^KpGv(s)Gx{s) 
where Ts =200 [[JLS] is the sampling period, and Z represents the z-transform operator. 

Kp, being the only design parameter, is adjusted in order to maintain a stable loop, while 

satisfying the design requirements. Practically, the value of Kp is also limited by the 

saturation limits of the amplifier and actuator. As mentioned in Chapter Three, since the set­

up was not designed for High-Speed Machining (HSM) purposes, its saturation limits reduce 

the achievable bandwidth to values much below the desired values for the purposes of H S M . 

However, since the controller design here is performed mainly for demonstrative purposes, 

and will not be implemented on the actual machine, these limits are ignored and the value of 

Kp is adjusted to 7000 [V/m] to achieve a closed-loop bandwidth of 58 [Hz]. 

Figure 4.6 shows a Bode plot of Z(z) with the Kp set at 7000 [V/m]. 

(4.17) 



Chapter 4. Model Analysis and Controller Design 69 

40 

-225 c i i ' 1 • 1 1 i i i i i 1 1 >-* 0 1 2 3 10 10 10 10 
Frequency [Hz] 

Figure 4.6: Open-Loop Bode Diagram for Position Loop of Rigid-Body-Based P-PI 
Controller Combined with Rigid-Body-Based Feed Drive Model 

The loop is stable, with a good gain margin (GM) of 29.8 [dB] and phase margin (PM) 

of 72.6 [deg]. The unit step response from the reference table position xr{z) to the actual table 

position x(s) in Figure 4.7 shows a fast rise time of 7 [ms] and a settling time of 26 [ms]. 

Even though the response is a bit oscillatory, there is no overshoot. This ensures that 

contouring accuracy is maintained for rapid motion commands. 

0.035 0.04 0.045 
Time [s] 

Figure 4.7: Unit Step Response of Position Closed-Loop of Rigid-Body based P-PI 
Controller Combined with Rigid-Body-Based Feed Drive Model 



Chapter 4. Model Analysis and Controller Design 70 

The Bode plots of the Sensitivity S(z) and complementary sensitivity T(z) functions 

depicted in Figure 4.8 also show the desired trends. S(z) has a maximum value of -172 [dB] 

at 50 [Hz]. Generally, the sensitivity function has very low values at all frequencies due to 

the effect of the ballscrew gear reduction. This is one reason why ballscrew drives are 

preferred over direct drives. On the other hand, T(z) which for this case also represents the 

closed-loop (CL) transfer function of the system, remains constant and then decreases 

monotonically after the cut-off (bandwidth) frequency. 

a) Sensitivity Function 

Figure 4.8: Sensitivity and Complementary Sensitivity Functions of Position Loop for 
Rigid-Body based P-PI Controller Combined with Rigid-Body-Based Feed Drive Model 

4.4 Mitigation of Effects of Structural Dynamics on Controller Performance 

In the previous section, the high-bandwidth P-PI controller was designed based on only 

the rigid-body dynamics of the drive. However, since the drive exhibits structural resonances 

at frequencies close to the control bandwidth, it is of interest to investigate how these 

structural dynamics influence the controller performance. In order to do this, the rigid-body 

transfer functions G r

u(s), Gr

x(s.) and Grd(s), used above for controller design, are respectively 

replaced by G u(s), G*(s) and Gd(s), which provide a more realistic description of the feed 
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drive dynamics; because, in addition to the rigid-body dynamics, they also include the effects 

of the structural dynamics of the feed drive within the frequency range of interest. Figures 

4.9 to 4.11 show OL Bode, C L Step, sensitivity and complementary sensitivity functions of 

the position loop at the C-Position. The plots for the other two positions closely resemble 

those of the C-Position; therefore they are not shown here to avoid repetition. 
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Figure 4.9: Open-Loop Bode Diagram for Position Loop of Rigid-Body-Based P-PI 
Controller Combined with Flexible Feed Drive Model 

Figure 4.10: Unit Step Response for Position Loop of Rigid-Body based P-PI Controller 
Combined with Flexible Feed Drive Model 
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Figure 4.11: Sensitivity and Complementary Sensitivity Functions for Position Loop of 
Rigid-Body based P-PI Controller Combined with Flexible Feed Drive Model 

Figure 4.9 shows that due to the structural dynamics at 118 and 271 [Hz], instead of 

obtaining a G M of 29.8 [dB] and a P M of 72.6 [deg] as indicated in Figure 4.6, a G M of 3.12 

[dB] and P M of 65.3 [deg] are observed. This deterioration in the relative stability of the 

closed-loop system is reflected in the Unit Step Response shown in Figure 4.10, which 

exhibits a 20 [%] maximum overshoot and excessive oscillations at 100 [Hz] mainly caused 

by the axial mode of the ballscrew. As a result, a settling time of 72 [ms] as opposed to the 

anticipated 26 [ms] is observed. Also the sensitivity and complementary sensitivity functions 

in Figure 4.11 are affected by these dynamics. The peak of S(z) increases, from -172 to -142 

[dB], while T(z) acquires a peak value of 8.82 [dB] at 103 [Hz], indicating an increase in the 

amount of measurement noise injected into the closed-loop system. 

Considering the performance of the controller in the presence of the structural dynamics, 

it is clear that this design is unacceptable. Steps have to be taken to improve the design. Two 
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of the common methods of doing this are the modification of the mechanical design, and 

notch filtering of the structural modes of interest. Each of these techniques is applied to this 

set-up as presented in the following sections. 

4.4.1 Modification of the Mechanical Design 

In some cases, it is helpful to investigate the option of modifying the mechanical design 

as a simple and straightforward method of improving the performance of the controller. In 

order to do this, it is useful to examine the mode shapes of the problematic modes to find out 

the points of significant structural deformations. If possible, the mechanical design can be 

changed at such points in order to improve it. 

For this set-up, an examination of the mode shapes show that in the first normal mode, 

as shown in Figure 4.12, a great part of the deformations are as a result of an axial stretching 

of the ballscrew between the nut and thrust bearing. In other words, this mode is directly 

linked to the axial stiffness of the ballscrew. In order to increase this stiffness, the diameter of 

the ballscrew must be increased, or its length reduced. Another alternative would be to use a 

stiffer material. Even though these changes are theoretically possible, practically they often 

would involve major changes in the design since ballscrews are usually manufactured as 

standard parts that have been selected to fit other dimensions of the machine. This is 

especially so in the case of this set-up. Therefore no modifications to the mechanical design 

are performed for this case. 

Length [mm] 

Figure 4.12: Axial Mode Shape of Ballscrew for First Normal Mode (C-Position) 
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Length [mm] 

Figure 4.13: Torsional Mode Shape of Ballscrew for Second Normal Mode (C-Position) 

The torsional mode shape for the second normal mode (Figure 4.13) reveals that the 

coupling joint is the greatest contributor to the deformations that occur in the mode. 

Therefore, in order to reduce the effects of this mode, a coupling of higher torsional stiffness 

(kr) can be employed. From manufacturer's catalogs, it is found that using a bellow-type 

coupling instead of the jaw-type coupling originally used on the set-up can increase the 

torsional stiffness from its current value of kj=3,940 [Nm/rad] to a catalog value of 

&r=45,940 [Nm/rad], an increase of about twelve folds. By employing this new coupling, the 

natural frequency of the second mode is increased from values around 270 [Hz] to about 560 

[Hz], such that it goes out of the frequency range of interest. The first mode, on the other 

hand is affected minimally. Hence, this modification has helped eliminate one of the 

problematic modes of the mechanical structure, leaving only one to be contended with. 

Consequently, the expressions for Gu(s), Gj(s) and Gm(s) given in Eq.(4.5) to Eq.(4.7) can be 

simplified by totally eliminating the term corresponding to the second normal mode. Table 

4.2 gives a summary of the new modal parameters after the modification 



Chapter 4. Model Analysis and Controller Design - 75 

PARAMETER 
VALUE 

PARAMETER 
L-Position C-Position R-Position 

fnl [HZ] 112.46 121.50 139.88 

fl [%] 6 6 6 

Rai [rad2/(Nms2)] 10.18 10.22 10.19 

Rml [rad2/(Ns2)] -1.91X10"1 -1.91x10"' -1.91x10"' 

/Jrfi [rad2/(Ns2)] -1.91x10"' -1.91x10"' -1.91x10"' 

/ » 2 [Hz] 561.77 561.58 560.77 

f2 [%] 10 10 10 

7^ 2 [rad2/(Nms2)] 27.19 27.17 27.22 

Rm2 [rad2/(Ns2)] 5.05xl0"J 5.30xl0"3 5.45xlO"J 

Rd2 [rad2/(Ns2)] 5.05xl0"3 5.30xl0"3 5.45xl0"3 

Table 4.2: Parameters for Mechanical Sub-System Transfer Functions (After 
Modification) 

4.4.2 Application of Notch Filter 

Notch filtering is a classical method of providing a compensating network that avoids 

the unnecessary excitation of the resonant modes of a structure through pole-zero 

cancellation. The functioning of the notch filter can be better understood by taking a look at 

its Bode diagram (Figure 4.15). The filter introduces a notch at the frequency of the 

undesired mode, together with a phase that is negative below and positive above the resonant 

frequency. Placing this filter in the control loop ensures that the resonant modes will not be 

excited by the command signals or the control action. However, it does not introduce any 

damping tothese modes. In other words, i f these modes are excited, the system will respond 

in the same way as the open-loop system. 

Since this set-up has two cascaded loops, and the inner loop is analog, it is desired to 

design a digital notch filter which can be implemented on a digital computer to cancel out the 

first resonant mode of the mechanical structure in the velocity closed loop. In order words, 

the notch filter will be placed in the position loop as shown in Figure 4.14. 
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Figure 4.14: Digital Notch Filter in Position Loop 

The structure of a the digital notch filter GN(Z) is, 

CN{z) - KN —— — 
z + axz + a2 

(4.18) 

where «/ and «2 are the coefficients of the numerator polynomial of GN(Z) corresponding 

to the coefficients of the complex conjugate poles to be cancelled, and d\ and dj are those of 

the denominator polynomial corresponding to the coefficients of the new poles that replace 

the cancelled ones. KN is an adjustment factor to ensure a steady-state gain of unity. It is 

calculated as, 

GN(z)\z__x=KN 
z +nlz + n2 

z +diz + d2 

= 1=>K> 
l + di+d2 

1 + nx + n2 

(4.19) 

According to [25], even though the performance of notch filters can be affected 

adversely when there is a huge parameter mismatch that renders the pole-zero cancellation 

ineffective, this effect is greatly reduced when the parameter mismatch is small. This is 

particularly true when the poles to be canceled are sufficiently stable. 

For this set-up, the first-mode for which the notch filter is designed exhibits parameter 

mismatch from one position to another due to the changing natural frequencies (Table 4.2). 

However, the effects of these changes have been examined and found to be quite small i f the 

notch filter is designed based on the parameters of the C-Position, since its parameters lie in 

between those of the other two positions. However, it must be stressed that this situation is 

very specific. In some cases, it might be necessary to consider designing a notch filter whose 

parameters are scheduled based on the parameter variation from position to position. 
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For the C-Position, the damping ratio and natural frequency of the resonant mode are 

£/v=0.0855 and GJA/=753.98 [rad/s] (/^=120 [Hz]), respectively. As explained above, in order 

to ensure pole-zero cancellation, these have to be the damping ratio and natural frequency of 

the numerator polynomial of GN(Z). The coefficients n\ and nj can be calculated based on 

these parameters and Ts, the sampling time of the system, as [3], 

„, = - 2 e ~ M •co^a>NTs^Cly, n2 = e ~ 2 M

 (4.20) 

In the denominator polynomial of GN{Z), it is desired to have the same natural frequency 

of the numerator (i.e. WD=0JAr=753.98 [rad/s]). However, in order to attenuate the resonance 

magnitude of the mode, its damping ratio is increased to £b-0.5. Consequently, its 

coefficients d\ and d2 are calculated as, 

dx = -2e~M-Cos(coDTsAl^y, d2 = e - w ° (4.21) 

Table 4.3 gives a summary of the coefficients for the notch filter, and Figure 4.15 shows 

a Bode plot for the notch filter. 

