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Abstract ii 

Abstract 

The objective of this thesis is to define a general tool set for monitoring the health 

of the physical part of a system that is operated by an embedded computer system. 

Embedded computer systems are commonly found in industrial, military, transportation 

and consumer products. Health monitoring is usually required to track the health of 

actuators, sensors, communication, and computational resources. 

The novel tool set presented in this thesis provides three measures of component 

health, all of which indicate errors based on the performance of a system state relative to 

a base model. A set of software classes is defined, which interacts with an object-

oriented model of the physical system that supports distributed processing, fault 

tolerance and redundancy management. The model based health monitor also integrates 

into the redundancy management. When a redundant physical sensor fails, the health 

monitor provides analytical redundancy for that system state, by predicting it and 

generating adaptive thresholds on the accuracy of the analytical sensor. 

The health monitoring system has been implemented on an experimental 

apparatus built to approximate the functionality of a hydraulic, steer-by-wire system for 

marine applications. 
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Chapter 1: Introduction 

1.1 Embedded Computer Systems 

Embedded computers and sensing systems already play a crucial role in the control 

of a wide variety of applications. Consumers demand the flexibiUty and options that 

integrated computing systems can provide, so one may expect that the level of use will 

continue to increase. 

The current generation of embedded computers provide control functions in 

applications that range from the critical and hard real time requirements of aircraft to 

consumer products such as washing machines. Typically, these embedded computers are 

low-power devices with computational capabilities that are matched to the minimum 

functional requirements of the devices that they control. A number of benefits can be 

gained simply from the integration of embedded computers in devices; this is particularly 

the case when excess computational resources are used to enhance the product. 

One of the largest potential benefits is performance improvement. Computing 

systems allow the development of more powerful, flexible, and efficient control 

strategies, which allow for the closed loop response to be tuned. Consumer devices can 

be tuned for each individual user, or to a designer's specification. For example, consider 

the design of a traditional automotive steering system which consists of a mechanical 
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linkage and hydraulic power steering: At low speeds, turning the steering wheel requires 

a large effort and greater range of motion than when driving at highway speeds, where a 

lesser effort and small range of motion affect a significant steering effect. In a steer-by-

wire system, the vehicle's speed can easily be included within the controller, allowing for 

speed dependant, variable gain steering. 

The second major area of benefit is in physical design flexibility. Consider the 

automotive steering column. Replacing the steering system with an embedded computing 

system allows for more options in the design of the engine cx>rnpartment, and it also 

makes the vehicle structural and engine design identical for left and right hand drive; only 

the user interface needs to change. This flexibility provides a large saving in 

manufacturing cost, more choice in the design of the steering input system, and allows 

designers the freedom to select configurations that take into account greater user safety in 

event of a collision. 

Finally, integrated computer systems allow for the inclusion of new features. 

Sensor data can be collected and stored, tasks can be automated, and system health and 

performance can be monitored. The system monitor can record current performance and 

check for errors, which in turn allows for diagnostic capabilities. Monitoring functions 

allow the provision of fault-tolerance, and also condition-based predictive maintenance, 

which can increase up-time and extend product life. 

1.2 The Reason for Safety Critical Design 

A safety critical function is a function that cannot fail in a safe manner; any 

unhandled error1 that occurs will lead to a situation which causes elevated risk to the 

1 Any unhandled error is considered a failure. See section 2.3. 
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system, its users, or environs. For example, a bass sport boat can achieve speeds over 160 

km/hour (100 mph). A boat could be passing through shipping lanes at such speeds when 

an error occurs within a component of the steering system There is no fail-safe position 

for the steering system, because no default position exists that the system can home to. 

Because the system requires continuous, uriinterrupted human intervention to mitigate 

risk, the system must provide the human user with the correct information at the correct 

time, and then respond in the correct way for the safety of the boat driver. One of the 

risks of using embedded computing systems is that when an electronic component fails, it 

tends to be binary: either it works, or it does not. 

1.2.1 Handl ing Failure 

Guarding against the failure of high-level service assurances has been the focus of 

research and applications over the past 20 years. A l l of these efforts have focused on 

reacting to failures that could occur within the system, and maintaining high-level 

services despite some component failures. The measure used to describe success is the 

reduction in probability of cascading or high-level service failure. A l l of these efforts 

have focused on designing a safety framework to provide reliable, continuous function of 

high-level services. Each system is designed to detect component failure, and when it 

does, switch to a back-up system. 

1.2.2 Mon i to r ing Performance 

Monitoring the behaviour of actuator components allows one to detect normal and 

abnormal behaviour. Establishing a metric for the health of a component based on 

expected behaviour allows a system to detect errors and identify operation that may 

indicate component wear or impending failure. Normally, monitoring requires the 
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addition of new sensors to measure signals which directly indicate system performance. 

The normal approach to condition monitoring incorporates indicators of performance that 

provide clear and unambiguous information about specific faults. These indicators are 

usually derived from modelling or experimentation. Condition monitoring is a necessary 

part of the failure handling framework, and provides some of the tools required to use and 

manage redundant actuators. 

1.2.3 Challenges 

Despite the potential benefits outlined in section 1.1, the design of an integrated 

embedded system must consider the system's ability to cope with faults. The greatest 

challenge in design is to guarantee that the system will perform safely even if one or more 

components fail. The scope of safe performance is not limited to the user, but extends 

also to the safety of others and their environs; it is further required to limit liability and 

gain public acceptance of embedded computing systems. Existing technological 

solutions to the problem are dependent on high levels of redundancy and have high costs 

associated with them This type of solution is not appropriate for the development of 

products in cost sensitive markets such as consumer devices, automobiles, and pleasure 

boats, nor is it ideal for industrial or military applications. 

1.3 Thesis Objective 

The objective of this thesis is to examine the possibihty of providing generic tools 

to aid in the indication of the health of system components. The methods defined should 

make use of multiple layers of redundancy, and be aware of redundant sensors and 

actuators. Furthermore, they are required to interface with a highly object oriented virtual 

environment. The tools then will provide both lower level methods that can be 
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customized to each use and each environment, as well as the higher level predefined 

health monitoring methods which apply more generally. 

The secondary goal of the system is to add analytical sensor health detection to the 

fault-tolerant framework that will protect the sensor fault-tolerance mechanism against 

continuous degradation following a sensor failure. In a fault-tolerant sensing system, a 

single value is determined from a set of sensors. When one sensor fails, the arbitration 

mechanism is weakened: this is continuous degradation. If sufficiently weakened to only 

include two physical sensors, the arbitration mechanism cannot detect Byzantine errors 

between the two sensors. An appropriate software indicator can help to arbitrate between 

two sensors, but only if the model used can be verified to accurately represent the current 

parameters of the process being modelled. The proposed health monitoring system has 

the benefit of verifying the accuracy of the system model before using it to verify sensor 

integrity. 

1.4 Thesis Outline 

This thesis is organized into five chapters. Chapter 2 is a literature review, and 

discusses the existing technologies that are used in health aware systems. The review 

concentrates upon and discusses the application to marine steering systems, fault-

tolerance, condition monitoring, modelling and diagnosis. 

Chapter 3 gives the context of the health monitoring system, and describes the 

approach taken. First, it describes the existing fault-tolerant framework, and then it 

describes the approach taken to create the health indicators, what they represent, and why 

each of them is included. The development and mathematical analysis of the indicators 



Chapter 1: Introduction 6 

are then presented. Finally, it describes the object-oriented systems architecture that 

contains the health indicators. 

Chapter 4 describes the specific implementation of a health monitoring system to 

the marine hydraulic steer-by-wire test system that was used to demonstrate the concepts 

developed within this thesis. This is followed by the results obtained from the 

experiments that were performed on the test system. An analysis of the data shows how 

the health indicators provide useful information about the health of the system, and that 

the analytically redundant sensor adequately predicts future sensor state values. It closes 

by discussing the achievements and limitations of the indicators as presented. 

Chapter 5 presents the overall conclusions of the work and makes 

recommendations for further work. 
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Chapter 2: Health Aware Systems 

2.1 Introduction 

This chapter provides a literature review of topics that relate to health aware 

systems. It describes key concepts that relate to the fault-tolerant systems that provide the 

framework upon which this health monitor is developed. It shows the limitations of 

current research, and how work in the health monitoring field can enable other 

achievements. 

The design of health indicators is usually derived based on modelling or 

experimentation, which makes them application dependent. The concepts developed 

within the thesis are demonstrated on a marine hydraulic steer-by-wire system, so this 

chapter also reviews current marine steering systems, and faults common to the steering 

demonstrator. 

2.2 Marine Steering Systems 

A number of manual steering systems exist, from mechanical linkages to hydraulic 

circuits. Each of these systems may provide some mechanical advantage to the user, or 

the user's input may be augmented through power steering systems. Recent advances 

have integrated closed loop navigation with the steering system to provide autopilot 

features. Each system has its advantages, and is prone to particular errors. Steer-by-wire 
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systems provide a new set of challenges and potential faults to be considered during their 

design. 

2.2.1 Steering Systems 

Manual 

The most straightforward steering systems are of the manual variety; the simplest 

of these is likely the cable steering system. In this type of system, the operator turns the 

helm, pulling the cable to impose a motion of the rudder. This type of system is well 

suited to low-cost, low-power pleasure boats and provides a durable, reliable system 

which requires little maintenance. The number of turns of the helm, lock to lock, 

determines the effort and responsiveness of the rudder. A high number of helm turns 

occurs with a high gear ratio; this leads to less effort (torque) needed at the helm, but 

yields a small response at the rudder. Likewise, a lower gear ratio leads to a greater effort 

needed at the helm, but provides a faster response at the helm. 

Hydraulic Steering 

Another very common steering mechanism uses a hydraulic connection from helm 

to rudder. In this system, a manual pump is part of the helm and is connected via hoses to 

a steering cylinder that provides the movement at the rudder. Hydraulic steering systems 

are usually found in larger, more powerful pleasure boats. The use of hydraulic fluid 

tends to lead to more frequent maintenance than mechanical systems, but they usually 

provide a smoother, more stable steering mechanism than the mechanical linkage. An 

example of this type of steering system is shown in Figure 2.1. 
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Figure 2.1: Manual Hydraulic Steering System 

© Teleflex used with permission 
Power Steering 

The hydraulic steering system can also be augmented by mcluding power 

assistance. In a power steering system, a hydraulic pump, driven by either the engine or 

an electric motor, provides an assistive force on the steering cylinder. The primary 

steering system acts as described previously, but now the steering cylinder is fitted with a 

servo cylinder and a power steering valve. The valve opens when the manual cylinder 

moves, powering the secondary cylinder to provide the desired assist. Should the power 

assist circuit fail, the system automatically falls back to a traditional hydraulic steering 

mechanism. 

Alternatively, a more advanced power steering system could be used, which uses 

position or pressure sensors at the helm, and connects to a digital control system to 

regulate a power assist valve or the automatic pump in the secondary hydraulic circuit. In 

this type of system, the user could tune the power steering control system to vary the 

amount of assist provided. In Figure 2.2 an example of the hydraulic power assist 

steering system is shown. 
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Figure 2.2: Hydraulic Power Assist Steering System 

© Teleflex used with permission 

Steer-By-Wire 

In a steer-by-wire system, no mechanical or conventional direct hydraulic 

connection exists between the helm and the rudder. Instead, a digital controller measures 

commands from the user and electronically controls an actuator at the rudder. By 

definition, a steer-by-wire system is a steering system in which the hydraulic or 

mechanical connection between the helm and rudder is replaced by an electronic control. 

Unlike other forms of steering systems, steer-by-wire can be tuned not only to each 

user's preferences, but also to changing boating conditions. The digital control algorithm 

can be flexible and based on irtformation that is not normally incorporated into a typical 

steering system. It may also be desired to implement tactile feedback, where the forces 

acting on the rudder are mirrored at the helm. A diagram of how such a feedback system 

might look is shown in Figure 2.3. 
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Helm Unit 

Position Sensor 

Torque Sensor 

2.2.2 

Actuator 

Drive 
Controller 

vD Actuator Drive 
Controller Actuator 
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Drive Unit 
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6D linear position of the drive 
9H rotational position of the helm 
VD command signal sent to the 

drive actuator 
7" torque measured at the drive 
TH torque measured at the helm 
VH command signal sent to the 

tactile feedback device 

Force Sensor 

Figure 2.3: Steer-By-Wire Schematic 

The primary steering function is provided by the drive controller, and the feedback 

at the helm is provided by the helm controller. The drive controller implements closed 

loop position control, and the helm controller may also provide an open loop or a closed 

loop torque control system Position, torque and force sensors are used for these control 

systems. 

Usually, the embedded computer that manages the sensor acquisition, control, and 

actuation is chosen to minimize cost subject to it having the minimum of processing 

capability required to implement the steering control loop. One could expect a dedicated 

micro-processor based computer to operate between 10 and 100 MHz, in typical cases. 

Hydraulic Actuation 

Marine based steer-by-wire systems often achieve movement of the rudder through 

a digitally controlled hydraulic circuit. There are a variety of ways of implementing a 

hydraulic circuit, one possible implementation is shown in Figure 2.4. This figure shows 

a straightforward hydraulic positioning circuit; variations on this circuit may include a 
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variable flow pump, or a pump driven by the boat engine; the accumulator could be 

removed, hoses could be replaced by tubing, or valves could be combined. This circuit is 

digitally controlled at the 4-way, 3-position directional valve, by simple state control 

(bang-bang), and at the motor, also by on-off state control (bang-bang). In a more 

sophisticated system, the pump is connected to a DC motor which could then be 

controlled to provide variable velocity. Another enhancement to this system would 

replace the directional valve with a proportional valve. 

Inline Pressure Filter 

2.2.3 

Figure 2.4: Sample Hydraulic Circuit 

The steering cylinder itself is a double acting cylinder, providing symmetric 

performance in each direction. Relief valves guard against exceeding a set pressure 

maximum within the system 

Common Errors 

The behaviour and performance of hydraulic systems is dominated by their 

dependence on pressure and flow rate [1]. Fluid pressure measurement is readily 

available through reliable pressure transducers (a change in pressure drop across a 
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component could be an indication of wear, performance degradation, or mipending 

failure). Likewise, a change in flow rate into and out of components might also indicate a 

fault, however measuring flow rate through components is unfortunately, very difficult. 

A number of fault conditions can affect pressure and flow rate. 

Examining the hydraulic circuit shown in Figure 2.4 reveals a number of 

components where errors could occur. When considering errors in a control system like 

the steering system, it may be beneficial to detect errors at varying degrees of granularity. 

Some localized component faults present Utile risk to the system over the short term, 

while other faults have the potential to severely hamper performance of the entire system 

A number of fault conditions may affect pressure and flow rate; the basic areas of 

concern are the following. 

Fluid: A number of potential fluid faults exist. Contamination can be a 

fault or a symptom of another fault. Particulates, solutes, and air may become 

dissolved within the hydraulic fluid. Symptoms of fluid contamination by 

particulates or solutes may include elevated temperature, and a change in flow 

rate; the contamination can clog filters, cause or be the result of component wear, 

and change fluid viscosity. In addition, contamination due to a compressed gas 

will cause pressure loss. The risks associated with fluid contamination include 

accelerated wear, decreased performance, and system overheating. 

Motor: Faults at the motor directiy affect the pump. Symptoms of low 

current or voltage at the motor are a reduction the flow rate or a decrease in 

pressure provided by the pump. The critical risk associated with motor power 

loss is the loss of system functionality. 
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Pump: The pump provides the pressure and flow rate for the system 

With a number of moving components, and multiple interfaces to the fluid 

system, the pump is vulnerable to a number of faults. Directly measurable 

symptoms include leakage and fluid temperature, while risks associated with 

pump faults include component wear, friction, over-pressure and under-pressure 

performance. 

Connections: The main fault that connections are subject to is leakage. 

One symptom of leakage is increased flow rate through the component, or a 

decreased flow rate downstream. The main risks associated with poor 

connections are contarnination, pressure and fluid loss, and if not monitored, 

draining of the reservoir. 

Accumulator: Over-charged or under-charged accumulators can both 

affect system dynamics. An over-charged accumulator will have very little 

impact on the system, and an accumulator in the system is usually designed to 

supplement flow rate or stabilize pressure about a set point. Likewise, a drop in 

charge pressure will prevent the accumulator from stabilizing pressure and flow 

rate. Often, accumulators are included to dampen high frequency fluid shock. 

So key symptoms of accumulator error would be higher frequency fluid shock, 

or higher power drain at the pump/motor. Risks caused by accumulator faults 

include high system shock, leading to rapid wear, and increased peak flow 

demand at the pump. 
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Valve: Faults associated with the valve include spool wear and friction. 

Symptoms of spool faults could include slow system response, decreased flow 

rate, and incorrect flow direction. 

2.3 Fault-Tolerant Systems 

As discussed in Chapter 1, steering systems demand that a safety-critical design 

approach is taken. A number of research projects have investigated the implementation 

of fault-tolerant systems. Hiller [2], provides a summary of terms used in fault-tolerance. 

A fault exists when there exists a state of operation for a system that leads 

it to non-conformance of its specifications. Faults are classified by their 

duration, as either transient or permanent, and their realization, as dormant or 

active. 

An error is the manifestation of an active fault; it is an occurrence of the 

system entering a state of non-conformance to its specification. Undetected 

errors are called latent [3]. The key difference between a fault and an error is 

that where errors are the results of faults, only an error is measurable. 

A failure is the result of an unresolved error. Note that a failure of a low-

level system might be considered a fault by a higher level system, which could in 

turn trigger a different error. 

