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Abstract

This thesis develops and evaluates an intelligent model predictive control (IMPC) strategy for
motion control of a flexible link robotic manipulator through analysis, computer simulation,
and physical experimentation.

The developed IMPC is based on a two-level hierarchical control architecture. This
control structure is used to combine the advantages of the conventional model predictive
control (MPC) with those of knowledge-based soft control techniques. The upper level of the
structure is a fuzzy-rule based intelligent decision-making system. The lower level consists of
two modules: a real-time system identification module (which adjusts the model parameters
and accommodates payload changes of the manipulator), and a model predictive control
(MPC) module (which develops control inputs based on the linear model generated by the
system identification module). The upper-level intelligent fuzzy rule-based tuner interacts
with the lower level modules. Based on the desired system performance, the state feedback
signals, and the knowledge base, the upper-level fuzzy tuner automatically adjusts .the tuning
parameters of the MPC controller. It is also able to adjust the model structure of the system-
identification module, if necessary, to accommodate large model errors, and will increase the
robustness of the controller.

An explicit, complete, and accurate nonlinear dynamic model of the system is developed
using the assumed mode method. More realistic boundary conditions, which represent the
balance of moments and shear forces separately, at the ends of each link, are used for the
dynamic model development of the system. A computationally efficient multi-stage MPC
algorithm with guaranteed stability is developed as well. This algorithm is ﬁsed by the MPC
module to enable real-time implementation of the overall scheme. A fuzzy knowledge base
for tuning the MPC controller is developed based on analysis, computer simulations and
experimental testing of the prototype flexible-link manipulator system (FLMS). A fuzzy tuner
is designed based on this fuzzy knowledge base. The performance of the developed IMPC
scheme is evaluated using computer simulations and experiments of the prototype FLMS. The
results show that IMPC can more effectively control the motion of a flexible link robot

manipulator when compared with conventional MPC.
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Chapter 1

Introduction

1.1  Goals of the Research

High-speed and high-precision motion control of robot manipulators with flexible links is
naturally more complex and difficult than the motion control of those with conventional rigid
links. The inherent non-minimum phase behavior, dynamic model complexity, lack of
complete sensing, multi-modal vibration and incapability of precise positioning due to system
flexibility are among the primary reasons for the difficulty of controlling a flexible-link
manipulator in achieving high accuracy and robustness simultaneously. The stability of the
robotic system is particularly relevant in this context. Consequently, practical application of
flexible-link manipulators, which need efficient control algorithms, is rather limited. The
motion control problem of a flexible robot manipulator may be solved by a combination of the
following approaches (Book, 1993):

e Design of material and shapes such that high stiffness/mass ratio is achieved.

e Passive damping treatment of flexible elements in order to reduce vibrations.

e Improved dynamic modeling that allows reliable design and control.

e Active feedback control of flexible vibrations.

e Trajectory planning algorithms to constrain the excitement of flexible modes.

o Use of sensors and actuators distributed in the structure.

e Sensors for directly detecting end-of-arm position and states.

Research to examine the advantages and limitations of these complementary approaches

in accommodating link flexibility is crucial in making flexible manipulators desirable for
practical manipulation tasks. The intelligent model predictive control (IMPC) which is

developed in the present thesis represents a focused effort toward this goal. It involves the

design of an active feedback control strategy that is effective in the associated motion control




problem.

The main objectives of the research presented in this thesis are the following:

1. Develop an explicit, realistic, and accurate dynamic model for a typical flexible
link manipulator. The model must be capable of capturing the process dynamics so
as to predict the future outputs with sufficient precision, while being simple
enough to implement and analyze for controller design. It must incorporate
realistic boundary conditions.

2. Design an effective model predictive controller for high-speed real-time
implementations with guaranteed nominal stability.

3. Extend the scheme of model predictive control (MPC) to intelligent model
predictive control (IMPC) and investigate relevant analytical and practical issues
of the enhanced control scheme.

4. Apply IMPC for the motion control of structurally flexible robotic manipulators
and investigate its performance through analysis, computer simulation, and
experimentation.

The developed controller is expected to possess the advantages of conventional MPC and
also those of intelligent control. In particular, the controller will be efficient, intelligent,
adaptive, and robust. It should be useful in the real-time control of high-speed motions of a
robot with flexible links. Also, it should be able to automatically adjust the controller
parameters and model structures to guarantee a sufficiently small end-point tracking error and
closed-loop system stability for different payloads and disturbances. The developed control
approach will incorporate the experience and other knowledge of human experts in tuning the
parameters of a conventional MPC controller, in order to achieve high system performance.

Both computer simulation and experimentation will be used to evaluate the performance

| of the developed control methodology. In particular, an IMPC controller will be designed to
control the end-effector motions of a planar revolute robot manipulator with flexible link. As
a test bed, a prototype flexible link manipulator system (FLMS) is designed and constructed.
It will be used to verify and refine the modeling and control strategies that are developed in
the present work. Both simulation and experimental studies will be carried out using the

flexible link robotic system, in order to validate the control methodologies developed in the

present work. A view of the prototype manipulator, which has been designed and developed




in our laboratory is shown in Figure 1.1.

Figure 1.1 Prototype flexible link manipulator system.

1.2 Motivation

In this section, first some basic concepts and definitions that are relevant to the control of
flexible manipulators, which is the application domain of intelligent model predictive control
(IMPC) as developed in the present research, are reviewed. The advantages of flexible
manipulators, and challenges and difficulties of the related motion control problem are
addressed next, which provides the rationale for the investigation into IMPC.

Robot manipulators have a wide range of applications, from industrial automation and
medical operations to exploring hazardous environments such as space, underground,
underwater and nuclear plants. In all these applications, completion of a generic task requires
accurate control the movements of the end-effector of one or more manipulators. In general,
the control of a robotic manipulator consists of motion control and contact force control. For
unconstrained (free) motion, where there is no physical interaction between the end-effector
and the environment, only motion control is required. For constrained motion, where contact
forces will arise between the end-effector and the environment, both motion and contact

forces may have to be controlled.



The motion control problem of a robot manipulator can be generally divided into two
categories: regulation (or stabilization) and tracking (or servoing). In the regulation problem,
one is concerned with devising a control algorithm such that the system states are driven to a
desired final equilibrium point and stabilized around that point. In the tracking problem, one
is faced with designing a controller such that the system output tracks a reference spatial path
with respect to time (i.e., a trajectory). The regulation problem can be regarded as the special
case of tracking problem when the desired trajectory is a constant spatial configuration with
respect to time. Trajectory of the robot end-effector or joints, as generated by path planning, 1s
realized by the appropriate reference inputs to the motion control system of the manipulator.
The problem of manipulator control generally involves the determination of the time behavior
of the forces and torques to be delivered by the joint actuators so as to ensure the execution of
the reference trajectories. The controller has to drive the outputs (responses) close to the
desired trajectories while maintaining stability of the overall robot system.

Structural flexibility refers to the deflection of a structure under applied or inertial
(acceleration-related) forces/torques. Here, the structural flexibility may be addressed from
the control point of view. A robotic manipulator becomes flexible if the flexural effects are
significant such that they cannot be neglected during the controller design stage in order for
the system to meet the performance specifications. Flexibilities in a robotic manipulator may
result from joint flexibilities (Spong, 1987) and link flexibilities. Joint flexibility arises
primarily because of the elastic behavior of the joint transmission elements such as gears,
harmonic drives, and shafts of the actuators. Link flexibility is a consequence of light-weight
constructional features of large-dimension manipulators, which result in low link stiffness.
They are designed to operate at high speeds with low inertia or to handle heavy payloads.

Research on the dynamic modeling and control of flexible manipulators has received
increased attention during the past 30 years due to the advantages of flexible manipulators
over rigid ones (Book, 1984). Two types of robotic systems motivate the application domain
of the present research: light-weight high-speed industrial manipulators, and large dimension
manipulators capable of handling heavy payloads such as space exploration manipulators.
Advantages of flexible manipulators over their rigid counterparts include: higher payload to
robot weight ratio, low energy consumption, use of smaller actuators, greater maneuverability,

increased transportability, lower mounting strength requirements, reduced overall cost, and



safer operation due to reduced inertia. Achieving accurate, high-speed manipulation with a
light-weight structure is clearly a desirable objective and a significant challenge.

The motion control of the flexible manipulator is more difficult than the rigid
manipulator. For a rigid manipulator, the end-point trajectory is completely defined by the
trajectory of the joints. Effective control of the joints is equivalent to good control of the end-
point motion. The situation is not as straightforward for a flexible manipulator, and
difficulties arise when one tries to track a specified end-effector position trajectory by
applying the torque at the joint. When a distributed parameter system is forced at one point in
its spatial domain and its response is measured at another point, the system is said to be non-
collocated. In this case, the control becomes rather difficult due to the non-collocated nature
of the sensor and actuator positions, which can result in unstable zero dynamics (Wang and
Vidyasagar, 1991). In other words, the system can be non-minimum phase. Then, the system
has an unstable inverse. Many theoretical results of control are complicated by or even totally
voided by a system of non-minimum phase. It can be shown that the non-minimum phase
property of a flexible manipulator makes exact asymptotic tracking of a desired tip trajectory
impossible by means of a causal controller (Slotine and Li, 1991). Thus, in practice, one may
be satisfied with small (rather than zero) tracking errors. Furthermore, use of a reduced-order
model for the controller design may also lead to control and observation spillover. Control
spillover is the excitation of the residual modes of the system by the control action.
Observation spillover is the contamination of sensor readings by the residual modes. When
control and observation spillovers are present, the closed-loop system may become unstable.
Further complications arise because of the highly nonlinear nature of the system and the
difficulties involved in accurately modeling various friction and backlash terms. Moreover, a
change in the arm configuration and in the payload also leads to a change in the system
dynamics. This change has a degrading effect on the performance of the controllers.

Due to the complexity of the dynamics of structurally flexible robotic manipulators,
designers of conventional robotic manipulators usually avoid confronting the flexibility issues
in an explicit manner. The motion control algorithms of these systems are based on the rigid
model of the systém, the flexibility of the system being considered negligible. There are two

primary solutions in current usage to avoid the flexibility problems of the system. The first is

to make the manipulator rigid by increasing the stiffness of the system. This will reduce the




system vibration, and good positional accuracy can be achieved. High stiffness usually 1s
achieved by using heavy and bulky structural components. Most of the conventional industrial
robotic manipulators are designed based on this concept. This will reduce the efficiency and
operating speed/bandwidth, increased the cost, and limit the performance of the manipulator.
In fact, most existing industrial robot manipulators are limited to a load-carrying capacity of
about 5-10 percent of their own weight. Heavy weight of the system means large inertia of the
system. In order to drive the system at high speed, large actuators will be needed. This will
increase the overall cost and energy consumption. The second solution is to reduce the speed
of the manipulator. By moving slowly enough, it might be possible to ensure that the flexible
modes of the system are not excited, and then the system can be controlled as a rigid system.
This conservative strategy is used, for example to control space-based robotic manipulators.
Space applications require low-mass designs of the robotic manipulator to achieve escape
velocity, and in order to accomplish a mission with better fuel economy. The workspace of a
space robotic manipulator is usually large. Weightlessness of space means that mobility
provided by wheels and legs on ground-based systems is ineffective for space-based system.
Thus a long robotic manipulator is used to move equipment and material into and out of the
cargo bay. The primary control technique for space manipulator that is employed at present is
to move the joints slowly and wait for the tip of the arm to settle to equilibrium. This can lead
to slow performance and extended the task completion time past acceptable limits. In order to
overcome such performance limitations of existing robotic system, we have to explicitly
address the flexibility issue of the robotic manipulator systems. With advances in hardware
and software, the implementations of high performance advanced motion control methods
have become possible even for complex plants. |

There are a variety of advanced control techniques, which enjoy various degrees of
success in practical applications. Among them is the class of techniques known as model
predictive control (MPC). These techniques are model-based approaches where the future
response of the plant is predicted, and the controller seeks to make the predicted response
approach a desired response. Such an approach is desirable when a satisfactory model of the
plant is available and desired response is rather complex. Many industrial applications meet

these characteristics. Since an accurate plant model may not be present in many practical

applications and since there are parameters of MPC that can be tuned online to achieve




improved performance, particular for complex plants and under model uncertainties, it is
useful to investigate procedures for “tuning” an MPC scheme. Control expertise, past
experience, and insight into the MPC scheme and the specific plant may be used in
developing a knowledge-based “intelligent” scheme to tune the parameters of MPC. This is
the main motivation for the proposed investigation in developing an IMPC scheme.

In summary, the non-minimum phase characteristic, coupling effects, nonlinearities,
parameter variations, and unmodelled dynamics all contribute to make the problem of
controlling the end-effector of a flexible link manipulators much more difficult than that of a
rigid-link manipulator. Control strategies that ignore these uncertainties and nonlinearities
generally fail to provide satisfactory closed-loop performance. It is expected that the proposed
technique of intelligent model predictive control will provide a suitable solution for this class

of applications.

1.3 Related Work

Three main research aspects have to be investigated in order to achieve the objectives of the
research. They are: model predictive control (MPC), controller tuning, and control of flexible
link robotic manipulators. In the following sections, we will review relevant existing work

and approaches in this three research areas.

1.3.1 Model Predictive Control

Model predictive control (MPC) is a model-based control technique. The term MPC generally
denotes a collection of controllers, which determine the control effort by minimizing a cost
function (usually quadratic) in a receding horizon manner using an explicit model while
satisfying some imposed constraints. Physical limitations of the system; e.g., valve
saturations, may be represented by an input constraints. The state constraints are imposed for
states or outputs that may not have set-points, but are required to remain within certain limits
during the intended system operation. The existing MPC schemes share the following
essential features: an explicit internal model, the receding horizon concept, and the
computation of the control signal by optimizing predicted plant behavior.

MPC strategies were developed independently by industrial groups in France and the



United States in the late 1970's. The pioneers of MPC are mostly industrial practitioners who
implemented MPC several years before the first publication appeared. Richalet, ef al. (1978),
of the French company Adersa, proposed predictive control based on impulse-response model
under the name model predictive heuristic control (MPHC), later known as model algorithmic
control (MAC). This control method is based on intuitive concepts and offers ease of tuning.
It can be applied to problems that are too difficult to be handled by conventional proportional-
integral-derivative (PID) control. Constraint handling and optimality are not the principal
objectives. Culter and Ramaker (1985), of the Shell Oil Co., Texas, proposed dynamic matrix
control (DMC). This control algorithm is an input-output approach based on step/impulse
response models. It emphasizes optimal plant operation under constraints, and computes the
control signal by repeatedly solving a linear programming (LP) problem.

Clarke, et al. (1987) proposed one of the most popular predictive control algorithms,
generalized predictive control (GPC), with an analysis of its properties. This receding-horizon
method depends on predicting the output of the plant over several steps, based on assumptions
on future control actions. In the absence of constraints, it can provide an analytical solution. It
can deal with unstable and non-minimum phase plants, and incorporates the concept of
control horizon as well as the consideration of weighting of control increments in the cost
function. The roles of the output‘and control horizons were explored for processes with non-
minimum phase, unstable and variable dead-time models. The general set of choice available
for GPC leads to a greater variety of control objectives compared to other approaches, some
of which can be considered subsets or limiting cases of GPC. Furthermore, the offsets are
eliminated by the consequence of assuming a controlled auto-regressive and integrated
moving average (CARIMA) plant model. The stability of the GPC scheme is guaranteed
using end-point weighting of the cost function, which gives the required monotonicity to the
Difference Riccati Equation associated with the cost function by Demircioglu and Clarke
(1993). Rawlings and Muske (1993) provided a stability proof of constrained receding
horizon control based on a finite number of optimization parameters but an infinite prediction
horizon.

Kothare, et al. (1996) presented a technique for the synthesis of a robust model predictive

control law, using linear matrix inequalities (LMIs). The technique allows incorporation of a

large class of plant uncertainty descriptions, and is shown to be robustly stabilizing. This




work exploits the powerful methods, which have recently become available for solving LMIs
and the connections which exist between LMIs and control theory. Although the formulation
no longer leads to a Quadratic Programming (QP) problem, it does lead to an LMIs
optimization problem, which is a convex problem. The algorithm available for solving LMIs

optimization is efficient, making it a plausible candidate for online use.

1.3.2 Controller Tuning

One of the challenges for MPC, however, is how to tune the parameters of the controller. So
far, only a few guidelines related to the tuning of the parameters of MPC controllers have
been provided in the literature. Clarke and Mohtadi (1989) have developed some general
guidelines on how to tune a GPC. They have shown that variable dead-time and
unstable/inverse-unstable plants can be stably controlled by correct choices of the horizon.
They recommended that the first costing horizon should at least exceed the plant dead-time.
The prediction horizon should be set comparable to the rise-time of the open loop system. The
control horizon determines the degrees-of-freedom in future control increments, and it can be
set the number of unstable/underdamped polés of the open loop system. Lee and Yu (1994)
presented practical on/off-line tuning rules for state-space MPC controllers. Guidelines for
tuning the predictive controller for robust performance are provided based on a fixed tuning
of the cost function weights and a manipulation of the observer covariance matrices. Based'on
the frequency-domain analysis of the closed-loop behavior of MPC controllers, the effect of
various tuning parameters on the performance and robustness of the closed-loop system is
characterized, and quantitative guidelines on how these parameters are best determined are
established. It is shown that the choice and the settings of the tuning parameters play a critical
role in the overall robustness of the resulting closed-loop system and also the ease of design
and tuning. Liu and Wang (2000) proposed an auto-tuning procedure for a predictive
controller. Their auto-tuning procedure is based on a recursive multi-objective optimization
algorithm.

Now we will review some existing approaches related to knowledge-based tuning of
controllers. De Silva (1991) investigated a knowledge-based tuner consisting of a two-level

control structure. The lower level is occupied by a conventional servo loop. The upper level

consists of a knowledge-based tuner for the servo parameters. In his work, knowledge-based




tuner was expressed in the conventional fuzzy-logic formulation of a linguistic rule base to
which the compositional rule of inference is applicable; concepts of rule dissociation, fuzzy
resolution, and resolution relationships were defined; and the stability of the overall control
system and the computational requirements for the tuning system were analyzed. The
developed strategy was used to tune a PID controller. Wu and De Silva (1993) investigated
the effect of fuzzy resolutions on the processing speed, storage requirement, and response
accuracy of a hierarchical fuzzy tuning system. The paper suggests, in practice, the fuzzy
resolution has to be chosen to satisfy the requirements of the particular situation, by weighing

various factors.

1.3.3 Control of Flexible Link Robotic Manipulators

For the modeling and control of flexible link robotic manipulator, most of researchers using
planar single-link manipulator flexible model or planar two-link flexible manipulator model.
Many of the advanced control algorithms have been applied to the flexible link manipulator.
A flexible link manipulator is a nonlinear and distributed parameter system. The model of this
system is an infinite-dimensional model. A finite-dimensional nonlinear model can be
obtained by the assumed mode techniques or finite element method. Three different
approaches have been used in the control design. In the first approach, the control law is
designed based on finite-dimensional model. In the second approach, the control law is
designed based on distributed parameter model in spite of the model complexities. In the third
approach, the controller is designed using soft computing control techniques. Next we will
review some major contributions in these three different approaches.

The first approach is based on discretized dynamic models. In an order to reduce the
complexity, many of the work on flexible manipulator control perform local linearization and
truncate the number of flexible modes.

Cannon and Schmitz (1984) designed a Linear Quadratic Gaussian (LQG) controller for a
single-link flexible manipulator. Estimation of the system’s states is based on dynamic
calculation using signals from the tip-position sensor and the hub-rate sensor. They showed
that the speed of response to commands is ultimately limited by the inherent wave-
propagation delay for the beam. Morris and Madani (1998) developed a quadratic optimal

control algorithm for a two link flexible manipulator. Static deflection of flexible links under
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gravity was considered. Availability of all the states of the system was assumed.

Singer and Seering (1990) proposed an input shaping control technique. This method
essentially involves the convolution of a sequence of impulses with the reference input to
suppress the vibration of flexible modes. They showed that the controller robustness with
respect to uncertain frequencies or damping can be increased by using a larger number of
impulses. They also showed that multiple modes of vibration could be handled. Magee and
Book (1992) extend the input shaping control method to deal with variable frequency
systems. They proposed a command shaping algorithm that can filter out the frequencies
-around the flexible modes. Lee and Park (2002) presented a modified input shaping method,
which can be applicable to linear time-varying system.

- In a practical sense, linear feedback control with observer can be undesirably sensitive to
small changes in parameters or payload. Many adaptive and robust control algorithms based
on bounded uncertainty estimates have been presented for flexible link manipulator with large
payload changes and parameter uncertainties. Banavar and Dominic (1995) presented an

LQG/ H, controller for a single-link flexible manipulator. While the flexible modes are

damped out in the inner-loop by the LQG controller, the outer-loop ensures stability of the
system in the presence of uncertainties. Feliu, et al. (1997) has studied the control of single-
link flexible manipulator in the presence of joint fraction and payload changes. They
developed a robust control method based on two nested loops: an inner feedback loop to
control the motor position which is robust to joint friction, and an outer loop to control the tip
position which is robust to payload changes. Bai, et al. (1998) presented an adaptive augment
state feedback controller for a two-link flexible manipulator. The controller design is based on
the Linear Quadratic Regulator (LQR) technique in conjunction with an adaptive
compensator, where all states are adaptively estimated by employing the strong tracking filter.
This will increase the robustness of the controller against payload variations. Ryu, et al
(2000) proposed a robust LQR based on the descriptor form for the control of a single-link
flexible manipulator, which has a large uncertain payload variation and parameter
uncertainties. The controller design problem is formulated as a convex programming problem
and is solved using LMIs. The controller designed with this method shows the improved
robust performance and the reduced conservatism.

Although linear controllers may yield desirable closed-loop performance, their region of
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operation is limited due to the nonlinearities present in the original system. To have a wider
region of operation, one has to take into account the nonlinearities.

Yim designed a modified predictive controller based on the nonlinear predictive control
theory. A vector function s has been chosen as a linear combination of tracking error, its
higher order derivatives, and the integral of the tracking error for robustness. A control law
has been derived by minimizing a quadratic function of the predicted value of s and control
torque. Wilson, et al. (2002) proposed an augmented sliding mode control (SMC) scheme,
which ensures a good performance in the rigid body motion and provides sufficient damping
in the measured flexible body modes. SMC takes advantages of control law switching to
move a system from an initial state to a prescribed surface in the state space. Once on that
surface, a second control law is used to keep the state from leaving the surface while moving
toward the desired final state. It is robust to model-parameter uncertainty and disturbances if
bounds are known a priori. Due to the use of Lyapunov stability theory during the controller
design, SMC is appealing for nonlinear system control. The novel aspect of the proposed
augmented SMC is that the control law neglects the flexible body generalized accelerations,
but the system remains stable even when flexible body generalized accelerations, unmodeled
dynamics, disturbances and model uncertainties are present.

The most common approach to compensate the nonlinear dynamics is the so-called
inverse dynamics or computed torque strategy. De Luca and Siciliano (1989) designed a
nonlinear control law using the input-output inversion algorithm. They have shown that the
closed-loop dynamics is always stable when joint angle is the output; the zero dynamics of the
system may become unstable when the output is the angular position of a point along the link.
Thus, in general, end-point trajectories cannot be tracked eXactly without going unstable.
Wang and Vidyasagar (1991) have shown that the nonlinear flexible link system is not in
general input-state linearizable. However, the system is locally input-output linearizable but
the associated zero dynamics may become unstable when the tip position is considered as an
output of the system. In order to overcome the non-minimum phase characteristic of the
system, two most common used methods are multiple time scale composite control based on
the singular perturbation (Siciliano and Book, 1988) and output redefinition approach (Wang
and Vidyasagar, 1989, Madhavan and Singh, 1991). Singular perturbation control strategy is

based on a two-time scale model of the flexible manipulator. This allows the definition of a
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slow subsystem corresponding to the rigid body motion, and a fast subsystem describing the
flexible motion. A composite control strategy is then applied. A linear stabilizer is used to
stabilize the fast dynamics (flexible modes) and a nonlinear controller is used to make the
slow dynamics (joint variables) track the desired trajectories. In order to improve the
performance of a singular perturbation approach, several researchers used the integral
manifold approach introduced by Spong, et al., (1987) to control the flexible link manipulator
(Siciliano, et al., 1986, Moallem, et al., 1997). The integral manifold approach facilitates the
inclusion the effects of higher frequency flexible modes into the corrected models. The output
redefinition approach is also used to overcome the non-minimum phase characteristics of the
system. The basic idea is to redefine the system outputs such that the zero dynamics of the
system is stable. Based on the new outputs, the input-output (inverse dynamics) approach can
be used to control the flexible link manipulator.

In the second approach, the control law is designed based on the distributed parameter
model. This will avoid the undesired model truncation. The main advantage of this approach
is that it is free from control spillover. Luo (1993) proposed an asymptotically stable strain
feedback control for regulating control of the link vibration. This strategy directly introduces
a damping term into the system model, and precise dynamic model is not needed for real-time
control. Ge et al. (1998) designed a strain feedback regulating control, where the payload
mass was considered. The controller is independent of system parameters and thus robust to
system parameters uncertainties. The closed-loop stability of the system is proven based on
the partial differential equations (PDE) of the system. Lee (2004) developed a moment-
feedback trajectory-tracking control scheme based on a distributed parameter model. The
stability of the closed-loop system is proven based on the Lyapunov stability theorem.

Intelligent control methods have been applied to flexible link manipulators. Kubica and
Wang (1993) developed a two stages direct fuzzy logic controller. One stage controls the
rigid motion while the second stage monitors the elastic deformations and modifies the output
of the first stage to reduce the induced vibrations. This approach was taken to reduce the
number of rules needed in the associative fuzzy knowledge base. Garcia-Bentiez, et al. (1993)
proposed a two level hierarchical control strategy. A fuzzy logic supervisory level is used for
the selection of a lower-level conventional controller. Moudgal, et al. (1994) designed a two-

level hierarchical rule-based controller. This scheme employs an upper-level “expert
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controller” that captures the knowledge about how to supervise the application of low-level
fuzzy controllers during movements in the robot workspace. Gutierrez and Lewis (1998)
developed a neural network tracking controller. The controller is composed of an outer PD
tracking loop, a singular perturbation inner loop for stabilization of the fast dynamics, and a
neural network inner loop used to feedback linearize the slow dynamics. The neural network
controller requires no off-line learning phase. Song and Koivo (1999) have designed a
nonlinear predictive controller. A neural network has been constructed to represent the input-
output relation of a dynamic model. Based on the neural network plant model, the control
inputs are calculated by minimizing a projected cost function that penalizes the future tracking
errors. Nho and Meckl (2003) proposed a control architecture that incorporates a neural
network, a fuzzy logic and a PD controller. The neural network controller is trained offline to
capture the inverse dynamics of the plant, and the fuzzy logic estimator, trained offline to
optimize the membership functions, is placed in the feedback loop to estimate the unknown
payload. The estimated payload is used as an additional input to the neural network controller
to update the inverse dynamics after payload changes. Wai and Lee (2004) developed an
intelligent optimal control system, in which the proposed controller was made of an optimal
controller which minimize a quadratic performance index, a fuzzy neural network (FNN)
controller which learn a nonlinear function to implement the optimal controller, and a robust

controller which compensate the approximation error of the FNN controller.

1.4 Organization of the Thesis

As an overview, the reminder of the thesis presents the theoretical and experimental research
on the modeling and control of flexible link robotic manipulators in sufficient detail. The
thesis is divided into seven chapters and three appendices. Included in Chapter 1 are the
goals and motivation for this research, related work, contributions and organization of the
thesis. |

Chapter 2 presents the development of kinematic and dynamic models of flexible link
robotic manipulator. Boundary conditions and mode shape selections for flexible link model
are discussed. Equations of motion for a planar n-link flexible manipulator are presented.

Detailed nonlinear mathematical models for a single-link and two-link flexible manipulator
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are derived. Linearization of the equations of motion technique is developed. Non-minimum
phase characteristic of the system are analyzed.

Chapter 3 presents the IMPC algorithm, and its underlying strategy, and addresses issues
related to the application of IMPC in the motion control of flexible link robot manipulators.

Chapter 4 presents IMPC controller design for a single-link flexible manipulator. The
performance of the controller is evaluated using computer simulations.

Chapter 5 presents IMPC controller design for a two-link flexible manipulator and
computer simulation results.

Chapter 6 presents the experimental flexible link manipulator system (FLMS).
Experimental results are presented and discussed.

Chapter 7 concludes this thesis with a summary of the major results and

recommendations for future research in the area.
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Chapter 2

Manipulator Model

Advanced model-based control of a complex system generally involves three main steps:
model development and analysis, parameter estimation/measurement, and controller design
and implementation. This chapter represents the first step of the process of controller design.
Model-based predictive control uses a plant model to predict the future response of the system
and on this basis decides the control inputs to the system. It follows that the development of a
suitable dynamic model is a crucial part in the process of controller design. The dynamic
model should capture important features of the plant that are relevant to designing the
controller. Yet, it should not be so complex as to mask the essence of the problem. With this
backdrop, in the present work, a dynamic model of a flexible robotic manipulator is used for
the design, simulation and control of the manipulator.

In this chapter kinematic and dynamic (kinetic) modeling of flexible-link robotic
manipulator is investigated in both general and special-case perspectives. In Section 2.1,
kinematic formulation of a general, planar n-link flexible manipulator with revolute joints is
presented. In Section 2.2, a flexible link model of the manipulator is developed based on the
Bernoulli-Euler beam theory. Realistic boundary conditions for the manipulator under some
common practical conditions are given and discussed. Mode shape selection for analysis and
computer simulation of the manipulator are discussed. In Section 2.3, the overall dynamic
model of the manipulator is derived using Lagrange’s equations. Closed-form equations of
motion for a planar n-link flexible manipulator are presented. Detailed mathematical models
for a single-link and two-link flexible manipulator are derived. In Section 2.4, linearization of
the equations of motion is presented. In Section 2.5, the non-minimum phase characteristic of

the flexible manipulator system is analyzed.
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2.1 Kinematics

Consider a planar n-link flexible manipulator with revolute joints. The links are subjected to
bending deformations only in the plane of motion, and torsional effects are neglected. Figure
2.1 (a) shows a two-link example, and Figure 2.1 (b) shows a serial chain of n-link flexible
manipulator. The geometry of the system is described in terms of the coordinates shown in
Figure 2.1. Frame F° is the fixed, world coordinate frame with the joint of link 1 located at
its origin. Frame F' is the rigid-body moving frame of link #, and is fixed at the joint of link i.
Frame F" is. the flexible-body moving frame of link i, and is fixed at the end of link i. The

rigid motion of link i is described by the joint angle &,, and the transversal deflection of link i

at abscissa x; is denoted by w;(x,,?) .

(2) (b)
Figure 2.1 Schematic diagrams of flexible link manipulators: (a) Two-link manipulator;

(b) General manipulator.




