
Definition of a Distributed Machine Health
Monitoring System: Application to the Design of a

Hydraulic Marine Steer-by-Wire System

by

Nicholas Eoghan Cullingham

B.Sc, University of Calgary, 2001

A thesis submitted in partial fulfilment of the requirements for the degree of

MASTER OF APPLIED SCIENCE

i n

The Faculty of Graduate Studies
(Mechanical Engineering)

THE UNIVERSITY OF BRITISH COLUMBIA

January 2006

© Nicholas Eoghan Cullingham, 2006

Abstract ii

Abstract

The objective of this thesis is to define a general tool set for monitoring the health

of the physical part of a system that is operated by an embedded computer system.

Embedded computer systems are commonly found in industrial, military, transportation

and consumer products. Health monitoring is usually required to track the health of

actuators, sensors, communication, and computational resources.

The novel tool set presented in this thesis provides three measures of component

health, all of which indicate errors based on the performance of a system state relative to

a base model. A set of software classes is defined, which interacts with an object-

oriented model of the physical system that supports distributed processing, fault

tolerance and redundancy management. The model based health monitor also integrates

into the redundancy management. When a redundant physical sensor fails, the health

monitor provides analytical redundancy for that system state, by predicting it and

generating adaptive thresholds on the accuracy of the analytical sensor.

The health monitoring system has been implemented on an experimental

apparatus built to approximate the functionality of a hydraulic, steer-by-wire system for

marine applications.

Contents iii

Contents

Abstract ii

Contents iii

List of Tables vi

List of Figures vii

List of Symbols and Acronyms ix

Acknowledgements xi

Chapter 1: Introduction 1
1.1 Embedded Computer Systems 1
1.2 The Reason for Safety Critical Design 2

1.2.1 Handling Failure 3

1.2.2 Monitoring Performance 3

1.2.3 Challenges 4

1.3 Thesis Objective 4
1.4 Thesis Outline 5

Chapter 2: Health Aware Systems 7
2.1 Introduction 7
2.2 Marine Steering Systems 7

2.2.1 Steering Systems 8

2.2.2 Hydraulic Actuation 11

2.2.3 Common Errors 12

2.3 Fault-Tolerant Systems 15
2.3.1 Error Detection 16

Contents iv

2.3.2 Granularity 18

2.3.3 Graceful Degradation 19

2.3.4 Error Response 20

2.3.5 Recovery 22

2.4 Health Awareness 22

2.4.1 Condition Monitoring 23

2.4.2 Parameter Identification 25

2.4.3 State Estimation 26
2.5 Diagnosis 29
2.6 Summary 31

Chapter 3: Development of a Distributed Health Monitoring System 33
3.1 Introduction 33
3.2 Fault-Tolerant Framework 33

3.2.1 Object Oriented Programming 34

3.2.2 System Architecture 35

3.2.3 Virtual Boat System Description 37

3.2.4 Virtual Boat Fault Redundancy Management 40

3.2.5 High Level Service Layer 44

3.3 Health Monitoring Approach 45

3.3.1 Model Selection 46

3.3.2 Indicator Selection 47

3.3.3 Instantaneous Response Indicator 49

3.3.4 Dynamics Response Indicator 49

3.3.5 Average Response Indicator 50

3.3.6 Model Development 51

3.4 Dynamic Performance Analysis 54

3.4.1 Objective 54

3.4.2 Analytical Solver for a Parabolic Input 56

3.4.3 Results 58

3.5 Health Monitoring Layer 61
3.5.1 Layer Framework 62
3.5.2 Model Framework 65

3.6 Summary 67

Chapter 4: Validation and Test of Health Indicators 68

4.1 Introduction 68

Contents v

4.2 Design of the Hydraulic Steering System 69

4.2.1 Hydraulic Circuit 71

4.2.2 Electrical Sensor Circuits 74

4.2.3 Electrical Actuation Circuits 75

4.2.4 Embedded Computing Platform 76

4.2.5 Embedded Computing Software Environment 77

4.3 Instantiation of the Dynamic Health Monitoring System 78

4.3.1 The Cylinder Positioning Model 78

4.3.2 Hydraulic System Identification 81

4.3.3 State Predictor 81

4.4 Validation Parameters 82

4.4.1 Repeatability 82

4.4.2 Sensitivity 82

4.5 Test Setup 83

4.5.1 Health Monitoring Configuration 83

4.5.2 Test Input 83

4.5.3 Operating Conditions 84

4.6 Instantaneous Response Indicator - System Position 85

4.7 Average Response Indicator - System Average Velocity 87
4.8 Dynamic Response Indicator - System Velocity 90

4.8.1 Normal Operations 90

4.8.2 Intermittent Power Failure Operating Condition 93

4.8.3 Low Flow Operating Conditions 95

4.9 Results Achieved and Limitations 98
4.10 Summary 100

Chapter 5: Conclusions and Recommendations for Future Work. 102

5.1 Conclusions 102

5.2 Recommendations for Future Work 103

Bibliography 105

Appendix A: Key Components Listing 108

Appendix B: Equation Supplement 110

Appendix C: Software Configuration 112

Appendix D: Software Documentation 114

List of Tables vi

List of Tables

Table 4.1: Health Monitor Parameters 83
Table A. 1: Hydraulic Components 108
Table A.2: Hydraulic Fittings 109
Table A.3: Structural Elements 109
Table A.4: Electrical Components 109
Table C. 1: Health Monitor Parameters 112
Table D. 1: DHMS Class Description 114
Table D.2: DHMS Transfer Function Class Description 116
Table D.3: DHMS-20DE Class Description 117
Table D.4: DelayRelay Class Description 119
Table D.5: RateLimiter Class Description 120
Table D.6: Relay Class Description 121
Table D.7: Saturation Class Description 122
Table D.8: TimeTolerance Class Description 123
Table D.9: TransDelay Class Description 124
Table D. 10: WindowAvg Class Description 125

List of Figures vii

List of Figures

Figure 2.1: Manual Hydraulic Steering System 9
Figure 2.2: Hydraulic Power Assist Steering System 10
Figure 2.3: Steer-By-Wire Schematic 11
Figure 2.4: Sample Hydraulic Circuit 12
Figure 3.1: Local Fault-Tolerant System Architecture 36
Figure 3.2: Hardware Abstraction 38
Figure 3.3: Fault-Tolerant Framework 41
Figure 3.4: Single State Threshold Predictor 52
Figure 3.5: Multiple State Threshold Predictors 53
Figure 3.6: Locus of Multiple Predictors 53
Figure 3.7: Parabolic Analytical Integrator Response to Sine Wave Input 59
Figure 3.8: Parabolic Analytical Integrator Response to Square Wave Input 60
Figure 3.9: Health Monitoring System Data Flow 63
Figure 3.10: Health Monitoring Framework 63
Figure 4.1: Hydraulic Steering Test Bed 69
Figure 4.2: Embedded Computer Configuration 70
Figure 4.3: Hydraulic Circuit Diagram 71
Figure 4.4: Sensors Electrical Circuit Diagram 74
Figure 4.5: Actuators Electrical Circuit Diagram 76
Figure 4.6: Non-Linear Model 79
Figure 4.7: Dynamics Response Indicator 79
Figure 4.8: Average Response Indicator.... 80
Figure 4.9: Instantaneous Response Indicator: Normal Operation 85
Figure 4.10: Instantaneous Response Indicator: Intermittent Power Failure 86
Figure 4.11: Instantaneous Response Indicator: Low Flow Operation 87
Figure 4.12: Average Response Indicator: Normal Operation 88
Figure 4.13: Average Response Indicator: Intermittent Power Failure 89
Figure 4.14: Average Response Indicator: Low Flow Operation 89
Figure 4.15: Dynamic Response Indicator: Normal Operation 91

List of Figures viii

Figure 4.16: Dynamic Response Indicator: Normal Operation Slow Input 91
Figure 4.17: Dynamic Response indicator: Normal Operation Fast Input 92
Figure 4.18: Dynamic Response Indicator: mtermittent Power Failure 93
Figure 4.19: Dynamic Response indicator: Intermittent Power Failure Slow Input 94
Figure 4.20: Dynamic Response Indicator: intermittent Power Failure Fast Input 95
Figure 4.21: Dynamic Response Indicator: Low Flow Operation ...96
Figure 4.22: Dynamic Response Indicator: Low Flow Operation Slow Input 97
Figure 4.23: Dynamic Response Indicator: Low Flow Operation Fast Input 97

List of Symbols and Acronyms ix

List of Symbols and Acronyms

A discrete time interval
hd system dynamics health indicator
hi instantaneous error health indicator
K average state change health indicator

p k\k the error covariance matrix at a time, k, given the state k

k system gain, also a single discrete time interval (for the EKF)
TD torque measured at the drive
TH

torque measured at the helm
OH rotational position of the helm
0d linear position of the drive
u general input function of time, t
VD command signal sent to the drive actuator
vH command signal sent to the tactile feedback device

undamped natural frequency

CO)/, lower boundary of ox

(Qub upper boundary of cm,
Xk\k the estimate of the system output state at a time, k, given the state k

y current system output state with respect to time, t

y estimate of the system output state at a time, t

yub
predicted upper bounding threshold at a time, t

y,b
predicted lower bounding threshold at a time, t

£ damping ratio
lower boundary of £

Cub upper boundary of £

ARI Average Response Indicator
DED Distributed Error Detection
DRI Dynamics Response Indicator

List of Symbols and Acronyms x

E C U Electronic Control Unit
E K E Extended Kalman Filter
F S U Fail-Silent Unit
F T U Fault-Tolerant Unit
H A R P Helm Axis Rotary Position
H A R V Helm Axis Rotary Velocity
IRI Instantaneous Response Indicator
L E D Local Error Detection
P W M Pulse Width Modulated

Acknowledgements xi

Acknowledgements

I would like to acknowledge and thank my research supervisor, Dr. Ian

Yellowley, for his guidance throughout my program. I have found my experience both

enriching and enjoyable, because of his academic expertise and financial support during

my Master's program.

I would also like to thank my lab partners, Mathieu Bouvier and Kevin Oldknow,

for their work, advice, and ongoing support.

As well, I would like to thank my parents, Valerie and Owen Cullingham, for

their moral support, time, and generosity. Finally, I would like to thank my wife,

Andrea, for her unwavering patience and encouragement, without which I could not

have completed this work.

- Nicholas Cullingham

Chapter 1: Introduction 1

Chapter 1: Introduction

1.1 Embedded Computer Systems

Embedded computers and sensing systems already play a crucial role in the control

of a wide variety of applications. Consumers demand the flexibiUty and options that

integrated computing systems can provide, so one may expect that the level of use will

continue to increase.

The current generation of embedded computers provide control functions in

applications that range from the critical and hard real time requirements of aircraft to

consumer products such as washing machines. Typically, these embedded computers are

low-power devices with computational capabilities that are matched to the minimum

functional requirements of the devices that they control. A number of benefits can be

gained simply from the integration of embedded computers in devices; this is particularly

the case when excess computational resources are used to enhance the product.

One of the largest potential benefits is performance improvement. Computing

systems allow the development of more powerful, flexible, and efficient control

strategies, which allow for the closed loop response to be tuned. Consumer devices can

be tuned for each individual user, or to a designer's specification. For example, consider

the design of a traditional automotive steering system which consists of a mechanical

Chapter 1: Intrcxluction 2

linkage and hydraulic power steering: At low speeds, turning the steering wheel requires

a large effort and greater range of motion than when driving at highway speeds, where a

lesser effort and small range of motion affect a significant steering effect. In a steer-by-

wire system, the vehicle's speed can easily be included within the controller, allowing for

speed dependant, variable gain steering.

The second major area of benefit is in physical design flexibility. Consider the

automotive steering column. Replacing the steering system with an embedded computing

system allows for more options in the design of the engine cx>rnpartment, and it also

makes the vehicle structural and engine design identical for left and right hand drive; only

the user interface needs to change. This flexibility provides a large saving in

manufacturing cost, more choice in the design of the steering input system, and allows

designers the freedom to select configurations that take into account greater user safety in

event of a collision.

Finally, integrated computer systems allow for the inclusion of new features.

Sensor data can be collected and stored, tasks can be automated, and system health and

performance can be monitored. The system monitor can record current performance and

check for errors, which in turn allows for diagnostic capabilities. Monitoring functions

allow the provision of fault-tolerance, and also condition-based predictive maintenance,

which can increase up-time and extend product life.

1.2 The Reason for Safety Critical Design

A safety critical function is a function that cannot fail in a safe manner; any

unhandled error1 that occurs will lead to a situation which causes elevated risk to the

1 Any unhandled error is considered a failure. See section 2.3.

Chapter 1: Introduction 3

system, its users, or environs. For example, a bass sport boat can achieve speeds over 160

km/hour (100 mph). A boat could be passing through shipping lanes at such speeds when

an error occurs within a component of the steering system There is no fail-safe position

for the steering system, because no default position exists that the system can home to.

Because the system requires continuous, uriinterrupted human intervention to mitigate

risk, the system must provide the human user with the correct information at the correct

time, and then respond in the correct way for the safety of the boat driver. One of the

risks of using embedded computing systems is that when an electronic component fails, it

tends to be binary: either it works, or it does not.

1.2.1 Handl ing Failure

Guarding against the failure of high-level service assurances has been the focus of

research and applications over the past 20 years. A l l of these efforts have focused on

reacting to failures that could occur within the system, and maintaining high-level

services despite some component failures. The measure used to describe success is the

reduction in probability of cascading or high-level service failure. A l l of these efforts

have focused on designing a safety framework to provide reliable, continuous function of

high-level services. Each system is designed to detect component failure, and when it

does, switch to a back-up system.

1.2.2 Mon i to r ing Performance

Monitoring the behaviour of actuator components allows one to detect normal and

abnormal behaviour. Establishing a metric for the health of a component based on

expected behaviour allows a system to detect errors and identify operation that may

indicate component wear or impending failure. Normally, monitoring requires the

Chapter 1: Introduction 4

addition of new sensors to measure signals which directly indicate system performance.

The normal approach to condition monitoring incorporates indicators of performance that

provide clear and unambiguous information about specific faults. These indicators are

usually derived from modelling or experimentation. Condition monitoring is a necessary

part of the failure handling framework, and provides some of the tools required to use and

manage redundant actuators.

1.2.3 Challenges

Despite the potential benefits outlined in section 1.1, the design of an integrated

embedded system must consider the system's ability to cope with faults. The greatest

challenge in design is to guarantee that the system will perform safely even if one or more

components fail. The scope of safe performance is not limited to the user, but extends

also to the safety of others and their environs; it is further required to limit liability and

gain public acceptance of embedded computing systems. Existing technological

solutions to the problem are dependent on high levels of redundancy and have high costs

associated with them This type of solution is not appropriate for the development of

products in cost sensitive markets such as consumer devices, automobiles, and pleasure

boats, nor is it ideal for industrial or military applications.

1.3 Thesis Objective

The objective of this thesis is to examine the possibihty of providing generic tools

to aid in the indication of the health of system components. The methods defined should

make use of multiple layers of redundancy, and be aware of redundant sensors and

actuators. Furthermore, they are required to interface with a highly object oriented virtual

environment. The tools then will provide both lower level methods that can be

Chapter 1: Introduction 5

customized to each use and each environment, as well as the higher level predefined

health monitoring methods which apply more generally.

The secondary goal of the system is to add analytical sensor health detection to the

fault-tolerant framework that will protect the sensor fault-tolerance mechanism against

continuous degradation following a sensor failure. In a fault-tolerant sensing system, a

single value is determined from a set of sensors. When one sensor fails, the arbitration

mechanism is weakened: this is continuous degradation. If sufficiently weakened to only

include two physical sensors, the arbitration mechanism cannot detect Byzantine errors

between the two sensors. An appropriate software indicator can help to arbitrate between

two sensors, but only if the model used can be verified to accurately represent the current

parameters of the process being modelled. The proposed health monitoring system has

the benefit of verifying the accuracy of the system model before using it to verify sensor

integrity.

1.4 Thesis Outline

This thesis is organized into five chapters. Chapter 2 is a literature review, and

discusses the existing technologies that are used in health aware systems. The review

concentrates upon and discusses the application to marine steering systems, fault-

tolerance, condition monitoring, modelling and diagnosis.

Chapter 3 gives the context of the health monitoring system, and describes the

approach taken. First, it describes the existing fault-tolerant framework, and then it

describes the approach taken to create the health indicators, what they represent, and why

each of them is included. The development and mathematical analysis of the indicators

Chapter 1: Introduction 6

are then presented. Finally, it describes the object-oriented systems architecture that

contains the health indicators.

Chapter 4 describes the specific implementation of a health monitoring system to

the marine hydraulic steer-by-wire test system that was used to demonstrate the concepts

developed within this thesis. This is followed by the results obtained from the

experiments that were performed on the test system. An analysis of the data shows how

the health indicators provide useful information about the health of the system, and that

the analytically redundant sensor adequately predicts future sensor state values. It closes

by discussing the achievements and limitations of the indicators as presented.

Chapter 5 presents the overall conclusions of the work and makes

recommendations for further work.

Chapter 2: Health Aware Systems 7

Chapter 2: Health Aware Systems

2.1 Introduction

This chapter provides a literature review of topics that relate to health aware

systems. It describes key concepts that relate to the fault-tolerant systems that provide the

framework upon which this health monitor is developed. It shows the limitations of

current research, and how work in the health monitoring field can enable other

achievements.

The design of health indicators is usually derived based on modelling or

experimentation, which makes them application dependent. The concepts developed

within the thesis are demonstrated on a marine hydraulic steer-by-wire system, so this

chapter also reviews current marine steering systems, and faults common to the steering

demonstrator.

2.2 Marine Steering Systems

A number of manual steering systems exist, from mechanical linkages to hydraulic

circuits. Each of these systems may provide some mechanical advantage to the user, or

the user's input may be augmented through power steering systems. Recent advances

have integrated closed loop navigation with the steering system to provide autopilot

features. Each system has its advantages, and is prone to particular errors. Steer-by-wire

Chapter 2: Health Aware Systems 8

systems provide a new set of challenges and potential faults to be considered during their

design.

2.2.1 Steering Systems

Manual

The most straightforward steering systems are of the manual variety; the simplest

of these is likely the cable steering system. In this type of system, the operator turns the

helm, pulling the cable to impose a motion of the rudder. This type of system is well

suited to low-cost, low-power pleasure boats and provides a durable, reliable system

which requires little maintenance. The number of turns of the helm, lock to lock,

determines the effort and responsiveness of the rudder. A high number of helm turns

occurs with a high gear ratio; this leads to less effort (torque) needed at the helm, but

yields a small response at the rudder. Likewise, a lower gear ratio leads to a greater effort

needed at the helm, but provides a faster response at the helm.

Hydraulic Steering

Another very common steering mechanism uses a hydraulic connection from helm

to rudder. In this system, a manual pump is part of the helm and is connected via hoses to

a steering cylinder that provides the movement at the rudder. Hydraulic steering systems

are usually found in larger, more powerful pleasure boats. The use of hydraulic fluid

tends to lead to more frequent maintenance than mechanical systems, but they usually

provide a smoother, more stable steering mechanism than the mechanical linkage. An

example of this type of steering system is shown in Figure 2.1.

Chapter 2: Health Aware Systems 9

Figure 2.1: Manual Hydraulic Steering System

© Teleflex used with permission
Power Steering

The hydraulic steering system can also be augmented by mcluding power

assistance. In a power steering system, a hydraulic pump, driven by either the engine or

an electric motor, provides an assistive force on the steering cylinder. The primary

steering system acts as described previously, but now the steering cylinder is fitted with a

servo cylinder and a power steering valve. The valve opens when the manual cylinder

moves, powering the secondary cylinder to provide the desired assist. Should the power

assist circuit fail, the system automatically falls back to a traditional hydraulic steering

mechanism.

Alternatively, a more advanced power steering system could be used, which uses

position or pressure sensors at the helm, and connects to a digital control system to

regulate a power assist valve or the automatic pump in the secondary hydraulic circuit. In

this type of system, the user could tune the power steering control system to vary the

amount of assist provided. In Figure 2.2 an example of the hydraulic power assist

steering system is shown.

Chapter 2: Health Aware Systems 10

Figure 2.2: Hydraulic Power Assist Steering System

© Teleflex used with permission

Steer-By-Wire

In a steer-by-wire system, no mechanical or conventional direct hydraulic

connection exists between the helm and the rudder. Instead, a digital controller measures

commands from the user and electronically controls an actuator at the rudder. By

definition, a steer-by-wire system is a steering system in which the hydraulic or

mechanical connection between the helm and rudder is replaced by an electronic control.

Unlike other forms of steering systems, steer-by-wire can be tuned not only to each

user's preferences, but also to changing boating conditions. The digital control algorithm

can be flexible and based on irtformation that is not normally incorporated into a typical

steering system. It may also be desired to implement tactile feedback, where the forces

acting on the rudder are mirrored at the helm. A diagram of how such a feedback system

might look is shown in Figure 2.3.