Fault-tolerant design also considers the level of faults. In a fault-tolerant system, 

low-level errors may occur at a small locality, and may be acceptable provided the system 

has mechanisms to avoid high-level system failures. The first important step in 

responding to an error is error detection. Koopman [4] has performed extensive work in 
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reconfigurable systems and graceful degradation2, and provides a description of system 

response and recovery in a number of reconfigurable environments, which he terms the 

self-healing problem space. A self-healing system is the extension of fault-tolerance to a 

system that can recover functionality, lost after an error has occurred. 

Errors can occur in the value domain, and also in the time domain. An error in the 

value domain occurs when an actual value (measured, estimated, or communicated), 

differs from the expected (or allowed) value. An error occurs in the time domain when a 

value is reported at the wrong time, or not at all at the expected time. In a hard real-time 

application, the system must always produce the correct value at the correct time. Errors 

can occur in both domains simultaneously, or either one. 

2.3.1 Error Detection 

Error detection can take on different forms, but these are generally classified as 

either data replication or executable assertions. Data can be replicated through analytical 

redundancy, double execution, and hardware replication. Executable assertions include 

limit checking, certification, signature checking, self-tests, and watchdog timers [5]. 

Furthermore, detection can be performed within a component or via a network by peer-to-

peer checking or supervisory elements. Distributed environments require a mechanism to 

synchronize their timings, and when error detection is performed in a distributed 

environment, errors may be detected in the time domain: each computer can check the 

communication timing of the other computers. 

Redundancy is a key component in error detection. To detect an error in any 

component, there must be a redundant component or task to form a basis for comparison; 

2 Graceful Degradation: see section 2.3.3 
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to identify the faulty component, more information about the components or fiirther 

redundancy is required. 

When using analytical redundancy, the acquired sensor data is assumed to have 

provided accurate data previously, and is compared at the current time step to a model of 

the system The difference between the estimated state and the actual state is referred to 

as a residual [6], or a bias. 

One form of executable assertion uses a priori modelled actuator, plant, and sensor 

errors [7]. Each error model can be included as part of a model of the larger process, 

acting as a filter to detect errors. Each error filter model is populated with the known 

system states and inputs, and becomes non-zero when that error is detected. 

When using physical redundancy, a single state is measured by more than one 

sensing element, and these values are compared via voting techniques. A wide variety of 

voting techniques exist, and are classified by their input and output mechanisms [8]. 

Input mechanisms can be exact or inexact, which concerns whether the input data is 

considered inflexible (exact) or flexible within a region (inexact). Outputs are classified 

as consensus or compromise, referring to whether the output is selected from one of the 

inputs (consensus), or is calculated by a median or mean (compromise). Output 

determination mechanisms also can be classified as threshold or plurality. Threshold 

voting checks whether the selected value has achieved a predefined threshold quantity of 

votes, like unanimity, Byzantine (quantity > 273 of the votes), majority, m-out-of-n, etc. 

Plurality voting selects the value with the most votes [9], or if no value has more votes, 

then the output value can be non-unique. 
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Within a steer-by-wire application that uses Electronic Control Units (ECUs), the 

controllers must also be checked for errors. Checking a processor for errors is achieved 

through redundant controllers, fonning a network. This network allows the creation of a 

distributed computing environment, where each E C U shares local information with its 

peers, and each E C U can check its peers for errors. 

2.3.2 Granu la r i ty 

The granularity of a system is the extent to which it is composed of separate 

components, and of each component's functional "size" relative to the entire system. 

Therefore, a system with finer granularity has more components, and each one accounts 

for a smaller increment of the whole. 

It is important to match the granularities for fault detection and fault isolation in the 

design of the system Providing a very fine granularity increases system complexity 

(because the number of components increases), but allows each component to be 

represented in a straightforward manner, with simple models. 

One could also design the system with a coarse granularity, where the developer 

would use a set of state equations to describe each component. Providing a very coarse 

granularity decreases the complexity of the overall system description, but the models that 

describe each component become more complex. It also increases the complexity of 

detection and diagnosis of faults relative to what would be required for a fine granularity. 

The fault isolation mechanism cannot have a finer granularity than the fault-

detection mechanism. However, one could design the system to achieve a fine 

granularity in the health monitoring and fault detection mechanism, where the states and 

parameters of each component are monitored. Supposing that the output from the health 
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indicator for a single component is a scalar value, then for a group of components, the 

health indicators could be grouped into a composite health vector. The fault-isolation 

mechanism would be aware of the health vector representing the constituent components 

and could take appropriate action to isolate an error. 

Using a fine granularity requires the same or more design knowledge than the 

coarse granularity system, depending on the types of errors that are to be detected, and the 

granularities of the fault-isolation and the error-diagnosis mechanisms. It makes each 

component health indicator more straightforward and less computationally intensive than 

the coarse granularity case. It also provides the benefit of being able to detect and localize 

faults more precisely. Finally, each component health indicator is an independent task, 

which enables the use of distributed processing. 

The key disadvantage that one must balance against is that in order to achieve a 

fine granularity of system faults, one requires an equally large set of observed system 

states. Increasing the number of observed states adds physical sensors to the system, 

which escalates system cost 

2.3.3 Graceful Degradation 

To cope with failures, a system may reduce performance capabilities, cancel less 

important tasks, or switch to different control algorithms. This method of tolerating errors 

is called Graceful Degradation. Arguably, any fault tolerant system that masks or 

isolates failing components undergoes degradation, as it loses the redundancy supplied by 

those components. The key identifier of graceful degradation is that when a component 

or function fails, it is replaced by a non-identical component or function of reduced 

capability. 
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The Robust Self-configuring Embedded Systems (RoSES) project [10], uses data 

and control flow graphs to reconfigure its software. The described system can handle 

multiple failures and attempts to optimize system utility. 

An alternate approach, described by Bouvier [11], uses diverse and exact 

redundancy to handle failures, which makes low level failures transparent to high-level 

methods. Also, the approach uses a table of known methods, called an execution table, to 

select methods at run time that provide redundant functionality. 

2.3.4 E r r o r Response 

Error response refers to the manner in which a system reacts once an error is 

detected. Common responses include masking, rollback to system checkpoint, and re­

trying the operation, possibly using substitute resources. More powerful responses 

include architectural reconfiguration, alternate execution paths, degradation, and 

requesting assistance. Already mentioned are the RoSES and Amaranth projects. 

Remedies involving simple detection include change of operation, reconfiguration and 

stopping the process. With a diagnostic capability, the system can then cktermine if the 

failure is conditionally tolerable, it can reconfigure the process parts, or request specific 

maintenance. 

The body of work in fault-tolerant control is extensive. One technique for 

achieving fault-tolerant control is to use state-estimation techniques to find a bias between 

expected and actual states, and use this estimated state in the control law [12] [13]. 

The X-By-Wire project [14], defined an entire fault-tolerant architecture. It used 

an approach of exact redundancy and fail-silence throughout the project. The project 

involved a number of members from the automobile industry and from academia. They 
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designed a system in which any conmiunicating component must be a fail-silent unit 

(FSU). In a FSU, the component must be able to self check and output either the correct 

value or nothing at all. Furthermore, each atomic subsystem is actually a fault-tolerant 

unit (FTU), which is composed of two exactly redundant FSUs. When an error occurs, 

the units ensure that only a correct output is realized. One problem with this system is 

that to support error detection of any one ECU, two ECUs are needed, making the system 

cost inefficient. One example of actuation was realized by having three redundant DC 

motors connected to a specialized gear box. Each actuator would provide one third of the 

required torque in normal operation, and half of the required torque in an error state. The 

report concluded that it was more cost effective to have three motors capable of 

outputting 50% of the required torque than two that could output 100% of required 

torque. 

Bouvier [11] developed a distributed fault-tolerant architecture and demonstrated it 

in a steer-by-wire application. This system uses triple-modular redundancy and inexact 

voters to detect data errors. Each E C U could perform local error detection on the data it 

acquired, and also a distributed error detection with its peers to detect sensor, ECU, and 

communication errors. The system response strategy uses a dynamic reconfiguration 

approach, in which the system can reconfigure resources at run-time. This architecture 

uses an abstraction of system hardware and resources in combination with an execution 

task flow chart to select tasks. The fail-silence property described by the X-By-Wire 

project is also implemented on each ECU. Each E C U is connected to a second set of 

channels called state-lines, which operates as a voting mechanism, where two peers must 

validate the local E C U as being functional to allow it to broadcast data over the 
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communications bus. This thesis uses and enhances the fault-tolerant architecture 

developed by Bouvier. 

Das [15], evaluates the effectiveness of various fault management architectures' 

response to task and CPU errors in distributed computing environments, and validates a 

distributed peer architecture as having a high number of reachable configurations to use 

when executing reconfiguration and tasks. 

2.3.5 Recovery 

The recovery operation is an enhancement to fault-tolerance, found only in self-

healing systems. It involves the integration of new resources to the systems that are 

executing tasks to return it to an error-free state. 

A component might be hot swapped; the best example of a fault-tolerant system 

that supports hot swapping is the RAID array of hard disk devices, in which a failed disk 

can be replaced without rebooting the system Alternative approaches involve 

reconfiguring software to match newly installed components, or self discovery of new 

components at soft-reboot and hard-reboot. 

2.4 Health Awareness 

The majority of work in fault-tolerant systems discussed so far relates to the 

detection and handling of errors, where errors are classified as existing in a binary state: 

either the error exists (the system is in a state of non-conformance with specification), or 

the error does not exist. A weakness with the binary error approach of these fault-tolerant 

systems is the lack of error predictability. The ability to predict impending failure allows 

the operator or system to take pre-emptive action to prevent failure by altering system 
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functionality or scheduling maintenance. Indicators of system health give insight into the 

likelihood of failure. 

To identify whether a system's health has degraded to the point where failure is 

impending, a number of indicators can be monitored and compared to alarm limits. 

Alarm limits can be adjusted according to factors including experience, supplier 

recommendations, previous failure data and standards. 

Health indication seeks to represent the system's health state by selecting indicators 

which describe system performance or correlate to known failure modes. There are a 

number of approaches that have been used to develop health indicators, which can be 

classified as either Condition Monitoring, Parameter Identification, or State Estimation. 

These three approaches are discussed throughout the remainder of this section. 

2.4.1 Condition Monitoring 

In Condition Monitoring, system states are measured that are not necessarily 

used in the control of the system. While the states measured may impact system 

performance, their effect is usually not included within the control model as modelling 

parameters or state variables. A variety of internal system parameters may indicate 

errors; temperature can reveal lubricity problems, misalignment, or overload; noise may 

indicate cavitation, valve, gear, or bearing wear. Internal parameters are discussed in, 

Fitch [16]. The use of these internal states to predict failure is discussed in, Goode [17], 

who proposes a prediction model theory based on statistical process control, and a failure 

model using a stable zone and failure zone to predict time to failure. 

Noise and vibration are states that are also directly measurable, and can be good 

indicators of component wear, but are not usually accounted for within system models. In 
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Yunbo [18], the amount of vibration energy within a hydraulic system was found to 

indicate system wear; the analysis used Fourier transform techniques to analyze the 

vibration energy of the system. A newer technique which is gaining attention for 

condition monitoring is use of the wavelet transform. The wavelet transform can use a 

short window (high time resolution) in the time domain to represent high frequency 

content, and use a long window in the time domain to represent low frequency content, 

allowing for greater flexibility of resolution. The wavelet transform could be viewed as a 

signal decomposition into a set of basis functions [19]. The prototype of the basis 

function is scaled in the time domain. The use of a prototype basis function also means 

that the transform is not a mapping of the time-frequency plane, but a time-scale plane 

where the scale is dependent on the basis function. 

The wavelet transform is used by Wang [20], to detect error conditions in a 

gearbox. He found that damage to a gear tooth causes a change in the vibration signal 

associated with the period of that tooth's engagement. Results from this work were 

presented only graphically, and automated interpretation was not discussed. The wavelet 

transform outputs a large amount of data, and to date, there is no mature method to 

interpret the data for content that specifically indicates health. However, Luo [21], has 

shown that the peak values from specific frequencies might be used as indicators of 

health. 

Yang [22], discusses using bispectral analysis, and compares it to the wavelet 

transform. The bispectral analysis is a probability analysis showing the coupling between 

three frequencies, k, I, and m (=k+l). It also retains magnitude and phase information. 

Key data points from the bispectral analysis and wavelet transform were identified using a 
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singular value decomposition, scaled, and passed to an artificial neural-network to classify 

faults. 

2 . 4 . 2 Parameter Identification 

Parameter identification techniques seek to determine and monitor the model 

parameters for the system over time; a common way to do this is to use observers. 

Usually, a system model of a given order is defined, and then a least squares regression is 

performed to determine the parameters for the given relationship between system input 

states and measured system output states. The system parameters can then have limit 

values applied to them that describe acceptable operation. 

Isermann [23], describes the parameter estimation method for linear systems and 

how significant parameter changes can be detected by reference to the normal values 

using statistical methods like the Two-Probe T-Test. 

One weakness in this method is that the parameters of a given order model may 

not represent system characteristics in a predictable way. Typically, these systems would 

then need to be developed for each application experimentally, and the limits must also be 

set experimentally. This reduces the potential design benefits of using a system model. 

However, in Yu [24], the lumped parameters obstacle was approached by investigating 

the change in each parameter grouping and comparing it to the expected composition of 

the lumped parameter set. Examining which parameters were present in each lump and 

comparing which lumps changed, allowed that work to infer which parameters were 

changing, and by how much they changed. 

As part of the investigation of approaches to monitoring system performance, this 

approach was tested on the hydraulic steering system built by the author. The tested 
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observer used second order, third order, and fourth order models, with Plackett's 

algorithm for recursive least-squares system identification. It was found that when a 

square wave was input to the system, the parameters tended to converge on a single 

model. However, further testing found the model parameters to fluctuate significantiy 

depending on the form of the input, and in some cases did not converge at all. 

2.4.3 State Estimation 

The process of state estimation involves using a known system model, and 

applying a set of inputs to known system states to predict the output state at a given 

interval. The health indicators that are built from state estimation are generally composed 

of the residual error between the predicted state and the measured state. 

Extended Kalman Filter 

One technique gaining widespread use is the Extended Kalman Filter (EKF). In 

general, the EKF is a recursive filter that estimates a complete system state vector from a 

noisy or incomplete measured state vector. It relies on the developer to create a robust 

model of the system that describes system behaviour for all states, and then linearizes that 

model about each current operating point; the linearization allows the application of other 

linear algebra techniques. The state of the filter is represented by two variables: 

xk\k , the estimate of the system state at a time, k, given the state k 

Pk\k, the error covariance matrix at a time, k, given the state k 

The filter can be thought of to operate in two distinct phases. The first phase uses 

the previous state estimate, the current system input, and the system model linearized 

about the previous state to determine an estimate of the filter state, xk^k_i and Pk\k-\ • 
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The second phase uses the new measurement data to improve the filter state estimation. 

The useful output from this second phase is the estimation of the current system state. 

Most condition monitoring applications that use the EKF algorithm use the measurement 

residual, the difference between output states and measured states, as the health indicator. 

A larger residual is an indication of deviation from the specified system performance, and 

therefore an indication of degraded health. The EKF algorithm requires that the equations 

be linearized, and so at each time step the Jacobian of the system non-linear equations 

must be calculated before generating the estimate of filter states. An [25], uses the 

measurement residual of EKF to some success. 

Zavarehi [26], makes use of the EKF for observing the valve orifice area, and then 

predicting the instantaneous fluid flow rate through a hydraulic valve. The work proposes 

that fluid flow rate into and out of a hydraulic component is a good indicator of 

component health. 

The EKF linearizes the control model about each operating point and is dependant 

on the current measurement of system states for its output; these make it unsuitable as a 

predictor. Finally, the EKF algorithm is computationally expensive to run, making it 

unsuitable for use on the limited resources hardly found in embedded systems. 

Observers 

Other parameter estimation techniques rely on models to predict future state 

values. If the observer output states reconstruct measurements of the process, then the 

observer creates analytical redundancy of those states. Typically, a diagnostic observer 

generates output states that are indicative of faults, whereas the state observers generate 

data needed for control. Control observers also tend to operate within a closed-loop 
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environment, whereas a diagnostic observer tends to operate in an open-loop 

configuration. This requires the diagnostic observer to be more complete, or more robust 

when considering model uncertainties. 

Usually, a diagnostic observer creates a residual that is compared to a threshold to 

indicate component health. An observer-based residual generator should be designed to 

compensate for the process input signal, effects of disturbances, and model uncertainty. 

Non-linear processes cannot usually be represented by linear models, because they often 

do not operate about a fixed point. If a linear model based residual is used for a nonlinear 

process, then after a fault has occurred, the model would likely compound modelling 

errors and exceed its valid range. Non-linear processes can often be modelled by a set of 

non-linear open loop equation. 

The health decision is usually based on comparing the residual to a threshold. 

Determining the appropriate threshold for error detection is a difficult task; a threshold set 

too high will make the system insensitive to faults, and setting it too low will result in a 

high false alarm rate. Setting thresholds has been addressed through statistical data 

processing, correlation, pattern recognition and also adaptive thresholds. An adaptive 

threshold dependant on the system input could reduce the false alarm rate. A survey of 

observers and examples of their use is given in Frank [1]. 

Model Selection 

While the EKF has been shown effective at producing both error signals and noise 

corrections, including in non-linear cases, it was not selected for this study. First, the 

EKF relies on having a very good model of the system, and then linearizes the model 

about the operating point. For the EKF to be most effective, it must be run at very short 
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time intervals, and it does not predict well when the interval increases. Second, 

uncertainties in the non-linearities lead to uncompensated errors in the state estimation. 

Third, the EKF is a state-compensator more than a state predictor; it requires state 

measurement from the most current time to output an estimate of the current state. 