The geometric relations among the coordinate frames can be described using

homogeneous transformation matrices (Spong and Vidyasagar, 1989). The homogeneous
transformation matrix that transforms the coordinates of a point from frame F’ to frame F"

is denoted by H, ;. Specifically, the homogeneous transformation between frames F "and F°

is

¢ -5, 00
s, ¢ 00

Ho,l(t): 0 0 1 0 2.1
0 0 01

where s, =sing,(¢) and ¢, =cosé,(¢) . The rigid-body components of rotation and translation

between frames F' and F'™' are given by the homogeneous transformation between frame

F' and frame F'':
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where s, =siné,(t) and c, = cos#,(¢) . Additional rotation and translation due to the structural

deformation of link i—1 must be considered. The deflections of the flexible links are
assumed to be small compared to their lengths, so the high-order terms of deformations can be
neglected. The changes of link lengths due to deformation are also neglected. The flexible

body components of rotation and translation between frames F' and F'" is the homogeneous

transformation between frame ' and frame F'™:

Cort ~Sa, 0 [,
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where [, is the length of link i-1, s, =sing, (), ¢, =cose,(f), and a,, is the angle of

rotation of link i-/ due to bending. Note that
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The homogeneous transformation between frames F' and frame F*' is
Coi “Sai 0 [y
Sei Cai O Wiy (i)
Hi—l,i (t) = Hi_l’f_l(t)Hf_l’[(t) = 61’ v 1 0 (2.5)
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where s, ; =sin(a,_(1)+6,(¢)) and ¢, ; =cos(a,, () +06,(1)).

In general, the homogeneous transformation of frame F' with respect to the world

coordinate frame F° can be characterized by the following composition of consecutive

transformations:
Ho,i(t) = H0,1 (t)H1,2 () "Hi—z,i—l (t)Hi-—l,i (0 (2.6)

The absolute position and linear velocity at any point on link 7 can be calculated based on

these transformations. For a point r, on link i in frame F' one has
@) =[x wx.r) 0 1] (2.7)
The absolute position of r, in frame F° is
r’ (1) =H,, (O (t) (2.8)

The absolute velocity of this point in frame F° is given by

()
vi(H) =2 2.9
i () 7 2.9)
The absolute angular velocity of frame F' is
6’ =Y (0,+ad,,) (2.10)
=1

The position vector r’(¢), the velocity vector v{(¢), and the absolute angular velocity 9'1_0




are used in Section 2.3 to form the kinetic energy, potential energy and dissipation function
expressions for the flexible link manipulators.

The absolute position and linear velocity for any point on link 1 and link 2 can be
calculated based on the transformations given above. For a point r, on link 1 in frame F' one

has
i) =[x w(x.r) 0 1] (2.11)
The absolute position of r, in frame F° is
rl(£) = Hy, (O} (6) =[x, — s (x,,0), syx, +ew(x,0, 0 1] (2.12)
The absolute velocity of this point in frame F° is

—[x,5, + ew (x,,0)10, — W, (x,,1)s,

dr) (1) _| [xe, = sm(x,0160, + W (x,,0)c,

Vi) = 2.13
(== 0 (2.13)
0
For a point r, on link 2 in frame F* one has
() =[x, w(x.5) 0 1] (2.14)
The absolute position of r, in frame F° is
r20 (t) = Ho,zrz2 (t) = Ho,1 (t)Hl,Z (t)rz2 (t)
Le, —w (1, 0)s, + XCia2 ~ Wz(x2>t)sl,al,2
Ls, +w (1,06 + X8, , + Wy (X,,0)¢, 5 (2.15)
0
1

The absolute velocity of this point in frame F° is
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dr, (1)
dt
—(ls, +w,(L,,0)¢,)8, — w,(I,,1)s, — x2sl,ah2(e>l +a, +6,)

V()=

W, (xz’t)q,a,,z (91 +a, + 02) - W, (x2’t)sl,al,2
. . . (2.16)
(he, =w(,0)8)0, + Wi (1, )c, + x,6,, ,(0, + &, +6,)
W, (xzit)sl,al,z(él +a, + 92) +W, (x25t)cl,al,2

0

0

2.2 Flexible Link Model

2.2.1 Flexible Beam Equation

Consider the link i of the n-link flexible robotic manipulator shown in Figure 2.1(b), which
undergoes transverse vibrations. We use the Bernoulli-Euler beam model to represent this
flexible link, for which rotary inertia and shear deformation effects are assumed small (De

Silva, 2006). The free-body diagram for a segment of this link with width dx, at position x; is
shown on the right-hand side of Figure 2.2. The displacement of the segment from the X,
axis is w,(x;,¢) . Also V,(x,,t) is the shear force and M,(x;,?) is the bending moment.

Link i+ ... Link »n and Payload
1

M (x,0)
o J, M)+ 2250 g

&
........................................................... ) 5V,(Xy,f)dx
—o %

V(x.0+
Joint i Hxv a; ,(— X

g

V;(‘xi:t) dx

Figure 2.2 Flexible link i and the free-body diagram for an elemental segment.

The force equation of motion (Newton’s 2" law) in the Y, direction is
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O’ w, (x,,1)

dez) = pi(xi)dxi _'5;2'— (2.17)

V,-<x,-,r>—[V,.<x,-,r>+a '
Ox

where p,(x;) is the linear mass denéity (mass per unit length) of the beam. The moment

equilibrium condition (since rotary inertia is neglected) is

%”O’dx,}dn 0 (218)

xl

[M,(x,-,t)+%ﬂdxij—M,-<x,-,r>—(V,-<xwr>+
X .

H

Ignore the second order term with dx; in equation (2.18), we have

_ OM,(x,,1)
Ox,

I

- Vi(x,0) (2.19)

Since deformation due to shear is neglected, the relationship between bending moment and
deflection can be expressed as (De Silva, 2006)

O*w,(x,,t)
ox’

H

M, (x,,0)= E L (x,) (2.20)

where E,(x;) is Young’s modulus and /,(x;) is the 2" moment of area of the link cross

section about the Z, axis. By substituting equation (2.19) and equation (2.20) into equation

(2.17), we obtain the Bernoulli-Euler beam equation

o’ O'w, (x,,1) 3*w,(x,,1)
——Z[E,.Mx,.)—— + ()15 =0 (221)

ox’

i i

By assuming p,(x;) and the flexural rigidity E,/,(x;) to be constant along the length of the

link, we obtain the Bernoulli-Euler equation for a uniform beam

o*w,(x,,1) O*w,(x,,1)
E] i i2 + ) i i2 —
Sooxt A or?

i

0 (2.22)

2.2.2 Boundary Conditions

In order to solve the Bernoulli-Euler beam equation for a flexible-link robotic manipulator,

realistic and proper boundary conditions have to be imposéd at the joint and end of each link.
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The commonly used boundary conditions are given below.

1. Free end:
2
Bending moment: E,/, M =0
» t x (2.23)
Shear force: E, 1, % =0
x
2. Simply supported (pinned) end:
Deflection: w,(x;,£) =0
2w (x, (2.24)
Bending moment: E,/, % =0
x

3. Fixed (clamped) end:

Deflection: w,(x;,£) =0
(2.25)

Slope: W =0

For a flexible-link robotic manipulator, the link inertia is small compared to the hub
inertia, so the constrained boundary conditions can be used. It is usually assumed that
boundary conditions for each link are clamped-free; i.e., the flexible link is fixed (clamped) at
the x, =0 end and is free of dynamic constraints at the x; =/, end. This assumption is made
due to the difficulty of accounting for the time-varying or unknown masses and moments of
inertia. In the present work we use realistic and more accurate boundary conditions
representing the balance of bending moment and shear force at the x, =/, end of the flexible
link i (clamped-mass). From the free body diagram of the link end element (see Figure 2.3),

we have the following boundary conditions for link i:
Atx, =0,

w,(0,1) =0,

6Wa,-_(0, D, (2.26)

i

i=1-n




Atx =1,

Bending moment:

0*w,(x,,t d* | ow,(x,,t o*w, (x,,t
B 250 J;(Ta(;‘l J‘(MOX%)
i x=l; i X =/, i x;=/ 2.27) :
Shear force: @
O*w,(x,,1) d’ & | ow,(x,,1)
Bt e (0l J s O G| TR
i=1,n

where J,, and m,, are the equivalent moment of inertia and mass at the end of link i,
respectively, and (MO), represents the contributions of the masses of payload and link

i+1,---,n. due to the mechanical offsets.

Link 7+ ... Link n and Payload

v A |
1 A J R . 2
Y‘ X mb’ L A Ju—d—z_ aﬂ]x(‘xx)z) +(MO), azvvx(fnt)
X, \ dt &, =k % %=k
............ > ) "
d a' | ow,(x.,0)
k\ mu ;1’—2-(“" (-Xi’t)lxi-li) " (MO)} 51—1[ axl x.-lv]
M,(x.1)
Vi(x,1)
>

Joint i [« % > X

Figure 2.3 Free body diagram of the link end element.

2.2.3 Solution of the Flexible Beam Equation

The solution of the Bernoulli-Euler equation of link i can be found using the method of
separation of variables. Specifically, for modal motion, the solution can be separated into a

time function and a space function as

w; (X, 1) = ¢,(x,)6,(1) (2.28)




Then the beam equation (2.22) can be rewritten as

El, d'¢(x)_ -1 60 _ .
po:(x;) dx;’ 50) dt’ i

(2.29)

where @, is a constant since it is simultaneously equal to a completely spatial function and a

completely temporal function. The solution of the temporal part of equation (2.29) is
5,(t) = A cos(wp) + B, sin(w;t) (2.30)

where 4, and B, are constants which are determined by the initial conditions of motion. The

solution of the spatial part of equation (2.29) is

@ (x,;) = C, (cosh(SBx;) + c smh(,Bx )+ (é' cos(fx;) +C—sm(ﬂ,x,)) (2.31)

1i i 1,i

P,,

it

where C,;, C,,, C,; and C,; are constants, and 3" = . Also, as clear from equation

(2.30), w, is the natural frequency of vibration. The function ¢,(x;) is known as the mode

shape function (or eigenfunction) of the beam and describes the shape of each natural mode of
motion of the beam. Application of the clamped-mass boundary conditions (equation (2.26)
and equation (2.27)) allows the determination of the constant coefficients in equation (2.31).

The clamped conditions at the joint base of link i yield

C,=-G,;, GC,=-C, (2.32)

i
,

Substituting equation (2.28) into the boundary conditions of the link i: equations (2.26) and
(2.27), and using equation (2.29), we obtain
$,(0)=0
$/(0)=0
" ﬂ4 !
¢i (lz) = "I_"(JL1¢:‘ (li) + (MO)i¢i (li )) (2'33)

,3

8" (1)=—" P (m,¢,(1,) +(MO),¢/ (1))

where a prime indicates differentiation with respect to x,. Substituting equations (2.31) and
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(2.32) into equation (2.33) yields

C?_,i
C =

1,i

cosh(B1,) +cos(Bl) - Jub’ (sinh(B1) +sin(B1,)) - (MO), 5 (cosh(B1,) —cos(B1,)) (2.34)
A A

i

i

sinh(B1,) +sin(B1) - Mi— (Cosh(ﬂili) —cos(f1, )) - (—M (sinh(ﬂ,.l,) —sin(41,))
P P

sinh(B./,) —sin(B1l) + m P, (cosh(B1) —cos(B1,)) + (M—O)-"ﬁ'i(sinh(ﬂili) +sin(f1,)) (2.35)

!

cosh(B1) +cos(B1) + mub. (sinh(B1,) —sin(S1,)) + (M0), 5 (cosh(B1) —cos(B1))
~ Pi

!

Substituting equation (2.34) into equation (2.35), we obtain the frequency equation

1+ cos(B.;)cosh(S.1l;)

-k (sn( 44 cosh( 1) - cos(B)sinh(51)

i

-2 (MO), B sin(B1,)sinh(B1,) (2.36)
Pi

- _JL'ﬂis (sin(B1;) cosh(B1;) + cos(f1;) sinh(S1;))

1

+ (m,J,, — (MO)iz)lBi4
,02

(1-cos(fB1;)cosh(B1)) =0
This frequency equation has an infinite number of solutions, { By J= 1,---,00}. Each solution

pB; is related to one natural frequency @, . The natural frequencies are computed as

, [EL

(2.37)

Substituting equation (2.32) into equation (2.31) and using equation (2.34) yield the

corresponding mode shape function for the jthA mode for link i:
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¢ij(xi) = Cl,ij COSh(ﬂijxi) - Cos(ﬂijxi) + %Z—L(Slnh(ﬂyx:) - Sin(ﬂg'xi)) (2-38)

CZJJ' -
COSh(ﬂijl.) + COS(ﬁijl,-) - JU'BU (smh(ﬂul,) + Sin(ﬂijli)) - M (COSh(ﬂijli) - COS(,BUI.)) (239)
i by (MO), 5,

sinh(B,1,) +sin(B,1,) - "T (cosh(,1,) - cos(B,1,)) - ——"*(sinh(B,1,) - sin(B,1,))
: P

Let ¢,(x;) and ¢,(x;) be the mode shape functions corresponding to the natural frequencies

w;and w, (j# k). From equation (2.29), we have

%¢ik "(x) = a)ik2¢ik (%) (2.41)

From integration by parts, one has
J;/i ¢y (xi)¢ik vm(xi)dxi

. (2.42)
[ 00k ") =) G @) |+ [[8) g (e

Multiplying equation (2.40) by ¢, (x,); equation (2.41) by #,(x,), subtracting the resulting

equations one from the other, and integrating from 0 to /; gives

[/ 4,00 (e,
) 'O(sz‘l—I_la)z) J: (¢Ik (xi)% ""(xl,) B ¢"J'(xi)¢fk ””(xi ))dx (2.43)
= (ﬂ_“i-ﬁ—z.)- ﬂi (¢ik (x,- )¢U ""(x,-) - ¢ij (xl.)¢ik ""'(xi )yx

The right-hand side of equation (2.43) can be evaluated using equation (2.42) as




I: ¢"J' (%)@ (x; )dx,

e (54,5 ~ 8 (OB )+ 6, (5 () — () )|
pi(a)ij — Wy )

, (244)

i
0

Substituting equation (2.33) and (2.37) into equation (2.44), we obtain the orthogonality

relations for the clamped-mass beam mode shape functions:

[0, () o, +my (1) (1) + (MO, (#,U)8, () + 6, (18, ')

(2.45)
g (e () =0 (j#k)
The constant C, ; normalizes the mode shape functions so that
{4} @)dx =1, (2.46)

In this manner, one obtains an infinite set of mode shape function ¢,(x,) for link /and
the corresponding natural frequencies @, . Hence, according to the solution in equation (2.28),
there is a corresponding infinite set of generalized coordinates, &,(¢), j=1,---,%0, which

satisfy equation (2.29). It follows that the overall response of the link i is

w(x,,t)= igﬁij(xi)éij ®) (2.47)

2.2.4 The Assumed Mode Method

From Section 2.2.3 we notice that the flexible links of a robotic manipulator are distributed
parameter systems whose equations of motion may be described by a set of Bernoulli-Euler
partial differential equations (PDE). Equation (2.47) states that the exact solution to the
Bernoulli-Euler PDE requires an infinite number of modes. For typical applications, however,
the higher order modes may be truncated since they represent frequencies that are well outside
the operating bandwidth (De Silva, 2006). Furthermore, this modal truncation is required in
order to meet the computation time constraints. A finite-dimensional model with link
flexibility can be obtained by the assumed mode approach. The deflection of each link can be

approximated by using a finite number of modes, and is expressed by a weighted summation
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of the functions ¢;(x;) ; thus

Wi (o) = 30,8, (1) (2.43)

where ¢;(x;) are any functions that satisfy the boundary conditions. These are termed

admissible functions. If the functions ¢,(x,) are selected to be a set of polynomials in x;, the

resulting frequencies of vibration are only approximations to the actual natural frequencies of

the system. If the functions ¢,(x;) are chosen as the mode shape functions ¢,(x;), the

derived frequencies of vibration are equal the natural frequencies of the system. Therefore, the

deflection of link i of the flexible-link robotic manipulator can be approximated by
wi(x,,0) = Y 8,(x,)5;(1) (2.49)
Jj=t

For the flexible link robotic manipulator, the number of modes 7, ; and the admissible
functions ¢, (x;) determine the accuracy of the approximation. If we increase the number of
modes 7, ; the accuracy of the finite-dimensional model will be improved. But this will also

increase the complexity of the analysis and computation. The high-order model will make
controller design more difficult. In practice, as noted before, the contribution of the higher

order modes to w,(x;,#) is minimal, and »,; is typically assumed to be 1 or 2. This

corresponds to 1 or 2 significant modes. For the same number of modes, the accuracy of the

assumed mode approximation is determines by the admissible functions ¢, (x;). The goal is

to select the admissible functions as close as possible to the exact mode shape functions

¢;(x,) without increasing the complexity of the system model. From equations (2.36) through
(2.39), we can see that the mode shape functions ¢,(x;) are influenced by the physical

parameters of the system, the boundary conditions, the payload, and the arm configuration.
Next we will investigate the influence of these factors on the prototype flexible link
manipulator shown in Figure 1.1. The schematic diagram of this planar two-link flexible
manipulator is shown in Figure 2.1(a). The links of this experimental manipulator can be

interchanged. Two types of manipulator links are used in this research. Type 1 linkisa 1 m
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long, 0.003 m thick, and 0.051 m tall aluminum thin beam. Type 2 link is an aluminum rod
that is 2.0 cm in diameter and 1.0 m long. We will use the following configuration: the first
(inboard) link is type 2 aluminum rod and the second (outboard) link is type 1 aluminum thin

beam. Their physical parameters are given in Table 2.1.

For link 1, the equivalent moment of inertia J,,, mass m,, at the end of the link 1, and the
contributions of the masses of payload and link 2 due to the mechanical offset (MO), are
M, =m,+m, +m,
Jy=Jdp+Jpy+J, +ml, (2.50)
(MO), = (m,d, +m,l,)cos(6,)
For link 2, the equivalent moment of inertia J,,, mass m,, at the end of the link 2, and
the contributions of the masses of payload due to the mechanical offset (MO), are
M,=m,
J,=J, (2.51)
(M0O), =0
where m, is the mass of link 2, m,, is the mass of hub 2, m, is the payload mass, J, is
mass moment of inertia of link 2 about joint 2 axis, J,, is the inertia of hub 2, J, is the
payload inertia, /, is link length, d, is the center of mass, and 6, is the joint angle of link 2.

Table 2.2 and Table 2.3 present the natural frequencies and the link end deflections of the
first four modes of link 1 and link 2 under different boundary conditions, payloads and arm
configurations.

The exact mode shape functions for link 1 is time-varying and depend on the mechanical

offset (MO), given in equation (2.50). The maximum value of (MO), is

(MO), e = myd, +m I, , which occurs when ¢, =%z . The minimum value of (MO), is

(MO), .., =0, which occurs when 8, = i%. Figure 2.4 shows the first four mode shapes of

link 1 with zero and maximum mechanical offsets and nominal payload. We can see that
changes of mechanical offset do not significantly affect the mode shapes of link 1. Since the

mechanical offset of link 2 is zero, we will ignore the influence of mechanical offset from
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now on.

'Figure 2.5 shows the first four mode shapes of link 1 with clamped-free boundary
conditions and clamped-mass boundary conditions with different payloads (zero, nominal,
maximum payload) and zero mechanical offset. We can see that clamped-free mode shapes
can only be used to approximate the first mode of link 1. For higher modes the differences
between clamped-free and clamped-mass mode shapes are too excessive. Furthermore, the
clamped-mass mode shapes of link 1 do not significantly change with the payload.

Figure 2.6 shows the first four mode shapes of link 2 with clamped-free boundary
conditions and clamped-mass boundary conditions with different payloads (nominal,
maximum payload) and zero mechanical offset. We can see that like in the case in link 1, only
the first clamped-free mode shape is close to the clamped-mass rﬁode shape for link 2. The
effect of payload on mode shapes of link 2 is greater than that of link 1.

In summary, we can make following conclusions for the mode shapes of the two-iink
flexible robotic manipulator:

e The mode shapes and natural frequencies are dependent on the physical parameters
of the link, the payload, and the arm configuration. Because of link flexibility, the
resonant frequency is dramatically reduced. This means that thé robot has to move
relatively slowly to reduce vibration under normal operation. Active vibration
controller must be designed and implemented to achieve better performance.

e In general, the mode shapes for link 1 are time-varying. They change with the
position of link 2. But the influence of the mechanical offset is small and can be
ignored for both links. Accordingly the constant mode shape functions may be
used in the assumed mode method.

e Only the first one or two modes of motion are significant for both links. This is
verified using the frequencies given in Table 2.2 and Table 2.3. The high
frequency terms in the system dynamics can be dropped in order to reduce the
model order. These terms may be treated as model uncertainties in the controller
design. ‘

e The larger the payload the smaller the natural frequencies.

e For the first mode, the difference between the clamped-free and clamped-mass

mode shapes is small. For higher modes, the difference cannot be ignored. In order
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to achieve the same model accuracy using the assumed mode method, the number
of modes has to be increased if we use the clamped-free mode shapes.

e The effect of payload on the mode shapes of link 2 is greater than those of link 1.
The effect of payload on mode shapes is not significant and can be ignored.

e The deflections of a flexible link robotic manipulator may be approximated by the
assumed mode method. The constant mode shapes with zero mechanical offset and

nominal payload, will be used in the assumed mode method.

Table 2.1 Parameters of the links.

. Link 1: rod Link 2: thin beam

Uniform density: p (kg/m) 0.8451 0.4035
Link length: / (m) 1 1
Center of mass: d (m) 0.5 0.5
Link mass: m (kg) 0.8451 0.4035
Nominal payload mass: m ’ (kg) 0.38 0.38
Maximum payload mass: m, . (kg) 1 1
Link 1 hub mass: m,, (kg) 6.4 6.4
Link 2 hub mass: m,, (kg) 4.2 4.2
Link moment of inertia: J, (kg.m”) 0.2817 0.1345
Hub 1 moment of inertia: J,; (kg.m?) 4.5 4.5
Hub 2 moment of inertia: J,, (kg.m?) 1.9 1.9
Nominal payload inertia: J, (kg.m") . 0.001 0.001
Maximum payload inertia: J, (kg.m?) 0.0026 0.0026
Link flexural rigidity: £/ (N.m?) 574.024 8.2238
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Table 2.2 First four modes of link 1.

Link 1 Mode () 1 2 3 4
(rod) Offset Payload
(kg.m) (kg)
Clamped-free | 1.8751 | 4.6941 | 7.8548 | 10.9955
0 0 0.7065 | 1.3602 | 4.7697 | 7.8769
B 0 Nominal | 0.6837 | 1.3221 | 4.7664 | 7.8750
Max Nominal 0.6585 | 1.3803 4.7709 7.8770
0 Max 0.6529 | 1.2719 | 4.7622 | 7.8725
Clamped-free | 14.5916 | 91.4438 | 256.0453 | 501.7467
0 0 2.0719 | 7.6786 | 94.4118 | 257.4884
S, (Hz) 0 Nominal | 1.9397 | 7.2546 | 94.2847 | 257.3687
Max Nominal | 1.7996 | 7.9078 | 94.4622 | 257.4955
0 Max 1.7691 | 6.7139 | 94.1190 | 257.2098
Clamped-free | 2.0000 | —2.000 | 2.0000 | -2.0000
0 0 2.1493 | 1.3660 | —0.0736 | 0.0458
¢,(,) m |0 Nominal | 2.1540 | 1.3898 | —0.0682 | 0.0423
Max Nominal | 2.1516 | 1.3769 | —0.0737 | 0.0449
0 Max 2.1596 | 1.4163 | —0.0609 | 0.0378
Table 2.3 First four modes of link 2.
Link 2 Mode (j) 1 2 3 4
(thin beam) Payload
(kg)
0 1.8751 | 4.6941 | 7.8548 | 10.9955
By, Nominal | 1.2616 | 3.9334 | 6.5820 | 8.8400
Max 1.0240 | 3.7406 | 5.9522 | 8.2571
0 2.5276 | 15.8401 | 44.3526 | 86.9134
Sy (Hz) Nominal | 1.1442 | 11.1224 | 31.1435 | 56.1767
Max 0.7537 | 10.0587 | 25.4686 | 49.0122
0 2.0000 | -2.0000 | 2.0000 | -2.0000
¢,,(1,) (m) | Nominal | 2.0486 | -0.3124 | 0.0868 | 0.1267
Max 2.0554 | —0.1131 | —0.0459 | 0.0888
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2.3 Derivation of Equations of Motion

2.3.1 Closed-form n-link Model

The dynamic equations of a planar »-link flexible robotic manipulator shown in Figure 2.1(b)
can be derived using the well known energy method of Lagrangian dynamics. First we need to
calculate the kinetic energy T and potential energy V' of the system and then form the

Lagrangian L =T —V . On the basis of the discretization introduced in Section 2.2.4, the

Lagrangian L becomes a function of a set of N generalized coordinates {q,.(t)}, and the

dynamic model is obtained by satisfying the Lagrange’s equations

4oL oL OR_ e i-1..N. (2.52)
dt 04, 0q, 0q,

where { (1)} are the generalized forces and R is the dissipation function.
For a point r, on link i in frame F* one has
i T
FO =[x wx.) 0 1] (2.53)

The link deflection can be approximated by the assumed mode method as given in equation
(2.48). Based on the analysis in Section 2.24, we will use the constant clamped-mass mode
shape functions with zero mechanical offset and nominal payload as admissible functions.

Then
Wi 0) = D8, (5)5,0) (254)

Set (MO), =0 in equation (2.38) and (2.39). We obtain the clamped-mass mode shape

function for the jth mode for link i as
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6,05 = C,y | cosh(f %) ~cos(fx) + <22 (sinh( ) - sin( )

1,ij

cosh(fg,1,) +cos(B,1,) — ~J1'—'BU- (sinh(ﬂy.l,.) + sin(,B,.jl,.)) (2.55)

C; B
Y sinh(B,1) +sin(B,L) - uby

1

(cosh(,1,) - cos(B,1,))

From equation (2.36), we have the corresponding frequency equation

1+ cos(Bl)cosh(B.L;)
1B (sing B;ycosh(B1) - cos(B1;)sinh( B1,))
Pi

- Jh—ﬂls (sin(B1;)cosh(f1;) + cos(f/;)sinh( SL;)) (2:30)

i

n ﬂ'ﬁ;ﬂt(l —cos(fl;)cosh(f1;)) =0
P

The position vector r’(z), the velocity vector v(¢), and the absolute angular velocity 6!

(equations (2.8) through (2.10)) in Section 2.1 can be used to form the kinetic energy,
potential energy, and dissipation function expressions for the flexible link manipulator.

The kinetic energy of the hub i is

Ty = om0V | o+ 5T (6) 257)

where m,; is the hub mass and J,; is the hub moment of inertia.

The kinetic energy of link i is

1 ¢ 0N\T . 0
T, = 5 J: pi(x)(v;) vidx, (2.58)

The kinetic energy of a payload with mass m, and moment of inertia J, located at the end of

link 7 is

T, =%mp(v3)Tv‘; - +%Jp(én° ray (2.59)

The total kinetic energy of the system is

38




T=iT,”.+Zn:T,,. +T, (2.60)
i=1 i=1

The total potential energy of the system is given by
" " w. (x,0) |
i WX,
V=>U-=)—=|(ED(x) ——=2=| dx 2.61
AN >,<,){ - } , @61)

where U, is the elastic potential energy of link ;.

Assuming that the energy dissipation in the system can be modeled using equivalent

viscous damping, the total dissipation function of the system is

R= %iba_éf +%i§by5; (2.62)
i=1

i=1 j=1

where the subscripted b terms are equivalent viscous damping coefficients. The first term
represents the energy dissipated due to friction in the link joints and the second term is the
energy dissipated due to structural damping.

Substituting equations (2.60) through (2.62) into equation (2.52), the closed-form

equations of motion of a planar n-link flexible manipulator are obtained as

M(q)q+h(q,q) + Kq+Bq=u (2.63)
where q = (9,,---,9,,,5“,---,Slnml,---,5,,1,-.-,5""”‘”) are the generalized coordinates, 6, are the

joint variables of link i, &, are the deflection variables, M is the positive-definite symmetric

mass matrix, h is the vector of Coriolis and centrifugal forces, K is the stiffness matrix, B is
the diagonal damping matrix, and u is the n x1 vector of input torques.

Since all the links are modeled by uniform Bernoulli-Euler beams having constant
clamped-mass mode shapes with zero mechanical offsets and nominal payload, the following

integrals are constant parameters in the equations of motion and can be computed offline:
m = [ pdx, = p, (2.64)

T = [ paidx (2.65)
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Iy = J: Py (x;)x,dx, (2.66)

Ly = J; P (x)8, (X, )dx, (2.67)
Ly = [ ED.8) ()8, (), (2.68)
Ly = J: Py (x,)dx; (2.69)

Recall the normalization of the clamped-mass mode shape functions in equation (2.46). We

have

i
Ly = L pi¢ij2 (x)dx; = pl; = m, (2.70)

The orthogonality relations for the clamped-mass beam mode shape functions in equation

(2.45) with MO, = 0 become

J: ¢y (x)8, (x.)p,dx, + mLi¢ij (1)g, (1) + JLi¢ij '()e, ') =0 (J#k) (2.71)

From equation (2.68) and (2.42) we have

Ly = [ D8 ()" (5, =
’ ; (2.72)
(E]), { J:)’ ¢,-j-(xi)¢ik ""dx,— - |:¢,j (xi)¢ik m(xi) - ¢ij'(xi )¢ik” (xi):! 0 }

Substituting equation (2.41) into equation (2.72) and using the boundary conditions in

equation (2.33), we obtain
l " "
Ly = [ (ED ) (x)," (x,)dx, =

h Pi 2 " ' " l
(Ef),{JO¢,,-<x,.>(E—1)iw,-k o Cr e, = [ 8,500 " (5) = 6, (5 <x,.)}}0} -

= a)ikz J: pi¢ij(xi )¢ik (xi )dxi - (El)i gj"':_ml,i%'(li)¢ik (li) - Jl,i¢ij,(li )¢1k, (li):|

= a)ik2 |: J:i Py (x)P; (x;)dx; + mLi¢ij (1)¢, (L) + JLi¢ij’(li)¢ikl(li)j|
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Substituting equation (2.70) and (2.71) into above equation we obtain

Ly = _[f (E])i¢ij"('xi)¢ik” (x;)dx,
0 (j#h 2.74)

o, [m,. + (L) + JL,.¢,.1.’(1,.)2} (=k)

The orthogonality relations and normalization of the mode shape functions result in
convenient simplifications in the diagonal blocks of the mass matrix M relative to the

deflections of each link, due to the particular values attained by 7, in equation (2.67). From

equation (2.74) it can be shown that the stiffness matrix becomes diagonal and take the values

a)ijz |:m + mLi¢ij (xi)2 + JLi¢ij, (li)z J .

