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Abstract 
This thesis investigates the use of model-based predictive control for the capture of a multi-

degree-of freedom object that moves in a somewhat arbitrary manner, using a deployable manipu

lator. While the study is conducted through both computer simulation and ground-based experi

mental investigation, the intended application is focused on automating the robotic capture of a 

free-floating and spinning satellite. The main motivation for this application comes from the fact 

that robotic satellite capture in space, for retrieval, correction, repair, etc., can significantly elimi

nate the risks involved when astronauts are used in space walk scenarios to manually execute the 

necessary tasks. When a satellite is spinning, the maneuvering of a robotic manipulator by a hu

man operator for a successful capture becomes increasing difficult. For this reason, satellite cap

turing using an autonomous robot is particularly attractive, and is studied in the thesis. 

The present investigation uses an innovative manipulator known as the Multi-module Deployable 

Manipulator System ( M D M S ) , which has been designed and built in our laboratory. It is a multi

purpose manipulator, which consists of a combination of revolute and prismatic joints and pro

vides several advantages over the standard, all-revolute-joint manipulators that are used in space 

applications. The advantages include reduced dynamic coupling, fewer configuration singulari

ties, easier obstacle avoidance, and simpler inverse kinematics, when compared to all-revolute-

joint manipulators of the same size and degrees of freedom. Furthermore, our experience in de

signing, controlling, and experimentation with two models of the manipulator provides an added 

incentive for using the M D M S as the test bed for the present investigation. 

In the controller that is developed, computer-simulated, implemented, and tested in the present 

research, the future path of the target satellite is predicted, and the controller uses this future 

knowledge of the target, and an internal model of the manipulator, to make optimal control deci

sions to minimize the tracking error between the target and the end-effector. Multi-parametric 

Quadratic Programming (mp-QP) techniques are used in order to obtain constrained optimal con

trol decisions in real-time. The mp-QP algorithm offers fast solution times by explicitly solving 

the constrained quadratic programming problem offline and then using look-up tables in the real

time application. Unfortunately, the mp-QP solution is susceptible to numerical problems, and as 

a result the fully constrained predictive controller could not be implemented in real time. How

ever, a sub-optimal version of the controller was implemented. The results show that the mp-QP 
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algorithm is still able to realize user defined constraints; therefore providing the benefits of con

strained optimal control in the satellite capturing problem. 

The results show that when the satellite motion is predicted the tracking performance is im

proved. Moreover, when the physical constraints of the system are formulated into the optimiza

tion, the controller becomes aware of its own limitations and the approach towards the satellite is 

improved by eliminating possible overshooting of the target. 
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CHAPTER 1: 
INTRODUCTION 

1.1 Background 

One of the many reasons for the development of robotic manipulators is the ability for them to 

autonomously perform tasks that are not particularly suitable for humans; for example those in

volving long and repetitive operations and unhealthy, unpleasant and hazardous environments. 

Due to the particularly harsh environment of space, the application of robotics has received sig

nificant attention. The associated research activity and developments have led to many advances 

in space robotics that can be used to aid astronauts in performing extravehicular activities as well 

as numerous tasks related to the construction and operation of the International Space Station. 

Moreover, increased efforts have been made to develop autonomous and telerobotic systems that 

can be deployed in space while the human operators remain on Earth, thus eliminating some of 

the major risks involved in current launching procedures and also resulting in possible reductions 

of mission costs. 

A n important issue concerning the presence of humans in space is the servicing of the large num

ber of satellites that orbit Earth. A special-purpose satellite that has received a considerable 

amount of attention is the Hubble Space Telescope (HST). In the past, astronauts, with the help 

of the Canadian robot, Canadarm, have been sent on board the Space Shuttle to perform various 

repairs on Hubble in order to keep it operational. However, recent efforts to repair the telescope 

have been halted due to increased safety concerns after the loss of the STS-107 crew in the space 

shuttle Columbia. Efforts to save the space telescope have led to heightened interests in the area 

of space robotics, with the emphasis on telerobotics. A prime candidate for Hubble servicing ro

bots is a tele-operated android named Robonaut, designed by the Robotic Systems Technology 

Branch of N A S A , in collaboration with the Defense Advanced Research Projects Agency 

( D A R P A ) of U S A [Ambrose, et al., 2000; Bluethmann, et al., 2003]. 

1 
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Figure 1.1 - Robonaut 

The interest in Robonaut goes deeper than the maintenance of the HST. The successful robotic 

servicing of the Hubble telescope wi l l undoubtedly give a further boost to the growing interest in 

unmanned orbital service vehicles ( O S V s ) . These OSVs would be capable of remaining in orbit 

for very long periods of time and sufficiently versatile to service a large variety of orbiting space 

traffic. MacDonald, Dettwiler and Associates ( M D A ) and Boeing Phantom Works are doing 

some work in this area with their "Orbital Express" program, and so has the National Space De

velopment Agency of Japan ( N A S D A ) with their Hyper-OSV [Matsumoto, et al., 2002]. 

Control of the Robonaut wi l l be achieved through human tele-presence control systems, allowing 

it to be operated safely from a ground control station on Earth. Unfortunately, the communica

tion delay between Robonaut (or any future OSV) and the ground control station can be on the 

order of several seconds. This delay would add to the difficulty that a remote operator would face 

in maneuvering a manipulator in a complicated task, not the least of which is system instability. 

One task that has proven to be particularly difficult in the past is the maneuvering of a robot in 

the capture of a moving target. Clearly, the difficulty increases manifold when the future trajec

tory of the target is incompletely known. Several satellites have been captured for servicing or 

repair with the help of the Canadarm robotic manipulator on the space shuttle; however, the task 

can become extremely difficult when the satellite is spinning or tumbling out of control. For ex

ample, during STS-87, an astronaut operating the Canadarm attempted to capture a free floating 

S P A R T A N satellite. In this attempt the end-effector of the manipulator nudged the target satellite, 

causing it to tumble, thus making it more difficult to complete the capture, so, astronauts were 
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sent out on a space walk to capture the satellite by hand. O f course, in the case of Robonaut, or 

other unmanned OSVs, human aid wi l l not be utilized. 

Automating the satellite-capturing task would reduce the risks associated with these operations, 

reduce the mission costs, increase the likelihood of successful capture, and generally improve the 

effectiveness of the O S V . Some research has been done in the area of automated satellite-

capturing, but so far the only autonomous satellite capture performed while in orbit has been done 

on N A S D A ' s Engineering Test Satellite (ETS) VII [Oda, 2000]. In this case, the robotic manipu

lator on the chaser satellite removed and released a target satellite from its base and then success

fully recaptured it. 

If the future of space robotics rests on tele-operated and autonomous systems, then autonomous 

moving target capturing should be included in the repertoire of the manipulator's abilities. One 

such manipulator that possesses several advantages over standard all-revolute-joint space manipu

lators is the Multi-module Deployable Manipulator System ( M D M S ) as conceived in our labora

tory. 

Multi-module Deployable 
Manipulator (MDMS) 

Orbit 

Figure 1.2 - Illustration of the MDMS on its space platform. 
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A n illustration of the orbiting space platform based concept of this manipulator design is shown 

in Figure 1.2. The M D M S is comprised of a series of two-degree-of-freedom modules connected 

together in a chain topology. Each module is a combination of one slewing (revolute) link and 

one deploying (prismatic) link. The manipulator may be configured for a particular application by 

connecting as many modules as necessary. The M D M S has a variable geometry structure, in view 

of its deploying links, which provides particular advantages in obstacle avoidance. It has been 

designed as a multi-purpose manipulator, similar to the Mobile Servicing System (MSS) on the 

International Space Station; however, compared to conventional (all revolute joint) manipulators, 

like the M S S , the M D M S has several advantages. In addition to better obstacle avoidance, the 

M D M S has fewer singular configurations, reduced dynamic coupling between links, and simpler 

inverse kinematics. 

Figure 1.3 - The MDMS prototype used in the experiments, 

A ground-based prototype of the M D M S as developed in our laboratory is used in the experimen

tal investigations of the present research. In particular, a model-based predictive controller wi l l be 

implemented on the M D M S , and its real-time performance wi l l be investigated. The physical pro-
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totype used in our experiments is a planar manipulator with rolling supports under the manipula

tor joints, to eliminate the gravity effects. The M D M S prototype is shown in Figure 1.3. The 

revolute joints of the manipulator use DC motors fitted with low backlash, harmonic drive gears, 

and deployment in the prismatic joints is provided by D C motors directly coupled to ballscrew 

actuators. Feedback motion signals from the joints are sensed using incremental optical encoders 

attached to the motor shafts, and fed to a servo card installed on the robot control computer run

ning Windows 2000. The controller is programmed in Visual C++, and VenturCom's Real-Time 

Extension ( R T X ) provides the application programming interface (API) thereby giving real-time 

capabilities to Windows [de Silva, McCourt & Ohmiya, 2003]. 

1.2 Motivation 

The investigation presented in this thesis focuses on the use of model-based predictive control for 

robotic capture of an object whose motion is not completely known. The main application con

sidered is satellite capture using an autonomous robot for motion correction, retrieval, and repair. 

A multi-module deployable manipulator system ( M D M S ) as developed in our laboratory wi l l be 

used as both the analytical/computer model and the experimental prototype in the present investi

gation. In this section, the motivation and justification wi l l be provided for the use of M D M S and 

model-based predictive control in the present investigation. 

The M D M S is a multi-purpose space manipulator with several advantages over conventional ma

nipulators, and the satellite capture problem is investigated here as a specific application of this 

class of manipulators. The autonomous satellite-capturing controller must be able to smoothly 

maneuver the manipulator towards an expected interception point with the target and continue to 

track the target until the capture is complete. Since the target wi l l be moving with incompletely 

known motions, it is desirable to have a controller that is capable of anticipating the future 

movement of the target. In addition, i f the controller is aware of its own capabilities it can use 

this knowledge, and any available knowledge of the target, to help in choosing the best robotic 

action. 