Parameter Hi «2 dx d2 

Value -1.9521 0.9745 -1.8390 0.8600 0.9402 

Table 4.3: Coefficients of Notch Filter G^z) 

Frequency (Hz) 

Figure 4.15: Bode Diagram of Notch Filter 
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Following the application of the notch filter, Kp is re-selected in order to achieve the 

desired response. A value A^=5000 [V/m] is found to yield a closed-loop bandwidth of above 

50 [Hz]. Figure 4.16 shows the Bode plot for the open-loop system of the re-designed P-PI 

controller and flexible feed drive with and without the notch filter (NF) at the L-Position, 

which represents the worst-case scenario in parameter mismatch due to position-dependent 

dynamics. 
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Figure 4.16: Open-Loop Bode of Position Loop for Re-designed P-PI Controller and 
Flexible Feed Drive with and without the Notch Filter 

As seen from the figure, the addition of the notch filter introduces some attenuation to 

the resonance peak thereby increasing the gain margin from 5.9 to 8.76 [dB]. However on the 

other hand, there is some loss in phase margin from 82.1 to 73.4 [deg]. This trade of phase 

margin for gain margin is however a good one in this case because the gain margin is more 

critical in this situation. This can be seen more clearly from Figure 4.17 which shows the unit 

step response of the closed-loop system for both cases, also at the L-Position. 
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1.2, 

"°'20 0.01 0.02 0.03 0.04 0.05 0.06 0.07 
Time [s] 

Figure 4.17: Unit Step Response of Position Loop for Re-designed P-PI Controller and 
Flexible Feed Drive with and without the Notch Filter 

Without the notch filter, the response is very oscillatory with a settling time of 53 [ms] 

and a slight overshoot of 2 [%]. The frequency of the oscillations is now 106 [Hz] and still 

mainly due to the axial mode of the ballscrew. When the notch filter, is placed in the loop, 

the settling time reduces to 30 [ms]. Furthermore, the response is much more stable with less 

oscillations and no overshoot. This comes all as a result of the improved gain margin made 

possible by the notch filter. 

Figure 4.18 shows the sensitivity and complementary sensitivity functions for the 

position loop of the re-designed P-PI controller and flexible feed drive with and without the 

notch filter. From plot (b), it is evident that the addition of the notch filter reduces the amount 

of measurement noise injected into the closed-loop system. Without the notch filter, T(z) has 

a peak magnitude of 2.2 [dB] at 103 [Hz], while it crosses -3 [dB] at 111 [Hz]. However, 

with the notch filter, the magnitude peak is totally eliminated and the -3 [dB] crossing 

frequency is reduced to 63 [Hz] indicating a better attenuation of high-frequency noise. 

Plot (a), on the other hand, shows that the notch filter does not improve the response to 

disturbances significantly. This is because, as mentioned previously, even though the notch 

filter is able to prevent the excitation of the resonant modes by the command signal and 

control action, when excited by the disturbance force which does not pass through the notch 

filter, the resonant mode responds in the same way as it would in the open-loop system. This 

is because the filter is unable to add damping to the resonant modes directly. In order to 
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improve the response to disturbances, a control structure which aims at compensating the 

resonant modes by adding more damping to them should be considered, as explained in the 

next section. 

a) Sensitivity Function 

101 10' 
Frequency [Hz] 

Figure 4.18: Sensitivity and Complementary Sensitivity Functions of Position Loop for 
Re-designed P-PI Controller and Flexible Feed Drive with and without the Notch Filter 

4.5 Mode-Compensating Pole-Placement Controller 

One control structure that makes it possible to compensate the oscillatory modes coming 

from the structural dynamics of the feed drive is the Pole-Placement Control (PPC) structure. 

This type of control, also known as RST control, makes use of the three polynomials, R(z), 

S(z) and T(z) in the form of a feed-forward filter (T(z)/R(z)) and feed-back filter (S(z)/R(z)), 

shown in Figure 4.19, to indirectly place the poles of the closed-loop characteristic 

polynomial, Aci(z) such that a desired closed-loop response is obtained. 
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Figure 4.19: Topology of Pole-Placement Controller 

From Figure 4.19, the relationship between sa(z), the actual signal, and the system 

inputs, namely the reference signal, sr(z), the disturbance signal, s<i{z) and the measurement 

noise, s„(z) is, 

BT CR BS 
s„ = -s, -AR + BS r AR + BS " AR + BS " (4.22) 

In this equation, the dependent variable, z has been dropped in order to simplify the 

notation. This notation will be used frequently in this section. 

As seen from the expression in Eq.(4.22), the characteristic equation is governed by 

AR+BS. Since the A and B polynomials both belong the plant and so cannot be changed, the 

S and R polynomials can be used to adjust the roots of the characteristic equation. 

In PPC design, the characteristic polynomial Aci, is often factored into a product of two 

polynomials: a controller polynomial Ac, and an observer polynomial AQ, such that, 

(4.23) 

If the system is reachable, arbitrary eigenvalues (poles) can be assigned to Ac, while i f 

the system is observable, arbitrary eigenvalues (poles) can be assigned to A0. The eigenvalues 

to be assigned to these polynomials are chosen based on the desired closed-loop response of 

the system. 
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Also from Eq.(4.22), it is evident that the polynomial R influences the numerator 

dynamics of the disturbance response, while S affects the numerator dynamics of the noise 

response. Therefore, by forcing R to have a desired factor Rj, and S to have a desired factor 

Sd, a lot of control can be gained over these responses. 

Furthermore, control designers sometimes prefer to cancel zeros and poles that are well-

damped from the plant transfer function. In order to do this, it is helpful to factor the plant 

transfer function polynomials, A and B as, 

A = A+A~; B = B+B~ ( 4 24) 

where A+ and B+ are the factors containing the well-damped poles and zeros, 

respectively, that can be cancelled. A' and B', on the other hand, contain the poorly damped 

or unstable poles and zeros that cannot be cancelled. Considering that a process (plant 

transfer function) pole is cancelled by a controller zero and vice versa, the polynomials R and 

S can be written in term of their factors as, 

R = B+RdR*; S = A+SdS*; ( 4 2 5 ) 

R* and S* represent the remainder of the R and S polynomials, respectively after a 

division by their pre-specified factors. 

In order to solve for the polynomials R and S, the expression for the characteristic 

polynomial, AR+BS is equated to the desired characteristic polynomial Aci to give, 

Acl=AcA0=AR + BS ( 4 2 6 ) 

Eq.(4.26) is known as the Diophantine Equation. This equation is tractable as long as A 

and B have no common factors (i.e. the plant is observable and reachable). However, in order 

to obtain a minimum-degree solution, the degree of Aci (deg Aci) must satisfy the condition 

[3], 

deg Acl = 2 deg A + deg Rd + deg Sd -1 ( 4 2 7 ) 

This condition is based on the assumption that deg S = deg R (i.e. control signal 

computation time is negligible). Based on the same minimum-degree requirement, the degree 

of S is given by, 
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deg 5 = deg ̂  +deg ^ +degSrf -1 

The T polynomial is usually chosen such that it consists of the observer polynomial, Aa 

multiplied by a scaling factor t0. Since T strongly influences the tracking performance of the 

controller (Eq.(4.22)), t0 is used to insure that the system maintains a steady-state gain of 

unity. Hence, 

BT 
AR + BS 

BtA 

z=l AA 
c o 

= 1: AO) 
B(l) (4.29) 

In order to implement this controller scheme on the set-up, the a few modifications have 

to be made to the open-loop system of Figure 4.1 in order to conform it to fit the system in 

Figure 4.19. These modifications are shown in Figure 4.20. 

Xr(z) m 
R(z) reference 

table position feed-forward 

filter 

F d { s ) table d i « . - . F ^ z ) 

force v 7 

o 
u{z) 

control | 
signal | 

ZOH 
K ( S ) 

D / A 
Converter 

G e(s) 
T(S) 

motor 
torque 

Gm(s) 

R(Z) 

electrical 
sub-system_ _ _ _ _ _ _ _ 

plant transfer function: ^(^) 
A(z) 

ZOH Virtual D/A, 

FA) 

feed-back 
filter 

disturbance 
Iransfer function 

C(z) 
A{z) 

x(z) 
table 

position 

- Q 
«(z) 

measurement 
noise 

Figure 4.20: Pole-Placement Control Scheme 

First, the transfer function product Gu(s).GA;(s), is replaced by Gm(s), while another 

transfer function G*rf(s) is defined to describe the dynamics between the table disturbance 

force, -Frf(s) and the table position x(s). It is obtained from the transfer function G</(s) as, 

G ; ( S ) = G , ( * ) - G » (4.30) 

Following these, the plant transfer function B(z)/A(z) is easily obtained by finding the 

ZOH-equivalent pulse (discrete-time) transfer function of Ge(s).Gm(s). In order to obtain the 

disturbance pulse transfer function C{z)IA{z), it is assumed that the disturbance force F^(s) is 
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sampled and then converted back to continuous-time using a ZOH. For this assumption to be 

valid, Fd(s) must be much slower than the sampling frequency. 

Having converted the set-up's configuration to match that of Figure 4.19, the design 

follows quite simply. The design is conducted for the table at the C-Position. 

The polynomials A and B are expressed in terms of their coefficients as, 

A = z4 + axz3 + a2z2 + a3z + a4 

B = b0z3 + bxz2 + b2z + b3

 ( 4 ' 3 1 ) 

The coefficients of the two polynomials are given in Table 4.4. 

Coefficients of A 

fli 

-3.9580 5.8972 -3.9203 0.9811 

Coefficients of B 

bo bi b2 b3 
-2.7242x10"'° 8.0698xl0"10 3.9993x10"'° -4.0367x10"'° 

Table 4.4: Coefficients of Polynomials A and B 

Based on these polynomials, the pole-zero map of BIA is shown in Figure 4.21. 

-1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 
Real Axis 

Figure 4.21: Pole-Zero Map of B(z)/A(z) 
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From the pole-zero map, it can be observed that only one zero (z=0.535) is sufficiently 

damped and so can be cancelled. There are also two well-damped poles, one at z=l and the 

other at z=0.999, but these will not be cancelled since they are at a point of critical stability. 

Therefore, 

A+=l; A'=A; B+= z-0.535; B~ =^7 (4.32) 

It is desired to have an integrator in R so that the steady-state error in x(z) due to the 

disturbance i\/(z) can be eliminated. Furthermore, it is desired that the measurement noise 

n(z) should not give any error in x(z) at the Nyquist Frequency (z=-l). Consequently, the 

polynomials Rd and Sd are given as, 

Rd=z-l; Sd=z + l (4.33) 

Since deg A = 4, deg Rd = 1 and deg Sd = 1, from Eq.(4.28), deg S = deg R = 5. 

Consequently, based on Eq.(4.25), they can be expressed as, 

R = B+RdR* = (z - 0.535)(z - l)(z 3 + rxz2 + r2z + r3) 

S = A+SdS* = (z + l)(s 0z 4 + s,z3 + s2z2 + s3z + s4) ( 4 ' 3 4 ) 

In order to determine the desired characteristic polynomial Aci, deg Ac\ is obtained from 

Eq.(4.27) as deg Aci = 9. Based on this information, deg Ac is set equal to four, while deg A0 

is set to five. 

The structure of Ac is chosen to be a product of B+, a real pole, and a pair of complex-

conjugate poles of the form, 

Ac=(z- 0.535)Z {(s + ao)c)(s2 + 2£ccocs + coc)} = (z- 0.535)(z + ac)(z2 + acXz + ac2) 
(4.35) 

where &=1.0 and wc=565.49 [rad/s] (90 [Hz]) are the damping ratio and natural 

frequency of the complex-conjugate poles, while a=l is a scaling factor which determines 

how fast the real pole is with respect to the complex-conjugate poles. Z here represents an 

operator which maps the poles from the s to the z-domain. Based on this mapping, the 

coefficients ac, aci and aC2 are calculated as, 
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ac = -e'a^• acX = -2e~^ • cos(cvcTsAA^c!)\ "C2 = e 2 M

 ( 4 . 3 6 ) 

As for the observer polynomial A0, it is assumed to consist of a product of a pair of 

complex-conjugate poles and three poles at the origin of the z-plane. It is expressed as, 

A =z3Z{(s2+2£0co0s + cooy} = z\z2+aolz + ao2) ( 4 3 7 ) 

The natural frequency of the complex-conjugate poles of AQ, 0Jo=763.43 [rad/s] (121.5 

[Hz]), is chosen to coincide with the natural frequency of the resonant mode in the feed drive 

structure. However, its damping is changed from 0.06 to £, = 0.7071. The values of a0i and 

a02 are thus obtained as, 

aol = - 2 e ' M .cosiaAj^fi); ao2 = e~2M

 ( 4 . 3 8 ) 

The numerical values for the coefficients of Ad are summarized in Table 4.5 

Coefficient «cl «c2 «ol «o2 

Value -0.8930 -1.7861 0.7975 -1.7849 0.8057 

Table 4.5: Coefficients of Desired Characteristic Equation, Aci 

With the desired characteristic polynomial Aci completely defined, the Diophantine 

Equation (Eq.(4.26)) is solved and the coefficients of R and S are obtained. Furthermore, the 

value of t0 is obtained using Eq.(4.29). Their numerical values are given in Table 4.6. 