2.3.2 Single-link Model

In this section, we develop an explicit finite-dimensional dynamic model for a planar single-

link flexible robotic manipulator shown in Figure 2.7.

A5

Fl FO

Figure 2.7 Single-link flexible robotic manipulator.

The link deflection can be obtained from equation (2.54) by setting i = 1; thus




W (50) = 3, (3)8,,0) 2.75)

where ¢, (x,) are the constant clamped-mass mode shape functions with zero mechanical

offset and nominal payload.

The kinetic energy of the hub is

1 -
T, =5']h1012 (2.76)
The kinetic energy of link is
1 ¢
T, = b A (v v)dx, (2.77)

Substituting equation (2.13) into equation (2.77), we have
L oeh 0T o0
T, =§J;) pi(vy) vidx,
1 . . 2 . . 2
== [ o {Dxis, + e G016, + 0 (x,0s, |+ {[xe = 5w (3,016, +, (%06, ) dx, (2.78)
1 ¢ 2 2 32 ) . -2
== [ 2 {1 + w7 0, 0167 + 2690, (3, 0)x, + W (1) d,

Substituting equation (2.75) into equation (2.78), we obtain

1 ¢ . - )
=5 [ » {67 + w6, D107 + 26,0, (x,, £)x, + W] (x,,1)} by
( et 2 LR
. |ix12 + [Z¢1/(X1 )511' (t)J :|912 + 2912¢1j(x1 )51j(t)xl (2.79)
= =
:E-[o 2, >dx,

L+(i'¢l,~(xl >6},.(r)]

The kinetic energy of payload is obtained by setting i =1 in equation (2.59); thus

1 .
T, =5mp(v?)7v?

oot %Jp(él" +a,) (2.80)

Substituting equations (2.4), (2.10), and (2.13) into equation (2.80), we obtain
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+-;—Jp(t9'1° +a,)’

P 1 | x=]

T =%mp(v?)Tv°
Lo, {{l . ("‘"Z‘Ml )@,-(r)j }9 26,304,016, (00, + [""‘Z"(za,a] )5,,-(0} } @2.81)

+ L, [9 + nmzqﬁu (A, )5lj(t)j

The total kinetic energy of the system is
T=T1,+1,+1,

!xﬁ{ilqﬁu(xl) (t)” +292¢l,<x) (0,

1 . 1 ¢
=5J,,1912+5L,01< rdx,

L{ﬁqﬁu(xl )5},-0)]

( 2 (2.82)
I+ (Z 4,(L)3, (”J  +26 ZM )3, (),
1 J=
+5mp h . X &
+ (Z 4, )@,-(t)]’
SR
A 2
+2J (6’ +Z¢11 (¢, )5lj(t)j
The total potential energy of the system is given by setting i =1 in equation (2.61); thus
=1 j (ED) {M} dx, 2.83)
'xl
Substituting equation (2.75) into equation (2.83), we obtain
1 d ’
h il "
= 2 _‘; (E])1 |:;¢1j (x, )51j(t)i| dx, (2.84)
Use equations (2.82) and (2.84) to form the Lagrangian of the system:
L=T-V (2.85)
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From equation (2.62), the total energy dissipation function of the system is obtained as

Zb 5.} , (2.86)

The dynamic model of the single-link flexible robotic manipulator is obtained by

substituting equations (2.85) and (2.86) into the Lagrange’s equations

ia_'L_é[_,_'__@_].{:fi’ i=1,1+n,,. ‘ (2.87)
dt og; 0q, 04 ’
The generalized coordinates of the system are q=(q1,---,q1+nm‘l)=<6’1,5“,-~-,5,nm’1). One
obtains
d oL | d ’
/) ;) Ll

dl 59 Jh19 [J; plxlzdx] + J; P (;¢1j(x1) (t)j dx}:l

20,6, {j Z¢I,<x) <r>2¢],.<xl)5l,(t)dxl}
j=1

n n 2
/; ) . .1 ..
+J; P z¢lj(xl )x1dx151j(t) + m, |:ll2 + [Z ¢1j (11)511‘(1‘)\) }91 (2-88)
Jj=1 J=1
+2m, 0, {Z #,1)5,(0 4,15, ,-(t)} +m, D 4,(1)6,, (1
Jj=1 Jj=1 Jj=1
1,0+ 2,8, (1)0,;()
=1
oL _
06,
(2.89)
OR
— =056,
06, ‘
d oL _ S el --
@5, = [ P Gxsf + [[ 0y (5020 (53, (0
(2.90)

+ (m,,11¢1j (ll) + Jp¢lf, (Zl )) 9‘

+m, ¢ (; )Z¢1k(1 )8, (6) +J 8,/ (4 )Zm (1)6, (1)
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oL

- == J:‘ ,01¢1j(x1)2 ¢1k (x1)51k(t)dx,é]2
06, <

_mp¢]j (, )i P (1)8,, (t)dx]@.]z
k=l (2.91)

+(EI), _[)ll 4, (x )il: B (x,)6,, (Ddx,

OR :
35, bt

1
For the 6, generalized coordinate the generalized force is the torque applied to the joint

7, . The rigid body equation for the link is obtained by substituting equations (2.88) and (2.89)

into (2.87) and using the constant integrals defined in equation (2.64)-(2.70); thus

6, (Jh1 +J,+J, +mpl]2)
+0, [ ['n [i'm(xl)é,j(r)J dx, +m, (i'qz,.(l, )a:,.m] }

J_"’Z(IH, Em b, (1) + 7,4, 1))8,0) 2.92)

[ 23,8, (04, (x)8, (00,
+20, & s

+m, Y ,(1)8,,()>¢,(1)5,,(t)
L j=l j=1
+b(,l 91 =1,

The time variation of the jth mode shape function of the link is given by the generalized

coordinate &, ; for which the corresponding generalized force is zero. The deflection equation

for the jth mode is obtained by substituting equations (2.90) and (2.91) into (2.87) and using
the constant integrals defined in equation (2.64)-(2.70); thus
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(y +mobh )+ 7,1, )

2] [0 G (), 4,0, () 1)+, (1) (1) |8,

. (2.93)
“Z[ _[)Il pl¢lj (X)) (x,)dx +mp¢lj ()¢, (4, ):| Oy (t)élz

+a)1j2 [m, + mp¢lj(ll )2 + Jp¢1j’(l1 )2 ] é‘lj(t) + bUSU =0

2.3.3 Two-link Model

In this section we develop an explicit finite-dimensional dynamic model for the planar two-
link flexible robotic manipulator shown in Figure 2.1(a).

The link deflection for the first link is
w,(x,,t) = 2(151/(951 )6,,(0) (2.94)
=
The link deflection for the second link is
w, (x,,t) = ni:@j (x,)9,,(1) (2.95)
=

where ¢,;(x,) and ¢,,(x,) are the constant clamped-mass mode shape functions with zero

mechanical offset and nominal payload.

The kinetic energy of hub 1 is
T, ==J,6] ~(2.96)

The kinetic energy of hub 2 is
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1 .
x,=0 + Eth(ezo)z

1 o
T, = Emhz (V(z))l Vg

1 0T 0
=—my, (v, )I v

2 x =l

+%4ga+@+¢f

27] 2
1 M . o M . LA . (297)
=S, [lf ' [Z 4,0 )61,-0)} 67 +26,.4,(1)5, () + [Z 4,0 )@,(r)} }
Jj=1 =l =1
1 X N
+5Jh2 (01 + 92 + Z¢1j’(ll)5lj(t)
=l
The kinetic energy of link 1 is
1 ¢
I, = 5 LI 5 (xl)(v?)Tv?dxl
1 ¢ : - .
=§LAﬂﬁ+wﬂ%oﬂﬂawmmﬁq+ﬁuwnﬁl (2.98)

( T | 2 M 1 .
le + (z ,;(x,),; (t)j ]9}2 +26, Z¢lj(xl )9,;(1)x,
= 1 J‘i P a a  dx,

+(§¢l,-(xl )5},@)}

The kinetic energy of link 2 is

1 ¢
T, = 5 _[) pz(Vg)Tngxz

1 ch - S g .
=5Lpxﬁ+wﬂhgyf+ﬁngupoya+q+@f+wﬂho+@@%0ﬁz
25, [ L, 26, + W (4, 0)5,,,6, + W, 0)c,,, |
I . .
+> [ PG+ +6) lﬁwa—mwjmmﬂ}ﬂz

+2x,W,(x,,t) = 2w,(x,,t)
e T +w1(l1,t)sa,,2

1 b - . : -
+5L/gy@wxho+2w4@¢ﬂﬁ%ﬂa+wﬂmn%ﬂ@+wﬂ%ggﬂ}uz
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L, [zf . (zw )5,,(0}2]9’3
+%{]02 [, (g%j(xz)&z j(t)jz dxz}(él ¥ ;qﬁ, ;(1)3,()+6,)°
+im, [ZM )51,@)}2 _ (§¢2,<x2>52,<r)f d,

6+ 2%'(11 16,,(0)+6,)

[, cos(2¢1/<zl )8,,(0) + ezje}

—m,l

+”’"Z'¢U(ll )51j(t) Sin(mnzl(éu'(ll )51j(t) + 92}9.1 + '§112152](t)

[\®]
~

+§ @,,(1,)5,,(t)cos (nf‘ @, (1)6,,() +6, j

l sin["mig»l S ()8 (1) + @JQ |

_i 1,,6,;(t) _2 ¢,,(1,)0,,(t) cos [i ¢1f" (1)6,,() + 6, Jél

l +%l:¢1j(11 )51,'(0 Sin(nmzlﬂjl (h)o, () + QZJ

+m21191 Z ¢1j(ll )51j (t)
j=1
A COS(Z¢1,"(11 )51j(t) + gzjél
=1

n ,, ) (2.99)
1,8, 0+ 6,1)5,,(0) sin'(z 8, (1)5,,(1)+ 6, )é,

Y 4,18, cos(ﬁqzsl,-’(l])él,(r)wz]

The kinetic energy of the payload is
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oty F %Jl,(é] +0,+d, +a,)’

1 : S . .
=m, {[zf +w (1,0 |67 +[ 1 +wy (1,0 (6, + &, +6,)" + Wi (1,,0) + wj(zz,r)}
20, [ lie 26, +w (11, )5, .6, + W (. 0)c, |

L
+—m (6, + ¢ +6,) . . .
2 2Ly (1) = 2w, (1, )] 5, 16, = W (1, )6, 16, + W, (4,1)5,,.5 |

1, 16,0, (1, 1) + m 3, (L, D) e 16, + W (,0)5,, .6, + W, (1, )c, , |

+-;—Jp(0'1 +0,+ad, +a,)

( 2
[lﬁ + (Zqﬁl,-(l] )@,-(z)} ]0

=—m,y+| L + (Z (A )62,-(0) }0} + ""Z"«za,-’a, )6,,() +6,)°

: ﬁyﬁlj(l,)é]j(r)] +[ﬁ¢z,-(12>52,-(t)J

L

1 L T :
+§mp(€1 + Z¢1j (11)511'(1) +6,)
=

I, cos [Z ¢1j' (4,)5,,() + 6, J 91
j=1

2]

L]

+316,006,0 sih[nmia,-'(z] )51,-<r)+6’zj9} +20,34,,0)6,,0

+§ ¢1j(ll )51j(t) Cos (nil: ¢1j, (¢ )51,‘ )+ gzj

! sin[Z 8, (1)5,,(6) + szé,
Jj=1

236, (1)5,,0)| ~>-4,4)5,,() cos[i'qz; 1)8,,(1)+ 6, j 6

36,08, Si“{nmiﬁ/(ll)%“”ezj
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+m 16,3 4,,(1)3,,(0)
Jj=1
ll cOos (Z¢1]l(ll)5lj(t) + 02 J 0-1
J=

+mp'§¢2j(12)52j(t) +MzJ¢lj(ll)5lj(t) Sin(§¢1j’(ll)§lj(t) + 02}9.1 (2.100)

j=1

+"'ii¢l,-(4)51,-(r>cos[""'2’¢l,’<ll)c%(r)+02J

#2664 2 ()3, 0+ ) (15,0

The total kinetic energy of the system is
T=T,+T,+T,+T,+T, (2.101)

The total potential energy of the system is given by

By w (x0T . 1 ¢ 0w, (x,,0) |
V——J;(El)lli——————— dx1+EIO(EI)2 —25

2 axf 5
, , (2.102)
1 ¢ gt ” 1 b e "
== ["(ED | 2.6, ()8, (0) | as+= [T(ED | 2., ()5, (0| dx,
Use equations (2.101) and (2.102) to form the Lagrangian of the system:
L=T-V (2.103)
The total dissipation function of the system is
1 2 - 1 2 P -
R==>"0,0"+=> > b5, (2.104)
25 243 J=1 7

The generalized coordinates of the system are

q= (ql’“.’q2+n,,,‘1+nmvz ) = (‘91>‘92=511=”'=§1n,,,,1’521>'"’52,:,,,,2 )

The dynamic model of the two-link flexible robotic manipulator is obtained by

substituting equations (2.103) and (2.104) into the Lagrange’s equations
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d 8L oL OR

+—=f, i=l---,24n,, +n,,. 2.105
@, o o L .

The above steps are coded to obtain the dynamic equations of the system using the
symbolic manipulation software MAPLE (Maplesoft, 2005). This method protects against
errors which are common in manual algebraic manipulation; for example, transcription errors,
sign errors and misapplication of the chain rule of differentiation. The derived dynamic
equations are given in Appendix A. The MATLAB (Mathworks, 2005) code and the C code
of this model are obtained by using the Code Generation package of MAPLE. This nonlinear
model is used to simulate the two-link flexible manipulator. The linear model derived from

this nonlinear model is used in the design of the MPC controller as presented in Chapter 5.

2.4 Linearization of the Equations of Motion

From Section 2.31 the closed-form equations of motion of a planar n-link flexible manipulator

are obtained in the form
M(q)g+h(q,q) +Kq+Bq=u (2.106)

These equations are nonlinear. If a linear model of the nonlinear system can be obtained that
is sufficiently accurate over a suitable range of operating conditions, then techniques of linear
control analysis and design may be applied to the linear model. In using such a linear model it
must be ascertained that it remains valid over a suitable range of operation of the plant. For a
wide operating range more than one linear model is needed to cover different regions of the
operating range. Here the proper linear model should be used is selected depending on the
operating conditions.

In this section, local linearization technique is used to derive a linear model for a
nonlinear planar zn-link flexible manipulator. The resulting linear model is used for controller
design and analysis, as presented in the subsequent chapters of the thesis.

The operating point of a dynamic system defines its overall state under a specified
operating condition. A linearized model is an approximation that is valid in a small region
around an operating point of the system. Near the operating point the approximation will be
good, while far away it will become increasingly poor. When generating a linearized model

from a nonlinear model, the choice of operating point is important as it will determine the
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accuracy of the approximation. The operating range of motion of a planar »-link flexible
manipulator can be large (e.g., large changes of joint angles). Consequently, in linearization
of the equations of motion, often many operating points have to be considered. For this
reason, in this section we present an approach for deriving closed-form linearized equations
about any operating point. Consider the nonlinear equations of motion given by equation

(2.106). For an operating point (q,,q,,q,,U,), @ linear time-invariant approximation to this
system is valid in a small region around this operating point. To derive the linearized model, it
helps to first define a new set of variables centered about the operating point of the states,
inputs, and outputs, as

Aq=q-q,; Aq=q-q,

. (2.107)
AQ=q4-q,; Au=u-u,

where the subscript “0” denotes the operating configuration and “A ” indicates the variation
from the operating point. By definition, the operating point is a solution of equation (2.106),

as given by
M(q,)q, + h(q,.9,) + Kq, + Bq, =u, (2.108)
The motion near the operating point can be described by

M(q, + Aq)(q, + Ag) + h(q, + Aq,q, + Aq)

) ) (2.109)
+K(q, + Aq) + B(q, + AqQ) = u, + Au

Perform a Taylor series expansion on equation (2.109). Assume the deviations from the
operating point are small so that the Taylor series can be truncated after the first term,

resulting in the following equation:

. . .. oh oh
Aq](qo +Aq) + [h(qo,qo)+a— Aq+—
qp

q 9,490 aq

oM
M +— AQ
[ @)+ e q} (2.110)

+K(q, + Aq) + B(q, + AQ) =u, + Au

Substituting equation (2.108) into equation (2.110) and neglecting the high-order terms, we

obtain the linearized equations of motion of the system:
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.. ©oh
qo+—

M(q,)Aq + [_ay + B]Aq + {aﬂ + K}Aq = Au (2.111)
oq| . 0q .
0,90 o 9o-9o

In this thesis, the controller design is based on a linearized model of the plant.

Specifically, the nonlinear model is linearized about an operating configuration where the

each joint angle has a specific value 8,, while all the other generalized coordinates, speeds

and inputs are equal to zero. This is the equilibrium operating point of the system when each
link of the planar flexible robotic manipulator rests at a specific joint angle with no input and
no deflection. The equilibrium operating point remains steady and constant with time, with all
states in the model at equilibrium. It is also known as a steady-state or trimmed operating
point. A model that is linearized about a stable equilibrium operating point is likely to remain
within the region around the equilibrium value. Such a model will give a good approximation
to the nonlinear model. A model linearized about an unstable equilibrium operating point is
not likely to remain within the region around the equilibrium value. Such a model will
become a poor approximation to the nonlinear model once it deviates considerably from this
equilibrium point. So for a robotic manipulator with a large range of movement, a piecewise
linear model (linearized at a sequence of equilibrium operating points) should be used to
reduce the model error. This is a special case of the general linearized model presented in
equation (2.111). For an n-link flexible manipulator, h in equation (2.111) is the vector of

centripetal and Coriolis terms which involve products of the generalized velocities. So, each

. .. ©0h . . .. :
term of the derivative —|  consists of the generalized velocities. In this case then

aq 9090

h
Z__ _ g_h -0

di, q

90-90 9,0 (21 12)

M| .
— 4,=0

aq o

By substituting equation (2.112) into equation (2.111), the linearized equations of motion of

the system are obtained as

M(q,)A{ + BAG + KAq = Au (2.113)
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where q, =(6,,"--,6,,0,---,0), and M, B, and K are constant matrices. Also

q=<91’...,9n’5”’.. 81,6 )

? l"m 1 ? ? ’ nny, n

We assume that the system outputs are the joint angles and the link deflections. The linear

state-space equations of the system are

X = AX +BU

(2.114)
Y =CX
where
X" =[Aq,Aq]
A, 00,,A8,,,AS,, .08, AS,,
| A6, 06,,A8,,,,A8,, A8, A8,
0 I
A=
-M"'K -M"'B
[0 0
B= y
0 M
1, 0 0 0 0]
0o o, 0 0 0
C= "
0 0o . 0 0
0 0o 0 @, 0
0
U=
_Au} : (2.115)

®,, =[4.0)4,, 0]

2.5 Non-minimum Phase Characteristic

In this section, we investigate the non-minimum phase characteristic of a flexible link robotic
manipulator. For a linear continuous-time system, if all the zeros are in the left half of the
complex plane, such a system is called a minimum-phase system. A minimum-phase system
with a given magnitude curve in the Bode plot will produce the smallest net change in the
associated phase angle. If there are system zeros in the closed right half of the complex plane,

such a system is called non-minimum phase system. In the linear discrete-time case, the

54




system is non-minimum phase if there are zeros that lie outside the unit circle.

The non-minimum phase concept can be extended to a nonlinear system. By using the
inverse dynamics (input-output linearization) approach, the dynamics of a nonlinear system
are decomposed into an external part and an internal part, as shown in Figure 2.8. The zero-
dynamics of the system are defined as the internal dynamics of the system when the control
input maintains the system output at zero. A nonlinear system is minimum-phase if its zero-
dynamics are asymptotically stable; otherwise, the system in non-minimum phase.

Instability of the internal dynamics implies instability of the overall closed-loop system.
The inverse dynamics approach cannot be applied directly to non-minimum phase systems
because they cannot be inverted (inverted dynamics is unstable). This is a generalization of
the linear system result that the inverse of the transfer function of a non-minimum phase
linear system is unstable. Therefore, for such systems, control laws that achieve perfect
(asymptotically convergent) tracking error should not be pursued in general. Instead, one

should find controllers that lead to acceptably small tracking errors for the desired trajectories.

External Dynamics OUtPUt y
—>{ (input-output part) [————>
n

Input u

3 Internal Dynamics
(unobservable part)

Figure 2.8 External dynamics and internal dynamics of a nonlinear system.

Next we investigate non-minimum phase characteristics of a linear system using the root
locus method. The root locus gives the closed-loop pole trajectories as a function of the
feedback gain K, assuming negative feedback (or some other variable parameter).

Consider a single-input single-output (SISO) system with open-loop transfer function
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NGs)

G(s) = D6) (2.116)
The zeros of the system are the roots of
N(s)=0 (2.117)
The closed-loop transfer function is
G(s)= D(sﬁvl(;?\/(s) (2.118)
The closed-loop poles are the roots of
D(s)+ K N(s)=0 (2.119)
Divided both sides of equation (2.119) by K. We have
D), Nsy=0 (2.120)

From equation (2.120) and equation (2.117), we notice that as the feedback gain increases, the
closed-loop poles of the system are attracted towards the open-loop zeros of the system. If the
open-loop system is non-minimum phase (i.e., has RHS zeros), then the closed-loop system
can become unstable under static output feedback.

- For multi-input multi-output (MIMO) linear systems, the transfer function G(s) becomes
a ftransfer-function matrix G(s) . The transmission zeros (Maciejowski, 1989) of a

controllable and observable m input and » output nth-order linear state-space system

X =AX+Bu 2.121)
Y =CX +Du
are defined as the values of s for which the normal rank of the system matrix drops to
A-sI. B ,
rank <n+min(r,m) (2.122)
C D

It can be shown that the open-loop transmission zeros of the system are the eigenvalues of

A-KBC as K- (2.123)
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The closed-loop characteristic roots when negative feedback of the form KI is applied to the

system are the eigenvalues of the closed-loop © A * matrix
A, =A-KBC (2.124)

From equations (2.123) and (2.124) we observe that as the static feedback gain K 1s
increased, the closed-loop poles of the system are attracted towards the open-loop
transmission zeros of the system. If the open-loop system has non-minimum phase
transmission zeros (RHS zeros), then the closed-loop system can become unstable under static
output feedback. |

Controller design for a non-minimum phase s.ystem is more difficult than ‘that for a
minimum phase system owing to the limited gain margin. The improper controller design can
make the instability of the zero-dynamics to have an effect on the closed-loop system
stability. The non-minimum phase characteristics of the system limit the loop bandwidth, and
the achievable performance of the feedback system is reduced. For example, when using
inverse dynamics algorithm, the right hand side (RHS) zeros will become unstable poles in
the inverse system. The controller now has unstable poles that can cause the overall system to
become unstable. One noticeable characteristic of a non-minimum phase system is the nature
of its step response. For a non-minimum phase system, the step response initially starts to
move in the direction opposite to final steady-state value.

To illustrate the non-minimum phase characteristic of a flexible link robotic manipulator
system, consider the single-link flexible manipulator shown in Figure 2.7. The nonlinear
dynamic model of the system is given by equations (2.92) and (2.93). Using equation (2.113),

the linearized model of the system with a single flexible mode is obtained as

Mllél + Mlzéil(t) + bﬁlél =17

o . ) (2.125)
M, 6+ M,,6,(t)+ k6, () +b,6,, =0

where
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My, = (T +J, +J, +m,L})
M,=M, =1, +mpll¢ll(l])+‘]p¢1]’(ll)

) I (2.126)
My, =m +m, ¢, ()" +J,¢, ()

k = a)llz [ml + mp¢]l(l])2 + Jp¢11,(11)2j]

Assume that the overall system input is the joint torque 7, and the outputs are the joint
angle 6 and the link deflection w,(/,,?) = ¢,,({,)0,,(¢) . The transfer function from input torque

7, to joint angle 6, is

Gr&(s) =—0'L('§—)_

7 2.127)
B M,,s* +b,s+k @
Sl:(Manz _“}\4212)53 +(M,,b, + M ,b,, )52 + (M, k + b&lbll)s + belkl]
The transfer function from input torque 7, to link deflection w,(/,¢) = ¢,,([,)d,,(¢) is
G (5)= 2
7 (s)
(2.128)

_ —My,é,()s
(M, M,, _1\4212)53 +(M,,b, +M22b91)52 + (M, k, +by,b,,)s + by k,

In this case, from equations (2.127) and (2.128) we observe that there are no RHS
transmission zeros. The overall system is a minimum-phase system. But there is a zero at the
origin of the s-plane (i.e., at s = 0) in equation (2.128). If we assume that the overall system
output is the link deflection w,, there is a zero in the closed right half of the complex plane, so
this system is a non-minimum phase system. |

If we assume that the overall system output is the tip position

o, =0+l _g 500, (2.129)

lip —
ll Zl

the overall transfer function of the system becomes
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eltip(s) _6() + w, (4, 1)
n(s) () (o)
|:M7_2 B Mlzq;ﬁ”(ll)}z chsik (2.130)

_ 1

S[(Manz _1\/[212)53 +(M,,b;, '*‘Iwzzbm)s2 + (M, k, + byby)s + b61k1]

Gy, (5) =

The zero dynamics of this system depends on the sign of the term C,, = {M n %All):l in
1
equation (2.130). If this term is negative then the zero dynamics of the system is unstable, and
the system is non-minimum phase.
For a single-link flexible robotic manipulator without a payload, substituting equation

(2.126) into C,,, we have

Czl = M22 - MlZ?ll(ll)
! (2.131)
=m - 1111¢1|(11)
ll
From equation (2.56), the frequency equation without payload is
1+cos(B.l,)cosh(fB1) =0 (2.132)

The clamped-free mode-shape function is obtained from equations (2.38) and (2.46) as

cosh(B1,) +cos(B1,)
sinh(B,/,) +sin(5,/,)

¢, (x,) = cosh(f,x,) — cos(f,x,) — [Sinh(ﬂlxl) - Sin(ﬂ1x1)] (2.133)

By using equations (2.132) and (2.133), the closed form of the integral parameter in equation
(2.131) is found as

g 2m, !
Iy, = _[) P (x)x,dx, = (ﬂll: )12 (2.134)
By substituting equation (2.134) into equation (2.131), we have
C,=m - 2myd, (211) =m, |:1 _ 2¢11(l12):| (2.135)
(Bl) (B)
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where £/, is obtained by solving frequency equation (2.132), and it has the constant value
B, =1.8751 (2.136)

From equation (2.133), we see that the first clamped-free mode shape ¢,(x,) is always

positive and is an increasing function. Substituting equation (2.136) into (2.133), we have

$,(f) =2 (2.137)

Substituting equation (2.136) and (2.137) into equation (2.135), we have

6
C,=m|l-—2 _|<0 2.138
A= [ (1.8751)° } (2.138)

If the system output is the tip position, the single-link flexible robotic manipulator without a
payload is always a non-minimum phase system. The non-minimum phase condition in this
case is a result of the non-collocated sensor and actuator positions.

For a system with payload, the non-minimum phase characteristic will also depend on the
payload. If we assume the single link to be an aluminum rod or an aluminum thin beam with
the parameters given in Table 2.1, we can calculate the system zeros using equation (2.130).
Figure 2.9 and Figure 2.10 show the pole-zero maps of these systems. We can see that both
systems have RHS zeros, so the systems are non-minimum phase.

For the two-link flexible manipulator system with the parameters given in Table 2.1, we
can find the system zeros and poles by using the nonlinear model developed in Section 2.3.3
and linearizing it about an operating point. We assume that the system outputs are the tip
positions of link 1 and link 2. Figure 2.11 shows the pole-zero map of the system which is
linearized at the operating point where all the states are equal to zero. We notice that the

system has a RHS zero; so the system is non-minimum phase.
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Figure 2.9 Pole-zero map of a single-link flexible robotic manipulator (aluminum rod).
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Figure 2.10 Pole-zero map of a single-link flexible robotic manipulator (aluminum thin
beam).
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Figure 2.11 Pole-zero map of a two-link flexible robotic manipulator.

2.6 Summary

This chapter presented the derivation of the models for the kinematics and dynamics (kinetics)
of a planar flexible link robotic manipulator. A flexible link model was developed based on
the Bernoulli-Euler beam theory. Boundary conditions and mode shape selection were
investigated. More realistic and accurate boundary conditions were obtained through the
balance of moments and shear forces at the end of each link in the dynamic model
development of the system. A dynamic model for the manipulator was derived using
Lagrange’s equations. Closed-form equations of motion for a planar n-link flexible
manipulator were established. Detailed nonlinear models for a single-link and two-link
flexible manipulator were derived. Local linearization techniques were used to derive a linear
state-space model of the system at an equilibrium operating point. Non-minimum phase
characteristic of the flexible-link system was analyzed. It was shown that if the overall system
output was the tip position, the system would be non-minimum. The non-minimum phase
characteristic of a flexible link manipulator system was shown to be a result of the non-

collocated sensor and actuator positions. For such a system, perfect or asymptotic convergent
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tracking would not be achieved, and controllers should be designed that would lead to

acceptably small tracking errors for the trajectories of interest.
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Chapter 3

Intelligent Model Predictive Control

In this chapter an intelligent model predictive control (IMPC) approach is developed for the
motion control of a flexible-link robotic manipulator. First, in Section 3.1, overall structure of
the IMPC algorithm and its underlying strategy are given. Main components of the IMPC
system are developed in the subsequent sections. In Section 3.2, a multi-stage, unconstrained,
model predictive control (MPC) scheme with guaranteed nominal stability 1s developed.
Application of the IMPC algorithm for a robotic system with an unknown payload is
presented in Section 3.3. Fuzzy rule-based intelligent auto-tuning of the MPC controller,

which constitutes the IMPC, is addressed in Section 3.4.

3.1 Overall Structure of IMPC

Figure 3.1 shows a schematic diagram of the intelligent model predictive control (IMPC)
system. The IMPC is based on a two-level hierarchical control architecture. This control
structure is used to combine the advantages of conventional MPC control and knowledge-
based soft control, resulting in the IMPC for control of the plant, which is a flexible-link
robotic manipulator in the present application.

The top level of the two-level architecture is a fuzzy rule-based intelligent decision-
making system. The bottom level consists of two modules: System identification module,
which accommodates the model parameter variations in the system, and MPC module, which
generates the control inputs based on the linear model generated by the system identification
module. The upper-level intelligent fuzzy rule-based tuner interacts with the bottom level
modules. The upper-level fuzzy tuner automatically adjusts the tuning parameters of the MPC
controller based on the output feedback. Proper tuning parameters are selected by the fuzzy

tuner in order to achieve the desired closed-loop stability, and performance while satisfying

the input and output constraints. The fuzzy tuner is also able to adjust the model structure of




the system identification module, if necessary, for large model errors, and as a result improves
the robustness of the controller. Design and development of each component of the IMPC for

motion control of a flexible-link robotic manipulator system are presented in the following

sections.