Finally, the algorithm is too computationally expensive to run on minimum hardware at 

the desired frequency. 

Using non-linear modelling elements is more computationally efficient and more 

accurate than using higher order linear models for the same task. 

The typical observer based approach relies on making small time steps within a 

system model to try to determine the system's states. Like the EKF, observers often use 

the current measurements to estimate a set of system states. However, an observer may 

also be run in a manner which allows it to determine predictions of future states. The 

reduced-order observer approximates the system by simplifying the linear system model 

to a lower order. 

2.5 Diagnosis 

The detection and treatment aspects are limited by the granularity of their systems, 

and the diagnosis mechanism is also dependent on the granularity of the fault detection 

system, to a lesser degree. A system with a finer granularity simplifies the diagnosis 

mechanism, as there are fewer system parameters and system states involved in the 

diagnosis engine for each component. In the simplest diagnosis case, sensors are added to 

the system, which directly indicate specific faults. 
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Conditional Statements 

Isermann [23], discusses the use of conditional statements, which are if 

<condition> then <conclusion> logic statements, to make decisions based on 

information about system states and parameters from an error detection engine. For some 

systems, the relationships between faults, events, and symptoms are known to the 

designer. Then the inference engine can use Event-Tree Analysis, in which it progresses 

from the known symptoms to the faults that can cause them. The condition part (if 

<condition>) contains facts, represented by symptoms as inputs. The conclusion part 

includes either events or faults, which are logical causes of the condition. 

Fuzzy Logic 

Fuzzy logic diagnostics are sometimes used as an extension of the conditional 

statements or knowledge-based expert systems. In these diagnostic systems, the 

magnitude of each measured quantity and a rule-based membership function describes a 

relationship between symptoms and causes. This style of engine is capable of ranking 

potential causes based on the membership functions and selecting a most probable cause. 

Another way to use fuzzy logic is shown in Mechefske [27], which investigates 

which fuzzy membership function would work best to represent the frequency spectra of 

various fault conditions for a set of rolling element bearings. Here, the frequency data 

from a test can be entered into the fuzzy logic filter, and the output is then a set of 

memberships in each of the fault condition spectra. Each fault condition spectra is tested, 

and the system detects which condition has the highest membership, thus representing a 

fault diagnosis. 
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Artificial Neural Networks 

Artificial neural networks (ANN) are frequently used as pattern recognition 

engines, but are essentially statistical processes, where each parameter within the network 

is generated by training the A N N to produce different outputs for each failure condition 

and for the normal operating condition. One network classifier, useful for recognition of 

patterns, is the Kohonen self-orgaiiizing feature map. This type of neural network allows 

the designer to incrementally extend the domain of patterns to be recognized. The output 

of the network is a symptom code, which indicates whether the module has identified a 

possible problem The Kohonen self-organizing feature map was used in Vingerhoeds 

[28], to classify engine faults on Boeing 737 aircraft engines. 

Neural networks tend to be run off-line; they often require a large history of 

processed data, and specific test conditions. Karpenko [29], shows how using two tests 

and the data generated can allow a neural network to detect and identify three different 

fault types in a pneumatic control valve. 

2.6 Summary 

This chapter has provided a summary of work related to detecting system faults 

and monitoring system health, particularly for a marine steering system. It explained the 

basic mechanisms used for achieving steering in pleasure boats, described the potential 

modes of failure for a hydraulic system, and described symptoms that may indicate failure 

or impending failure. The relationship between faults, errors, and failures was introduced. 

This chapter introduced the key concepts involved in the design of fault-tolerant 

systems, and the current approaches taken by other researchers. Health awareness was 

introduced in the categories of condition monitoring, parameter estimation and state 
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estimation. Finally, the chapter described the existing techniques used in the diagnosis of 

faults. 
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Chapter 3: Development of a 
Distributed Health 
Monitoring System 

3.1 Introduction 

This chapter describes the Health Monitoring Layer, and each of the generalized 

indicators vvithin it. It shows the development of the model based state observer that is 

the core of the health vector, and shows how it can be used as a redundant analytical 

sensor. 

The Health Monitoring Layer is built upon a previous work [11], which provides a 

fault-tolerance framework. This chapter begins with an introduction to the fault-tolerant 

framework to be used as a basis for the health monitoring system It includes a 

description of the virtual environment that represents the boat steering system and 

manages sensor and actuator redundancy. 

A fault-tolerant system relies on having redundant means of achieving a particular 

system service. Each system service can be thought of as a causal system that has a set of 

input states, parameters, output states, and relations between each of those states. 

Redundancy is needed to maintain any high level service when that service depends on 

3.2 Fault-Tolerant Framework 
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genmting a defined output from a given set of inputs even i f a sub-component fails. 

Input states are replicated through analytical or physical redundancy; the relationship 

between input and output, the actuators or plant, are replicated only through physical 

redundancy. The commands that operate at the high level input can also be replicated, but 

to make use of these redundancies in a digital system, the system must be developed with 

knowledge of the redundant system components. 

An important consideration when developing this architecture is the capabilities of 

the embedded computer. The embedded computer selected operates at only 200MHz, 

and is described in section 4.2. 

This section (3.2) describes the existing fault-tolerant framework that was designed 

by Bouvier [11]. The health monitoring system is dependent on the concepts and system 

architecture that was designed for that thesis to provide the virtual boat environment and 

fault redundancy management. 

3.2.1 Object Oriented Programming 

Object oriented programming techniques are very appropriate for use in this 

development environment. Each product, component, subcomponent, etc., can be 

described by a software class whose attributes and methods provide an abstraction of that 

component. Where components are replicated, each class can be instantiated as a 

software object, whose attributes describe that particular component. The inheritance 

property, which allows a class to by defined as a child of a previously designed class, 

causes the child class to include all of the attributes and methods of the parent. 

Furthermore, the polymorphism property allows each child class to re-define attributes 

and methods that the parent provides, but only in the scope of that child class. This 
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property is particularly useful when designing for diverse redundancy, where each 

replication has similar attributes, or may require more attributes, and has similar methods, 

which need to be slightly altered for each case. 

3.2.2 System Architecture 

Within the fault-tolerant framework, the software methods are categorized as either 

atomic methods, mid-level methods or high-level methods. A representation of this 

architecture is shown in Figure 3.1. The architecture shown here is representative of one 

Electronic Control Unit (ECU). 

Atomic methods describe the actual instantiation of components available to the 

system. Each atomic method has a one-to-one relationship with an input component (a 

sensor) or an output component (an actuator). Atomic methods make up the system 

description and the hardware abstraction layer. The hardware abstraction is described in 

section 3.2.3, concerning the virtual boat steering system. 

The mid-level methods make up the redundancy manager. These methods provide 

the error detection, masking, and error response functionality. They bind to, and 

aggregate, the atomic methods. The redundancy management layer is described in 

section 3.2.4. 
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The high level methods implement the top level services that make up the required 

functionaUty that is apparent to an external viewer. These services constitute all of the 

functionality that is bound to fault-tolerance; their inputs and outputs rely solely on fault-

tolerant methods and data that has been checked against errors. They use only the mid-

level methods. Consequently, the high level functions organize the system control 

algorithm, and call upon the redundancy management functions. These features are 

described in section 3.2.5. 

3.2.3 Virtual Boat System Description 

In the fault-tolerant steer-by-wire system, the framework is made aware of the 

hardware by an abstraction of the system description. The virtual boat Hardware 

Abstraction is shown in Figure 3.2; the names and description of it match the system 

description object model. The entire system is encapsulated by a top level class, and then 

divided into four levels. 

First, consider the top level class, Product. The Product class encapsulates a 

single high level service of the system, which for the current example is a boat steering 

system. The high level service that the fault-tolerant steering system provides is the link 

from operator input to steering output. This involves the acquisition of the operator input 

at the helm, the transfer of the command signal to the actuator, and the delivery of a 

motion on the rudder or outboard motor to alter the boat's vector. This hardware 

abstraction is designed to describe the system and its related components, so the Product 

class aggregates its member Units, or components. The key units that are required to 

provide the boat steering mechanism are the helm and the drive, which in this steering 

system is hydraulic. 
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Product 

High level abstraction of 
system functionality, e.g.: 
Boat Steering system 

Aggregates 

i 

Aggregates 

Unit 

High level abstraction of 
major system functionality, 
e.g.: Helm, Drive. 

Component 

An abstraction of a single 
component that collects 
input and output states, and 
an set of model parameters. 
States which are related in a 
single state vector are 
aggregated in a component 
object, e.g.: Helm Axis, 
Hydrualic Cylinder 

Aggregates 

Quantity 

Abstraction of a single 
system state variable, used 
to aggregate redundant 
sensors to a single value, 
e.g.: Helm Axis Rotary 
Position 

Aggregates 

Li_ 
Command 

Abstraction of a single 
command value that is 
distributed across actuators, 
e.g.: change Hydraulic 
Cylinder Linear Position 

Aggregates 
I 

Sensor 

Abstraction of a one-to-one 
matching of a soft sensor 
object to its mated physical 
sensor, e.g.: Helm Axis 
Rotary Position 
Potentiometer #1. 

Aggregates 

i 
Actuator 

Abstraction of a one-to-one 
matching of a soft actuator 
object to its mated physical 
actuator, e.g.: Hydraulic 
Valve Solenoid A 

Matches 

Sensor 

Matches 
I 

Actuator 

Figure 3.2: Hardware Abstraction 

The Unit abstraction layer is an organizational level, and represents an ideal 

location to implement a system model of the subcomponents. In the context of the 

steering system, there are two Units, the Helm and the Drive. The Helm Unit needs to be 

aware of all of its state variables, including current position, input torque, and feedback 

torque. The Helm's function is to provide a platform for the measuring of operator input 

and providing tactile feedback (tactile feedback was not implemented for this thesis). 

Fault-tolerance requires that the Helm be able to measure the operator input given the 
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failure of a sub-component or sensor. Each Unit aggregates its member Components, 

which creates a state vector representation of the data required by Unit to provide its 

service and implement fault-tolerance. 

The Components abstraction layer is the organization level where the fault-

tolerance management is located. This layer collects all of the input and output states, and 

a set of system parameters that describe the component. This collection is analogous to a 

system state space vector. The system inputs are aggregated as Quantities, and the 

system outputs are aggregated as Commands. In the context of the Hydraulic Unit, there 

are three Components that are known to the system for input or output: the Pump, Valve, 

and Cylinder. The output states of interest for the pump are the outlet pressure and flow 

rate, and the input state is voltage. For the valve, the important states are its position, and 

the voltage control to each of its two solenoids. The cylinder's tracked states are high side 

and low side pressures, linear position, velocity and acceleration. 

The Quantity and Command abstractions have the same functional level. A 

Quantity is the abstraction of a single state input variable, and is used to aggregate the 

redundant sensors that can be used to acquire this state. For example, in the Helm Unit, 

the Helm Axis Component has the Quantity, Helm Axis Rotary Position (HARP). This 

describes only a single state value, but could be acquired from multiple sensors. A 

Command is the abstraction of a single state output variable or command value that could 

be issued to multiple identical redundant or interdependent actuators. For example, in the 

Hydraulic Unit, the Valve Component has the Commands, Solenoid A Power, and 

Solenoid B Power. In this case, neither actuation command is redundant, but their 

functions are dependant on each other. 
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The lowest layer of abstraction then is the Sensors level and Actuators level. At 

this level, specific classes exist to form the unary binding of a soft system state variable to 

a physical device. At the Helm, the Quantity, HARP is the collection of the HARP 

Potentiometer #1, HARP Potentiometer #2, and the integration of the Helm Axis Rotary 

Velocity (HARV) Quantity, which is acquired from the H A R V Tacho-generator #1, and 

from the derivative of the HARP Quantity. At the Hydraulic Drive, the Commands, 

Solenoid A Power and Solenoid B Power are bound to objects that, when instantiated, 

direcdy indicate Hydraulic Valve Solenoid A and Hydraulic Valve Solenoid B. 

3.2.4 Virtual Boat Fault Redundancy Management 

The previous section discussed the system description classes, but these classes are 

part of a larger framework that includes both the local fault-tolerant functionality and the 

distributed error detection. This subsection discusses how the fault-tolerant classes 

integrate with the virtual boat environment. 

Local Error Management 

The Virtual Boat Fault-Tolerant Abstraction of the error management system is 

shown in Figure 3.3; the names and description of it correspond to the fault-tolerant 

classes. The Error Detection and Actuation Manager classes are responsible for local 

error detection, response, and compensation. These fault-tolerance management classes 

run at the loop closing frequency of the control system, and the methods that provide the 

fault-tolerance services operate independent of the system's internal error status. The 

System Description classes are shown in order to indicate their integration within the 

Fault-Tolerant architecture, and to provide clarity of the resolution of fault-tolerance 

provided by this architecture. 
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The Local Error Detection class aggregates all of the sensors known to a given 

Quantity, and uses the mforrnation about each Sensor to implement an inexact voting 

scheme, which in turn provides an agreed upon value that is returned to the Quantity. It 

also allows the detection of erroneous sensor data, and the ability to immediately isolate 

and mask a single sensor fault. Finally, the Local Error Detection (LED) outputs a set of 

error status indicators for each of the sensors; this data is in turn used by the Distributed 

Error Detection (DED) utilities, as discussed in the following subsection. The Actuation 

Manager class aggregates each of the Actuators known to a given Command, and sends a 

value to each of them based on a current Command value. 

Local Error Detection 

The Local Error Detection 
class aggregates the 
information about the 
Sensors attached to the 
Quantity to select valid 
Sensor readings, and obtain 
an agreed value for the 
Quantity, e.g.: Helm Axis 
Rotary Position ED checks 
and compares the sensor 
measurements and 
calculates a pseudo average 
value for the Helm Axis 
Rotary Position Quantity. 

Depends On 

Quantity 

Abstraction of a single 
system state variable, used 
to aggregate redundant 
sensors to a single value, 
e.g.: Helm Axis Rotary 
Position 

Depends On - J 

Quantity DED 

The Quantity DED class 
performs data and timing 
error checking across ECUs 
when matching Quantity 
data is communicated 
between them. 

Aggregates 

Depends On 

Depends On 

Actuation Manager 

The Actuation Manager 
class aggregates the 
information about the 
Actuators from the 
Commands, and is used to 
distribute actuation signals 
across multiple actuators. 

Component 

An abstraction of a single 
component that collects 
input and output states, and 
an set of model parameters. 
States which are related in a 
single state vector are 
aggregated in a component 
object, e.g.: Helm Axis, 
Hydraulic Cylinder 

Depends On 

Depends On 

Distributed Error 
Detection 

The Distributed Error 
Detection class stores and 
represents the health 
indicators for each of the 
ECUs. 

Depends On 

Aggregates 
I 

Command 

Abstraction of a single 
command value that is 
distributed across actuators, 
e.g.: change Hydraulic 
Cylinder Linear Position 

Figure 3.3: Fault-Tolerant Framework 

The class diagram shows how the Local Error Detection and Actuation Manager 

classes are related to the System Description classes. The redundancy management 
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classes need to be aware of the Component, Quantity, and Command, that they are 

attached to. The services of the Local Error Detection class are invoked by the Detect 

Errors method. This method first gathers the individual sensor measurements and 

performs the executable assertions (the E_A: method) on those measurements. The 

executable assertions are the first set of error detection routines run for a sensor; they 

ensure that each data point is within the suitable range of the sensor, and that its variation 

based on its previous value is acceptable. Then, data replication assertions are performed 

across the sensors, which forms the second part of the error detection process, and will 

detect Byzantine faults. Each sensor value is compared to the rest to determine if they are 

within an accuracy tolerance of each other; this will identify any sensor of giving data 

which is not similar to the other sensors. Next, any sensor detected as faulty is removed 

from the current operations, and an indicator flag is raised. Finally, the sensors that are 

considered error-free are subject to an inexact voting algorithm, which calculates a 

weighted average value. This output value is returned and becomes the Quantity state 

value. 

The services of the Actuation Manager class are invoked by the Actuate method. 

This method uses the Command state value, and computes output values for each of the 

attached member Actuators. Then, each actuation command value is sent to the 

appropriate Actuator output channel. 

It should now be evident that the System Description classes only provide 

information about the presence, relationship, and state values of each component in the 

system, and whose methods must be aggregated into management functions. The 

redundancy management classes, the control classes, and communications classes all use 
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the data and methods from the System Description classes to implement the desired 

system services. 

Distributed Error Management 

The Distributed Error Detection representation is shown in Figure 3.3. The 

Distributed Error Detection classes manage E C U redundancy, and provide the error 

detection utilities for the value and time domains. They output the error status of each of 

the ECUs as calculated locally, a system-wide agreed state value for each of the 

Quantities1, aggregated witliin the QuantityDED class, and an error status indicator for 

each of the Quantities that are checked. 

As a mid-level object, a QuantityDED object outputs a value for its Quantity that 

the distributed system agrees upon, and an error vector describing the fault status of each 

of the ECUs which contribute to that Quantity. The QuantityDED checks the values 

from each E C U to assert that the sensors provide similar data at each localization. It also 

compares the error status reported by the Local Error Detection object at each E C U to 

verify agreement on sensor health. 

If the QuantityDED finds a discrepancy in error status from a Local Error 

Detection object, it will flag the detection of an E C U fault at the desired fault granularity. 

For example, i f a system has multiple QuantityDED objects, one of the QuantityDED 

objects may detect a fault. In this case, the detection of the fault could result in the E C U 

being marked as faulty, or the QuantityDED object may mark the Local Error Detection 

object of that specific E C U as faulty. 