Coefficient r\ r 3 

Value 0.5759 0.5490 0.2000 1.0702xl06 

Coefficient so S2 •S3 

Value 3.0078x10s -1.1554xl0y 1.6693xl0y -1.07516xlOy 2.6038x10s 

Table 4.6: Coefficients of the R, S and T Polynomials 

Figure 4.22 shows the open-loop Bode plot for the position loop. The gain margin 

obtained with this controller is 2.55 [dB], which is significantly less than that obtained using 

the notch filter. The same problem is also observed in the phase margin, which in this case is 

31.7 [deg]. This deterioration of gain and phase margins comes as a result of the extra free-

integrator forced into the controller through the R polynomial, for the purpose of attenuating 

constant disturbance forces. In order to improve these margins, for better robustness, the loop 
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can be closed on the table velocity or the constraint imposed on R can be relaxed, hence 

eliminating one of the free integrators. 
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Figure 4.22: Open-Loop Bode of Position Loop Controlled with the PPC 

The unit step response of the system (Figure 4.23) shows that the poor gain and phase 

margin do not deteriorate the tracking performance of the controller. The settling time for the 

PPC controller is about 15 [ms], without any oscillations or overshoots, while even with the 

notch filter, the re-designed P-PI controller had a settling time of 30 [ms] with slight 

oscillations. 

1.2, , , , , , , 

>l i i i 1 i i 1 
"0 0.01 0.02 0.03 0.04 0.05 . 0.06 0.07 

Time [s] 

Figure 4.23: Unit Step Response for Position Closed-Loop of PPC and Re-designed P-PI 
Controller with Notch Filter 
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The plots for the sensitivity and complementary sensitivity functions in Figure 4.24 

show, that the PPC controller improves the disturbance response at low frequencies, 

particularly in the region around the closed-loop bandwidth of 50 [Hz]. This improvement 

comes as a result of the damping added to the oscillatory modes of the feed drive structure, 

which could not be damped using the notch filter. The effect of the additional damping can 

be better observed from the response of both systems to a unit step disturbance, as shown in 

Figure 4.25. As seen, the response of the re-designed P-PI with Notch Filter takes 150 [ms] 

to settle, while the PPC settles in 20 [ms]. 

Unfortunately, the PPC controller, when compared to the P-PI with notch filter, 

introduces more measurement noise into the closed-loop system at high frequencies. The 

constraint on the complementary sensitivity function enforced by the S polynomial ensures 

that it has a zero value at the Nyquist Frequency, but cannot guarantee low values of 

complementary sensitivity at other frequencies. Therefore, it may be necessary to place more 

constraints at the other frequencies, i f the system is exposed to a significant amount of 

measurement noise. 

a) Sensitivity Function 

10° 101 102 103 

Frequency [Hz] 

Figure 4.24: Sensitivity and Complementary Sensitivity Functions for Position Loop of 
PPC and Re-designed P-PI Controller with Notch Filter 
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Figure 4.25: Unit Step Disturbance Response for Position Closed-Loop of PPC and Re­
designed P-PI Controller with Notch Filter 

4.6 Summary 

In this chapter, the importance of considering the structural dynamics of a feed drive 

during controller design has been shown through two controller design examples. First, a P-

PI controller is designed based on rigid-body dynamics and then implemented on a feed drive 

model which includes structural dynamics. By means of the frequency and time-domain 

characteristics of the system, it observed that a significant deterioration of performance 

results due to the effects of the resonances of the mechanical structure. In order to improve 

the performance of the controller, the structural dynamics is taken into account, and 

modifications are first made on the mechanical design, then a notch filter is implemented, 

and finally, a mode-compensating PPC controller is designed. A l l these together show that 

the consideration of the structural dynamics of the drive is a better alternative to a design 

performed based on only rigid-body dynamics considerations. They therefore highlight the 

importance of the modeling scheme presented in the previous chapter. Furthermore, they will 

be used in the simulation scheme described in the following chapter, in order to investigate 

the interaction between controller and feed drive dynamics. 



Chapter 5 

Interactive Simulation of Feed Drive-Controller Performance 

5.1 Overview 

The purpose of this chapter is to extend and reconfigure the linear FE model for 

ballscrew drives presented in Chapter Three to make it suitable for time-domain performance 

simulations. In order to do this, first of all a realistic simulation model for the mechanical 

system of the feed drive has to be generated from the FE Model. This challenge is treated in 

Section 5.2, where one of the major issues considered is the incorporation of some of the 

typical non-linearities of ballscrew drives into the simulation model. Another issue 

considered in Section 5.2 is the shortening of the duration of simulations through model 

reduction. This is because time-domain simulations for complex systems are often 

computationally intensive and time-consuming, neither of which is desirable for practical 

purposes. In Section 5.3, the resulting simulation model for the feed drive's mechanical 

system is implemented on a commercial simulator for the experimental set-up described in 

Chapter Three. Moreover, controller dynamics from the previous chapter, and some process 

dynamics are also added, and interactive simulations are performed in order to examine 

various properties of the feed drive axis. Finally, the highlights of the chapter are 

summarized in Section 5.4. 

5.2 Generation of Simulation Model of Feed Drive 

5.2.1 State-Space Representation of the Linear Dynamics 

The FE Model of the ballscrew drive, as mentioned in Chapter Three, results in a set of 

linear differential equations which can be expressed in matrix form as, 

Mmodeld + Cmodd d Kmodel " F (5.1) 

where Mmoa-ei, Cm0dei and Kmodei are respectively the mass, viscous damping and stiffness 

matrices of the model, while d represents the vector of generalized displacements and F is 

the vector of generalized forces. 

90 
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As in the case of the controller design, this dynamics of the model can be represented in 

various forms for simulation purposes. However, the state-space (SS) approach is often 

preferred above other representations because it lends itself better to numeric mathematical 

manipulations. Furthermore, in the state-space representation, the effects of initial conditions 

can also be captured. 

Generally, the state-space representation of a linear system can be expressed as, 

x = Ax + Bu 
y = Cx + Du (5-2) 

Where x, u and y are the state, input and output vectors of the system, respectively. If the 

state-vector in Eq.(5.2) is chosen such that it consists of the model's vector of generalized 

displacements, d and its derivative, d then the matrices A and B are written as, 

A = 
0 I 

-M~' K -M'1 C 
1" model model 1" modelw model. 

0 
; B = 

M'! 

_ model _ 
M'! 

_ model _ 

[TF.u\, where * = ĵ j (5.3) 

TF-U in Eq.(5.3) is a matrix which transforms the input vector, u into the vector of 

generalized forces, F. If 7>.„ is omitted from the expression for B, then the inputs are 

assumed to be expressed as forces (i.e. u=F). 

The output vector, y is related to x and u through the matrices C and D, respectively. In 

most cases, D=0, while C can simply be set to an identity matrix so that the output vector is 

identical to the state-vector (i.e. y=x). 

Diagrammatically, the model expressed by Eq.(5.2) and Eq.(5.3) can be viewed as a 

dynamic state-space block, SSmodeb having input ports into which forces are fed, and output 

ports from which the states (displacements and velocities) of the system can be tapped as 

shown in Figure 5.1. 
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Figure 5.1: Diagrammatic Representation of State-Space Model 

The model represented by Eq.(3.44) consists of several components (rigid-bodies and 

finite element structures) connected by joint interfaces. For simulation purposes, it is often 

desired to split the model into two or more sub-models, so that the non-linear dynamics at the 

joint interfaces between them can be realistically included into the simulation. A typical 

example of such a case is the joint at the screw-nut interface, where important non-linearities 

like nut backlash and position-dependent dynamics take place. 

Considering the simplest case where the full model is to be split into only two sub­

models with one joint connection between them, the differential equations describing the 

dynamics of the model (Eq.(3.44)) can be re-arranged as, 

\r 1 

dSml Msn„ 

0 

0 

Msm2 

• + 

1 

c„ , i o 
C '— 

o' l Cm2 l 
l 

Mm 

f ' 

dsml 

dSm2 
V i 

d 

dsml 

< 

dm2 Fsm2 
(5.4) 

-** modal 

The subscripts sml and sm2 respectively indicate a matrix or vector belonging to the 

first and second sub-model, while Cj0i„t and Kjoint are the damping and stiffness matrices of 

the joint connecting the two sub-models. 

From Eq.(5.4), it is clear that, excluding the joint interface matrices, the dynamic 

equations for each of the sub-models can be written independently as, 

Msmidsml + Csmldsml + KsmIdsml — Fsml 

Msm2dsm2 + Csm2dsm2 + Ksm2dsm2 Fsm2 

(5.5) 
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Hence, following the same procedure as for the full model, each sub-model can be 

converted into a state-space description, SS s m i and SS s m2. On the other hand, the stiffness and 

viscous damping matrices of the joint interface can be implemented in time-domain as direct 

and cross-coupling springs and viscous dampers having the stiffness and damping constants 

derived from the elements of Kj0int and Cjoint, respectively. Figure 5.2 shows the schematic of 

an example of this implementation for a simple case where the Kjoi„t and Cj0mt represent a 

single spring stiffness, k and damping constant, c between an attachment point on Sub-model 

1 and another on Sub-model 2. 

"6 F° sml 

I 

Cfsml ^ i 

SSsmi • 
+ M 

« sml { 

input 
ports 

output 
ports 

spring 

o 
i sub-model 1 

^dasm2 
F°sm2 . 

* ( jd3 sm2 S S S m 2 
F°sm2 . 

* ( 

output input 

VISCOUS 
ports ports 

damper sub-model 2 

Q 

Figure 5.2: Sample Implementation of Joint Stiffness and Damping Matrices 

da

smX and d"sm2 in the figure respectively represent the displacements of the attachment 

point on Sub-model 1 and Sub-model 2, while d°ml and d"sm2 represent their velocities. F°ml 

and F"m2 on the other hand, are the reaction forces on each of the sub-models due to the 

stretching of the spring, k and motion of the viscous damper, c Even though this model-

splitting procedure has been described for a simple case, it can be implemented quite easily 

for multiple joints having complex stiffness and viscous damping matrices. 

5.2.2 Incorporation of the Non-Linear Dynamics 

In ballscrew drive systems, various forms of non-linearities are present. As in the case of 

the linear model presented in Chapter Three, these non-linear dynamics can be grouped into 

those arising from elements in the electrical sub-system and those stemming from the 

mechanical components. In the electrical sub-system, typical non-linearities include 

saturation limits in the amplifier, delays from the D/A converters and quantization errors 
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from the measurement devices. On the mechanical side, the most common non-linearities are 

coulomb and static friction (e.g. at the guideways), backlash at the joint interfaces (e.g. at the 

screw-nut interface), and the position-dependent structural dynamics variations described in 

Chapter Three. 

Since the modeling in this thesis is focused on the mechanical sub-system, the non-

linearities in the electrical sub-system, even though significant, will not be dealt with here; 

only those arising from the mechanical components will be tackled. 

5.2.2.1 Coulomb and Static Friction 

Coulomb and static friction exist at every sliding interface in the drive system. However, 

their effects are most felt at the guideway interface because of the huge mass of the table 

resting on the guides which gives rise to large normal forces. Therefore while they can be 

neglected at the other sliding surfaces, they cannot be disregarded at the guideways. 

The friction characteristics for lubricated metallic surfaces in contact can best be 

described by the Stribeck friction curve shown in Figure 5.3 [2]. This curve consists of four 

different regions - the static friction, boundary lubrication, partial-fluid lubrication and full-

fluid lubrication, regions. 