Desired System

Performance »
Fuzzy T
Input and Output et
Constraints
Model Structure
. Update
Tunmng
Parameters
Y Model
Linear Internal Barameters Real Time System E
Model - Identifier
Reference Y A 4 Plant
Trajectories : an Outputs
Lanear NP C — (Flexible-link Robotic f———8—>
Inont 0 Manipulator)
)\ puts

Figure 3.1 Structure of the intelligent model predictive control (IMPC) system.

3.2 MPC Controller Design

A computationally efficient multi-stage MPC algorithm with guaranteed nominal stability 1s
developed in this section. It will be used as the lower-level direct controller of the flexible-
link robotic manipulator system. Among the reasons for choosing MPC for low-level direct
control of the flexible manipulator are the following:

e MPC deals with multivariable systems in a systematic way. The design of an MPC is
based on a plant model and a cost function (i.e., performance index). This results in
more systematic design and analysis than with traditional proportional-integral-
derivative (PID) control. Also this is an effective way to deal with dynamic interaction
(dynamic coupling) in multivariable systems and gives good overall closed-loop

performance.
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It can take account of actuator limitations, and can systematically handle input and
output constraints. This represents a major difference between MPC and other popular
multivariable control techniques (e.g., Linear-Quadratic-Gaussian or LQG method).
MPC controllers explicitly consider constraints and allocate the available plant
resources intelligently as the system evolves over time. It makes the plant operate
closer to the constraints, and hence provides better performance, which can lead to
more profitable industrial operation.

The design objectives can be specified in a flexible manner by changing the cost
function of MPC.

It can effectively control systems with time delays, nonminimum-phase
characteristics, and instabilities. As shown in Chapter 2, the flexible-link robotic
manipulator system has nonminimum-phase characteristics. MPC can deal with these
characteristics through proper setting up of the cost function of the controller. A
nonminimum-phase system has a shorter term response in .one direction and a longer
term response in the opposite direction. The MPC optimization should focus primarily
on the longer-term behavior in order to avoid system movements in the wrong
direction.

It takes full advantage of the power available in modern control computer hardware.

Basic Principles of MPC

Model predictive control (MPC) is a model based control technique. It is generates the control

input signals to the plant by combing a prediction and a receding-horizon control strategy. It

uses an explicit internal model to generate predictions of the future plant behavior. Usually,

an approximate, linear discrete-time plant model is used to predict the plant behavior over a

future prediction horizon. A cost function (i.e., performance index) which represents the

desired system performance over a future horizon has to be defined. The control strategy

determines the future control inputs to the plant so as to minimize the cost function while

taking into account the plant constraints at each time instance. Such constraints can include

the physical limits of the actuators, boundaries of safe operation, and allowable lower limits

for product quality. In the receding horizon control framework, only the first computed




control action is implerhented. At the next sampling time, the optimization is solved again
with new measurements from the plant. The length of the prediction horizon remains the same
as before, but slides forward by one sampling interval at each step. The on-line optimization
can be typically reduced to either linear programming or Quadratic programming. The purpose
of taking new measurements at each time step is to compensate for unmeasured disturbances
and model inaccuracies, both of which cause the system output to be different from the one
predicted by the model. This also introduces a feedback element into the controller. If the
exact measurements of the states are not available, a state observer should be designed to
estimate the states at each sampling time.

Figure 3.2 shows the basic strategy of predictive control for a single-input, single-output
(SISO) plant. We assume a discrete-time setting. Integer & represents the current time instant.
The measured latest plant output y(k) and the previous plant outputs y(k-1), y(k-2), ..., are
known, and are shown by the filled circles in the upper segment of Figure 3.2. The previous
moves of the controller are shown by the filled circles in the lower segment of Figure 3.2. The

control input will only change at the time instants k,k+1,---,k+ H, —1, and will remain

constant after that. At the current sampling instant k, we need to calculate the next control
move u(k). The prediction horizon H, is the number of control intervals over which the
outputs are to be optimized. The control horizon H, sets the number of control intervals over
which the manipulated variables are to be optimized.

MPC may be considered an open-loop control design procedure where at each sampling
time k, plant measurements are obtained, and an internal model of the plant is used to predict
the future outputs of the system over the prediction horizon. (Note: The feedback comes

implicitly by way of plant measurements used here.) Using these predictions, the future

control actions au(k+il|k), i=0,1,---H, —1,are computed by minimizing a cost function.

The cost function usually is a quadratic function that is indicative of the desired performance
over the considered horizon. Once the future optimal moves are chosen, only the first control
move u(k) is sent to the plant. The plant operates with this constant input until the next
sampling instant. Then the entire cycle of output measurement, prediction, and optimal iriput
trajectory determination is repeated at each future sampling period. Since the horizons remain

to be of the same length as before, but slide along by one sampling interval at each step, this
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method of controlling a plant is often called a receding horizon strategy. Reformulation at
each sampling instant is essential for achieving good closed-loop system performance. The
predictions made during the optimization stage are not perfect due to the model errors and
unmeasured plant disturbances. Periodic measurement feedback allows the controller to

correct for this error and for unexpected disturbances.
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Figure 3.2 Illustration of the strategy of SISO MPC at Ath sampling instant.

The basic structure shown in Figure 3.3 is used to implement the MPC. The inputs to the
MPC controller are the references (target values for the outputs) and the measured plant
outputs. The MPC controller consists of an internal model and an optimizer. The purpose of
the internal model is to predict the future behavior of the plant. It can be linear or nonlinear.
We will use a discrete-time, linear, state-space internal model in the present work. The reason
for using a linear model is that the optimization problem of linear MPC is always convex, and
this will guarantee termination of the optimization problem. The optimizer of the MPC is an
optimization algorithm that minimizes a user defined cost function. The main purpose of the
regulator mode of MPC is to hold the plant outputs at the reference values by adjusting the

manipulated variables while satisfying all the constraints. The optimizer will guarantee that at
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each time instance optimal manipulated variables are obtained to control the plant.
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Figure 3.3 Basic structure of MPC.

3.2.2 State-space Model MPC Formulation

For motion control of a flexible-link robotic manipulator, we assume the internal model of the

MPC to be a linearized, discrete-time, state-space model of the form

x(k +1) = Ax(k) + Bu(k)

3.1
y(k) = Cx(k) D

In Section 2.4 of Chapter 2, we have developed a linear, time-invariant (LTI) continuous-time

state-space model of a planar n-link flexible manipulator in the following form:

x(t) = Ax(¢) + Bu(¢)

3.2
y(©) = Cx(?) G2

A discrete-time model can be obtained by converting the continuous-time model using zero-

order hold on the inputs at the sampling instants, and a sample time period of 7, seconds.

Accordingly, the control inputs are piecewise constant over the sampling period T, ; thus
u(kZ,) = u(k +1)T;] (3.3)

The solution of equation (3.2) is
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x(t) =e*x(0) + [ e*“Bu(r)dz (3.4)
At t=kT,, the solution is
AKT, T AGT-1)
X(KT,) = *x(0)+ [ " OBu(r)dr (3.5)
At t =(k+1)T,, the solution is
x[(k+DT,]= A 0x(0) + [ A Bu(r)dr (3.6)
By using equations (3.4) and (3.5), equation (3.6) can be expressed as

x[(k + )T, ] = e x(0) + j:kw"e““fr”l-“’)Bu(r)dr

= e*e*x(0) + et J:kTﬁmeA(kT"'_T)B“(T )dr

= (0 + [N TIBu(ede |+ [T Buy: ()
= AT x(KT ) + j:f”me"‘“ﬂ”s")drBu(kT:)

5

= M x(kT) + [ e deBu(kT,)
Let kT, > k. We have

x(k +1) = e b x (k) + LT A drBu(k)

A (3.8)
= Ax(k) + Bu(k)
where
A=er"
B= LT erdr G

Using.equation (3.8), we can convert the continuous-time model to a discrete-time one. Note
that matrix C remains the same in the discrete-time model.

We define the cost function of the MPC controller to be

2 H, 2
Ye+ilk)-r(k+D)|  +D |Alk+i-1]k)| (3.10)
Q) =l R(i)

HP
’=3.
i=]
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where H, is the prediction horizon, H, is the control horizon, Q(i) is the tracking error

weight matrix (or output weight matrix), and R(?) is the control penalty weight matrix (or
input rate weight matrix). We assume both Q(i) and R(i) to be positive semi-definite
diagonal matrices. Also “k+1i|k” denotes the value predicted for time k +i based on the
information available up to time k. The notation y(k +i|k) indicates the predicted outputs,
and Ad(k+i—1|k) denotes the future control moves. The cost function J penalizes
deviations of the predicted controlled output p(k+i|k) from a reference trajectory

r(k +i|k). The following input and output constraints are used:

u, . Suk+ilk)<u

Y jmin Syj'(k"'”k)S

Jjmax

3.11
i=0,,H G-11)

yjmax 4

where the subscript “ (),” denotes the j-th component of a vector, and u_,, and u, are the

vectors that contain the maximum and minimum control inputs for each joint of the flexible-
link robotic manipulator. In order to reduce the link vibrations we assume the deflections for

each link to be constrained, and y,,, and y,, denote the vectors that include the maximum

and minimum link deflections. The MPC control action at time k is obtained by solving the

optimization problem

J (3.12)

pi(k[K), a0 (k+H, ~1]k)

with the constraints given in equation (3.11). At time & the control inputs to the plant (robotic

manipulator) are
u(k) = u(k —1) +au(k) = u(k - 1) +ati(k | k)’ (3.13)

where afi(k |k) is the first element of the optimal control input sequence. The remaining

samples ali(k +1|k)" are discarded, and a new optimization problem based on the newly

measured outputs y(k +1) is solved at the next sampling step k+1.

3.2.3 Prediction

In order to solve the predictive control problem, we have to compute the predicted values of
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the controlled variables y(k +i|k) in equation (3.10), from our best estimate of the current
plant state X(k|k) , the latest inputs u(k—1) , and the assumed future input changes
Au(k +i—-11k). The discrete-time model, given by the state-space model in equation (3.1), is

used as the internal model of the MPC for the plant output prediction. The details are given

next. Here we assume that the full state vector x(k) is available. If the full state vector is not

available, a state observer has to be designed to estimate the state vector from the measured

output y(k). Then, x(k) has to be replaced by X(k |k), in the following prediction equations.
At current time £, the control inputs u(k) are not known. We have to use @(k | k) rather than
u(k) in the prediction. The internal model of the plant gives the one-step-ahead prediction:

%(k +1]k) = Ax(k) + B(k | k)

) . ) (3.14)
$(k +1|k) = Ck(k +1| k) = CAx(k) + CBi(k | k)

We can find the predicted plant outputs in the prediction horizon by iterating this internal

model; thus

R(k+2|k) = Ak(k +1[k) + Bi(k +1|k)
=A’x(k) + ABa(k | k) + Bk +1|k)
9(k +2 | k) = CA’x(k) + CABi(k | k) + CBi(k +1| k)

R(k +i|k)=A'x(k) + A7 Bi(k [k) +---+ Bk +i—1[k) (3.15)
$(k+i|k) = CA'x(k) + CA™'Bii(k | k) +- -+ CBa(k +i—1|k)

R(k+H, |k)=A""x(k)+ A" "' Bi(k | k) + -+ Bi(k + H, —1|k)
§(k+H, |k)=CA" x(k)+ CA" 'Bi(k |k)++-+ CBi(k + H, —1|k)

We assume that the inputs will change only at times &,k +1,---,k+ H, -1, and will remain

constant after that. Specifically we have

i(k+i|k)=a(k+H, -1|k) for H,<i<H, -1 (3.16)

At time £, the latest control inputs u(k —1) are known. We have
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ik | k) =ati(k | k) + u(k — 1)
ik +1]k) =abi(k +1|k)+ (k| k)
—ali(k +1|k) +ati(k | k) + u(k - 1)
: (3.17)
Gk +i | k)=ati(k +i | k) +ab(k +i =1 k) +---+ali(k | k) +u(k 1)

U(k+H, -1|k)y=at(k + H, ~1|k)+al(k + H, -2|k) +---+au(k |k) + u(k - 1)

The prediction in terms of au(k +i|k) can be obtained by substituting equation (3.17) into

(3.14) and (3.15); thus




&(k +1|k) = Ax(k) + Baii(k | k) + Bu(k -1)

$(k +1|k) = CAx(k) + CBaii(k | k) + CBu(k - 1)

R(k +2 | k)=A2x(k) + ABait(k | k) + ABu(k — 1)
+ Baii(k +1[k) +Bat(k | k) + Bu(k - 1)

= A’x(k) + (B+ AB)ai(k| k) + Bai(k +1| k)

+(B+AB)u(k -1)

§(k +2|k) = CA’x(k) + (CB + CAB)ait(k | k) + CBad(k +1|k)
+(CB+CAB)u(k -1)

&(k+ H, | k)=A"x(k) +(B+AB+---+ A" 'B)aii(k | k)
++Baii(k+ H, =1]k)+(B+AB+--+ A" 'B)u(k - 1)
§(k+H,|k)=CA"x(k)+(CB+CAB +---+ CA""'B)ait(k| k)
+--+CBal(k + H, ~1{k)+(CB+CAB+---+ CA""'B)u(k-1)
k(k+ H, +1|k)=A""'x(k) +(B+ AB+---+ A™B)aii(k | k)
+--+(B+AB)atli(k + H, —1|k)
+(B+AB+---+A"B)u(k-1)
§(k+H, +1]k)=CA""'x(k)+(CB+CAB +---+ CA"B)aii(k| k)
+:-+(CB+CAB)si(k + H, —1|k)
+(CB+CAB+-.-+ CA"B)u(k-1)

R(k+ H, |k)=A""x(k)+ (B +AB+-o o+ A”f‘B)Aﬁ(k I3
+~--+(B+AB+---+AH”_H“B)Aﬁ(k+Hu ~1]k)
+I(B +AB+---+ AH”_’B)u(k -1

§(k+H, |k)=CA"x(k)+ (CB +CAB+---+ CA”P“B)Aﬁ(k k)
+~--+(CB+CAB+---+CAH"‘H“B)Aﬁ(k+Hu ~1|k)

| | (3.18)
+ (CB +CAB+-++ CAH"'IB)u(k )

For a plant with n_ states, n, measured outputs and n,inputs, the vector of output predictions

up to a horizon H, can be written in the matrix-vector form




Y(k)=S x(k)+S u(k -1)+S_AUk)

where
(Y(k+11k) ]
9(kf2lk) Sk
Y(k)=| §(k , H, k) |eR™, AU®K)= Aﬁ(lf +115) e

y(k+H, +1|k '
Y+ H, +11k) sk + H, 1))

| §(k+H,|k)

] CB
CA CB+CAB
CA’ :
. H,-1 .
CA'B o
S, =|CA™ |eR¥"r™, S = ; e R
H, +1 H, i
cA D> CA'B
: i=0
_CAHP -
H,-1 '
> CAB
L =0 .
[ CB 0 0 |
CB+CAB  CB
H,-1 ) H, -2 ‘
> CAB > CAB .- CB
i=0 i=0 nyHy,xn,H,
S,,= i, | H, . eR
> CAB > CA'B - CB+CAB
i=0 i=0
H,-1 H,-2 H,-H,
> CAB > CAB -+ ) CAB
i=0 i=0 i=0 i

(3.19)

(3.20)

(3.21)

(3.22)

Equation (3.19) is the prediction equation. It can be used to predict the future plant outputs.
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The matrices S_,S, and S, are the constant matrices that depend on the internal model
(matrices A,B,C) and the MPC horizons (H,,H,) only. In order to compute the future

prediction at time &, we need the current state vector x(k) and the past input vector u(k —1)

of the plant. For the flexible link robotic manipulator system, the plant states are the joint

angles (6’1,---,6’n), the link deflection variables (5”,---,5

]nm,l ?

-0 0, ) and their

nl? > nny, ,

derivatives. We assume the measured system outputs to be the joint angles and link
deflections. The derivative terms of the plant states are not measured directly. This means the

full state vector x(k) is not available, and an observer has to be designed to estimate the state

vector. Note that if a state observer is used, still the form of the output prediction equation
(3.19) remains the same, but x(k) has to be replaced by x(k |k), which is the estimation of
state vector at time k.

The state observer is a copy of the plant (equation (3.1)) with feedback from the
measured plant outputs, through the gain matrix L, to correct the state estimation. The
equations of the observer are given below.

Predicted output computation:
Vk|k-1)=Cx(k|k-1) (3.23)
Measurement update:

f((klk)=i(k|k—1)+L’[y(k)—§f(k|k—l)]

. (3.24)
= (k| k—1)+L[y(k) - Cx(k |k - 1)] |

Time update:
X(k+1|k)=Ax(k|k) + Bu(k) (3.25)
The notation used in these equations is
e X(k|k—1) is the estimate of x(k) given past measurements up to y(k—1).
o X(k|k) is the update estimate of x(k) based on the current measurements y(k).
e L'isthe innovation gain.
Given the past state estimate X(k —1|k —1), the time update predicts the state value at the

next sample k (one-step-ahead predictor). The measurement update then adjusts this
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prediction based on the new measurement y(k). The correction term is a function of the

innovation, which is the discrepancy between the measured and predicted values of y(k):
y(k)-y(klk-1)=y(k)-Cx(k|k-1) (3.26)
By combining equations (3.23), (3.24) and (3.25), the overall state observer is obtained as

%(k +1|k) = A0 ~L'C)&(k |k —1) + Bu(k) + ALy (k)

’ (3.27)
= (A - LO)k(k |k —1) + Bu(k) + Ly(k)

where L = AL'. This is a stable system if the eigenvalues of A —LC are within the unit

circle. Furthermore, if we define the state estimation error vector as e(k) =x(k) -X(k |k -1),

then using equations (3.1) and (3.27) we have
e(k+1)=(A-LC)e(k) (3.28)

which shows that the state estimation error converges to zero if the observer is stable, at a rate
determined by the eigenvalues of A —LC. If the pair (A, C) is observable, then given an
arbitrary set of locations in the complex plane, a gain matrix L exists which places the
observer eigenvalues at these locations. The gain matrix L can be chosen to minimize the
steady-state covariance of the estimation error with a known noise covariance matrix. This
observer is then known as a Kalman filter. We can design the steady-state Kalman filter
described above with the function kalman in the Control System Toolbox of Matlab
(Mathworks, 2002).

3.2.4 MPC Computation and Constraint Handling

In this section we will solve the optimization problem associated with model predictive
control (MPC). The cost function which we must minimize is given in equation (3.10). We

can rewrite this cost function in the matrix form by using the notations defined in equations

(3.20) through (3.22), as
J =¥k - T(k)”f2 + “Aﬁ(k)”i (3.29)

where
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Y(k+1[k) | r(k+1) stk | k)
Yoy=| . T(k)=| : . AU =| (3.30)
Y+ H, |k) r(k+H,) stk +H, —1|k)

and the weighting matrices are given by

Qn o - 0 RWO) 0 - 0
o-| 1 U T e VTR @3
0 0 - QH,) 0 0 R(H;—l)
From equation (3.19), the predicted system outputs using a state observer are |
Y(k) =S %(k|k)+S, u(k-1)+8_AUk) (3.32)
Define
AT(k) = T(k) - Y (k) +S,, AU(k) (3.33)

=T(k) -8, &(k |k)-S,u(k - 1)

We will call AT(k) a ‘tracking error.’ This is the difference between the future plant

reference response and the ‘free response’ of the system, which is the response that would

occur over the prediction horizon if no input changes were made (AU(k) =0).

We assume the weighting matrices are diagonal, also Q>0 and R >0. Their ‘square-

roots’ matrices are
Q=S;S,, R=S;S, (3.34)

By using equations (3.33) and (3.34), the cost function of the system as given by equation
(3.29) becomes

J =) - T(k)HZ +|atwo,

= [Y(k) - T(k)]T S’S, [Y(k) - T(k)] + AU(k)"STS, AU(K) (3.35)

S, [Y(k) - T(k)]
S, AU(k)

So [SAuAﬁ(k) - AT(k)]

S, AU(k)
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Equation (3.35) indicates that the cost function J is equal to the squared ‘length’ of vector

|:SQ [SMAfJ(k) - AT(k)]} (3.36)

S, AU(k)

For the unconstrained MPC, there is no constraint on the inputs and outputs of the system.

The optimal value of AU(k) is AU (k) which minimize the cost function J given by equation

(3.35). So AU’ (k) is the ‘least-squares’ solution of the equation

S, EMAUU{) - AT(k)] 0o (3.37)
S, AU(k)

or
I::QSA“}AfJ(k) = {SQAOT(k)} (3.38)

The ‘least-squares’ solution of a set of algebraic equations of the form Ax = b is obtained

by minimizing the least-squared performance function:
J =min(Ax —b)" (Ax - b) (3.39)

By differentiating J with respect to x and equating to zero will yield X", which is the ‘least-

squares’ solution of the equations Ax=b, as
* TAN AT ”
x"=(A"A) A'b (3.40)

The numerical solution of Ax =b can be obtained in a least-squares sense using the ‘QOR’

algorithm. In Matlab® this solution is obtained as x" = A\b.
By using equations (3.40), (3.34) and (3.33), we have the optimal set of future input

moves as
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. 1880 s [SoAT(R)
s sy s s

AU (k) = EQSM} EQSMB :QSAu} |:SQAOT(k):|

SIS

:( 840
-

S7,Q8,, +R) " ST, QAT(k)

S,S,., +55S, ) SL,S,S,AT(k) (3.41)

(SI,QS,, +R)" SLQ[T(k)~S,&(k | k)~ S,u(k~1)]

From this result we can see that for the unconstrained predictive control problem, an
analytical solution can be obtained by using equation (3.41). The numerical solution of the

unconstrained predict control problem can be obtained by using the Matlab notation:

AU (k) = EQSA“ } \ [SQAOT(k)} (3.42)

According to the receding horizon strategy of MPC, only the first step of the computed

control move in equation (3.41) is applied to the plant at time k. If the number of plant inputs

is n,, we just use the first n, rows of the vector AU (k) , that is

au(k) =ati(k | k)
=[ Do O, ]8O )

-1, R
= |:Inu xn, ’Onu xn, (H,-1) }(SZuQSAu + R) Squ[T(k) - Sxx(k |k) - Suu(k - 1)] (343)
=K e [T(k) - S,%(k | k) S u(k - 1)]
=K, AT(k)

where 7, ., is the n, xn, identity matrix, and 0, ., is the 7, xn,(H,-1) zero (null)

matrix.

The MPC controller gain matrix K, is defined as

Kye =[ Lm0 n 1 (SLQS,, +R)SLQ (3.44)

Here K, is a constant matrix which depends only on the internal model (matrices A,B,C),
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the weighting matrices Q and R, and the controller horizons (H ,,H,).

The unconstrained MPC control input vector at time k is

u(k) = u(k —1) +au(k)

=u(k—1)+ K, . [T(k)-S,x(k k) - S, u(k -1)] (3.45)

The numerical value of K, . can be computed using the Matlab notation ‘\’ and the operator

‘2’ to pick out the first n, rows of the solution:
full =
Sy 0 (3.46)
Kype =Ky (lin,,2)

The structure of MPC controller with no constraints is shown in Figure 3.4. From this
figure we notice that the unconstrained MPC controller is a linear time-invariant system

(LTD).

MPC Controller i

! i

! i

| Auk) z u(k) ! y(k)
| > =1 P >  Plant >
! z-1 !

| I

i i

i i

| i

: u(k-1) !

i 21 :

i i

i i

! 1 i

! i

! R(k k) i

| Sx <« Observer « f

[}

i i

i

Figure 3.4 Unconstrained MPC controller structure.

Now we will deal with the case where the constraints are present. Recall that for a
flexible-link robotic manipulator the constraints are given by equation (3.11). In this case the
simple ‘linear least-squares’ solution of unconstrained MPC has to be replaced by a
‘constrained least-squares’ solution. The closed-form solution for the constrained MPC cannot

be found, and some form of an iterative optimization algorithm must be employed to find the

81




numerical solution. It is can be shown that if the constraints are in the form of linear
inequalities, then the constrained MPC problem becomes a quadratic programming (QP)
optimization problem (Maciejowski, 2002). If the constraints are inactive, the solution of the
predictive controller is the same as that in the unconstrained case. But if the constraints
become active, then the MPC controller becomes nonlinear. The QP problem has to be solved
at each time step. For fast dynamic systems with very low sampling rates (e.g., a flexible-link
robotic manipulator system), the standard QP algorithm may not be efficient enough to find
an optimal solution at each time step. Next we will develop a new computationally efficient
‘anti-windup’ MPC to deal with the constraints of the flexible-link robotic manipulator
system.

The new ‘anti-windup’ MPC controller is based on the unconstrained MPC controller

shown in Figure 3.4, with an additional constraint-handling strategy. The input moves
a0(k | k)" are computed without taking any constraints into account. This is a computationally

efficient algorithm because we have the closed-form solution of the controller as given in
equation (3.43).
The input constraints for the controller are the minimum and maximum joint torques for

each link:

u, <u(k)su,

™ 3.47
umin < O’ L. >0 ( )
The output constraints are the minimum and maximum link deflections for each link:
ymin < y(k) = ymax (348)

The constraints of the system are handled by using fuzzy rule-based auto-tuning of the
unconstrained MPC controller which is developed in Section 3.4. From the structure of the

unconstrained MPC controller, we can see that the control input vector u(k) and the plant
output vector y(k) depend on the gain matrix K,,.. The gain matrix K, .. can be tuned by
adjusting the weighting matrices Q and R, and the controller horizons (H,,H,) as given in

equation (3.44). It follows that the basic idea of the constraint-handling strategy of the ‘anti-
windup” MPC controller is to use a fuzzy rule-based auto-tuner to adjust the tuning

parameters of the unconstrained MPC controller in order to make sure that the input and
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output constraints are satisfied. We will use the MPC parameters that satisfy

u, <u(k)<u,,

cand y . <y(k) <y, - The constraints are not active, so the unconstrained
MPC is equal to the constrained MPC with the constraints within the actual system constraints

(u,, <uwk)<u__ .,y . <y(k)<y_. ) This means that the ‘anti-windup’ MPC controller

will not generate the true optimal solution in general but we will provide a sub-optimal
solution. We can make this sub-optimal solution as close as possible to the true optimal
solution by adjusting the tuning parameters of the controller. Details of how to tune these
parameters are discussed in Section 3.4. The MPC is designed using the tuned parameters.
This will guarantee that the system constraints are satisfied.

The move that is actually applied to the plant is

min(Ad(k |k)u, —u(k—=1)) if Adk|k) >0

N . . . (3.49)
max(At(k k) ,u_ —u(k-1)) i Aw(k|k) <0

Au(k) = {
Equation (3.49) will ensure that the input constraints in equation (3.47) are always satisfied.
The same move must be applied to the internal model of MPC. This not only helps to keep the
predictions accurate, but also avoids problems analogous to ‘integrator wind-up.’ The fact that
the MPC controller is aware of the input constraints, in particular of the actuator saturation
constraints, and never generates input signals that attempt to violate them, removes the
problem of ‘integrator wind-up.’ This problem occurs when conventional controllers are used,
if long-duration set-point errors cause integrator outputs to exceed to the saturation limits, and

can result in large overshoots and even instability.

3.2.5 Stability Analysis

In this section we will investigate the stability of the MPC controller which has been
developed for the flexible-link robotic manipulator system. If the MPC controller is designed
off line, the nominal stability of the closed-loop system can be obtained by tuning the
parameters in the problem formulation. Closed-loop stability is much more of an issue if the
MPC controller is used in such a way that requires on-line redesign. Predictive control, using
fhe receding horizon idea, is a feedback control strategy. There is therefore a risk that the

resulting closed-loop system might be unstable. Even though the performance of the system is
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optimized over the prediction horizon, and even though the optimization is repeated at each
time step, each optimization does not consider the system response beyond the prediction
horizon. This could place the plant in such a state that eventually it will be impossible to
stabilize the system due to the constraints on the control input signals. In order to design a
MPC with guaranteed nominal stability, we need to introduce the Lyapunov theorem and

related definitions.

Equilibrium: The system equation x(k +1) = f(x(k),u(k)) has an equilibrium at the state
vector x, and the input vector u, if x,= f(x,,u,) . We can always assume that an
equilibrium is at (0,0) by changing of the coordinates according to z(k)=x(k)-x, and

v(k)=u(k)-v,.

Stability: For nonlinear systems one has to consider the stability of a particular equilibrium

point. An equilibrium point (0,0) is stable (in the sense of Lyapunov) if for a small

perturbation of the states or inputs, given any &£>0, there is a 6 >0 such that if

H[x(O)”',u(O)T]Hq then H[x(k)T,u(k)T]”<5 for all k>0. Tt is asymptotically stable if

]|[x(k)"',u(k)”' ]H 50 as k> o.

Lyapunov’s Theorem: If there is a function V' (x,u) which is positive-definite, namely it
satisfies V(x,u)>0 and V(x,u)=0 only if (x,u)=(0,0), and satisfies the ‘decrescent’

property

IOt w > D

and if, along any trajectory of the system x(k +1) = f(x(k),u(k)) in some neighborhood of

=V(x,u,)>V(x,,u,) (3.50)

(0,0), the property
V(x(k+1),u(k + D) <V (x(k),u(k)) (3.51)

holds, then (0,0) is a stable equilibrium point. In addition, if V' (x(k),u(k)) >0 as k >0
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then it is asymptotically stable. Such a function ¥ (x,u) is called a Lyapunov function.

For the purpose of proving stability it is enough to consider the case when the states are
to be driven to the origin, from some arbitrary initial conditions. We also assume a ‘regulator’
formulation of MPC; namely, we want to drive the system outputs to the origin.