Chapter 2: Health Aware Systems 11

Helm Unit

Position Sensor

Torque Sensor

2.2.2

Actuator

Drive
Controller

vD Actuator Drive
Controller Actuator

Helm \+ID..
Controller i

Drive Unit

Position Sensor

6D linear position of the drive
9H rotational position of the helm
VD command signal sent to the

drive actuator
7" torque measured at the drive
TH torque measured at the helm
VH command signal sent to the

tactile feedback device

Force Sensor

Figure 2.3: Steer-By-Wire Schematic

The primary steering function is provided by the drive controller, and the feedback

at the helm is provided by the helm controller. The drive controller implements closed

loop position control, and the helm controller may also provide an open loop or a closed

loop torque control system Position, torque and force sensors are used for these control

systems.

Usually, the embedded computer that manages the sensor acquisition, control, and

actuation is chosen to minimize cost subject to it having the minimum of processing

capability required to implement the steering control loop. One could expect a dedicated

micro-processor based computer to operate between 10 and 100 MHz, in typical cases.

Hydraulic Actuation

Marine based steer-by-wire systems often achieve movement of the rudder through

a digitally controlled hydraulic circuit. There are a variety of ways of implementing a

hydraulic circuit, one possible implementation is shown in Figure 2.4. This figure shows

a straightforward hydraulic positioning circuit; variations on this circuit may include a

Chapter 2: Health Aware Systems 12

variable flow pump, or a pump driven by the boat engine; the accumulator could be

removed, hoses could be replaced by tubing, or valves could be combined. This circuit is

digitally controlled at the 4-way, 3-position directional valve, by simple state control

(bang-bang), and at the motor, also by on-off state control (bang-bang). In a more

sophisticated system, the pump is connected to a DC motor which could then be

controlled to provide variable velocity. Another enhancement to this system would

replace the directional valve with a proportional valve.

Inline Pressure Filter

2.2.3

Figure 2.4: Sample Hydraulic Circuit

The steering cylinder itself is a double acting cylinder, providing symmetric

performance in each direction. Relief valves guard against exceeding a set pressure

maximum within the system

Common Errors

The behaviour and performance of hydraulic systems is dominated by their

dependence on pressure and flow rate [1]. Fluid pressure measurement is readily

available through reliable pressure transducers (a change in pressure drop across a

Chapter 2: Health Aware Systems 13

component could be an indication of wear, performance degradation, or mipending

failure). Likewise, a change in flow rate into and out of components might also indicate a

fault, however measuring flow rate through components is unfortunately, very difficult.

A number of fault conditions can affect pressure and flow rate.

Examining the hydraulic circuit shown in Figure 2.4 reveals a number of

components where errors could occur. When considering errors in a control system like

the steering system, it may be beneficial to detect errors at varying degrees of granularity.

Some localized component faults present Utile risk to the system over the short term,

while other faults have the potential to severely hamper performance of the entire system

A number of fault conditions may affect pressure and flow rate; the basic areas of

concern are the following.

Fluid: A number of potential fluid faults exist. Contamination can be a

fault or a symptom of another fault. Particulates, solutes, and air may become

dissolved within the hydraulic fluid. Symptoms of fluid contamination by

particulates or solutes may include elevated temperature, and a change in flow

rate; the contamination can clog filters, cause or be the result of component wear,

and change fluid viscosity. In addition, contamination due to a compressed gas

will cause pressure loss. The risks associated with fluid contamination include

accelerated wear, decreased performance, and system overheating.

Motor: Faults at the motor directiy affect the pump. Symptoms of low

current or voltage at the motor are a reduction the flow rate or a decrease in

pressure provided by the pump. The critical risk associated with motor power

loss is the loss of system functionality.

Chapter 2: Health Aware Systems 14

Pump: The pump provides the pressure and flow rate for the system

With a number of moving components, and multiple interfaces to the fluid

system, the pump is vulnerable to a number of faults. Directly measurable

symptoms include leakage and fluid temperature, while risks associated with

pump faults include component wear, friction, over-pressure and under-pressure

performance.

Connections: The main fault that connections are subject to is leakage.

One symptom of leakage is increased flow rate through the component, or a

decreased flow rate downstream. The main risks associated with poor

connections are contarnination, pressure and fluid loss, and if not monitored,

draining of the reservoir.

Accumulator: Over-charged or under-charged accumulators can both

affect system dynamics. An over-charged accumulator will have very little

impact on the system, and an accumulator in the system is usually designed to

supplement flow rate or stabilize pressure about a set point. Likewise, a drop in

charge pressure will prevent the accumulator from stabilizing pressure and flow

rate. Often, accumulators are included to dampen high frequency fluid shock.

So key symptoms of accumulator error would be higher frequency fluid shock,

or higher power drain at the pump/motor. Risks caused by accumulator faults

include high system shock, leading to rapid wear, and increased peak flow

demand at the pump.

Chapter 2: Health Aware Systems 15

Valve: Faults associated with the valve include spool wear and friction.

Symptoms of spool faults could include slow system response, decreased flow

rate, and incorrect flow direction.

2.3 Fault-Tolerant Systems

As discussed in Chapter 1, steering systems demand that a safety-critical design

approach is taken. A number of research projects have investigated the implementation

of fault-tolerant systems. Hiller [2], provides a summary of terms used in fault-tolerance.

A fault exists when there exists a state of operation for a system that leads

it to non-conformance of its specifications. Faults are classified by their

duration, as either transient or permanent, and their realization, as dormant or

active.

An error is the manifestation of an active fault; it is an occurrence of the

system entering a state of non-conformance to its specification. Undetected

errors are called latent [3]. The key difference between a fault and an error is

that where errors are the results of faults, only an error is measurable.

A failure is the result of an unresolved error. Note that a failure of a low-

level system might be considered a fault by a higher level system, which could in

turn trigger a different error.

Fault-tolerant design also considers the level of faults. In a fault-tolerant system,

low-level errors may occur at a small locality, and may be acceptable provided the system

has mechanisms to avoid high-level system failures. The first important step in

responding to an error is error detection. Koopman [4] has performed extensive work in

Chapter 2: Health Aware Systems 16

reconfigurable systems and graceful degradation2, and provides a description of system

response and recovery in a number of reconfigurable environments, which he terms the

self-healing problem space. A self-healing system is the extension of fault-tolerance to a

system that can recover functionality, lost after an error has occurred.

Errors can occur in the value domain, and also in the time domain. An error in the

value domain occurs when an actual value (measured, estimated, or communicated),

differs from the expected (or allowed) value. An error occurs in the time domain when a

value is reported at the wrong time, or not at all at the expected time. In a hard real-time

application, the system must always produce the correct value at the correct time. Errors

can occur in both domains simultaneously, or either one.

2.3.1 Error Detection

Error detection can take on different forms, but these are generally classified as

either data replication or executable assertions. Data can be replicated through analytical

redundancy, double execution, and hardware replication. Executable assertions include

limit checking, certification, signature checking, self-tests, and watchdog timers [5].

Furthermore, detection can be performed within a component or via a network by peer-to-

peer checking or supervisory elements. Distributed environments require a mechanism to

synchronize their timings, and when error detection is performed in a distributed

environment, errors may be detected in the time domain: each computer can check the

communication timing of the other computers.

Redundancy is a key component in error detection. To detect an error in any

component, there must be a redundant component or task to form a basis for comparison;

2 Graceful Degradation: see section 2.3.3

Chapter 2: Health Aware Systems 17

to identify the faulty component, more information about the components or fiirther

redundancy is required.

When using analytical redundancy, the acquired sensor data is assumed to have

provided accurate data previously, and is compared at the current time step to a model of

the system The difference between the estimated state and the actual state is referred to

as a residual [6], or a bias.

One form of executable assertion uses a priori modelled actuator, plant, and sensor

errors [7]. Each error model can be included as part of a model of the larger process,

acting as a filter to detect errors. Each error filter model is populated with the known

system states and inputs, and becomes non-zero when that error is detected.

When using physical redundancy, a single state is measured by more than one

sensing element, and these values are compared via voting techniques. A wide variety of

voting techniques exist, and are classified by their input and output mechanisms [8].

Input mechanisms can be exact or inexact, which concerns whether the input data is

considered inflexible (exact) or flexible within a region (inexact). Outputs are classified

as consensus or compromise, referring to whether the output is selected from one of the

inputs (consensus), or is calculated by a median or mean (compromise). Output

determination mechanisms also can be classified as threshold or plurality. Threshold

voting checks whether the selected value has achieved a predefined threshold quantity of

votes, like unanimity, Byzantine (quantity > 273 of the votes), majority, m-out-of-n, etc.

Plurality voting selects the value with the most votes [9], or if no value has more votes,

then the output value can be non-unique.

Chapter 2: Health Aware Systems 18

Within a steer-by-wire application that uses Electronic Control Units (ECUs), the

controllers must also be checked for errors. Checking a processor for errors is achieved

through redundant controllers, fonning a network. This network allows the creation of a

distributed computing environment, where each E C U shares local information with its

peers, and each E C U can check its peers for errors.

2.3.2 Granu la r i ty

The granularity of a system is the extent to which it is composed of separate

components, and of each component's functional "size" relative to the entire system.

Therefore, a system with finer granularity has more components, and each one accounts

for a smaller increment of the whole.

It is important to match the granularities for fault detection and fault isolation in the

design of the system Providing a very fine granularity increases system complexity

(because the number of components increases), but allows each component to be

represented in a straightforward manner, with simple models.

One could also design the system with a coarse granularity, where the developer

would use a set of state equations to describe each component. Providing a very coarse

granularity decreases the complexity of the overall system description, but the models that

describe each component become more complex. It also increases the complexity of

detection and diagnosis of faults relative to what would be required for a fine granularity.

The fault isolation mechanism cannot have a finer granularity than the fault-

detection mechanism. However, one could design the system to achieve a fine

granularity in the health monitoring and fault detection mechanism, where the states and

parameters of each component are monitored. Supposing that the output from the health

Chapter 2: Health Aware Systems 19

indicator for a single component is a scalar value, then for a group of components, the

health indicators could be grouped into a composite health vector. The fault-isolation

mechanism would be aware of the health vector representing the constituent components

and could take appropriate action to isolate an error.

Using a fine granularity requires the same or more design knowledge than the

coarse granularity system, depending on the types of errors that are to be detected, and the

granularities of the fault-isolation and the error-diagnosis mechanisms. It makes each

component health indicator more straightforward and less computationally intensive than

the coarse granularity case. It also provides the benefit of being able to detect and localize

faults more precisely. Finally, each component health indicator is an independent task,

which enables the use of distributed processing.

The key disadvantage that one must balance against is that in order to achieve a

fine granularity of system faults, one requires an equally large set of observed system

states. Increasing the number of observed states adds physical sensors to the system,

which escalates system cost

2.3.3 Graceful Degradation

To cope with failures, a system may reduce performance capabilities, cancel less

important tasks, or switch to different control algorithms. This method of tolerating errors

is called Graceful Degradation. Arguably, any fault tolerant system that masks or

isolates failing components undergoes degradation, as it loses the redundancy supplied by

those components. The key identifier of graceful degradation is that when a component

or function fails, it is replaced by a non-identical component or function of reduced

capability.

Chapter 2: Health Aware Systems 20

The Robust Self-configuring Embedded Systems (RoSES) project [10], uses data

and control flow graphs to reconfigure its software. The described system can handle

multiple failures and attempts to optimize system utility.

An alternate approach, described by Bouvier [11], uses diverse and exact

redundancy to handle failures, which makes low level failures transparent to high-level

methods. Also, the approach uses a table of known methods, called an execution table, to

select methods at run time that provide redundant functionality.

2.3.4 E r r o r Response

Error response refers to the manner in which a system reacts once an error is

detected. Common responses include masking, rollback to system checkpoint, and re­

trying the operation, possibly using substitute resources. More powerful responses

include architectural reconfiguration, alternate execution paths, degradation, and

requesting assistance. Already mentioned are the RoSES and Amaranth projects.

Remedies involving simple detection include change of operation, reconfiguration and

stopping the process. With a diagnostic capability, the system can then cktermine if the

failure is conditionally tolerable, it can reconfigure the process parts, or request specific

maintenance.

The body of work in fault-tolerant control is extensive. One technique for

achieving fault-tolerant control is to use state-estimation techniques to find a bias between

expected and actual states, and use this estimated state in the control law [12] [13].

The X-By-Wire project [14], defined an entire fault-tolerant architecture. It used

an approach of exact redundancy and fail-silence throughout the project. The project

involved a number of members from the automobile industry and from academia. They

Chapter 2: Health Aware Systems 21

designed a system in which any conmiunicating component must be a fail-silent unit

(FSU). In a FSU, the component must be able to self check and output either the correct

value or nothing at all. Furthermore, each atomic subsystem is actually a fault-tolerant

unit (FTU), which is composed of two exactly redundant FSUs. When an error occurs,

the units ensure that only a correct output is realized. One problem with this system is

that to support error detection of any one ECU, two ECUs are needed, making the system

cost inefficient. One example of actuation was realized by having three redundant DC

motors connected to a specialized gear box. Each actuator would provide one third of the

required torque in normal operation, and half of the required torque in an error state. The

report concluded that it was more cost effective to have three motors capable of

outputting 50% of the required torque than two that could output 100% of required

torque.

Bouvier [11] developed a distributed fault-tolerant architecture and demonstrated it

in a steer-by-wire application. This system uses triple-modular redundancy and inexact

voters to detect data errors. Each E C U could perform local error detection on the data it

acquired, and also a distributed error detection with its peers to detect sensor, ECU, and

communication errors. The system response strategy uses a dynamic reconfiguration

approach, in which the system can reconfigure resources at run-time. This architecture

uses an abstraction of system hardware and resources in combination with an execution

task flow chart to select tasks. The fail-silence property described by the X-By-Wire

project is also implemented on each ECU. Each E C U is connected to a second set of

channels called state-lines, which operates as a voting mechanism, where two peers must

validate the local E C U as being functional to allow it to broadcast data over the

Chapter 2: Health Aware Systems 22

communications bus. This thesis uses and enhances the fault-tolerant architecture

developed by Bouvier.

Das [15], evaluates the effectiveness of various fault management architectures'

response to task and CPU errors in distributed computing environments, and validates a

distributed peer architecture as having a high number of reachable configurations to use

when executing reconfiguration and tasks.

2.3.5 Recovery

The recovery operation is an enhancement to fault-tolerance, found only in self-

healing systems. It involves the integration of new resources to the systems that are

executing tasks to return it to an error-free state.

A component might be hot swapped; the best example of a fault-tolerant system

that supports hot swapping is the RAID array of hard disk devices, in which a failed disk

can be replaced without rebooting the system Alternative approaches involve

reconfiguring software to match newly installed components, or self discovery of new

components at soft-reboot and hard-reboot.

2.4 Health Awareness

The majority of work in fault-tolerant systems discussed so far relates to the

detection and handling of errors, where errors are classified as existing in a binary state:

either the error exists (the system is in a state of non-conformance with specification), or

the error does not exist. A weakness with the binary error approach of these fault-tolerant

systems is the lack of error predictability. The ability to predict impending failure allows

the operator or system to take pre-emptive action to prevent failure by altering system

Chapter 2: Health Aware Systems 23

functionality or scheduling maintenance. Indicators of system health give insight into the

likelihood of failure.

To identify whether a system's health has degraded to the point where failure is

impending, a number of indicators can be monitored and compared to alarm limits.

Alarm limits can be adjusted according to factors including experience, supplier

recommendations, previous failure data and standards.

Health indication seeks to represent the system's health state by selecting indicators

which describe system performance or correlate to known failure modes. There are a

number of approaches that have been used to develop health indicators, which can be

classified as either Condition Monitoring, Parameter Identification, or State Estimation.

These three approaches are discussed throughout the remainder of this section.

2.4.1 Condition Monitoring

In Condition Monitoring, system states are measured that are not necessarily

used in the control of the system. While the states measured may impact system

performance, their effect is usually not included within the control model as modelling

parameters or state variables. A variety of internal system parameters may indicate

errors; temperature can reveal lubricity problems, misalignment, or overload; noise may

indicate cavitation, valve, gear, or bearing wear. Internal parameters are discussed in,

Fitch [16]. The use of these internal states to predict failure is discussed in, Goode [17],

who proposes a prediction model theory based on statistical process control, and a failure

model using a stable zone and failure zone to predict time to failure.

Noise and vibration are states that are also directly measurable, and can be good

indicators of component wear, but are not usually accounted for within system models. In

Chapter 2: Health Aware Systems 24

Yunbo [18], the amount of vibration energy within a hydraulic system was found to

indicate system wear; the analysis used Fourier transform techniques to analyze the

vibration energy of the system. A newer technique which is gaining attention for

condition monitoring is use of the wavelet transform. The wavelet transform can use a

short window (high time resolution) in the time domain to represent high frequency

content, and use a long window in the time domain to represent low frequency content,

allowing for greater flexibility of resolution. The wavelet transform could be viewed as a

signal decomposition into a set of basis functions [19]. The prototype of the basis

function is scaled in the time domain. The use of a prototype basis function also means

that the transform is not a mapping of the time-frequency plane, but a time-scale plane

where the scale is dependent on the basis function.

The wavelet transform is used by Wang [20], to detect error conditions in a

gearbox. He found that damage to a gear tooth causes a change in the vibration signal

associated with the period of that tooth's engagement. Results from this work were

presented only graphically, and automated interpretation was not discussed. The wavelet

transform outputs a large amount of data, and to date, there is no mature method to

interpret the data for content that specifically indicates health. However, Luo [21], has

shown that the peak values from specific frequencies might be used as indicators of

health.

Yang [22], discusses using bispectral analysis, and compares it to the wavelet

transform. The bispectral analysis is a probability analysis showing the coupling between

three frequencies, k, I, and m (=k+l). It also retains magnitude and phase information.

Key data points from the bispectral analysis and wavelet transform were identified using a

Chapter 2: Health Aware Systems 25

singular value decomposition, scaled, and passed to an artificial neural-network to classify

faults.

2 . 4 . 2 Parameter Identification

Parameter identification techniques seek to determine and monitor the model

parameters for the system over time; a common way to do this is to use observers.

Usually, a system model of a given order is defined, and then a least squares regression is

performed to determine the parameters for the given relationship between system input

states and measured system output states. The system parameters can then have limit

values applied to them that describe acceptable operation.

Isermann [23], describes the parameter estimation method for linear systems and

how significant parameter changes can be detected by reference to the normal values

using statistical methods like the Two-Probe T-Test.

One weakness in this method is that the parameters of a given order model may

not represent system characteristics in a predictable way. Typically, these systems would

then need to be developed for each application experimentally, and the limits must also be

set experimentally. This reduces the potential design benefits of using a system model.

However, in Yu [24], the lumped parameters obstacle was approached by investigating

the change in each parameter grouping and comparing it to the expected composition of

the lumped parameter set. Examining which parameters were present in each lump and

comparing which lumps changed, allowed that work to infer which parameters were

changing, and by how much they changed.

As part of the investigation of approaches to monitoring system performance, this

approach was tested on the hydraulic steering system built by the author. The tested

Chapter 2: Health Aware Systems 26

observer used second order, third order, and fourth order models, with Plackett's

algorithm for recursive least-squares system identification. It was found that when a

square wave was input to the system, the parameters tended to converge on a single

model. However, further testing found the model parameters to fluctuate significantiy

depending on the form of the input, and in some cases did not converge at all.

2.4.3 State Estimation

The process of state estimation involves using a known system model, and

applying a set of inputs to known system states to predict the output state at a given

interval. The health indicators that are built from state estimation are generally composed

of the residual error between the predicted state and the measured state.

Extended Kalman Filter

One technique gaining widespread use is the Extended Kalman Filter (EKF). In

general, the EKF is a recursive filter that estimates a complete system state vector from a

noisy or incomplete measured state vector. It relies on the developer to create a robust

model of the system that describes system behaviour for all states, and then linearizes that

model about each current operating point; the linearization allows the application of other

linear algebra techniques. The state of the filter is represented by two variables:

xk\k , the estimate of the system state at a time, k, given the state k

Pk\k, the error covariance matrix at a time, k, given the state k

The filter can be thought of to operate in two distinct phases. The first phase uses

the previous state estimate, the current system input, and the system model linearized

about the previous state to determine an estimate of the filter state, xk^k_i and Pk\k-\ •

Chapter 2: Health Aware Systems 27

The second phase uses the new measurement data to improve the filter state estimation.

The useful output from this second phase is the estimation of the current system state.

Most condition monitoring applications that use the EKF algorithm use the measurement

residual, the difference between output states and measured states, as the health indicator.