Friction Force, F f 

+ve Static friction 

Viscous friction 
B 

© © +ve Coulomb friction 
-ve velocity constants 

(V-i) (v-2) 

( F + cou|) 

(V,) (V+

2) 
+ve velocity constants 

+ve 
Sliding Velocity, v 

-ve Coulomb friction 
(F coul) Static Friction Region 

ÎI) Boundary Lubrication Region 

IH) Partial Fluid Lubrication Region 

Full Fluid Lubrication Region 

Viscous friction 
(B) 

-ve Static friction 

Figure 5.3: The Stribeck Friction Curve 
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When a force is applied to one of the bodies in contact, so as to make it slide relative to 

the other, the interlocking asperities between the two surfaces are elastically deformed. 

During this period, there is no relative motion between the bodies; hence it is called the static 

friction region. When a certain threshold, F*1'^ is reached, the interlocking asperities 

disengage and motion begins, with a sliding (relative) velocity of v between the two bodies. 

Initially, the sliding velocity is low, so a consistent film of lubricant cannot be formed 

between the contact surfaces. Therefore, during this period, sliding occurs between the thin 

layers of lubricant trapped on the contact surfaces. This phenomenon is known as boundary 

lubrication. In the partial-fluid lubrication region, the sliding velocity is enough to cause a 

lubricant film to form between the surfaces. However, this film is not thick enough to 

completely separate the two contact surfaces; therefore there is still some metal-to-metal 

contact between them. After the sliding velocity reaches a sufficiently high level, a thick and 

continuous film of lubricant is formed between the surfaces, completely separating them. 

Here, the viscosity of the lubricant dominates the friction force, giving rise to what is known 

as the viscous friction or full-fluid region. 

Considering the characteristics of the Stribeck friction curve described above, an 

analytical formulation for the non-linear variation of the Friction Force, Ff with the sliding 

velocity, v between the two bodies can be given as [14], 

F;'-(v) = F£ • e-^'~ + F;JU- • (1 -e-««") + B-v ( 5 . 6 ) 

F^^stat and i 7 + / " c o u / are respectively the static and Coulomb friction forces, while V*''i and 

are velocity thresholds which are used to demarcate the different friction regions 

described above. V*1''/ determines the spacing between the boundary and partial-fluid, 

lubrication regions, while ^''2 regulates the spacing between the partial-fluid and full-fluid, 

lubrication regions. The superscript +/- appearing in the equation indicates a choice between 

the positive and negative constants depending on the sign of the velocity. In Eq.(5.6), a 

viscous damping term, B.v, representing the viscous damping force on the rigid-body motion 

has also been included. This is based on an assumption that the model's viscous damping 

matrix, Cmodei was derived from modal damping ratios (see Appendix A), and so does not 

include the damping on the rigid-body mode. However, i f this effect has already been 

included in CmodeU it should be excluded from the friction force expression. 
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Even though the expression for Ff given in Eq.(5.6) is complicated, it can be simplified, 

if need be, by taking its limit as K*7"/ and V+/~2 approach zero, so that the expression reduces 

to, 

F?'-(?) = F£+B-v (5.7) 

Irrespective of the expression used, the effect of Ff can be incorporated into the 

simulation model by simply calculating the sliding velocity, v from the velocity states, dx 

and d1 of the components concerned, and feeding it into a friction dynamics block which 

represents Eq.(5.6) or Eq.(5.7). The resulting friction force, Ff is then applied to the force 

inputs of the components, F 1 and F2 as a disturbance force as shown in Figure 5.4. 

F 

+ 
F2 

SSmodel 

input output 
ports ports 

Full Model 

Friction 
Dynamics 

Figure 5.4: Incorporation of Friction into Simulation Model 

5.2.2.2 Backlash 

Backlash is a non-linear position-dependent dynamics which mostly results from the 

presence of a clearance between two mechanical elements. One of the interfaces where a 

significant amount of backlash-like dynamic behaviour is observed in a ballscrew drive is the 

screw-nut interface [10]. Some other joint interfaces may also exhibit a similar behaviour 

depending on how they are designed. It is necessary to consider backlash in the simulation 

model because it gives rise to a hysteretic behaviour which may degrade the performance of 

the ballscrew drive. 

Generally, the mechanism of backlash can be described using the classical dead-zone 

model depicted in Figure 5.5. According to this model, the input and output mechanical 
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elements can either be in a disengaged state (Case 1), engaged in a positive direction (Case 2) 

or engaged in a negative direction (Case 3). 

C a s e l : disengaged 

d £ u t ( t ) output element 

Case 2: positive engagement 

d £ u t ( t ) output element 

7 ^ 

L|agW=L 

K d(t)=o 

input element ^ i n ' 1 ' input element 

Case 3: negative engagement 

. — i u t ( t ) output element 

d,nW 

+ 

+ 

input element d i n ( t ) 

Figure 5.5: Classical Dead-Zone Backlash Model 

Mathematically, the relationship between din{i), the displacement of the input element at 

any given instant, and dout(t), the displacement of the output element at the same instant can 

be described as, 

fO; -Lhg(t)<din(t)<Llead(t) 
doul(t) = -

din(t); otherwise (5.8) 

In the equation, Liag{t) and Liead(t) are respectively the instantaneous distance between 

the input element, and the left and right limits of the dead-zone having an effective clearance 

of length L (see Figure 5.5). Initially, they are both set to a value of half the length of the 

dead-zone (i.e. LiAG(0)=Liead(0)=L/2), and as time goes on, they are updated based on the rule, 
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L,ag (r - 1 ) + din (0; 0 < Llag (t)<L=> (Case 1) 

L\ Llag(t)>L=> (Case 2) 

0; Z^(0<0=>(Case 3) 

"'lead 
< Z / e a d (t)< L=> (Case 1) 

(5.9) 

0; W ) < o = 

L\Llead{t)>L. 

(Case 2) 

> (Case 3) 

Unlike the friction dynamics described in the previous section, in order to implement 

backlash dynamics in the simulation model, the entire model has to be split up into sub­

models at the joint location concerned. This is because the backlash represents a kind of 

switch which connects and disconnects two sub-models at the joint in between them. For 

instance, assuming some backlash dynamics is present at the joint interface between S S s m i 

and SS s m2, shown in Figure 5.2; it can be incorporated into the joint interface as shown in 

Figure 5.6. 

"6 F° sml 
SSsmi-

input output 
ports ports 

-in backlash 
dynamics 

$* sml 

k s P r i n g 

M sml +/ 

sub-model 1 

^ d° sm2 

-^d"sm2 
SSSm2 

FUsm2 . 

^ ( 

viscous 

output 
ports 

input 
ports 

3 
damper sub-model 2 

Figure 5.6: Incorporation of Backlash into Simulation Model 

The "backlash dynamics" block in the figure essentially executes the backlash model 

given by Eq.(5.8) and (5.9). ^s

a

ml_,„is the displacement of the attachment point excluding the 

effects of backlash. It represents dj„(t) in the backlash model of Figure 5.5. da

smX, on the other 

hand, is the actual displacement of the attachment point, considering backlash. It is similar to 

doutif) in Figure 5.5. 
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5.2.2.3 Position-Dependent Structural Dynamics Variations 

In Chapter Three, the variation of the ballscrew drive dynamics as the nut moves along 

the ballscrew was discussed in detail. The natural frequencies and amplitudes of the system's 

open-loop response were seen to change from position to position. Furthermore, in Chapter 

Four, this changing open-loop dynamics was also shown to affect closed-loop dynamics of 

the controlled system. 

Therefore, considering that while executing motion commands, the table and nut have to 

continuously move from one position to the other, these position-dependent changes in 

dynamics have to be incorporated in the simulation model in order to observe their effects. 

Figure 5.7 shows the mechanism for this variation. As the nut moves along the threaded 

section of the ballscrew, the screw-nut interface joint moves from one attachment point, PNUI 

to the other. The interface joint is represented by the screw-nut interface stiffness matrix, KSN 

and damping matrix, CSN (if available), r^ut is the instantaneous position vector of the nut 

measured from the beginning of the threaded portion of the ballscrew. Since the ballscrew 

model consists of an FE beam with discrete nodes, the information at any nut attachment 

point, PNM, is provided by the information at the nodes, Ni and NR, to the immediate left and 

right of it. £ is the distance from NL to PNM at any time. 

In the simulation model, the.effect of this position-dependent dynamic variation can be 

captured by grouping the ballscrew and other components attached to it as one sub-model 

(sub-model 1), and grouping the nut and the other components attached to it as another sub­

model (sub-model 2), as shown in Figure 5.8. Then the screw-nut interface stiffness and 

damping matrices KSN and CSN are substituted as the joint interface matrices. Since the nut 

attachment point, PNM is continuously changing, a selection block is also introduced in order 

Figure 5.7: Movement of Screw-Nut Interface Joint along Ballscrew 
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to select the state vectors, (d^x, d^{) and (d^x, d^x) respectively belonging to NL and NR, 

from the vector of all the states for the sub-model {dsmX,dsmX). These selections are based on 

the value of the nut's position vector rmt at each instant. 

I 

6 F°sml 

sml 

F1" ,\ 
* smll 

SSsmi 

.input output 
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d s m l 

dsml 
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sub-model 1 

sm2 . 

~* ( SS S m2 
sm2 . 

~* ( 
output input 

viscous ports ports 

••a 

damper sub-model 2 

Figure 5.8: Incorporation of Position-Dependent Structural Dynamics Variations into 
Simulation Model 

Given the information at the left and right nodes, the shape function matrix T(%) 

introduced in Chapter Three as TBst-Bst, is used to transform the states belonging to the left 

and right nodes, to equivalent states, {da

smX,da

smX) at the attachment point PNUI- Similarly, the 

transpose of this matrix TT(£) is used to transform the reaction force vector, Fs

a

mX from the 

joint, to the reaction force vectors, F ^ a n d F^f, at NL and A^, respectively. 

Consequently, as the nut moves along the ballscrew, the position-dependent dynamic 

variations are captured in a smooth and efficient manner. Even though, by using a single 

screw-nut interface stiffness matrix KSN, the Rigid-Ballscrew method is assumed to have 

been employed here, the same procedure can be applied, with minor modifications, when the 

shape-function-method-based interface stiffness matrices Ksm, presented in Chapter Three, 

are used. 

5.2.3 Model Reduction 

5.2.3.1 Component Mode Synthesis 

Finite element models usually consist of a large number of degrees-of-freedom (DOF). 

Generally, the number of DOF in the model determines the amount of dynamic information 
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that can be obtained from it. However, oftentimes, only a small amount of this dynamic 

information is useful for controller design and simulation purposes, while most of it is 

redundant. Model reduction therefore aims at eliminating as much of the unnecessary 

information as possible without unduly distorting the beneficial portion of the information. 

One class of reduction methods that has proved efficient for multi-component structures 

like ballscrew drives is the Component Mode Synthesis (CMS) reduction techniques [46]. In 

the CMS methods, the DOF of the structure to be reduced are grouped into two categories -

the interface/exterior DOF and the interior DOF. The exterior DOF are those DOF of the 

model which cannot be eliminated during the reduction process. They usually comprise the 

DOF at the interface of two connected structures, which bear reaction forces, and also the 

DOF to which actuation forces are applied. The interior DOF on the other hand, are typically 

those DOF to which no load is applied, hence making it possible to express them in terms of 

the exterior DOF using the Guyan Reduction Method [16]. 

When reducing ballscrew drive models, one of the greatest challenges faced is capturing 

the position-dependent dynamic variations. This is because the relative motion of one 

structure with respect to the other demands that the exterior DOF defined for the interface 

between these structures change from position to position. Consequently, standard flexible 

multi-body dynamic simulation software packages like A D A M S [32] are unable to handle 

systems like ballscrew drives because their methods are limited to structures with fixed 

interface points. For this reason, other researchers [46] have devised a means of handling this 

problem by retaining all the DOF of the so-called residual structures which are involved in 

relative motion (like the ballscrew) while reducing the other structures. However, this 

method has a significant drawback because retaining all the DOF of the residual structures 

greatly limits the amount of reduction that can be achieved. For instance, for the model 

presented in Chapter Three, more than 90 [%] of its DOF belong to the ballscrew. Therefore, 

retaining all the DOF of the ballscrew implies almost no reduction. 

Consequently, in this section, CMS methods are applied in a novel way for ballscrew 

drives in order to enable the residual structures to also be reduced, while still allowing the 

position-dependent dynamic variations to be incorporated effectively into the reduced model 

using the method presented in the previous section. 
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5.2.3.2 Reduction Using Constraint Modes 

Consider a structure which has E exterior DOF and I interior DOF. The structure is 

loaded at its exterior DOF by forces Fe, and also loaded at its interior DOF by forces Ft. 