Model Predictive Control (MPC) is a model-based optimal controller, which uses open loop pre

dictions of the system response into a finite, future length of time to repeatedly minimize a user-

defined cost function, in achieving the specific control objective. Predictions can be made on 
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both the target and the robot to create the desired anticipative control action. The specific predic

tive controller used in the present work has the ability to handle user-defined constraints. These 

constraints can be used to specify the desired level of smoothness in the joint motions. For these 

reasons M P C is particularly suitable for use in the autonomous satellite capturing robots. 

M P C has been successfully used in the process control industry; however, the application of pre

dictive control in the aerospace industry appears to be relatively new. The recent applications of 

predictive control to high bandwidth aerospace systems have been aided by work in muti-

parametric, explicit M P C solutions [Bemporad, et al. 2002] and with the constantly increasing 

speed of computers. 

Several control techniques have been implemented on the M D M S in our laboratory, for trajectory 

tracking problems. Noteworthy are linear quadratic regulator (LQR) , linear quadratic Gaussian 

(LQG) control, feedback linearization technique, modal control, intelligent fuzzy control, and 

neural-network adaptive control. These techniques, however, do not possess the "predictive" ca

pability as useful in the satellite capture problem. The recent developments in efficient M P C so

lutions and the ever-increasing speed of digital computers have made possible the effective use of 

a real-time constrained model predictive control in high-bandwidth applications such as the 

M D M S . Satellite capture provides a good motivation for this implementation. 

1.3 Literature Review 

Autonomous satellite capture using robotic manipulators has been done before even though this is 

a relatively new topic. In particular, the ETS-VII satellite has performed an autonomous satellite 

capture while in orbit [Inaba & Oda, 2000]. A brief literature survey is given now to present 

some existing work in the areas of satellite catching and robotic predictive controllers, in the con

text of the present investigation. 

In the area of satellite capturing, a focus has been the development of vision algorithms that are 

capable of supplying reference paths to standard robotic controllers [Jasiobedzki, et al., 2001]. 

Pose determination and machine vision are not considered in the present investigation, and it is 

assumed throughout the thesis that the current position of the target object is known. 
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In order to study the satellite capturing, it is important to understand how the satellite wi l l be 

moving and how the manipulator can be used to capturing the satellite. In earlier work on the 

M D M S , Ueno and Modi [1998] considered the satellite capturing problem in computer simula

tion, where the satellite was assumed to be a point object, moving with constant velocity in a two 

degree-of-freedom environment. 

The difficulty in capturing a satellite is increased when it is spinning or tumbling. This is because 

typically there is a specific grappling point where the manipulator must make contact with the 

satellite, and when the satellite is spinning, the grappling point is rotating around the satellite's 

center of mass. Nagamatsu, et al. [1996] studied the motion of a tumbling satellite and described 

this motion as the superposition of three rotations with constant angular velocities. First, the 

magnitude of these angular velocities was estimated. Then a manipulator with enough degrees of 

freedom aligned three joints with the three axes of rotation, and maintained alignment by spin

ning these joints at the same velocity as the corresponding axes. When done properly, the captur

ing of the satellite became simple because the relative velocity between the grappling fixture and 

the end-effector of the manipulator was very small. 

In later studies, Nagamatsu [1997] considered a target that was translating as well as rotating, and 

predictions of the target position and orientation were used to compensate for time delays due to 

image processing. The position and orientation of the target were corrected and used as the de

sired position for a Jacobian inverse controller. Control of the manipulator was not considered 

further. 

Richards and How [2003] have used M P C to autonomously guide a spacecraft towards a rendez

vous point (e.g. satellite). The paper offered a guaranteed robust, finite time maneuver comple

tion for an arbitrary target region. The work solved a minimum fuel consumption problem with 

added constraints to guarantee a successful rendezvous with the target. The M P C controller pro

duced solutions that were more robust against unmeasured disturbances when compared to previ

ously used control schemes for this problem. In addition, the use of parametric programming 

techniques allowed for more complicated cost functions to be minimized, and overall improved 

the performance of the maneuver. 

Predictive control has been applied to a variety of mobile robotic applications, but fewer applica

tions have been made on robotic manipulators. This is most likely because of the added difficulty 
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in dealing with the nonlinearities of the manipulator. Some robotic predictive controllers first 

linearize the robot using feedback of the inverse dynamics of the manipulator [Poignet & Gautier, 

2000; Torres et al., 2001], while others have used Taylor series approximations [Hedjar et al., 

2002] or linearization of the robot at each time step [Valle, Tadeo & Alvarez, 2002]. 

Poignet and Gautier [2000] made a comparison between the commonly used Computed Torque 

Control [Sciavicco & Sicilano, 2000] and a variation of M P C often used for high bandwidth sys

tems known as Predictive Functional Control (PFC). In both controllers the plant is first lin

earized with the inverse dynamics model of the manipulator. Simulation results on the first two 

links of an industrial S C A R A type robot showed that, in the absence of disturbances or model 

uncertainties, the computed torque controller could be tuned to give better tracking performance. 

However, the predictive functional controller performed significantly better in the presence of 

unmeasured disturbances and model uncertainties. 

Valle, et al. [2002] applied constrained predictive control to a two degree-of-freedom direct-drive 

robot. A linearization of the manipulator was performed at each time step and then the con

strained optimization of the predictive controller cost function was computed. O f course, this 

method was very computationally intensive, and even on a two degree-of-freedom robot with a 

very small prediction horizon, only computer simulations could be performed. 

Typically, in the literature, good simulation results appear to have generated when predictive con

trol was applied to a robot, but such claims have not been validated for the most part through ex

perimental investigation and practical application. In the past work, M P C has been used to guide 

spacecraft towards satellites, and predictive control has been used on robot manipulators. The 

work presented in this thesis integrates such efforts in predictive control of robotic satellite cap

turing with the M D M S , using experimental implementation and verification as well as analysis 

and computer simulation. 

1.4 Thesis Outline 

In this introductory chapter the objectives of the present investigation are presented, the motiva

tions are given, and the approach used in achieving the objectives is outlined. In particular, a need 

for autonomous robotic satellite capturing has been presented, along with some of the existing 
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work in this area. The multi-purpose M D M S robot as developed in our laboratory has been pre

sented as a suitable application test platform for autonomous satellite capturing. Two prototype 

units of the M D M S have been developed in our laboratory. One is available to serve the role of 

the robot in autonomous satellite-capturing experiments, and the other unit as the moving satel

lite. 

Model-based predictive control wi l l be implemented on the M D M S for autonomously controlling 

the capture of a spinning satellite. Predictive control has been chosen here because of several 

pertinent advantages; in particular, it is an optimal controller that can be made to anticipate the 

future movements of the satellite target, under realistic constraints, and make improvements to 

the capturing process. 

In Chapter 2 the theory behind model predictive control, as used in the present work, is presented. 

This chapter shows the general structure of the predictive controller and discusses how future set-

points and constraints can be incorporated into the control decision. Then, a brief introduction to 

multi-parametric quadratic programming techniques is presented to show how the predictive con

troller can be implemented in high-bandwidth applications like the M D M S . 

In Chapter 3 the autonomous satellite capturing problem is formulated. The dynamics of the 

M D M S and the target satellite are studied so that reference models of these systems can be incor

porated into the controller. Next, the details of the integration of predictive control for the 

M D M S are discussed. The controller developed in this chapter is needed in the computer simula

tions and real-time experimentations with the M D M S , as presented in chapters 4 and 5, respec

tively. 

In chapters 4 and 5 the predictive controller that is developed in Chapter 3 is used in robotic cap

ture of a variety of satellite targets. In Chapter 4, in particular, the M D M S is simulated, and the 

optimization of the constrained predictive controller is performed at each time step to initially 

demonstrate the benefits of formulating constraints into the predictive controller. In Chapter 5, 

off-line solutions to the predictive controller optimization problem are computed in order to im

plement the constrained predictive controller at high control update rates, which are needed for 

the prototype M D M S . 
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The main conclusions of the work are given in Chapter 6, followed by some suggestions for fu

ture work in satellite capturing using predictive control on the M D M S . 



CHAPTER 2: 
PREDICTIVE CONTROL 

2.1 Preamble 

The predictive controller that is implemented in the multi-module deployable manipulator 

( M D M S ) is an optimal controller, which is based on a predicted future response. It is known for 

its ability to operate close to state constraints, compared to a conventional controller [Macie-

jowski, 2002]. A typical optimal controller minimizes a user-defined cost function based on a 

model of the plant and a set of boundary conditions. The resulting optimal controller is obtained 

by solving the Hamilton-Jacobi-Bellman equation, 

dV / » d V ' , \ _ 
+ V(x,u,t) + 2^—- gj(x,u,t) = 0 

dt dXj 
(2.1a) 

Here, V(x, u, t) is the user-defined cost function, and V is the value of the cost function at the 

optimal control input, u = u'eU, where U is a constrained subset of the /vdimensional space 

defined by the vector u, U c. W" . The vector g(x,u,t) describes the system dynamics as given 

by the set of n state equations x - g(x, u,t) , where x is the order state vector. 

The optimal control input can be expressed as a function of the current states; i.e., as a state feed

back control law. The optimal control law is given by the minimization of equation (2.1a), as 

u(x,t) = arg mm V(x, u,t) + X ^ T ^ / (*> "'0 (2.1b) 

Unfortunately, the partial differential equation (2.1a) is very difficult (and often impossible) to 

solve, so as to yield an explicit solution for (2.1b). Only in special cases can a solution be deter-

11 
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mined; for example, HyH,*, control or the Linear Quadratic Regulator (LQR) , which are computed 

in the absence of inequality constraints. 