3 Note: A Quantity is the name to the system abstraction that represents a single system state. The 
abstraction is required as a single system state may be determined by multiple methods. Analytical and 
physical redundant sensors that output the same state are aggregated by a Quantity. 
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3.2.5 High Level Service Layer 

As discussed in section 3.2.2, high level methods make up the services that are 

required for the system to provide the system specification performance. In particular, the 

loop closing and the execution table are considered high level methods. 

Execution Table 

The execution table allows for the system to change which methods are used in 

real-time, thereby adapting to faults that may affect the software code. This behaviour is 

desirable when an E C U error is detected, and can ensure that communication with the 

unit is suspended, and an alternate distributed error detection mechanism is used. 

A step is the abstraction of a task to be accomplished by the software. Any task 

might be completed by multiple methods, each method providing diverse redundancy of 

similar functionality. The step aggregates the redundant methods and their timings. For 

example: a single step might call the functions responsible for data acquisition, fault-

tolerance, communication (sending and/or receiving), control, or actuation. 

The execution table class collects all of the required steps. Each step is designed to 

be run at a particular time, as communication, data acquisition, and actuation are all time-

dependant events. A lookup table is used to select which redundant methods are used 

from each step, allowing for dynamic reconfiguration when an error is detected that 

affects the ECUs. The execution table is a high level object, and is called within a loop 

run by the global function. 

Control 

The controller classes aggregate the virtual descriptions of the quantities, 

commands, model, and algorithm, and are not directly dependent on any physical 
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component. The controller object methods are called from within the execution table, 

making this a high level object. 

3.3 Health Monitoring Approach 

Section 2.4 discusses a number of approaches to achieving health awareness: 

condition monitoring, parameter identification, and state estimation. In general, the 

condition monitoring approach involves adding physical sensors to measure a direct 

indicator of health. Alternatively, parameter identification and state estimation use 

model-based approaches, and sensors that may already exist for control purposes, to 

create a measure of health. 

Condition monitoring will often require the creation or addition of new sensors to 

measure signals which directly indicate system performance. These sensors are specific 

to each application, and each recorded signal is usually indicative of a specific fault or 

operating condition. Condition monitoring systems are programmed with awareness of a 

number of fault conditions, and a diagnosis mechanism compares the system state with 

the condition signals to provide a diagnosis of system health. 

Model-based approaches are preferred for this project because they offer the 

opportunity to find health indicators from the sensors that already exist to provide control, 

and so they use the hardware redundancy that already exists. Generally, model-based 

approaches allow for two choices of how to proceed. The first method is parameter 

estimation, and the alternative is state estimation. 

The most significant difficulty with parameter estimation occurs when the system 

model is non-linear. Typically, parameter identification approaches rely on the least 
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squares algorithm to determine the parameters, and this algorithm requires the model to 

be not only constant, but also linear. 

Most real mechanical systems cannot be accurately represented by a single linear 

model. Usually, mechanical systems have a number of non-linearities, from saturations, 

to relays, to friction. Moreover, a number of mechanical systems are not time-invariant; 

they change not only with their internal parameters, but also with time. To accurately 

model such system, typically non-linear model elements and multiple model states are 

required. 

The hydraulic steering system used as an example in this thesis has a number of 

non-linearities that manifest themselves as saturations, dead-bands, rate-limiters, relays, 

and transport delays. The actual system model used is discussed in detail in Chapter 4, 

section 4.3. 

In this thesis, the modelling strategy uses a second-order system model to estimate 

system dynamics. The linear model follows a set of non-linear models that are executed 

prior to the second-order model. The combination non-linear to linear model allows for 

reasonably accurate output to be achieved from a straightforward and computationally 

efficient dgorithm. It also allows the non-linearities and the linear portion of the model to 

be uncoupled which provides the benefit of running the model only once to acquire all 

health indicators. 

3.3.1 Model Selection 

The use of a second-order model has a number of benefits. In particular, reducing 

the system to its dominant second order model allows its performance to be specified in 

terms of gain, damping ratio, and natural frequency. Then gain, damping ratio and 
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natural frequency can be used to set dynamic thresholds on acceptable system behaviour, 

from which deviation indicates health degradation. This model also has the benefit of 

providing an analytical predictor of system state, which can be used as a redundant sensor 

when one can assume that the input states to the observer are error-free. First-order 

models do not allow the modelling of resonance, nor do they provide for the inclusion of 

complex solutions. The second-order model is the lowest order model available that 

allows resonance to be modelled. 

This model only needs reasonable accuracy over a short period of time, or it can 

even be incomplete. It assumes that the natural frequency, gain, and damping ratio are 

affected by deteriorated health, and that the common errors will be observable by changes 

in one of these parameters. 

Finally, it is expected that the modelling elements might be used in series. A 

single process could be constructed from a number of non-linearities and second-order 

transfer-functions. Alternatively, a number of small processes or system components 

could be individually modelled using the non-linear plus second-order transfer function, 

and then all of the models could be cascaded in series to produce an overall model of the 

system which has many non-linearities and multiple second-order transfer functions. The 

overall model could then be equivalent to a higher order model. 

3.3.2 Indicator Selection 

One of the advantages of using a model-based approach is the opportunity to re­

use system sensors included for control in the models that power the health indicators. 

One indicator of health is the current system state in relation to the system reference state; 

to obtain this measure (the control error signal), models are not necessarily required. This 
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mode, instantaneous error, is called the Instantaneous Response Indicator and is discussed 

in section 3.3.2. 

The instantaneous error is not always a good indicator of system health, nor does it 

provide enough information to localize component health. The instantaneous error can be 

small or zero when the actual state crosses the command state (e.g.: a system with 

constant command signal, but oscillating state). To detect this behaviour, a history of 

past states is required, and can be indicated by modelling the system dynamics. 

Indicating the health of the system dynamics involves modelling the system response 

over a period of time that approximates the system time constant, and comparing the 

output of the modelled dynamics to the actual system state. This system dynamics error 

is called the Dynamics Response Indicator, and is discussed in section 3.3.3. 

Modelling system dynamics over a period of time will help to indicate that the 

system behaves as expected over a short period of time. However, because the Dynamics 

Response Indicator is run over a short period of time, it becomes susceptible to missing 

health errors over a longer period (e.g.: the system response to a slow moving input, or the 

average system response compared to the expected response over a time period). 

Generating the expected response requires a system model to be run over the entire period 

of monitoring. If the period is significantly longer than the settling time of the dominant 

dynamics, then only the non-linear part of the model needs be run. This mode, the 

average state change error, is called the Average Response Indicator and is discussed in 

section 3.3.4. 
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3.3.3 Instantaneous Response Indicator 

The Instantaneous Response Indicator (IRl) is the difference between the 

current reference state and the actual current system state. This residual value is also 

typically used by the control system itself. The error signal is scaled to the range of the 

sensors used, and reduced by an accuracy threshold. For this indicator, a lower absolute 

value of the indicator indicates a healthy measure for the system, whereas a high absolute 

value indicates that the system health may have deteriorated. When validating this 

indicator, the result should fall below a determined threshold value for normal operating 

conditions. Duration, direction and magnitude of the health indicator are all signs of 

system malfunction. 

In this thesis, the IRI is the commanded input position relative to the position of the 

cylinder. A high error signal could also indicate that the rate of change in the input signal 

is faster than the system can accommodate - which can arise from an error state at the 

helm or input processing, perhaps too high a rate of change in the helm position. Clearly, 

under normal conditions, one would expect that the steering system can handle the range 

of motion that the helm is capable of providing. The given example however is for a 

health vector referring to the cylinder, so this signal is an indicator that the cylinder is 

unable to track the reference signal. 

3.3.4 Dynamics Response Indicator 

The system Dynamics Response Indicator (DRI) measures the difference 

between an actual system state and the upper or lower boundary expected of that state. 

The expected value of the state is found by running a model of the system which includes 

the non4inear aspects as well as the linear portion of the model. The linear portion of the 
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model is a second-order function, and the prediction is generated over a period that is less 

than the time constant of the second-order equation. 

The upper and lower boundaries of the expected state describe where the system 

should be assuming boundaries on natural frequency, damping ratio, gain and phase of 

the system with respect to the input over the prediction period. Deviation from the path 

boundaries results in a non-zero error. Larger error magnitudes indicate a deviation of 

actual system dynamics from the expected system dynamics, be it in phase, frequency, or 

amplitude. 

Magnitude and direction of this health indicator are the key elements of health for 

this sensor. While duration is important, it is more important to examine repeatability of 

errors with similar inputs, or any error signals that are persistent for more than one time 

step or recur at the expected natural frequency of the system During normal operation, 

the output from this sensor should be near zero; magnitude of the error signal should be 

small and any variation should appear to be noise. 

In the example used for this thesis, the model is used to predict the velocity of the 

cylinder in response to the commands sent to the pump and valve. 

3.3.5 Average Response Indicator 

The Average Response Indicator (ARI) is the difference between expected 

change and the measured change over a period of time. The response to a slow moving 

input is checked over a period of time that is significantly longer than the settling time of 

the dominant system dynamics. This enables the luxury of not running the oscillating 

system dynamics model, as its influence would be averaged over the period. However, a 

non-linear model would be run over the period, and all of the input way-points would be 
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gathered and included in the non-linear portion of the model. Using this method, the 

average response from the non-linear model to the full history of inputs is compared to 

the average value of the actual system state's change over the same period. 

Direction, magnitude, and duration of any error signal are all important factors to 

monitor in this signal. When validating this sensor, a signal with long duration indicates a 

change in static behaviour of the system, which could in turn be used to tune the results of 

the system Dynamics Response Indicator sensor. Matching error sign with the IRI signal 

could be a result of increased system lag, and opposite signs can indicate out of phase 

tracking. 

In this thesis' example, this indicator is instantiated as the difference between 

expected average velocity and actual system average velocity over the time window. A 

large error signal here indicates that the system is not responding to an input command as 

expected. A change in performance can be attributed to either the input (actuator fault) 

being incorrect, or that the model structure or model parameters no longer adequately 

approximates the actual system (system/process fault). 

3.3.6 Model Development 

The Health Monitoring System has three available inputs: the system state vector, 

system reference vector, and control signal vector. Each component of the model is 

instantiated as an object that behaves as either a discrete transfer function or as a non­

linear transfer function. 

The model is not intended to be run continuously, where each step is dependant on 

the previous, but instead only over short intervals and synchronized with the actual 

system states following each prediction. This principle is shown in Figure 3.4. In this 
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figure, a single threshold predictor is shown. In this version, the model is updated to 

include all of the inputs, u(t), u(t+A) ... u(t+nA), over the prediction period and the 

starting states of the system, y(t); it then predicts the system end point, y (t+n A) , and 

upper and lower thresholds, yub(t+nA) , ylb(t+nA) . After each prediction, the 

actual system states are stored by the model, and it predicts the state value at the end of 

the next forecast period. 

single prediction 
4 state interval 

loop closing A 
„ u (input) 

high threshold prediction 

y (actual) 

-0 low threshold prediction 

Figure 3.4: Single State Threshold Predictor 

There are updates for the input between each of the predictions shown in Figure 

3.4. The period of prediction is significandy longer than the loop-closing frequency, and 

the system health indicators should be updated at each loop closing. Each set of 

predictions then represents results for a window of system data that moves with time. 

When a prediction occurs at each loop closing, the moving windows overlap with 

previous predictions, as shown in Figure 3.5. In this figure, the system input data is 

known across each model window, but each prediction has a different storting state. 

Using this technique, the health indicators are updated at each loop closing. 
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state loop closing 

single prediction 
interval 

u (input) 

high threshold prediction 

y (actual) 

low threshold prediction 

prediction interval 
overlap 

Figure 3.5: Multiple State Threshold Predictors 

Figure 3.6 shows the locus of the predicted thresholds, and also the locus of the 

forecast of the system state corresponding to the outputs shown in Figure 3.5. 

state loop closing 

single prediction 
interval 

u (input) 

high threshold prediction 
y (estimate) 
y (actual) 

low threshold prediction 

Figure 3.6: Locus of Multiple Predictors 

It should now be clear that the system dynamics model is restarted to the actual 

system states at a regular interval. This synchronization allows the dynamics to be 

monitored by the DRL but also makes the indicator unable to track system changes which 

operate more slowly than the system dynamics. It also prevents it from detecting errors 

that would arise from the system having a significant offset from the commanded state. 

In order to compensate for the loss of tracking of slow signals, the ARI was created. The 

IRI was created to compensate for the inability of the average response indicator and the 
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dynamic response indicator to detect errors arising from the system not adequately 

tracking the commanded state. 

3.4 Dynamic Performance Analysis 

3.4.1 Objective 

The objective of this algorithm is to use specified system parameters and 

acceptable limits on those parameters to determine the range of acceptable outputs for that 

system. The linear part of the system model considered is second order, and has the form: 

d2 y , J v W l 2 , 2 
"72 +—t2wnt+yojn^kojnu 3.1 
dt dt 

Where: 

y is the current system state with respect to time, t; 

ox is the undamped natural frequency 

£ is the damping ratio 

k is the system gain 

u is a general input function of time, t 

The system is assumed to maintain constant values of ox and ^over the duration 

of the estimation period and during normal operation; they are constant in each record. 

The final algorithm implementation supports parameter updating at irregular intervals as 

desired in code. These values are known and specified by the system designer. 

Furthermore, a range of acceptable values of ox and ^are specified such that cou, < ox < 

QXb and Qb ^ C— during operation. Ofo is the lower boundary of ox and 0Xb is the 

upper boundary of ax. Likewise, Qh is the lower boundary of £ and £ u b is the upper 
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boundary of £ The problem then becomes finding the maximum and minimum solutions 

to Equation 3.1 when solved for j>. 

The timing interval selected is long enough for the effects of dynamics to be seen. 

The timing interval is selected to match approximately 0.8 radians at the undamped 

natural frequency. The actual sampling interval and loop closing time of the system is on 

the order of one tenth of the system time constant, which is significantly faster than the 

forecasting period of the model. The long forecast period and the multiple loop closings 

in between can be used to provide a series of predictions over the actual forecast time, 

with each prediction made from a previously known system state. 

To maximize the potential modelling benefit of having a history of inputs, a 

number of modelling techniques were investigated. Techniques tested include analytical 

solutions assuming a step input, ramp input, and parabolic input, and numerical 

integration techniques including Predictor-Corrector, Runge-Kutta, and a Modified Euler 

integration. The use of embedded systems minimizes processing capabilities; the use of 

analytical equations was investigated, but processing capability proved to be a constraint 

to their use, as using numerical analysis to solve the equations is a processor intensive 

task. 

The limit on processing capabilities leads one to select a solution where the 

calculations performed at each loop closing use a minimum of processor time. The 

preferred algorithms have most of their calculations performed off-line (by the designer) 

or during a configuration phase (where the control loop is not running). This limitation 

leads to the selection of a solution that is expressed in a solved algebraic form 
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A number of options were considered for determining the best way to calculate an 

algebraic solution to the equation The input function was replaced by step, ramp, best fit 

ramp, parabolic, and cubic spline functions, each varying which input points to use. After 

comparing the output from each of the solutions, the Analytical Solver for a Parabolic 

Input was selected. In this case, three of the input points are used: the start point, end 

point, and mid point. 

3.4.2 Analytical Solver for a Parabolic Input 

With the parabolic input, starting from Equation 3.1, found in the previous 

subsection, and using a parabolic input of the specific form: 

u(t) = \alt2+a2t + a3 ax = 
2(u0—2ux+u2) 

A2 

— 3 w 0 —4U X + U2 

A o 

3.2 

Where: 

A is a discrete time interval representing half the forecasting period 

u0=u(t), ux-u(t+A), and u2=u(t+2A) 

The specific solution then is found to be: 
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y(t)= —Til -4ku0 + Uul-4ku2+\6ku0t2-32kult2+^ku2i:2 

A to L 
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3.3 

This solution can be manipulated to provide two Equations of the form: 

y ( t + 2 A ) = A 0 y { t ) + A l ^ ^ - + A 2 u ( t ) + A 3 u { t + A ) + A 4 u ( t + 2A) 
at 3.4 

One equation is valid for £ < 1, and the other valid over the range for g> 1. The 

equations of this form are used in the algorithm to produce the best prediction of y, as 

well as the predictions for the maximum and minimum limits of y at the extremes of 

allowed values for ox and £ The development of equation 3.4 and final values for A 0 

through A s are shown in Appendix B . 

The problem to solve is then to find the maximum and minimum y(t+2A), where 

only the parameters ox and C, change. The solution to the maximunVniinimum problem 

then is as follows: 

- ^ = 0 ^ = 0 3.5 
dco„ dt, 

In the current equation forms for y(t) however, no analytical solution to these 

equations could be found. To eliminate the exponential functions from the solution for 
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Equation 3.5, the exponential functions of Equation 3.3 were expanded as power series 

to four terms, which yields the function: 

^ + 2 4 = 3 ' ; + ^ y - ' 2 ^ L ( 6 ^ y C + ( * ( - 4 M y + 4 + « y + 2 J + 3 ^ ) c o „ ) 

2 3.6 

-t3^(ayJ-4dyJr;2+2(kuJ-yj)r;wn) 

The power series expansion shown in Equation 3.6 is accurate to within 1% of the 

analytical value at up to 0.8 radians. The maximum or minimum condition for this 

equation is found at: 

<^(-2dyjt-3kuj+SkUj+4-2kuJ+2a-3yj) 3.7 
60 = ; 

-kuj + yj 
3CJV rtK lit U 2 ' " 2 Idyj+ktUjwl-tyjUSl ^ 

Adyjtwn 

3.4.3 Results 

Algorithm comparison was initially performed in Matlab. Selected results are 

shown for the Analytical Solver for a Parabolic Integrator. The results were gathered 

using a normalized second order system with gain set to 1. The first selected input form 

is a sine wave, operating with an amplitude of 1.0, and a frequency which is half of the 

natural frequency of the system being analyzed. 