Assuming, as is usually the case, that the system's damping matrix is obtained via the modal 

damping technique (see Appendix A), then the system can be analyzed as un-damped. The 

model's equation of motion in the partitioned form is thus given by, 

X X X X 
X UJ X X 

M model K model 
d 

X 
F 

(5.10) 

where the subscripts e and / refer to exterior and interior DOF. 

In order to reduce the system, a component mode set has to be chosen. One of the most 

commonly used sets consists of the complete set of exterior DOF de, augmented by a set of P 

fixed or free-interface normal (vibration) modal DOF of the structure, qp [17]. For ballscrew 

drives, the set of free interface normal modes is usually preferred over the fixed ones [46]. 

Based on this component mode set selection, the coordinate transformation required for 

reduction is given by, 

f'4=*r 

where the transformation matrix, ̂  is expressed as, 

7 „ o„ 

(5.11) 

ep 

Vie 
(5.12) 

(pie are the constraint or static modes due to unit displacements at the exterior DOF. 

They are calculated [16] by assuming F,=0 for the static equilibrium equations derived from 

Eq.(5.10). Hence, <pie is given by, : 

<Pie=-KuKw (5.13) 

XJ> on the other hand, is a subset of the modeshape vector, x, obtained from solving for 

the eigenvectors of Eq.(5.10), and selecting the first P non-rigid-body modes. 
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The reduced mass and stiffness matrices of the model are therefore obtained by pre-

where the superscript 'red' indicates the reduced system which has (J-F) DOF less than 

the original system (I»P). The response of the full system can be recovered from the 

reduced system by using Eq.(5.11). This kind of recovery is called Modal Displacement 

(MD) recovery. 

M D recovery gives a good approximation of the full system's response provided the 

condition that F,=0 is satisfied. This is because the contribution of the truncated (I-P) higher 

frequency modes is partly accounted for by the constraint modes which ensure that the static 

part of the solution is exact, with minimal errors in the dynamic part of the solution. 

However, when some interior DOF are loaded, the M D recovery method gives rise to 

errors in both the static and dynamic part of the solution, particularly at the response of the 

interior DOF. This is the case for ballscrew drives because, as explained previously, the 

exterior DOF keep changing as the nut moves along the ballscrew. If only a few of these are 

selected as exterior DOF for the model, then when the nut moves, some interior DOF become 

loaded resulting in errors. One way of averting this problem is to change the exterior DOF as 

the nut moves, but this gives rise state-space sub-models which are position/time-dependent, 

and must be re-computed at every time step. Another way out is to retain all the DOF of 

structures like the ballscrew, which are involved in relative motion; but this gives rise to a 

poor reduction, as explained previously. 

5.2.3.3 Response Recovery Using Modal Acceleration 

Considering the shortcomings of the M D method when recovering the responses of 

structures with loads applied to their interior DOF, in this thesis the Modal Acceleration 

(MA) recovery method [15] is proposed as an effective way of obtaining the response of the 

multiplying and post-multiplying the original ones by ^ T and respectively, while the 

force vector, F is pre-multiplied by ^ to get its reduced form. This results in an equation of 

motion for the reduced system given by, 

(5.14) 
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full system. This is because it introduces a static correction to the M D method which 

improves the accuracy of the recovered response. 

In order to recover the responses from the reduced model, the equation of motion 

expressed in Eq.(5.10) can be split into two row partitions. The first is given by, 

[M„ M „ ] { | } + [^ , . ]{}} = F. (5.15) 

Then from the second row partition, the displacements of the interior DOF, </, can be 

obtained as, 

dt=[-K-]Mie -K:,Mi^^-K:iKJe + K:iFi (5.16) 

This expression can be rewritten as, 

\d, 
0* ee et Ft w l (5.17) 

By substituting Eq.(5.11) into Eq.(5.17), the M A recovery turns out to be, 

K 
\d, 

ep 

-K-l{Mie + Mii9ie) -K-lMiiX. 
ee ei F, 

.'Pie. (5.18) 
T 

3 

This method therefore explicitly includes a recovery matrix (7?) which corrects for the 

static effects of the forces applied to the interior DOF. Furthermore, using T2 it corrects for 

the static effects of inertia loads due to accelerations of the exterior DOF [15]. Consequently, 

for ballscrew drives, components like the ballscrew can be reduced with fixed exterior DOF, 

and then the static effects of the reaction forces and inertial loads can be added on by using 

the M A recovery. 

Figure 5.9 shows how this is implemented for the full model shown in Figure 5.1. The 

reduced state-space model SS r e d

m odei is obtained by substituting the reduced mass matrix 

M"6*modei, reduced stiffness matrix JCed

modei and reduced damping matrix (Ced

modei = 

*T-Cmodem into Eq.(5.3). 
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Figure 5.9: Implementation of CMS Reduction and MA Recovery Scheme 

5.3 Sample Implementation of Simulation Model 

In this section, a Simulink® model of the experimental test-bed described in Chapter 

Three is built based on the methodology presented in this chapter. First, the state-space 

model of the set-up is derived, and then non-linear dynamics are incorporated into it. In order 

to better understand the advantage of this model, the closeness of its acceleration response to 

that of the actual set-up is compared with the acceleration response of a similar model 

developed only considering rigid-body dynamics. Next, the model is reduced, and the 

effectiveness of the reduction scheme is weighed against the full model. Finally some 

controller and process dynamics are added on, and the whole system simulated for a given 

reference trajectory. 

5.3.1 Interaction between Non-Linear and Higher Order Dynamics 

The non-linearities considered for the set-up model are the guideway friction, screw-nut 

interface backlash and position-dependent dynamic variations. In order to incorporate them 

into the model, it is divided into two sub-models at the screw-nut interface. Furthermore, 

because the guideway is assumed to be rigid, the bending deflections of the system do not 

have any effects on the table dynamics. Consequently, all the DOF related to bending are 

considered redundant for this model and so have been deleted, leaving only the torsional and 

axial DOF. Table 5.1 gives a summary of the components and number of DOF in each of the 

sub-models. 
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Sub-Model Constituent Components Number of DOF 

Sub-Model 1 ballscrew, thrust bearing, radial 
ball bearing, coupling, rotor 

101 

Sub-Model 2 table and nut 1 

Table 5.1: Description of Sub-Models of Set-up 

The joint connection between the two models is a reduced form of the screw-nut 

interface stiffness and damping matrices, having only the torsional and axial DOF. The state-

space equation for each sub-model is generated using the method explained in Section 5.2.1. 

Subsequently, the guideway friction is applied to the table and nut (lumped together) in Sub-

Model 2, based on the procedure outlined in Section 5.2.2.1, while the screw-nut interface 

backlash is applied to the torsional DOF of the joint between the two sub-models following 

the description in Section 5.2.2.2. Lastly, the variation of dynamics as the nut and table move 

along the ballscrew is introduced into the model as explained in Section 5.2.2.3. Table 5.2 

gives a summary of the friction and backlash parameters for Eq.(5.7) and Eq.(5.9), measured 

experimentally from the set-up. 

Parameter Value 

F+'-coui [N] ±2066 

B [kg/s] 12673 

L [rad] 0.001885 

Table 5.2: Friction and Backlash Parameters for Set-up 

Figure 5.10 shows the square-wave excitation signal applied to the motor in order to 

observe the motions of the table under the influence of the system non-linearities and higher-

order dynamics. It has a frequency of 5 [Hz] and peak-to-peak amplitude of 4.25 [V]. 

1 

0 0.05 O.l' 0.15 0.2 0.25 0.3 0.35 0.4 
Time [s] 

Figure 5.10: Excitation Signal Applied to Motor 
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A comparison of the responses of the table with and without backlash and guideway 

friction is shown in Figure 5.11. As seen, when the non-linearities are not considered, the 

excitation signal causes vibrations at 115 [Hz] which are noticeable at the table responses, 

particularly in the acceleration response. These vibrations are excited once at the beginning 

of each step, and then die down uniformly. They are mainly as a result of the axial mode of 

the ballscrew described in Section 4.4.1. However, with the addition of non-linearities, there 

is an extra excitation of the same mode in the middle of each step, resulting from the 

discontinuities of the backlash and friction forces. Furthermore, the backlash adds a varying 

time delay which can be observed in the acceleration signals. This is the time-delay that gives 

rise to the reversals and extra phase lag in the responses of the actual machine presented in 

Sections 3.5.2.2 and 3.5.2.4 . Also, notice the enormous errors in the displacement response, 

resulting from the presence of coulomb friction. 

Figure 5.11: Simulated Responses of the Table with and without Non-linearities 
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The responses shown in Figure 5.11 are for the C-Position (i.e. when the table is at the 

centre of its travel length). Figure 5.12 shows a comparison of the responses measured at the 

R-Position (i.e. when the table it at the extreme right of its travel length), with those at the C-

Position. Notice the increase in the frequency of the vibrations from 115 [Hz] at the C-

Position, to 133 [Hz] at the R-Position. This is due to the position-dependent variation in the 

machine dynamics as the nut travels along the ballscrew. 

(a) Acceleration 

(c) Displacement 

o 
_2 I i l l i i i l I 

0 0 . 0 5 0 . 1 0 . 1 5 0 . 2 0 . 2 5 0 . 3 0 . 3 5 0 . 4 

T ime [s] 

Figure 5.12: Simulated Responses of the Table Measured at the C and R-Positions 

For the sake of comparison, the same excitation signals in Figure 5.10 are applied to a 

model generated only based on rigid-body dynamics. Furthermore, they are applied to the 

experimental test-bed and the acceleration of the table is measured using an accelerometer 

mounted on the table. Figure 5.13 shows these two responses, together with that obtained 

from the FE model at the C-Position. As seen, the rigid-body dynamics model cannot capture 

any of the vibrations, therefore highly underestimates the accelerations. The FE Model is 

able to capture some of the vibrations, and so is at least better able to predict the peak value. 
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The discrepancy between the frequency of the vibrations measured from the actual set­

up and those from the model are as a result of the influence of other vibration modes which 

are not captured by the model. Modal tests on the set-up indicate the presence of two other 

modes at about 60 [Hz] and 160 [Hz], in addition to the one captured by the FE Model at 

about 120 [Hz]. The 60-Hz mode "is believed to exist as a result of the interactions between 

the x-axis drive of the machine (which is used as the experimental set-up) and the y-axis 

drive upon which it is mounted. In order to capture this mode, the y-axis drive must also be 

modeled. On the other hand, the mode at 160 [Hz] is probably due to the influence of the 

fastened joint between the nut and table. Usually, this joint plays an important role in the 

dynamics measured at the table. However, it was excluded from the FE-Model for this set-up 

due to insufficient information about the stiffness of its fastened joint. 

• Rigid Body Model 
FE Model 

• Experiment 

0.15 0.2 

Time [s] 

Figure 5.13: Comparison of the Rigid-Body and FE Models with Experiments 

5.3.2 The Impact of Model Reduction 

The model reduction scheme discussed in Section 5.2.3 is implemented on the 

simulation model for the set-up presented above, in order to get rid of the redundant 

information in the model, hence reduce the simulation time. Since the model is divided into 

two sub-models, the reduction has to be applied individually to the sub-models. Sub-model 2 

has only 1 DOF hence it is totally meaningless to reduce it. On the other hand, Sub-model 1 

has 101 DOF, most of which are coming from the ballscrew. Most of the redundant 

information resides in this sub-model, therefore it will be beneficial to reduce it. 



Chapter 5. Interactive Simulation of Feed Drive-Controller Performance 110 

For the reduction, two exterior DOF are considered (E=2). The first exterior DOF is the 

motor's DOF, which is chosen because the actuation torque is applied to it. As a second 

exterior DOF, a node at the centre of the ballscrew is chosen, to serve as an anchor point for 

the whole ballscrew which can receive forces on any of its nodes depending on the position 

of the nut. Furthermore, the first three free-interface normal modes of the sub-model are 

selected (P=3). Hence the number of DOF of the sub-model is reduces from 101 to 6 (i.e 

E+P+l Rigid-Body Mode). 

Table 5.3 gives a summary of the first four natural frequencies calculated based on the 

full sub-model, and those obtained from the reduced sub-model. The percentage errors in the 

natural frequencies of the reduced sub-model with respect to those of the full sub-model are 

also given. The results show that the maximum discrepancy in the frequencies is 0.8 [%], 

which is negligible. Therefore, the reduction does not significantly distort the natural 

frequencies. This is so because the number of ballscrew DOF chosen as exterior DOF is few. 