When inequality constraints are added to the problem the solution becomes a piecewise defined 

control law, and the explicit solution becomes further complicated. Only special cases of these 

problems, for example, the minimum time control, have been solved. Anti-windup schemes can 

be added to the standard optimal controller as a type of ad hoc solution to integrator windup when 

constraints are met, but the optimality of the solution is not guaranteed, with respect to the cost 

function. Model Predictive Control (MPC) , on the other hand, provides a more formal solution to 

a constrained optimal control problem, where the constraints are explicitly taken into considera

tion, thereby reducing the possibility of constraint violations. 

In the rest of the chapter gives an introduction to model predictive control (MPC) . Only the the

ory that is relevant to this thesis is covered. First, the basic moving horizon is described. Next the 

formulation of both the unconstrained and the constrained model predictive controllers is pre

sented. More details on the topic are found in [Maciejowski, 2002]. 

2.2 Receding Horizons 

In M P C the optimal control problem is solved in each control period. A cost function is mini

mized based on open-loop predictions of the plant response and subject to user defined con

straints. Naturally, this wi l l significantly increase the computational effort of the controller, so, 

depending on the application, certain efficiencies have to be invoked or simplifications have to be 

made in the M P C algorithm to make the computational time feasible. One possible simplification 

is to only perform the optimization over a finite time horizon of N future time steps and make this 

horizon sufficiently small so that the computations can be made within the control period, Ts. A 

set of Noptimal control input vectors (u(k \ k)^, w(/t + l | A:), . . . , u(k + N-l | k)) for the cur

rent and the future time instants k, k+1, N-l are determined, based on the current knowledge 

and the control objective, by minimizing the cost function 

* The notation u (k +11 /c) means the predicted control input at time t=k+i based on measurements (or, 
knowledge) at time t= k 
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where: 

k+N 

V{k) = X /(*('' I I *)> "O"-1! *)>') (2-2) 

subject to c, (£(/'1 /c), r(; | &),«(/'| /c), /) < 0 , 

and jc(/1 A;) = g ( j e ( / - l | A:), « ( / - ! | A:)) 

= total cost at current time, t=k, 

f[x[i | A;) , f (z1 A : ) , « ( / - l | A:),/) = cost at the future time, f=7, 

Cj 1 k},r(i | A:),«(/1 A:),/) = inequality constraints at future time, t=i, 

N = prediction horizon, 

and the state model x(k +11 /c) = ^(JC(A: | A:), u(k | A:)) describes the system dynamics. 

Once the optimal solution has been determined, the corresponding input = M ( / C | /C) is ap

plied to the plant. The process is repeated at the start of the next control cycle. From equation 

(2.2) it can be seen that for a constant N, the terminal time, k+N, increases with k. This is known 

as a receding horizon, and because of this M P C is sometimes referred to as Receding Horizon 

Control (RHC). 

2.3 Control Horizons and Predictive Functional Control 

As mentioned earlier, the computation time of the predictive controller is a major limiting factor 

in the real-time implementation of M P C in high-bandwidth processes. Even with a fairly small 

prediction horizon the optimization problem can still be rather computationally intensive. As a 

further effort to decrease the computational load, control horizons are introduced. 

When a control horizon M i s introduced to the M P C algorithm, the cost function (2.2) is reformu

lated so that for some M<N, the control input does not change for times t > k+M. Specifically, 

the optimal solution consists of only M input vectors (w(/c|/ t), M ( / C + 1 | / C ) , 
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u(k + M-\ | £ ) ) , and the remaining N-M input vectors are all identical; i.e., 

u (k + /1 /c) = u (/c + M -11 k) for M < i < N. The value of the control horizon M can then be 

chosen to provide a more desirable sized optimization problem without having to place heavy 

restrictions on the prediction horizon, N. 

The control horizon, M, also has some effect on the performance of the controller. The prediction 

horizon, N, determines the number of variables that are penalized in the cost function. When a 

control horizon is used, the same number of parameters must be minimized in the cost function, 

but now there are fewer degrees of freedom to choose from, and this wi l l affect the solution of the 

optimization. Exactly how it affects the solution wi l l depend on the system model. Typically, as 

the control horizon is decreased the controller becomes more aggressive. 

Instead of using only M control moves in the beginning of the horizon, a more intuitive solution 

is to use a linear combination of M basis functions to describe the inputs throughout the horizon. 

Any basis functions could be used, but in this thesis a polynomial basis is chosen. Now, the cur

rent and future input vectors are related through an (M-l)-order polynomial function, 

u(k + i | /c) = u0 + ( / c ) z H — + « M . ( ( i ) i M " ' , (2.3) 

and the M vectors «#(k), «/(k), uM.j(k) become the argument of the original minimization 

problem in equation (2.2). The basis function parameterization of M P C is known as Predictive 

Functional Control (PFC) and was originally developed by Richalet, et al [1978, 1987] in the 

early 1980s for application of M P C on high-bandwidth servomechanisms. 

P F C has several advantages over the control horizon form of the controller. In general, PFC is 

capable of making more accurate predictions for a better-fit solution to the minimization problem 

in (2.2), especially when tracking complex trajectories [Qin & Badgwell, 1997]. This is demon

strated in Figure 2.1 where an arbitrary setpoint trajectory was given to a simulated prismatic 

joint of the M D M S described in Chapter 1. A comparison is made between M P C with a control 

horizon of two and P F C with the future inputs described by two basis functions (a step and a 

ramp). A simple quadratic cost function penalizing tracking errors and control input changes was 

used. A further discussion on cost functions wi l l be given in a subsequent section of the thesis. 
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Figure 2.1 - Performance comparison between M P C using a control horizon, M=2, and M P C using 
two polynomial basis functions. 
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As shown in Figure 2.1, the tracking performance of the two controllers is almost identical. The 

major difference between the two controllers can be seen in the evaluation of the defined cost 

function. On average, the cost value of the control horizon form is 15,000 times larger than that 

of the basis function form. The more optimal solution has led some researchers to believe that 

PFC may provide an advantage when controlling nonlinear systems [Qin & Badgwell, 1997]. 

Moreover, by adjusting the cost function in the two controllers it was observed that PFC provided 

a more robust solution. The cost function parameters were adjusted until the control horizon for

mulation became unstable, yet the PFC controller maintained a very similar solution. 

Unfortunately, the advantages of P F C do come at a cost. One disadvantage of PFC is that it tends 

to be more susceptible to numerical problems when trying to minimize equation (2.2). Another 

problem is that i f the order of the input function is made too large, the calculated optimal solution 

can become rather oscillatory. 

2.4 I n t e r n a l Mode ls 

Model predictive control (MPC) uses a linear state-space model of the process in determining the 

control action. O f course, not all plants can be represented by linear models, and some effort has 

been made in extending M P C to nonlinear models [Qin & Badgwell, 1998]. However, the vast 

majority of developments and applications of M P C concern linear models. In fact, using a linear 

model makes it easier to solve the minimization problem in (2.2), and moreover, i f the cost func

tion is chosen properly, it is possible to show that the minimization returns a unique, global solu

tion. 

In this thesis a linear internal model is used in the implementation of M P C . Since the plant is a 

robotic manipulator, which is known to possess a variety of nonlinearities, some type of lineariza

tion must be done before M P C can be implemented on it. Details on how the plant is linearized 

and how the linear model is obtained wi l l be discussed in Chapter 3. For now, the linearized, dis

crete-time, state-space model that is employed is expressed as 
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x(k + \\k) = Ax(k\k) + Bu(k\k) 

y(k\k) = Cx(k\k) ( 2 ' 4 ) 

where x is the ^-dimensional state vector, u is the «„-dimensional input vector, and y is the ny-

dimensional output vector. The rest of this chapter assumes that a linear model of this form is 

available for the robotic system. 

2.5 Cost Function 

The cost function of the optimal controller penalizes predicted reference tracking errors and the 

corresponding control decisions. Typically the 1, 2, or co-norm of the reference errors and control 

decisions are used. It can be shown that i f the cost is formulated with one of these three norms 

there exists a unique, global solution to the minimization problem in equation (2.2) [Fletcher, 

1987]. 

The 1 and co-norm cost functions are linear, and since a linear model of the plant is used, both of 

these forms lead to Linear Programming (LP) problems. The advantage to using a linear cost 

function is that there are many well known, and fast, algorithms for the L P optimization problem. 

Additionally, the co-norm cost function only penalizes the maximum predicted tracking error and 

tends to make the controller more robust against unmeasured disturbances [Maciejowski, 2002]. 

However, the disadvantage of using a linear cost function is that, as is well known [Fletcher, 

1987], the solution to an L P problem always lies at the vertex of the polytope defined by the con

straints, C; (jc(/|jfc),r(i ' | * ) ,« ( / | J fc ) ) in (2.2).' This means that at all times nu of the constraints 

wi l l be active. 

With a quadratic cost function, the minimization in (2.2) becomes a Quadratic Programming (QP) 

problem, and it is possible to find an unconstrained solution. Furthermore, the quadratic cost 

function can be formulated with weighting variables, which can be adjusted to affect the output 

performance, whereas in L P the constraints must be adjusted to affect the performance. In this 

thesis a quadratic (i.e., 2-norm) cost function is used. The cost function minimized in the tracking 

control problem is 
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N r-

nk) = ̂ \\y{k + i\k)-f{k + i\ k)\\w) +1 A i (k + i -11 * ) | r 
( 2 . 5 ) 

where || y [k + /1 /c) - f [k + i | || is the 2-norm of the tracking error at the future time t=k+i 

weighted by the diagonal and positive semi-definite weighting matrix C»(/) ̂  0 . The changes in 

control inputs, A H (k + i | , are penalized in the cost function and the amount at which they are 

penalized at time /=/£+/-1 is weighted by the diagonal and positive definite matrix R(/) >- 0 . This 

is the most commonly used form of the quadratic cost function. 