The system envelope of the parabolic integrator, in response to the sine wave input 

is shown in Figure 3.7. The figure shows five data series. The first series is the input 

signal to the transfer function of the model and to the prototype Dynamics Response 

Indicator. The three series that track with a phase lag are the actual system output, and the 

high and low boundaries of system performance as predicted by the Dynamics Response 

Indicator. The final data series is actually at zero for this entire test, but it is representative 
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of the error between the actual system output and the boundaries, and is non-zero only 

when the actual output deviates outside of the high and low limits. 
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Figure 3.7: Parabolic Analytical Integrator Response to Sine Wave Input 

In this test, the parameters 0% and £ are allowed a tolerance of 2 0 % from their 

idealized values. It is apparent that for this test, this system performance envelope 

entirely encapsulates the output of the system. The parabolic approximation is fairly 

accurate across the entire range of the sine wave input signal. 
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Figure 3.8: Parabolic Analytical Integrator Response to Square Wave Input 

The second test shows system response to a square wave input in Figure 3.7. This 

chart has five data series. The first series is the square wave input. There is the series 

which represents actual system output, and then the high and low boundaries of system 

performance as predicted by the Dynamics Response Indicator. The final series is 

representative of the error between the actual system output and the boundaries. 

At the beginning of the step, the high and low boundaries increase, where the 

actual system drops. This occurs because of the parabolic approximation of the input, 

whose three data points are 0, 0, and -1, which will result in a parabola with a maximum 

value greater than 0. The high and low boundaries then quickly drop to below the actual 

system, when the data points in the parabolic input are 0, -1, and -1. It is clear now that 

the parabolic approximation is adequate when the system input is a continuous function, 

but performs poorly when the input is discontinuous. 
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A second set of errors is shown in the interval of 2.8 to 2.9 seconds, and is a 

limitation of the method used. This error type led to the use of the prediction for 

maximum and minimum predictions given in equations 3.7 and 3.8. It is also important 

to note that the power-series expansion is accurate to 1% at 0.8 radians of the undamped 

natural frequency; this indicates that small deviations in the system from the thresholds is 

expected, and the magnitude of the error in this interval is approximately 1%. 

3.5 Health Monitoring Layer 

The desired output from a health monitoring layer is a set of values that are 

indicative of the current health status for a given component. Each unique health monitor 

should aggregate a set of indicators, and all of the methods that describe those indicators. 

It should be designed to be aware of the error status of its input states. The health 

monitoring layer should collect each of the local monitors to create a composite health 

vector that describes the health of components and subcomponent at the desired 

resolution. 

The Error Detection classes are responsible for detection of errors with the sensors, 

and determining an agreed value for a particular quantity. Furthermore, they are also 

responsible for disabling faulty sensors. The health indicators are used to monitor 

actuator and plant performance, with that data being used in a diagnosis engine, which in 

turn would trigger the Actuation Management classes. The diagnosis phase of the Health 

Monitoring System is not included in this analysis. 

The Health Monitoring indicators are model based, as described in Section 3.3, 

which makes each indicator dependent on the current system state and the input applied 

over a period. The Health Monitoring Layer is necessarily reliant on the systems' sensors, 
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observable states, and controller inputs. Therefore, to achieve its goals, it needs to use the 

system hardware abstraction, and also to use the current error status of all of the state 

variables used. 

The performance measuring objective of the Health Monitoring System led to the 

selection of a scheme where each indicator returns a quantitative measure corresponding 

to the degree of deviation from good behaviour. The indicator's scalar value increases as 

the performance error increases. 

3.5.1 Layer Framework 

Figure 3.9 shows a flow chart of the data used by the health monitor system during 

normal operation. L>uring the first step, the RunModel method is used, which updates the 

model elements, and generates a prediction for the system state, and the upper and lower 

boundaries for the analytical sensor. If a sensor has already failed, the Redundant 

Analytical Sensor, shown as 1 .(B) is executed, allowing the Local Error Detection object 

to properly check for sensor agreement. 

The second step in the data flow for the Health Monitoring system is updating the 

system states with the values produced by the Distributed Error Detection routine. This 

then allows the calculation of the output values for each of the Health Indicators. 
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Figure 3.10: Health Monitoring Framework 

The abstraction of the framework for the Health Monitoring Layer is shown in 

Figure 3.10. Detailed descriptions of the classes are given in Appendix C. The health 
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monitoring class is responsible for organizing the indicator output data and parameters. 

Objects of this class are updated at an integer multiple of the loop closing frequency, and 

provide health information for the given component if the input state variables are error-

free. The system description and fault-tolerant framework classes are shown to indicate 

how they relate to the Health Monitor. 

Each of the modelling objects that make up the health monitor model is collected 

in the Health Monitoring Class. This allows the system to manipulate its execution rate, 

to select individual models for execution, to access model data, to display current status, 

and to adjust each model at run time. A l l of the models are run by the RunModel method, 

where the RunModel method calls the equivalent method from each of the models within 

the Health Monitor collection; as an alternative, the function could call a Forth word to 

run the models in a particular order. The model output data is then stored, and it can be 

compared to the system state vector to generate the Health Indicators, which in rum 

would be used by a diagnosis object. 

The DHMS-20DE class provides the second order threshold estimator and state 

predictor described in section 3.4. It is also the key element in the Dynamic Response 

Indicator. When the RunModel method is called, the model predicts the system output 

and the upper and lower thresholds of the output state. The UpdateStates method is used 

to store the actual current system state. These two functions are separated and called 

independentiy so that the prediction of the output state and the thresholds can be 

calculated and used as an analytically redundant sensor in a Local Error Detection object 

when one of the redundant physical sensors has failed. The LED object uses the 
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predicted state and thresholds in the inexact voting scheme, which determines the actual 

current system state. 

Input states are normally used from the Distributed Error Detection object. 

Typically, control signals are collected directly from the commands that are sent to the 

actuators. The health monitoring object can be attached to any type of component; it 

could represent a Unit, Component, Command or a specific Actuator. This gives the 

benefit of allowing the designer to set the granularity of the Health Monitoring System to 

any superset of the granularity defined by the System Description objects. 

3.5.2 Model Framework 

A l l of the models used are based on the TransferF class. The models take 

advantage of the inheritance and polymorphism properties of the object oriented Forth 

extension. Each of the models used is registered in the Health Monitoring object, 

allowing for some modelling parameters to be changed system-wide, and on demand. 

For normal operation, the designer specifies how the models are run. This function 

is implemented as part of the instantiation, and is registered in the health monitoring 

object to be used with the RunModel method. Some of the model classes are introduced 

here. Please see Appendix C for additional software documentation. 

The Saturation class is an example of one of the non-linear models that make up 

the health monitoring predictor. It allows for double sided saturation at two values. The 

non-linear models make use of the RunModel method by default, and the UpdateStates 

method will only update the internal state, not the output state. 



Chapter 3: Development of a Distributed Health Monitoring System 66 

The RateLimiter class is designed to check the velocity over a period of time and if 

it exceeds a given maximum speed, definable in each direction, truncates that speed to the 

limit. Like the Saturation class, the RunModel method is used to add the new input and 

update the system model. The UpdateStates method can update an input, but will not 

update the output. 

The DelayRelay class is a special case of non-linear models. It tracks an internal 

position state that activates output at the set thresholds. This class is used to describe the 

behaviour of the solenoid operated valve and the dynamic delays that it applies to the 

hydraulic system. 

The TimeTolerance class provides a tolerance to uncertainty of measurement 

timings, by allowing for a state value to be compared to threshold values at different 

times. In particular, it uses the u_h and uj variables, which are high and low thresholds, 

and checks the y state to see that it lies between those thresholds, not only at the current 

time, but also within a time tolerance into previous recorded history or also for subsequent 

values. 

The TransDelay class provides a transport delay on the input signal equal to the 

delay parameter. The UpdateStates method allows the history of states to be overwritten 

without affecting the current output, while the RunModel method drops the earliest 

history point to the output state and adds the current input to the queue. 

The WindowAvg class computes the average value of a state over a given period of 

time. The averaging window moves with each update, subtracting the earliest value and 

adding the newest to a running sum when the RunModel method is used. The 

UpdateStates method allows the user to overwrite the current sum. 
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3.6 Summary 

This chapter has discussed the fault-tolerant framework that the health monitoring 

functions are designed to interface with. It also discusses the three health indicators that 

are used, and the models used to describe them. 

It shows how the analytical solution was derived for the prediction of system state, 

adaptive thresholds of prediction, and the Dynamics Response Indicator. The chapter 

also shows the preliminary results achieved that led to the selection and the development 

of the analytical model used. 

Finally, this chapter discusses the health monitoring object, and how it is 

dependant on the classes that describe the system, and the error detection classes. It 

discusses the algorithm used. The non-linear models that were developed for the project 

are also described. 
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Chapter 4: Validation and Test of 
Health Indicators 

4.1 Introduction 

In order to use a Health Monitoring scheme, appropriate indicators must be 

selected, tested, and results validated. This chapter describes the design of a hydraulic 

steering system, the steer-by-wire components and the instantiation of the health 

monitoring vector components. Overall system performance, and also the testing and 

validation of its results are discussed in detail. The performance of the health monitoring 

system is demonstrated with respect to the motion of the cylinder. The success of the 

indicator is dependant on the health of many other components: the health monitor 

models the cylinder's performance with respect to commands sent to the valve and pump 

motor. 

The first part of this chapter provides a detailed description of the steer-by-wire 

system, the design of the health monitoring models, and the instantiation of the health 

indicators. The second part (of this chapter) describes the experiments used to 

demonstrate performance of the indicators, and their results. 
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4.2 Design of the Hydraulic Steering System 

The experimental system models the components expected to be present in the 

hydraulic power steering system of an outboard driven power boat. The test bed includes 

all required hydraulic components from the pump to the cylinder. For the purpose of 

isolating the test of the Health Monitoring system, the helm input is computer generated. 

Figure 4.1: Hydraulic Steering Test Bed 

Under normal operating conditions, it is expected that the drive-by-wire steering 

system would be controlled by multiple computers. The distributed computing 

environment would include error checking and data sharing via network communications, 

as is implied in section 3.2.4. To isolate and test the health monitoring functions, the 
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experiments done here involved only one E C U without communication with the others in 

the network. 

A photograph of the hydraulic steering apparatus is shown in Figure 4.1, and the 

electronic components are shown in Figure 4.2. The majority of the embedded computer 

configuration was completed by Bouvier [11]; the focus of the work described in this 

thesis is the control of the hydraulic system. 

Figure 4.2: Embedded Computer Configuration 
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4.2.1 Hydraulic Circuit 

The circuit diagram for the hydraulic actuation system is shown in Figure 4.3. This 

circuit diagram shows the configuration of the hydraulic components, and builds on the 

diagram shown in Figure 2.4. The parts lists are shown in Table A . 1 and Table A.2. 

Figure 4.3: Hydraulic Circuit Diagram 

Motor. The pump, motor, and reservoir are supplied as a combined part by 

Teleflex, and are representative of components that would be used in a power-steering 

application. The motor is a typical brushed DC motor, and is powered by a 24 V DC 

supply from a large diesel truck battery. The power supply to the motor is switch 

controlled by the embedded computer via a Crydom solid-state relay. The switch used in 

this application could be replaced by an amplifier, which would allow for control of the 

pressure or flow rate from the pump. The inductance of the motor is low, which gives it a 
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low electrical time constant, and hence when switching the power on and off to the motor, 

the current inrush is very high. This makes P W M control of the relay difficult, as current 

requirements are too high. The power circuit is also fitted with an emergency interrupt 

switch to cut power manually. 

Pump: The pump, included with the motor and reservoir, is a gear pump and is 

direcdy powered by the DC motor. The pump is fitted with internal relief valves set to 

1400 psi on the up port (A), and 650 psi on the down port (B). The pump is reversible, so 

both ports are also connected to the reservoir. In combination with the given DC Motor, 

the pump is rated to provide 200 psi and 175 inVmin at 24 V and 40 A, and up to 1000 psi 

and 120 inVmin at 24 V and 60 A. 

Reservoir. The reservoir has a capacity of approximately 1 L. The volume of the 

entire circuit, including the filter and accumulator is approximately 2.5 L. The circuit was 

filled with Teleflex "Hynautic" Steering Fluid. 

Cylinder: The steering cylinder is a Teleflex SeaStar, model number HC5345. 

The cylinder contains a double-acting piston with area of 1.0 in 2 , and a stroke of 8.0 in; 

Symmetrical piston areas are required in this form of steering application, where 

symmetrical steering forces in both directions is important. 

Control Valve: The control valve from Parker, is a 4 Way-3 Position valve with 

solenoid operation and spring return. The neutral position (centered position) of the valve 

is a 4 Way hold; no fluid flows through any of the four ports. The first activated position 

directs flow from the pump via Port P to one side the hydraulic cylinder via Port A , and 

connects Port B, which is the cylinder's low pressure side, to Port T, which is the return to 

tank line. The opposite active position directs flow from Port P to Port B, and Port A to 
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Port T, which reverses the direction of flow at the cylinder. The solenoids are controlled 

by the embedded computer via a solid state relay (powered by a 24 V , 0.96 A holding 

current). Experiments found the valve to have a switch on time of 50 ms. The spring 

return time, which is the time it takes to move to the centre position, was measured to be 

110 ms. When the opposite solenoid was switched on, the powered return time was 

found to be 70 ms. 

Accumulator. The accumulator is sized to provide some supplementary flow to 

the system if the pump output decreases, up to 5 inches of stroke. It should also relieve 

some fluid shock when the system is operating around 700 psi. It should be noted that the 

maximum pressure observed was 500 psi on the manual gauge. 

Filter. The Parker in-line pressure filter is selected to provide pressurized 

contaminant filtering. The filter was selected to accommodate flow rates of up to 175 

inVmin, which resulted in a fairly large port size, "which necessitated using a number of 

fittings to step up the size, and then step it down following the filter. 

Manual Valve: The manual valve was installed to aid in filling the circuit, 

including reducing pressure and flow rate at the cylinder to bleed air from the circuit. 

Installing this valve also provides a convenient way to drop system pressure for 

maintenance, and also enables a series of tests to be run simulating a leakage condition 

with decreased pressure and flow rate. 

Pressure Gage: The pressure gauge has a pressure scale from 0 to 2000 psi, and is 

placed following the filter and check valve, and between the accumulator and the control 

valve. The gauge is suitable for checking average pressure during operation and the 

holding pressure that the system achieves. 
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4.2.2 Electrical Sensor Circuits 

The system sensors provide state iriforrnation about the hydraulic steering system 

to the embedded computer platform. The system has the capability to sense pressure 

information from three pressure transducers, and one single axis accelerometer connected 

to the analog input card as shown in Figure 4.4. The system also detects axis position 

with the optical linear encoder connected to the digital input card, which is also shown in 

Figure 4 . 4 . 
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Figure 4.4: Sensors Electrical Circuit Diagram 

The implementation of the Distributed Health Monitor only requires the position 

data from the linear encoder sensor for the selected health vector. A complete 

implementation of the Distributed Health Monitor and fault-tolerant system would 
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include the pressure transducers and the accelerometer, however they are not included in 

this system. The full parts list of electrical components used for the sensor circuit is listed 

in Table A.4. 

4.2.3 Electrical Actuation Circuits 

The embedded computer platform interfaces with the hydraulic steering system via 

the actuation circuit shown in Figure 4.5. The valve solenoids and the pump's motor are 

activated by the digital output board. The output pins controlling the valve are capable of 

logical high and low states, switched in software. In addition to logical high and low state 

control, the output pin controlling the pump's motor is also capable of P W M output in the 

frequency range of 16 Hz to 3900 Hz. When used with an appropriate amplifier, this 

P W M output will allow the pump and motor to be operated in a pressure controlled or 

flow control states. The complete parts list of electrical components used in the actuator 

circuits is presented in Table Appendix A.4. 
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Figure 4.5: Actuators Electrical Circuit Diagram 

4.2.4 Embedded Comput ing Platform 

The embedded computing platform is based on the SCM40, manufactured by 

EXOR International. The SCM40 includes at 64 bit CPU operating at 200 MHz, and an 

on board programmable FPGA. The CPU is the NEC MIPS VR4131, which uses a 

RISC architecture, while the Xilinx Spartan Re FPGA includes 200-600k gates. The 

SCM40 has 16 M B of R A M , 2 M B of bootstrap flash ROM, and 16 M B of SmartMedia 

flash ROM. The SCM40 is mounted to a carrier board, with ports for 24 V DC power 

supply, as well as RS232, RS232C, RS485, field bus, Ethernet 10 Base-T, CAN2.0b, and 

TPWire support. 
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Using the TPWire connection, the SCM40's carrier board is connected to two 

passive carrier boards which are used to house the digital input and output, and the analog 

input and output cards. Mounted on the first carrier board are the digital output and input 

cards. The digital output card is the TMDO01 from Sitek. The TMDO01 board includes 

16 isolated channels, each capable of 12 bit P W M output, with a maximum delay time of 

300 ps. Output current ranges from 10 to 500 mA. With the configured software system, 

this system provides 4 channels of P W M output, and 12 channels of controlled output. 

The digital input card is the TMDI01 from Sitek This board includes 16 channels of 

digital input, each with impedance of 3 k f i and maximum input delay of 50 u.s. 