A larger residual is an indication of deviation from the specified system performance, and

therefore an indication of degraded health. The EKF algorithm requires that the equations

be linearized, and so at each time step the Jacobian of the system non-linear equations

must be calculated before generating the estimate of filter states. An [25], uses the

measurement residual of EKF to some success.

Zavarehi [26], makes use of the EKF for observing the valve orifice area, and then

predicting the instantaneous fluid flow rate through a hydraulic valve. The work proposes

that fluid flow rate into and out of a hydraulic component is a good indicator of

component health.

The EKF linearizes the control model about each operating point and is dependant

on the current measurement of system states for its output; these make it unsuitable as a

predictor. Finally, the EKF algorithm is computationally expensive to run, making it

unsuitable for use on the limited resources hardly found in embedded systems.

Observers

Other parameter estimation techniques rely on models to predict future state

values. If the observer output states reconstruct measurements of the process, then the

observer creates analytical redundancy of those states. Typically, a diagnostic observer

generates output states that are indicative of faults, whereas the state observers generate

data needed for control. Control observers also tend to operate within a closed-loop

Chapter 2: Health Aware Systems 28

environment, whereas a diagnostic observer tends to operate in an open-loop

configuration. This requires the diagnostic observer to be more complete, or more robust

when considering model uncertainties.

Usually, a diagnostic observer creates a residual that is compared to a threshold to

indicate component health. An observer-based residual generator should be designed to

compensate for the process input signal, effects of disturbances, and model uncertainty.

Non-linear processes cannot usually be represented by linear models, because they often

do not operate about a fixed point. If a linear model based residual is used for a nonlinear

process, then after a fault has occurred, the model would likely compound modelling

errors and exceed its valid range. Non-linear processes can often be modelled by a set of

non-linear open loop equation.

The health decision is usually based on comparing the residual to a threshold.

Determining the appropriate threshold for error detection is a difficult task; a threshold set

too high will make the system insensitive to faults, and setting it too low will result in a

high false alarm rate. Setting thresholds has been addressed through statistical data

processing, correlation, pattern recognition and also adaptive thresholds. An adaptive

threshold dependant on the system input could reduce the false alarm rate. A survey of

observers and examples of their use is given in Frank [1].

Model Selection

While the EKF has been shown effective at producing both error signals and noise

corrections, including in non-linear cases, it was not selected for this study. First, the

EKF relies on having a very good model of the system, and then linearizes the model

about the operating point. For the EKF to be most effective, it must be run at very short

Chapter 2: Health Aware Systems 29

time intervals, and it does not predict well when the interval increases. Second,

uncertainties in the non-linearities lead to uncompensated errors in the state estimation.

Third, the EKF is a state-compensator more than a state predictor; it requires state

measurement from the most current time to output an estimate of the current state.

Finally, the algorithm is too computationally expensive to run on minimum hardware at

the desired frequency.

Using non-linear modelling elements is more computationally efficient and more

accurate than using higher order linear models for the same task.

The typical observer based approach relies on making small time steps within a

system model to try to determine the system's states. Like the EKF, observers often use

the current measurements to estimate a set of system states. However, an observer may

also be run in a manner which allows it to determine predictions of future states. The

reduced-order observer approximates the system by simplifying the linear system model

to a lower order.

2.5 Diagnosis

The detection and treatment aspects are limited by the granularity of their systems,

and the diagnosis mechanism is also dependent on the granularity of the fault detection

system, to a lesser degree. A system with a finer granularity simplifies the diagnosis

mechanism, as there are fewer system parameters and system states involved in the

diagnosis engine for each component. In the simplest diagnosis case, sensors are added to

the system, which directly indicate specific faults.

Chapter 2: Health Aware Systems 30

Conditional Statements

Isermann [23], discusses the use of conditional statements, which are if

<condition> then <conclusion> logic statements, to make decisions based on

information about system states and parameters from an error detection engine. For some

systems, the relationships between faults, events, and symptoms are known to the

designer. Then the inference engine can use Event-Tree Analysis, in which it progresses

from the known symptoms to the faults that can cause them. The condition part (if

<condition>) contains facts, represented by symptoms as inputs. The conclusion part

includes either events or faults, which are logical causes of the condition.

Fuzzy Logic

Fuzzy logic diagnostics are sometimes used as an extension of the conditional

statements or knowledge-based expert systems. In these diagnostic systems, the

magnitude of each measured quantity and a rule-based membership function describes a

relationship between symptoms and causes. This style of engine is capable of ranking

potential causes based on the membership functions and selecting a most probable cause.

Another way to use fuzzy logic is shown in Mechefske [27], which investigates

which fuzzy membership function would work best to represent the frequency spectra of

various fault conditions for a set of rolling element bearings. Here, the frequency data

from a test can be entered into the fuzzy logic filter, and the output is then a set of

memberships in each of the fault condition spectra. Each fault condition spectra is tested,

and the system detects which condition has the highest membership, thus representing a

fault diagnosis.

Chapter 2: Health Aware Systems 31

Artificial Neural Networks

Artificial neural networks (ANN) are frequently used as pattern recognition

engines, but are essentially statistical processes, where each parameter within the network

is generated by training the A N N to produce different outputs for each failure condition

and for the normal operating condition. One network classifier, useful for recognition of

patterns, is the Kohonen self-orgaiiizing feature map. This type of neural network allows

the designer to incrementally extend the domain of patterns to be recognized. The output

of the network is a symptom code, which indicates whether the module has identified a

possible problem The Kohonen self-organizing feature map was used in Vingerhoeds

[28], to classify engine faults on Boeing 737 aircraft engines.

Neural networks tend to be run off-line; they often require a large history of

processed data, and specific test conditions. Karpenko [29], shows how using two tests

and the data generated can allow a neural network to detect and identify three different

fault types in a pneumatic control valve.

2.6 Summary

This chapter has provided a summary of work related to detecting system faults

and monitoring system health, particularly for a marine steering system. It explained the

basic mechanisms used for achieving steering in pleasure boats, described the potential

modes of failure for a hydraulic system, and described symptoms that may indicate failure

or impending failure. The relationship between faults, errors, and failures was introduced.

This chapter introduced the key concepts involved in the design of fault-tolerant

systems, and the current approaches taken by other researchers. Health awareness was

introduced in the categories of condition monitoring, parameter estimation and state

Chapter 2: Health Aware Systems 32

estimation. Finally, the chapter described the existing techniques used in the diagnosis of

faults.

Chapter 3: Development of a Distributed Health Monitoring System 33

Chapter 3: Development of a
Distributed Health
Monitoring System

3.1 Introduction

This chapter describes the Health Monitoring Layer, and each of the generalized

indicators vvithin it. It shows the development of the model based state observer that is

the core of the health vector, and shows how it can be used as a redundant analytical

sensor.

The Health Monitoring Layer is built upon a previous work [11], which provides a

fault-tolerance framework. This chapter begins with an introduction to the fault-tolerant

framework to be used as a basis for the health monitoring system It includes a

description of the virtual environment that represents the boat steering system and

manages sensor and actuator redundancy.

A fault-tolerant system relies on having redundant means of achieving a particular

system service. Each system service can be thought of as a causal system that has a set of

input states, parameters, output states, and relations between each of those states.

Redundancy is needed to maintain any high level service when that service depends on

3.2 Fault-Tolerant Framework

Chapter 3: Development of a Distributed Health Monitoring System 34

genmting a defined output from a given set of inputs even i f a sub-component fails.

Input states are replicated through analytical or physical redundancy; the relationship

between input and output, the actuators or plant, are replicated only through physical

redundancy. The commands that operate at the high level input can also be replicated, but

to make use of these redundancies in a digital system, the system must be developed with

knowledge of the redundant system components.

An important consideration when developing this architecture is the capabilities of

the embedded computer. The embedded computer selected operates at only 200MHz,

and is described in section 4.2.

This section (3.2) describes the existing fault-tolerant framework that was designed

by Bouvier [11]. The health monitoring system is dependent on the concepts and system

architecture that was designed for that thesis to provide the virtual boat environment and

fault redundancy management.

3.2.1 Object Oriented Programming

Object oriented programming techniques are very appropriate for use in this

development environment. Each product, component, subcomponent, etc., can be

described by a software class whose attributes and methods provide an abstraction of that

component. Where components are replicated, each class can be instantiated as a

software object, whose attributes describe that particular component. The inheritance

property, which allows a class to by defined as a child of a previously designed class,

causes the child class to include all of the attributes and methods of the parent.

Furthermore, the polymorphism property allows each child class to re-define attributes

and methods that the parent provides, but only in the scope of that child class. This

Chapter 3: Development of a Distributed Health Monitoring System 35

property is particularly useful when designing for diverse redundancy, where each

replication has similar attributes, or may require more attributes, and has similar methods,

which need to be slightly altered for each case.

3.2.2 System Architecture

Within the fault-tolerant framework, the software methods are categorized as either

atomic methods, mid-level methods or high-level methods. A representation of this

architecture is shown in Figure 3.1. The architecture shown here is representative of one

Electronic Control Unit (ECU).

Atomic methods describe the actual instantiation of components available to the

system. Each atomic method has a one-to-one relationship with an input component (a

sensor) or an output component (an actuator). Atomic methods make up the system

description and the hardware abstraction layer. The hardware abstraction is described in

section 3.2.3, concerning the virtual boat steering system.

The mid-level methods make up the redundancy manager. These methods provide

the error detection, masking, and error response functionality. They bind to, and

aggregate, the atomic methods. The redundancy management layer is described in

section 3.2.4.

Chapter 3: Development of a Distributed Health Monitoring System 37

The high level methods implement the top level services that make up the required

functionaUty that is apparent to an external viewer. These services constitute all of the

functionality that is bound to fault-tolerance; their inputs and outputs rely solely on fault-

tolerant methods and data that has been checked against errors. They use only the mid-

level methods. Consequently, the high level functions organize the system control

algorithm, and call upon the redundancy management functions. These features are

described in section 3.2.5.

3.2.3 Virtual Boat System Description

In the fault-tolerant steer-by-wire system, the framework is made aware of the

hardware by an abstraction of the system description. The virtual boat Hardware

Abstraction is shown in Figure 3.2; the names and description of it match the system

description object model. The entire system is encapsulated by a top level class, and then

divided into four levels.

First, consider the top level class, Product. The Product class encapsulates a

single high level service of the system, which for the current example is a boat steering

system. The high level service that the fault-tolerant steering system provides is the link

from operator input to steering output. This involves the acquisition of the operator input

at the helm, the transfer of the command signal to the actuator, and the delivery of a

motion on the rudder or outboard motor to alter the boat's vector. This hardware

abstraction is designed to describe the system and its related components, so the Product

class aggregates its member Units, or components. The key units that are required to

provide the boat steering mechanism are the helm and the drive, which in this steering

system is hydraulic.

Chapter 3: Development of a Distributed Health Monitoring System 38

Product

High level abstraction of
system functionality, e.g.:
Boat Steering system

Aggregates

i

Aggregates

Unit

High level abstraction of
major system functionality,
e.g.: Helm, Drive.

Component

An abstraction of a single
component that collects
input and output states, and
an set of model parameters.
States which are related in a
single state vector are
aggregated in a component
object, e.g.: Helm Axis,
Hydrualic Cylinder

Aggregates

Quantity

Abstraction of a single
system state variable, used
to aggregate redundant
sensors to a single value,
e.g.: Helm Axis Rotary
Position

Aggregates

Li_
Command

Abstraction of a single
command value that is
distributed across actuators,
e.g.: change Hydraulic
Cylinder Linear Position

Aggregates
I

Sensor

Abstraction of a one-to-one
matching of a soft sensor
object to its mated physical
sensor, e.g.: Helm Axis
Rotary Position
Potentiometer #1.

Aggregates

i
Actuator

Abstraction of a one-to-one
matching of a soft actuator
object to its mated physical
actuator, e.g.: Hydraulic
Valve Solenoid A

Matches

Sensor

Matches
I

Actuator

Figure 3.2: Hardware Abstraction

The Unit abstraction layer is an organizational level, and represents an ideal

location to implement a system model of the subcomponents. In the context of the

steering system, there are two Units, the Helm and the Drive. The Helm Unit needs to be

aware of all of its state variables, including current position, input torque, and feedback

torque. The Helm's function is to provide a platform for the measuring of operator input

and providing tactile feedback (tactile feedback was not implemented for this thesis).

Fault-tolerance requires that the Helm be able to measure the operator input given the

Chapter 3: Development of a Distributed Health Monitoring System 39

failure of a sub-component or sensor. Each Unit aggregates its member Components,

which creates a state vector representation of the data required by Unit to provide its

service and implement fault-tolerance.

The Components abstraction layer is the organization level where the fault-

tolerance management is located. This layer collects all of the input and output states, and

a set of system parameters that describe the component. This collection is analogous to a

system state space vector. The system inputs are aggregated as Quantities, and the

system outputs are aggregated as Commands. In the context of the Hydraulic Unit, there

are three Components that are known to the system for input or output: the Pump, Valve,

and Cylinder. The output states of interest for the pump are the outlet pressure and flow

rate, and the input state is voltage. For the valve, the important states are its position, and

the voltage control to each of its two solenoids. The cylinder's tracked states are high side

and low side pressures, linear position, velocity and acceleration.

The Quantity and Command abstractions have the same functional level. A

Quantity is the abstraction of a single state input variable, and is used to aggregate the

redundant sensors that can be used to acquire this state. For example, in the Helm Unit,

the Helm Axis Component has the Quantity, Helm Axis Rotary Position (HARP). This

describes only a single state value, but could be acquired from multiple sensors. A

Command is the abstraction of a single state output variable or command value that could

be issued to multiple identical redundant or interdependent actuators. For example, in the

Hydraulic Unit, the Valve Component has the Commands, Solenoid A Power, and

Solenoid B Power. In this case, neither actuation command is redundant, but their

functions are dependant on each other.

Chapter 3: Development of a Distributed Health Monitoring System 40

The lowest layer of abstraction then is the Sensors level and Actuators level. At

this level, specific classes exist to form the unary binding of a soft system state variable to

a physical device. At the Helm, the Quantity, HARP is the collection of the HARP

Potentiometer #1, HARP Potentiometer #2, and the integration of the Helm Axis Rotary

Velocity (HARV) Quantity, which is acquired from the H A R V Tacho-generator #1, and

from the derivative of the HARP Quantity. At the Hydraulic Drive, the Commands,

Solenoid A Power and Solenoid B Power are bound to objects that, when instantiated,

direcdy indicate Hydraulic Valve Solenoid A and Hydraulic Valve Solenoid B.

3.2.4 Virtual Boat Fault Redundancy Management

The previous section discussed the system description classes, but these classes are

part of a larger framework that includes both the local fault-tolerant functionality and the

distributed error detection. This subsection discusses how the fault-tolerant classes

integrate with the virtual boat environment.

Local Error Management

The Virtual Boat Fault-Tolerant Abstraction of the error management system is

shown in Figure 3.3; the names and description of it correspond to the fault-tolerant

classes. The Error Detection and Actuation Manager classes are responsible for local

error detection, response, and compensation. These fault-tolerance management classes

run at the loop closing frequency of the control system, and the methods that provide the

fault-tolerance services operate independent of the system's internal error status. The

System Description classes are shown in order to indicate their integration within the

Fault-Tolerant architecture, and to provide clarity of the resolution of fault-tolerance

provided by this architecture.

Chapter 3: Development of a Distributed Health Monitoring System 41

The Local Error Detection class aggregates all of the sensors known to a given

Quantity, and uses the mforrnation about each Sensor to implement an inexact voting

scheme, which in turn provides an agreed upon value that is returned to the Quantity. It

also allows the detection of erroneous sensor data, and the ability to immediately isolate

and mask a single sensor fault. Finally, the Local Error Detection (LED) outputs a set of

error status indicators for each of the sensors; this data is in turn used by the Distributed

Error Detection (DED) utilities, as discussed in the following subsection. The Actuation

Manager class aggregates each of the Actuators known to a given Command, and sends a

value to each of them based on a current Command value.

Local Error Detection

The Local Error Detection
class aggregates the
information about the
Sensors attached to the
Quantity to select valid
Sensor readings, and obtain
an agreed value for the
Quantity, e.g.: Helm Axis
Rotary Position ED checks
and compares the sensor
measurements and
calculates a pseudo average
value for the Helm Axis
Rotary Position Quantity.

Depends On

Quantity

Abstraction of a single
system state variable, used
to aggregate redundant
sensors to a single value,
e.g.: Helm Axis Rotary
Position

Depends On - J

Quantity DED

The Quantity DED class
performs data and timing
error checking across ECUs
when matching Quantity
data is communicated
between them.

Aggregates

Depends On

Depends On

Actuation Manager

The Actuation Manager
class aggregates the
information about the
Actuators from the
Commands, and is used to
distribute actuation signals
across multiple actuators.

Component

An abstraction of a single
component that collects
input and output states, and
an set of model parameters.
States which are related in a
single state vector are
aggregated in a component
object, e.g.: Helm Axis,
Hydraulic Cylinder

Depends On

Depends On

Distributed Error
Detection

The Distributed Error
Detection class stores and
represents the health
indicators for each of the
ECUs.

Depends On

Aggregates
I

Command

Abstraction of a single
command value that is
distributed across actuators,
e.g.: change Hydraulic
Cylinder Linear Position

Figure 3.3: Fault-Tolerant Framework

The class diagram shows how the Local Error Detection and Actuation Manager

classes are related to the System Description classes. The redundancy management

Chapter 3: Development of a Distributed Health Monitoring System 42

classes need to be aware of the Component, Quantity, and Command, that they are

attached to. The services of the Local Error Detection class are invoked by the Detect

Errors method. This method first gathers the individual sensor measurements and

performs the executable assertions (the E_A: method) on those measurements. The

executable assertions are the first set of error detection routines run for a sensor; they

ensure that each data point is within the suitable range of the sensor, and that its variation

based on its previous value is acceptable. Then, data replication assertions are performed

across the sensors, which forms the second part of the error detection process, and will

detect Byzantine faults. Each sensor value is compared to the rest to determine if they are

within an accuracy tolerance of each other; this will identify any sensor of giving data

which is not similar to the other sensors. Next, any sensor detected as faulty is removed

from the current operations, and an indicator flag is raised. Finally, the sensors that are

considered error-free are subject to an inexact voting algorithm, which calculates a

weighted average value. This output value is returned and becomes the Quantity state

value.

The services of the Actuation Manager class are invoked by the Actuate method.

This method uses the Command state value, and computes output values for each of the

attached member Actuators. Then, each actuation command value is sent to the

appropriate Actuator output channel.

It should now be evident that the System Description classes only provide

information about the presence, relationship, and state values of each component in the

system, and whose methods must be aggregated into management functions. The

redundancy management classes, the control classes, and communications classes all use

Chapter 3: Development of a Distributed Health Monitoring System 43

the data and methods from the System Description classes to implement the desired

system services.

Distributed Error Management

The Distributed Error Detection representation is shown in Figure 3.3. The

Distributed Error Detection classes manage E C U redundancy, and provide the error

detection utilities for the value and time domains. They output the error status of each of

the ECUs as calculated locally, a system-wide agreed state value for each of the

Quantities1, aggregated witliin the QuantityDED class, and an error status indicator for

each of the Quantities that are checked.

As a mid-level object, a QuantityDED object outputs a value for its Quantity that

the distributed system agrees upon, and an error vector describing the fault status of each

of the ECUs which contribute to that Quantity. The QuantityDED checks the values

from each E C U to assert that the sensors provide similar data at each localization. It also

compares the error status reported by the Local Error Detection object at each E C U to

verify agreement on sensor health.

If the QuantityDED finds a discrepancy in error status from a Local Error

Detection object, it will flag the detection of an E C U fault at the desired fault granularity.

For example, i f a system has multiple QuantityDED objects, one of the QuantityDED

objects may detect a fault. In this case, the detection of the fault could result in the E C U

being marked as faulty, or the QuantityDED object may mark the Local Error Detection

object of that specific E C U as faulty.

3 Note: A Quantity is the name to the system abstraction that represents a single system state. The
abstraction is required as a single system state may be determined by multiple methods. Analytical and
physical redundant sensors that output the same state are aggregated by a Quantity.

Chapter 3: Development of a Distributed Health Monitoring System 44

3.2.5 High Level Service Layer

As discussed in section 3.2.2, high level methods make up the services that are

required for the system to provide the system specification performance. In particular, the

loop closing and the execution table are considered high level methods.

Execution Table

The execution table allows for the system to change which methods are used in

real-time, thereby adapting to faults that may affect the software code. This behaviour is

desirable when an E C U error is detected, and can ensure that communication with the

unit is suspended, and an alternate distributed error detection mechanism is used.

A step is the abstraction of a task to be accomplished by the software. Any task

might be completed by multiple methods, each method providing diverse redundancy of

similar functionality. The step aggregates the redundant methods and their timings. For

example: a single step might call the functions responsible for data acquisition, fault-

tolerance, communication (sending and/or receiving), control, or actuation.