The control increment Aw (/c + /1 £ ) is chosen as an argument in the cost function, as a means of 

providing offset free tracking when the steady-state control input is expected to be constant. 

However, i f the steady state input is expected to be a ramp, then the second difference, 

A 2 « (k + i | A) = A M {k + i \ /c) - A M (/C + / -11 /c), should be used in ( 2 . 5 ) , and the third difference, 

A 3 M (k + i | A:), i f the input is expected to be parabolic, and so on. For the position control of the 

M D M S when tracking a moving target the cost function form in ( 2 . 5 ) is adequate. This aspect 

wi l l be revisited in Chapter 3 . 

In addition to providing offset-free tracking, the particular choice of the decision variable can also 

improve the smoothness of the control input." When the first difference, Au(k), is used then the 

control input to the plant is 

u(k) = u(k-\) + Au(k) ( 2 . 6 ) 

On the other hand, when the second difference is used, we have 

A2u(k) = Au(k) - Au(k - 1 ) = ii(jfc) - u(k - 1 ) - u(k - 1 ) + u(k - 2) 

or, 

u(k) = 2u(k-\)-u(k-2) + A2u(k) ( 2 . 7 ) 
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It follows that, increasing the order of the input difference is equivalent to increasing the order of 

a low-pass filter applied to the control input. However, applying a filter can affect the stability of 

the system, especially when dealing with high-bandwidth servomechanisms like a robot manipu

lator. In view of this, care should be taken when choosing the argument of the cost function. The 

results in chapters 4 and 5 show that in the satellite capturing problem the combination of P F C 

with a cost function argument of A M (k + i \ k) generally produce smooth input functions and ac

curate tracking, hence, justifying the specific cost function given by (2.5). 

2.6 Unconstrained Predictive Control 

2.6.1 Controller Structure 

Now that the cost function and the internal model have been defined, methods can be developed 

for solving the optimization problem. To start, the unconstrained controller is formulated. Spe

cifically, the optimization problem in M P C becomes 

(2.8) r 2 2 

Minimize V(k) = ^ jy(k + i\k)-r(k + i\ k)j . +|A«(A + J'-1 | k)j 

Subject to y(k + i\k) = Cx(k + i\k) 

= CAx(k + i-\\k) + CBu(k + i-\\k) 

In this formulation (unconstrained), the process model is treated as the constraints of the optimi

zation problem, as clear from (2.8). Since the cost function is formulated with Aw(k + i\k), the 

constraints (i.e., the model) should also be formulated with Au(k + i \ k). This can be done by 

setting 

u(k + i\ k) = «(£-!) + A«(£| k) + Au(k + \ \ k) + --- + Au(k + i\k) (2.9) 

By using this new formulation of the linear model, the predicted outputs of the plant can be writ

ten in the matrix form as 
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" .v(*+l|*)~ 
" C A " 

.V(k+2\k) C A 2 

y(k+3\k) = C A 3 *(*) + 

y(k+N\k) 
_ C A W _ 

C B 

C A B + C B 

C A 2 B + C A B + C B 

Z S ' C A ' B 

u(k-l)^ 

C B 0 

C A B + C B C B 

ZLiCA 'B C A B + C B 

0 

0 

C B 

Y(k) 
Z M C A ' B Efi 'CA'B Z S ' C A ' B 

Q 

AH (A|*) 

AH(*+1|A) 
Au(*+2|i) (2.10) 

C B ||_Att(A+AM|*)_ 

AU(k) 

N o w the constraints in (2.8) can be incorporated into the cost function through direct substitution, 

and the new cost function can be rewritten as 

V(k) ^\\xVx(k) + Tu(k-\) + &AU(k)-T(k)fQ + \\AU(k)(R 

= [¥x(k) + ru(k-\)-T(k)i' Q[Wx(k) + ru(k-\)-T(k)] 

+ 2AU(kf 0TQ[yi'x(k) + ru(k-\)-T(k)] 

+ AU(kf[0TQQ + RJAU(k) 

where: 

~ r{k + \\k)~ ~Q(V 0 0 0 
r(k + 2\k) 0 Q(2) 0 0 

T(k) = r(k + 3\k) Q = 0 0 Q(V • 0 

r(k + N\k) 0 0 0 • Q(N) 

R(\) 0 0 0 
0 R(2) 0 0 
0 0 R f 3 ) • 0 

0 0 0 • R(N) 

Note that an alternative means of incorporating constraints into an optimization problem would 

be through the use of Lagrange multipliers, but this increases the order of the overall optimization 

problem. 
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To get the final form of the cost function, the / V terms of A M are replaced by an ( A / - l )" ' -order 

polynomial function. 

AU(k) = 

I 0 0 0 
MB (K) 

I I I I Mi [k) 
I 21 41 2M'll 

I (tf-l)] [ (N-lfl • • ( T V - i f - ' I MM-j{k) 

il /*(*) 

(2.12) 

where I is an w„ t h-order identity matrix, and the [i,{k)s are the coefficients of the polynomial basis 

function describing the future changes in control inputs, A M ( / C + / | / C ) . Equation (2.12) can now 

be substituted into equation (2.11) to give 

V(k) =[Wx(k) + ru(k-\)-T(k)]' Q[y¥x(k) + Tu(k-\)-T(k)] 

+ n(k)~YT \j!x(k) + Tu(k-\)-T(k)\ (2.13) 

+ n(k)' H fi(k) 

where F = 2 Q 0 f t and H = il1 [&TQ® + R]il. 

Equation (2.13) is the P F C form of the cost function and is the form used in the present thesis for 

the tracking control problem of the M D M S . The optimal polynomial function comes from the 

minimization of this cost function. 

In equation (2.5) the tracking error weighting matrices, Q(/), are defined as positive semi-definite 

matrices, and the control move weighting matrices, R(z'), are defined as positive definite matrices. 

This makes the Hessian in equation (2.13) positive definite (because H = il 

and therefore, the cost function, V(k), is convex. This means that the optimal solution is both 

unique and global [Fletcher, 1987]. Equation (2.13) is now minimized in the absence of con-
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straints. This can be done as usual, by taking the gradient of the cost function and setting it equal 

to zero. 

VflV(k) =FT [*¥x(k) + ru(k-\)-T(k)] + 21I fii(k) = 0 (2.14) 

^ ( * ) = 2 H " ' r [T(k)-Wx(k)-Tu(k-\)] (2.15) 

In the unconstrained case of M P C , the optimal solution in (2.15) is a function of the current state, 

the previous input, and the desired setpoints. A feedback matrix, K M pc , can be computed offline 

in order to achieve fast implementation online. A block diagram of the controller is shown in 

Figure 2.2. 

y(k) = x(k) 

Figure 2.2 - Block diagram of the unconstrained predictive controller. 

Unfortunately, inverting the Hessian in (2.15) can be rather difficult because M P C problems are 

known to be naturally i l l conditioned. It is important to deal with these numerical issues early 

because the condition number of the Hessian directly affects the performance of the controller 

and wi l l cause further problems when constraints are added to the optimization. 
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2.6.2 Numerical Issues of M P C 
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If the condition number of the cost function Hessian is large, then the numerical accuracy of 

(2.15) wi l l be lost due to round off errors. In the worst case, i f the condition number is too large, 

then the Hessian cannot be inverted and (2.15) wi l l not provide a solution. Another way to see 

how the Hessian affects the performance of the controller is to look at the Hessian for the cost 

function in equation (2.13), 

Here, Q and R are matrices containing the current and the future weights on the tracking errors 

and control input moves, respectively. It is easy to see how these matrices directly affect the 

Hessian, and therefore, the performance of the controller. 

For the case of the unconstrained controller some of the numerical problems can be avoided by 

formulating the optimal solution as a least-squares problem. Maciejowski [2002] shows that the 

quadratic cost function is equivalent to the squared length of the vector in 

where SQ

TSQ = Q and SR

TSR = R. 

In view of this, by setting the length of this vector equal to zero, one can minimize the quadratic 

cost function. This can be accomplished by setting the vector itself equal to zero and then solving 

for //(k). By setting the vector equal to zero rather than the length of the vector, unnecessary 

squaring of the ill-conditioned matrices © and Q is avoided. Accordingly, the unconstrained so

lution in (2.15) becomes 

H = Q 7 [ © r Q 0 + R ] a (2-16) 

SQ{JVx(k) + Tu(k-l) + &Ofi(k)-T(k)} 

SRiV(*) 
(2.17) 

S Q 0ft SQ 

S RQ J [ 0 
(2.18) 



Chapter 2 24 

where \ is the "left division" operator (used in M A T L A B ) . Many efficient methods exist for solv

ing equation (2.18) without running into the numerical difficulties involved in taking the inverse 

of the Hessian, as in (2.15). A controller using the solution in (2.18) was implemented on the 

M D M S in [McCourt & de Silva, 2003]. 

Unfortunately, the least squares approach outlined above only works for the unconstrained solu

tion. When constraints are involved, the length of the vector cannot always be set equal to zero, 

nor can the gradient of the cost function necessarily be set equal to zero as in equation (2.14). In 

this thesis active set methods are used to solve the constrained optimization problem. These 

methods typically involve taking the inverse of the Hessian. In view of this it is important to un

derstand what factors affect its condition number so that i l l posed problems can be avoided. 