Suppose that a predictive controller is obtained for the plant
x(k+1) = f(x(k),u(k)) (3.52)
by minimizing the cost function

y(k+i|k)| +i\Aﬁ(k+z’—l|k)“ (3.53)

Q) i=1 R(i)

J(k) = Z

We assume that Qi) >0, and R(i) >0, so the cost function is J(k) positive-definite, and
satisfies the ‘decrescent’ property.
Now assume, as usual in proofs of nominal stability, that the plant model is perfect so

that the predicted and real output trajectories coincide: y(k+i)=y(k+ilk) if
u(k+i)=0(k+i|k). Let J'(k) be the optimal value of the cost function at time k, and

au’ (k) and y' (k) be the corresponding optimal control moves and optimal outputs. We have
H, 2 H, 2
T k)= |y e+ D+ |Au(k+i- D) (3.54)
i=1 Qi) =l R()

From the definition of the control horizon H, of MPC, we have
aw (k+i)=0 Vi=2H, (3.55)

The value of the cost function J evaluated at time £+/, while maintaining the same control

inputs u’ (k) as computed at time k, would be
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2
J’(k+1):%”y'(k+l+i)” +§“Au*(k+1+i—l)H2
i1 QW =l R()

2

R(1) (3.56)

2
o)

¥ (k4D ~au’ )|

H, g H, 2
- ZHy‘ (k + i)” + Z“Au*(k i 1)“ -
i=1 QG =l R(i)

2

+y ke H, + 1)“;%) +[aw’ &+ H,)

R(H,)
2

- HAu* (k)” +

R(1)

2

=J (k)-

« 2
¥ (k+ D)

Y (k+H,+1)|

M O(H )

At time k+] the new optimization problem, with initial condition y (k +1) is solved. The

new optimal cost function is

Jk+D)<J(k+1)
=J (k) -

2

v (k+ 1)”2(1) ~Jaw o, (3.57)

2
O(H,)

2

+|y e+ H, + 1)“ + ”Au‘(k +H)

R(H,)

Suppose that we add ‘terminal constraints’ to the MPC formulation, which force the plant

outputs to reach the origin at the end of the prediction horizon. The terminal constraints are
yk+H,|k)=0 (3.58)

We have assumed that the plant model is perfect and the equilibrium point is at the origin

( (x,u)=(0,0) , 0= f(0,0) ). If the optimization problem is feasible, so the terminal

constraints force the plant outputs to reach the origin at time & + H ,, we have
y (k+ilk)=0 Vix2H, (3.59)

Using equation (3.59), equation (3.57) becomes

J(k+1)sJ'(k+1)

N 1)1130) - aw <k>Hf<l> +|y v i, 40, 65.60)
=J (k) |y (k+ I)HQ(I) N ”Au*(k)HR(l)

<J (k)

So J' (k) is a Lyapunov function for the closed-loop system, and we conclude by Lyapunov’s
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stability theorem that the closed-loop system is stable. With the assumption that the
optimization problem has a solution at each step, we have shown that stability of MPC can be
achieved by imposing terminal constraints. The problem with this approach is that the general
constrained optimization problems can be difficult to solve, and just adding terminal
constraints may not be feasible. From equation (3.60) we see that the condition for J (k) to

be a Lyapunov function is

. 5 . 2 * 2

-y (k+ D”Q(l) _HAU (k)”R(l) +Hy (k+ H” +1)“Q<HP) <0

_ (3.61)
* 2 * 2 ' ’

y (k+ l)HQ(l) +||Au (k)HR(l) > Hy (k+ H” +1)”Q(”p)

Equation (3.61) shows that imposing terminal constraints to obtain stability is unnecessarily

restrictive. We can relax the terminal constraints y(k + H, | k) =0 to a terminal constraint set
yk+H, k) <A(k)y, (3.62)

which contains the origin rather than a single point, where y, is a constant system output
vector. The size of the terminal constraint set can be adjusted by a variable A(k). Based on

the idea of terminal constraint set, a multi-stage MPC with guaranteed stability may be
developed as follows:

e At each time step k, define a terminal constraint set §(k + H , |k) < A(k)y, .

e TFirst stage: at time k=0, choose an initial terminal constraint set such that MPC
can drive the plant into this set with A(0)=1. | |

e Gradually decrease A(k) at each time étep, until MPC achieves guaranteed system
stability for initial conditions within the set with A(k)<<1, assuring that the

system outputs approach the origin.
Figure 3.5 illustrates the basic idea behind multi-stage MPC for a single-input-single-output
(SISO) system. At time step k, the terminal constraint (k + H, |k) is within the terminal

constraint set A(k)y, (the broken-line circle at time k+H, ). The size of the terminal

constraint set is gradually decreased by adjusting the parameter A at each time step so that
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A—>0. When A=0, the terminal constraint set Ay, becomes the terminal constraints

y(k+H,|k)=0. The cost function J "(k) becomes a Lyapunov function for the closed-loop

system, and by Lyapunov’s stability theorem the closed-loop system is stable.

QOutput A

Ly

S

Figure 3.5 The basic idea of multi-stage MPC.

3.3 System Identification for Unknown Payload

In this section we will design the system identification module of the overall MPC scheme for
the flexible-link robotic manipulator, as shown in Figure 3.1. A linear dynamic model of the
flexible link system has been developed in Section 2.4. The corresponding linear state-space

model of the system is

x = Ax+Bu

3.63
y=Cx (3.63)

Equation (3.63) gives the model structure of the system. The parameters of the system
matrices A,Band C are dependent on the physical parameters of the flexible-link robotic
manipulator, the mode shape functiohs, and the payload. |
The physical parameters of the flexible-link robotic manipulator, for example the mass,
length, and moment of inertia of each link, can be determined off line. From Chapter 2, we

know that the effect of the payload on mode shapes is not significant for both one-link and the
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two-link flexible robotic manipulators. Accordingly we will use the mode shapes
corresponding to the nominal payload in the linear state-space model.

The payload of the system is usually not known and we need to identify it on line in order
to increase the efficiency of system operation. Due to the nonlinearity of the system, the linear
model of the system is valid only around the operating point. We will design the system
identification procedure as follows. For system identification, move only the link that directly
handles the payload and lock the other links at their initial positions for a multi-link system.
Design an MPC controller that moves the link with payload at low speed from the initial
position with a small angle (<10°) and then move it back to the initial position. The
identification module then estimates the unknown parameters of the matrices A,Band C
from the input and output data of the system. The payload mass and inertia can be calculated
from the term of matrix A or B. The system model (3.63) is updated using the newly
estimated payload value.

The identification module uses prediction-error methods (PEM) to find the parameters of

the system model. Given a set of measurements from the system:
Z" =[y(D),u(1),y(2),u(2),- -, y(N),u(N)] (3.64)
the prediction-error vector is:
et,P)=y(t)-y(|t-1,P) (3.65)
where P is the parameter vector. In our case, it is the vector of unknown payload mass and
inertia P = [m o I, ]T . Also y(¢|t—1,P) are the predicted system outputs based on the past

data set Z''. When the data set Z" is known, the prediction-errors can be computed for
t=1,2,---,N . The estimated parameter vector P is then defined by minimizing a quadratic

prediction error criterion V,, (P):

Vy(®) = |let,P)|

f’N =argmin ¥, (P,Z")

(3.66)

where ¢argmin’ denotes the minimizing argument; i.e., the value of P that minimizes ¥V, (P).
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At time N , when the data set Z" is known, the function ¥, (P) is just a finite-dimensional
real . parameter vector P. But in general, the function ¥, (P) cannot be minimized by

analytical methods. The numerical solution then has to be found by an iterative search
algorithm.

Computation of the estimated parameters can be done using the Matlab System
Identification Toolbox (Mathworks, 2003). The function ‘idss’ is used to construct the state-
space model structures with various parameterizations. To define the model structure, the so
called structure matrices are used. These are ‘shadow matrices’ to A,Band C, and have the
same size and coincide with them at all known matrix elements. The structure matrices are
denoted by As,Bs and Cs, and have the entry NaN at those elements that correspond to
unknown parameters to be estimated. The unknown parameters are determined by using the

function ‘pem’. It uses an iterative search algorithm to minimize a prediction error criterion.

3.4 Fuzzy Rule-Based Auto-Tuning

In this section we will design the fuzzy rule-based auto-tuning module of the overall IMPC
scheme for a flexible-link robotic manipulator, as shown in Figure 3.1. This knowledge-based
fuzzy tuner is developed for auto-tuning of the MPC and for adjusting the model structure of
the real-time system identifier. In this context we will rely on the step response of the flexible-
link robotic manipulator. The setpoint is a constant value for each link. The desired closed-
loop response it order to move the manipulator from the initial position to the final position as
quickly as possible, without generating undesirable link vibrations at the end of the movement
while satisfying the input and output constraints. The ideal goal for the fuzzy tuner is to adjust
the tuning parémeters of MPC controller to achieve an overdamped system that is as close as
possible to the critical-damped system, while not violating the constréints of the system. This
will make the closed-loop response of the system as fast as possible without causing an
overshoot. Following steps are taken in order to design the fuzzy tuner:

e Identify the adjustable parameters in predictive control. Examine the effects of

these parameters on the controller performance.
e Design the membership functions for the input and output variables of the fuzzy

inference system (FIS).
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e Develop a set of fuzzy rules based on the knowledge that has been gained by
studying the problem. This is the knowledge base used by the fuzzy tuner. This
knowledge base can be updated and changed based on the experience gained from
experiments and simulations of the system.

¢ Develop a fuzzy inference system (FIS) that can easily map the input space to the
output space. This FIS will be used for tuning the MPC controller.

The first step develops a knowledge base for tuning the MPC controller. In the second
step fuzzy logic is used as a tool to transform this knowledge base into an intelligent decision
making system that can automatically tune the parameters of the MPC controller in order to

achieve the desired closed-loop system performance.

3.4.1 Effects of the Tuning Parameters

To date only a few guidelines are known related to tuning the parameters of an MPC. In fact,
conventionally, the tuning parameters are determined using the experience gained from
simulations and tests of the system. Possible tuning parameters for the present control scheme

are: the number of modes which the internal model needs to accurately predict the system

response, control horizon H,, prediction horizon H ,, tracking error weighting matrix Q@),

control penalty weighting matrix R(i), and the parameters of the disturbance model and the

observer dynamics. In the present work, we examine the effects of these parameters on the
controller performance, and obtain insight into appropriate parameters for on-line tuning.
Theoretical analysis, experiments, and simulations are used to investigate this problem. One
goal here is to develop a systematic method for adjusting the parameters. The definitions of
control horizon, prediction horizon, and weighting parameters are intuitive. Consequently,
fuzzy logic is suitable in the design of the knowledge base of controller tuning. Recall that the
cost function of the MPC controller for a flexible-link robotic manipulator is:

2 H 2

y(k+i|k)—r(/}+i);\ + > |Adgk+i-115) (3.67)

QW =l R(0)

HF
J= Z
i=1

This is the cost function that has to be minimized at each time step by selecting a suitable

control move Aii(k +i—1|k). The control horizon H, is the number of future time steps after
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which the control inputs will be held constant; that is, all future input moves are set to zero.

Increasing H, will result in a more active controller, and will generally increase the

magnitude and rate of change of the control input signals. To a certain extent this increased
activity will improve the controller performance, but too large a value for H, may result in
excessive ringing of the control signals and significant high frequency components in the step
response transients. This horizon also has a significant effect on the computational load of the

algorithm. It has been recommended that A, should be greater than or equal to the number of

unstable or poorly damped zeros in the open loop system (Clark, 1987). In our case, we will

use a relatively small control horizon; e.g., 5— 15. We will pick a suitable H, such that the

controller performance is insensitive to small adjustments in this horizon based on simulations
and experiments of the system. The H, will be fixed to this value, and will not be tuned by
the fuzzy tuner. This will reduce the number of tunable parameters for the fuzzy tuner,
simplify the tuning process, and increase the speed of the fuzzy decision making system.

The prediction horizon H, is related to the stability and the speed of response of the

system. It specifies the number of future time steps for which the predicted system outputs
will be calculated and included in the control law. From the cost function in equation (3.67),

we can see that a cost function with larger H, will include greater number of future

prediction points. The resulting MPC controller is long-sighted. Given a sufficiently long
prediction horizon, the controller can ‘see’ a potential constraint and can take corrective
action immediately to avoid it, or at least minimize its adverse effects. A flexible-link
manipulator is a non-minimum phase plant. It has a short-term response in one direction, but a
longer-term response in the opposite direction. In this case, the prediction horizon has to be
sufficiently long, so the optimization should focus primarily on the longer-term behavior.

Otherwise, the controller would move in the wrong direction. Also, H , should be sufficiently

large to include the negatively moving part of a non-minimum phase system. Too short a
prediction horizon can cause the controller to work with insufficient information and the

control is likely to be poor or even unstable. In general, increasing H, can reduce the

overshoot and increase stability for open-loop stable system. On the other hand, increasing

H , will reduce the speed response of the system, and will also increase the computational
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load of the algorithm. It is recommended that /, be set comparable with the rise time of the
open loop system (Clark, 1987). The fuzzy tuner will adjust the H, based on the closed-loop

response of the system. If the closed-loop response has a large overshoot, the fuzzy tuner will

increase the H, to reduce that overshoot. If the closed-loop speed of the response is low, the

fuzzy tuner will decrease the H , to increase the speed of response.

The primary control objective is to force the plants to their setpoints. The controller
predicts how much each output will deviate from its setpoints within the prediction horizon. It
multiplies each derivation by the output weight. The cost function that is minimized by the
controller includes the weighted sum of squared derivations as shown in equation (3.67). The

output weighting matrix Q(:) at time step i is a diagonal matrix. We will use a constant

output weighting matrix at each time step, that is

Q=Q@) Vi=Ll-,H,

0 0 - 0

0 Q0 - 0 3.68
Q= o

0 0 - O

Y
where 7, is the number of outputs, and Q,,---,0, are the constant output weights. The

weights must not be negative. Different outputs can have different output weights. If Q> 0,
the controller does its best to track the setpoint 7, sacrificing 7, tracking if necessary. On the
other hand if Q =0, the controller completely ignores the derivation output y, from its
setpoint 7, . In general, increasing O, can reduce the steady state error and the overshoot or
undershoot of the output y_ . But increasing O, will also increase the control input «,, and

increase the derivations of the other outputs from their setpoints. For the flexible-link robotic
manipulator system, the outputs are the joint angle and the deflection of each link. Choosing
the output weights is a critical step. We need to tune the controller, varying the weights to
achieve the desired behavior. The fuzzy tuner has to adjust the weights of these outputs in
order to reduce the overshoots or undershoots of the joint angle and keep the link deflections

within acceptable ranges, and the input torques of each joint within the corresponding input
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constraints.

If the controller only focuses on'setpoint tracking, it might choose to make larger
manipulated-variable adjustments. These could lead to violation of the input constraints and
make it impossible to achieve perfect setpoint tracking. These may also accelerate equipment
wear or lead to control system instability. Thus one simultaneous objective of MPC 1s to
minimize the weighted sum of controller adjustments as given in equation (3.67). The control

penalty weight matrix R(7) at time step i is a diagonal matrix. We will use a constant control

penalty weight matrix at each time step; that is

R=R() Vi=1l,-H,

R 0 - 0
0 R, -~ 0 (3.69)

ny

where n, is the number of inputs, and R,,---,R, are the constant input rate weights. The
Y

weights must not take negative values. Increasing the input rate weights has the effect of
reducing the control activity. So they are also called move suppression factors for this reason.
In general, increasing these weights will force the controller to make smaller and more
cautious adjustments. This can bring the control inputs within their constraints. The controller
will be less sensitive to prediction errors (i.e., more robust). Increasing these weights
indefinitely will reduce the control activity to zero, which will ‘turn off> the feedback action.
Thus with a stable plant, one can expect to obtain a stable closed loop system by sufficiently
increasing the input rate weights. But the setpoint tracking of the controller will degrade and
the speed of response will decrease, since only small control actions will result. With an
unstable plant one can expect an unstable feedback loop, if the weights are increased
excessively. For a flexible-link robotic manipulator system, increasing the input rate weights
for each link will reduce the input torques. This will reduce the link deflections, but will
increase the overshoot of the joint angles. The fuzzy tuner will adjust these weights based on
the closed-loop response of the system in order to bring the control inputs and the link
deflections within their constraints and reduce the system overshoots.

The performance of the MPC controller is also dependent on the accuracy of the output
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prediction y(k +i|k) as given in equation (3.67). If the prediction is good, minimizing the
cost function will reduce the setpoint tracking error and force the plant to its setpoints. But if
the prediction outputs are far from the real plant outputs, the controller will take wrong
control moves. This will degrade the system performance, and the closed-loop may become
unstable.

In the current application, output predictions of the flexible-link robotic manipulator
depend on the internal modél and the observer dynamics of the MPC controller. The accuracy
of the internal model depends on the model structure and model parameters.

One of the parameters that relates to the internal model structure is the number of flexible
modes which must be included in the model. Increasing the number of flexible modes can
improve the prediction accuracy, but this will also increase the complexity of the model, make
the controller design more difficult, and increase the computational load of the control
algorithm. From Table 2.2 we can see that the frequencies for the third mode or higher are
much greater than the frequencies of the first two modes for both links. Thus initially we will
use only one mode for the internal model. If satisfactory performance cannot be achieved by a
single mode model structure, we will include the second mode as well in the internal model.
In order to prevent the excitation of the higher modes, we need to modify the input and output
constraints. This will reduce the maximum absolute control inputs and the maximum absolute
link deflections.

Since the flexible-link manipulator is a nonlinear system, the linear internal model is only
valid around its operating point. If the there are large setpoint changes, we need to update the
internal model. A re-linearized plant model at the new operating point can improve the output
predictions of the controller. The fixed interval of re-linearization will be decided by the
designer and will not be tuned by the fuzzy tuner in the current application.

At the beginning of each sampling instant the controller estimates the current plant state.
Accurate knowledge of the state improves the prediction accuracy, which in turn improves the
controller performance. It follows that the observer dynamics represent another adjustable
factor of the MPC controller. Choosing deadbeat dynamics gives a fast response to
disturbances. But this fast-dynamics observer will also react relatively strongly to high-
frequency vibrations in the measured output signals. If there is excessive measurement noise

in these signals, it may be better to have slower observer dynamics, in order to produce some |
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low-pass filtering of the noise. The optimal trade-off for state estimation can be made by
using Kalman filter theory to design the observer as we have shown in Section 3.2.3.

In summary, there are many adjustable parameters and factors in an MPC controller
which can be tuned to improve the closed-loop system performance. In order to reduce the
complexity of the fuzzy tuner design, only a few parameters with large adjustable ranges will
be chosen and tuned by the fuzzy tuner. The other parameters will be chosen by the designer,
and their values will be fixed for online application of the controller. Table 3.1 gives the

adjustable MPC parameters. Those parameters that will be tuned by the fuzzy tuner are also

identified in the table.
Table 3.1 Adjustable controller parameters.
Controller Control’ Prediction Output Input rate Internal Observer
parameters horizon H, | horizon H » weight O weight R model dynamics
Tuned by
fuzzy tuner No Yes Yes Yes No No

3.4.2 Fuzzy Inference System

In this section we will design a fuzzy inference system (FIS) to tune the MPC controller of a
flexible link robotic manipulator system. Fuzzy logic is a convenient way to map an input
space to an output space. The fuzzy inference system consists of a knowledge base in the form
of a set of rules and an inference mechanism. The tuning actions are generated by applying
the existing system performance data to the knowledge base and by using the inference
mechanism. The knowledge base and the inference mechanism can handle imprecise and
incomplete information, and the knowledge itself will improve and evolve through ‘learning’

and past experience.
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Input and Output Variables

OS, > > aH
oS, > FIS > 20,
OS, > > AR

Figure 3.6 The fuzzy inference system.

Figure 3.6 shows a schematic diagram of the fuzzy inference system for the flexible link

robotic manipulator system. The input variables are: OS,, OS, , and OS, . The output

w ?

variables are: aH, a0, aR,.

OS, 1s defined as:
0S, = |0, 74| (3.70)

where 8 is the absolute maximum joint angle of the closed-loop system response, and 7, is
the absolute desired joint angle. We assume that the initial joint angle for each link is zero.

The desired OS, valueis OS, <0 and |OS9| ~ 0. This means we want the step response of the

system to be an overdamped system that is as close as possible to the critical damped system.

OS,, is defined as:

0S,, =|w

max |~ (3.71)

where w___ is the absolute maximum link deflection of the closed-loop system response of

X

the link and r, is the link deflection constraint (maximum allowed link deflection). The
desired OS, value is OS, <0. This will make sure that the link deflection stays within its

bound.

OS, 1s defined as:

OS, = |thee| -7 (3.72)

u

max
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where u_, is the absolute maximum control input of the closed-loop system response of the
link and #, is the control input constraint (maximum allowed control input). The desired OS,
value is OS, <0. This will guarantee that the control input stays within its bound.

o H , is defined as:

sH,=(H

p_new Hp_()ld )Hp_sen

(3.73)

where H, , is the prediction horizon before tuning, H is the prediction horizon after

p_new

tuning, and H is a sensitivity parameter. H is introduced for adjusting the sensitivity

p_sen p_sen

of tuning.

aQ,, 1s defined as:

20, =(Qu s = 0d ) Qo son (3.74)

where O, ,, is the link deflection weight before the tuning, O is the link deflection

w_new

weight after the tuning, and Q is the sensitivity parameter. We normalize the joint angle

w_sen

weight as O, =1. The overall output weights are

0,01 9.l (3.75)

where Q, is a predetermined constant value.

aR, 1s defined as:

aR =(R

u - Ru_old )R (376)

u _new u_sen

where R, , is the input rate weight before tuning, R is the input rate weight after the

U _new

tuning, and R

«_sen 18 the sensitivity parameter.

Fuzzy Membership Functions

Next we will design the fuzzy membership functions for the input and output variables. Fuzzy
logic starts with the concept of a fuzzy set. A fuzzy set is a set without a precise and clearly

defined boundary, and it can describe non-precise or qualitative concepts. It may contain
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elements with only a partial degree of membership. A membership function is a curve that
defines how each point in the input space is mapped to a membership value (or degree or
grade of membership) between 0 and 1. The membership function associated with a given
fuzzy set maps an input value to its appropriate membership value. The main condition a
membership function must satisfy is that its values must lie between 0 and 1. The function
itself can be an arbitrary curve. We will use two types of membership functions: 1. functions
formed by straight line segments, 2. Gaussian functions. The first type of function has the
advantage of simplicity. The Gaussian membership function obeys the Gaussian distribution
curve whose main advantage is its smoothness. Figure 3.7 and Figure 3.8 show the
membership functions for the input and output variables. These membership functions depend
on common knowledge, experience, judgment, and so on. The numerical values are used to
define the memberships only in a relative sense. An appropriate physical meaning should be
attached to each value. These numerical values will depend on the hardware of the system.
They must be scaled and converted to achieve physical and dimensional compatibility for the
particular practical application. The ranges of the membership function are normalized as

[O 10] . The notation used in the figures showing membership functions are given below:

VS = Very small value

S = Small value
M = Moderate value
L = Large value
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Figure 3.8 Membership functions for the output variables.
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Fuzzy Knowledge Base

The fuzzy rules for tuning the controller are developed next. The required expert knowledge
for tuning an MPC has been established in Section 3.4.1. Direct knowledge on tuning the
controller can also be obtained through computer simulations and experiments of the system.
In Chapter 4, we will investigate through simulations the effects of the tuning parameters on
the system performance. A basic reasoning for adjusting the MPC control parameters can be

expressed linguistically as given in Table 3.2.

Table 3.2 General linguistic rules for tuning an MPC controller.

If the joint angle response has no overshoot and the link deflection and control input are
within their constraints, then do not change the control parameters.

When the control input is within constraint, if the joint angle response has a large overshoot
and the link deflection constraint violation level is not small, or if the joint angle overshoot is
moderate, and the link deflection constraint violation level is large, then increase the
prediction horizon by a large value.

When the control input is within constraint, if the joint angle overshoot is moderate, and the
link deflection constraint violation level is moderate, then increase the prediction horizon by a
moderate value.

When the control input is within constraint, if the joint angle overshoot and the link deflection
constraint violation value are not zero, and at least one of them is small, then slightly increase
the prediction horizon.

When the joint angle response has no overshoot and the link deflection is within constraint, if
control input constraint violation level is large, then slightly increase the prediction horizon
and moderately increase the input rate weight, or if control input constraint violation level is
not large, then slightly increase the prediction horizon and the input rate weight.

When the joint angle response has an overshoot and the link deflection is within constraint,
and control input constraint violation level is very small, then slightly increase the prediction
horizon.

When the joint angle response has no overshoot, if the link deflection constraint violation level
is moderate or large and the control input constraint violation level is large, then moderately
increase the link deflection weight.

When the joint angle response has no overshoot, if the link deflection constraint violation level
is not very small and the control input constraint violation level is large, then slightly increase
the link deflection weight.
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When the joint angle response has no overshoot, if the link deflection constraint violation level
is not large and the control input constraint violation level is not large, then increase the link
deflection weight by a very small value.

These linguistic rules reflect the actions of a human expert in tuning an MPC controller
by observing the response of the closed-loop system. More rules can be added, and also these

rules can be modified to improve the tuning accuracy.

Fuzzy Inference Mechanism

Fuzzy'inference is the process of mapping the input space to the output space using fuzzy
logic. The mapping provides a basis from which decisions can be made.

Figure 3.9 shows the block diagram of the fuzzy inference process which will be used to
tune the MPC controller. There are five parts in the fuzzy inference process: fuzzification of
the input variables, application of the fuzzy operator (AND or OR) in the antecedent of the
fuzzy rules, implication from the antecedent to the consequent, aggregation of the
consequents across the rules, and defuzzification. Next we will discuss each step in more

detail.

Response
Measurements
(Crisp)

1. Fuzzification > 2. Fuzzy operator

3. Implication Tuning

Action
(Crisp)

4. Aggregation > 5. Defuzzification

Figure 3.9 Fuzzy inference process.

Step 1. Fuzzification

The inputs to the FIS are the measured respbnse of the closed-loop system which is controlled
by MPC with the initial set of tuning parameters. These are crisp numerical values limited to
the universe of discourse of the input variables (in the current application within the interval
between 0 and 10). The first step of the fuzzy inference process is to generate membership

values for a fuzzy variable using membership functions.
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Step 2. Apply Fuzzy Operator
The fuzzy rule base is a set of if-then rules. A rule in a fuzzy knowledge base is generally a

relation of the form:
IF x, is 4, AND (OR) y, is B, THEN C, (3.77)

where 4, B, and C, are fuzzy sets. The ‘if-part’ of a fuzzy rule is called the antecedent, and

the ‘then-part’ is called the consequent. After the inputs are fuzzfied and their membership
values are generated in step one, the next step is to present these membership values to the
fuzzy operator. If there are multiple parts to the antecedent, we need to apply fuzzy logic
operators and resolve the antecedent to a single number between 0 and 1. This is the degree of
support for the rule. The fuzzy operators are defined as follow:
A4, AND B, ==min(4,, B;)

(3.78)
4. OR B, ==max(4,,B,)

where ‘AND’ corresponds to a ‘minimum’ operation, and ‘OR’ corresponds to a ‘maximum’

operation.

Step 3. Apply Implication Method

Interpretation of an if-then fuzzy rule involves: evaluating the antecedent (which requires
fuzzification of the input and application of the necessary fuzzy operators), and applying that
result to the consequent (known as implication). A consequent is a fuzzy set represented by a

membership function (C, in (3.77)). The input to the implication process is a single number
given by the antecedent, and the output is a fuzzy set. The implication process modifies the
fuzzy set C, to the degree specified by the antecedent. The most common method for

modifying the output fuzzy set is truncation using the ‘minimum operation.” Implication is

implemented for each rule in the fuzzy rule base.

Step 4. Aggregate All Outputs
Since the decisions are based on the testing of all the rules in the fuzzy rule base, the rules

must be combined in some way in order to make a decision. Aggregation is the process by
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which the fuzzy sets that represent the outputs of each rule are combined into a single fuzzy
set. The ‘maximum operation’ will be used to aggregate the output fuzzy sets for each rule

into a single output fuzzy set.

Step 5. Defuzzification
In the last step, the resulting fuzzy set from the aggregation process is defuzzified. The output
is a crisp single number. The centroid method is used for the defuzzification process. The

centroid method returns the center of area under the membership function curve.

3.4.3 Overall Scheme of the Fuzzy Tuner

We may consider the fuzzy tuner as a nonlinear function that maps the input variables to the
output variables. The inputs to the fuzzy tuner are the measured closed-loop system response,
and the outputs are the tuning action for adjusting the MPC controller parameters.

In order to simplify the tuning process, we set the MPC parameters to some relatively
small values. In the fuzzy tuner these parameters are gradually increased based on the
measured system responses until the desired system performance is achieved. In this thesis,
we mainly focus on tuning an MPC controller with respect to the step response of the system.
The goal is to adjust the MPC controller parameters such that the closed-loop response of the
system reaches the following characteristics: the joint angle step response for each link is
underdamped and is as close as possible to the critical damped system, and the link deflection
and control input for each link are within their design limits. In this way, we will obtain a
closed-loop system that has a fast response with no overshoot and all the constraints satisfied.

Overall scheme of the fuzzy tuner for a flexible-link robotic manipulator is shown in
Figure 3.10. First, we input the setpoints for each link, initial values of the controller

parameters (H,, H,, Q, R), and the input and output constraints of the system. The setpoints

are the desired final joint angles of the manipulator, and we assume that the initial joint angle

of each link is zero. The prediction horizon H, is a tuning parameter. We will start with a
relatively small H . The closed-loop system will produce an underdamped step response with
large joint angle overshoots. The fuzzy tuner will increase H, until the system has no joint

angle overshoot. We will use a relatively small control horizon; e.g., 5— 15. Note that Q is
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the vector that includes the output weights for all the links. For each link the output weight is

Q.. [1 Qw] and the joint angle weight is normalized to 1. Here 0, is a predetermined
constant value, and is the overall weight for joint angle and link deflection. Furthermore Q,
is a tuning parameter. A large value of Q, will reduce the link deflection, but the joint angle

tracking error will be increased. The parameter Q, will start with a relatively small initial

value and will be increased by the fuzzy tuner. The vector that includes the input rate weights
for all the links is R . For each link, the input weight R is a tuning parameter, which starts
with a relatively small initial value and is increased by the fuzzy tuner.

After the initialization step, the MPC controller with the initial parameter values will
control the flexible-link robotic manipulator system. The measured system outputs are sent to

a signal preprocessor. This signal preprocessor generates the values of OS,, OS,, and OS,
for each link, based on the system outputs. The ranges of OS,, OS,, , and OS, are normalized

in order to match the ranges of their membership functions. We set the range for each variable
from 0 to 10. The preprocessor first calculates the values of the variables by using the

following equations:

0S€ = |0max - lrn9|
OS,, =W |— 7. (3.79)
OSu = |umax - ru

The preprocessor then normalizes these values in the range [0 10] using the following

relationships:

If OS, > 10 then set OS, =10
If OS, < ¢, thenset OS, =0
If OS, >10 then set OS,, =10
IfOS,<0thenset OS, =0
If OS, > 10 then set OS, =10
If OS, <0 then set OS, =0

(3.80)

where &, is the absolute tolerance of joint angle, OS, <0 means the link deflection is within

its limit, and OS, <0 means the control input is within its limit.

105




If the following conditions are satisfied, then the tuning process will stop, and we will
have a closed-loop system with fast response, no joint angle shoots, and all the constraints

satisfied:
0s,=0 0S,=0 0§,=0 ' (3.81)

If the above termination conditions are not satisfied, OS,, OS,, and OS, will be sent to the
fuzzy inference system. The fuzzy inference system will decide the tuning actions based on its

knowledge base, and the tuning parameters will be updated using the following equations:

H =H +max(aH, |,--,aH, )/ H

p_new p_old p_sen
Qw_new = Qw_old +AQw /Qw_sen (382)
Ru_new = Ru_old +ARu /Ru_sen

where the subscript ‘new’ denotes the updated value, and ‘old’ denotes the previous value.