Mode Number Full Sub-Model's 

Natural Freq. [Hz] 

Reduced Sub-Model's 

Natural Freq. [Hz] 
Percentage Error 

1 260.86 262.94 0.800 

2 793.46 793.46 0.000 

3 1276.40 1276.50 0.007 

Table 5.3: Comparison of Natural Frequencies of the Full and Reduced Sub-Models 

When this reduced model is used without the M A recovery, the slightest movement of 

the nut away from the anchor node chosen on the ballscrew leads to numerical instabilities 

due to the forces applied on the interior nodes. However, with the M A recovery, the 

correction factor takes care of the errors and the simulation remains stable irrespective of the 

position of the nut on the ballscrew. 

In order to ascertain the impact of the reduction on the simulation time, and accuracy of 

the responses, the excitation signal shown in Figure 5.10 is applied to the reduced model and 

the responses of the table are obtained. The simulation on the full-model takes 635 [s] on a 

Pentium IV CPU (2.40 GHz) running Simulink®, while on the reduced model, it takes 135 
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[s], representing a five fold reduction in simulation time. Figure 5.14 shows a comparison 

between the responses obtained from the two models, while Figure 5.15 shows a zoomed 

view of the boxed region of the response plots. It is obvious from the figures that the 

responses are approximately the same. The slight discrepancy which can be observed from 

the acceleration plot indicates the errors arising from the dynamic portion of the truncated 

modes which has not been compensated. However, the errors resulting from this are 

negligible for all practical purposes. 

(a) Acceleration 

0.15 0.2 
T i m e [s] 

Figure 5.14: Comparison of the Simulated Responses from the Full and Reduced 
Models 
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(a) Acceleration 

112 

0.204 0.205 0.206 0.207 0.208 0.209 0.21 0.211 0.212 0.213 0.214 
Time [s] 

Figure 5.15: Zoomed View of the Simulated Responses from the Ful l and Reduced 
Models 

5.3.3 Coupled Simulation of Controller, Process and Feed Drive Systems 

In order to show how the simulation model presented here fits into the grand scheme of 

virtual simulation of machine tool feed drive systems (which could be extended to include 

the entire machine tool), the three controllers designed in Chapter Four are each used to 

perform a simple single-axis slotting operation. As shown in Figure 5.16, first the workpiece 

is fed rapidly at 40 [m/min] over a distance of 100 [mm] starting from the L-Position of the 

table. Then the slotting operation is performed at a feed rate of 25 [m/min]. Finally, the table 

is rapidly moved to the other end (R-Position) of its travel range, again using a 40-m/min 

feed rate. 

300 mm 
feed direction 

1 100 mm 1 

rapid 
feed rate 

(40 [m/min]) 

340 mm 
cutting 

feed rate 
(25 [m/min]) 

workpiece 

100 mm 
rapid 

feed rate 
(40 [m/min]) 

Figure 5.16: Slotting Operation 
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The reference trajectory for the toolpath, and the cutting force in the feed direction per 

spindle revolution (Tspi„die=0.0024 [s]) are shown in Figure 5.17 and Figure 5.18, 

respectively. They are obtained using in-house developed software [8] based on the 

parameters given in Table 5.4 and Table 5.5, respectively. 

Trajectory Type Trapezoidal Velocity 

Velocity Limit of Machine 60 [m/min] 

Acceleration Limit of Machine 1.5 [G] 

Deceleration Limit of Machine 1.5[G], 

Table 5.4: Parameters for Reference Trajectory Generation 

Workpiece Material A l 7075 

Tool Type/Material 4-Fluted Helical Endmill/Carbide 

Tool Diameter 20 [mm] 

Tool Helix Angle 30 [deg] 

Spindle Speed 25000 [rpm] 

Depth of Cut 5 [mm] 

Table 5.5: Parameters for Cutting Process Simulation 
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600 
a) Displacement 

Figure 5.17: Reference Trajectories for Slotting Operation 

-200 

-250 U 

9i -300 

O) -350 

O -400 

CD 

-450 

spindle 

Time [s] 

Figure 5.18: Feed Cutting Forces over One Spindle Revolution 

The responses of the feed drive system controlled by the P-PI Controller designed based 

on rigid-body dynamics, re-designed P-PI Controller with a Notch Filter, and PPC, designed 

in Chapter Four, are shown in Figures 5.19, 5.20 and 5.21, respectively. 
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500 
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2 
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-2 

40 

E° 
-40 

a) Displacement 

b) Velocity 

c) Acceleration 

d) Control Signal 

e) Tracking Error 

0.2 0.4 0.6 0.1 
Time [s] 

1.2 

Figure 5.19: Simulated Responses of Feed Drive Controlled with Rigid-Body Based 
P-PI Controller 

Figure 5.20: Simulated Responses of Feed Drive Controlled with P-PI+Notch Filter 
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a) Displacement 

0 0.2 0.4 0.6 0.8 1 1.2 
Time [s] 

Figure 5.21: Simulated Responses of Feed Drive Controlled with PPC 

From the figures, the performance characteristics of each of the controllers on the feed 

drive model can readily be observed. From the acceleration response of the rigid-body 

dynamics based P-PI controller (Figure 5.19(c)), the effect of the uncompensated mode of 

112-140 [Hz] (depending on the position) can be seen as transient vibrations due to inertia 

forces. The amplitude of the vibrations is higher, around the L-Position, while it reduces 

significantly at the R-Position. This phenomenon is closely linked to the mode shape at that 

frequency range, which as explained in Section 4.4.1, is predominantly an axial mode of the 

ballscrew being stretched and compressed as the table moves. Since the axial stiffness of the 

ballscrew is inversely proportional to its length, at the L-Position, the effective distance 

between the nut and the thrust bearing attached to the ballscrew is maximum, therefore the 

stiffness is least, while at the R-Position, the distance is minimum, hence the stiffness 

maximum. This position-dependent change in stiffness is also the reason why the natural 

frequency, which is proportional to stiffness, is lowest at the L-Position and highest at the R-

Position. 

The addition of the notch filter, as observed from Figure 5.20(c), results in a significant 

attenuation of the vibrations. However, since the notch filter was designed for the C-Position, 

its effectiveness deteriorates a little at the L and R-Positions. In the case of this set-up, the 



Chapter 5. Interactive Simulation of Feed Drive-Controller Performance 117 

deterioration is not severe; however, in cases where the variation of dynamics from one 

position to the other is very large, the deterioration may lead to stability issues. 

Comparing the tracking errors of the two controllers discussed above (Figures 5.19(e) 

and 5.20(e)), it can be concluded that the addition of the notch filter does not improve the 

tracking performance of the feed drive system. A maximum tracking error of 5.6 [mm] is 

recorded for both cases, during the rapid feed motion periods at the beginning and end of the 

operation. 

The mode-compensating PPC outperforms the P-PI controllers both in terms of vibration 

suppression and tracking performance. It is able to successfully damp out the vibrations 

coming from the ballscrew's axial mode at all positions, while keeping the maximum 

tracking error below 4 [mm]. However, even with this improvement, the tracking error is still 

large, and so for high-precision machining, a controller which can further reduce the tracking 

errors must be resorted to. A n Adaptive Sliding Mode Controller has been implemented in 

[13] to achieve both mode-compensation and high-precision tracking performance. 

A l l three controllers show a similar trend in control signals. The maximum peak value of 

control signals (40 [V]) occurs when the PPC is used, while a maximum continuous value of 

25 [V] is recorded for all three controllers. These values correspond to a peak torque and 

continuous torque requirement of 124 [Nm] and 78 [Nm], respectively from the drives. The 

set-up used here has not been designed for H S M purposes, hence its peak and continuous 

torque values are respectively 43 [Nm] and 8.5 [Nm]. However in high-speed machine tools, 

lighter mechanical components are employed together with powerful drives. Therefore, the 

torque requirements are significantly reduced, while the capabilities of the drives are 

increased to meet the demands of the high-performance controllers. 

The control signals of the PPC are more oscillatory than those of the P-PI Controllers 

due to the fact that it acts aggressively to compensate for the vibrations coming from the ball­

screw's axial mode. However, just as in the case of the P-PI+Notch Filter, the performance 

of this fixed-parameter PPC can not be guaranteed in the presence of huge changes in 

dynamics from position to position. 

The effects of the disturbance forces applied to the feed drive's table during the slotting 

operation are highly attenuated due to the ballscrew's drive ratio. Furthermore, the presence 
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of integral action in all three controllers ensures that any static error that the 350 [N] negative 

offset in the cutting forces may introduce is eliminated. However, the alternating portion of 

the cutting force introduces a forced vibration at 1667 [Hz] (tooth-passing frequency) on the 

table, which can be seen by zooming into the boxed region of the acceleration responses of 

the three controllers as shown in Figure 5.22 (a), (b) and (c). 

a) Rigid-Body Based P-PI 

Time [s] 

Figure 5.22: Comparison of Simulated Acceleration Responses of Feed Drive controlled 
by Various Controllers under Effects Cutting Force Disturbances 

From Figure 5.22, it can be seen that apart from the forced vibrations at tooth-passing 

frequency, the cutting forces also excite a vibration at about 120 [Hz] (mainly due to the 

frequency of the axial mode of the ballscrew) in the acceleration response of the two P-PI 

controllers. However, in the response of PPC controller, the oscillation at 120 [Hz] is not 

noticeable. This is due to the ability of the PPC to introduce damping directly to the 

compensated mode, unlike the P-PI+Notch Filter. Furthermore, the figure shows that the 

cutting forces also intermittently excite some vibrations at about 333 [Hz]. These vibrations 

result from a combined effect of the ballscrew's axial mode at about 120 [Hz], and other 

modes of the ballscrew, for instance the coupling's torsional mode at about 560 [Hz]. The 

amplitude of these intermittent vibrations is smaller (0.05 [G]) for the P-PI controllers, but 

increases by about two folds for the PPC. This is because of the higher sensitivity of the PPC 

at high frequencies, when compared to the P-PI controllers (see Figure 4.24 (a)). Therefore, it 

is important that while trying to mitigate the effects of low-frequency modes, the high-

C 
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frequency ones are not unduly amplified, as in the case of the PPC, especially where the 

effects of disturbance forces at those high frequencies could be significant. 

5.4 Summary 

In this chapter, a simulation model for ballscrew drives based on equations of motions 

obtained from a linear FE model has been developed. The model is designed to incorporate 

some of the common non-linearities of a feed drive's mechanical system - backlash, 

coulomb and static friction, and position-dependent variation in structural dynamics. 

Furthermore, an existing response recovery method has been applied to ballscrew drives in a 

novel way in order to achieve a considerable reduction in simulation time, while still making 

it possible to capture the position dependent dynamics of the drive. Using a commercial 

simulator, the model has been used to simulate the interaction between feed drive structural 

dynamics, non-linearities, process dynamics and controller dynamics. 



Chapter 6 

Conclusions 

6.1 Conclusions 

A modeling scheme for Cartesian-configured high-speed machine tool ballscrew drives 

is presented in this thesis. This scheme enables the components of a ballscrew drive to be 

modeled using finite element techniques as lumped rigid-bodies or distributed parameter 

components. As a result, a hybrid finite element model of the feed drive is generated, which 

can be used for high-performance controller design and interactive simulation of the feed 

drive's performance during the design stage of the machine tool. 

In modeling ballscrew drives, the mechanical components which are relatively more 

rigid are modeled as lumped rigid-bodies, while the ballscrew, which is relatively more 

flexible, is modeled using Timoshenko beam elements. The joint interfaces, including 

bearings, couplings and guideways, are modeled as linear and rotary springs in various 

directions. This results in a model which is able to capture the desired structural dynamics 

while maintaining a reasonably low order. 

A significant contribution of this thesis is in the modeling of the screw-nut interface, 

where two methodologies for deriving the interface stiffness matrix are presented - the rigid-

ballscrew and shape function methods. The rigid-ballscrew method gives rise to a single 

interface stiffness matrix which is experimentally proven to adequately to predict the 

position-dependent structural dynamics variations that occur as the nut moves along the 

ballscrew. Furthermore, the matrix is seen to contain some additional cross-coupling terms 

which have not been derived by other researchers, and may play an important role in the 

dynamics of ballscrew drives, as shown by a preliminary simulation study. The shape 

function method has been derived in anticipation of situations where the rigid-ballscrew 

method may not work properly. However, it is yet to be validated experimentally. 