If A, is an eigenvalue of A, then cAk wi l l have the eigenvalue cXf. Since the singular values are 

the square roots of the eigenvalues of A H A*, it can be seen why the M P C problem tends to be i l l 

conditioned. The Hessian in (2.16) contains the matrices © and Q. In equation (2.10) it is seen 

that the matrix 0 contains increasing powers of the state transition matrix, A of (2.4). Assuming 

that the plant is stable, the eigenvalues of A wi l l be on or within the unit circle and with increas

ing powers of A the corresponding eigenvalues (and therefore the singular values) wi l l become 

smaller compared to unity. So 0 is i l l conditioned and multiplying it by its transpose as in (2.16) 

wi l l only increase the condition number. 

The matrix 0 does make the Hessian i l l conditioned, but not nearly as much as Q. The formula

tion of D, in equation (2.12) shows that as the number of basis functions is increased, the elements 

in the lower-right corner of the matrix become very large, while the top-left corner contains an 

identity matrix. Consequently, multiplying the Hessian by Q. and its transpose wi l l greatly in

crease the condition number. 

In conclusion, the two factors that most significantly affect the condition of the Hessian are the 

prediction horizon and the order of the polynomial function used to describe the control input 

moves. So, a convenient way to maintain the condition of the Hessian is to either keep the pre-

A H is the conjugate transpose 
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diction horizon low or use a low-order polynomial basis function. The latter is what is usually 

done in P F C , with M=2 or M=3 in equation (2.3) being typical [Maciejowski, 2002]. 

2.7 Constrained Predictive Control 

Naturally, in any system there wi l l be physical limitations to the types and levels of inputs that 

can be applied and the nature of the resulting outputs. For the multi-module deployable manipu

lator system ( M D M S ) , which is the plant that is used in the present investigation, the input con

straints are the torque limits of the motors, and the output constraints are the joint motion limits. 

In the unconstrained controller, inputs are simply saturated when the constraint is violated and as 

a result the optimality with respect to the cost function is lost. If the constraints are formulated 

into the predictive controller, however, the controller wi l l be aware of the expected constraints 

and should be able to take corrective action before the constraints are actually met. Furthermore, 

the addition of constraints also allows the predictive controller to naturally handle such common 

controller problems as integrator windup. 

The constrained M P C problem may be expressed as the minimization of the cost function 

V(k) =[yVx(k) + Tu(k-\)-T(k)J Q[xHx(k) + ru(k-\)-T(k)] + 

mm ^(kf ¥r [yVx(k) + ru(k-\)-T(k)\ + fi(k)' H fi(k)^ 
(2.19a) 

subject to the constraints 

G/t(k)<W + E 
u 

x(k) 

ik-iy 
(2.19b) 

where G, W, and E are matrices used to describe the constraints on the system in terms of the co

efficients in fi(k). 
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Since the argument of the minimization contains the coefficients of the control input function, all 

the constraints must be formulated in terms of these coefficients, as given in equation (2.19b). As 

a result of including the constraints, the controller changes from being a linear state feedback con

troller to a nonlinear controller. This happens because different constraints are active for different 

feedback states. If the constraints are linear, the optimal solution wi l l become piecewise affine 

and the minimization of equation (2.19) is known as a multi-parametric quadratic programming 

(mp-QP) problem. The block diagram of the constrained predictive controller is shown in Figure 

2.3. In comparison to Figure 2.2, it is noted that the predicted tracking errors are no longer sim

ply multiplied by a matrix gain at each time step. Instead, the minimization of equation (2.19) 

must be performed at each sampling time to determine the optimal solution. 

r ( k ) 
A 

T(k) 
A ^ 

Constrained 
Optimizer 

Au(k) 

z-\ 

U(k) 

u(k-1) z-'I 

Linear 
Plant 

y(k) = x(k) 

Figure 2.3 - Block diagram of the constrained predictive controller. 

The online solution of the optimization problem (2.19) can be highly computational intensive. 

Therefore, methods for explicitly solving the mp-QP problem offline have to be considered. Such 

a scheme has been developed by Bemporad et al. [2002]. The basics behind determining the off

line solutions to constrained QP problems are given in Appendix A . 

2.7.1 Constraint Formulation 

Before getting into the details of how to solve the constrained optimization problem, it is useful to 

formulate the constraints in terms of fi(k). If the constraints are placed only on the plant outputs, 

the inputs and the input changes, then using the linear model in (2.4) wi l l result in linear con

straints such as those in equation (2.19b). Linear constraints of this form define a convex poly-
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tope in the M-«„-dimensional space and once again, the solution is guaranteed to be global, and 

unique [Fletcher, 1987]. 

Constraints on the outputs are related to the control input changes through equation (2.10). Simi

larly, constraints on the control inputs are related to the input changes through equation (2.9). 

Expressed in the form given in (2.19), these equations are: 

Ymin < Vx(k) + Tu(k - 1 ) + QSlft (k) < Ymax 

U_:_ < 

which may be expressed as 

u{k-\) + ilp(k)<Um 

I 

E Y E 

AUmln<ilp(k)<AU„ 

en Y 
max 

-*p -r -©a -Y 
min 

vp r 

n 
M(k)< 

TJ 0 E Y E n 
M(k)< max + 

0 E Y E 

- n 
M(k)< 

-U 
min 

0 E Y E 

n AU 
max 

0 0 

-n -AU 
_ min _ 

0 0 

W E 

x(k) ' 

u(k-\) 
(2.20) 

For the satellite tracking controller that is investigated in the present thesis, only a linear polyno

mial is needed (i.e., M = 2). Consequently, a simplification can be made for the constraints on 

A M ( / C + / | / C ) by constraining only the endpoints of the function 

( A M (k + i | £ ) = fin ( / c ) + fi, ( / c ) • i). Specifically we have 

AU . <uJk)<AU 
nun ' 0 \ } max 

and 
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Wmin< fr{k) +H(k)-(N-\) <AU, 
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(2.21) 

As mentioned earlier, the constrained predictive controller solves the optimal control problem in 

equation (2.19) at each time step. If active set methods are used for the optimization, then the 

worst-case computational time of the controller wi l l increase with the number of constraints that 

are given in (2.20). In addition, each constraint in (2.20) defines a hyperplane in the M-n„-

dimensional space of the control decision variables. As the number of constraints increases, the 

boundary of the convex polytope defined by (2.20) becomes smoother, and the neighboring hy-

perplanes become increasingly similar. Again, this can lead to numerical problems when 

neighboring constraints are active, so, care should be taken in how these constraints are defined. 

In particular, the explicit offline solution to the predictive control problem presented by Bempo-

rad, et al. [2002] is very sensitive to these types of numerical problems. To understand why this 

happens, an introduction to offline multi-parametric quadratic programming (mp-QP) solution is 

presented next. 

2.7.2 Multi-parametric Quadratic Programming 

In the minimization of the cost function of the predictive controller, the parameters that are 

changing at each time step are the measured states of the plant (the robotic manipulator), the pre

vious control inputs to the plant, and the state of the desired values (target position). The values 

of these parameters wi l l determine the location of the unconstrained minimum point in the space 

defined by the optimization variables, ^(k) € SRM'n"; and the location of this minimum point wi l l 

correspond to a specific set of active constraints. In multi-parametric quadratic programming 

these regions of constant active sets are determined offline, and using the first-order Karush-

Kuhn-Tucker ( K K T ) conditions, an affine solution is determined for each of these regions. The 

solution is piecewise affine in a space defined by the Np parameters that change in the optimiza

tion at each time step; i.e., the n states, the nu previous inputs, and the nr current and predicted 

references. The parameter space is partitioned into a total of Nr regions. 

In this thesis, the Multi-Parametric Toolbox (MPT) of M A T L A B is used to find the Nr regions 

and the corresponding affine solutions. Each of the Nr regions is defined by an A^-dimensional 

convex polytope. The boundaries of each polytope are defined such that the Lagrange multipliers 
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corresponding to the current active set of constraints remain positive and such that none of the 

constraints in equation (2.20) are violated (i.e., K.KT conditions). 

If any two constraints in equation (2.20) are very similar, then these wi l l result in very long and 

thin partitioned regions. If these regions are too thin, when the mp-QP algorithm is crossing over 

the boundaries of one region to search for the solution in the next region, it might accidentally 

step over this very small region and create a hole in the partitioned space where the offline solu

tion wi l l not be defined. The step size of the search through the parameter space can be decreased 

to avoid the possibility of stepping over these thin regions, but this wi l l increase numerical prob

lems in the optimizations performed in this region. Further discussion on the implementation of 

offline mp-QP solutions wil l be found in chapters 4 and 5, where the simulations and real-time 

applications with mp-QP are performed. More details on the mp-QP algorithm are given in A p 

pendix A [Bemporad, et al., 2002]. 

Look-up T a b l e 
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P lan t 
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Figure 2.4 - Block diagram of the mp-QP controller. 

In the block diagram shown in Figure 2.4, the optimizer of Figure 2.3 has been replaced by a 

gain, Fj, and an offset, Gh which change depending on the current state of the manipulator and 

target, and the previous inputs. 
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2.8 Summary 
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In this chapter, the broad topic of model predictive control (MPC) was outlined. The choice of 

appropriate predictive control techniques was indicated for the robotic satellite-tracking problem 

addressed in Chapter 1. A predictive functional controller with an offline multi-parametric quad

ratic programming solution was formulated. It possesses the robustness and optimality of PFC 

with the online implementation speed of mp-QP. In the following chapters the details behind the 

construction and implementation of the predictive controller for the M D M S satellite-tracking 

problem wi l l be presented. 



CHAPTER 3: 
PROBLEM FORMULATION 

3.1 Preamble 

In Chapter 1 the objectives, motivation, and the planned approach of the present investigation 

were outlined. The Multi-module Deployable Manipulator System ( M D M S ) , which is the proto

type manipulator that is used in autonomous satellite capture, as studied in the present thesis, was 

introduced. In Chapter 2, an introduction to Predictive Functional Control (PFC) and multi-

parametric Quadratic Programming (mp-QP) was given, which forms the basis of the control ap

proach that is used in the present work. In the present the overall problem that is studied in the 

thesis is formulated. In particular, the predictive controller is integrated into the M D M S , to form a 

joint-space controller for the M D M S , which wi l l automate a satellite-capturing task. 