The sensitivity parameters H O, sen» and R are introduced for adjusting the

p_sen ? u_sen
sensitivity of tuning. They can also be used to scale the tuning actions to proper numerical
values. For a multi-link robotic manipulator, the tuning process is carried out on each link
separately at the same time, and the maximum value of the overall tuning action for the

prediction horizon (max(aH, ,,---,aH, ,)) will be used for updating the prediction horizon.

In the next step, the MPC controller will use the updated parameters to test the system
again. The entire tuning process will be repeated until the desired closed-loop performance is

achieved.
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Figure 3.10 Overall scheme of the fuzzy tuner.




3.5 Summary

In this chapter a knowledge-based intelligent model based predictive control strategy was
developed for the motion control of a flexible-link robot manipulator. The new control
scheme, called intelligent model predictive control (IMPC), combined the advantages of
conventional model predictive control (MPC) and knowledge-based soft control.

Overall structure of the IMPC algorithm and its underlying strategy were presented. The
following main components of the IMPC system were designed: a computationally efficient
MPC module with guaranteed nominal stability, a system identification module for handling

systems with unknown payload, and a fuzzy rule-based intelligent auto-tuning module for

adjusting the MPC controller parameters.




Chapter 4

Control of a Single-link Flexible Manipulator

In this chapter, the intelligent model predictive control (IMPC) scheme developed in Chapter
3 is applied for motion control of a single-link flexible robotic manipulator. The link of the
manipulator is a 1 m long aluminum thin beam and its physical parameters are given in Table
2.1. This link is identical to the link 2 (outboard link) of the two-link flexible manipulator
described in Chapter 2. A dynamic model for the system is developed in Section 4.1. Model
predictive control (MPC) approach for the system is designed in Section 4.2. A system
identification module was designed to identify the unknown system payload in Section 4.3.
The knowledge for tuning the MPC controller is established in Section 4.4, and using the
resulting fuzzy rule base a fuzzy tuner is designed. In Section 4.5 the performance of the

IMPC scheme for the single-link system is evaluated using computer simulations.

4.1 Dynamic Model

We have developed the dynamic equations for a single-link flexible robotic manipulator in
Section 2.32 using the assumed mode method. The dynamic equations are given in equations
(2.92) and (2.93). These equations are nonlinear and include a finite number of flexible
modes. In this section we develop a model for this system that is suitable for controller design

and simulation.

4.1.1 Flexible Modes

Using computer simulations we investigate the number of flexible modes that are needed in
order to adequately represent the elastic behavior of the single-link flexible robotic

manipulator. From Table 2.3 we notice that the natural frequencies of the first four modes of

the system with a nominal payload are:

fi=11442Hz, f,=11.1224 Hz, f,=31.1435Hz,and f, =56.1767 Hz




The natural frequency of the third mode is much higher than that of the first two modes. In
view of this, we now investigate the behavior of a model with just the first mode in

comparison to a model with the first two modes. In the following simulations, we assume the

system carries a nominal payload corresponding to m, = 0.38 kg and J, = 0.001 kg.m?.

Case 1:
In this case there is no control input to the system, and the system starts with the following

initial position:

6,(0) =0, w, (0)=51.2 mm (4n'

ip
The initial joint angle is zero and the initial tip deflection is 51.2 mm. The simulation results
are shown in Figure 4.1 and Figure 4.2. From the simulation results we see that there is very

little difference between the responses of the single-mode model and the two-mode model, in

this case.

Case 2:

In this case the system starts with the following initial position:

6,(0)=0, w

tip

0)=0 4.2)
Both the initial joint angle and the initial tip deflection are equal to zero in this case. A
symmetric bang-bang input torque of magnitude of 6 N.m is given to the system as shown in
Figure 4.5. The system responses under this input torque are shown in Figure 4.3 and Figure
4.4. In this case as well, the system responses of the single-mode model and the two-mode
model do not deviate significantly.

In summary, for the single-link flexible manipulator, the simulation results suggest that
the fundamental mode alone is able to capture the flexible character of the system response
quite accurately. Accordingly, we will use the model with just the first flexible mode for the
design of MPC controller. The nonlinear model of the plant is represented using the first two
flexible modes, however. Furthermore, in order to prevent the higher modes being excited by
the MPC controller, we will impose constraints for the system input and output, in the MPC

controller design, as follows:
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Iu‘| <6 N.m
4.3)
tip

]w |S25mm

where u is the joint input torque and w,, is the deflection of the link tip.

1 mode

h,,, B

08H 4

06N -

04 .

Joint angle (degrees)

02

02 ) 1 I L I 1 1 I I
o} 2 4 3 8 10 12 14 18 18 20

Time (seconds)

Figure 4.1 Case 1: Joint angle responses of 1-mode model and 2-mode models with an initial
tip deflection of 51.2 mm.
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Figure 4.2 Case 1: Link tip deflection responses of 1-mode model and 2-mode models with an
initial tip deflection of 51.2 mm.
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Figure 4.3 Case 2: Joint angle responses of 1-mode model and 2-mode models under a bang-
bang control input (6,(0) =0, w,,(0)=0).

112




150

100

50

Tip deflection {mm)

-50

-100
0

1 mode
2 modes

Figure 4.4 Case 2

Time (seconds)

: Link tip deflection responses of 1-mode model and 2-mode models under a

bang-bang control input (6,(0) =0, w,,(0) =0).

Cantrol input {N.m)
o
T

1 ] 1 |

1 2 3 4
Time (seconds)

Figure 4.5 Case 2: Bang-bang control input.
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4.1.2 Nonlinearity

From equations (2.92) and (2.93) we obtain the dynamic model of the single-link flexible

robotic manipulator using the first flexible mode as

{I:Jhl +J, +J_p +mp112i|+[m.1 +mp¢ll(ll)2]5112(t)}é.l
#(1+ 000D + 0,8 0))6,0) (44)
+[ 2m, +2m 4, (1) ]6,(05,,()6, +b,6, =7,

[+ md a0+ T8, W) |0+ m+m g (1) #7846,
_I:ml +mp¢11(ll)2]511(t)912 +15,,9,; +b11511 =0

(4.5)

where I,,, and I,,,, are constant parameters which depend on the mode shape function of the

first flexible mode, and are defined as

1111 = _El p1¢11(x1 )xldxl

(4.6)
Ly, = J:I (EI)1¢11”(X1 )2 dx,

From these equations we notice that the dynamic model of the system is nonlinear. The

nonlinearity of the system is due to the following terms in the dynamic equations: &,,°(¢),

5,,(1)8,,(1)6,, and 5,,(1)8? . In the development of the nonlinear dynamic equations of the

system in Chapter 2, we have assumed that the link deflection is small. This implies that the
higher order terms involving products of deformations can be neglected. It follows that if the
joint angle velocity is not very large, the nonlinearity of the system is not significant and can
be neglected.

A linear model for the single-link flexible robotic manipulator can be obtained using the
techniques presented in Section 2.4. Assuming that the equilibrium operating point of the

system is at the initial position of the link (8, =0, &,, =0), the linear model of the system is

given by
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(S + o+, +m,1 16,
+(1111 +m L, (1) + Jp¢”’(ll))é.:ll(t) + beléx =7
[ Ly +m 0, 0+, ) |6

# 4 8, (1 + 0,0, 1) 8,0+ 16, +5,6, =0

4.7)

In Chapter 2 we have found that the effect of payload on the mode shapes is not
significant. Accordingly, the system model will use a constant mode shape for the first
flexible mode. A linear state-space model for the system is obtained from equations (4.7),

(2.114) and (2.115) as

Xx=Ax+Bu

y—Cx (4.8)

SV A T,
where x=[61,5”,0],6”} is the state vector and yz[é?],wﬁp] is the output vector. The

system input u is the joint torque. The outputs are the joint angle &, and the deflection w,, at

the tip of the link. The numerical values of the system matrices A, B, and C are given in
Appendix A.1.2.

Next, computer simulations are used to compare the linear and nonlinear system models.
Two cases are considered. The control input and initial states of the first case are the same as
those of case 1 in Section 4.1.1. There is no control input to the system. The initial joint angle
is zero and the initial tip deflection is 51.2 mm. The simulation results are shown in Figure 4.6
and Figure 4.7. The control input and initial states for the second case are the same as those of
case 2 in Section 4.1.1. Both the initial joint angle and the initial tip deflection are equal to
zero. The input to the system is a symmetric bang-bang torque with the magnitude of 6 N.m,
as shown in Figure 4.5. The simulation results are shown in Figure 4.8 and Figure 4.9. From
the simulation results we observe that the system responses for the linear model and the
nonlinear model are very close in both cases.

In summary, the nonlinearity of the single-flexible link manipulator considered here is
not significant and can be neglected when the link deflection is small and when the velocity

terms are not very large. Accordingly, the linear model in equation (4.8) will be used in the
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MPC controller design.
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Figure 4.6 Case 1: Joint angle responses of the linear and nonlinear models with an initial tip
deflection of 51.2 mm.
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Figure 4.7 Case 1: Link tip deflection responses of the linear and nonlinear models with an
initial tip deflection of 51.2 mm.
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Figure 4.8 Case 2: Joint angle responses of the linear and nonlinear models under a bang-bang
control input (&,(0) =0, w,,(0)=0).
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Figure 4.9 Case 2: Link tip deflection responses of the linear and nonlinear models under a
bang-bang control input (8,(0) =0, w,,(0)=0).
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4.1.3 Effects of Payload

The linear model of the single-link flexible robotic manipulator given by equation (4.8) is

dependent on the system payload (m,, J, ). Speciﬁcally, the elements of the system matrices
A and B are functions of m, and J,, as shown in Appendix A.1.2.

Now the effects of the system payload on the linear dynamics of the robotic system are
investigated through computer simulations. Two cases are considered. The control input and
the initial states of the first case are identical to those of case 1 in Section 4.1.1. In this case
there is no control input to the system. Also, the initial joint angle is zero and the initial tip
deflection is 51.2 mm. The simulation results are shown in Figure 4.10 and Figure 4.11. The
control input and the initial states of the second case are identical to those of case 2 in Section
4.1.1. In this case, both the initial joint angle and the initial tip deflection are equal to zero.
The input to the system is a symmetric bang-bang torque with the magnitude 6 N.m, as shown
in Figure 4.5. The simulation results are shown in Figure 4.12 and Figure 4.13. From the
simulation results it is observed that the payload has a significant effect on the system
dynamics. Under the same input and initial-state conditions, increasing the system payload
will increase the link deflection. Increasing the system payload reduces the natural
frequencies of the system as given in Table 2.3. This corresponds to a system that is less stiff,
resulting in increased deflection (flexibility).

In summary, the effect of the payload on system dynamics is significant and cannot be
neglected. If the system payload is not known and if direct measurement is not available, a
system identification module has to be designed and incorporated in order to obtain the
correct linear model of the system. A system identification module for the single-link flexible

manipulator will be designed in Section 4.3.
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Figure 4.10 Case 1: Joint angle responses of the linear model for different payloads with an
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Figure 4.11 Case 1:
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Link tip deflection responses of the linear model for different payloads

with an initial tip deflection of 51.2 mm.
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Figure 4.12 Case 2: Joint angle responses of the linear model for different payloads under a
bang-bang control input (6,(0) =0, w,,(0)=0).
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Figure 4.13 Case 2: Link tip deflection responses of the linear model for different payloads

under a bang-bang control input (6,(0) =0, w,,(0)=0).
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4.2 MPC Controller

In this section, we will develop a model predictive control (MPC) scheme for the single-link
flexible manipulator using the techniques presented in Chapter 3. The MPC is a model-based
control algorithm. The controller performance is directly related to the accurady of the
internal model of the controller. In Section 4.1, we have shown that the linear continuous-time
state-space model with just the first ﬂexiblelmode is adequate to accurately capture the
flexible dynamics of the robotic manipulator.

First we develop a discrete state-space internal model for the MPC controller. In
Chapter 2 we established that the effect of payload changes on the mode shapes was not
significant. Accordingly, the internal model will use a constant first flexible mode. With a

data sampling period of 7, =10 ms and a nominal payload, by using equations (3.8) and (3.9)
we obtain the numerical discrete-time state-space internal model of the MPC controller as

x(k +1)= Ax(k) + Bu(k)

49
y(k) = Cx(k) *9)

where x(k) = [9, (k),0,, (k),6"1 (k),5n (k):'T is the state vector and y(k) = [01 (k),w, (k):'Tis the

ip
output vector. The system input u(k) is the joint torque. The outputs are the joint angle &, (k)
and the deflection w,, (k) at the tip of the link. The numerical values of the system matrices
A, B, and C are given in Appendix A.1.3.

The cost function of the MPC controller is

H,

J=Y 0, {[k+ilk)-1,] +0, [jzz(k+i|k)]2}+iRuAﬁ(k+i—l|k)2 (4.10)

where 7, is the setpoint for joint angle. The setpoint for link deflection is zero.

We take the input and output constraints to be

-6 Nm<u(k+ilk)<6 N.m

. (4.11)
-25mm< y,(k+i|k)<25mm

A computationally efficient ‘anti-windup’ MPC controller is designed using the strategy

developed in Chapter 3. This controller is an unconstrained MPC controller. The fuzzy tuner




handles the constraints. The control input at time & of the unconstrained MPC is calculated
using the analytical equation (3.45). The fuzzy tuner adjusts the MPC parametefs such that the
constraints are satisfied.

Next we will compare the performance of this computationally efficient ‘anti-windup’
MPC controller with the constrained MPC controller. The constrained MPC controller solves
a QP optimization problem at each time step. The constrained MPC controller is designed
using the Model Predictive control toolbox in MATLAB (Mathworks, 2005).

We use Simulink® to perform the simulation. The Simulink block diagram is shown in
Figure 4.14. Both constrained and unconstrained MPC controllers can be tested in the MPC
control block to generate the control input signal. The nonlinear dynamic model of the single-
link flexible robotic manipulator with the first two flexible modes is used as the plant. The
saturation block is used to limit the control input signal to the upper and lower saturation
values.

Two cases are tested. The MPC controller parameters are as given in Table 4.1. The joint
.. T
angle setpoint is 3 for both cases.

In case 1, the MPC controllers have the same parameters. Figure 4.15 through Figure

4.17 show the simulation results. In this case the constraints are inactive. Both the control

input and the link deflection are within their ranges |u|S6N.m , y2|S25 mm . The

simulations results verify that the constrained and unconstrained MPC solutions are identical
when the constraints are inactive.
In case 2, the input constraint is active, as shown in Figure 4.18. The constrained MPC

considers the constraints in the solution, so the control input for constrained MPC is within its
range |u| <6 N.m and reaches its maximum value in the first 3 time steps. If the
unconstrained MPC uses the same set of control parameters as the constrained MPC, the
calculated control input will exceed its maximum range as shown in Figure 4.18. In order to
satisfy the input constraint, the unconstrained MPC has to increase the value of the input rate
weight R, from 3 to 5. This will be done by the fuzzy tuner. Figure 4.18 through Figure 4.21

show the simulations for the constrained and unconstrained MPC controllers with different

input rate weight values. The simulation results show that the responses of the unconstrained
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MPC are very close to those of the constrained MPC when the constraints are active.

In summary, the developed computationally efficient ‘anti-windup’ MPC controller has

the same optimal solution as the constrained MPC when the constraints are inactive; and has

the sub-optimal solution when the constraints are active. The system response performance of

the unconstrained MPC is comparable to that of the constrained MPC response.

Joint

Table 4.1 MPC controller parameters.
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Figure 4.14 Simulation block diagram.
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Figure 4.15 Case 1: Joint angle responses for the constrained and unconstrained MPC.
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Figure 4.16 Case 1: Link tip deflection responses for the constrained and unconstrained MPC.
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Figure 4.17 Case 1: Control inputs for the constrained and unconstrained MPC.
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Figure 4.18 Case 2: Control inputs for the constrained and unconstrained MPC with the same
parameters.
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Figure 4.19 Case 2: Control inputs for the constrained and unconstrained MPC with different
parameters.
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Figure 4.20 Case 2: Joint angle responses for the constrained and unconstrained MPC with
different parameters.
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Figure 4.21 Case 2: Link tip deflection responses for the constrained and unconstrained MPC
with different parameters.

4.3 Payload Identification

In Section 4.1.3 we have shown the effect of the payload on system dynamics is significant
and cannot be neglected. If the system is not known, and if direct measurement is not
available, we need to develop a system identification module to find the unknown payload.
We will use the techniques developed in Section 3.3 to design the system identification
module for the single-flexible link robotic manipulator. The continuous-time state-space
model of the system is given in Appendix A.1.2. The system matrices A and B are
dependent on the payload. We assume that the nominal model is the one with a nominal
payload. The structure matrices as denoted by Asand Bs have the entry NaN at those
elements that correspond to the unknown parameters which have to be estimated. The

structure matrices are defined by
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0 O 1 0 0

0 0 0 1 0

As = , Bs= (4.12)
0 NaN NaN NaN NaN
0 NaN NaN NaN NaN

The unknown parameters of the structure matrices are determined by using the system
identification module and the input and output data of the system. The system payload

m,, J, can be calculated by solving the following equations using the elements of the

identified system matrix B:

0.404 +4.197m_ +9.167J,
0.769 +17.669J, +8.0m, +0.959J m,
~2.049m, —0.229-3.028J,
0.769 +17.669.J , +8.0m, +0.959.J ,m,

=B(3)
(4.13)

=B(4)

Next computer simulations are carried out to test the accuracy of the system identification
module. An MPC controller moves the link with a payload at low speed from the initial
position to 5°and then moves it back to the initial position. The nonlinear model of the single-
link flexible robotic manipulator with the first two flexible modes is used as the plant model.
The Simulink block diagram in Figure 4.14 is used to generate the input and output data for

the system. The simulation results for two different system payloads are presented below.

Case 1:

In this case, the payload is nominal, and we assume that there are no disturbances and
measurement noise in the system. First the Simulink model of the system is tested. The input
and output responses of the system are shown in Figure 4.22. The input and output data are
placed in the Matlab workspace. We split the data record into two parts. The first part is used
to identify the system model and the second part is used to verify the accuracy of the
identified model. Figure 4.23 shows that a perfect fit is achieved by the model. In this case the

numerical values of the system matrix B are
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0
0
B= (4.14)
0.524358

-0.263886

By solving equation (4.13) the unknown system payload is obtained as: m, =0.38kg,

J,=9.794391e- 004kg.m’.

Case 2:

In this case the payload is equal to double the nominal payload, and we assume that there are
no disturbances and measurement noise in the system. The input and output responses of the

system are shown in Figure 4.24. Figure 4.25 shows that a perfect model fit is achieved. By

solving equation (4.13) the unknown system payload is obtained as m, =0.765593kg ,

J,= 0.001766kg.m”.
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Figure 4.22 Case 1: Input and output responses of the single-link flexible manipulator
(nominal payload).

129
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Figure 4.23 Case 1: Measured outputs and simulated model outputs (nominal payload).
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Figure 4.24 Case 2: Input and output responses of the single-link flexible manipulator (double

the nominal payload).
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Figure 4.25 Case 2: Measured outputs and simulated model outputs (double the nominal
payload).

4.4 Fuzzy Tuner

A fuzzy tuner for the single-link flexible robotic manipulator is designed using the procedures
presented in Chapter 3. Matlab fuzzy logic control toolbox is used to build the fuzzy inference

system (FIS). Figure 4.26 shows the FIS input-output diagram of the system.

MPCfuzzytuner

(mamdani)

Figure 4.26 FIS input-output diagram.
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The membership functions for the input and output variables are defined in Section 3.42,
and are shown in Figure 3.7 and Figure 3.8. The link deflection constraint (maximum allowed

link deflection) is », =25 mm and the control input constraint (maximum control input
allowed) is r, =6 N.m.

Based on the analysis in Section 3.4.1 and through extensive computer simulations, the

primary functions and the side effects of the tuning parameters H . @, , and R are

determined. These are summarized in Table 4.2.

Table 4.2 Effects of the MPC tuning parameters.

Controller Functions Undesired Side Effects
Parameters
H Reduces joint angle overshoot; Can slow down the system response.
p increases stability. Increases the computational load.
0 Reduces link deflection and control | Increases joint angle tracking error
e input. and joint angle overshoot.
R Reduces control input and link Can slow down the system response.
“ deflection. Increases joint angle overshoot.

The rule base of the FIS is developed using Table 4.2, the general linguistic MPC tuning
rules in Table 3.2, and the knowledge gained through computer simulations. The fuzzy rule

base has 32 rules as given in Table 4.3.

Table 4.3 Rule base of the FIS.

IF THEN IF THEN
0s,|0s,]0s, | a

S

aQ, | aR 0S,| 0OS, | OS,| aH, | a0, | aR

w u P




IF THEN ~ IF THEN
7 S L S 23 VS | M VS
8 S M S 24 VS | S VS
9 S S S 25 VS | VS VS
10 L L M 26| L | VS S
11 L M S 271 M | VS S
12 L S VS 281 S VS S
13 L | VS VS 29 L S M
14 M L M 30 M S S
15 M M S 31 S S S
16 M S VS 32 VS S VS

4.5 Computer Simulations of IMPC

The developed intelligent model predictive control (IMPC) algorithm is now simulated for
motion control of the single-link flexible robotic manipulator. The system payload is taken to
be nominal. The nonlinear dynamic model of the single-link flexible robotic manipulator with
first two flexible modes is used as the plant. The internal model of MPC is the linear model at
the zero initial position with the first flexible mode. Three different cases of motion
configurations are tested. Table 4.4 shows the predetermined MPC parameters for both cases.

Here T, is the time step; r, is the link deflection constraint; 7, is the control input constraint;

H O, ..> and R are the sensitivity parameters of the tuning actions; H, is the

p_sen ? u_sen

control horizon; and Q , is the overall weighting for the joint angle and link deflection. The

joint angle setpoints and the tuning parameters for the three cases are given in Table 4.5. Here

r, 1s the joint angle setpoint; H is the initial prediction horizon; H, ,,, is the final

p_ini

prediction horizon generated by the fuzzy tuner; Q is the initial value for the link

w_ini

deflection weight; QO is its tuned value; R

w_end u_ini u_end

is the initial input rate weight; and R
is its tuned value. |

Figure 4.27 through Figure 4.29 show the system responses of Case 1. The initial,
intermediate, and final system responses are shown in these figures. It is observed that the
desired system performance cannot be achieved by using the initial set of MPC parameters.

The joint angle response has a large overshoot, and the link deflection and the control input
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exceed their limits. The IMPC tunes the controller using the fuzzy knowledge until the desired
system performance is achieved. The results show that the system responses using the tuned
parameters from IMPC meet the design specifications. There is no joint angle overshoot, and
the link deflection and the control input are within their limits.

The system responses for Case 2 and Case 3 using the IMPC control algorithm are shown
in Figure 4.30 through Figure 4.35.

In Chapter 2 we have shown that if the system output is taken as the link-end deflection,
then the system is a non-minimum phase one. For a non-minimum phase system, the step
response initially starts to move in the direction opposite to the final steady-state value. This
behavior is verified by the deflection responses for the two cases shown in Figure 4.28, Figure
4.31 and Figure 4.34. In these figures we observe that initially the tip response takes up
negative values.

The simulation results verify that the IMPC control techﬁique is quite effective in

controlling the tip position of a single-link flexible robotic manipulator.

Table 4.4 Predetermined parameters of the MPC controller for the single-link manipulator.

I (ms)

¥, (mm)

r, (N.m) H

p_sen

Qw_sen Ru_sen Hu Q}’W

10

25

6

4.8

4.6

9.6

9

20

Table 4.5 Tuning parameters of the MPC controller for the single-link manipulator.

r¢9 p_ini Hp_end Qw_im' Qw_end Ru_ini Ru_end
T

Case 1 — 100 530 1 7.8 1 3.0
6 .
T

Case 2 ? 100 584 1 14.4 1 6.8
/3

Case 3 E 100 728 1 19.8 1 9.8

134




Initial response

o

T

/
1
\

Final tuned MPC response

Intermediate responses

35

(sea.bsp) 8ibue Juior

3
Time (seconds)

Figure 4.27 Case 1: Joint angle responses with IMPC.
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Figure 4.28 Case 1: Link tip deflection responses with IMPC.
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Figure 4.29 Case 1: Control input with IMPC.
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Figure 4.31 Case 2: Link tip deflection responses with IMPC.

Time (seconds)

Figure 4.32 Case 2: Control input with IMPC.
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Figure 4.33 Case 3: Joint angle responses with IMPC.
30 T T T T T T T T T
20 .
10 B

Tip deflection (mm)
o

-10 .
20} 4
230 | L 1 1 ] L ! 1 1

0 1 2 3 4 5 6 7 8 g 10

Time (seconds}

Figure 4.34 Case 3: Link tip deflection responses with IMPC.
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Figure 4.35 Case 3: Control input with IMPC.

4.6 Summary

In this Chapter we designed an intelligent model predictive control (IMPC) scheme for the
motion control of a single-link flexible robotic manipulator. A system model that is suitable
for the controller design and simulation was developed. The simulation results indicated that
the fundamental mode alone was able to quite accurately capture the flexible dynamics of the
system response. The nonlinearity of the single-flexible link manipulator was found to be
insignificant and could be neglected when link deflection and the velocity terms were not very
large. The linear model with the first flexible mode model was used in the MPC controller
design.

The effect of the payload on system dynamics was fund to be significant and could not be
neglected. A system identification module was designed to identify the unknown system
payload. The fuzzy rule base and the fuzzy tuner were developed to tune the parameters of the
MPC controller. '

The performance of the IMPC scheme was evaluated through computer simulations. The
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simulation results showed that the IMPC control technique was quite effective in auto-tuning
of the MPC controller parameters for achieving the desired system performance and for
manage the input and output constraints in the motion control of aAsingle-link flexible robotic

manipulator.

140




Chapter 5

Control of a Two-link Flexible Manipulator

In this chapter the intelligent model predictive control (IMPC) algorithm developed in
Chapter 3 is applied for the motion control of a two-link flexible robotic manipulator. The
first link of the manipulator is a 1 m long aluminum rod, and the second link a 1 m long thin
aluminum beam. Its physical parameters are as given in Table 2.1. The internal dynamic
model design of the model predictive controller (MPC) is presented in Section 5.1. The IMPC
scheme for the system is presented in Section 5.2. The performance of the IMPC scheme for

the two-link system is evaluated using computer simulations in Section 5.3.

5.1 Internal Model

In Section 2.33 we have developed the dynamic equations for a two-link flexible robotic
manipulator using the assumed mode method. The dynamic equations are given in Appendix
A.2. These equations are highly nonlinear and incorporate a finite number of flexible modes.
In the present section we develop a linear internal model for the model predictive controller
(MPC).

First we investigate how many flexible modes are needed to adequately represent the
flexible dynamics of the two-link robotic manipulator. From Table 2.2 and Table 2.3, the
natural frequencies of the first four modes of link 1 andlink 2 with nominal payload, are
given by |

Link 1: f,, =1.9397 Hz, f,,=72546Hz, f,,=942847Hz, f,,=257.3687 Hz

Link 2: f,, =1.1442 Hz, f,, =11.1224 Hz, f,, =31.1435Hz, f,, =56.1767 Hz

For both links, the natural frequency of the third mode is much larger than those of the first
two modes. Consequently, it is reasonable to use only the first two flexible modes in the
internal model. The natural frequency of the second flexible mode for link 1 is low

(f;, =7.2546 Hz), and it is likely to be excited during the robot motion. We will verify this in
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Section 5.3 using computer simulations. Accordingly, the internal model of MPC will include
the first two flexible modes.

Next, we investigate the nonlinearity of the system model. From the nonlinear dynamic
equations of the system as given in Appendix A.2, it is seen that the nonlinearity of the system
comes from the following terms in the dynamic equations: Coriolis and centrifugal terms,

higher order terms of link deflection, and ‘sin’ and ‘cos’ terms of &,. In Chapter 2 we have

assumed that the link deflection is small, in the development of the nonlinear dynamic
equations of the system. This implies that the higher order terms involving products of

deformations can be neglected. Accordingly, if the velocity terms are not very large, the
equilibrium point of the system may be taken as x, =[O o, O]T . In this case the

nonlinearity of the system is mainly due to the movement of link 2. The nonlinearity of the
system is significant and cannot be neglected when the movement of link 2 is large. We will
verify this in Section 5.3 using computer simulations. In order to deal with the nonlinearity of
the system, we will re-linearize the system at time intervals of one second.

In summary, the MPC internal model is a piecewise linear model (linearized every
second) incorporating the first two flexible modes. The piecewise linear model can be

obtained using the techniques presented in Section 2.4.

5.2 IMPC Controller Design

The process of IMPC controller design for the two-link flexible robotic manipulator is similar
to that for the single-link case as presented in Chapter 4, and its details are not repeated here.
In this section we will outline the major aspects of the controller design process for the two-
link problem.

The physical parameters of the outboard link of the two-link flexible robotic manipulator
are the same as those for the single-flexible manipulator presented in Chapter 4. The system
identification module for the two-link system is also the same as that for the one-link case
presented there. In the system identification stage, we lock joint 1 and only move link 2 to

identify the unknown payload.

The discrete-time state-space internal model of the MPC controller is given by




x(k +1) = Ax(k) + Bu(k)

5.1
y(k) = Cx(k) G-D

where

X(k) = [ 6,(6),0,(5),8,,(),8,, (k). 85, (£),8,, (5.6, (5),6, (k). 8, (5).8,, (1), 8, (£).8,, (k) |

is the state  vector, u(k)z[u1 (k),u, (k)]T is the input vector, and
y(k):[Gl(k),ez(k),wn.p_,(k),w,ip_z(k)]T is the output vector. The system inputs u, (k) and
u,(k) are the joint torques. The outputs are the joint angles 6,(k), 6,(k) and the link

deflections w,, ,(k),w,, ,(k) at the ends of the links.

The cost function of the MPC controller is
H, 5 2‘
7=Y0, {[j/l(k+i|k)—rglJ +0, [Pk +i16)] }
i=1

+3.0 {[Bak+i100=1, T +0, 2[5,k +i10] } (52)

Hu
+ [ R, (Ady(k+i=11k) +R, ,Ad,(k+i—1]k)]

i=1
where 7, and 7, are the setpoints for the joint angles. The setpoints for the link deflections

are zero. The input and output constraints are taken as

-6 Nm<u (k+i|k)<6 Nm
—-ONm<u,(k+i|k)<6Nm
-Smm< y,(k+i|k)<5mm
—20mm < y,(k+i|k) <20 mm

(5.3)

Note that the maximum allowed tip deflection of link 1 is smaller than that of link 2. The
reason for this is that the link vibration in link 1 has a significant effect on link 2, and the third

mode nature frequency of link 2 f, =31.1435 Hz may be excited if the link 1 vibration is
excessive. Limiting the maximum allowable tip deflections can prevent the excitation of the
higher system modes. A computationally efficient ‘anti-windup’ MPC controller is designed

for the two-link flexible manipulator using the approach presented in Chapter 3.