The ballscrew drive model developed in this thesis is able to provide relevant dynamic 

information needed for controller design. Controllers designed based on the model are shown 

to outperform those designed based on the traditional techniques which do not consider the 

120 
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structural dynamics of the drive. Furthermore, the model provides information which enables 

weak spots of the feed drive's mechanical design to be identified, and modifications made 

where possible in order to enhance its performance characteristics. 

As part of the modeling scheme presented in this thesis, a simulation strategy is derived 

which permits some non-linear dynamics of the drive mechanism to be incorporated into 

time-domain simulations. The most peculiar non-linearity considered is the position-

dependent structural dynamics variations which occur as the nut moves along the ballscrew. 

The simulation strategy allows for a smooth and efficient adjustment of the dynamics of the 

feed drive as the table position changes. This thesis makes a significant contribution in this 

respect by devising a means of efficiently achieving model reduction, while retaining the 

ability of the simulation scheme to capture these position-dependent dynamics. As a result, a 

significant amount of reduction in simulation time is achieved without unduly sacrificing the 

capabilities of the model. The simulation strategy also allows the controller dynamics and 

some other relevant dynamics of the feed drive system to be included in the time-domain 

simulations in order to realize a virtual prototype of the feed drive. 

In summary, the modeling scheme presented in this thesis shows promising potentials 

towards providing a good description of the dynamics of Cartesian-configured ballscrew 

drives needed for controller design and performance simulation in the virtual environment. 

However, the full potential of the scheme could only be partially validated experimentally, 

due to a few limitations of the test-bed employed. 

6.2 Future Research Directions 

The modeling scheme presented in this thesis is applicable only to Cartesian-configured 

ballscrew drive systems where all the rigid-body motions are linear, since they consist of 

displacements along the Cartesian coordinates of the machine. However, it will be beneficial 

to extend the scheme to include non-Cartesian machine tools, like five-axis or parallel 

kinematic machine tools which are increasingly being used in the high-speed machining of 

dies and molds, aerospace parts, and other parts requiring complex three-dimensional 

motions. Since these machines exhibit large rotations, their kinematics is non-linear and 

coupled, thus giving rise to a more complex and time-dependent model. 
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Linear drives are increasingly being employed by machine tool builders, particularly for 

very high-speed machines with low thrust requirements. Therefore, the extension of this 

work to linear drives will pay great dividends. 

A preliminary study has been conducted on the cross-coupling terms present in the 

screw-nut interface stiffness matrix derived in this thesis. This study shows interesting effects 

that the cross-coupling terms produce on the deformations of the table and ballscrew. It will 

be useful to conduct an experimental study in order to check i f such effects are observable on 

an actual system, and i f so, their relative significance. 

Controller design, including the drive flexibilities and position-dependent dynamics, is 

another interesting dimension that can be added to this work. This will require developing 

control laws that will compensate for the changing structural dynamics of the feed drive as it 

moves from position to position. This research in controller design takes a more intriguing 

twist when applied to linear drives. Since the influence of the process dynamics on the 

controller performance is more profound when they are used. Therefore, the controller design 

will have to aim at actively preventing process induced instabilities like chatter vibrations, 

while trying to achieve high-positioning accuracy. 
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Appendix A 

Beam Element, Current-Frame Rotation and Modal Damping 

Formulations 

A . l Beam Element Formulations 

x,u 

V! V 2 

Figure A . l : Timoshenko Beam Element 

Figure A . l shows a two-noded Timoshenko beam element of length Lgim- u, v and w 

indicate the displacements in the radial x, radial y and axial directions, while 6X, 6y and 8Z 

represent the rotations around the x, y and z (torsional) axes, respectively. The subscripts 1 

and 2 respectively denote displacements and/or rotations belonging to node 1 and node 2. £ is 

the non-dimensional position of the point P%, measured from node 1. It assumes a minimum 

value of 0 when P% is located at node 1, and a maximum value of 1 when it is located at node 

2. 

The stiffness and mass matrices [37,50] of the Timoshenko beam element, Ksim and 

MEIM, are given respectively in Eq.(A.l) and (A.2). 
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The expressions for the elements of the stiffness and mass matrices are given in Eq.(A.3) 

and (A.4), respectively. 
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7£/m,;/in the equations indicates the second moment of area of the element's cross section, 

while Agim is the cross sectional area of the element. The subscripts or superscripts, i and j are 

used to indicate the axis to which a parameter belongs (i.e. x or y axis). If i represents the x-

axis, then j represents the y-axis, and vice versa. iEim.zz is the polar second moment of area of 

the cross section. E, G and p, respectively represent the Young's modulus, shear modulus and 

density of the element. rGEimj is the radius of gyration for the cross section, expressed as, 

rElm •• — 

L Elm.ii 

\ A-Elm 
(A.5) 

And O/ is a constant given by, 



Appendix A. Beam Element, Current-Frame Rotation and Modal Damping Formulations 130 

(A.6) 

k'i is the cross section factor, which takes a value of 9/10 for circular cross sections. 

The Shape Function matrix (TBS^-BSI) which is used to obtain the values of the 

displacements u%, v% and W|, and rotations, dx%, 6y^ and 6Z^ at the point P$ from their values at 

node 1 and node 2 is given in Eq.(3.27) 

The interpolation functions making up the elements of the shape function matrix are all 

functions of £. Their expressions are given in Eq.(A.7). 

l + O,. 

(A.7) 

6 

N = N = 
1 

(3? 

NzX=Nezl=\-t; 

Nz2 = N( 

Just as in the previous case, the subscript j represents either the x or y-axis. 
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A.2 Current-Frame Rotation Formulations 

The rotation matrix operators used to perform a rotation of a specified angle, d around 

the x, y, or z axis of a Cartesian coordinate system are respectively denoted by Rotx(6), 

Roty(6) and Rotz{6). Their expressions are given as, 

Rotx(oy 

Rot (0) = 

Rotz{6) = 

1 0 0 

0 cos# -sinfj? 

0 sin# cosd 
cos 0 0 sin 9 

0 1 0 

- sin 0 0 cos 6 

cos# -sin# 0 
sine? cos# 0 

0 0 1 

(A.8) 

A current-frame rotation operation is one performed such that each subsequent rotation 

is based on the new coordinate system resulting from the preceding rotations. For instance, a 

rotation from a coordinate system {CSi) to another coordinate system {CSi) could involve a 

rotation of a about the x-axis of CS], then another rotation of /3 about the y-axis of the new 

intermediate coordinate system resulting from the x-axis rotation. Then the rotation operation 

from CSi to CS2, Tj-2, can be represented by, 

ll-2 Rotx(a)-Rot(B) (A.9) 

Generally, a rotation operation involving a sequence of current frame rotations from one 

coordinate system to another is performed by multiplying the respective rotation matrices in 

the same sequence as the rotations. 

Another important fact about rotation operations is that a rotation matrix, T1.2 from an 

arbitrary coordinate system CSi to another CS2 also represents a transformation matrix from 

CS2 to CSi. In order words, a vector expressed in CS2 can be transformed to CSi by pre-

multiplying it by T1-2. 
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A.3 Modal Damping Formulations 

In order to obtain the damping matrix Cmodei for the second-order differential equation of 

the model in Eq.(3.44), first the un-damped homogenous equation, expressed as, 

Mmodeld + Kmodeld = 0 (A. 10) 

has to be solved in order to obtain the vector of eigen-values A, matrix of mode shapes 

(eigen-vectors) P. 

The natural frequencies, (un)k of the model are obtained by taking the square root of 

each of the elements, A^ of A, as, 

K ) * = V A * (A. 11) 

while the kth mode shape of the model, Pk is extracted from the k"1 column of P. 

The diagonal modal mass matrix, Mq is obtained as from Mmodei and P as, 

Mq=PTMmodelP ( A - 1 2 ) 

This modal mass for the k"1 mode, (mq)k is obtained from the k"1 element on the diagonal 

of Mq. The mass-normalized mode shape matrix for the model, x can be obtained from Mq 

and P as, 

X = PM? (A.13) 

Given the experimental/empirical modal damping ratios, & for each mode, each element, 

(cq)k of the diagonal modal damping matrix, Cq can be calculated from the corresponding 

natural frequency as, 

(cq)k=2CkMk (A.14) 

To calculate Cmodei, Cq is transformed using the mass-normalized mode shape matrix as, 

C model = X~TCaX~X (A. 15) 



Appendix B 

Determination of Parameters of Experimental Test-Bed 

B.l Ballscrew 

The Figure B . l shows a pictorial representation of the FE Model of the experimental 

test-bed's ballscrew. The measured dimensions of the ballscrew are summarized in Table B . l 

r - c i r r f" r~ r" r" i" i"" r' r" i" r" f r r r r r r r r r r n t i i I ' l r r n i r m - T - i | , 1 , 
Q - H I I I I i i i I I I I I I i" i i i i i i i .1 i i i i i i i i "i i i i" i f i i t - i ^ r - i J - L J ' 

Figure B.l: Pictorial Representation of FE Model of Ballscrew 

Section I.D [mm] O.D [mm] Length [mm] No. of Elements 

A 0.0 23.0 24.5 1 

B 12.0 25.0 18.0 1 

C 12.0 35.5 780 39 

D 12.0 31.8 38.0 2 

E 0.0 20.0 30.0 2 

F 0.0 20.0 30.0 2 

Table B.l: Dimensions of Ballscrew Sections 

The O.D given for Section C, which represents the threaded sections, is the root diameter 

of the section. As explained in Section 3.3.1 of Chapter 3, the equivalent diameter used for 

the mass matrix obtained as 37.35 [mm]. The pitch,/?, of the ballscrew is 10 [mm]. 

The ballscrew is assumed to be made of steel. Consequently, it has a density, p = 7800 

[kg/m3], a Modulus of Elasticity, E = 210 [GPa], and a Poisson's ratio, v = 0.27. 

133 
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B.2 Nut 

The nut on the experimental test-bed and is shown in the figure below. Its mass is 

measured as, mnut = 1.49 [kg]. In order to estimate its inertial properties, it is assumed to 

consist of two hollow cylinders as shown in Figure B.2. The flats on the flange, bolt holes 

and return tubes are not considered in the calculations. Based on this assumption, its inertia 

properties are approximated as IXXimt= Iyy,nut= 2.56xl0"3 [kgm2], Izz,nut= 1.31xl0"3 [kgm2]. 

(a) (b) 

0 9 2 040 0 6 2 

Al l d i m e n s i o n s in m m 
Not d r a w n t o scale 

Figure B.2: Nut and Hollow-Cylinder Approximation for Calculating Its Inertias 

B.3 Rotor and Table 

The inertia for the test-bed's rotor is indicated in the motor's manufacturer's catalog as 

I2Z,rotor= 5.98xl0"3 [kgm2]. 

The mass of the table, which is too cumbersome to weigh, is estimated from its C A D 

solid model shown in Figure B.3. It is assumed to be made of steel having a density of 7800 

[kg/m3]. Its mass is calculated as mtabie= 250 [kg]. 
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Figure B.3: Test-Bed's Table 

B.4 Coupling 

The coupling employed between the motor shaft and the ballscrew is the jaw-type 

coupling shown in Figure B.4. It consists of two jaws and a polyurethane insert. As explained 

in Section 3.3.3.1, the jaws can be modeled as lumped inertias while the insert is modeled as 

a torsional spring (see Figure 3.7). 

Figure B.4: Jaw-Type Coupling Between Motor Shaft and Ballscrew 

For this coupling, the insert's torsional stiffness, kj has not been provided by its 

manufacturers; therefore it has to be measured. The inertia of the jaws are obtained from their 

simple geometry and measured mass as, J, = 3.09X10"4 [kgm2] and J2 = 3.06xl0"4 [kgm2]. 

In order to measure the insert stiffness, a method based on FRF measurements has been 

devised. In this method, the 2-DOF model of the coupling shown in Figure 3.7 is used. A 
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simple modal analysis on the model gives analytical expressions for its two natural 

frequencies as, 

fn\ ~ 0' fnl 
i * r GW 2 ) 

2n (B.l) 

Since the inertias Jj and J2 are already known, and the 2 n d natural frequency, f„2 can be 

measured; kj can easily be extracted from this expression. 