The execution table class collects all of the required steps. Each step is designed to

be run at a particular time, as communication, data acquisition, and actuation are all time-

dependant events. A lookup table is used to select which redundant methods are used

from each step, allowing for dynamic reconfiguration when an error is detected that

affects the ECUs. The execution table is a high level object, and is called within a loop

run by the global function.

Control

The controller classes aggregate the virtual descriptions of the quantities,

commands, model, and algorithm, and are not directly dependent on any physical

Chapter 3: Development of a Distributed Health Monitoring System 45

component. The controller object methods are called from within the execution table,

making this a high level object.

3.3 Health Monitoring Approach

Section 2.4 discusses a number of approaches to achieving health awareness:

condition monitoring, parameter identification, and state estimation. In general, the

condition monitoring approach involves adding physical sensors to measure a direct

indicator of health. Alternatively, parameter identification and state estimation use

model-based approaches, and sensors that may already exist for control purposes, to

create a measure of health.

Condition monitoring will often require the creation or addition of new sensors to

measure signals which directly indicate system performance. These sensors are specific

to each application, and each recorded signal is usually indicative of a specific fault or

operating condition. Condition monitoring systems are programmed with awareness of a

number of fault conditions, and a diagnosis mechanism compares the system state with

the condition signals to provide a diagnosis of system health.

Model-based approaches are preferred for this project because they offer the

opportunity to find health indicators from the sensors that already exist to provide control,

and so they use the hardware redundancy that already exists. Generally, model-based

approaches allow for two choices of how to proceed. The first method is parameter

estimation, and the alternative is state estimation.

The most significant difficulty with parameter estimation occurs when the system

model is non-linear. Typically, parameter identification approaches rely on the least

Chapter 3: Development of a Distributed Health Monitoring System 46

squares algorithm to determine the parameters, and this algorithm requires the model to

be not only constant, but also linear.

Most real mechanical systems cannot be accurately represented by a single linear

model. Usually, mechanical systems have a number of non-linearities, from saturations,

to relays, to friction. Moreover, a number of mechanical systems are not time-invariant;

they change not only with their internal parameters, but also with time. To accurately

model such system, typically non-linear model elements and multiple model states are

required.

The hydraulic steering system used as an example in this thesis has a number of

non-linearities that manifest themselves as saturations, dead-bands, rate-limiters, relays,

and transport delays. The actual system model used is discussed in detail in Chapter 4,

section 4.3.

In this thesis, the modelling strategy uses a second-order system model to estimate

system dynamics. The linear model follows a set of non-linear models that are executed

prior to the second-order model. The combination non-linear to linear model allows for

reasonably accurate output to be achieved from a straightforward and computationally

efficient dgorithm. It also allows the non-linearities and the linear portion of the model to

be uncoupled which provides the benefit of running the model only once to acquire all

health indicators.

3.3.1 Model Selection

The use of a second-order model has a number of benefits. In particular, reducing

the system to its dominant second order model allows its performance to be specified in

terms of gain, damping ratio, and natural frequency. Then gain, damping ratio and

Chapter 3: Development of a Distributed Health Monitoring System 47

natural frequency can be used to set dynamic thresholds on acceptable system behaviour,

from which deviation indicates health degradation. This model also has the benefit of

providing an analytical predictor of system state, which can be used as a redundant sensor

when one can assume that the input states to the observer are error-free. First-order

models do not allow the modelling of resonance, nor do they provide for the inclusion of

complex solutions. The second-order model is the lowest order model available that

allows resonance to be modelled.

This model only needs reasonable accuracy over a short period of time, or it can

even be incomplete. It assumes that the natural frequency, gain, and damping ratio are

affected by deteriorated health, and that the common errors will be observable by changes

in one of these parameters.

Finally, it is expected that the modelling elements might be used in series. A

single process could be constructed from a number of non-linearities and second-order

transfer-functions. Alternatively, a number of small processes or system components

could be individually modelled using the non-linear plus second-order transfer function,

and then all of the models could be cascaded in series to produce an overall model of the

system which has many non-linearities and multiple second-order transfer functions. The

overall model could then be equivalent to a higher order model.

3.3.2 Indicator Selection

One of the advantages of using a model-based approach is the opportunity to re­

use system sensors included for control in the models that power the health indicators.

One indicator of health is the current system state in relation to the system reference state;

to obtain this measure (the control error signal), models are not necessarily required. This

Chapter 3: Development of a Distributed Health Monitoring System 48

mode, instantaneous error, is called the Instantaneous Response Indicator and is discussed

in section 3.3.2.

The instantaneous error is not always a good indicator of system health, nor does it

provide enough information to localize component health. The instantaneous error can be

small or zero when the actual state crosses the command state (e.g.: a system with

constant command signal, but oscillating state). To detect this behaviour, a history of

past states is required, and can be indicated by modelling the system dynamics.

Indicating the health of the system dynamics involves modelling the system response

over a period of time that approximates the system time constant, and comparing the

output of the modelled dynamics to the actual system state. This system dynamics error

is called the Dynamics Response Indicator, and is discussed in section 3.3.3.

Modelling system dynamics over a period of time will help to indicate that the

system behaves as expected over a short period of time. However, because the Dynamics

Response Indicator is run over a short period of time, it becomes susceptible to missing

health errors over a longer period (e.g.: the system response to a slow moving input, or the

average system response compared to the expected response over a time period).

Generating the expected response requires a system model to be run over the entire period

of monitoring. If the period is significantly longer than the settling time of the dominant

dynamics, then only the non-linear part of the model needs be run. This mode, the

average state change error, is called the Average Response Indicator and is discussed in

section 3.3.4.

Chapter 3: Development of a Distributed Health Monitoring System 49

3.3.3 Instantaneous Response Indicator

The Instantaneous Response Indicator (IRl) is the difference between the

current reference state and the actual current system state. This residual value is also

typically used by the control system itself. The error signal is scaled to the range of the

sensors used, and reduced by an accuracy threshold. For this indicator, a lower absolute

value of the indicator indicates a healthy measure for the system, whereas a high absolute

value indicates that the system health may have deteriorated. When validating this

indicator, the result should fall below a determined threshold value for normal operating

conditions. Duration, direction and magnitude of the health indicator are all signs of

system malfunction.

In this thesis, the IRI is the commanded input position relative to the position of the

cylinder. A high error signal could also indicate that the rate of change in the input signal

is faster than the system can accommodate - which can arise from an error state at the

helm or input processing, perhaps too high a rate of change in the helm position. Clearly,

under normal conditions, one would expect that the steering system can handle the range

of motion that the helm is capable of providing. The given example however is for a

health vector referring to the cylinder, so this signal is an indicator that the cylinder is

unable to track the reference signal.

3.3.4 Dynamics Response Indicator

The system Dynamics Response Indicator (DRI) measures the difference

between an actual system state and the upper or lower boundary expected of that state.

The expected value of the state is found by running a model of the system which includes

the non4inear aspects as well as the linear portion of the model. The linear portion of the

Chapter 3: Development of a Distributed Health Monitoring System 50

model is a second-order function, and the prediction is generated over a period that is less

than the time constant of the second-order equation.

The upper and lower boundaries of the expected state describe where the system

should be assuming boundaries on natural frequency, damping ratio, gain and phase of

the system with respect to the input over the prediction period. Deviation from the path

boundaries results in a non-zero error. Larger error magnitudes indicate a deviation of

actual system dynamics from the expected system dynamics, be it in phase, frequency, or

amplitude.

Magnitude and direction of this health indicator are the key elements of health for

this sensor. While duration is important, it is more important to examine repeatability of

errors with similar inputs, or any error signals that are persistent for more than one time

step or recur at the expected natural frequency of the system During normal operation,

the output from this sensor should be near zero; magnitude of the error signal should be

small and any variation should appear to be noise.

In the example used for this thesis, the model is used to predict the velocity of the

cylinder in response to the commands sent to the pump and valve.

3.3.5 Average Response Indicator

The Average Response Indicator (ARI) is the difference between expected

change and the measured change over a period of time. The response to a slow moving

input is checked over a period of time that is significantly longer than the settling time of

the dominant system dynamics. This enables the luxury of not running the oscillating

system dynamics model, as its influence would be averaged over the period. However, a

non-linear model would be run over the period, and all of the input way-points would be

Chapter 3: Development of a Distributed Health Monitoring System 51

gathered and included in the non-linear portion of the model. Using this method, the

average response from the non-linear model to the full history of inputs is compared to

the average value of the actual system state's change over the same period.

Direction, magnitude, and duration of any error signal are all important factors to

monitor in this signal. When validating this sensor, a signal with long duration indicates a

change in static behaviour of the system, which could in turn be used to tune the results of

the system Dynamics Response Indicator sensor. Matching error sign with the IRI signal

could be a result of increased system lag, and opposite signs can indicate out of phase

tracking.

In this thesis' example, this indicator is instantiated as the difference between

expected average velocity and actual system average velocity over the time window. A

large error signal here indicates that the system is not responding to an input command as

expected. A change in performance can be attributed to either the input (actuator fault)

being incorrect, or that the model structure or model parameters no longer adequately

approximates the actual system (system/process fault).

3.3.6 Model Development

The Health Monitoring System has three available inputs: the system state vector,

system reference vector, and control signal vector. Each component of the model is

instantiated as an object that behaves as either a discrete transfer function or as a non­

linear transfer function.

The model is not intended to be run continuously, where each step is dependant on

the previous, but instead only over short intervals and synchronized with the actual

system states following each prediction. This principle is shown in Figure 3.4. In this

Chapter 3: Development of a Distributed Health Monitoring System 52

figure, a single threshold predictor is shown. In this version, the model is updated to

include all of the inputs, u(t), u(t+A) ... u(t+nA), over the prediction period and the

starting states of the system, y(t); it then predicts the system end point, y (t+n A) , and

upper and lower thresholds, yub(t+nA) , ylb(t+nA) . After each prediction, the

actual system states are stored by the model, and it predicts the state value at the end of

the next forecast period.

single prediction
4 state interval

loop closing A
„ u (input)

high threshold prediction

y (actual)

-0 low threshold prediction

Figure 3.4: Single State Threshold Predictor

There are updates for the input between each of the predictions shown in Figure

3.4. The period of prediction is significandy longer than the loop-closing frequency, and

the system health indicators should be updated at each loop closing. Each set of

predictions then represents results for a window of system data that moves with time.

When a prediction occurs at each loop closing, the moving windows overlap with

previous predictions, as shown in Figure 3.5. In this figure, the system input data is

known across each model window, but each prediction has a different storting state.

Using this technique, the health indicators are updated at each loop closing.

Chapter 3: Development of a Distributed Health Monitoring System 53

state loop closing

single prediction
interval

u (input)

high threshold prediction

y (actual)

low threshold prediction

prediction interval
overlap

Figure 3.5: Multiple State Threshold Predictors

Figure 3.6 shows the locus of the predicted thresholds, and also the locus of the

forecast of the system state corresponding to the outputs shown in Figure 3.5.

state loop closing

single prediction
interval

u (input)

high threshold prediction
y (estimate)
y (actual)

low threshold prediction

Figure 3.6: Locus of Multiple Predictors

It should now be clear that the system dynamics model is restarted to the actual

system states at a regular interval. This synchronization allows the dynamics to be

monitored by the DRL but also makes the indicator unable to track system changes which

operate more slowly than the system dynamics. It also prevents it from detecting errors

that would arise from the system having a significant offset from the commanded state.

In order to compensate for the loss of tracking of slow signals, the ARI was created. The

IRI was created to compensate for the inability of the average response indicator and the

Chapter 3: Development of a Distributed Health Monitoring System 54

dynamic response indicator to detect errors arising from the system not adequately

tracking the commanded state.

3.4 Dynamic Performance Analysis

3.4.1 Objective

The objective of this algorithm is to use specified system parameters and

acceptable limits on those parameters to determine the range of acceptable outputs for that

system. The linear part of the system model considered is second order, and has the form:

d2 y , J v W l 2 , 2
"72 +—t2wnt+yojn^kojnu 3.1
dt dt

Where:

y is the current system state with respect to time, t;

ox is the undamped natural frequency

£ is the damping ratio

k is the system gain

u is a general input function of time, t

The system is assumed to maintain constant values of ox and ^over the duration

of the estimation period and during normal operation; they are constant in each record.

The final algorithm implementation supports parameter updating at irregular intervals as

desired in code. These values are known and specified by the system designer.

Furthermore, a range of acceptable values of ox and ^are specified such that cou, < ox <

QXb and Qb ^ C— during operation. Ofo is the lower boundary of ox and 0Xb is the

upper boundary of ax. Likewise, Qh is the lower boundary of £ and £ u b is the upper

Chapter 3: Development of a Distributed Health Monitoring System 55

boundary of £ The problem then becomes finding the maximum and minimum solutions

to Equation 3.1 when solved for j>.

The timing interval selected is long enough for the effects of dynamics to be seen.

The timing interval is selected to match approximately 0.8 radians at the undamped

natural frequency. The actual sampling interval and loop closing time of the system is on

the order of one tenth of the system time constant, which is significantly faster than the

forecasting period of the model. The long forecast period and the multiple loop closings

in between can be used to provide a series of predictions over the actual forecast time,

with each prediction made from a previously known system state.

To maximize the potential modelling benefit of having a history of inputs, a

number of modelling techniques were investigated. Techniques tested include analytical

solutions assuming a step input, ramp input, and parabolic input, and numerical

integration techniques including Predictor-Corrector, Runge-Kutta, and a Modified Euler

integration. The use of embedded systems minimizes processing capabilities; the use of

analytical equations was investigated, but processing capability proved to be a constraint

to their use, as using numerical analysis to solve the equations is a processor intensive

task.

The limit on processing capabilities leads one to select a solution where the

calculations performed at each loop closing use a minimum of processor time. The

preferred algorithms have most of their calculations performed off-line (by the designer)

or during a configuration phase (where the control loop is not running). This limitation

leads to the selection of a solution that is expressed in a solved algebraic form

Chapter 3: Development of a Distributed Health Monitoring System 56

A number of options were considered for determining the best way to calculate an

algebraic solution to the equation The input function was replaced by step, ramp, best fit

ramp, parabolic, and cubic spline functions, each varying which input points to use. After

comparing the output from each of the solutions, the Analytical Solver for a Parabolic

Input was selected. In this case, three of the input points are used: the start point, end

point, and mid point.

3.4.2 Analytical Solver for a Parabolic Input

With the parabolic input, starting from Equation 3.1, found in the previous

subsection, and using a parabolic input of the specific form:

u(t) = \alt2+a2t + a3 ax =
2(u0—2ux+u2)

A2

— 3 w 0 —4U X + U2

A o

3.2

Where:

A is a discrete time interval representing half the forecasting period

u0=u(t), ux-u(t+A), and u2=u(t+2A)

The specific solution then is found to be:

Chapter 3: Development of a Distributed Health Monitoring System 57

y(t)= —Til -4ku0 + Uul-4ku2+\6ku0t2-32kult2+^ku2i:2

A to L

-$ktu0Zw+\6ktul£w-$ktu2£w+6ku0A£co-8kulACw+2ku2A£w+2kt2u0w2

-4 k t2ulw2+2 kt2u2w2-3ktu0Aw2+4k I«, 4 to 2 -ktu 2 A to2 + ku0A2w2

E-'(-C » + V ^ ? u >) . 2 (, • (8t/ 0C-16K|t;+8K : !C+3M 04(O-4M |4tO + M 2 A I o)
—T==\ £ Au)\-dy0-k - j

| (t; + \ r T 4 ?) (- v 0 4 2 c o 2 + t (» J - 4 + 1 6 C 2 + 6 4 C (o + 4 2 (o 2) + 2 (- 4 » | (- l + 4 C 2 ^ ^ ̂

zTco

p , , - ^ - ^ . , . 2 2f A(» 0(-4+16c; 2 + 6 A t ; a) + 4 V) + 2 (- 4 » , (- l + 4 C 2 + 4 t ; t o) + » ; (- 2 + 8 g 2 + 4 g c o)))

t (8w 0 £; -16«, Z+%u2t + 3u0Aoo-4ulAw + u2Au})
-dy0 —j

A to +
— V ' ' Ti ~~

(t + ̂ \+t2){-y„A2(u2+k(u0{-4+\6t2+6Atw+A2w2)+2(-4u,(-\+4t2 + At \
2 > / 7 T ? A W / J

3.3

This solution can be manipulated to provide two Equations of the form:

y (t + 2 A) = A 0 y { t) + A l ^ ^ - + A 2 u (t) + A 3 u { t + A) + A 4 u (t + 2A)
at 3.4

One equation is valid for £ < 1, and the other valid over the range for g> 1. The

equations of this form are used in the algorithm to produce the best prediction of y, as

well as the predictions for the maximum and minimum limits of y at the extremes of

allowed values for ox and £ The development of equation 3.4 and final values for A 0

through A s are shown in Appendix B .

The problem to solve is then to find the maximum and minimum y(t+2A), where

only the parameters ox and C, change. The solution to the maximunVniinimum problem

then is as follows:

- ^ = 0 ^ = 0 3.5
dco„ dt,

In the current equation forms for y(t) however, no analytical solution to these

equations could be found. To eliminate the exponential functions from the solution for

Chapter 3: Development of a Distributed Health Monitoring System 58

Equation 3.5, the exponential functions of Equation 3.3 were expanded as power series

to four terms, which yields the function:

^ + 2 4 = 3 ' ; + ^ y - ' 2 ^ L (6 ^ y C + (* (- 4 M y + 4 + « y + 2 J + 3 ^) c o „)

2 3.6

-t3^(ayJ-4dyJr;2+2(kuJ-yj)r;wn)

The power series expansion shown in Equation 3.6 is accurate to within 1% of the

analytical value at up to 0.8 radians. The maximum or minimum condition for this

equation is found at:

<^(-2dyjt-3kuj+SkUj+4-2kuJ+2a-3yj) 3.7
60 = ;

-kuj + yj
3CJV rtK lit U 2 ' " 2 Idyj+ktUjwl-tyjUSl ^

Adyjtwn

3.4.3 Results

Algorithm comparison was initially performed in Matlab. Selected results are

shown for the Analytical Solver for a Parabolic Integrator. The results were gathered

using a normalized second order system with gain set to 1. The first selected input form

is a sine wave, operating with an amplitude of 1.0, and a frequency which is half of the

natural frequency of the system being analyzed.

The system envelope of the parabolic integrator, in response to the sine wave input

is shown in Figure 3.7. The figure shows five data series. The first series is the input

signal to the transfer function of the model and to the prototype Dynamics Response

Indicator. The three series that track with a phase lag are the actual system output, and the

high and low boundaries of system performance as predicted by the Dynamics Response

Indicator. The final data series is actually at zero for this entire test, but it is representative

Chapter 3: Development of a Distributed Health Monitoring System 59

of the error between the actual system output and the boundaries, and is non-zero only

when the actual output deviates outside of the high and low limits.

1.10
1.00
0.90
0.80
0.70
0.60
0.50
0.40
0.30
0.20

0> 0.10 5 0.00
W -0.10

-0.20
-0.30
-0.40
-0.50
-0.60
-0.70
-0.80
-0.90
-1.00
-1.10

2

\ State \ Input . yp_h y p j \ Error \ State \ Input . yp_h y p j \ Error

00 2.20 2.40 2.60 2.80 3.00 3.20 3.40 3.60 3.80 4.00

Time

Figure 3.7: Parabolic Analytical Integrator Response to Sine Wave Input

In this test, the parameters 0% and £ are allowed a tolerance of 2 0 % from their

idealized values. It is apparent that for this test, this system performance envelope

entirely encapsulates the output of the system. The parabolic approximation is fairly

accurate across the entire range of the sine wave input signal.

Chapter 3: Development of a Distributed Health Monitoring System 60

1.40!

1.20

1.00

0.80

0.60

CO

-1.40

\ State \ Input \ yp_h \ . y p j \ . Error

2.40 2.60 2.80 3.00 3.20 3.40 3.60 3.80 4.00 4.20 4.40

Time

Figure 3.8: Parabolic Analytical Integrator Response to Square Wave Input

The second test shows system response to a square wave input in Figure 3.7. This

chart has five data series. The first series is the square wave input. There is the series

which represents actual system output, and then the high and low boundaries of system

performance as predicted by the Dynamics Response Indicator. The final series is

representative of the error between the actual system output and the boundaries.

At the beginning of the step, the high and low boundaries increase, where the

actual system drops. This occurs because of the parabolic approximation of the input,

whose three data points are 0, 0, and -1, which will result in a parabola with a maximum

value greater than 0. The high and low boundaries then quickly drop to below the actual

system, when the data points in the parabolic input are 0, -1, and -1. It is clear now that

the parabolic approximation is adequate when the system input is a continuous function,

but performs poorly when the input is discontinuous.