The focus of the present chapter is to first build an analytical understanding for the dynamics of 

the target satellite and the chaser manipulator. The system dynamics forms the internal model 

used in the predictive controller. Furthermore, by understanding how the target (satellite) moves 

in the joint-space of the M D M S , the appropriate cost function to be penalized in the optimal con

trol problem is determined. 

3.2 Dynamics of the Manipulator System 

The multi-module deployable manipulator system ( M D M S ) is the robot used in the in this thesis 

for investigating the control of the automated satellite capture problem. The prototype M D M S is 

restricted to planar motions only, in order to eliminate the gravity considerations. Furthermore, 

even though the M D M S has been designed to possess kinematic redundancy, this capability is not 

considered in the present investigation. Specifically, to reach the desired position and orientation 

of the target in planar motion, only three joints (3 degrees of freedom) are needed. Accordingly, 

only two modules of the M D M S are chosen, with the prismatic joint of the distal module not be

ing used in the experimental investigation. 

31 
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A schematic diagram of the manipulator as used in the present investigation is shown in Figure 

3.1. 

Figure 3 .1 - Schematic diagram of the M D M S used for planar satellite capturing. 

The manipulator in Figure 3.1 is assumed to be fully rigid, specifically with rigid links and rigid 

joints. A space-based manipulator may possess both joint and link flexibility, and in that case the 

corresponding model should include these effects [Cao, 1999]. Fortunately the prototype M D M S 

is known to be quite rigid, and the flexibility effects can be neglected for most practical purposes. 

If a flexible manipulator were to be used in the real-time verification of the controller developed 

in the present work, there should be sensors for measuring joint or link flexibility. In the absence 

of such sensors, an observer would be needed with the controller to estimate these states. How

ever, the use of an observer to estimate joint and link flexibilities is beyond the scope of the pre

sent thesis. 
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The dynamics of the robotic system shown in Figure 3.1 may be determined using Lagrange 

equations, and then static and viscous friction terms may be added as generalized terms to give 

the vector-matrix equation, 

M(q)q + C(q,q) + Fssgn(q) + Fvq = T (3.1) 

where M(<jr) is the inertia matrix for the robot and accordingly M(q)q contains the inertia 

force/torque terms, C(q,q) is a vector of the centripetal and Coriolis force/torque terms, 

Fs sgn(</) is the Coulomb friction, Fvq is the viscous friction, and T is a vector of joint forces 

and torques. The vectors q ,q and q are the joint positions, velocities, and accelerations, respec

tively. The absence of any gravity effects in equation (3.1) is due to the micro-gravity operating 

environment of the space-based system, and horizontal plane of operation of the ground-based 

manipulator. Details on the modeling of the M D M S in equation (3.1) are found in Appendix B . 

As mentioned in Chapter 2, the predictive controller uses a linear model of the plant in the opti

mization of the cost function. However, robotic manipulators are globally nonlinear plants; there

fore, a linearization of the M D M S must be made before the controller can be used. This may be 

achieved locally using Taylor series expansion about an operating point, or more appropriately 

using global linearization through feedback linearization where the inverse dynamics of the robot 

is applied in a feedback loop around the system as shown in Figure 3.2. This global linearization 

is possible in view of the availability of a complete nonlinear model of the M D M S . 
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Fssgn(q) + Fvq 

|_ _Ljnear pjant_ 

Figure 3.2 - Feedback linearization of the M D M S . 

With the robot globally linearized as in Figure 3.2, the internal reference model in the controller 

becomes a double-integrator. The advantages of formulating the controller in this fashion is that 

the inputs have become the desired joint accelerations, and now, constraints can be put on the 

reference joint accelerations (the inputs) as well as the joint positions and velocities (the outputs). 

However, the inverse dynamics feedback loop does not take actuator constraints into account, so, 

the constraints on joint accelerations and velocities have to be sufficiently conservative to ensure 

that these constraints are not violated and the online optimization problem does not become infea-

sible. 

Alternatively, a physical approach to linearizing a robot manipulator is to fit the joint motors with 

gear reducers with large speed reduction. In this manner, the joint torques/forces can be highly 

amplified and wi l l form the inputs to the plant. The outputs wi l l be the joint positions and veloci

ties, and the nonlinear effects are left as unmeasured disturbances, which may be considered 

small when compared to the amplified inputs. Some of the disadvantages to placing large gear 

ratios on the joints are that the gear reduction greatly decreases the maximum speed of the joint, 

and the accuracy of the manipulator can be lost due to added nonlinearities in the gears, such as 

backlash and friction. 

Fortunately, however, fast manipulation speeds are not needed and are undesirable for space ma

nipulators because of their long, flexible structure and the sensitivity of the equipment that is be

ing manipulated. In addition, the ground-based prototype of the M D M S has been designed with 
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harmonic gear drives, which virtually eliminate backlash and have very high gear ratios [de Silva, 

1989; Wong, 2000]. For these reasons the predictive controller was implemented as a direct, low-

level controller on the M D M S . 

The joint positions and velocities are combined into a state vector, x = yq1 ,</ ' J e 91", and the 

system dynamics in equation (3.1) may be expressed in the state-space form as 

q q 0 
K 

rM-[{q){C(q,q) + ?ssgnq + ¥yq}_ + 
_M-(« )_ 

K u (3.2) 

where vector u represents the command voltages (inputs) from the servo card of the control com

puter and K is a conversion factor containing the corresponding gear ratios and motor torque con

stants. 

The model is first linearized about an operating configuration with the prismatic joint fully re

tracted and the distal module at an angle of zero as defined in Figure 3.1. Then, the model is dis-

cretized with a sampling time of 5 milliseconds, which is large enough for the optimal solution to 

be found within the sampling period without compromising the performance of the controller. 

The linearization and discretization are done using the 'dlinmod' function in M A T L A B , to obtain 

c(k + \) = 

1 0 0 0.005 0 0 

0 1 0 0 0.005 0 
0 0 1 0 0 0.0049 

0 0 0 0.9951 0 0.0105 

0 0 0 0 0.9928 0 
0 0 0 0.0107 0 0.9619 

1.01 i r 5 

0 

-2.214/T5 

0.004 

0 

-0.0088 

0 

1.394A'-6 

0 

0 

0.0006 

0 

-1.887/T 5 

0 

6.824/T5 

-0.0075 

0 

0.0271 

u(k) 
(3.3) 

3.3 Target Kinematics 

In general, the controller developed in this thesis may be used for robotic tracking of any moving 

target subject to the kinematic and dynamic limitations and the operating bandwidth of the ma

nipulator. However, in the simulations and experiments in chapters 4 and 5, the target is assumed 
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to be a free-floating satellite; i.e., passing by in the absence of external forces or torques. In Chap

ter 1, practical reasons were given for the need to have the M D M S capture a free-floating satel

lite. 

As mentioned earlier, the present mode of operation of the M D M S possesses three degrees-of-

freedom in planar motion. This is because unlike catching a ball, a satellite typically has a safe 

grappling point where the manipulator must try and grab it, and it is desirable for the manipulator 

to have both the correct position and orientation when the capture is being executed. 

The automated capturing task is implemented to alleviate some of the difficulties encountered 

when capturing a spinning satellite. The grappling point on the satellite is not moving in a 

straight line, but rather spinning around the moving center of mass of the target, as shown in 

Figure 3.3. 

Figure 3.3 - A sequence of motion of a spinning satellite. 

One of the many advantages of the M D M S is its simple inverse kinematics solution. For the non-

redundant manipulator shown in Figure 3.1, the inverse kinematics solution is uniquely given by 

(9, = atan2(ye - lw sin 0t, xe - /„, cos 6e), 

d2 = V(*. -K, cos0e )
2 + {ye -lw sin 0e ) 2 , (3.4) 

# 3 = 0e ~ 6\ 
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where (xe, ye,de) describes the end-effector position and orientation, and lw is the length from the 

end-effector to the center for the third joint. Equation (3.4) can be used to express the position 

and orientation of the grappling point on the satellite in the joint space of the M D M S . 

The target point (x,, y,) on the satellite is located a distance /, from the center of mass of the satel

lite at (xc, yc), and is oriented at the angle 0,. The center of mass is moving at a constant velocity 

of v = [ V A : ' v y ] ' a n c * spinning with constant angular velocity of co. As a result, the position of 

the grappling point can be expressed as 

where (x0, yo, Oo) is the position and orientation of the center of mass at t=0. The substitution of 

(3.5) into (3.4) wi l l give the joint-space position of the target, and the result is formed into a vec

tor of joint references, r(k), for the controller. From both the position of the target in (3.5) and the 

inverse kinematics of the robot in (3.4), it can be seen that r(k) is a very nonlinear function of the 

measured target velocities and time. 

In the present controller the future position of the target is predicted, and the controller makes a 

decision on its control action based on the current and predicted joint tracking errors. These fu

ture reference vectors are chained together to form the vector T(k) = [r(k+\\k)T, r(k+2\k)T, . . . ] T as 

discussed in Chapter 2. The vector T(k) is used in the definition of the cost function (2.11) and 

since it is not a function of the control input, it can be computed prior to the optimization. 

In the unconstrained controller in equation (2.18), T(k) is computed and an error term is formed. 