For the coupling set shown above, the natural frequency f„2 is extracted from its FRF 

measured in the torsional direction between a point on J / and a point on J2 as shown in 

Figure B.5. This value is /„ 2 = 805 [Hz]. 

x 10 Torsional FRF of Coupling 

200 400 600 800 1000 1200 1400 1600 1800 2000 
Frequency [Hz] 

Figure B.5: Torsional FRF between a Point on J! to a Point on J2 

By substituting this value into Eq.(B.l), the insert's torsional stiffness is obtained as, kj 

= 3938 [Nm/rad]. 

B.5 Bearings 

At the end of the ballscrew proximal to the motor, two pairs of angular-contact bearings 

(NSK 7304B) are used to provide radial and axial support for the ballscrew, while on the end 

distal to the motor, a deep-groove ball bearing (SKF 6205-2RS1) is used to provide radial 

support. Their stiffness values have not been provided by the manufacturers. 
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In order to obtain the stiffness of these bearings, the model shown in Figure B.6, 

consisting of a rigid housing and rigid shaft connected by an angular contact bearing has 

been designed in SpindlePro® [44]. SpindlePro is a software developed in the Manufacturing 

Automation Laboratory at the University of British Columbia. It uses non-linear FE methods 

to calculate angular-contact bearing stiffness given the material, geometric and preload force 

properties of the bearing. The same model can be used for radial ball bearings by changing 

the ball-contact angle to zero. 

rigid housing 

8 

.angular-contact 
ball bearing 

r 
JL_ 

3 

r 8 rigid shaft 

4 5 6 

Figure B.6: Model of Angular-Contact Bearing generated using SpindlePro 

Table B.2 gives a summary of the parameters entered into the software for both bearings. 

Parameter Angular-Contact Bearing Deep-Groove Bearing 

Inner Diameter [mm] 
20.00 25.00 

Outer Diameter [mm] 
52.00 52.00 

Ball Diameter [mm] 
9.40 7.94 

Number of Balls 
11 9 

Ball Contact Angle [degrees] 
40.00 0.00 

Table B .2 : Parameters used in SpindlePro Bearing Models 



Appendix B. Determination of Parameters of Experimental Test-Bed 138 

For both bearings, the balls, inner rings and outer rings are assumed to be made of steel. 

Therefore, their material properties are the same as those used for the ballscrew in Section 

B . l . 

The preload value on the angular-contact bearing is assumed to be about 700 [N] which 

corresponds to a medium-high preload as indicated in the manufacturer's catalogs for similar 

bearings. For this value, the axial stiffness is 1.35x10 [N/m] and the radial stiffness is 

9.5xl0 7 [N/m]. These values are doubled to obtain the stiffness for the test-bed because two 

similar angular-contact bearings are used together, probably in the back-to-back 

configuration, for greater rigidity. Hence, the stiffness values for the test-bed are kBiax = 

2.70xl0 8 [N/m] and kBirad = 1.9xl08 [N/m], for the axial and radial directions, respectively. 

On the deep-groove ball bearing, no nominal preload is applied since it is assumed to be 

floating. However, there is usually a considerable amount of friction between the bearing's 

outer ring and the housing. Hence, a little amount of preload is applied by this friction force. 

The preload value is assumed to be about 2 [N] for this set-up, resulting in a radial stiffness, 

kB2rad o f4xl0 7 [N/m]. 

B.6 Screw-Nut Interface 

The preload type used in the test-bed's screw-nut interface is the oversize-ball preload. 

Apart from this, the only information available about the nut are, its measured length, Lnut = 

100 [mm], its pitch, p = 10 [mm], its nominal radius, Rnut = 20 [mm] and the radius of its 

balls, RBaii= 3.175 [mm]. 

In order to obtain the interface stiffness matrix KSN, as explained in Section 3.3.4, the 

number of balls in contact NBaii, pitch angle, a, thread angle, /3, ball stiffness, ksaii, and the 

starting and ending azimuth angles for each ball are needed. 

Considering the amount of unknown information and also the relatively short length of 

the nut, the rigid-ballscrew method is employed. It is assumed that the entire region within 

the interface is occupied by balls. The location of the screw and nut node, P is assumed to be 

at the centre of the nut. Hence, the starting and ending azimuth angle for each ball is 

calculated as, 
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* * = - ^ 2 * > * < * * = ^ 2 * (B.2) 

In order words, the balls are assumed to start from the left end of the nut and move up to 

the right end. 

NBUU is calculated as, 

"~"4ib ' ( B 3 ) 

where s is the arc length of the helix formed by the path traveled by each ball. It is given 

by, 

s = ( V i ? « » ' 2 + r g ) - fa* ) (B.4) 

s is divided by 4RBaii (Eq.(B.3)) representing twice the diameter of a ball, because in the 

oversize-ball preload mechanism, only one in every two balls is in contact. The other ball 

serves as a so-called spacer-ball. r g i n Eq.(B.4) is the ballscrew's gear reduction ratio given 

by Eq.(3.13). 

a is calculated using Eq.(3.6) while /3 is measured approximately from the thread profile. 

The ball stiffness ksaii is estimated from the axial stiffness of the nut, as explained in 

Section 3.3.4.5. However, since the axial stiffness is also unknown, it is measured 

experimentally from FRF measurements. In order to do this, first, the free-free FE model of 

the ballscrew is developed, as explained in Section B . l . The mass of the nut, mnut is then 

connected to it at a particular location using an axial spring /CAX, whose stiffness is unknown. 

In order words, the nut is assumed to have a single stiffness in the axial direction. On the 

other hand, the FRF of the actual ballscrew with the nut at the same specified direction is 

measured. Then, iteratively, the stiffness UAX is adjusted until a good match is obtained 

between the FE model and actual model. This value is taken as the approximate axial 

stiffness of the nut. 

The parameters estimated for the nut, based on the explanations above are summarized 

in Table B.3. 
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Parameter PM°] ^k,st [°] <j>k,end [°] NBatl ksait [N//im] 

Value 4.55 50 -1800 1800 100 20.7 

Table B.3: Parameters used to Obtain Interface Stiffness Matrix for Test-Bed 



Appendix C 

Simulation Study on Cross-Coupling Terms of Screw-Nut Interface 

Stiffness Matrix 

C l Purpose of Study 

This study aims at investigating the effects the cross-coupling terms in the screw-nut 

interface stiffness matrix formulations presented in Chapter Three on the dynamics of a 

ballscrew drive axis. In particular, it tries to show how, as a result of these cross-coupling 

terms, the bending modes of the ballscrew give rise to displacements at the table which 

could affect its positioning accuracy. Furthermore, it shows how they give rise to complex 

mode shapes involving a combination of axial/torsional and bending deformations. This 

study is entirely based on simulations, and therefore is preliminary to a more detailed study 

including experiments. 

C.2 Description of Simulation Test Set-up 

The set-up used for this study is basically the same as the one described in Section 3.5.1, 

except for two modifications. Firstly, the table and nut are assumed to be lumped into a 

single rigid body having a simple geometry as shown in Figure C l . This is done in order to 

simplify the calculation of moments of inertia. Secondly, the rigid-guideway assumption 

made in Chapter Three is relaxed, and the set-up is furnished with roller slides at its four 

corners (Figure C l ) . The values for the inertia properties of the table, and stiffness values of 

the roller slides are summarized in Table C l . 

1 1 0 

location of roller slides 

Figure C l : Simplified Rigid-Body Model of Table and Nut 
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Parameter Value 

Roller Slide's Vertical Stiffness {KXigw) [N/pm] 500 

Roller Slide's Lateral Stiffness (Ky}gw) [N/pm] 400 

Mass of Table {mtabie) [kg] 250 

Moments of Inertia of Table (liable, lyy,table, Stable) [kgm2] 24.2,21.0,3.7 

Table C l : Inertia Properties of Table and Stiffness Properties of Guideway 

C.3 Effects of Cross-Coupling between the Bending Deformations 

In order to show the effects of the cross-coupling terms, the natural frequencies and 

mode shapes of the set-up for selected modes are examined for two different cases. In Case 

A , the screw-nut interface matrix containing only the cross-coupling terms between the axial 

and torsional DOF (Eq.(3.46)) is considered, while in Case B, the screw-nut interface matrix 

containing the cross-coupling terms between axial, torsional and bending DOF (Eq.(3.45)) is 

employed on the set-up. 

Figures C.2 and C.3 respectively show the 9 t h mode shape of the set-up for the Case A 

and Case B. This mode occurs at about 659 [Hz] in both cases. 

Figure C.2: 9 , n Mode Shape of Set-up for Case A at 659 [Hz] 
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Figure C.3: 9 t h Mode Shape of Set-up for Case B at 659 [Hz] 

As seen from the figures, in Case A (Figure C.2), the bending of the ballscrew occurs 

only in the x-z plane, giving rise to a pitching motion of the table. However, in Case B 

(Figure C.3), the cross-coupling terms between the x and y bending directions (kgx,x, key,y) 

force the ballscrew to also bend in the y-z plane. As a result, the table undergoes both a 

pitching and a yawing motion. These motions give rise to large displacements in the x, y and 

z directions, especially at the corners of the table. Such displacements can significantly affect 

the positioning accuracy of the table. 

C.4 Effects of Cross-Coupling between the Axial/Torsion and Bending Deformations 

The magnitude of the cross-coupling terms highly depends on the pitch of the ballscrew. 

Figure C.4 shows the variation of kex,x, key,y, k$x,z, k$x^z, expressed in terms of ksaii = 20.7 

[ N / L i m ] , with the ballscrew's pitch in [mm]. The figure shows that all four cross-coupling 

terms oscillate in value as the pitch changes. k$x,x and key,y alternate in peak value, such that 

when kex,x has a high value, key,y is at a low value, and vice versa. The same trend is observed 

between k$x,z and kgXiez. Interestingly, the peak amplitude of kex.8z grows drastically as the 

pitch increases. From the figure, the maximum value of kex,8z occurs at a pitch of about 45 

[mm]. Here, it takes on a value of 4.5x10"4.^//, as opposed to its value of 1.65xl0"5.&Ba// at a 

pitch of 10 [mm]. The effect of this increase can be seen in Figures C.5 to C.8 showing the 

19 th mode of the set-up for Case A and Case B, at a pitch of 10 [mm] and 45 [mm]. 
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10 20 30 40 50 

Pitch [mm] 

Figure C.4: Variation of Cross-Coupling Terms with Ballscrew's Pitch 
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Figure C.5: 19th Mode Shape of Set-up for Case A at 1470 [Hz]; pitch = 10 [mm] 
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Figure C.6: 19th Mode Shape of Set-up for Case B at 1470 [Hz]; pitch = 10 [mm] 
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Figure C.7: 19th Mode Shape of Set-up for Case A at 1385 [Hz]; pitch = 45 [mm] 
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Figure C.8: 19m Mode Shape of Set-up for Case B at 1382 [Hz]; pitch = 45 [mm] 

Figure C.5 shows that with a pitch of 10 [mm], in Case A , the ballscrew deforms in the 

y-z plane, leading to rolling and yawing motions of the table at 1470 [Hz]. The mode shape 

for the Case B (Figure C.6) having the same pitch is quite similar. The only difference here is 

that the ballscrew undergoes slight bending deformations in the x-y plane. Neither the table's 

motion nor the frequency of vibrations is affected significantly by this extra deformation. 

In Figure C.7, it is observed that the increase of pitch angle from 10 to 45 [mm] leads to 

decrease in natural frequency from 1470 to 1385 [Hz], for Case A . At the same time, the 

rolling motion of the table is slightly amplified while some pitching motion is also added on. 

For Case B, in addition to bending deformations in the y-z plane, there is also some bending 

deformation in the x-y plane, as in the previous situation. Furthermore, due to the effect of 

the increase in kex,ez, the bending in the y-z plane gives rise to a torsional deformation of the 

ballscrew. As a result, there is a slight increase in the yawing motion and pitching motions of 

the table, in addition to its already existing rolling motion. Furthermore, the frequency of the 

vibrations predicted by Case B is 3 [Hz] lower that that predicted by Case A . 

C.5 Summary 

This short study has helped to show, through simulations, that the cross-coupling terms 

contained in the screw-nut interface matrix derived in this thesis play an important role in the 

dynamics of ballscrew feed drives. It shows that these cross-coupling terms give rise to 
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motions on the table and ballscrew which cannot be predicted by the stiffness matrix derived 

by previous researchers which does not include these terms. This study is by know means 

exhaustive nor conclusive; however it gives a motivation towards a more detailed study on 

this topic, including validation through experiments. 