Chapter 3: Development of a Distributed Health Monitoring System 61

A second set of errors is shown in the interval of 2.8 to 2.9 seconds, and is a

limitation of the method used. This error type led to the use of the prediction for

maximum and minimum predictions given in equations 3.7 and 3.8. It is also important

to note that the power-series expansion is accurate to 1% at 0.8 radians of the undamped

natural frequency; this indicates that small deviations in the system from the thresholds is

expected, and the magnitude of the error in this interval is approximately 1%.

3.5 Health Monitoring Layer

The desired output from a health monitoring layer is a set of values that are

indicative of the current health status for a given component. Each unique health monitor

should aggregate a set of indicators, and all of the methods that describe those indicators.

It should be designed to be aware of the error status of its input states. The health

monitoring layer should collect each of the local monitors to create a composite health

vector that describes the health of components and subcomponent at the desired

resolution.

The Error Detection classes are responsible for detection of errors with the sensors,

and determining an agreed value for a particular quantity. Furthermore, they are also

responsible for disabling faulty sensors. The health indicators are used to monitor

actuator and plant performance, with that data being used in a diagnosis engine, which in

turn would trigger the Actuation Management classes. The diagnosis phase of the Health

Monitoring System is not included in this analysis.

The Health Monitoring indicators are model based, as described in Section 3.3,

which makes each indicator dependent on the current system state and the input applied

over a period. The Health Monitoring Layer is necessarily reliant on the systems' sensors,

Chapter 3: Development of a Distributed Health Monitoring System 62

observable states, and controller inputs. Therefore, to achieve its goals, it needs to use the

system hardware abstraction, and also to use the current error status of all of the state

variables used.

The performance measuring objective of the Health Monitoring System led to the

selection of a scheme where each indicator returns a quantitative measure corresponding

to the degree of deviation from good behaviour. The indicator's scalar value increases as

the performance error increases.

3.5.1 Layer Framework

Figure 3.9 shows a flow chart of the data used by the health monitor system during

normal operation. L>uring the first step, the RunModel method is used, which updates the

model elements, and generates a prediction for the system state, and the upper and lower

boundaries for the analytical sensor. If a sensor has already failed, the Redundant

Analytical Sensor, shown as 1 .(B) is executed, allowing the Local Error Detection object

to properly check for sensor agreement.

The second step in the data flow for the Health Monitoring system is updating the

system states with the values produced by the Distributed Error Detection routine. This

then allows the calculation of the output values for each of the Health Indicators.

Chapter 3: Development of a Distributed Health Monitoring System 63

1. Run Model

fesRefererice;' Controller
u

-•I »
Controller

A

—| y actual
1
1

2. Update States

Health Monitoring System
implementation specific
model

Instantaneous
Response |
Indicator

2
Average
Response (-
Indicator

required components

Dynamics
Response |
Indicator

1. (B) Sensor Redundancy Arbitrator

Distributed
Error Detection

Local
Error Detection

V state estimate
state upper boundary
state lower boundary

redundant analytical sensor used when one sensor has failed

Figure 3.9: Health Monitoring System Data Flow

* i Actuation Manager

Depends On

-M Command
Distributed Health

Monitor
The distributed health
monitoring class
aggregates information
about the state variables
and system inputs and theiij
values. It aggregates the
subcomponent models,
execution routines and the
output, e.g.:
HyCylinderDHMS collects|
position, velocity and
acceleration state data, the
inputs from the valves and
pump, executes the models
and outputs the health
indicators for the hydraulic|
cylinder.

• Depends On

Quantity Quantity DED W -
Distributed Error

Detection

Sensor

Depends On

Depends On

Local Error Detection

Component

Aggregates

Transfer Functions

The TransferFunction
:lass is a parent class that
:ontains the required

_ ^ methods and variables to
maintain a model. It storesl
timing data, history, and
Durrent state.

Inherits from

D H M S - 2 0 D E

Inherits from

This class inherits from the
TransferFunction class. It
•uns the quadratic
predictor, computes the
adaptive thresholds on the
state estimate. It stores a
local history of its inputs
and recent measured
states.

This class inherits from the
TransferFunction class. It
•uns the quadratic
predictor, computes the
adaptive thresholds on the
state estimate. It stores a
local history of its inputs
and recent measured
states.

Figure 3.10: Health Monitoring Framework

The abstraction of the framework for the Health Monitoring Layer is shown in

Figure 3.10. Detailed descriptions of the classes are given in Appendix C. The health

Chapter 3: Development of a Distributed Health Monitoring System 64

monitoring class is responsible for organizing the indicator output data and parameters.

Objects of this class are updated at an integer multiple of the loop closing frequency, and

provide health information for the given component if the input state variables are error-

free. The system description and fault-tolerant framework classes are shown to indicate

how they relate to the Health Monitor.

Each of the modelling objects that make up the health monitor model is collected

in the Health Monitoring Class. This allows the system to manipulate its execution rate,

to select individual models for execution, to access model data, to display current status,

and to adjust each model at run time. A l l of the models are run by the RunModel method,

where the RunModel method calls the equivalent method from each of the models within

the Health Monitor collection; as an alternative, the function could call a Forth word to

run the models in a particular order. The model output data is then stored, and it can be

compared to the system state vector to generate the Health Indicators, which in rum

would be used by a diagnosis object.

The DHMS-20DE class provides the second order threshold estimator and state

predictor described in section 3.4. It is also the key element in the Dynamic Response

Indicator. When the RunModel method is called, the model predicts the system output

and the upper and lower thresholds of the output state. The UpdateStates method is used

to store the actual current system state. These two functions are separated and called

independentiy so that the prediction of the output state and the thresholds can be

calculated and used as an analytically redundant sensor in a Local Error Detection object

when one of the redundant physical sensors has failed. The LED object uses the

Chapter 3: Development of a Distributed Health Monitoring System 65

predicted state and thresholds in the inexact voting scheme, which determines the actual

current system state.

Input states are normally used from the Distributed Error Detection object.

Typically, control signals are collected directly from the commands that are sent to the

actuators. The health monitoring object can be attached to any type of component; it

could represent a Unit, Component, Command or a specific Actuator. This gives the

benefit of allowing the designer to set the granularity of the Health Monitoring System to

any superset of the granularity defined by the System Description objects.

3.5.2 Model Framework

A l l of the models used are based on the TransferF class. The models take

advantage of the inheritance and polymorphism properties of the object oriented Forth

extension. Each of the models used is registered in the Health Monitoring object,

allowing for some modelling parameters to be changed system-wide, and on demand.

For normal operation, the designer specifies how the models are run. This function

is implemented as part of the instantiation, and is registered in the health monitoring

object to be used with the RunModel method. Some of the model classes are introduced

here. Please see Appendix C for additional software documentation.

The Saturation class is an example of one of the non-linear models that make up

the health monitoring predictor. It allows for double sided saturation at two values. The

non-linear models make use of the RunModel method by default, and the UpdateStates

method will only update the internal state, not the output state.

Chapter 3: Development of a Distributed Health Monitoring System 66

The RateLimiter class is designed to check the velocity over a period of time and if

it exceeds a given maximum speed, definable in each direction, truncates that speed to the

limit. Like the Saturation class, the RunModel method is used to add the new input and

update the system model. The UpdateStates method can update an input, but will not

update the output.

The DelayRelay class is a special case of non-linear models. It tracks an internal

position state that activates output at the set thresholds. This class is used to describe the

behaviour of the solenoid operated valve and the dynamic delays that it applies to the

hydraulic system.

The TimeTolerance class provides a tolerance to uncertainty of measurement

timings, by allowing for a state value to be compared to threshold values at different

times. In particular, it uses the u_h and uj variables, which are high and low thresholds,

and checks the y state to see that it lies between those thresholds, not only at the current

time, but also within a time tolerance into previous recorded history or also for subsequent

values.

The TransDelay class provides a transport delay on the input signal equal to the

delay parameter. The UpdateStates method allows the history of states to be overwritten

without affecting the current output, while the RunModel method drops the earliest

history point to the output state and adds the current input to the queue.

The WindowAvg class computes the average value of a state over a given period of

time. The averaging window moves with each update, subtracting the earliest value and

adding the newest to a running sum when the RunModel method is used. The

UpdateStates method allows the user to overwrite the current sum.

Chapter 3: Development of a Distributed Health Monitoring System 67

3.6 Summary

This chapter has discussed the fault-tolerant framework that the health monitoring

functions are designed to interface with. It also discusses the three health indicators that

are used, and the models used to describe them.

It shows how the analytical solution was derived for the prediction of system state,

adaptive thresholds of prediction, and the Dynamics Response Indicator. The chapter

also shows the preliminary results achieved that led to the selection and the development

of the analytical model used.

Finally, this chapter discusses the health monitoring object, and how it is

dependant on the classes that describe the system, and the error detection classes. It

discusses the algorithm used. The non-linear models that were developed for the project

are also described.

Chapter 4: Validation and Test of Health Indicators 68

Chapter 4: Validation and Test of
Health Indicators

4.1 Introduction

In order to use a Health Monitoring scheme, appropriate indicators must be

selected, tested, and results validated. This chapter describes the design of a hydraulic

steering system, the steer-by-wire components and the instantiation of the health

monitoring vector components. Overall system performance, and also the testing and

validation of its results are discussed in detail. The performance of the health monitoring

system is demonstrated with respect to the motion of the cylinder. The success of the

indicator is dependant on the health of many other components: the health monitor

models the cylinder's performance with respect to commands sent to the valve and pump

motor.

The first part of this chapter provides a detailed description of the steer-by-wire

system, the design of the health monitoring models, and the instantiation of the health

indicators. The second part (of this chapter) describes the experiments used to

demonstrate performance of the indicators, and their results.

Chapter 4: Validation and Test of Health Indicators 69

4.2 Design of the Hydraulic Steering System

The experimental system models the components expected to be present in the

hydraulic power steering system of an outboard driven power boat. The test bed includes

all required hydraulic components from the pump to the cylinder. For the purpose of

isolating the test of the Health Monitoring system, the helm input is computer generated.

Figure 4.1: Hydraulic Steering Test Bed

Under normal operating conditions, it is expected that the drive-by-wire steering

system would be controlled by multiple computers. The distributed computing

environment would include error checking and data sharing via network communications,

as is implied in section 3.2.4. To isolate and test the health monitoring functions, the

Chapter 4: Validation and Test of Health Indicators 70

experiments done here involved only one E C U without communication with the others in

the network.

A photograph of the hydraulic steering apparatus is shown in Figure 4.1, and the

electronic components are shown in Figure 4.2. The majority of the embedded computer

configuration was completed by Bouvier [11]; the focus of the work described in this

thesis is the control of the hydraulic system.

Figure 4.2: Embedded Computer Configuration

Chapter 4: Validation and Test of Health Indicators 71

4.2.1 Hydraulic Circuit

The circuit diagram for the hydraulic actuation system is shown in Figure 4.3. This

circuit diagram shows the configuration of the hydraulic components, and builds on the

diagram shown in Figure 2.4. The parts lists are shown in Table A . 1 and Table A.2.

Figure 4.3: Hydraulic Circuit Diagram

Motor. The pump, motor, and reservoir are supplied as a combined part by

Teleflex, and are representative of components that would be used in a power-steering

application. The motor is a typical brushed DC motor, and is powered by a 24 V DC

supply from a large diesel truck battery. The power supply to the motor is switch

controlled by the embedded computer via a Crydom solid-state relay. The switch used in

this application could be replaced by an amplifier, which would allow for control of the

pressure or flow rate from the pump. The inductance of the motor is low, which gives it a

Chapter 4: Validation and Test of Health Indicators 72

low electrical time constant, and hence when switching the power on and off to the motor,

the current inrush is very high. This makes P W M control of the relay difficult, as current

requirements are too high. The power circuit is also fitted with an emergency interrupt

switch to cut power manually.

Pump: The pump, included with the motor and reservoir, is a gear pump and is

direcdy powered by the DC motor. The pump is fitted with internal relief valves set to

1400 psi on the up port (A), and 650 psi on the down port (B). The pump is reversible, so

both ports are also connected to the reservoir. In combination with the given DC Motor,

the pump is rated to provide 200 psi and 175 inVmin at 24 V and 40 A, and up to 1000 psi

and 120 inVmin at 24 V and 60 A.

Reservoir. The reservoir has a capacity of approximately 1 L. The volume of the

entire circuit, including the filter and accumulator is approximately 2.5 L. The circuit was

filled with Teleflex "Hynautic" Steering Fluid.

Cylinder: The steering cylinder is a Teleflex SeaStar, model number HC5345.

The cylinder contains a double-acting piston with area of 1.0 in 2 , and a stroke of 8.0 in;

Symmetrical piston areas are required in this form of steering application, where

symmetrical steering forces in both directions is important.

Control Valve: The control valve from Parker, is a 4 Way-3 Position valve with

solenoid operation and spring return. The neutral position (centered position) of the valve

is a 4 Way hold; no fluid flows through any of the four ports. The first activated position

directs flow from the pump via Port P to one side the hydraulic cylinder via Port A , and

connects Port B, which is the cylinder's low pressure side, to Port T, which is the return to

tank line. The opposite active position directs flow from Port P to Port B, and Port A to

Chapter 4: Validation and Test of Health Indicators 73

Port T, which reverses the direction of flow at the cylinder. The solenoids are controlled

by the embedded computer via a solid state relay (powered by a 24 V , 0.96 A holding

current). Experiments found the valve to have a switch on time of 50 ms. The spring

return time, which is the time it takes to move to the centre position, was measured to be

110 ms. When the opposite solenoid was switched on, the powered return time was

found to be 70 ms.

Accumulator. The accumulator is sized to provide some supplementary flow to

the system if the pump output decreases, up to 5 inches of stroke. It should also relieve

some fluid shock when the system is operating around 700 psi. It should be noted that the

maximum pressure observed was 500 psi on the manual gauge.

Filter. The Parker in-line pressure filter is selected to provide pressurized

contaminant filtering. The filter was selected to accommodate flow rates of up to 175

inVmin, which resulted in a fairly large port size, "which necessitated using a number of

fittings to step up the size, and then step it down following the filter.

Manual Valve: The manual valve was installed to aid in filling the circuit,

including reducing pressure and flow rate at the cylinder to bleed air from the circuit.

Installing this valve also provides a convenient way to drop system pressure for

maintenance, and also enables a series of tests to be run simulating a leakage condition

with decreased pressure and flow rate.

Pressure Gage: The pressure gauge has a pressure scale from 0 to 2000 psi, and is

placed following the filter and check valve, and between the accumulator and the control

valve. The gauge is suitable for checking average pressure during operation and the

holding pressure that the system achieves.

Chapter 4: Validation and Test of Health Indicators 74

4.2.2 Electrical Sensor Circuits

The system sensors provide state iriforrnation about the hydraulic steering system

to the embedded computer platform. The system has the capability to sense pressure

information from three pressure transducers, and one single axis accelerometer connected

to the analog input card as shown in Figure 4.4. The system also detects axis position

with the optical linear encoder connected to the digital input card, which is also shown in

Figure 4 . 4 .

Pressure
Transducer #1

I Variable resistancep̂ ̂ \
| diaphragm, output

4-20 mA

Pressure
Transducer HZ

I Variable resistance
j diaphragm, output nL^__! 1.3,

4-20 mA I TJTl

Pressure
Transducer A3 ^

I Variable resistancef\
diaphragm, output

4-20 mA

j 24V DC

Single axis
accelerometer

Incremental
Linear Optical

Encoder

Figure 4.4: Sensors Electrical Circuit Diagram

The implementation of the Distributed Health Monitor only requires the position

data from the linear encoder sensor for the selected health vector. A complete

implementation of the Distributed Health Monitor and fault-tolerant system would

Chapter 4: Validation and Test of Health Indicators 75

include the pressure transducers and the accelerometer, however they are not included in

this system. The full parts list of electrical components used for the sensor circuit is listed

in Table A.4.

4.2.3 Electrical Actuation Circuits

The embedded computer platform interfaces with the hydraulic steering system via

the actuation circuit shown in Figure 4.5. The valve solenoids and the pump's motor are

activated by the digital output board. The output pins controlling the valve are capable of

logical high and low states, switched in software. In addition to logical high and low state

control, the output pin controlling the pump's motor is also capable of P W M output in the

frequency range of 16 Hz to 3900 Hz. When used with an appropriate amplifier, this

P W M output will allow the pump and motor to be operated in a pressure controlled or

flow control states. The complete parts list of electrical components used in the actuator

circuits is presented in Table Appendix A.4.

Chapter 4: Validation and Test of Health Indicators 76

Figure 4.5: Actuators Electrical Circuit Diagram

4.2.4 Embedded Comput ing Platform

The embedded computing platform is based on the SCM40, manufactured by

EXOR International. The SCM40 includes at 64 bit CPU operating at 200 MHz, and an

on board programmable FPGA. The CPU is the NEC MIPS VR4131, which uses a

RISC architecture, while the Xilinx Spartan Re FPGA includes 200-600k gates. The

SCM40 has 16 M B of R A M , 2 M B of bootstrap flash ROM, and 16 M B of SmartMedia

flash ROM. The SCM40 is mounted to a carrier board, with ports for 24 V DC power

supply, as well as RS232, RS232C, RS485, field bus, Ethernet 10 Base-T, CAN2.0b, and

TPWire support.

Chapter 4: Validation and Test of Health Indicators 77

Using the TPWire connection, the SCM40's carrier board is connected to two

passive carrier boards which are used to house the digital input and output, and the analog

input and output cards. Mounted on the first carrier board are the digital output and input

cards. The digital output card is the TMDO01 from Sitek. The TMDO01 board includes

16 isolated channels, each capable of 12 bit P W M output, with a maximum delay time of

300 ps. Output current ranges from 10 to 500 mA. With the configured software system,

this system provides 4 channels of P W M output, and 12 channels of controlled output.

The digital input card is the TMDI01 from Sitek This board includes 16 channels of

digital input, each with impedance of 3 k f i and maximum input delay of 50 u.s.

Mounted on the second carrier board are the analog input and output cards. The

analog input card is the TMAI01 from Sitek The board includes 4 single ended or 8

differential analog input channels. Each programmable channel supports one or two

single-ended voltage inputs, one differential voltage input, one current input, one RTD

thermometer input, or one thermocouple input. Input voltage ranges are user

programmable from the range of+/-10 mV to +/-10 V , and can be unipolar or bipolar.

Input current ranges can be selected as 0-20 mA or 4-20 mA. Channel resolution is 12

bits, and conversion rate is 6 ps plus a programmable delay. The analog output card is

the TMAO01 from Sitek. This board has 8 output channels of-10 V to 10 V and 12 bit

resolution.

4.2.5 Embedded Computing Software Environment

The Steer-by-wire and the health monitor applications are developed in Forth. In

order to ensure portability of the application over multiple hardware platforms, the ANS

Forth de-facto standard was selected. The object oriented extension used was developed

Chapter 4: Validation and Test of Health Indicators 78

by McKewan, and is ANS Forth compliant. It supports the major object-oriented

concepts such as inheritance, polymorphism, and aggregation. Within this object-

oriented extension, classes are defined between the delimiting words .Class and .Class.

Inside each class definition, instance variables may be declared as any ANS Forth

variable, or as an aggregated class. The scope of these variables is limited to the each

object declared, and cannot be accessed directly from other objects of the same type.

Also inside each class definition, methods are defined between the delimiting words :M

and ;M, and the last character of every method name must be a colon (":"). After

defining a class (e.g. Classl), an object (e.g. Objectl) can be instanced by calling the

command Classl Objectl. It is then possible to access a method within that object (e.g.

Methodl:) by calling the command Methodl: Objectl. The method Classlnit: is

automatically called when the class is instantiated. The method's definition may be

changed, which allows the developer to initialize the object's instance variables to a set of

initial values.

4.3 Instantiation of the Dynamic Health Monitoring System

4.3.1 The Cylinder Positioning Model

The form of the non-linear model used is shown in Figure 4.6. The output from

the non-linear model is used as input to the Dynamics Response Indicator and the

Average Response Indicator, as shown in Figure 4.7 and Figure 4.8, respectively.

As can be seen in Figure 4.6, the output from the controller is a flow rate vector. It

is converted into a scalar flow rate command at the pump and a unit vector representing

flow direction at the valve. The pump model is simplified as the magnitude of controller

command signal, and passed to a relay, thus representing the state of the pump as being

Chapter 4: Validation and Test of Health Indicatprs 79

on or off. The valve is represented as a relay, where each switching is dependent on the

current state of the relay. The state-dependent relay has three possible output states, one,

zero and minus one, which constitute the direction of fluid flow through the valve. The

time the valve spool takes to make each of these transitions is different. There are six

possible transitions, and the timing for each transition is programmable into the state-

dependent relay model class.