Mounted on the second carrier board are the analog input and output cards. The 

analog input card is the TMAI01 from Sitek The board includes 4 single ended or 8 

differential analog input channels. Each programmable channel supports one or two 

single-ended voltage inputs, one differential voltage input, one current input, one RTD 

thermometer input, or one thermocouple input. Input voltage ranges are user 

programmable from the range of+/-10 mV to +/-10 V , and can be unipolar or bipolar. 

Input current ranges can be selected as 0-20 mA or 4-20 mA. Channel resolution is 12 

bits, and conversion rate is 6 ps plus a programmable delay. The analog output card is 

the TMAO01 from Sitek. This board has 8 output channels of-10 V to 10 V and 12 bit 

resolution. 

4.2.5 Embedded Computing Software Environment 

The Steer-by-wire and the health monitor applications are developed in Forth. In 

order to ensure portability of the application over multiple hardware platforms, the ANS 

Forth de-facto standard was selected. The object oriented extension used was developed 
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by McKewan, and is ANS Forth compliant. It supports the major object-oriented 

concepts such as inheritance, polymorphism, and aggregation. Within this object-

oriented extension, classes are defined between the delimiting words .Class and .Class. 

Inside each class definition, instance variables may be declared as any ANS Forth 

variable, or as an aggregated class. The scope of these variables is limited to the each 

object declared, and cannot be accessed directly from other objects of the same type. 

Also inside each class definition, methods are defined between the delimiting words :M 

and ;M, and the last character of every method name must be a colon (":"). After 

defining a class (e.g. Classl), an object (e.g. Objectl) can be instanced by calling the 

command Classl Objectl. It is then possible to access a method within that object (e.g. 

Methodl:) by calling the command Methodl: Objectl. The method Classlnit: is 

automatically called when the class is instantiated. The method's definition may be 

changed, which allows the developer to initialize the object's instance variables to a set of 

initial values. 

4.3 Instantiation of the Dynamic Health Monitoring System 

4.3.1 The Cylinder Positioning Model 

The form of the non-linear model used is shown in Figure 4.6. The output from 

the non-linear model is used as input to the Dynamics Response Indicator and the 

Average Response Indicator, as shown in Figure 4.7 and Figure 4.8, respectively. 

As can be seen in Figure 4.6, the output from the controller is a flow rate vector. It 

is converted into a scalar flow rate command at the pump and a unit vector representing 

flow direction at the valve. The pump model is simplified as the magnitude of controller 

command signal, and passed to a relay, thus representing the state of the pump as being 
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on or off. The valve is represented as a relay, where each switching is dependent on the 

current state of the relay. The state-dependent relay has three possible output states, one, 

zero and minus one, which constitute the direction of fluid flow through the valve. The 

time the valve spool takes to make each of these transitions is different. There are six 

possible transitions, and the timing for each transition is programmable into the state-

dependent relay model class. 
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Figure 4.6: Non-Linear Model 

Finally, the output from the state-dependent relay and the output from the pump 

relay are multiplied to yield a directional flow rate that is processed by a double sided 

saturation block. This block models a saturation of the flow rate in each direction at 

programmable set-points (not necessarily symmetric). The output from this block is the 

expected flow rate vector at the cylinder. 
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Figure 4.7: Dynamics Response Indicator 

In Figure 4.7, the output from the non-linear model of Figure 4.6 is shown entering 

the Dynamics Response Indicator. The linear part of this model is the quadratic predictor, 
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which produces three outputs: a high threshold, low threshold, and a prediction of the 

system state. Each of these signals is passed through a rate limiter followed by a rime-

tolerance. The prediction of system state is the state estimate output of the health 

predictor. This, combined with the high and low thresholds make up the analytical 

redundancy that would be used to reduce degradation given a sensor failure. The DPJ is 

calculated from the difference between the actual system state and the high or low 

boundary of system state, whichever yields the smaller magnitude. 
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Figure 4.8: Average Response Indicator 

In Figure 4.8, the output from the non-linear model of Figure 4.6 is shown entering 

the Average Response Indicator. The value passed into the health indicator is an estimate 

of the flow rate, but it does not take in to account the delay that is caused by switching the 

valve direction. The rate-lirniter object is used account for the switching delay, and the 

output from it represents the cylinder velocity. 

The average state change indicator is the difference between the modelled average 

cylinder velocity over a period of time, and the average measured velocity at the start and 

end of the same time interval. 
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4.3.2 Hydraulic System Identification 

The behaviour of the hydraulic cylinder in response to the controller input was 

identified using Plackett's algorithm for least squares system identification, but only after 

the non-linear elements were cancelled using the non-linear model described in section 

4.3.1. To verify the findings of this system identification, the data was checked again in 

Matlab, using the system identification toolbox. 

The system undamped natural frequency was identified as 70 rad/s (average of 40 

tests), and the damping ratio was identified as 0.7 (average of the same 40 tests). 

4.3.3 State Predictor 

The State Predictor sensor provides an analytically redundant system sensor to 

enhance detection of sensor faults and protect against continuous system degradation. It 

provides a best prediction of the system state using the same model and object as the DRI, 

and uses the DRI's upper and lower health thresholds as limits on the accuracy of the 

sensor, which makes it more sensitive when the system is in a static condition, and less 

sensitive during dynamic conditions. 

Section 3.2.4 discusses the redundancy management architecture and the Local 

Error Detection class. The Local Error Detection object uses the information about the 

accuracy and range from each sensor that is assigned to a given Quantity. The sensor 

information is used to perform an inexact voting scheme to determine if any sensor has 

failed, and then a weighted average to calculate the Quantity state value. The output from 

the analytical sensor can be used by the Local Error Detection object in the same way. If 

the history of the Dynamics Response Indicator shows that the system is in good health, 

then this sensor maintains the voting functionality required by the Local Error Detection 
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routines. However, once the DRI is being used as a sensor, the value of the health 

monitor for that component becomes questionable, as each state used by the model is 

dependent on a previous model estimate. 

To validate this sensor, its output is compared to the acquired sensor values and 

accuracy limits for the Local Error Detection object. If the Local Error Detection routines 

do not detect it to be faulty for the normal case then it provides an adequate state 

prediction during normal operations. The sensor must then be validated for sensitivity in 

each of the simulated fault operating conditions. 

4.4 Validation Parameters 

4.4.1 Repeatability 

To validate the health indicator for repeatability, a number of tests were run under 

various operating conditions, input frequencies and input magnitudes. Each of the 

indicators is inspected graphically to determine whether it is performing in a repeatable 

and expected manner. The magnitude of the error signal recorded for the duration of the 

test is examined to verify that indicated errors can be confirmed. The only errors 

introduced in this test are power failure, low flow, and fast input signal. 

4.4.2 Sensitivity 

To validate the health indicator for sensitivity, the output from the health indicator 

is checked against varying operating conditions. The tests varied flow rate and pressure 

of the hydraulic system, allowing for errors to be simulated for detection. 
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4.5 Test Setup 

4.5.1 Health Monitoring Configuration 

The embedded computing system was mn with a loop closing and sampling 

interval of 4 ms. The health monitoring model was configured with a prediction horizon 

of 4 samples, for a prediction time of 16 ms. Given the upper bound of frequency at 14.3 

Hz (70 rad/s), this represents approximately 82 degrees of motion. The parameters used 

by the dynamic model for the tests are shown in Table 4.1. A complete list of model 

parameters is given in Table C. 1. 

Table 4.1: Health Monitor Parameters 

Parameter Value Unit 
Quadratic Predictor 

k '(*) 1 
wn (a>n) 70 rad/s 
wn_l (<oib) 40 rad/s 
wn h (<» ) 90 rad/s 

zd (0 0.5 

0.4 

0.8 

4.5.2 Test Input 

The input is a computer-generated signal that represents a position command as 

would be received from the helm, where a given input position is proportional to an 

output position in the cylinder. The input signal is already scaled to represent a command 

of the cylinder position, to set the system gain to 1. 

To identify the affects of all operating conditions, (particularly transitions in the 

valve state) the input signal used is a triangular wave, of constant amplitude, but at 
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varying periods. The selected input periods are 1500 ms, 1000 ms, 500 ms, and 333 ms, 

corresponding to input frequencies of 0.67 Hz, 1.0 Hz, 2.0 Hz, and 3.0 Hz. 

4.5.3 Operat ing Conditions 

The system is tested under three different operating conditions. The first condition 

is normal operation, and is used as the benchmark for all tests. Under normal operating 

conditions, the motor is fully powered, and the manual valve shown in Figure 4.3 is fully 

closed. The steering cylinder has no load to move. The current model and control of the 

pump output is stricdy on-off, and for this thesis, it was assumed that the pump's output 

flow rate was at the saturation point during testing. 

In the second operating condition, the system undergoes intermittent power failure. 

The intermittent power failures are achieved by switching off the motor power at the solid 

state relay indicated in Figure 4.5. The relay is switched off at '4 of the way through the 

second triangular wave, and restored at V* of the way through the third wave. This 

process is repeated for each of the four wave periods, creating intermittent power failures 

of varying times, but proportional by time within each input frequency. 

The third operating condition has the system run in a low-flow state. The manual 

valve shown in Figure 4.3 is opened part way, which re-routes the flow away from the 

control valve, and therefore decreasing flow rate at the cylinder. The manual valve is not 

adjusted during the test, so the flow loss is constant. 

Figure 4.9 to Figure 4.23 show data collected from three tests, one from each of 

three operating conditions. The first figure in each set is under normal operating 

conditions, followed by graphs of the system experiencing intermittent power failure, and 

finally experiencing a low-flow operating condition. 
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4.6 Instantaneous Response Indicator - System Position 

The Instantaneous Response Indicator is shown in Figure 4.9 to Figure 4.11. The 

ability of the system to track errors in the normal operating conditions and also in the 

error conditions is shown. This error signal clearly shows that the system plant has a poor 

ability to track a given input signal. 
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Figure 4.9: Instantaneous Response Indicator: Normal Operation 

In Figure 4.9, the low frequency triangular wave input test shows the system 

tracking to within a maximum error of 6 mm. Over the input range of the signal, 26.250 

mm, this represents a margin at 23% of the motion. On the assumption that this is an 

acceptable input, then the threshold for poor health detection would be around 6mm. 

When the test input period decreases to 1.0 s, one can clearly see an increased error 

margin; with an input period of 0.5 s or 0.333 s, the system response moves out of phase 

with the input and large errors occur through all tests. The errors indicated with input 
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period of 1.0 seconds demonstrate that the system cannot respond to the magnitude of the 

motion command, as the velocity command is now faster than the saturation limits 

provided by the pump. 
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Figure 4.10: Instantaneous Response Indicator: Intermittent Power Failure 

Figure 4.10 shows the fRI during a test with the injection of an intermittent power 

failure fault. The indicator shows similar output compared to the no-fault test, until a 

power failure is injected. When the power failures are injected, the indicator's magnitude 

increases to as much as 55% of full scale, clearly indicating poor system health. 

Figure 4.11 shows the IRI during a test with the low-flow error condition; 

throughout this test, the magnitude of the indicator remains large (greater than 25% of full 

scale), and has less variation than during the no-fault test. 
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Figure 4.11: Instantaneous Response Indicator: Low Flow Operation 

4.7 Average Response Indicator - System Average Velocity 

The results for the Average Response Indicator are shown in Figure 4.12 through 

Figure 4.14. Each figure shows three data series. The first series is the measured velocity 

of the hydraulic cylinder. The error signal is the difference between the actual velocity 

and the expected velocity, which is developed in Chapter 3. As shown in Table 4.1, the 

system velocity is averaged over 0.120 seconds. At the leading edge of each step one can 

see a significant error margin appear. During this dynamic range, where expected 

frequencies are in the range of 10 Hz to 20 Hz, this is expected, but when the actual 

velocity begins to settle, one can easily detect errors between the modelled and actual 

velocities. One can also note that the velocity behaviour is significantly different when 

alternating the direction of flow compared to alternating the flow between 0 and 
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saturation. One can observe in these figures that the model is able to track changes in the 

modelled input response for the normal case, but also detect errors that affect, in this case, 

flow rate. 
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Figure 4.12: Average Response Indicator: Normal Operation 

Figure 4.13 shows the ARI during a test with the injection of an mtermittent power 

failure fault. In this test, the disparity between the expected behaviour and the actual 

behaviour is dramatic, and the signal from the health indicator clearly shows poor health. 

Figure 4.14 shows the ARI during a test with the low-flow error condition. During 

this test, the magnitude of the signal from the health indicator is consistently large (about 

50% of full scale), and clearly indicates poor system health. 
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Figure 4.13: Average Response Indicator: Intermittent Power Failure 
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Figure 4.14: Average Response Indicator: Low Flow Operation 
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4.8 Dynamic Response Indicator - System Velocity 

One can observe in Figure 4.15 to Figure 4.17 that the Dynamic Response 

Indicator shows little response to normal operating conditions, thus indicating that the 

model can accurately predict boundaries on system dynamic response. In Figure 4.18 to 

Figure 4.20, one can see how the Dynamic Response Indicator immediately responds to 

changes in dynamics through the intermittent power failure test, and Figure 4.21 to Figure 

4.23 show results for the low flow operating condition. 

4.8.1 Normal Operations 

Figure 4.15 shows 10 seconds of test data under normal operating conditions. 

Figure 4.16 shows the same data set during the interval 2.0 seconds to 3.5 seconds4. 

During this period, the position input signal is a triangular wave pattern with a period of 

1.5 seconds; the exact input data can be seen in Figure 4.9. These figures show the upper 

and lower boundaries output by the Dynamic Response Indicator, the actual system 

velocity, and any error encountered. The figures show the extent of the non-linearities 

encountered, the irregular settling velocity, peak velocities, and dynamic responses of the 

cylinder. In particular, one can note the settling characteristics of the system at times 

2300 ms and 2800 ms. The responses at these times exemplify the large variation in 

system dynamics when responding to similar commands from different starting states. 

Also, one can notice the lack of symmetry with each of the responses, the different peak 

values, and different settling values. 

4 The period from 2.0 seconds to 3.5 seconds has a relatively slow input signal (longer period of the square 
wave). The same period of time is shown in each of the subsequent tests, when faults are injected into the 
system. 
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Figure 4.15: Dynamic Response Indicator: Normal Operation 
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Figure 4.16: Dynamic Response Indicator: Normal Operation Slow Input 
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Finally, in Figure 4.17, which is of the same test at time interval 8.0 seconds to 9.0 

seconds5, one observes that the system responses are fairly similar at each step, and while 

there is a recurring error detected at each leading edge, it lasts for only one cycle. The 

system responses are nearly symmetric across the time axis, and while there are slight 

differences in the settling velocities, the Dynamic Response Indicator handles these 

differences without issue. 
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Figure 4.17: Dynamic Response Indicator: Normal Operation Fast Input 

In these graphs, one can now clearly see the four data sets. The actual system state 

generally falls within the predicted high and low boundaries of the Dynamic Response 

Indicator. The error signal usually occupies the time axis except for a few short 

deviations. 

5 The period from 8.0 seconds to 9.0 seconds has a relatively fast input signal (shorter period of the square 
wave). The same period of time is shown in each of the subsequent tests, when faults are injected into the 
system. 
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4.8.2 Intermittent Power Failure Operating Condition 

Figure 4.18 shows 10 seconds of test data when the hydraulic pump and motor 

system experiences intermittent power failures. The significant behaviour change that 

results from the un-powered condition is clearly visible in the figure, and is apparent at 

times 1900 ms to 3400 ms, again at 6000 ms to 7000 ms, 8200 ms to 8700 ms, and at 

9400 ms to 9700 ms. Figure 4.19 shows the same data set during the interval 2.0 seconds 

to 3.5 seconds. During this phase, the position input signal is a triangular wave pattern 

with a period of 1.5 seconds; the exact input data can be seen in Figure 4.10. These 

figures show the upper and lower boundaries output by the Dynamic Response Indicator, 

the actual system velocity, and any error encountered. 
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Figure 4.18: Dynamic Response Indicator: Intermittent Power Failure 

During each period immediately following the leading edge of a step input, the 

system quickly detects large deviations from the dynamic model, this is shown in Figure 
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4.19 as two negative spikes. The system also shows a significant settling velocity error. 

During the transition phase between a positive and negative step, one can see that the 

system stops detecting errors; this is expected behaviour for this indicator, as the refresh 

of starting data briefly places the system velocity at 0 with a command velocity of 0. 

Figure 4.20 shows the same test at the time interval 8.0 seconds to 9.0 seconds, and 

captures the power failure when the system is still in the dynamics phase. The error 

indicator immediately begins to grow as the system velocity drops to 0. Like the slow 

input case, there is a brief transition period as the valve switches flow direction, before 

reaching a new settling error. 
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Figure 4.19: Dynamic Response Indicator: Intermittent Power Failure Slow Input 
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Figure 4.20: Dynamic Response Indicator: Intermittent Power Failure Fast Input 

4.8.3 L o w F low Operat ing Conditions 

Figure 4.21 shows 10 seconds of test data when the hydraulic steering system 

experiences a low flow condition. The low flow condition is comparable to a significant 

system leak, power supply reduction to the motor, or a pump problem. The low flow 

condition is created by partially opening the manual relief valve, which is located before 

the 3-position control valve and feeds back to the reservoir. The low flow condition is 

easily detected by the indicator, and can be clearly seen when inspecting the figures 

visually; actual system speed is always less than the predicted speeds, and generates a 

significant steady state error. 
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Figure 4.21: Dynamic Response Indicator: Low Flow Operation 

Figure 4.22 shows the same data set during the interval 2.0 seconds to 3.5 seconds. 

During this period, the position input signal is a triangular wave pattern with a period of 

1.5 seconds; the exact input data can be seen in Figure 4.11. These figures show the 

upper and lower boundaries output by the Dynamic Response Indicator, the actual system 

velocity, and any error encountered. 