The fuzzy inference system for the two-link manipulator uses the same membership
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functions and the rule base as for the single-link manipulator presented in Chapter 4. Each
link can be considered as a single flexible-link system, and its MPC parameters can be

adjusted separately. The tuning actions for each link can be scaled to the proper level by

adjusting the sensitivity parameters H, ., ;» H, 0 25 Oy cn 1o Qo sn 2> Ry en 1> and

R The larger values of the prediction horizon tuning actions of the two links are used

u_sen_2°

in the controller tuning; specifically

AH, =max(AH, ,AH, ,) (5.4)

5.3 Computer Simulation of IMPC

The developed intelligent model predictive control (IMPC) scheme is now simulated for
“motion control of the two-link flexible robotic manipulator. The system payload is taken to be
nominal. Figure 5.1 shows the Simulink simulation block diagram of the system. The plant 1s
represented by a nonlinear dynamic model of the two-link flexible robotic manipulator
incorporating the first two flexible modes. Initial set of MPC controller parameters is used to
generate the system responses. The fuzzy tuner then adjusts the controller parameters until the

desired system performance is achieved.
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Figure 5.1 Simulation block diagram of the two-link flexible manipulator system.
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First the internal model selection analysis is done as presented in Section 5.1. The
Simulink simulation block diagram in Figure 5.1 is used to perform the simulations. Three
different internal model MPC controllers are tested and their closed-loop system responses are
compared. The first MPC controller uses a linear model linearized at the initial link positions,
incorporating only the first flexible mode. The second MPC controller uses a linear model
linearized at the initial link positions, and incorporating the first two flexible modes. The third

MPC controller uses a piecewise linear model linearized at every second and incorporating
the first two flexible modes. The joint angle setpoint is % for both links. Figure 5.2 and

Figure 5.3 show the system responses for these three internal model MPC controllers. From
Figure 5.3 it is seen that if MPC uses a first-mode internal model, both links exhibit constant
vibrations. Including the second mode in the internal model will reduce the link vibrations.
Due to the nonlinearity of the system, however, the link deflections for the two-flexible-mode
model remain large, and the joint 2 angle response is rather slow. Linearizing the system at
every second improves the system performance. In view of this, the piecewise linear internal
model (linearized every second) incorporaﬁng the first two flexible modes is used in the MPC

controller.
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Figure 5.2 Joint angle response with three different internal models.
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Figure 5.3 Link tip deflection responses with three different internal models.
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Next, three different cases of motion configurations are tested in order to evaluate the
performance of the IMPC algorithm. Table 5.1 gives the predetermined MPC controller
parameters for both cases. The joint angle setpoints and the MPC tuning parameters for the
three cases are given in Table 5.2.

Figure 5.4 through Figure 5.9 shows the system responses for Case 1. Here the initial,
intermediate, and final system responses are shown. It is noted that the desired system
performance cannot be achieved by using the initial set of MPC parameters. For both links,
the joint angle response exhibits a large overshoot, and the link deflection and the control
input exceed their limits. The IMPC tunes the controller using the fuzzy knowledge base until
the desired system performance is achieved. The results show that the system responses using
the parameters tuned by IMPC meet the design specifications. There are no joint angle
overshoots, and the link deflections and the control inputs are within their limits.

The system responses for Case 2 and Case 3 with the IMPC scheme are shown in Figure
5.10 through Figure 5.15. The simulation results demonstrate that the IMPC control technique

is quite effective in controlling the tip position of the two-link flexible robotic manipulator.

Table 5.1 Predetermined parameters for the MPC controller of the two-link manipulator.

I8 ¥
Link 1 w_l ul H sen 1 Qw sen 1 Ru sen_1 Hu Qyw 1
(mm) (N.m) - - - )
5 6 7.8 2 2.5 5 40
Li Ty 2 ) H 0 R 0
ink 2 ( —) (N_n']) p_sen_2 w_sen 2 u_sen_2 yw_2
mm .
20 6 7.8 32 1.05 40
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Table 5.2 Tuning parameters for the MPC controller of the two-link manipulator.

Link1 | 7, Y 5 Hp_ini Hp_end Qw_im'_l Qw_end__l w_ini 1 Ru_end_l
T T
Case 1 — — 100 594 1 11.6 1 8.1
6 6
T T
Case 2 — —_ 100 845 5 25.7 5 22.4
6 3
T T
Case 3 — — 200 1100 10 34.1 10 36.1
3 2
Link 2 Qw_ini_Z Qw_end_Z Ru_ini_Z Ru_end_Z
Case 1 1 14.6 1 8.0
Case 2 5 19.4 5 43.0
Case 3 10 374 10 53.1
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Figure 5.4 Case 1: Joint angle responses of link 1 with IMPC.
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Figure 5.6 Case 1: Link tip deflection responses of link 1 with IMPC.

149




Link2-end deflection (mm)

200

-200

-2

Control input1 (N.m)

Final tuned response

Intermediate response

i 1 1 |

50

1
1 2 3 4 5
Time (seconds)
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Figure 5.9 Case 1: Control input for link 2 with IMPC.
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Figure 5.10 Case 2: Joint angle responses of link 1 and link 2 with IMPC.
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Figure 5.11 Case 2: Link tip deflection responses of link 1 and link 2 with IMPC.
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Figure 5.12 Case 2: Control inputs for link 1 and link 2 with IMPC.
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Figure 5.13 Case 3: Joint angle responses of link 1 and link 2 with IMPC.
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Figure 5.14 Case 3: Link tip deflection responses of link 1 and link 2 with IMPC.
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Figure 5.15 Case 3: Control inputs for link 1 and link 2 with IMPC.

5.4 Summary

In this Chapter we developed an intelligent model predictive control (IMPC) scheme for
motion control of a two-link flexible robotic manipulator. The internal model for model
predictive control (MPC) was developed. The simulation results showed that the first flexible
mode alone was unable to accurately capture the flexible dynamics of the system. Also, the
nonlinearity of the system was found to be significant and could not be neglected.
Consequently, a piecewise linear internal model (linearized every second) and incorporating
the first two flexible modes was used in the MPC. A fuzzy rule base and a fuzzy tuner were
developed to tune the MPC parameters. The performance of the IMPC scheme was evaluated
through computer simulations. The simulation results showed that the IMPC control
téchnique was quite effective in auto-tuning the MPC parameters, in achieving the desired
system performance and in managing the input and output constraints in motion control of the

two-link flexible robotic manipulator.
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Chapter-6

Experiments with Flexible-link Manipulator

In this chapter we focus on physical experimentation with a flexible-link manipulator. A
prototype flexible-link robot manipulator system has been designed and developed in our
laboratory at the University of British Columbia. It is suitable for validating and investigating
the performance of various motion/force control strategies and algorithms which have been
developed in the present research. In Section 6.1, the experimental test bed is described. The
system components of the experimental apparatus, and the software design and operation of
the overall system are presented there. In Section 6.2, implementation of the developed
intelligent model predictive control (IMPC) scheme on the test-bed is described. Experiments
using the prototype robot are outlined and experimental results are presented. The

performance of the IMPC scheme is evaluated using the experimental results.

6.1 The Experimental Test-Bed

In order to investigate the dynamics and control of flexible manipulators, the prototype
flexible link manipulator system (FLMS) shown in Figure 6.1 has been designed and
developed in our laboratory. A realistic model of this prototype robotic system has been used
in the simulation studies carried out in the present work. The prototype FLMS forms the test-
bed for experimental studies of the IMPC scheme developed in the present work.

The prototype manipulator is composed of two revolute joints having a vertical axis of
rotation so that they can move in a plane that is perpendicular to the field of gravity. A
relatively long link is attached to each of these revolute joints. Two types of links are
available, one being more flexible than the other. The detailed assembly drawings of joint 1
and joint 2 are found in Appendix B.1. Four rolling ball transfers are attached to the bottom of
the second joint. The rolling support is important as it can reduce the axial loading of the

motor shaft and provide a mobile base so that link 2 is free to move with respect to joint 1.
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Without the rolling support, the lengthy link and the heavy weight of the motor will introduce
a permanent bending stress on the motor shaft of joint 1, which may eventually damage the
motor.

The links of the experimental manipulator can be interchanged. This allows one to
investigate the dynamic characteristics of the robot and test the performance of the developed
motion/force control algorithms, for different physical parameters. As mentioned in Chapter
2, two types of manipulator links are used in this research. Type 1 link is a 1 m long, 0.003 m
thick, and 0.051 m high aluminum thin beam. Type 2 link is an aluminum rod 2.0 cm in
diameter and 1.0 m in length. In addition to the flexible links, all other machined parts such as
motor mounts, joint supports and shaft couplings are made of Aluminum 6061 due to its light
weight (density pq = 2710 kg/m®), high strength (yield strength = 255 MPa) and ease of
machining. The numerical values for the physical parameters of the manipulator are given in
Table 2.1.

Figure 6.1 The prototype flexible link manipulator system (FLMS).

A PC-based control system is used as it allows different control strategies to be
implemented easily using software, and modifications to the control algorithms can be made

conveniently in the investigation. The electrical system of the FLMS manipulator may be
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classified into three main subsystems: the actuation subsystem, the measurement subsystem
and the data acquisition subsystem. The major components of each of these subsystems are
summarized in Table 6.1. The schematic diagram of the overall electrical system is shown in
Figure 6.2. The detailed electrical wiring diagram of the system can be found in Appendix

B.2. We describe these subsystems in the subsequent sections.

Table 6.1 FLMS system components.

System components Manufacturer Model No.
Actuation subsystem:
RHS-20-3012-
e 2 Harmonic-drive motors with optical HD Svstems E050DO
encoders 4 RHS-32-3018-
E050DO
. Advanced Motion 12A8
s 2 PWM amplifiers Control 25A8
Advanced Motion
e 1 DC Power supply Control PS16L72
Measurement subsystem:
e 1 Bridge type loadcell Futek L1605 (251b)
. o Transducer
¢ 1 Signal conditioner Techniques TMO-1
' Transducer
e 1 Power adapter Techniques APD-12VDC
e 2 Optical encoders HD Systems E0S0DO
e 1 Analogue ultrasonic proximity sensor Honeywéll PK104015-11
Data acquisition subsystem:
e 1 Motion control interface card (ISA bus) Servo-To-Go STGII-8
e 2 50-pin screw terminal blocks National Instruments CB-50LP
. LCF Advanced
e 1 Pentium III personal computer Technology |
. . Windows NT 4.0
e  Operating system Microsoft Workstation
e  C++ software Microsoft Visual C++ 6.0
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Figure 6.2 Schematic diagram of the electrical system of the manipulator.

6.1.1 Actuation Subsystem

The actuation subsystem includes two DC servomotors, two matched pulse-width modulation
(PWM) amplifiers and a DC power supply.

A DC servomotor is located at each joint of the manipulator. These motors are used to
control the motions and contact forces of the manipulator. DC motors are used as the
actuators in this experimental setup due to their high precision, easy control, low power, and
high-speed capabilities. Two motors with harmonic drive gearing, RHS-20-3012-E050DO
and RHS-32-3018-E050DO, from HD system Inc., are chosen for our application. The
harmonic drive gearing provides zero backlash (de Silva, 1989 and 2007), high positional
accuracy and stiffness, and low torque/mass ratio. This makes them particularly suitable for
applications that call for precise motion control. The motor unit comes in a compact package
consisting of a servomotor, a harmonic drive gear-head, and an optical encoder for motion
sensing (de Silva, 1989 and 2007). Their specifications are summarized in Table 6.2.

A power amplifier is required to translate the low energy control signals from the
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controller into high-energy signals (e.g., motor voltage or current) in order to drive the DC
motor. Two PWM amplifiers, 12A8 and 25A8, from Advanced Motion Control are selected
to drive the HD harmonic-drive motors. The specifications of the PWM amplifiers are
summarized in Table 6.3.

A DC power supply is required to provide the energy for the amplifiers. It can be an
unregulated one because the PWM amplifiers can compensate for the power supply output
variations and the AC ripples. A single unregulated DC power supply, PS16L72, from
Advanced Motion Control is selected to complement the PWM amplifiers. The specifications

of the power supply are summarized in Table 6.4.

Table 6.2 Specifications of the harmonic-drive motors.

Model Number RHS-20-3012-E050DO | RHS-25-3018-E050DO
Manufacturer HD Systems HD Systems
Rated voltage 5V 75V
Rated current 27A 39A
Peak current 50A 83 A

Rated output torque 30 N.m 60 N.m
Rated output speed 3000 rpm 3000 rpm
Max. cotl(l)tri(lll::us stall 43 N.m 72 N.m
Peak torque 84 N.m 160 N.m
Torque constant 21.0 Nm/A 22. 9 N.m/A
Actuator accuracy 1 arc-minute 1 arc-minute
Gear ratio 100:1 100:1
Encoder resolution 500 ppr 500 ppr
Weight 4.2 kg 6.4 kg

159



Table 6.3 Specifications of the PWM amplifiers.

Model Number 12A8 25A8
Manufacturer Advanced Motion Control Advanced Motion
Control
DC Supply Voltage 20-80V 20-80V
Peak Current (2 sec. +12 A 125 A
max.)
Max. Continuous 16 A +125A
Current
Switching Frequency 33 kHz 33 kHz
Bandwidth 2.5kHz 2.5kHz

Table 6.4 Specifications of the DC power supply.

Model Number PS16L72
Manufacturer Advanced Motion Control
Input Voltage 120VAC

Output Voltage 72VDC

Nominal Output Current 10A

6.1.2 Measurement Subsystem

The measurement subsystem consists of feedback elements including a force sensor, a signal
conditioner and its associated power adapter, two optical encoders, and an analog ultrasonic
proximity sensor. The force sensor is for detecting the contact force at the end-effector. The
signal conditioner is for impedance matching, signal amplification and noise filtering. There
is an optical encoder at each joint, which gives the position measurements from the
manipulator joints for feedback into the robot controller. An ultrasonic proximity sensor is
used for measuring the link tip position.

A stain gage load cell (force sensor) is located at the end of the second link to measure

the contact force. A stain gage load cell is a transducer which senses the load/force acting on
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using strain gage elements, and converts the measurement into an analog electrical signal.
This conversion is achieved by the physical deformation of the strain gages that are wired in a
wheatstone bridge configuration. In our application, a compression type force sensor is
required in order to measure the contact force at the tip of the end-effector. The load cell
L1605 from Futek is selected for our application because it is thread mounted, which
simplifies the design of the end-effector. Its specifications are summarized in Table 6.5.

A force sensor usually has high output impedance and produces a low output sigﬁal in the
millivolt range making further processing difficult. In view of this, a signal conditioner is
connected between the force sensor and the data acquisition system. It has a low output
impedance and a high input impedance (de Silva, 1989 and 2007). As a result it consumes
little power from the force sensor and avoids electrical loading errors. This is referred to as
impedance matching. It also consists of a high gain amplifier which can step up the signal
level to a useful range. The signal conditioner TMO-1 from Transducer Techniques is
selected due to its low cost and dedicated conditioning features. The signal conditioner plus
its associated power adaptor APD-12VDC are required for the force sensor. The

specifications of this unit are given in Table 6.6.

Table 6.5 Specifications of the load cell.

Model Number L1605

Manufacturer Futek

Force range (Compression) 251b

Excitation 10VDC, 18VDC max

Bridge resistance 350 Q

Rated output (RO) - 2mV/V
Non-linearity 10.2% to 0.5% RO

Weight 0.16 kg




Table 6.6 Specifications of the force sensor signal conditioner.

Model Number TMO-1
Manufacturer , Transducer Techniques
Gain range 75 to 1000
Input sensitivity 1 mV/V min. for 8 VDC output
Output voltage 0to +8 VDC
Accuracy +0.05% of FS
Frequency response DC to 220 Hz
Excitation voltage §VDC 1025V
Power required 12 VDC
Sensor resistance 120 Q min., 1000 Q max.

The optical encoder EO50DO from HD Systems is used to measure the actual angular
position of the motor shaft and hence the rotation angle of the joint. The encoder comes
assembled with the harmonic-drive motor; hence the mounting problems are avoided.

The optical encoder is composed of light emitting diodes (LED), a code wheel and
detectors (de Silva, 1989 and 2007). As the code wheel rotates, the light beam is interrupted
and two pulsaﬁng signals are generated. The angular position of the shaft is measured by
counting the number of pulse while the direction of rotation is indicated by the relative phase
angle between the two output signals. Usually, there is one additional output channel Z that
gives an index pulse corresponding to one full shaft revolution.

As the optical encoder is a digital transducer, analog-to-digital (A/D) conversion is not
required and the quantization error does not exist. The chosen encoder EO50DO has a
resolution of 500 PPR (pulse/rev.), with a gear reduction ratio of 100:1. The smallest joint

angle that it can measure is

360 360 (1.8x10%) (6.1)
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where ¥ =4 is the encoder multiplier.

An analog ultrasonic proximity sensor from Honeywell is used for measuring the link tip
position. It is necessary in evaluating the performance of the developed motion control
algorithms, which is performed by measuring the link-end vibration when it reaches the final

desired position. Table 6.7 lists the relevant parameters of the ultrasonic device.

Table 6.7 Parameters of the ultrasonic sensor.

Model Number PK104015-11
Manufacturer Honeywell
Type Analog ultrasonic proximity sensor
Range 10 cm to 75 cm
Input power 10-30 VDC, 50 mA
Output 0-5 VDC
Response speed 50 ms
Bandwidth 20 Hz
Repeat accuracy 1% of full scale
Resolution I mm

6.1.3 Data Acquisition Subsystem

The data acquisition subsystem consists of a motion control interface card, two 50-pin screw
terminal blocks, and one personal computer. A motion control interface card is needed to
manage the data transfer between different hardware components and the computer. Motion
control interface STGII-8 from Servo-To-Go is selected and used in the system. Its
specifications are summarized in Table 6.8. The hardware installation guide of this card can
be found in Appendix C. This card is a PC-based motion control card. When compared to a

DSP based card, it offers more flexibility to the user, to experiment with different control

algorithms. It is a general purpose, motion control input/output board which can control up to




eight motors simultaneously from an ISA-bus based computer such as IBM compatible PC.
This board is simply and efficiently accessed by the set registers located in the I/O space of
the PC. ‘

The card consists of four 50-pin connectors and one 2-pin connector for connection to the
external hardware devices. The connector designations are as follows:

e P1: 24 bits of opto-22 compatible digital I/O.

e P2: 8 channels of analog input, 8 bits of user I/O, and 8 motor direction bits.

e P3: encoder input and analog output for 1-4 axes.

e P4: encoder input and analog output for 5-8 axes.

e P5: battery backup input.

In our application, only two (P2 and P3) out of the five connectors are used to acquire the
encoder inputs, the force sensor input, the ultrasonic sensor input and the control signal
outputs. Two 50-pin CB-50LP screw terminal blocks from National Instruments are used to
make all the connections to the encoders, force sensor, ultrasonic sensor and the PWM
amplifiers.

Because optical encoder is a digital transducer, analog to digital (A/D) conversion is not
required here. Two optical encoders are connected to the encoder input port of the motion
control card, and the joint position feedback signals are transmitted to the computer. With an
encoder multiplier of 4, a gear reduction ratio of 100:1, and an encoder resolution of 500 PPR,

the joint angle € can be obtained as

360°

g=i  — 0 6.2
BN 1100 % 500 6-2)

where i, 1s the number of encoder counts.

The analog inputs can be configured as 5 V span to match the outputs of the selected
signal conditioner of the force sensor and the ultrasonic sensor. With 13-bit resolution, the

count to voltage constant p_, is given by

5

-2 6.3
P =006 (6.3)

The measurement signal of the force sensor is sent to the signal conditioner and the




output signal from signal conditioner is supplied to the motion control card. The motion
control card then uses an analog to digital converter (ADC) to convert the analog signal into a
digital signal. The resulting digital signal is then supplied to the computer. The force can be

calculated according to

F= iADCpcvpvlb
_; 5 25 (6.4)
°C 4096 8
where i, is the number of ADC counts and p,, is the voltage to 1b constant.

The analog measurement signal from the ultrasonic sensor is supplied to the motion
control card. The motion control card then uses ADC to convert the analog signal into a
digital signal. The resulting digital signal is then supplied to the computer. The link-end

position is calculated according to
Yip =lancPePoen t Ve =V, (6.5)

where p . =7.965 cm/V is the centimeter to voltage constzint, ¥, =22.61cm is a constant
-value obtained from calibration of the sensor, and y, =30 cm is the distance between the

final link tip position and the sensor reference surface.
The analog output voltage range of the card is £10 V. and the range of the 13bit digital to
analog converter (DAC) is —4095 to 4096. The control inputs calculated from the control

algorithms are the joint torques (u,,u,) for each joint. Following equations are used to .
convert the joint torque inputs into digital control signals:
ipsc 1 =409.6V, , +0.5= 409.6—;% +0.5

(6.6)
ipic > =409.6V, , +0.5=409.6-%+0.5

in_2 -

where i), , and i,,. , are the DAC counts for joint 1 and joint 2, respectively. V,, | and

V.. , are the analog output voltages. Their values can be calculated from the torque inputs as
u u
I/in‘l =€1’ l71’n_2 =?2- : (67)
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The digital control signals (i, ,,ip, ,) from the computer are converted into analog

signals (V.

in_1?

V. ,) through the DAC of the motion control card. The resulting analog signals

are then sent into the PWM Amplifier to generate the control torques (u, ,u,) which drive the

DC motors.

A personal computer is needed for processing the input signals and generating the control
signals. A Pentium III 733 MHz PC with Windows NT 4.0 Workstation operating system is
chosen from LCF. Microsoft Visual C++ 6.0 is installed for the control software design.

Table 6.8 Specifications of the motion control interface card.

Model Number STGII-8

Manufacturer | Servo To Go

Up to 8 channels of encoder input

A, B, Iinput

24bit counters

Single-ended or differential (RS422 compatible) input signals

Encoder input

Up to 8 channels of analog input
Analog input | 13 bit resolution
Configurable as £10 V or £5 V spans

Up to 8 channels of analog output
Analog output | +10V to—-10V span
13 bit resolution

32 bits, configurable in various input and output combinations

Digital input Opto-22 compatible

and output

Capable of interrupting the PC
Interval timers | Timer interval is programmable to 10 minutes in 25 ps
increments

Battery backup | Used to maintain encoder counting capability in the event of
"input power failure
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6.1.4 Software Design

A graphical user interface (GUT) software package is developed for the prototype flexible link
manipulator system (FLMS) using Visual C++ in order to illustrate the satisfactory operation
of the experimental setup and to test different motion/force control algorithms developed in

the present research. The pull down menu of the FLMS is shown in Figure 6.3.

Figure 6.3 Pull down menu of the FLMS software package.

The ‘Board Test’ option is developed to verify the accuracy of the data acquisition of the
motion control interface card. It consists of ‘ADC,” ‘DAC,” and ‘Encoder’ dialog boxes. By
choosing ‘ADC’ from the pull down menu, an analog-to-digital dialog box as shown in Figure
6.4 appears. The dialog box displays the analog input voltage of all the 8 A/D conversion
channels simultaneously. By selecting the radio button in the graphic display group box, the
graph in the middle of the dialog box can keep tracks of the voltage in one of the A/D
channels. The sampling rate is 100 Hz. The accuracy of the A/D conversion can be checked
by connecting a variable DC power supply to each channel and then comparing the reading
displayed on screen with the terminal voltage measured from the digital voltmeter.

The second board testing function available in the software package is the digital-to-
analog conversion. By choosing ‘DAC’ from the pull down menu, the digital-to-analog

dialog box as shown in Figure 6.5 pops up. The output voltages of all the 8 D/A channels can
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be set on the screen by first picking the corresponding check boxes and then pressing the
‘Send to Axis’ button. The accuracy of the conversion can be verified by measuring the
voltages at each D/A channel using a digital voltmeter. |

The third board testing function is provided for testing the correctness of the encoder
input. The corresponding dialog box is shown in Figure 6.6. To test the accuracy of the
encoder readings, the up-down counters of the motion control interface card are first reset to
zero by pressing the ‘ZeroEncoderAll’ button. Then the encoder is connected to one of the
encoder channels via the screw terminal block. A low voltage reference signal (e.g. 0.5 VDC)
is sent to the actuation subsystem so as to instruct the motor to rotate by a certain angle 6 in
degrees. The rotated angle 6 should be equal to that calculated using equation (6.2) based on

the encoder counts.

Figure 6.4 Analog-to-digital conversion dialog box.
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Figure 6.6 Encoder count dialog box.
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Figure 6.7 Manual control dialog box.

The “Control’ option on the pull down menu of the FLMS software package contains the
‘Manual Control’ and ‘MPC Control’ operations. The manual control dialog box shown in
Figure 6.7 is used to test the motion operation of the manipulator. It consists of control
buttons for all 8 axes in which both speed and direction of rotation can be cyontrolled
manually. The motion can be stopped by pressing the same button again so that it returns to
its ‘release’ state or by pressing the ‘Emergency Stop’ button. The dialog box also displays
the encoder count, its equivalent angle, and the output voltage for all 8 axes sampled at 100
Hz so that their accuracy can be verified.

The MPC motion control dialog box is developed to investigate the performance of the
IMPC control strategy. The experimental results are presented in Section 6.2. The MPC
motion control dialog box can be found from the pull ddwn menu and is shown in Figure 6.8.
The dialog box provides real-time plots of the system response and the control action. All
input parameters are shown on the screen. Their definitions are given in Table 6.9. The MPC
controller parameters can be determined by using the fuzzy tuner which has been developed
in Chapter 4 based on the dynamic model of the system.

In addition, the output data can be stored in a file in text format by specifying the file

name in the save dialog box as shown in Figure 6.9. The output data text file can be imported

into Matlab for further data analysis and to plot the system responses.




Figure 6.9 Save dialog box.

Table 6.9 Description of the input parameters of the MPC controller.

Input Parameters Description

The desired time taken for the manipulator to move to the

Maneuver Time (s) specified slewing angle.

Experiment Time (s) | The total duration of closed loop control.

The time period at which sensor signals are sampled and control

Sampling Period (ms) action is generated.
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Input Parameters Description

Control Axis Axes 1 through 8 can be selected for control.
Prediction Horizon Prediction horizon H, of the MPC controller.
Control Horizon Control horizon H, of the MPC controller.

Output Weight The link deflection weight O, of the MPC controller.

Input Rate Weight Input rate weight R of the MPC controller.

Slewing Angle (deg) The desired angle of rotation.

Maximum and minimum plot range of the system response in

Max-Min ¥ Range the y-axis of the graphic display.

The number of sampling points skipped for plotting; i.e., the

Skip Plot Point, data are plotted at a rate of (n+1)Ts ms.

To activate the Save Dialog Box at which the name of the output

Save Button data file and the number of skipped data points can be specified.

The FLMS software package is composed of several dialog boxes that operate within the
main application program. Each dialog box belongs to an individual class with its
implementation statements contained in the ‘xxx.cpp’ file and its declaration statements
contained in the ‘xxx.h’ header file. Figure 6.10 shows the structure of the overall software
program.

To ensure that the data acquisition functions provided by the motion control card can be -
used within the main application, all the header files and the C++ files in the ‘stgconap.zip’
should be added to the project workspace as has been done. The ‘stgconap.zip’ folder can be
downloaded from the Servo To Go Website (http://www.servotogo.com). Moreover, the
‘stgconap.cpp’ file, which is a demo program running under the DOS prompt, should be
modified and incorporated into our Visual C++ main application in order to have input and
output displays in the Windows environments. All the global variables in the files should be

added to the ‘GUI.cpp’ file and all the existing files should be included in the ‘GULh’ header

file. The purpose of this modification is not only to have a user-friendly interface but also to



http://www.servotogo.com

increase the operating speed of the control loop. It takes time for the data to pass from
Windows to DOS for display; so, the original demo program can only have a maximum
sampling rate of approximately 200 Hz. A polling function is implemented using the high-
resolution performance counter provided by Visual C++. It keeps on polling for the next
sampling interval before allowing the control loop to execute again. Since the counter has a
very high resolution, the control cycle rate can be controlled accurately. By using this polling
function, and by putting the control algorithm and the plotting function in a single control |
loop, fast real-time control is possible up to a sampling frequency of 1000 Hz.

The ‘GUIDIg.cpp’ file consists of the ‘CGUIDIg’ Class, which is derived from the built-
in Microsoft Foundation Class ‘Cdialog’. It is responsible for displaying the FLMS Main
Dialog Box with pull down menu, to monitor if there is a menu item being selected and
generate the corresponding ‘COMMAND’ event. Each ‘COMMAND’ event triggers the
corresponding subroutine to display the functional dialog box by calling the ‘DoModal( )’
member function of the ‘Cdialog’ Class. The flow diagram of the FLMS Dialog Box is
shown in Figure 6.11. The menu item is linked to five dialog boxes including ‘ADC,” ‘DAC,’
‘Encoder,” ‘Manual Control,” and ‘MPC Motion Control’ with a unique ID. These dialog
boxes are described in a separate C++ file in which the data flow of the control algorithms
and the operating mechanisms of the onscreen controls are defined. With this software
structure, the program is easy to maintain and can be extended to include additional software

modules for testing different control algorithms.
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Figure 6.10 Program structure of the FLMS software package.
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Figure 6.11 Flow diagram of the FLMS dialog box.
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6.1.5 Operations of the Overall System

How the overall system operates is described now. First the user inputs the desired position
through the GUI of the computer. Based on the control algorithm installed in the computer,
the digital control signals are generated and sent to the motion control interface card. The
motion control interface card then converts the digital control signals into analog signals. The
resulting analog control signals for the joints are sent to the corresponding PWM amplifiers.
The PWM amplifiers generate the necessary voltage signals to drive the two harmonic-drive
motors. As a result, the manipulator moves toward the target location. Built-in optical
encoders measure the angular displacements of the links. These digital position signals are fed
back to the control computer through the motion control interface card. The force sensor
measures the contact force at the end-effector. The signal conditioner processes the sensor
signal. The amplified analog sensor signals are compatible with the motion control interface
card. The ultrasonic sensor measures the end-effector position and sends the corresponding
analog signal to the motion control interface card. The motion control interface card converts
these analog signals into digital signals and sends them to the computer. The computer
processes the position and force signals based on the control algorithm and generates the
control signals for the robot actuators. The update control signals then sent to the actuator

system to adjust the motion of the manipulator until the desired values are reached.

6.2 Experimental Results

Now we present the experimental results from the developed IMPC algorithm. The prototype
FLMS has two flexible links; however, only the outboard link is used for the experiments.
Joint module 2 is fixed by placing iron blocks on its sides. This system setup is identical to
the single-link flexible manipulator shown in Chapter 4. The physical parameters of the
manipulator are shown in Table 2.1.

The input to the system is the motor voltage. The system outputs are the joint angle and
the link tip position. The joint angle is measured using the encoder. The link tip position is
measured using the ultrasonic sensor. Only the measured joint angle is fed back into the MPC

controller. The link tip position measurement is not used as a feedback for the controller, and

is used only to evaluate the controller performance.