; References

State. |

•^Controller,]—

non-linear model

h
1

abs relay

valve

+ /-

sign state delay relay

saturation

• to cylinder

Figure 4.6: Non-Linear Model

Finally, the output from the state-dependent relay and the output from the pump

relay are multiplied to yield a directional flow rate that is processed by a double sided

saturation block. This block models a saturation of the flow rate in each direction at

programmable set-points (not necessarily symmetric). The output from this block is the

expected flow rate vector at the cylinder.

•State..-

•state estimate

•state upper boundary

•state lower boundary

d

 fc system Dynamics
Response Indicator

optional component specific
to this implementation

Figure 4.7: Dynamics Response Indicator

In Figure 4.7, the output from the non-linear model of Figure 4.6 is shown entering

the Dynamics Response Indicator. The linear part of this model is the quadratic predictor,

Chapter 4: Validation and Test of Health Indicators 80

which produces three outputs: a high threshold, low threshold, and a prediction of the

system state. Each of these signals is passed through a rate limiter followed by a rime-

tolerance. The prediction of system state is the state estimate output of the health

predictor. This, combined with the high and low thresholds make up the analytical

redundancy that would be used to reduce degradation given a sensor failure. The DPJ is

calculated from the difference between the actual system state and the high or low

boundary of system state, whichever yields the smaller magnitude.

Reference' 1 ^ • O ^

'State.'.

Controller non-linear
model

0 °

optional component specific
to this implementation

system Average Response Indicator

Y
A

rate
limi er

windowed
average

transport average
delay

required components

ha average state change
^health indicator

Figure 4.8: Average Response Indicator

In Figure 4.8, the output from the non-linear model of Figure 4.6 is shown entering

the Average Response Indicator. The value passed into the health indicator is an estimate

of the flow rate, but it does not take in to account the delay that is caused by switching the

valve direction. The rate-lirniter object is used account for the switching delay, and the

output from it represents the cylinder velocity.

The average state change indicator is the difference between the modelled average

cylinder velocity over a period of time, and the average measured velocity at the start and

end of the same time interval.

Chapter 4: Validation and Test of Health Indicators 81

4.3.2 Hydraulic System Identification

The behaviour of the hydraulic cylinder in response to the controller input was

identified using Plackett's algorithm for least squares system identification, but only after

the non-linear elements were cancelled using the non-linear model described in section

4.3.1. To verify the findings of this system identification, the data was checked again in

Matlab, using the system identification toolbox.

The system undamped natural frequency was identified as 70 rad/s (average of 40

tests), and the damping ratio was identified as 0.7 (average of the same 40 tests).

4.3.3 State Predictor

The State Predictor sensor provides an analytically redundant system sensor to

enhance detection of sensor faults and protect against continuous system degradation. It

provides a best prediction of the system state using the same model and object as the DRI,

and uses the DRI's upper and lower health thresholds as limits on the accuracy of the

sensor, which makes it more sensitive when the system is in a static condition, and less

sensitive during dynamic conditions.

Section 3.2.4 discusses the redundancy management architecture and the Local

Error Detection class. The Local Error Detection object uses the information about the

accuracy and range from each sensor that is assigned to a given Quantity. The sensor

information is used to perform an inexact voting scheme to determine if any sensor has

failed, and then a weighted average to calculate the Quantity state value. The output from

the analytical sensor can be used by the Local Error Detection object in the same way. If

the history of the Dynamics Response Indicator shows that the system is in good health,

then this sensor maintains the voting functionality required by the Local Error Detection

Chapter 4: Validation and Test of Health Indicators 82

routines. However, once the DRI is being used as a sensor, the value of the health

monitor for that component becomes questionable, as each state used by the model is

dependent on a previous model estimate.

To validate this sensor, its output is compared to the acquired sensor values and

accuracy limits for the Local Error Detection object. If the Local Error Detection routines

do not detect it to be faulty for the normal case then it provides an adequate state

prediction during normal operations. The sensor must then be validated for sensitivity in

each of the simulated fault operating conditions.

4.4 Validation Parameters

4.4.1 Repeatability

To validate the health indicator for repeatability, a number of tests were run under

various operating conditions, input frequencies and input magnitudes. Each of the

indicators is inspected graphically to determine whether it is performing in a repeatable

and expected manner. The magnitude of the error signal recorded for the duration of the

test is examined to verify that indicated errors can be confirmed. The only errors

introduced in this test are power failure, low flow, and fast input signal.

4.4.2 Sensitivity

To validate the health indicator for sensitivity, the output from the health indicator

is checked against varying operating conditions. The tests varied flow rate and pressure

of the hydraulic system, allowing for errors to be simulated for detection.

Chapter 4: Validation and Test of Health Indicators 83

4.5 Test Setup

4.5.1 Health Monitoring Configuration

The embedded computing system was mn with a loop closing and sampling

interval of 4 ms. The health monitoring model was configured with a prediction horizon

of 4 samples, for a prediction time of 16 ms. Given the upper bound of frequency at 14.3

Hz (70 rad/s), this represents approximately 82 degrees of motion. The parameters used

by the dynamic model for the tests are shown in Table 4.1. A complete list of model

parameters is given in Table C. 1.

Table 4.1: Health Monitor Parameters

Parameter Value Unit
Quadratic Predictor

k '(*) 1
wn (a>n) 70 rad/s
wn_l (<oib) 40 rad/s
wn h (<») 90 rad/s

zd (0 0.5

0.4

0.8

4.5.2 Test Input

The input is a computer-generated signal that represents a position command as

would be received from the helm, where a given input position is proportional to an

output position in the cylinder. The input signal is already scaled to represent a command

of the cylinder position, to set the system gain to 1.

To identify the affects of all operating conditions, (particularly transitions in the

valve state) the input signal used is a triangular wave, of constant amplitude, but at

Chapter 4: Validation and Test of Health Indicators 84

varying periods. The selected input periods are 1500 ms, 1000 ms, 500 ms, and 333 ms,

corresponding to input frequencies of 0.67 Hz, 1.0 Hz, 2.0 Hz, and 3.0 Hz.

4.5.3 Operat ing Conditions

The system is tested under three different operating conditions. The first condition

is normal operation, and is used as the benchmark for all tests. Under normal operating

conditions, the motor is fully powered, and the manual valve shown in Figure 4.3 is fully

closed. The steering cylinder has no load to move. The current model and control of the

pump output is stricdy on-off, and for this thesis, it was assumed that the pump's output

flow rate was at the saturation point during testing.

In the second operating condition, the system undergoes intermittent power failure.

The intermittent power failures are achieved by switching off the motor power at the solid

state relay indicated in Figure 4.5. The relay is switched off at '4 of the way through the

second triangular wave, and restored at V* of the way through the third wave. This

process is repeated for each of the four wave periods, creating intermittent power failures

of varying times, but proportional by time within each input frequency.

The third operating condition has the system run in a low-flow state. The manual

valve shown in Figure 4.3 is opened part way, which re-routes the flow away from the

control valve, and therefore decreasing flow rate at the cylinder. The manual valve is not

adjusted during the test, so the flow loss is constant.

Figure 4.9 to Figure 4.23 show data collected from three tests, one from each of

three operating conditions. The first figure in each set is under normal operating

conditions, followed by graphs of the system experiencing intermittent power failure, and

finally experiencing a low-flow operating condition.

Chapter 4: Validation and Test of Health Indicators 85

4.6 Instantaneous Response Indicator - System Position

The Instantaneous Response Indicator is shown in Figure 4.9 to Figure 4.11. The

ability of the system to track errors in the normal operating conditions and also in the

error conditions is shown. This error signal clearly shows that the system plant has a poor

ability to track a given input signal.

c o

o
CL
l_
CD

"O

c •>» o

-20000
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000

time (ms) \ reference " \ lin_pos \ lin_pos_error

Figure 4.9: Instantaneous Response Indicator: Normal Operation

In Figure 4.9, the low frequency triangular wave input test shows the system

tracking to within a maximum error of 6 mm. Over the input range of the signal, 26.250

mm, this represents a margin at 23% of the motion. On the assumption that this is an

acceptable input, then the threshold for poor health detection would be around 6mm.

When the test input period decreases to 1.0 s, one can clearly see an increased error

margin; with an input period of 0.5 s or 0.333 s, the system response moves out of phase

with the input and large errors occur through all tests. The errors indicated with input

Chapter 4: Validation and Test of Health Indicators 86

period of 1.0 seconds demonstrate that the system cannot respond to the magnitude of the

motion command, as the velocity command is now faster than the saturation limits

provided by the pump.

30000 H

c o
"-4—*
'(/) o
Q.
a5

o

-15000-̂

-20000
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000

time (ms) reference s \ lin_pos \ lin_pos_error

Figure 4.10: Instantaneous Response Indicator: Intermittent Power Failure

Figure 4.10 shows the fRI during a test with the injection of an intermittent power

failure fault. The indicator shows similar output compared to the no-fault test, until a

power failure is injected. When the power failures are injected, the indicator's magnitude

increases to as much as 55% of full scale, clearly indicating poor system health.

Figure 4.11 shows the IRI during a test with the low-flow error condition;

throughout this test, the magnitude of the indicator remains large (greater than 25% of full

scale), and has less variation than during the no-fault test.

Chapter 4: Validation and Test of Health Indicators 87

300004

-20000
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000

time (ms) \ reference s lin_pos \ lin_pos_enor

Figure 4.11: Instantaneous Response Indicator: Low Flow Operation

4.7 Average Response Indicator - System Average Velocity

The results for the Average Response Indicator are shown in Figure 4.12 through

Figure 4.14. Each figure shows three data series. The first series is the measured velocity

of the hydraulic cylinder. The error signal is the difference between the actual velocity

and the expected velocity, which is developed in Chapter 3. As shown in Table 4.1, the

system velocity is averaged over 0.120 seconds. At the leading edge of each step one can

see a significant error margin appear. During this dynamic range, where expected

frequencies are in the range of 10 Hz to 20 Hz, this is expected, but when the actual

velocity begins to settle, one can easily detect errors between the modelled and actual

velocities. One can also note that the velocity behaviour is significantly different when

alternating the direction of flow compared to alternating the flow between 0 and

Chapter 4: Validation and Test of Health Indicators 88

saturation. One can observe in these figures that the model is able to track changes in the

modelled input response for the normal case, but also detect errors that affect, in this case,

flow rate.

120000n

E

o o
>
i _
0

T 3
_ C

">»

o

-100000

-120000
6 0 0 0 7 0 0 0 8 0 0 0 10000 11000

. lin vel \ lin_vel_av_error \ lin_vel_dyncomp time (ms)
Figure 4.12: Average Response Indicator: Normal Operation

Figure 4.13 shows the ARI during a test with the injection of an mtermittent power

failure fault. In this test, the disparity between the expected behaviour and the actual

behaviour is dramatic, and the signal from the health indicator clearly shows poor health.

Figure 4.14 shows the ARI during a test with the low-flow error condition. During

this test, the magnitude of the signal from the health indicator is consistently large (about

50% of full scale), and clearly indicates poor system health.

Chapter 4: Validation and Test of Health Indicators 89

120000

100000

CO

E

o
O
03
>
i—
CD
"O
e ">» o

-100000H

-120000
3 0 0 0

. Iin_vel \ lin_vel_av_emor lin_wl_dyncomp time (ms)

Figure 4.13: Average Response Indicator: Intermittent Power Failure

120000

100000 4

CO
E

o o
>

T3

•>»

o

-100000

-120000

. lin vel \ lin_vel_av_error \ lin_vel_dyncomp time (ms)

Figure 4.14: Average Response Indicator: Low Flow Operation

Chapter 4: Validation and Test of Health Indicators 90

4.8 Dynamic Response Indicator - System Velocity

One can observe in Figure 4.15 to Figure 4.17 that the Dynamic Response

Indicator shows little response to normal operating conditions, thus indicating that the

model can accurately predict boundaries on system dynamic response. In Figure 4.18 to

Figure 4.20, one can see how the Dynamic Response Indicator immediately responds to

changes in dynamics through the intermittent power failure test, and Figure 4.21 to Figure

4.23 show results for the low flow operating condition.

4.8.1 Normal Operations

Figure 4.15 shows 10 seconds of test data under normal operating conditions.

Figure 4.16 shows the same data set during the interval 2.0 seconds to 3.5 seconds4.

During this period, the position input signal is a triangular wave pattern with a period of

1.5 seconds; the exact input data can be seen in Figure 4.9. These figures show the upper

and lower boundaries output by the Dynamic Response Indicator, the actual system

velocity, and any error encountered. The figures show the extent of the non-linearities

encountered, the irregular settling velocity, peak velocities, and dynamic responses of the

cylinder. In particular, one can note the settling characteristics of the system at times

2300 ms and 2800 ms. The responses at these times exemplify the large variation in

system dynamics when responding to similar commands from different starting states.

Also, one can notice the lack of symmetry with each of the responses, the different peak

values, and different settling values.

4 The period from 2.0 seconds to 3.5 seconds has a relatively slow input signal (longer period of the square
wave). The same period of time is shown in each of the subsequent tests, when faults are injected into the
system.

Chapter 4: Validation and Test of Health Indicators 91

1 2 0 0 0 0 T

1 0 0 0 0 0

CO
E

o o
CD
>

CD
T3

_c ">> o

- 1 2 0 0 0 0

5000 6 0 0 0 7 0 0 0

. lin \el \ lin_vel_error . Iin_wel_p_min_tt Iin_vel_p_max_tt time (ms)
Figure 4.15: Dynamic Response Indicator: Normal Operation

CO

E

CD
" D

o

1 2 0 0 0 0 -i

8 0 0 0 0

6 0 0 0 0

4 0 0 0 0

j£ 2 0 0 0 0

'o
O
CD
> - 2 0 0 0 0

- 6 0 0 0 0

- 8 0 0 0 0

- 1 2 0 0 0 0

.- I ' M / v

" ' ! ' < n
i ! i HiV '%

» p !
iv ; :l • iiii'Jve ' i;

I
J 1

r n i ; 5
i i UI ' '

' j " 1 ' !
j 1
i I

, \J.
i i > r ;i r\ • i

W ' ; . i i
li >' I' ftii >

i i !w v !i , It
jf H -
l i
V ' 1 • j , , , ' | | V .

j; * fi'"-f; ; ''1 i;
\ I : :l!

'. i
; i i

fl;

'i i'i
•i i'i

|l !

: ; 4 - A .
li'
!l

•'•Mi .-,
••\tS. !!

\ „ —
. r'

/ \ /
V/- V»»

, 1 , 1 , , , 1 , . , 1 , 1 , 1 1 1 1 1 1 1 1 1 . 1 1 —

2 0 0 0 2 1 0 0 2 2 0 0 2 3 0 0 2400 2 5 0 0 2 6 0 0 2 7 0 0 2 8 0 0 2 9 0 0 3000 3 1 0 0 3 2 0 0 3 3 0 0 3 4 0 0 3 5 0 0

. lin vel \ lin__vel error i_vel_p_min_tt Iin_vel_p_max_tt| time (rflS)

Figure 4.16: Dynamic Response Indicator: Normal Operation Slow Input

Chapter 4: Validation and Test of Health Indicators 92

Finally, in Figure 4.17, which is of the same test at time interval 8.0 seconds to 9.0

seconds5, one observes that the system responses are fairly similar at each step, and while

there is a recurring error detected at each leading edge, it lasts for only one cycle. The

system responses are nearly symmetric across the time axis, and while there are slight

differences in the settling velocities, the Dynamic Response Indicator handles these

differences without issue.

CO

E

o o
CD
>

CD
"D
_C

">>

o

120000

100000

80000

60000

40000

20000

0

-20000

-40000

-60000

-80000

-100000

-120000

f v
r> • v-

-I—1 I 1 I 1 i I 1 I 1 I ' I I 1 I ' I 1 I
8 0 0 0 8 0 5 0 8 1 0 0 8 1 5 0 8 2 0 0 8 2 5 0 8 3 0 0 8350 8 4 0 0 8 4 5 0 8 5 0 0 8 5 5 0 8 6 0 0 8 6 5 0 8 7 0 0 8 7 5 0 8 8 0 0 8 8 5 0 8 9 0 0 8 9 5 0 9 0 0 0

. linvel \ lin_vel_error •• lin_vel_p_min_tt \ lin_wl_p_max_tt | tllTIS (|T1S)

Figure 4.17: Dynamic Response Indicator: Normal Operation Fast Input

In these graphs, one can now clearly see the four data sets. The actual system state

generally falls within the predicted high and low boundaries of the Dynamic Response

Indicator. The error signal usually occupies the time axis except for a few short

deviations.

5 The period from 8.0 seconds to 9.0 seconds has a relatively fast input signal (shorter period of the square
wave). The same period of time is shown in each of the subsequent tests, when faults are injected into the
system.

Chapter 4: Validation and Test of Health Indicators 93

4.8.2 Intermittent Power Failure Operating Condition

Figure 4.18 shows 10 seconds of test data when the hydraulic pump and motor

system experiences intermittent power failures. The significant behaviour change that

results from the un-powered condition is clearly visible in the figure, and is apparent at

times 1900 ms to 3400 ms, again at 6000 ms to 7000 ms, 8200 ms to 8700 ms, and at

9400 ms to 9700 ms. Figure 4.19 shows the same data set during the interval 2.0 seconds

to 3.5 seconds. During this phase, the position input signal is a triangular wave pattern

with a period of 1.5 seconds; the exact input data can be seen in Figure 4.10. These

figures show the upper and lower boundaries output by the Dynamic Response Indicator,

the actual system velocity, and any error encountered.

E

o o
CD
>
i_
CD

T3
C

O

120000

100000 -\

80000

60000

40000

20000

0

-20000

-40000 -t

-60000

-80000

-100000

It"

I
if'

-120000

IT
ft

!

f t

l!

f t i f *

hi

j: I i
i !
I I-

Ii
Jfc
J
1

1 1,

fa

i r

•I-)-!-

..Ui..!

Ml

I!-in.

|: jl III

4000 5000 6000 7000

. lin vel \ lin vel . Iin_vel_p_min_tt \ lin_vel_p_max_tt time (ms)
Figure 4.18: Dynamic Response Indicator: Intermittent Power Failure

During each period immediately following the leading edge of a step input, the

system quickly detects large deviations from the dynamic model, this is shown in Figure

Chapter 4: Validation and Test of Health Indicators 94

4.19 as two negative spikes. The system also shows a significant settling velocity error.

During the transition phase between a positive and negative step, one can see that the

system stops detecting errors; this is expected behaviour for this indicator, as the refresh

of starting data briefly places the system velocity at 0 with a command velocity of 0.

Figure 4.20 shows the same test at the time interval 8.0 seconds to 9.0 seconds, and

captures the power failure when the system is still in the dynamics phase. The error

indicator immediately begins to grow as the system velocity drops to 0. Like the slow

input case, there is a brief transition period as the valve switches flow direction, before

reaching a new settling error.

CO
E
3 .

O

o
>
0 -o
o

120000T

100000

80000

60000

40000

20000

-20000

-40000

-60000 4

-80000 4

-100000 H

-120000

k . —
1^

1

4 ' l

2 0 0 0 2 1 0 0 2 2 0 0 2 3 0 0 2 4 0 0 2500 2 6 0 0 2 7 0 0 2 8 0 0 2900 3000 3 1 0 0 3 2 0 0 3 3 0 0 3 4 0 0 3 5 0 0

time (ms) . lin vel \ lin_vel_error •. Iin_vel_p_min_tt \ lin_vel_p_max_tt

Figure 4.19: Dynamic Response Indicator: Intermittent Power Failure Slow Input

Chapter 4: Validation and Test of Health Indicators 95

CO
E

o o
CD

>
CD

"O

•>»

o

120000

100000

80000

60000

40000

20000 H

-20000 H

-40000

-60000

-80000 H

-100000

-120000

4 y;>\r\
- l f - l i , v a

i : ,Vi '-'li

ST

I ' I ' I 1 I 1 I • I 1 I I ' I 1 I 1 I 1 I ' I 1 I

8000 8050 8100 8150 8200 8250 8300 8350 8400 8450 8500 8550 8600 8650 8700 8750 8800 8850 8900 8950 9000
. lin vel \ lin_vel_emor . Iin_vel_p_min_tt lin_vel_p_max_tt [tifTlS (iTIS)

Figure 4.20: Dynamic Response Indicator: Intermittent Power Failure Fast Input

4.8.3 L o w F low Operat ing Conditions

Figure 4.21 shows 10 seconds of test data when the hydraulic steering system

experiences a low flow condition. The low flow condition is comparable to a significant

system leak, power supply reduction to the motor, or a pump problem. The low flow

condition is created by partially opening the manual relief valve, which is located before

the 3-position control valve and feeds back to the reservoir. The low flow condition is

easily detected by the indicator, and can be clearly seen when inspecting the figures

visually; actual system speed is always less than the predicted speeds, and generates a

significant steady state error.

Chapter 4: Validation and Test of Health Indicators 96

E

120000!