During each period immediately following the leading edge of a step input, the 

system's dynamic response is within the tolerances of expected behaviour. This occurs 

because the dynamics (undamped natural frequency, damping ratio) are relatively similar, 

but the gain is lower. However, the Dynamic Response Indicators shows a significant 

settling error. Figure 4.23 shows the same test at the time interval 8.0 seconds to 9.0 

seconds, and clearly shows that system dynamics still behave as predicted. As it did in 

the power-off case, the system reaches a settling velocity error in this test too. 



Chapter 4: Validation and Test of Health Indicators 97 

CO 

E 
= L 

O 

o 
0 
> 
i _ 
CD 

"D 
C 
•>. 
o 

120000 

100000 4 

-120000 

2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3000 3100 3200 3300 3400 3500 
. lin vel \ lin_vel_error lin_vel_p_min_tt \lin_vel_p_max_tt tilTI© (fTIS) 

Figure 4.22: Dynamic Response Indicator: Low Flow Operation Slow Input 
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Figure 4.23: Dynamic Response Indicator: Low Flow Operation Fast Input 
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4.9 Results Achieved and Limitations 

In the hydraulic steer-by-wire example, the health monitoring system has been 

applied to a single system and sensor. The health monitoring system evaluates the 

performance of the position and velocity of the hydraulic cylinder with respect to the 

helm input, and the actuator inputs at the pump and valve. The sensed parameter that is 

augmented with analytical redundancy is the linear velocity of the cylinder. The 

hydraulic steering system simulator was designed, assembled and instrumented. 

The health monitoring indicators detect healthy operation when the system is 

operating normally, with typical inputs. Typical input to the system is represented by the 

0.67 Hz and 1.0 Hz triangular wave inputs. 

The indicators have been tested against two error conditions. The first error 

condition is the power-off case. In this case, the Instantaneous Response Indicator shows 

a rapid increase in error, but also shows a decrease in error as the reference signal passes 

through the stalled state of the system The Average Response Indicator shows a large 

error at each of the power-off cases. The Dynamics Response Indicator however, shows 

that the system dynamics stay within operating requirements at the beginning of a power 

failure, but it also shows a steady state error. It also clearly shows that the dynamics do 

not perform within specification after a short period of the power-off. 

The second injected error condition is the low-flow case. Here, the Instantaneous 

Response Indicator shows a larger response (which demonstrates poor health) than in the 

normal operations. The Average Response Indicator shows a large errors response 

throughout all of the periods of steady-state operation. The Dynamic Response Indicator 

shows that the steering system continues to behave within the specifications in the interval 
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irnmediately following a change at the valve, where the system dynamics are more 

pronounced. It also shows that the steering system is unhealthy during the steady-state 

period. 

Finally, the Dynamic Response Indicator results show that this indicator's 

performance also makes it adequate for use as a redundant sensor tool for the system 

velocity, should a redundant velocity sensor fail. The output from the DRI is based on 

previously measured values from the redundant sensors, when they are considered 

healthy. However, the accuracy of the DRI as a sensor is less than the physical sensors, 

its value would not be trusted alone. Instead, it would be included in the voting scheme to 

arbitrate between two sensors that do not agree after the third has failed. 

One limitation of this work is its need for further testing of the sensitivity of the 

health indicators. The tests show that the data output from the health indicators is a good 

predictor of system state, and that the health monitoring parameters can be selected to 

detect when the system behaves as expected. The tests show that the system can detect 

low power scenarios, low flow scenarios, and also shows errors when the system 

responds to high frequency input. 

The health monitoring system is designed to use data collected from multiple 

ECUs, where each of the system states are measured and shared across a network. The 

indicators selected are designed that they can also easily be shared across a network. The 

distributed functionality of the system states was developed in the preceding work by 

Bouvier. The communication of the health monitoring states is also untested in the 

network. 
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Other system states could be monitored for errors, particularly within the hydraulic 

system. Ideally, the pressure transducers could be used to measure the system pressure 

throughout the system, and monitor pressure change across the valve, and then this could 

be used within the system model to predict the acceleration at the cylinder. The pressure 

transducers would decrease the granularity of errors that are detectable by the health 

monitor. The existing system is limited in granularity by the position of sensors used; 

only the entire hydraulic system from pump to cylinder is included in the model. 

Instrumentation within the hydraulic system would allow for errors of finer granularity to 

be detected. 

No diagnostic module has yet been developed to assess when the health indicators' 

output detects failure, and this needs to be developed for the system to be a practical tool 

as an actuator performance measure. 

4.10 Summary 

In this chapter, the concepts detailed in Chapter 2 and Chapter 3 are shown in use 

in an experimental system that was designed and built as part of this thesis. The 

experimental apparatus is described in detail. 

The concepts of condition monitoring, parameter identification, and state 

estimation are put to use within the health monitoring scheme. The system models used 

and the parameters used within the software written are shown. This chapter also 

describes the identification of the hydraulic system. 

Experiments performed to verify the presented theory are described. Inputs to the 

experiment and the health monitor are shown, and graphs of the experimental results are 
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shown. The health indicators are tested in normal operation, and then with injected 

errors: intermittent power failures and low pump flow. 

Finally, the performance of the indicators of the experimental system is assessed, 

and some of its limitations are indicated. In particular it shows that the combination of the 

three health indicators can indicate error conditions when appropriate, and that the model 

used by the Dynamic Response Indicator can be used as a redundant analytical sensor 

arbitrator, if a redundant physical sensor fails. 
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Chapter 5: Conclusions and 
Recommendations for 
Future Work 

5.1 Conclusions 

The use of embedded systems in consumer and industrial applications is expected 

to increase in the future. The performance, flexibility, efficiency and feature benefits 

associated with these integrated systems are too desirable to ignore. However, one must 

acknowledge the potential for risk involved in these systems, and then realize that to gain 

public acceptance and guarantee the stringent safety requirements, it is necessary to build 

an architecture that provides a high level of fault-tolerance. It is also evident that these 

systems must have an awareness of the health of each of the components. Health 

monitoring adds a layer of safety, and it also adds the potential to increase uptime and 

protect the monitored system against degradation. 

Other researchers have approached this task with high levels of redundancy, 

specific sensors to detect health, and computationally expensive techniques. This thesis 

shows that the uses of analytical techniques in an appropriate framework can adequately 

detect the health of actuators, model their performance, and predict their future states, 

without the burden of adding specific sensors and without adding high computational 
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loads. The architecture presented in this thesis combines local error detection, distributed 

error detection, health indicators and system modelling. 

Health monitoring systems not only provide indicators of health, but also integrate 

adaptive thresholds, and provide analytical redundancy that protects the system against 

continuous degradation when sensor failure occurs. The health indicators can compose a 

system-wide health vector that indicates general system health or a specific component's 

health. 

The health monitoring framework uses a novel approach of using continuously 

updated non-linear system models, paired with reduced order system modelling and 

performance criteria to provide composite health indicators with adaptive thresholds and 

analytical sensor redundancy. 

Using this approach it is possible to detect actuator, plant, and active component 

degradation and errors, and function when a sensor has failed. 

A hydraulic marine steer-by-wire system is a typical example of an integrated 

vehicle by-wire system, and can therefore be used to illustrate the concepts described by 

this thesis. An experimental prototype of such a system was built by the author as part of 

this thesis. The health monitoring architecture described was implemented. Testing has 

shown that the system is capable of representing normal behaviour, and also of detecting 

typical errors that occur in such a system. 

5.2 Recommendations for Future Work 

This work produces a series of health indicators, and a framework for organizing 

them. It also provides analytical sensor redundancy. The diagnostic functions were not 
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developed as part of this thesis, and would be required to adequately compensate for 

actuator faults, and recommend maintenance intervention. The actuation management 

class supports multiple controllers for a single plant, but this functionality has not been 

implemented in practise. Robust algorithms to allow for shared actuator loading should 

be investigated and applied to this project. 

The existing fault-tolerant architecture does not include analytical redundancy with 

adaptive thresholds within the local error detection and quantity error detection classes. 

To make full use of the health monitoring layer, these classes should be revised. 

Finally, the health monitoring layer uses shared data from each of the ECUs. As a 

required function however, a health monitoring distributed error detection class should be 

developed to ensure that the critical functionality and permissions granted to the health 

monitoring system, subsequent diagnostic and actuation management be themselves, 

fault-tolerant. 
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Appendix A: Key Components Listing 

Table A. 1: Hydraulic Components 

Name Part Number Description Qtv 

Directional Valve D1AA/V1CN-JCF4 4W-3P Directional Valve; Solenoid operated, 
spring centered, 24V DC, 0.95A; NFPA-D03 
Mounting 

2 

Subplate SPD23A Subplate Manifold, NFPA-D03 to NPTF-3/4 
Side Ported 

1 

Accumulator A2N0005D1K Piston Accumulator, 2 inch bore, 5 cubic in. 
capacity; SAE#12 port; charged to 700 psi 

1 

Filter 15CN210QN50M4M41 Inline Pressure Filter, SAE#12 Port; up to 
175 in3/min 

1 

Check Valve C1200B NPTF-3/4 Ported Check Valve 1 

Relief Valve RDH082S15-4P Variable Setting Relief Valve; NPT1/4 Port; 
Cartridge Valve; set pressure 1500 psi; body 
P/N B08-2-4P 

3 

Manual Valve BVSS2203-B Lever operated manual valve 1 

Pressure 
Transducer 

Y913 Bourdon-SedenneY913; 4-20mA; 0-1500psi; 
accuracy 2% full scale 

3 

Gage PG-2000 SG25 Accutek pressure gage; 0-2000psi 

Cylinder HC5345 Teleflex SeaStar Hydraulic Steering cylinder, 
Double acting; bore size 1.0 in2 

1 

Pump Pump from Teleflex; Reversible gear pump; 
Up port: 1400psi, Down Port: 650 psi; 200 
psi 175 in3/min at 24 V 40 A; 1000 psi 120 
hrVmin at 24V 60 A 

1 

Reservoir Reservoir from Teleflex; capacity approx. 1 L; 
use fluid HA5430 

Hydraulic Fluid HA5430 Teleflex "Hynautic" Steering Fluid 3 

Steering Hose 133744 Teleflex Steering Hoses; 12 feet long 2 

Hose Assembly F451TC-07-07-<W-4x24 2 foot hydraulic hose, NPT1/4-18 (F) ends; 
id=0.25; od=0.56; SAE100R17^; rate 
pressure 300 psi 

7 
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Table A.2: Hydraulic Fittings 

Name Part Number Description Qty 
Adapter 0101-12-12 NPT 3/4 MM 4 
Adapter 0101-4-4 NPT 1/4 MM 6 
Converter 0507-12-12 NPT3/4(F)toSAE#12(M) 2 
Reducer 0102-6-4 NPT 3/8 (M) to NPT 1/4 (M) 2 
Reducer 0102-8-4 NPT 1/2 (M) to NPT 1/4 (F) 2 
Swivel Converter 0507-12-12 NPT 3/4 (F) to SAE# 12 (M) 3 
Swivel Reducer 0107-12-8 NPT 3/4 (M) to NPT 1/2 (F) 2 
Swivel Reducer 0107-6-4 NPT 3/8 (M) to NPT 1/4 (F) 3 
T-Junction 012T-12-12 NPT 3/4 MFF 2 
T-Junction 012T-4-4 NPT 1/4 MFF 5 
T-Junction 1/4RRS-S NPT 1/4 MM M 4 

Table A. 3: Structural Elements 

Name Part Number Description Qty 
Bearing pillow 
blocks 

Pillow block for the shaft 2 

Linear Shaft Thomson linear race steel shaft 1 
Shaft support 
blocks 

Thomson steel shaft support blocks 2 

Table A.4: Electrical Components 

Name Part Number Description Qty 
Motor Solid State 
Relay 

Digikey:CC11039-ND; 
Crydom:DlD40 

Input: 0-5 VDC; Output: 12VDC, 40A l 

Current Diode Digikey: MUR1520IR-ND; Diodes/RECTIFIER FAST 200V15A TO-220AC 3 
Pressure 
Transducers 

Hydraulic Pressure transducers 3 

Linear Encoder Optical Linear Encoder 1 
Accelerometer Single Axis accelerometer 1 
Terminal Strip WM590G-ND 8.00mm Two-Screw terminal strip 4 

Multi Photocoupler PS2501-4 
NEC High Isolation voltage single transistor 
type multi photocouplers 2 

ECU SCM40 SCM40,200MHz, 64Bit embedded computing 
platform 

1 

Analog Input Board TMAI01 Sitek analog input board 1 
Digital Input Board TMDI01 Sitek digital input board 1 
Digital Output 
Board 

TMDO01 Sitek digital output board 1 
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y(t)= —j—j - 4 A r « 0 + 8AW| 
A a> L 

- 4 t a 2 + 1 6 i u 0 r ; - 3 2 A « , C + 1 6 t u 2 r 

-Sktu0tco+16ktultw-»ktu2tw+6ku0Atw-SkulAtw + 2ku2ACw+2kt2u0w2 

-4 k t2u,w2+2 k t2u2w2-3 k tu0Aw2+4ktu,Aw2-k I u2Aw2+kuo A2 w2 

J , , ( - c « r t . ^ T T ? « J ) .2 ( , , (iuaC-\6u,t+iu2t+lu0Aw-4uxAio + u2ALo) 
—I 2 \ E Aw\-dy0-k ——2 

(C + \Z-\+K2){-y0A2w2+k{u0{-4 + l6t2+6Atw+A2w2)+2(-4Ul(-\+4i:2+ 

A to )) 
r „ - f „ - , i C r ^ „ ) . 2 2 ( t ( » 0 ( - 4 + 1 6 C 2 + 6 ^ g w + 4 V ) + 2(--4»,(-l+4r; 2+4r;a ))+» 2(-2+8r; 2+4Ca )))) 

+ £ 4 10 a 2 . . . 2 

Ar(8uor;-16«, ? + 8 u 2 C + 3 i / 0 4 a ) - 4 U | 4 c o + u2zl(o) 
73 
A w 

2yJ-\ + t2w 

(t + 4-\ +t2)(-y0A2w2+k(u0(-4+\6t2+6 A£w+A2 t o 2 )+2 ( -4» | ( - l +4t2+A£to)+u2(-2+c\i:2 +AZto)))) 

24-i + tiA2w2 

Equation B. 1 (also equation 3.3) can be expressed in the form: 

)] 
B.l 

y{t+2A)=-^?{AN+Al+AR) u2 

dy0 

B.2 

Where: 

AN — 
2k (-2+$t2-Atw) 
8k(l-4£2+A£w) 

k{-4 + \6C2-6ACw+A2w2) 
0 
0 

B.3 
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-At;to( -AtuV-I+CJ Ato V-l+c'\ ] _ 

>v^i7? 

- * (- 3 4 a )+c (-12+16 r;2+6 A t, w+A2 w )) 
4 A : ( - d o j + 2 £ ( - 3 + 4 r ; 2 + 4 r » ) 
-k{-Aw + 2t{-6+8t2 + Atw)) 

A2tco2 

A2w 

B.4 

-±k(-4+\6C2 + 6A%w + A2w2) 

44(-i+4r; 2-t-4r;co) 

-k(-2+ZZ2+AZw) 

±A2w2 

B.5 

When £>1, equation B.4 and equation B.5 evaluate numerically as written, and 

easily interpreted by the simple math interpreter. However, when ^<1, equation B.4 

and equation B.5 can be slightly re-arranged to replace the complex components with: 

A , = 2e-aCa'sm(Aw^\-£.2)—,!_ 
2V1-J 

-k{-3 Aw+t(-\2 + \(>t2+eAtw + A2 w1)) 

4 * (- A w+ 2 £( -3 + 41 2 +A t to)) 

-k{-Aw+2t{-6+S^2+A ttx))) 

A2Z<o2 

A2w 

B.6 

AR=2e~'ic"'cos{Aw\h-Z2) 

~ k ( - 4 + \6Z2+6AZw+A2w2) 

4t(-l+4r; 2 +4r ;a)) 

-k(-2+%Z2+AZw) 

±A2w2 

2 

B.7 

By expanding Equation B.2 with the substitutions from equations B.3, B.4, and 

B.5 or equations B.3, B.6, and B.7, one arrives at the conclusion in equation B.8 (also 

equation 3.4). 