The result is then multiplied by a gain matrix, which is computed offline as the optimal minimiza

tion of the cost function. We get 

x, = x0+vx-t-l, cos(d0 +a>-t), 

y, = y0+vy-t-I, sm(e0+(D-t), 

9, = 90+cv-t, 

(3.5) 

A i ^ ( * ) = KM P C.{7'(*)-¥*(*)-r«(*-l)} 
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In the constrained controller, the vectors T(k), x(k) and u(k-\) are the Np parameters of the opti

mization and in the mp-QP algorithm they form the parameter space 9?A/' that is partitioned in the 

offline optimization (see Appendix A) . The mp-QP algorithm computes the constrained optimal 

minimization of the controller cost function offline, and produces a look-up table for fast online 

implementation. Unfortunately, it was found that both the length of time needed to compute the 

offline solution, and the size of the look-up table, increased very fast with the size of the parame

ter space dl'"1'. In order to decrease the size of the parameter space and increase the computa

tional efficiency, a second-order Taylor series approximation of the model is formulated into the 

problem. We get 

Here r(/c) and r(k) are vectors of the current joint reference velocities and accelerations, re

spectively, and Ts is the sampling time of the controller. Equation (3.6) assumes that the current 

joint acceleration is constant throughout the prediction horizon. Since the window of time in 

which the controller looks into the future is small relative to the dynamics of the target, the ap

proximation given by equation (3.6) is adequate. 

When the joint velocities and accelerations are added to the problem, care must be taken when 

passing near, or through, singular configurations where the velocities and accelerations can be

come very large. Some examples of methods that deal with singularities involve reparameteriz-

ing the desired path [Loyd, 1998], or adding damping factors to the singular values of the ma

nipulator Jacobian that are approaching zero [Nakamura, 1991]. Alternatively, Schreiber, et al. 

[1999] solved the singularity problem by constraint optimization. The controller developed in 

this thesis is a constrained optimal controller; therefore, it would be natural to adopt the constraint 

optimization solution to the singularity problem. There is particular advantage of the M D M S in 

this regard, as it has fewer singular configurations than a standard, all revolute joint manipulator. 

For the setup of the M D M S shown in Figure 3.1 there are no singularities in the operating space 

of the manipulator. The only singularity occurs when joints 1 and 3 occupy the same space, but 

the limits of the prismatic joint prevent the robot from ever reaching that configuration. 

r(k + i\k) = r(k) + r(k)iTj) + ±r(k)-{Tj)2 (3.6) 
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3.4 The Control System 
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The model of the manipulator has been formulated in the previous sections of the present chapter. 

The controller can be constructed now assuming that the expected joint-space position of the tar

get is known. As mentioned earlier, the expected joint-space location of the target has been cho

sen as the reference value. Typically, in robot motion control, a trajectory is generated to specify 

how the controller should move the manipulator between any two points. However, since the 

problem addressed in the present thesis is a robotic capturing task, the robot must somehow span 

the distance between some initial starting position and the desired position of the target before it 

is able to follow the reference point like a standard trajectory tracking problem. 

Some work has been done in the area of online trajectory planning for robot catching, for exam

ple, [Croft, et al , 1998] and [Park & Lee, 1992]. However, like for any online optimization prob

lem, in the controller developed in this thesis, simplifications must be made in order to achieve 

acceptable computation speeds. In [Croft, et al., 1998] the planner is used to direct the robot from 

its initial configuration to a minimum time interception point using an active prediction planning 

and execution (APPE) algorithm, then switching to fine motion tracking and grasping algorithms 

once interception is achieved. In [Park & Lee, 1992] the target moves in a straight line along a 

conveyor and the initial position of the end-effector is overtop of the conveyor, so the trajectory 

optimization is reduced to a one-dimensional problem. 

The controller developed in this thesis directly minimizes the joint motion differences between 

the reference target and the current state of the manipulator. However, it does this by trying to 

anticipate the motions of both the target and the manipulator. The controller is tuned to provide 

the desired tracking performance, and output constraints are used to control the speed at which 

the joints approach their targets. 

3.5 Integration of Predictive Control 

As mentioned in Chapter 2, the cost function of the present predictive controller minimizes the 

predicted reference tracking errors and the corresponding control actions. The cost function and 

the constraints are formulated as 
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V(k) =\yx{k) + Tu(k-\)-T(k)~l Q [Vx(k) + ru(k-\)-T(k)] 

mmL(kf¥T [^x(k) + Tu(k-\)-T(k)] + /i(kf H ft(k) 

(3.7) 

s.t. Gn(k)<W + E 
x(k) ' 

u(k-\) 

However, in the present problem the predicted joint references are a function of the current joint-

space position, velocity, and acceleration of the target. This current state of the target is com

bined into a state vector, xr (/c) = [r(k)1 ,r(k)' ,r(k)' ] ' , and the future references can be ex

pressed as 

T(k) = 

I TJ T;\ 

I 2TJ {2T,)21 

I NTJ (NTX)2I 

r(k) 

r{k) 

r(k) 

= Axr (k) (3.8) 

The current state vector of the robot, the previous control input, and the current state vector for 

the target, can now all be combined into a single vector of optimization parameters, 

i^k) = [x(kf , u(k -1) 7 , xr (k)1 ]' in the space 9TV / >. Then the cost function becomes 

V{k) = ̂ (k)' Y^(k) + ̂ M{k)' H M{k) + ̂ {k)rFM{k) (3.9) 

where: 

Y = 2[^ r - A ] 7 ' Q [ T r - A ] 

H = 2 n r ( © 7 Q 0 + R ) n 

F = 2[Y r -AfQ©a 
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Equation (3.9) is now in the form of the cost function used in the mp-QP solver in the Mul t i -

Parametric Toolbox (see Appendix A) . The constraints in equation (2.20) also must be formu

lated in terms of the parameter vector, %{k). This gives 

Gft(k)<W + E$(k) (3.10) 

where: 

G = 

" &il Y 
max -r 0 

- © n -Y 
min 

¥ r 0 

a 

- n 

U 
max 

-U . 
mm 

and E = 
0 

0 

E Y E N 

E Y E N 

0 

0 

n AU 
mux 

0 0 0 

- n -AU . 
mm _ 

0 0 0 

Since the matrices Y , H , and F from (3.9) and G , W, and E from (3.10) are all that is needed for 

the mp-QP algorithm; essentially the problem formulation is a matter of determining these matri

ces. However, the number of constraints in equation (3.10) is proportional to the size of the pre

diction horizon, N. After implementing the mp-QP algorithm it was found that even i f constraints 

are placed only on the inputs, the size of the resulting look-up table became unmanageably large, 

even for small values of TY, for example 7V>5. In the implementation, the look-up table became too 

large, and besides that the solution would have taken days to compute, even on the 2.4 G H z Pen-

tium4 P C , which was used. Furthermore, the mp-QP algorithm was used to geometrically parti

tion the A^-dimensional space, based on the constraints in (3.10). As the number of constraints 

increased, the size of the partitioned regions became very small and this caused numerical prob

lems in the mp-QP solver. 

To decrease the size of the problem, and reduce the number of numerical problems, the con

straints are defined only at a select few points, rather than at every step into the horizon. This 

makes the control solution sub-optimal. Yet the controller is found to be capable of realizing the 
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defined constraints. The results in chapters 4 and 5 show an improvement in the performance of 

the controller over the unconstrained solution. 

3.6 Integration of Constraints 

The controller must take the manipulator from its initial configuration to an interception point, 

and then continue to track the target. The tracking may be aborted i f the target moves out of range 

of operation. It is desirable to have the controller tuned so that the joint space tracking error is 

minimized during the time that the target is within the operating space of the manipulator. How

ever, when the controller is tuned to give the desired tracking performance, the initially large ref

erence errors lead to large inputs torques. In addition, as the manipulator approaches the target, 

large joint velocities are generated. These are undesirable effects because the target is a satellite 

floating in a micro-gravity environment, and any impact forces could possibly be damaging, and 

would cause the target path to change directions and possibly float away out of control. 

Constraints are added to control how smoothly the manipulator approaches the target. Since the 

plant is linearized, input constraints can be used to put limits on the joint accelerations, and con

straints on the change in the input can provide jerk limits. The joint velocities are outputs of the 

controller and output constraints are already included in equation (3.10). 

The controller is implemented in joint space, as a physical necessity, but it is the task space 

maximum approach velocities that are important. However, the task space velocities are nonline-

arly related to the joint space velocities through the robot kinematics, and constraints on the 

maximum task space velocity would lead to nonlinear constraints in joint space. Nonlinear con

straints are not considered in this thesis, and consequently the constraints on the joint velocities 

only provide a rather conservative upper bound on the task space velocity. 

Since the target can move in and out of the operational space of the manipulator, the joint limits 

can be added as constraints to the controller. By placing joint limits as constraints the controller 

is made aware of where these limits are ahead of the control actions, and wi l l therefore be able to 

make better predictions on control actions. 
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In the preceding development, we have come across many parameters that can be used to tune the 

performance of the controller. The available tuning parameters and a brief description on how 

they affect the performance are indicated in Table 3.1. 

Table 3.1 - Tuning parameters for the predictive controller. 

Tuning Parameter Tuning Effect 

Prediction horizon, 
N 

The prediction horizon can be increased to allow the controller to 
anticipate the future movements of the target and the manipulator 
based on internal reference models 

Order of input basis 
function, M 

The order of the input basis function can be adjusted to affect the 
aggressiveness of the generated inputs 

Weight matrices 
Q & R 

The weighting matrices can be adjusted to determine the relative 
cost of the tracking errors and control input moves 

Constraints 
When constraints are formulated into the problem the controller 
becomes aware of its limitations and can make more knowledge
able decisions for the control inputs 

There are some general guidelines for tuning these parameters [Maciejowski, 2002]. However, 

they are very general, and much of the tuning done on the present predictive controller is based 

on the experience and knowledge gained from simulations and experimentation with the M D M S . 