100000

80000 -

60000 -

40000

& 20000

o
O o
0

^ -20000
<D

"D

c -40000 4

o -60000

-80000

-100000

-120000

""i

j

n r
••j r

L J t u sJ H M y H ^

' i i
i j

" i r --[-1-11

•T-v--<-;--t-*--

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000
time (ms) . lin vel \ lin vel error linvel_p_min_tt \lin_vel_p_max_tt

Figure 4.21: Dynamic Response Indicator: Low Flow Operation

Figure 4.22 shows the same data set during the interval 2.0 seconds to 3.5 seconds.

During this period, the position input signal is a triangular wave pattern with a period of

1.5 seconds; the exact input data can be seen in Figure 4.11. These figures show the

upper and lower boundaries output by the Dynamic Response Indicator, the actual system

velocity, and any error encountered.

During each period immediately following the leading edge of a step input, the

system's dynamic response is within the tolerances of expected behaviour. This occurs

because the dynamics (undamped natural frequency, damping ratio) are relatively similar,

but the gain is lower. However, the Dynamic Response Indicators shows a significant

settling error. Figure 4.23 shows the same test at the time interval 8.0 seconds to 9.0

seconds, and clearly shows that system dynamics still behave as predicted. As it did in

the power-off case, the system reaches a settling velocity error in this test too.

Chapter 4: Validation and Test of Health Indicators 97

CO

E
= L

O

o
0
>
i _
CD

"D
C
•>.
o

120000

100000 4

-120000

2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3000 3100 3200 3300 3400 3500
. lin vel \ lin_vel_error lin_vel_p_min_tt \lin_vel_p_max_tt tilTI© (fTIS)

Figure 4.22: Dynamic Response Indicator: Low Flow Operation Slow Input

C/>

E

o o
0
>
1_
0

"D

_c
">v

o

120000

100000-1

80000

60000

40000 -\

20000

-20000 4

-40000

-60000

-80000

-100000

-120000

- j T ^ - —

ll/

J V

i • i 1 i 1 i 1 i 1 i 1 i 1 i

8000 8050 8100 8150 8200 8250 8300 8350 8400 8450 8500 8550 8600 8650 8700 8750 8800 8850 8900 8950 9000
time (ms) . lin vel \ lin vel error . Iin_vel_p_min_tt \ lin_vel_p_max_tt

Figure 4.23: Dynamic Response Indicator: Low Flow Operation Fast Input

file:///lin_vel

Chapter 4: Validation and Test of Health Indicators 98

4.9 Results Achieved and Limitations

In the hydraulic steer-by-wire example, the health monitoring system has been

applied to a single system and sensor. The health monitoring system evaluates the

performance of the position and velocity of the hydraulic cylinder with respect to the

helm input, and the actuator inputs at the pump and valve. The sensed parameter that is

augmented with analytical redundancy is the linear velocity of the cylinder. The

hydraulic steering system simulator was designed, assembled and instrumented.

The health monitoring indicators detect healthy operation when the system is

operating normally, with typical inputs. Typical input to the system is represented by the

0.67 Hz and 1.0 Hz triangular wave inputs.

The indicators have been tested against two error conditions. The first error

condition is the power-off case. In this case, the Instantaneous Response Indicator shows

a rapid increase in error, but also shows a decrease in error as the reference signal passes

through the stalled state of the system The Average Response Indicator shows a large

error at each of the power-off cases. The Dynamics Response Indicator however, shows

that the system dynamics stay within operating requirements at the beginning of a power

failure, but it also shows a steady state error. It also clearly shows that the dynamics do

not perform within specification after a short period of the power-off.

The second injected error condition is the low-flow case. Here, the Instantaneous

Response Indicator shows a larger response (which demonstrates poor health) than in the

normal operations. The Average Response Indicator shows a large errors response

throughout all of the periods of steady-state operation. The Dynamic Response Indicator

shows that the steering system continues to behave within the specifications in the interval

Chapter 4: Validation and Test of Health Indicators 99

irnmediately following a change at the valve, where the system dynamics are more

pronounced. It also shows that the steering system is unhealthy during the steady-state

period.

Finally, the Dynamic Response Indicator results show that this indicator's

performance also makes it adequate for use as a redundant sensor tool for the system

velocity, should a redundant velocity sensor fail. The output from the DRI is based on

previously measured values from the redundant sensors, when they are considered

healthy. However, the accuracy of the DRI as a sensor is less than the physical sensors,

its value would not be trusted alone. Instead, it would be included in the voting scheme to

arbitrate between two sensors that do not agree after the third has failed.

One limitation of this work is its need for further testing of the sensitivity of the

health indicators. The tests show that the data output from the health indicators is a good

predictor of system state, and that the health monitoring parameters can be selected to

detect when the system behaves as expected. The tests show that the system can detect

low power scenarios, low flow scenarios, and also shows errors when the system

responds to high frequency input.

The health monitoring system is designed to use data collected from multiple

ECUs, where each of the system states are measured and shared across a network. The

indicators selected are designed that they can also easily be shared across a network. The

distributed functionality of the system states was developed in the preceding work by

Bouvier. The communication of the health monitoring states is also untested in the

network.

Chapter 4: Validation and Test of Health Indicators 100

Other system states could be monitored for errors, particularly within the hydraulic

system. Ideally, the pressure transducers could be used to measure the system pressure

throughout the system, and monitor pressure change across the valve, and then this could

be used within the system model to predict the acceleration at the cylinder. The pressure

transducers would decrease the granularity of errors that are detectable by the health

monitor. The existing system is limited in granularity by the position of sensors used;

only the entire hydraulic system from pump to cylinder is included in the model.

Instrumentation within the hydraulic system would allow for errors of finer granularity to

be detected.

No diagnostic module has yet been developed to assess when the health indicators'

output detects failure, and this needs to be developed for the system to be a practical tool

as an actuator performance measure.

4.10 Summary

In this chapter, the concepts detailed in Chapter 2 and Chapter 3 are shown in use

in an experimental system that was designed and built as part of this thesis. The

experimental apparatus is described in detail.

The concepts of condition monitoring, parameter identification, and state

estimation are put to use within the health monitoring scheme. The system models used

and the parameters used within the software written are shown. This chapter also

describes the identification of the hydraulic system.

Experiments performed to verify the presented theory are described. Inputs to the

experiment and the health monitor are shown, and graphs of the experimental results are

Chapter 4: Validation and Test of Health Indicators 101

shown. The health indicators are tested in normal operation, and then with injected

errors: intermittent power failures and low pump flow.

Finally, the performance of the indicators of the experimental system is assessed,

and some of its limitations are indicated. In particular it shows that the combination of the

three health indicators can indicate error conditions when appropriate, and that the model

used by the Dynamic Response Indicator can be used as a redundant analytical sensor

arbitrator, if a redundant physical sensor fails.

Chapter 5: Conclusions and Recommendations for Future Work 102

Chapter 5: Conclusions and
Recommendations for
Future Work

5.1 Conclusions

The use of embedded systems in consumer and industrial applications is expected

to increase in the future. The performance, flexibility, efficiency and feature benefits

associated with these integrated systems are too desirable to ignore. However, one must

acknowledge the potential for risk involved in these systems, and then realize that to gain

public acceptance and guarantee the stringent safety requirements, it is necessary to build

an architecture that provides a high level of fault-tolerance. It is also evident that these

systems must have an awareness of the health of each of the components. Health

monitoring adds a layer of safety, and it also adds the potential to increase uptime and

protect the monitored system against degradation.

Other researchers have approached this task with high levels of redundancy,

specific sensors to detect health, and computationally expensive techniques. This thesis

shows that the uses of analytical techniques in an appropriate framework can adequately

detect the health of actuators, model their performance, and predict their future states,

without the burden of adding specific sensors and without adding high computational

Chapter 5: Conclusions and Recommendations for Future Work 103

loads. The architecture presented in this thesis combines local error detection, distributed

error detection, health indicators and system modelling.

Health monitoring systems not only provide indicators of health, but also integrate

adaptive thresholds, and provide analytical redundancy that protects the system against

continuous degradation when sensor failure occurs. The health indicators can compose a

system-wide health vector that indicates general system health or a specific component's

health.

The health monitoring framework uses a novel approach of using continuously

updated non-linear system models, paired with reduced order system modelling and

performance criteria to provide composite health indicators with adaptive thresholds and

analytical sensor redundancy.

Using this approach it is possible to detect actuator, plant, and active component

degradation and errors, and function when a sensor has failed.

A hydraulic marine steer-by-wire system is a typical example of an integrated

vehicle by-wire system, and can therefore be used to illustrate the concepts described by

this thesis. An experimental prototype of such a system was built by the author as part of

this thesis. The health monitoring architecture described was implemented. Testing has

shown that the system is capable of representing normal behaviour, and also of detecting

typical errors that occur in such a system.

5.2 Recommendations for Future Work

This work produces a series of health indicators, and a framework for organizing

them. It also provides analytical sensor redundancy. The diagnostic functions were not

Chapter 5: Conclusions and Recommendations for Future Work 104

developed as part of this thesis, and would be required to adequately compensate for

actuator faults, and recommend maintenance intervention. The actuation management

class supports multiple controllers for a single plant, but this functionality has not been

implemented in practise. Robust algorithms to allow for shared actuator loading should

be investigated and applied to this project.

The existing fault-tolerant architecture does not include analytical redundancy with

adaptive thresholds within the local error detection and quantity error detection classes.

To make full use of the health monitoring layer, these classes should be revised.

Finally, the health monitoring layer uses shared data from each of the ECUs. As a

required function however, a health monitoring distributed error detection class should be

developed to ensure that the critical functionality and permissions granted to the health

monitoring system, subsequent diagnostic and actuation management be themselves,

fault-tolerant.

Bibliography 105

Bibliography

1. Frank, P. M . , Ding, X . , 1997, "Survey of robust residual generation and evaluation
methods in observer-based fault detection systems," Journal of Process Control, Vo l .
7.6, pp. 403-424.

2. Hiller, M . , 1999, Thesis: "Using Software to Handle Data Errors in Embedded
Control Systems," Chalmers University of Technology.

3. Laprie, J. C , "Dependability - Its Attributes, Impairments and Means," Predictably
Dependable Computing Systems, pp. 3-24, Springer-Verlag, Berlin; Heidelberg;
New York, 1995.

4. Koopman, P., 2003, "Elements of the Self-Healing System Problem Space," ICSE
WADS03, pp..

5. Askerdal, O., GafVert, M . , Hiller, M . , Suri, N . , 2003, "Analyzing the Impact of Data
Errors in Safety-Critical Control Systems," IEICE Transactions on Information and
Systems, Vol . E86-D.12, pp. 2623-2633.

6. Noura, H . , Sauter, D., Hamelin, F., Theilliol, D., 2000, "Fault Tolerant Control in
Dynamic Systems: Application to a Winding Machine," IEEE Control System
Magazine, pp. 33-49.

7. Mutuel L . H. , Speyer J. L. , 2000, "Fault Tolerant Estimation," Proceedings of the
American Control Conference, pp. 3718-3722.

8. Parhami, B., 1994, "Voting Algorithms," IEEE Transactions on Reliability, Vo l .
43.4, pp. 617-629.

9. Blough, D., Sullivan, G., 1990, " A Comparison of Voting Strategies for Fault-
Tolerant Distributed Systems," IEEE Proceedings - Symposium on Reliability in
Distributed Software and Database Systems, pp. 136-145.

10. Shelton, C , Koopman, P. & Nace, W., 2003, "A framework for scalable analysis and
design of system-wide graceful degradation in distributed embedded systems,"
WORDS 2003, pp. .

Bibliography 106

11. Bouvier, M . , 2002, Thesis: "Definition of a Cost-Effecive, Fault-Tolerant Control
Architecture: application to the Design of a Steer-by-Wire System," University of
British Columbia.

12. Zhou, D., Frank, P., 1998, "Fault Diagnostics and Fault Tolerant Control," IEEE
Transactions on Aerospace and Electronic Syst, Vol . 34.2, pp. 420-427.

13. Caliskan F., Hajiyev, C H . M . , 2000, "EKF Based Surface Fault Detection and
Reconfiguration in Aircraft Control Systems," Proceedings of the American Control
Conference, V o l . . , pp. 1220-1224.

14. X-By-Wire team, 1998, "X-By-Wire, Safety Related Fault Tolerant Systems in
Vehicles, Final Report," htto://www.vamars.tuwien.ac.at/projects/xbywire/do
accessed: 05/09/2003.

15. Das, 0., Woodside, C , 2002, "Modeling the Coverage and Effectiveness of Fault-
Management Architectures in Layered Distributed Systems," Proceedings of the
International Conference on Dep, Vol . ., pp..

16. Fitch, J. C , 1986, "Systems and Methods for Real-Time Condition Monitoring of
Mechanical Machinery," Society of Automotive Engineers, pp..

17. Goode, K . B. , Moore, J., Roylance, B. J., 2000, "Plant machinery working life
prediction method utilizing reliability and condition-monitoring data," Proc Instn
Mech Engrs, Vol . 214.E, pp. 109-122.

18. Yunbo, H . , Chua, P. S. K . , Lim, G. H. , 2002, "Online Monitoring the Condition of
Loaded Water Hydraulic Actuators," SAE Technical Paper Series, pp. .

19. Rioul, O., Vetterli, M . , 1991, "Wavelets and Signal Processing," IEEE Signal
Processing Magazine, pp. 14-38.

20. Wang, W. J., McFadden, P. D., 1996, "Application of Wavelets to Gearbox Vibration
Signals for Fault Detection," Journal of Sound and Vibration, Vol . ., pp. 927-939.

21. Luo, G. Y . , Osypiw, D., Irle, M . , 2000, "Real-time condition monitoring by
significant and natural frequencies analysis of vibration signal with wavelet filter and
autocorrelation enhancement," Journal of Sound and Vibration, Vo l . 263.3, pp. 413-
430.

22. Yang, D. -M. , Stronach, A . F., MacConnell, P., 2003, "The Application of Advanced
Signal Processing Techniques to Induction Motor Bearing Condition Diagnosis,"
Meccanica, Vol . 38., pp. 297-308.

23. Isermann, R., 1993, "Fault Diagnosis of Machines via Parameter Estimation and
Knowledge Processing," Automatica, Vol . 29.4, pp. 815-835.

24. D. Y u , 1997, "Fault Diagnosis for a Hydraulic Drive System Using a Parameter-
Estimation M , " Control Eng. Practice, Vol . .5, pp. 1283-1291.

http://www.vamars.tuwien.ac.at/projects/xbywire/do

Bibliography 107

25. An, L. , Sepehri, N . , 2003, "Hydraulic Actuator Circuit Fault Detection Using
Extended Kalman Filter," Proceedings of the American Control Conference, Vol . .,
pp. 4261-4266.

26. Zavarehi, M . K. , Sassani, F., Lawrence, P. D., 2000, "Condition Monitoring of a
Hydraulic Valve Through On-Line Estimation of the Valve Orifice Area Profile,"
SAE Technical Paper Series, pp..

27. Mechefske, C. K. , 1998, "Objective Machinery Fault Diagnosis Using Fuzzy Logic,"
Mechanical Systems and Signal Processing, Vol . 12.6, pp. 855-862.

28. Vingerhoeds, R.A. , Janssens, P., Netten, B.D., Aznar Fernandez-Montesinos, M . ,
1995, "Enhancing Off-Line and On-Line Condition Monitoring and Fault Diagnosis,"
Control Engineering Practice, Vol . 3.11, pp. 1515-1528.

29. Karpenko, M . , Sepehri, N . , 2002, "Neural network classifiers applied to condition
monitoring of a pneumatic process valve actuator," Engineering Applications of
Artificial Intelligenc, Vol . 15., pp. 273-283.

Appendix A: Key Components Listing 108

Appendix A: Key Components Listing

Table A. 1: Hydraulic Components

Name Part Number Description Qtv

Directional Valve D1AA/V1CN-JCF4 4W-3P Directional Valve; Solenoid operated,
spring centered, 24V DC, 0.95A; NFPA-D03
Mounting

2

Subplate SPD23A Subplate Manifold, NFPA-D03 to NPTF-3/4
Side Ported

1

Accumulator A2N0005D1K Piston Accumulator, 2 inch bore, 5 cubic in.
capacity; SAE#12 port; charged to 700 psi

1

Filter 15CN210QN50M4M41 Inline Pressure Filter, SAE#12 Port; up to
175 in3/min

1

Check Valve C1200B NPTF-3/4 Ported Check Valve 1

Relief Valve RDH082S15-4P Variable Setting Relief Valve; NPT1/4 Port;
Cartridge Valve; set pressure 1500 psi; body
P/N B08-2-4P

3

Manual Valve BVSS2203-B Lever operated manual valve 1

Pressure
Transducer

Y913 Bourdon-SedenneY913; 4-20mA; 0-1500psi;
accuracy 2% full scale

3

Gage PG-2000 SG25 Accutek pressure gage; 0-2000psi

Cylinder HC5345 Teleflex SeaStar Hydraulic Steering cylinder,
Double acting; bore size 1.0 in2

1

Pump Pump from Teleflex; Reversible gear pump;
Up port: 1400psi, Down Port: 650 psi; 200
psi 175 in3/min at 24 V 40 A; 1000 psi 120
hrVmin at 24V 60 A

1

Reservoir Reservoir from Teleflex; capacity approx. 1 L;
use fluid HA5430

Hydraulic Fluid HA5430 Teleflex "Hynautic" Steering Fluid 3

Steering Hose 133744 Teleflex Steering Hoses; 12 feet long 2

Hose Assembly F451TC-07-07-<W-4x24 2 foot hydraulic hose, NPT1/4-18 (F) ends;
id=0.25; od=0.56; SAE100R17^; rate
pressure 300 psi

7

Appendix A: Key Components Listing 109

Table A.2: Hydraulic Fittings

Name Part Number Description Qty
Adapter 0101-12-12 NPT 3/4 MM 4
Adapter 0101-4-4 NPT 1/4 MM 6
Converter 0507-12-12 NPT3/4(F)toSAE#12(M) 2
Reducer 0102-6-4 NPT 3/8 (M) to NPT 1/4 (M) 2
Reducer 0102-8-4 NPT 1/2 (M) to NPT 1/4 (F) 2
Swivel Converter 0507-12-12 NPT 3/4 (F) to SAE# 12 (M) 3
Swivel Reducer 0107-12-8 NPT 3/4 (M) to NPT 1/2 (F) 2
Swivel Reducer 0107-6-4 NPT 3/8 (M) to NPT 1/4 (F) 3
T-Junction 012T-12-12 NPT 3/4 MFF 2
T-Junction 012T-4-4 NPT 1/4 MFF 5
T-Junction 1/4RRS-S NPT 1/4 MM M 4

Table A. 3: Structural Elements

Name Part Number Description Qty
Bearing pillow
blocks

Pillow block for the shaft 2

Linear Shaft Thomson linear race steel shaft 1
Shaft support
blocks

Thomson steel shaft support blocks 2

Table A.4: Electrical Components

Name Part Number Description Qty
Motor Solid State
Relay

Digikey:CC11039-ND;
Crydom:DlD40

Input: 0-5 VDC; Output: 12VDC, 40A l

Current Diode Digikey: MUR1520IR-ND; Diodes/RECTIFIER FAST 200V15A TO-220AC 3
Pressure
Transducers

Hydraulic Pressure transducers 3

Linear Encoder Optical Linear Encoder 1
Accelerometer Single Axis accelerometer 1
Terminal Strip WM590G-ND 8.00mm Two-Screw terminal strip 4

Multi Photocoupler PS2501-4
NEC High Isolation voltage single transistor
type multi photocouplers 2

ECU SCM40 SCM40,200MHz, 64Bit embedded computing
platform

1

Analog Input Board TMAI01 Sitek analog input board 1
Digital Input Board TMDI01 Sitek digital input board 1
Digital Output
Board

TMDO01 Sitek digital output board 1

Appendix B: Equation Supplement 110

Appendix B: Equation Supplement

y(t)= —j—j - 4 A r « 0 + 8AW|
A a> L

- 4 t a 2 + 1 6 i u 0 r ; - 3 2 A « , C + 1 6 t u 2 r

-Sktu0tco+16ktultw-»ktu2tw+6ku0Atw-SkulAtw + 2ku2ACw+2kt2u0w2

-4 k t2u,w2+2 k t2u2w2-3 k tu0Aw2+4ktu,Aw2-k I u2Aw2+kuo A2 w2

J , , (- c « r t . ^ T T ? « J) .2 (, , (iuaC-\6u,t+iu2t+lu0Aw-4uxAio + u2ALo)
—I 2 \ E Aw\-dy0-k ——2

(C + \Z-\+K2){-y0A2w2+k{u0{-4 + l6t2+6Atw+A2w2)+2(-4Ul(-\+4i:2+

A to))
r „ - f „ - , i C r ^ „) . 2 2 (t (» 0 (- 4 + 1 6 C 2 + 6 ^ g w + 4 V) + 2(--4»,(-l+4r; 2+4r;a))+» 2(-2+8r; 2+4Ca))))

+ £ 4 10 a 2 . . . 2

Ar(8uor;-16«, ? + 8 u 2 C + 3 i / 0 4 a) - 4 U | 4 c o + u2zl(o)
73
A w

2yJ-\ + t2w

(t + 4-\ +t2)(-y0A2w2+k(u0(-4+\6t2+6 A£w+A2 t o 2)+2 (-4» | (- l +4t2+A£to)+u2(-2+c\i:2 +AZto))))

24-i + tiA2w2

Equation B. 1 (also equation 3.3) can be expressed in the form:

)]
B.l

y{t+2A)=-^?{AN+Al+AR) u2

dy0

B.2

Where:

AN —
2k (-2+$t2-Atw)
8k(l-4£2+A£w)

k{-4 + \6C2-6ACw+A2w2)
0
0

B.3

Appendix B: Equation Supplement 111

-At;to(-AtuV-I+CJ Ato V-l+c'\] _

>v^i7?