We assume that the link tip position at the desired final joint angle is zero. The reference

target surface of the ultrasonic sensor is placed parallel to the final position of the link, at a

distance of y, =30 cm. The link tip position can be obtained by using equation (6.5). The

maximum inclined angle of the ultrasonic sensor is about 7°. Consequently we are able to use

the ultrasonic sensor measurement data for link tip positions Up t0 ¥, ,aeres <12 €1

Two different cases of motion configuration are tested on the FLMS. The desired joint

angle for Case 1 is 30" and for Case 2 it is 60°. First, the MPC controller parameters are
determined based on the dynamic model of the system using the fuzzy tuner, as we have done
in Chapter 4. The MPC controller parameters are given in Table 6.10. Next, these controller
parameters are imported into the FLMS MPC controller to control the motion of the system.
The experimental and computer simulation results are shown in Figure 6.12 through Figure
6.17. From the experimental results we observe that good system responses are achieved in

the motion control of the FLMS using IMPC control algorithm. The joint angle response has

no overshoot, the control input is within its constraints (input voltage |v(t)| <2V or joint

torque ]r(t)| <6 N.m ), and the end-effector reaches its final position with no vibration and no

steady-state error. Note that in the physical experiments, the measurement of the tip position
response of Case 1 shown in Figure 6.13 starts from 2 seconds, and that of Case 2 shown in
Figure 6.16 starts from 3 seconds. These delays in measurement are due to the limitation of
the ultrasonic sensor. Specifically, in view of the inclined angle, we are able to accurately
measure the link tip position only when the tip is close to the final position. Consequently, the
non-minimum phase ‘dip’ in the initial tip response is not shown in these figures.

The experimental results are somewhat different from the simulation results. In
particular, the joint angle and tip position responses of the prototype system are more sluggish
than the corresponding simulated responses for both cases. The discrepancy of simulation and
experimental results comes mainly due to the model errors and unmeasured disturbances. The
model errors are caused primarily by inaccurate viscous and structural damping coefficients

of the joint and the resulting inaccurate friction forces in the nonlinear model. In the computer

model, we assume that the viscous damping coefficients are b, =0.2 and the structural

damping coefficients are b ; =0.1. Model error is unavoidable because these are not the true
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values in the experimental system. Also, the nonlinear model used in computer simulations
does not include the friction force of the rolling ball transfer at the end of the link. Due to
" these factors, the nonlinear model used in computer simulations is not an exact representation
of the real manipulator. Even with the model error, it is clear from the experimental results
that good system performance can be achieved by using the IMPC controller. In this sense the
experimental results exhibit robustness of the controller with respect to model error. We can
further improve the system performance by fine tuning the MPC controller parameters on

line.

Table 6.10 MPC controller parameters.

v, Hp H, Qyw 0, R,
Case 1 13[- 530 9 20 78 3.0
T
Case 2 —6— 584 9 20 14.4 6.8
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Figure 6.12 Case 1: Joint angle responses (experiment and simulation).

177



120 T T T T T T T T

T
——— Experiment
Simulation

Tip position {mm)

Time (seconds}

Figure 6.13 Case 1: Tip position responses (experiment and simulation).
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Figure 6.14 Case 1: Control input (experiment and simulation).
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Figure 6.15 Case 2: Joint angle responses (experiment and simulation).
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Figure 6.16 Case 2: Tip position responses (experiment and simulation).
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Figure 6.17 Case 2: Control input (experiment and simulation).

6.3 Summary

In this chapter we presented the development of the prototype flexible-link robot manipulator
system (FLMS) in our laboratory, to investigate the performance of various motion/force:
control strategies and algorithms. The implementation of the developed IMPC control
algorithm on the robot test-bed was described. Experimental results from the robot were
presented under the developed IMPC scheme. The experimental results demonstrated that the

IMPC control technique developed in the present research was quite effective in controlling

the tip position of a prototype flexible-link manipulator.




Chapter 7

Conclusion

7.1 Primary Contributions

The main contributions of this research are summarized below:

Kinematic and dynamic models for a class of flexible link robotic manipulators
were developed. An accurate nonlinear dynamic model of a flexible-link
manipulator system (FLMS) was development using the assumed mode
method. More realsitic boundary conditions that represent the balance of
moments and shear forces separately were incorporated in the analysis and
simulation of the system. Effects of the payload on the mode shapes and the
dynamics of the system were systematically analyzed. The non-minimum
phase characteristics of the system were studied. Based on the model analysis
and computer simulations, a linear model suitable for controller design was
established. The developed model is rather simple to implement and analyze,
yet capable of capturing the process dynamics accurately so as to properly
predict the future outputs for use in the control scheme.

An intelligent model predictive control (IMPC) strategy for motion control of
the flexible link robot manipulator was developed based on a two-level
hierarchical control architecture. This control structure was used to combine
the advantages of conventional model predictive control (MPC) and
knowledge-based soft control incorporating fuzzy logic.

A computational efficient multi-stage MPC algorithm with guaranteed stability
was developed. This MPC algorithm is used by the MPC module of the control
structure for real time implementation of the overall adaptive scheme. In the

developed scheme, the input constraints are not managed through optimization
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but using a local anti-windup scheme and an intelligent fuzzy tuner. This

reduces the optimization of a quadratic programming (QP) problem to a simple
least square (LS) problem.

e Real time system identification module was designed to estimate an unknown
payload carried by the robotic manipulator.

e A knowledge-based fuzzy tuner for auto-tuning the MPC controller was

developed based on analysis, simulation, and experimentation of the prototype
FLMS.

o Implementation of the IMPC scheme in a prototype robotic system was
investigated. A flexible link manipulator system (FLMS) was designed and
constructed in our laboratory. This system was used to evaluate and refine the

| developed modeling and control strategies. The performance of the developed
IMPC scheme was evaluated using computer simulations and experimentation
with the prototype FLMS. The results show that the IMPC developed in the

present work is able to effectively control the motion of a flexible link robot

manipulator.

7.2 Recommendations for Future Research

The present subject of research has not been exhausted in the work presented in this thesis.
There is still work to be done on the study of flexible-link robotic manipulators. Some aspects
of possible future research are summarized below:

e Develop a path planning technique for the motion control of the manipulator. This
may result in reduced link vibrations and improved performance of the system.

e Develop an efficient nonlinear MPC controller. The controller may use the
nonlinear model of the system as developed in the present work, for prediction
and optimization. The nonlinear MPC controller can be used for highly nonlinear
flexible-link manipulator systems.

e Refine the fuzzy knowledge of the Ifuzzy inference system based on physical

experimentation using the prototype robotic system.

e Integrate intelligent learning techniques into the control architecture of the robotic




system. The system will be able to improve its knowledge base using offline
training and online learning.
Extend the developed IMPC technique to include contact force control of flexible-

link manipulator systems.
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Appendix A

Dynamic Models

This appendix presents the dynamic models for the flexible-link robotic manipulators which

have been studied in the course of the research presented in this thesis.

A.1 Single-link Flexible Manipulator Model

A.1.1 Nonlinear Model

The rigid body equation for the link:

i 2
/ &
J;) P (Z¢lj(xl )51j(t)] dx,
(J,,1 +J,+J, +mplf)é', + Fl 6
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The deflection equation for the jth mode of the link:
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A.1.2 Continuous-time State-space Model
The continuous-time state-space model of the system with first flexible modes is:

X =Ax+Bu

v=Cx (A.3)

The numerical values of the elements of the system matrix A are:
AL =0, A(1,2)=0, A(1,3)=1, A4(1,4)=0
A(2,1)=0, A(2,2)=0, A(2,3)=0, A(2,4)=1

212.32m,, +23.708 +313.804.,
0.769+17.669J , +8.0m,, +0.959J m,

A3 =0, A(3,2)=

~0.081-0.839m, —1.833J,
0.769 +17.669J , +8.0m, +0.959.] m_

A(3,3) =

0.205m,, +0.023+0.303.,
0.769+17.669J, +8.0m, +0.959. ,m,

AG,4) =

~210.861-103.643J, ~103.643m,
0.769+17.669., +8.0m, +0.959J m,

A(4,1)=0, A(4,2)=

0.41m, +0.046 + 0.606J ,

A(4,3)=
% 0.769+17.669J, +8.0m, +0.959J m,

B -0.203-0.1Jp - 0.1mp
0.769 +17.669J , +8.0m, +0.959J jm,

A(4,4)

The numerical values of the system matrices B and C are:
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_ 0 -
-0 1 0 00
0.404+4.197m , +9.167J 0 2049 0 0
B = C =
0.769 +17.669J , +8.0m, +0.959J ;m,, 0 0 0 0
-2.049m,, - 0.229 -3.028J, 0 0 0 0
0.769 +17.669J , +8.0m, +0.959J m,

For the nominal payload (m, =0.38kg,J, = 0.001kg.m?), the numerical values of the system

matrices A, B and C are:

0 0 10 0 1 0 00
0 0 0 1 0 0 2.049 0 0
“10 27350 -0.105 0.026 ~| 0.524 C=lo 0 00
0 -65394 0.0528 -0.063] -0.264 0 0 0 0

A.1.3 Discrete-time State-space Model
The discrete-time state-space model of the system with just the first flexible mode and the
nominal payload is:

x(k +1) = Ax(k) + Bu(k)

A4
y(k) = Cx(k) (A4

The numerical values of the system matrices A, B and C are:

(1 0.001366 0.009995  5.873e-006 2.62¢-005
A |0 09967 2636e-006 0.009986 g | 1-3186-005
0 0273 0.999  0.001629 0.005239
0 -0.653  0.0005268  0.9961 -0.002634
1 0 00
o0 2049 0 0
0O 0 00
0 0 00
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A.2 Two-link Flexible Manipulator Model

Rigid body equation for link 1:
It Ity +tJd,+J,
+m, 3 +(my + myy, +m)) [ 1 +w] (0]

+(m2 ~1~2mp)l2 [ w1, t)sin (e +6,)+1, cos(e +6,)]

=2[;sin (e +8,) - w(l,, 1) cos(; + 6, )}"‘2[142 ;b (1)]6,,(0)

+.[)li o) (i¢1j(xl)5lj(t)] dx, + _[:2 P> [f¢2j(x2 )521'([)] dx,

+m, [f@j(e)&z,-(t)]

( 3
¥ +J,+ml; +(—;—m2 +mpjl2 [w (1, 0)sin(a, +6,) +1, cos(, +6,) ]

N

+4-[1sin(a, +6,) - w (@0 cos(a +6,) D[ Ly, +m,d,,(1)]6,,(0) g,
Jj=1

5 [ p, (f@ 1(5)8, j(t)] dx, +m, (Z@ (1,)5, j(z)j

L (my +my, +mp)+(%m2 +mp)l2 cos(a, +6,)

>, 06,
= —sin(q, + 92)2[1421 + mp¢2j(12)] 8, () | 7

2
J,+J,, +Jp +mp12

+(é—m2 +mpjl2 [w,(1,,0)sin (e, +6,) +1, cos(a, +6,)]

+ 4 _{ll sm(al + 92) 'f[[42j . mp¢2j (12)] 52j ) };ﬂj’(h )§1j(t)

-w (1) cos(ey +6,) |75

N [“p. [f:(éz J(0,)8,,(0) | dx, +m, (i¢2 (1), j(l‘)]
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n

J

m,2

3] i+, 1)+ m L (1) 6,0

=1

+[w (1, 0)sin (e, +6,) +1, cos (e, +6,)] nmj[zm +m,p,,(1,)]6,,(t)

A

(my +2m, ) Ly (1, 0)[ 1, sin (e, +6,) - w (I, ) cos (e, +6,) ]
—(my +2m, ) (L, D[ L sin (e + 6, ) + 2w (4, 0) |+ 2(m,, —my, Jw (4, 0 (4, 0)

" wy' (4,0 wy (D) sin (e +6,) +1, cos (e, + 6, )]
—w,(J,,1)cos(a, +6,)

]z[l by, (1)]5,0)
+2[1 sin (e, +6,) - w, (4, 1) cos (e, +6, )]2[142j +m,d,,(1,)]8,,(8)

~2p, j(j‘ (zqﬁ ;3 )@,(t)}(gmxl )ai,-(ojdx]

2p, f@qﬁz,(xz)&z,- (r))(g@,-(xz)éz,-(t)}dxz

“om, (Zqzﬁa )52,-(0] (g@j(m&j(rﬂ

(m2 +2m, ) L' (4, 0)[ 1 sin (e, +6,) = w (1, 1) cos (e, +6, )]

+2[ 1 sin (e +6,) = w, (4, 1) cos (e, +6, )]2[14” +m,@,,(1,)]8,,(0)
+2w/ (I, 0) [ w1, 1) sin (, +6,) +1, cos (o, +6,) | 22:[142 S +md (1)]6,,(0)
25 @@j(x»azj(t)) [wa )5'2,-(0} dx,

—om, (tgqszj(lz)azj(t)](ngsz,(lz )6@@)}

(m, +2m, )1, [ 1 sin(a, +6,) —w(I),1)cos (e +6,) |

L

Hm,2 0. 9
#2[w (1, sin(a, +8,) +1, cos(a, +6,) Y[ L, +m b, (1) 6,0
j=1

N%.
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sz + mPle [ 1 sin (e, +6,) = w,(1,,1) cos (at, +6,) ]
_ g2
+[w (. Dsin(a, +6,) + 1, cos(a, +6,) | D[ Ly, +m,8,,(5) ] 6, (1)
j=1

2[1,sin (e, +6,) - w, (1, 1) cos(a, +6, )]"f:[g2 ,+md,(1,)]6,,(0)

N

'—wl,(l] )2, _‘:)12 (i ¢2j(x2 )52j (t)] (nzz(éz, (x, )52j(t)J dx,

—2m, [iz%j(xz )0, ; (t)] {i ?,,(x, )52j (t)j

71 I, sin (e, +6,)
(—mz +mp]l2
2 [\ 2 —w, (I, 0)cos(q, +6,)
<

f {wl (1,,H)sin(, +6, )} Z {1421 } 5,0

+ll cos ((Z1 + 92) j=1 +mp¢2j (12)

-[w,'(l,,t)} +by0, =1, (A5)

. Rigid body equation for link 2:

Tyt +J, +ml +(%m2 +mpjl2 [ w1, 0)sin(e, +6,) +1, cos(a, +6,)]

—[sin (e +6,) = w (G, D) cos (e +6,)] nmz,z[]m +m,8,,(1,)]8,,(0) L4

L+ .[:2 P> [i¢2j(x2)52j(t)] dx, + m, (§¢2j(12)52j(t)]

2
JptJy +J,+ml;

+ /, My 2 2 ) 2 éz
+J:) P> [Z¢2j(x2)52j(t)J dx, + m, [Z¢2j(12)52j(t)J
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(lmz + mpjl2 cos(a, +6,)

2 §

+ > 6,(1)5,,(1)
—sin(a, +6,) D (Lo, +m,@,(1))8,,(0) |

B 2
J+J,, +Jp +mpl2

h ks ’ B ’ 3 ¢1j’(ll)51j(t)
+[" (Z@j(xz)azj(t)j dx, +m, (Z@j(lz)azj(t)} ,Z

+§[112,- # 0,8, (5)+ m s (1) ]6,0)

[(my +2m, ) Ly, (1,,0)sin (, +6,)

+2w,(I,, ) cos (e, + az)MZ'z[lm +m,y,(1,)]6,,(t)
+2p, _[012 ['"22 ¢2j (x, )521‘ (t)J (i ¢2j (x, )52/' (t)j dx,

2m, (Z 6,,(0,)5, j(t)J (Z 6,,()5, j(t)J

[%mz +mp)lz [, sin (e, +6,) —w,(I,, 1) cos(at, +6,) ]

+ < - 912
L+[wl (1, 0)sin(, +6,) +1, cos(a, +6,) Y[ Ly, +m b, (1,)]6,,(0) |
2p, _[)12 [f%,‘(%)@j@)}(f@j(% )Szj(t)J dx,
+ 4 Fl . |:wl!(117t)+0'2:| +b026}2 =7

|12 [fcéz,-(lz)éz,-(z)j(f@ja»éw(nj

( A.6)
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Deflection equation for jth mode of link 1:

A (m2 +m,, +mp)+(%m2 +mpjl2 cos(a, +6,)

¢lj (ll )‘91

M2

—sin (al +6, ) Z[luk + m,;¢2k (12)]5% ()

T+ +J, +m,l;
+(—;—m2 +mp)l2 [w,(4,,0)sin (e, +6,) +1, cos (o, +6,)]

t_ b sin (al + 92) LS ¢lj,(ll)él
{‘Wl (I, t)cos(a, + Hz)}z[l“z" +m, by (lz)]5zk(t)

k=1

L+ JZZ P2 (f%k (%), (t)j dx, + m, (22@,{ (, )52,((1‘)]

(%m2+mpjlz cos(a, +6,) )
+ - ¢1j (ll )02
=sin (@, +6,) D[ Lox + M, (1) |6, (0)

k=1

L

B 2
I +J 0 +Jp +mpl2

] i 2 ? 2 2 ¢Ij' (l1 )‘92
+ J.: P, (2 Py, (X,)05; (t)) dx, + m, [Z D (5,)0 (t)J

+ _[Oll Py, (x, )"ﬁ‘: &, (x, )5”( (2)dx,
(m2 LY +m,,)¢1j(ll)

. 1 &
+9 (EMZ +m, ) L, cos(a, +6,) i¢1k (130, (8
4, 0)

—sin(a, +6,) "MZZ[LQ,( +m,y, (1,) ] 8,4 (8)
(lmz +mpjl2 cos(a, +6,)
8,12 i (1)6, (1)
=sin (@ +6,) D [ Lo +m, 8 ()6, 0]
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i T

2
J,+J,, +Jp +mp12

- +J;)12 P [mzl¢2k(x2)52k(t)j dx, ¢1j’(ll)sz¢1k’(ll)5ik(t).

m, (Z b (1,)5, (r)}

+cos(a, +6,)4,,(, )%Z:l:]m +m, 0y, (L, )] 65 (1)

# ) Y] Doy 0 )+ oy (1) P
H(ED), [ 6, ()2 ()8, (1),

(m, +2m, )1, sin (o, +6,) W, (1)

—{+2sin (a1 + 02)""'22[142k + mp¢2k (12)]52k @) ¢1/ (ll)él

+2cos (al + 02)W1’(ll>t)2[142k +m,py, (lz):] S (1)
\ k=1 J
((m2 + Zm',,)l2 sin(a, +6,)w,(/,,1)

+2cos(a, +6,)w, (ll,t)'f[lm + mp¢2k(lz)]52k(t)
< +2 _[)lz P2 (i P (x,)0,; (t)J[mZz(ézk (x, )521( (I)J dx,

+2m, (Z 51 (1)05 (f)J [Z b (1,)5,, (t)]

4, ()6

200



[ |
(my +2m, )1, sin (e, +6,)w/(4,,1)

+2 sin (0(1 +0, ) ’f |:]42k + mp¢2k (4, ):I 52/: () ¢1./' (4)

- L+2 Cos (al + gz)wll(llat)fl:]m +m, b, (¢ )] 0 (1) }492
k=1 J

2 _[:2 P [i P (x,)8,, (t)] ["’ZZ P (%, )5zk (t)) dx,
B k=1 k=1 ¢U, @)

+2m, (Z s ()5, (r)J (Zqé ()3 (r)j

(m, + 2m,, )1, sin (o, +6,)

- é,,(1)6,6,
1"‘2 cos (al +06, ) z |:142k +m, (I, ):] 8, (1)

J? pl¢1j (%, )il P (x,)0,, (1)dx,

(m2+mh2+m ) (A, t)+£1m2+m )Z sin(q, +6,)
+ _ 4,0
+cos(al + 02)2[142k +m,py, (lz):l O (1)

_. o
(%mz +mp]l2 [4sin(a +6,)—w (I, 1) cos(« +6,)]
- s 4, (1)
+[w (. 1)sin (e +6,) + 1 cos(ay +6,) | D [ Loy + M, (1) ] 85, (0)
L
(;mz +m )Z sin(a, +6,)
[ ¢]j(ll)022
1*‘005 (o +6 )Z Loy +m (1, )]52k(t)
m2+m lsm(al+¢9) X
Lg,.(1) [wl’(zl,z)]
+cos(a1 +6 )Z[lm +m, ¢y, (I, )]52k(t)
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2sin (a1 +0, ) ¢lj (¢ )"Zz: [:142k + mp¢2k {, ):I 52/( ®

— 2_[:2 P> [MZZ¢2k(xz)é‘zk(t)J(f%k(xz)é‘zk(t)J dx, }Wl'(ll,t)-i-b]js,j =0 (A7)
- ,,:2:1 n":=1 ¢1Ijl ()
+2m, [Z% (1,)02 (I)J(Z%k (1,)0 (t)J

Deflection equation for jth mode of link 2:

, w1, 0)sin (o +6,)
{IIZj+Jp¢2j(l2)+mplz¢2j(l2)+ o N

:||:I42j + mp¢2j(l2):|} 91

# L, + 0,80 W)+ m L, 1) |6, +cos (e +6,) L, +my,, ()] PWRGERD

|+, cos (v +6,)

/

#[10y+7,8) )+ m 1 ()]0 G0+ [} 2.8, (52 s (5)5, (0,

1,0, ()3 8 ()8, () + T, (1) ()5, )
+ (EI)2 J‘0’2 ¢2j” (x, )'"zz ¢2k” (x;)0y, ()dx,

92 |: JZZ p2¢2j (xz)z2 Py (x,)0,, ()dx, + mp¢2j (lz)i G (1,)0,, (t):|
k=1 k=1

-2 —[zm + m,,¢2,(12)] W, (1,,)sin(a, +6,) .6

L+w,'(ll,t)[ [* P () e (55, (0,4 1, (1) 6, (1) (r)}

L P )Y b )8 0, = ()5 ()840,

#[ Ly, +m g, (1) |[1sin(a, +6,) - w, (1,0 cos (e, +6,)]

) J:Z p2¢2j (x, )'"Zz @y, (x,)0,, (t)dx,
- [wl,(ll D 92] . + szé:zj =0 (A)

+mp¢2j (4, )'"ZZ Py (x,)0,, (2)
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Appendix B

Assembling of the Prototype FLMS

B.1 Mechanical Assembling of the FLMS

A sketch of the final CAD model of the prototype flexible link manipulator system (FLMS)
developed in our laboratory is shown in Figure B.1. The assembly drawings of joint 1 and

joint 2 of FLMS are shown in Figure B.2 and Figure B.3, respectively.

Figure B.1 Overall CAD model of the FLMS prototype.
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DC Servo Motor \

Upper Motor Mounting Plate

Vertical Stiffener

Joint Bracket

Motor Shaft Coupling

Link 1
T

Joint Base Stand \»@ ﬁ

Figure B.2 Assembly drawing of joint module 1.
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dg
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Figure B.3 Assembly drawing of joint module 2.




B.2  Electrical Wiring of the FLMS

The power cables and signal wires of the FLMS are connected according to the diagram given

in Figure B.4.

2 7
T Ell
O 5
e | 7
70 | ]
2] 11
|7 ] 13
75 | 5
K 7
CB50-LP 25 T
50-Pin [23] 21 N -
Screw |24 ] Analog Gnd Ultrasonic Proximity
| Terminat | 26 | 25 Analog Out Sensor
Block |28 L 27 |
(Connect | 30 28
P2 122 Kl Power Gnd APD12VDC ___ AC Power God
Graphic User Interface | 34 | N e Ad To AC Power Bar
Software Package |3 132 +12voe ower Adaptor Ac input 120vAC [::
£ 37
- | 32 =
- . 40 £ N 1+ Exciaion _ jeg—Led
STGII-8 Windows NT Driver 7 | Mo 1: +12v0C k] MO T 2 -signal e hite it Sinal G L1605
[ ] S 2PowerGnd £ Signal E 3 +signa oo ! ignal bable (25LB)
7y M sandogGnd e gn © 4 Excitation [ BI2K Load Cell
° o 7 aansogou  § Conditioner g 5:+Shisid —SDii
8 50 5 M
<
3 o —
i KN, £
a ™ ry
8 o fe—F
70 3
7] Yallow Matcore xtonsion cab 9P Connector
Fal wrew ulit-core extension cable |
Pentiumlll 733MHz 1 == B {1
16 ue.
K 17 | Red
CBS50-LP [20 fg— 10 et Creen
50-Pin  [27 | wvm Orange
Screw [3a] 5] e Br2m Multgore signal cable
= C Terminal [26 l— {25 Blug.
EJ:|D DDEEH% ["mﬂ Block |78 = 3;::‘ +Refln 41—t Harmonic
S 0= 50-pin Ribbon Canle | (CONeCt |22 S Pl Refins M Drive
toP3) =] N 25A8 Gearing Built-in
o PWM atort Mot Optical
STGII-8 Motion Cantrol interface Card [ ] {35 | Ampiifi +Motor 2 RH; ‘;’5_ € P ‘? —
(Connect o ISA slot of the PC motherboard) [ 37 mplifier Pawer Gnd 3 Lyl o . ncoder
[ ] 35 Power Gnd 4 [ 3018-
42 41 High Voltage 5 [« E050D0O
[+ ] [ 43 | Block
M5 e s ]— Black
| 56 [ S +Rafina Harmonic
48 7+ e 3 m .
Mo 5 e -Retin§ Drive
il 12A8 Motor 1 Gearing Built-in
PWM M m:rz Motor Optical f——
Amplifier Power God 3 L’ . RHS-20- | Encoder
Power Gnd 4 Lt 3012-
High Vollage 5 ja E050D0
High Voltage +72VDC |
PS16L72
DC Power DC Power Gnd
Supply AC Power Gnd
F—
AC Input 120VAC —— e To AC Power Bar

Figure B.4 Electrical wiring diagram of the prototype manipulator system.
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Appendix C

Installation Guide for Motion Control Interface Card Hardware

C.1

Jumper and Connector Locations
Connector P2:
8 Channels of Analog Input, .
8 Bits of User I/0O, and 24 Bi Cmfu}l)e.ct.orl II)/IO
8 Motor Direction Bits. s ot Liglta
Jumper J5:
i 1
Tumger Jdi Watchdog Timer Enable
Watchdog Time-out
Jumper J3: Jumper J7:
DAC Latch on Interrupt Timer 2 Input
¥
ek ==y ' |2 :

I
l

Jumper J2:

Analog Input Range

(Insert a jumper: +-5v
no jumper: +-10v)

Jumper J1:

Connector P3: Base Address Selection

Encoder Input and

Analog Output for Axis 0-3 Connector P5

Connector P4: Battery Backup Input

Encoder Input and
Analog Output for Axis 4-7
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C.2 Connections

8 Channel Encoder Input and Analog Output Connectors

Connector P4, Motion /O Axis 4-7

Connector P3, Motion I/O Axis 0-3
Pin Name Pin Name
1 Analog Gnd 2 DACO
3 AnalogGnd | 4  Analog Gnd
5 DAC2 6 Analog Gnd
7 Analog Gnd 8 DAC1
9 Analog Gnd | 10  Analog Gnd
11 DAC3 12 Analog Gnd
13 Gnd 14 A0+
15 AO- 16 Gnd
17 BO+ 18 BO-
19 Gnd 20 10+
21 10- 22 Gnd
23 Al+ 24 Al-
25 Gnd 26 B1+
27 B1- 28 Gnd
29 I+ 30 It-
31 Gnd 32 A2+
33 A2- 34 Gnd
35 B2+ 36 B2-
37 Gnd 38 12+
39 I12- 40 Gnd
41 A3+ 42 A3-
43 Gnd 44 B3+
45 B3- 46 Gnd
47 I3+ 48 I3-
49 +5 50 +5

Pin Name Pin Name
1 Analog Gnd 2 DAC4
3 Analog Gnd 4 Analog Gnd
5 DAC6 6 Analog Gnd
7 Analog Gnd 8 DACS
9 Analog Gnd 10 Analog Gnd
11 DAC7 12 Analog Gnd
13 Gnd 14 Ad+
15 A4- 16 Gnd
17 B4+ 18 B4-
19 Gnd 20 14+
21 14- 22 Gnd
23 A5+ 24 AS-
25 Gnd 26 B5+
27 B5- 28 Gnd
29 I5+ 30 I5-
31 Gnd 32 A6+
33 A6- 34 Gnd
35 B6+ 36 B6-
37 Gnd 38 16+
39 I6- 40 Gnd
41 A7+ 42 AT-
43 Gnd 44 B7+
45 B7- 46 Gnd
47 17+ 48 I17-
49 +5 50 +5
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32 Bit Digital I/O, 8 Channel Analog Input and Sign Bit Output Connectors

Connector P2, Analog & Digital /O

Connector P1, Digital I/O
Pin Name Pin Name
1 Opto-23,C7 | 2 Gnd
3 Opto-22,C6 | 4 Gnd
5 Opto-21, C5 6 Gnd
7 Opto-20, C4 8 Gnd
9 Opto-19,C3 | 10 Gnd
11 Opto-18,C2 | 12 Gnd
13 Opto-17,C1 | 14 Gnd
15 Opto-16,CO | 16 Gnd
17  Opto-15,B7 | 18 Gnd
19  Opto-14,B6 | 20 Gnd
21  Opto-13,B5 | 22 Gnd
23 Opto-12,B4 | 24 Gnd
25  Opto-11,B3 | 26 Gnd
27  Opto-10,B2 | 28 Gnd
29 Opto-9, Bl 30 Gnd
31 Opto-8, BO 32 Gnd
33 Opto-7, A7 | 34 Gnd
35 Opto-6, A6 | 36 Gnd
37 Opto-5, AS | 38 Gnd
39 Opto-4, A4 | 40 Gnd
41 Opto-3 A3 42 Gnd
43 Opto-2, A2 | 44 Gnd
45 Opto-1, Al 46 Gnd
47 Opto-0, A0 | 48 Gnd
49 +5V 50 Gnd

Pin Name Pin Name
1 ADC Chan 0 2 Analog Gnd
3 ADC Chan 1 4 Analog Gnd
5 ADC Chan 2 6 Analog Gnd
7 ADC Chan 3 8 Analog Gnd
9 ADC Chan 4 10  Analog Gnd
11 ADC Chan 5 12 Analog Gnd
13 ADC Chan 6 14 Analog Gnd
15 ADC Chan 7 16 Analog Gnd
17 Opto-15, D7 18 Gnd

19 Opto-14, D6 20 Gnd

21 Opto-13, D5 22 Gnd

23 Opto-12, D4 24 Gnd

25 Opto-11, D3 26 Gnd

27 Opto-10, D2 28 Gnd

29 Opto-9, D1 30 Gnd

31 Opto-8, DO 32 Gnd
33 IN2 34 Gnd

35 IN1 36 Gnd

37 INO 38 Gnd

39 EXLATCH 40 Gnd

41 T2GATE 42 Gnd

43 TA2 44 Gnd

45 /WATCHDOG | 46 Gnd

47 NC 48 Gnd

49 +5V 50 Gnd

Connector P1 can be directly connected to a 24 channel I/O card, such as made by OPTO-22, and other

companies.
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