B.8 



Appendix C: Software Configuration 112 

Appendix C: Software Configuration 

Table C. 1: Health Monitor Parameters 

Parameter Value Uni t Parameter Va lue Uni t 

global timestep 0 seconds Rate Limiter: Best 

DHMS Parameters rate_limit_pos 6000000 pm/s 

update rate 1 rate_limit_neg -6000000 pm/s 2 

timestep 0 seconds Rate Limiter: Low 

forecast rate 4 rate_limit_pos 5750000 pm/s 2 

horizon time 0.02 seconds rate_limit_neg -6250000 pm/s 2 

averaging horizon 30 Rate Limiter: High 

averaging horizon time 0.12 seconds rate_limit_pos 6250000 2 
pm/s 

window average horizon 30 rate_limit_neg -5750000 2 
pm/s dynamic compensation time 0.03 seconds Flow Saturater 

Non-Linear Variable Delay lowsat -68000 |xm/s 

negdelay 0.05 seconds high_sat 68000 pm/s 
negOdelay 0.12 seconds Time Tolerance 

negswitchdelay 0.07 seconds pre_history_size 0 
posdelay 0.05 seconds post_history_size 1 

posOdelay 0.11 seconds Position Sensor Parameters 

posswitchdelay 0.07 seconds filter cutoff 40 Hz 
Quadratic Predictor filter cutoff gain 3 
k (*) 1 filter order 3 

wn (eon) 70 rad/s Execution Parameters 

w n j (<vj 40 rad/s Position Tolerance 2300 pm 
wn_h 90 rad/s Input Amplitude 26250 pm 

2d (3. 0.5 Input Period 1 1.5 seconds 

* U (£) 0.4 Input Period 2 1 seconds 

0.8 Input Period 3 0.5 seconds 
Input Period 4 0.33 seconds 
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Appendix D: Software Documentation 

Table D. 1: DHMS Class Description 

Class: DHMS 
Inherits from: none 

Attributes (Private) 
Class: DHMS 

Name Type Description 
iri var (integer) Instantaneous Response Indicator value 
ari var (integer) Average Response Indicator value 
dri var (integer) Dynamics Response Indicator value 

yp var (integer) Prediction of the output state 

ypj var (integer) Low threshold for prediction of the output state 

yp_h var (integer) High threshold for prediction of the output state 
Ts fvar (float) Time step (ms) between each loop closing 
AModels Genericlinkedl 

ist (Cstring) 
Linked list of all of the models Forth names used within this 
DHMS object 

Numlnputs var (integer) Number of inputs used 
AInputs var (pointer to 

array of integer) 
Array of input states used 

AInputMethods var (pointer to 
array of Cstring) 

Array of methods to acquire each of the system inputs that are 
used 

AInputErrors var (pointer to 
array of Cstring) 

Array of methods used to check the error status of each of the 
system inputs that are used 

NumStates var (integer) Number of states managed 
AStates var (pointer to 

array of integer) 
Array of system states (start states) 

AStateMethods var (pointer to Array of methods to acquire each of the system states that are 
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Attributes (Private) 
Class: DHMS 

Name Type Description 
array of Cstring) used 

AStateErrors var (pointer to 
array of Cstring) 

Array of methods used to check the error status of each of the 
system states that are used 

AModelExec Cstring Forth Word called by DHMS object to run the model 
Forth word is expected to have Parameters: 
{inputl... inputn} and Returns: {int: yp, int: yp_l, int: y p h } 
Method runs the models. 

AUpdateExec Cstring Forth Word called by DHMS object to update the states 
Forth word is expected to have Parameters: 
{ statel ... staten} and Returns: {int: iri, int: ari, int: dri} 
Method runs the health routines and updates the model states 
with agreed sensed value (ie. The sensor value after LED 
methods have been run) 

Methods (Public) 

Class: DHMS 

Name Description 
GetTs: Parameters: {none }. Returns: {float: Ts} 

Set_Ts: Parameters: {float: Ts}. Returns: {none } 
Sets the new system time step, applies changes to all models in AModels. 

Reset: Parameters: {none}. Returns: {none } 
Resets all of the models to their initialized state. 

RunModel: Parameters: {none}. Returns: {none } 
Sets the DHMS object "sensor" values 

UpdateStates: Parameters: {none }. Returns: {none } 
Sets the DHMS object "indicator" values 

GetSensor: Parameters: {none}. Returns: {int: yp, int: y p l , int: y p h } 

Get_Health: Parameters: {none}. Returns: {int: iri, int: ari, int: dri} 

GetJRI: Parameters: {none}. Returns: {int: iri} 

GetARI : Parameters: {none}. Returns: {int: ari} 

GetDRI: Parameters: {none }. Returns: {int: dri} 

FetchJnputs: Parameters: {none}. Returns: {none} 
Calls all of the methods in AInputMethods 

Checklnputs: Parameters: {none}. Returns: {none } 
Calls all of the methods in AInputErrors 
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Methods (Public) 

Class: DHMS 

Name Description 
FetchStates: Parameters: {none }. Returns: {none } 

Calls all of the methods in AStateMethods 

CheckStates: Parameters: { none }. Returns: { none } 
Calls all of the methods in AStateErrors 

Addlnput Parameters: { Cstring: AInputMethod Cstring: AInput£rror}. Returns: {none } 

AddState Parameters: {Cstring: AStateMethod Cstring: AStateError}. Returns: {none } 

Describe: Parameters: {none}. Returns: {none } 
Shows a description of the class attributes and methods 

Show: Parameters: {none }. Returns: {none } 
Shows the current values of class attributes 

Classlnit: Parameters: {float: Ts }. Returns: {none} 

Table D.2: DHMS Transfer Function Class Description 

Class: TransferF 
Inherits from: none 

Attributes (Private) 
Class: TransferF 

Name Type Description 
input var (integer) Current input to the model 

state var (integer) Current state of the model 

Ts fvar (float) Time step between updates 

msTs var (integer) Time step between updates (integer) 

dhtnso cstring Forth word (string) representing the container DHMS object 

Methods (Public) 

Class: TransferF 

Name Description 
Reset: Parameters: {none}. Returns: {none } 

Resets the transfer function to its default state 

GetOutput: Parameters: {none }. Returns: {int: value } 

RunModel: Parameters: {int: input}. Returns: {none} 

UpdateStates: Parameters: {int: state }. Returns: {none } 
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Methods (Public) 

Class: TransferF 

Name Description 
Get_Ts: Parameters: {none}. Returns: {float: Ts} 

Set_Ts: Parameters: {float: Ts }. Returns: {none } 

Getinput: Parameters: {none}. Returns: {int: input} 

Describe: Parameters: {none}. Returns: {none} 
Shows a description of the class attributes and methods 

Show: Parameters: {none}. Returns: {none} 
Shows the current values of class attributes 

Classlnit: Parameters: {int: startoutput, cstring: dhmso }. Returns: {none } 

Table D.3: DHMS-20DE Class Description 

Oass: DHMS-ODE M>~ 
Inherits from: TransferF 

Attributes (Private) 
Class: DHMS-20DE 

Name Type Description 
k fvar (float) System gain 

wn fvar (float) Undamped natural frequency 

wnl fVar (float) Low threshold of undamped natural frequency 

wnh fvar (float) High threshold of undamped natural frequency 

zd fVar (float) Damping ratio 

zdl fVar (float) Low threshold of damping ratio 

zdh fvar (float) High threshold of damping ratio 

delta fvar (float) Total prediction time 

yp fVar (float) Current model output prediction for system state 

yp_h fvar (float) Current model output estimate for high threshold 

y p j fvar (float) Current model output estimate for low threshold 
Ayps var (pointer to 

array of float) 
Array of 5 elements, containing the current predictions of 
system output thresholds 

forecastrate var (integer) Number of periods to forecast over 

historysize var (integer) Number of periods currently stored in historyx arrays 
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Attributes (Private) 

Class: DHMS-20DE 

Name Type Description 
history_start var (integer) Current index of the start point in the historyx arrays 

historymid var (integer) Current index of the mid point in the history_x arrays 

historyend var (integer) Current index of the end point in the history_x arrays 
Ahistory_u var (pointer to 

array of float) 
Array with forecastrate elements storing a history of input 
states 

Ahistory_y var (pointer to 
array of float) 

Array with forecastrate elements storing a history of system 
states 

Ahistory_dy var (pointer to 
array of float) 

Array with forecastrate elements storing a history of system 
states (derivative) 

Atemp_A var (pointer to 
array of float) 

Temporary Calculation buffer 

A A var (pointer to 
array of float) 

Array of values used to optimize the calculation of prediction 
at each step. See Equation B.8 (Also Equation 3.4). Used with 
parameters: w=wn, z=zd, k=k 

AA_11 var (pointer to 
array of float) 

Used with parameters: w=wnl, zFzdl, k=k 

A A _ h l var (pointer to 
array of float) 

Used with parameters: w=wnh, z=zdl, k=k 

A A _ l h var (pointer to 
array of float) 

Used with parameters: w=wnl, z=zdh, k=k 

A A_hh var (pointer to 
array of float) 

Used with parameters: w=wnh, z=zdh, k=k 

A A_mm var (pointer to 
array of float) 

Calculated at closing time for nrax/min point. 

*c var (pointer to 
array of float) 

Buffer used to calculate w where dw/dP=0 

A D var (pointer to 
array of float) 

Buffer used to calculate z where dz/dt=0 

Methods (Public) 

Class: DHMS-20DE 

Name Description 
RunModel: Parameters: {int: input}. Returns: {none} 

UpdateStates: Parameters: {int: state, int: statederivative }. Returns: {none } 
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Methods (Public) 

Class: DHMS-20DE 

Name Description 
GetOutput: Parameters: {none}. Returns: {int: yp, int: y p l , int: y p h } 

get_yp: Parameters: {none }. Returns: {int: yp } 

get_yp_l: Parameters: {none }. Returns: {int: y p l } 

get_yp_h: Parameters: {none}. Returns: {int: y p h } 

gethistorystart: Parameters: {none}. Returns: {int: historystart} 

getWstorymid: Parameters: {none }. Returns: {int: history_mid } 

get_history_end: Parameters: {none }. Returns: {int: historyend} 

get_history_u: Parameters: {int: index}. Returns: {int: history_u[index]} 

get_history_y: Parameters: {int: index}. Returns: {int: history_y[index]} 

gethistorydy: Parameters: {int: index }. Returns: {int: historydyfindex]} 

Describe: Parameters: {none}. Returns: {none} 
Shows a description of the class attributes and methods 

Show: Parameters: {none}. Returns: {none} 
Shows the current values of class attributes 

Classlnit: Parameters: {int: forecast_rate, int: startoutput, cstring: dhmso, float: k, float: 
wn, float: wnl, float: wnh, float: zd, float: zdl, float: zdh }. Returns: {none} 

Table D . 4 : DelayRelay Class Description 

Class: DelayRelay jJ „ 
Inherits from: TransferF 

Attributes (Private) 
Class: DelayRelay 

Name Type Description 
negdelay fvar (float) delay when dropping from 0 to -1 (s) 

negOdelay fvar (float) delay when zeroing from -1 to 0 (s) 

posdelay fvar (float) delay when rising from 0 to 1 (s) 

posOdelay fvar (float) delay when zeroing from 1 to 0 (s) 

negswitchdelay fvar (float) delay when zeroing from -1 to 0 powered (s) 

posswitchdelay fvar (float) delay when zeroing from 1 to 0 powered (s) 

sum var (integer) current internal state of input parts 
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Attributes (Private) 
Class: DelayRelay 

Name Type Description 

ratepos 1 var (integer) rate of change of internal state for rise to +1 

rateposO var (integer) rate of change of internal state for zero from +1 

ratenegl var (integer) rate of change of internal state for fall to -1 

ratenegO var (integer) rate of change of internal state for zero from -1 

rateposOp var (integer) rate of change of internal state for zero from +1 powered 

ratenegOp var (integer) rate of change of internal state for zero from -1 powered 

Methods (Public) 

Class: DelayRelay 

Name Description 

RunModel: Parameters: {int: input}. Returns: {none} 

UpdateStates: Parameters: {int: state }. Returns: {none} 
Overrides the internal system state 

GetOutput: Parameters: {none}. Returns: {int: state} 

Describe: Parameters: {none}. Returns: {none } 
Shows a description of the class attributes and methods 

Show: Parameters: {none}. Returns: {none } 
Shows the current values of class attributes 

Classlnit: Parameters: {float: negdelay, float: negOdelay, float: negswitchdelay, float: 
posdelay, float: posOdelay, float: posswitchdelay }. Returns: { none } 

Table D .5: RateLimiter Class Description 

Class: RateLimiter 

Inherits from: TransferF i 1 

Attributes (Private) 
Class: RateLimiter 

Name Type Description 

rl_pos fvar (float) positive rate limit 

r lneg fvar (float) negative rate limit 

forecastrate var (integer) number of periods to forecast over 

Delta fvar (float) prediction time 

dy_pos var (integer) max change positive 
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Attributes (Private) 
Class: RateLimiter 

Name Type Description 
dyneg var (integer) max change negative 

Methods (Public) 

Class: RateLimiter 

Name Description 
RunModel: Parameters: {int: input}. Returns: {none } 

UpdateStates: Parameters: {int: state}. Returns: {none } 
Sets the start state for the next iteration 

GetOutput: Parameters: {none }. Returns: {int: state} 

Describe: Parameters: {none}. Returns: {none } 
Shows a description of the class attributes and methods 

Show: Parameters: {none}. Returns: {none} 
Shows the current values of class attributes 

Classlnit: Parameters: {int: forecastrate, float: rate_limit_pos, float: ratelirnitneg }. 
Returns: {none} 

Table D.6: Relay Class Description 

Class: Relay 1— 
Inherits from: TransferF 

Attributes (Private) 
Class: Relay 

Name Type Description 
low_out var (integer) low output 

highout var (integer) high output 

dropthreshold var (integer) threshold when rise from low to high 

risethreshold var (integer) threshold when drop from high to low 

Methods (Public) 

Class: Relay 

Name Description 
RunModel: Parameters: {int: input}. Returns: {none} 

UpdateStates: Parameters: {int: state }. Returns: {none } 
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Methods (Public) 

Class: Relay 

Name Description 
Updates the input without updating the output 

GetOutput: Parameters: {none }. Returns: {int: state} 

Describe: Parameters: {none }. Returns: {none } 
Shows a description of the class attributes and methods 

Show: Parameters: {none}. Returns: {none } 
Shows the current values of class attributes 

Classlnit: Parameters: {int: low_out, int: highout, int: dropthreshold, int: 
risethreshold}. Returns: {none } 

Table D.7: Saturation Class Description 

Class: Saturation 
Inherits from: TransferF -A 

Attributes (Private) 
Class: Saturation 

Name Type Description 
low_sat var (integer) low output 

high_sat var (integer) high output 

satstate var (flags) integer flags use state each of the saturation points 

Methods (Public) 

Class: Saturation 

Name Description 
RunModel: Parameters: {int: input}. Returns: {none } 

UpdateStates: Parameters: {int: state}. Returns: {none } 
Updates the input without updating the output 

GetOutput: Parameters: {none }. Returns: {int: state } 

Describe: Parameters: {none }. Returns: {none } 
Shows a description of the class attributes and methods 

Show: Parameters: {none }. Returns: {none } 
Shows the current values of class attributes 

Classlnit: Parameters: {int: uselow, int: usehigh, int: lowsat, int: highsat}. Returns: 
{none} 
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Table D.8: TimeTolerance Class Description 

Class: TimeTolerance 
Inherits from: TransferF 

Attributes (Private) 
Class: TimeTolerance 

Name Type Description 
prehistorysize var (integer) Number of history points to consider in tolerance before 

current state time 

posthistorysize var (integer) Number of history points to consider in tolerance after current 
state time 

history_size var (integer) Total size of the history (pre + post) 
Au_h var (pointer to 

array of integer) 
history of high inputs 

var (pointer to 
array of integer) 

history of low inputs 

A y var (pointer to 
array of integer) 

history of values 

newest_y var (integer) current index of y 

oldest_y var (integer) index of earliest data point 

newestu var (integer) current index of u 

oldestu var (integer) index of earliest input point 

usedsize var (integer) amount of history recorded 

Methods (Public) 

Class: TimeTolerance 

Name Description 
RunModel: Parameters: {int: u h , int: u l , int: y }. Returns: {none } 

UpdateStates: Parameters: {none}. Returns: {none} 
does nothing 

GetOutput: Parameters: {none}. Returns: {int: y p h , int: y p l } 

flagoutput: Parameters: {none}. Returns: {int: flag} 
Returns an integer flag where each bit describes the pass/fail condition of the 
state vvifhin the boundaries for each point in the history 

g e t u h : Parameters: {int: index}. Returns: {int: Au_h[index] } 

g e t u l : Parameters: {int: index}. Returns: {int: Au_l[index]} 
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Methods (Public) 

Class: TimeTolerance 

Name Description 
get_y: Parameters: {int: index }. Returns: {int: Ay[index]} 

Describe: Parameters: { none }. Returns: { none } 
Shows a description of the class attributes and methods 

Show: Parameters: {none }. Returns: {none } 
Shows the current values of class attributes 

Classlnit: Parameters: {int: prehistorysize, int: posthistorysize }. Returns: {none } 

Table D.9: TransDelay Class Description 

Class: TransDelay U / 
Inherits from: TransferF 

Attributes (Private) 
Class: TransDelay 

Name Type Description 
delay var (integer) number of time steps to delay 

historystartin 
dex 

var (integer) current index of start 

A y var (pointer to 
array of integer) 

history of state increments 

Methods (Public) 

Class: TransDelay 

Name Description 
RunModel: Parameters: {int: input}. Returns: {none} 

UpdateStates: Parameters: {int: state}. Returns: {none} 
Sets the current history of states all to the new state 

GetOutput: Parameters: {none}. Returns: {int: state } 

Describe: Parameters: {none}. Returns: {none } 
Shows a description of the class attributes and methods 

Show: Parameters: {none}. Returns: {none } 
Shows the current values of class attributes 

Classlnit: Parameters: {int: delay}. Returns: {none} 
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Table D.10: WindowAvg Class Description 

Class: WindowAvg nl 
Inherits from: TransferF 

Attributes (Private) 
Class: WindowAvg 

Name Type Description 
steps var (integer) number of time steps to run the average over 
historystartin 
dex 

var (integer) current index of start 

A y var (pointer to 
array of integer) 

history of state increments 

sum var (integer) current sum of system states 

Methods (Public) 

Class: WindowAvg 

Name Description 
RunModel: Parameters: {int: input}. Returns: {none } 
UpdateStates: Parameters: {none }. Returns: {none } 

does nothing 
GetOutput: Parameters: {none }. Returns: {int: state} 
Describe: Parameters: {none }. Returns: {none} 

Shows a description of the class attributes and methods 

Show: Parameters: {none}. Returns: {none} 
Shows the current values of class attributes 

Classlnit: Parameters: {int: steps }. Returns: {none} 