- * (- 3 4 a)+c (-12+16 r;2+6 A t, w+A2 w))
4 A : (- d o j + 2 £ (- 3 + 4 r ; 2 + 4 r »)
-k{-Aw + 2t{-6+8t2 + Atw))

A2tco2

A2w

B.4

-±k(-4+\6C2 + 6A%w + A2w2)

44(-i+4r; 2-t-4r;co)

-k(-2+ZZ2+AZw)

±A2w2

B.5

When £>1, equation B.4 and equation B.5 evaluate numerically as written, and

easily interpreted by the simple math interpreter. However, when ^<1, equation B.4

and equation B.5 can be slightly re-arranged to replace the complex components with:

A , = 2e-aCa'sm(Aw^\-£.2)—,!_
2V1-J

-k{-3 Aw+t(-\2 + \(>t2+eAtw + A2 w1))

4 * (- A w+ 2 £(-3 + 41 2 +A t to))

-k{-Aw+2t{-6+S^2+A ttx)))

A2Z<o2

A2w

B.6

AR=2e~'ic"'cos{Aw\h-Z2)

~ k (- 4 + \6Z2+6AZw+A2w2)

4t(-l+4r; 2 +4r ;a))

-k(-2+%Z2+AZw)

±A2w2

2

B.7

By expanding Equation B.2 with the substitutions from equations B.3, B.4, and

B.5 or equations B.3, B.6, and B.7, one arrives at the conclusion in equation B.8 (also

equation 3.4).

B.8

Appendix C: Software Configuration 112

Appendix C: Software Configuration

Table C. 1: Health Monitor Parameters

Parameter Value Uni t Parameter Va lue Uni t

global timestep 0 seconds Rate Limiter: Best

DHMS Parameters rate_limit_pos 6000000 pm/s

update rate 1 rate_limit_neg -6000000 pm/s 2

timestep 0 seconds Rate Limiter: Low

forecast rate 4 rate_limit_pos 5750000 pm/s 2

horizon time 0.02 seconds rate_limit_neg -6250000 pm/s 2

averaging horizon 30 Rate Limiter: High

averaging horizon time 0.12 seconds rate_limit_pos 6250000 2
pm/s

window average horizon 30 rate_limit_neg -5750000 2
pm/s dynamic compensation time 0.03 seconds Flow Saturater

Non-Linear Variable Delay lowsat -68000 |xm/s

negdelay 0.05 seconds high_sat 68000 pm/s
negOdelay 0.12 seconds Time Tolerance

negswitchdelay 0.07 seconds pre_history_size 0
posdelay 0.05 seconds post_history_size 1

posOdelay 0.11 seconds Position Sensor Parameters

posswitchdelay 0.07 seconds filter cutoff 40 Hz
Quadratic Predictor filter cutoff gain 3
k (*) 1 filter order 3

wn (eon) 70 rad/s Execution Parameters

w n j (<vj 40 rad/s Position Tolerance 2300 pm
wn_h 90 rad/s Input Amplitude 26250 pm

2d (3. 0.5 Input Period 1 1.5 seconds

* U (£) 0.4 Input Period 2 1 seconds

0.8 Input Period 3 0.5 seconds
Input Period 4 0.33 seconds

Appendix C: Software Configuration 113

Appendix D: Software Documentation 114

Appendix D: Software Documentation

Table D. 1: DHMS Class Description

Class: DHMS
Inherits from: none

Attributes (Private)
Class: DHMS

Name Type Description
iri var (integer) Instantaneous Response Indicator value
ari var (integer) Average Response Indicator value
dri var (integer) Dynamics Response Indicator value

yp var (integer) Prediction of the output state

ypj var (integer) Low threshold for prediction of the output state

yp_h var (integer) High threshold for prediction of the output state
Ts fvar (float) Time step (ms) between each loop closing
AModels Genericlinkedl

ist (Cstring)
Linked list of all of the models Forth names used within this
DHMS object

Numlnputs var (integer) Number of inputs used
AInputs var (pointer to

array of integer)
Array of input states used

AInputMethods var (pointer to
array of Cstring)

Array of methods to acquire each of the system inputs that are
used

AInputErrors var (pointer to
array of Cstring)

Array of methods used to check the error status of each of the
system inputs that are used

NumStates var (integer) Number of states managed
AStates var (pointer to

array of integer)
Array of system states (start states)

AStateMethods var (pointer to Array of methods to acquire each of the system states that are

Appendix D: Software Documentation 115

Attributes (Private)
Class: DHMS

Name Type Description
array of Cstring) used

AStateErrors var (pointer to
array of Cstring)

Array of methods used to check the error status of each of the
system states that are used

AModelExec Cstring Forth Word called by DHMS object to run the model
Forth word is expected to have Parameters:
{inputl... inputn} and Returns: {int: yp, int: yp_l, int: y p h }
Method runs the models.

AUpdateExec Cstring Forth Word called by DHMS object to update the states
Forth word is expected to have Parameters:
{ statel ... staten} and Returns: {int: iri, int: ari, int: dri}
Method runs the health routines and updates the model states
with agreed sensed value (ie. The sensor value after LED
methods have been run)

Methods (Public)

Class: DHMS

Name Description
GetTs: Parameters: {none }. Returns: {float: Ts}

Set_Ts: Parameters: {float: Ts}. Returns: {none }
Sets the new system time step, applies changes to all models in AModels.

Reset: Parameters: {none}. Returns: {none }
Resets all of the models to their initialized state.

RunModel: Parameters: {none}. Returns: {none }
Sets the DHMS object "sensor" values

UpdateStates: Parameters: {none }. Returns: {none }
Sets the DHMS object "indicator" values

GetSensor: Parameters: {none}. Returns: {int: yp, int: y p l , int: y p h }

Get_Health: Parameters: {none}. Returns: {int: iri, int: ari, int: dri}

GetJRI: Parameters: {none}. Returns: {int: iri}

GetARI : Parameters: {none}. Returns: {int: ari}

GetDRI: Parameters: {none }. Returns: {int: dri}

FetchJnputs: Parameters: {none}. Returns: {none}
Calls all of the methods in AInputMethods

Checklnputs: Parameters: {none}. Returns: {none }
Calls all of the methods in AInputErrors

Appendix D: Software Documentation 116

Methods (Public)

Class: DHMS

Name Description
FetchStates: Parameters: {none }. Returns: {none }

Calls all of the methods in AStateMethods

CheckStates: Parameters: { none }. Returns: { none }
Calls all of the methods in AStateErrors

Addlnput Parameters: { Cstring: AInputMethod Cstring: AInput£rror}. Returns: {none }

AddState Parameters: {Cstring: AStateMethod Cstring: AStateError}. Returns: {none }

Describe: Parameters: {none}. Returns: {none }
Shows a description of the class attributes and methods

Show: Parameters: {none }. Returns: {none }
Shows the current values of class attributes

Classlnit: Parameters: {float: Ts }. Returns: {none}

Table D.2: DHMS Transfer Function Class Description

Class: TransferF
Inherits from: none

Attributes (Private)
Class: TransferF

Name Type Description
input var (integer) Current input to the model

state var (integer) Current state of the model

Ts fvar (float) Time step between updates

msTs var (integer) Time step between updates (integer)

dhtnso cstring Forth word (string) representing the container DHMS object

Methods (Public)

Class: TransferF

Name Description
Reset: Parameters: {none}. Returns: {none }

Resets the transfer function to its default state

GetOutput: Parameters: {none }. Returns: {int: value }

RunModel: Parameters: {int: input}. Returns: {none}

UpdateStates: Parameters: {int: state }. Returns: {none }

Appendix D: Software E>ocumentation 117

Methods (Public)

Class: TransferF

Name Description
Get_Ts: Parameters: {none}. Returns: {float: Ts}

Set_Ts: Parameters: {float: Ts }. Returns: {none }

Getinput: Parameters: {none}. Returns: {int: input}

Describe: Parameters: {none}. Returns: {none}
Shows a description of the class attributes and methods

Show: Parameters: {none}. Returns: {none}
Shows the current values of class attributes

Classlnit: Parameters: {int: startoutput, cstring: dhmso }. Returns: {none }

Table D.3: DHMS-20DE Class Description

Oass: DHMS-ODE M>~
Inherits from: TransferF

Attributes (Private)
Class: DHMS-20DE

Name Type Description
k fvar (float) System gain

wn fvar (float) Undamped natural frequency

wnl fVar (float) Low threshold of undamped natural frequency

wnh fvar (float) High threshold of undamped natural frequency

zd fVar (float) Damping ratio

zdl fVar (float) Low threshold of damping ratio

zdh fvar (float) High threshold of damping ratio

delta fvar (float) Total prediction time

yp fVar (float) Current model output prediction for system state

yp_h fvar (float) Current model output estimate for high threshold

y p j fvar (float) Current model output estimate for low threshold
Ayps var (pointer to

array of float)
Array of 5 elements, containing the current predictions of
system output thresholds

forecastrate var (integer) Number of periods to forecast over

historysize var (integer) Number of periods currently stored in historyx arrays

Appendix D: Software Documentation 118

Attributes (Private)

Class: DHMS-20DE

Name Type Description
history_start var (integer) Current index of the start point in the historyx arrays

historymid var (integer) Current index of the mid point in the history_x arrays

historyend var (integer) Current index of the end point in the history_x arrays
Ahistory_u var (pointer to

array of float)
Array with forecastrate elements storing a history of input
states

Ahistory_y var (pointer to
array of float)

Array with forecastrate elements storing a history of system
states

Ahistory_dy var (pointer to
array of float)

Array with forecastrate elements storing a history of system
states (derivative)

Atemp_A var (pointer to
array of float)

Temporary Calculation buffer

A A var (pointer to
array of float)

Array of values used to optimize the calculation of prediction
at each step. See Equation B.8 (Also Equation 3.4). Used with
parameters: w=wn, z=zd, k=k

AA_11 var (pointer to
array of float)

Used with parameters: w=wnl, zFzdl, k=k

A A _ h l var (pointer to
array of float)

Used with parameters: w=wnh, z=zdl, k=k

A A _ l h var (pointer to
array of float)

Used with parameters: w=wnl, z=zdh, k=k

A A_hh var (pointer to
array of float)

Used with parameters: w=wnh, z=zdh, k=k

A A_mm var (pointer to
array of float)

Calculated at closing time for nrax/min point.

*c var (pointer to
array of float)

Buffer used to calculate w where dw/dP=0

A D var (pointer to
array of float)

Buffer used to calculate z where dz/dt=0

Methods (Public)

Class: DHMS-20DE

Name Description
RunModel: Parameters: {int: input}. Returns: {none}

UpdateStates: Parameters: {int: state, int: statederivative }. Returns: {none }

Appendix D: Software Documentation 119

Methods (Public)

Class: DHMS-20DE

Name Description
GetOutput: Parameters: {none}. Returns: {int: yp, int: y p l , int: y p h }

get_yp: Parameters: {none }. Returns: {int: yp }

get_yp_l: Parameters: {none }. Returns: {int: y p l }

get_yp_h: Parameters: {none}. Returns: {int: y p h }

gethistorystart: Parameters: {none}. Returns: {int: historystart}

getWstorymid: Parameters: {none }. Returns: {int: history_mid }

get_history_end: Parameters: {none }. Returns: {int: historyend}

get_history_u: Parameters: {int: index}. Returns: {int: history_u[index]}

get_history_y: Parameters: {int: index}. Returns: {int: history_y[index]}

gethistorydy: Parameters: {int: index }. Returns: {int: historydyfindex]}

Describe: Parameters: {none}. Returns: {none}
Shows a description of the class attributes and methods

Show: Parameters: {none}. Returns: {none}
Shows the current values of class attributes

Classlnit: Parameters: {int: forecast_rate, int: startoutput, cstring: dhmso, float: k, float:
wn, float: wnl, float: wnh, float: zd, float: zdl, float: zdh }. Returns: {none}

Table D . 4 : DelayRelay Class Description

Class: DelayRelay jJ „
Inherits from: TransferF

Attributes (Private)
Class: DelayRelay

Name Type Description
negdelay fvar (float) delay when dropping from 0 to -1 (s)

negOdelay fvar (float) delay when zeroing from -1 to 0 (s)

posdelay fvar (float) delay when rising from 0 to 1 (s)

posOdelay fvar (float) delay when zeroing from 1 to 0 (s)

negswitchdelay fvar (float) delay when zeroing from -1 to 0 powered (s)

posswitchdelay fvar (float) delay when zeroing from 1 to 0 powered (s)

sum var (integer) current internal state of input parts

Appendix D: Software Documentation 120

Attributes (Private)
Class: DelayRelay

Name Type Description

ratepos 1 var (integer) rate of change of internal state for rise to +1

rateposO var (integer) rate of change of internal state for zero from +1

ratenegl var (integer) rate of change of internal state for fall to -1

ratenegO var (integer) rate of change of internal state for zero from -1

rateposOp var (integer) rate of change of internal state for zero from +1 powered

ratenegOp var (integer) rate of change of internal state for zero from -1 powered

Methods (Public)

Class: DelayRelay

Name Description

RunModel: Parameters: {int: input}. Returns: {none}

UpdateStates: Parameters: {int: state }. Returns: {none}
Overrides the internal system state

GetOutput: Parameters: {none}. Returns: {int: state}

Describe: Parameters: {none}. Returns: {none }
Shows a description of the class attributes and methods

Show: Parameters: {none}. Returns: {none }
Shows the current values of class attributes

Classlnit: Parameters: {float: negdelay, float: negOdelay, float: negswitchdelay, float:
posdelay, float: posOdelay, float: posswitchdelay }. Returns: { none }

Table D .5: RateLimiter Class Description

Class: RateLimiter

Inherits from: TransferF i 1

Attributes (Private)
Class: RateLimiter

Name Type Description

rl_pos fvar (float) positive rate limit

r lneg fvar (float) negative rate limit

forecastrate var (integer) number of periods to forecast over

Delta fvar (float) prediction time

dy_pos var (integer) max change positive

Appendix D: Software Documentation 121

Attributes (Private)
Class: RateLimiter

Name Type Description
dyneg var (integer) max change negative

Methods (Public)

Class: RateLimiter

Name Description
RunModel: Parameters: {int: input}. Returns: {none }

UpdateStates: Parameters: {int: state}. Returns: {none }
Sets the start state for the next iteration

GetOutput: Parameters: {none }. Returns: {int: state}

Describe: Parameters: {none}. Returns: {none }
Shows a description of the class attributes and methods

Show: Parameters: {none}. Returns: {none}
Shows the current values of class attributes

Classlnit: Parameters: {int: forecastrate, float: rate_limit_pos, float: ratelirnitneg }.
Returns: {none}

Table D.6: Relay Class Description

Class: Relay 1—
Inherits from: TransferF

Attributes (Private)
Class: Relay

Name Type Description
low_out var (integer) low output

highout var (integer) high output

dropthreshold var (integer) threshold when rise from low to high

risethreshold var (integer) threshold when drop from high to low

Methods (Public)

Class: Relay

Name Description
RunModel: Parameters: {int: input}. Returns: {none}

UpdateStates: Parameters: {int: state }. Returns: {none }

Appendix D: Software Documentation 122

Methods (Public)

Class: Relay

Name Description
Updates the input without updating the output

GetOutput: Parameters: {none }. Returns: {int: state}

Describe: Parameters: {none }. Returns: {none }
Shows a description of the class attributes and methods

Show: Parameters: {none}. Returns: {none }
Shows the current values of class attributes

Classlnit: Parameters: {int: low_out, int: highout, int: dropthreshold, int:
risethreshold}. Returns: {none }

Table D.7: Saturation Class Description

Class: Saturation
Inherits from: TransferF -A

Attributes (Private)
Class: Saturation

Name Type Description
low_sat var (integer) low output

high_sat var (integer) high output

satstate var (flags) integer flags use state each of the saturation points

Methods (Public)

Class: Saturation

Name Description
RunModel: Parameters: {int: input}. Returns: {none }

UpdateStates: Parameters: {int: state}. Returns: {none }
Updates the input without updating the output

GetOutput: Parameters: {none }. Returns: {int: state }

Describe: Parameters: {none }. Returns: {none }
Shows a description of the class attributes and methods

Show: Parameters: {none }. Returns: {none }
Shows the current values of class attributes

Classlnit: Parameters: {int: uselow, int: usehigh, int: lowsat, int: highsat}. Returns:
{none}

Appendix D: Software Documentation 123

Table D.8: TimeTolerance Class Description

Class: TimeTolerance
Inherits from: TransferF

Attributes (Private)
Class: TimeTolerance

Name Type Description
prehistorysize var (integer) Number of history points to consider in tolerance before

current state time

posthistorysize var (integer) Number of history points to consider in tolerance after current
state time

history_size var (integer) Total size of the history (pre + post)
Au_h var (pointer to

array of integer)
history of high inputs

var (pointer to
array of integer)

history of low inputs

A y var (pointer to
array of integer)

history of values

newest_y var (integer) current index of y

oldest_y var (integer) index of earliest data point

newestu var (integer) current index of u

oldestu var (integer) index of earliest input point

usedsize var (integer) amount of history recorded

Methods (Public)

Class: TimeTolerance

Name Description
RunModel: Parameters: {int: u h , int: u l , int: y }. Returns: {none }

UpdateStates: Parameters: {none}. Returns: {none}
does nothing

GetOutput: Parameters: {none}. Returns: {int: y p h , int: y p l }

flagoutput: Parameters: {none}. Returns: {int: flag}
Returns an integer flag where each bit describes the pass/fail condition of the
state vvifhin the boundaries for each point in the history

g e t u h : Parameters: {int: index}. Returns: {int: Au_h[index] }

g e t u l : Parameters: {int: index}. Returns: {int: Au_l[index]}

Appendix D: Software Documentation 124

Methods (Public)

Class: TimeTolerance

Name Description
get_y: Parameters: {int: index }. Returns: {int: Ay[index]}

Describe: Parameters: { none }. Returns: { none }
Shows a description of the class attributes and methods

Show: Parameters: {none }. Returns: {none }
Shows the current values of class attributes

Classlnit: Parameters: {int: prehistorysize, int: posthistorysize }. Returns: {none }

Table D.9: TransDelay Class Description

Class: TransDelay U /
Inherits from: TransferF

Attributes (Private)
Class: TransDelay

Name Type Description
delay var (integer) number of time steps to delay

historystartin
dex

var (integer) current index of start

A y var (pointer to
array of integer)

history of state increments

Methods (Public)

Class: TransDelay

Name Description
RunModel: Parameters: {int: input}. Returns: {none}

UpdateStates: Parameters: {int: state}. Returns: {none}
Sets the current history of states all to the new state

GetOutput: Parameters: {none}. Returns: {int: state }

Describe: Parameters: {none}. Returns: {none }
Shows a description of the class attributes and methods

Show: Parameters: {none}. Returns: {none }
Shows the current values of class attributes

Classlnit: Parameters: {int: delay}. Returns: {none}

Appendix D: Software Documentation 125

Table D.10: WindowAvg Class Description

Class: WindowAvg nl
Inherits from: TransferF

Attributes (Private)
Class: WindowAvg

Name Type Description
steps var (integer) number of time steps to run the average over
historystartin
dex

var (integer) current index of start

A y var (pointer to
array of integer)

history of state increments

sum var (integer) current sum of system states

Methods (Public)

Class: WindowAvg

Name Description
RunModel: Parameters: {int: input}. Returns: {none }
UpdateStates: Parameters: {none }. Returns: {none }

does nothing
GetOutput: Parameters: {none }. Returns: {int: state}
Describe: Parameters: {none }. Returns: {none}

Shows a description of the class attributes and methods

Show: Parameters: {none}. Returns: {none}
Shows the current values of class attributes

Classlnit: Parameters: {int: steps }. Returns: {none}