There are many advantages to tuning the controller in simulation. One of the major advantages is 

that offline solutions to the optimal mp-QP problem are very computationally intensive and, de

pending on the size of the problem, computation times can range from a few minutes to several 

hours or even days. In simulation, the minimization of (3.9) subject to the constraints in (3.10) 

can be done at each time step using standard QP optimization techniques, and once the desired 

results have been achieved the offline solution can be computed using the mp-QP solver. 

Unfortunately, tuning the controller in simulation wi l l only bring the controller close to the actual 

tuned parameters of the experimental system. The fine-tuning of the controller on the prototype, 
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M D M S is done through the tedious process of repeated parameter adjustments followed by off

line computations of the mp-QP problem. However, the fine-tuning adjustments are found to be 

needed only on the weighting parameters given in the matrices Q and R. 

In addition to tuning the controller for the desired performance a dead-band compensator is added 

to adjust for the static friction in the prototype manipulator. The solution presented in [Tafazoli, 

1996] is used in the present implementation, as given by 

where uj is the magnitude of the dead-band compensation term. The compensation term calcu

lated in equation (3.11) is then added to current input decision. 

3.8 Summary 

A schematic diagram of the manipulator ( M D M S ) that is used for the satellite-capturing problem 

in the present thesis is shown in Figure 3.1. The dynamic model of this system was formulated in 

this chapter, and was used to create a discrete-time, linearized, internal reference model for the 

controller. One advantage of the chosen structure of the manipulator is that it provides a unique 

inverse kinematics solution for a given position and orientation of the end-effector. The inverse 

kinematics are used to map the position and orientation of the target into the joint space of the 

manipulator, and a second-order Taylor series approximation to the joint space path is used to 

predict the future joint space position of the target. 

The model of the M D M S was integrated into a constrained predictive controller. This controller 

could be used to first bring the manipulator from its initial configuration to an interception point, 

and then continue to follow the target trajectory within the operating space of the manipulator. 

The developed predictive controller is summarized in the block diagram of Figure 3.4. 

(3.11) 
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Figure 3 . 4 - Block diagram of the predictive controller implemented on the MDMS. 



CHAPTER 4: 
SIMULATION STUDY 

4.1 Preamble 

In this chapter the unconstrained and constrained predictive controllers, as formulated in the pre

vious chapter, are used in a computer simulation of the ground-based prototype of the multi-

module deployable manipulator system ( M D M S ) . The conceptual space manipulator, which is 

used in the simulation studies, is similar to the ground-based system, but it is situated on a mobile 

base that traverses across an orbiting platform. Control momentum gyros ( C M G ' s ) located 

within the platform are used to sense the orientation and the flexibility in the platform. Previous 

work on the space-based manipulator has considered the regulation of the manipulator and the 

platform with flexibilities [Cao, 1999; Zhang, 2002]. As indicated before, flexibility issues are 

not considered in this thesis, even though their inclusion amounts to the modification of the dy

namic model of the M D M S and is straightforward albeit with increased model complexity. Fur

thermore, effects of using redundant manipulators in the satellite-capturing problem are left for 

future work, even though the prototype M D M S has the capability of adding redundant degrees of 

freedom to the robotic system. In particular, the movement of the mobile base along the platform 

is not considered in the present work. The focus of the present investigation is to study the effec

tiveness of using constrained predictive optimal control in the interception and tracking of a mov

ing target using an autonomous robot. 

The flexibility and redundancy of the manipulator are not the only characteristics of the space-

based system that are different from the ground-based system. In the space-based system the base 

of the manipulator is fixed to a free-floating platform, so the movement of the manipulator wi l l 

affect the position of the target relative to the base of the robot. In this thesis it is assumed that 1) 

constraints can be placed on the operational speed of the manipulator to limit the forces at the 

base of the robot, and 2) the mass of the platform base is sufficiently large so that any forces gen

erated at the base of the robot wi l l result in a negligible movement of the base relative to the tar

get. 

46 
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In the present investigation, first an unconstrained predictive controller was developed and im

plemented on the M D M S . From the initial tests using this control scheme, the prediction horizon, 

N, the order of the input function, M, and the location of the coincidence points were chosen. 

Much of the tuning in predictive control is based on the experience gained from computer simula

tions, and the simulations on the unconstrained controller have helped build the required knowl

edge base of tuning. The unconstrained controller has been tuned to give the desired tracking 

performance without considering the transient effects during the interception of the target. 

In the following sections, a brief description is given on how the different controller parameters 

affect the controlled response. These parameters are discussed separately. Since the effects of 

these parameters are interconnected, in the actual tuning of the controller these parameters are 

adjusted concurrently. 

4.2.1 Effects of Prediction Horizon 

In many predictive controllers only the current reference point is used in the determination of the 

optimal control signal. However, it is known that i f the future knowledge of the target position is 

penalized in the cost function, the tracking performance can be improved [McCourt & de Silva, 

2003]. The predicted position allows the controller to anticipate the movement of the target and 

ultimately make better decisions to minimize the tracking error. 

The predictions of the future position of the target are based on a second order approximation of 

the joint space position of the target (Equation (3.6)). Furthermore, some level of uncertainty wi l l 

always be present in the internal model of the M D M S . In view of this, in the construction of the 

controller, the length of the prediction horizon is really a measure of how much trust is put into 

the prediction abilities of the models. 

The degree of trust that could be put into the model varies depending on how fast the target is 

moving. In the simulations, it was found that there was not one exact prediction horizon that 

gave the best result for the tracking of every target, but values less than 50 were adequate. Pre-
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diction horizons larger than 50 would still converge to the target position, but the response would 

either oscillate about the target position or would follow the target with a large steady state error. 

In practice, however, even i f exact models of the target and manipulator are used there is still a 

limit as to how large the prediction horizon can be made. As the prediction horizon, N, is in

creased, higher order basis functions (i.e., larger values of M ) are need to fit the nonlinear path of 

the target. However, i f both M and N are large, then the optimization becomes very i l l -

conditioned and theNaccuracy of the computed solution is lost (Chapter 2 gives details on PFC) . 

Furthermore, when constraints are later added to the problem, the size of the problem wil l in

crease and it wi l l take longer to converge to an optimal solution. Essentially then, the prediction 

horizon of the controller is limited by the numerical precision and C P U speed of the computer 

that is being used. 

4.2.2 Order of the PFC Basis Function 

In the formulation of the controller, the input moves, A M (/c +/1/t), are described by a set of M 

polynomial basis functions. In general, low values of M a r e used (e.g., 1 or 2) to try and keep the 

number of variables in the optimization low. Since the solution to the unconstrained problem can 

be determined offline, i f the unconstrained controller is ever used, keeping the number of vari

ables in the optimization low is not a major concern. 

The present controller is implemented with constraints, and low values are used for M . It was 

found that using low values of M help generate smoother control signals. For the speed of the 

targets that were considered in the simulations, the higher values of M were found to improve the 

tracking performance by a negligible amount (if at all), but the inputs that were generated were 

very aggressive and oscillatory. A value of M=2 was used in the final version of the controller. 

4.2.3 Location of Coincidence Points 

As indicated in Chapter 3, to reduce the size of the constrained optimization problem, and de

crease the numerical sensitivity, the constraints are defined only at select points throughout the 

horizon. In a similar fashion, the future tracking errors penalized in the controller cost function 

can be penalized only at specific points, known as coincidence points. Coincidence points are 
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typically used in PFC. In the unconstrained case, i f the number of coincidence points is equal to 

the number of decision variables, M, then no optimization is needed. This is true because there 

are M tracking errors that are penalized in the cost function, and there are Mdecision variables, so 

an exact solution to the problem can be found. When an exact solution is computed, however, the 

controller is only concerned with minimizing the error at the M coincidence points and is not as 

concerned with staying on the reference path. 

When there are more coincidence points than optimization variables, the computed solution pro

vides a 'best fit' to the predicted target positions, so it only reduces the average predicted tracking 

error of the coincidence points. It was found that the performance of the controller was improved 

by selecting more coincidence points near the beginning of the prediction horizon, and using only 

one coincidence point at the end of the horizon. By placing the coincidence points in this fashion 

throughout the prediction horizon, the controller is more concerned with staying on the desired 

path at the beginning of the horizon, rather than at the end. The points at the end of the horizon 

serve a different purpose; they help the controller be more aware of upcoming constraints, and 

they provide the controller a general idea of where the target is moving towards in the near future. 

4.2.4 Tuning of Weighting Matrices 

Recall the cost function that is minimized in the predictive controller: 

V{k) = £[ly(k + i\k)-f(k + i\k)fQ(j) + | | A M ( £ + /-11 * ) f R ( / ) 
(4.1) 

The matrices Q(/) determine the amount that tracking errors at the future time t = k+i are penal

ized. Likewise, R(/) penalizes the control input changes at r = k+i. Adjustments of these matri

ces must be made relative to one another in order to affect the output of the controller. In particu

lar, as intuitively clear, increasing all of the matrices by the same factor simply multiplies the cost 

function by that factor and does not change the location of the minimum solution. 

In the tracking and interception of a satellite it is not only important that the manipulator has the 

same position as the target, but it should approach the target with the same velocity so that the 

robot does not crash into the target when trying to capture it. The outputs measured from the 
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M D M S are the joint positions and velocities, and likewise, the joint-space positions and velocities 

of the target grappling point are used as reference values. The matrix Q(f) now weighs the impor

tance of minimizing position and velocity errors at time t= k+ i. 

The values in Q(/) must be chosen carefully. It is important to approach the target at the same 

velocity, but i f the weights on the velocity tracking errors are made too large, and the target is 

moving away from the end-effector, then the response wi l l be so highly damped that the manipu

lator cannot catch the target before it moves out of range. In the final selection of the controller 

weights, velocity tracking errors were penalized only at the end of the horizon. This allowed the 

controller to become aware of the target velocity, but focused the efforts on minimizing the posi

tion tracking error. 

4.2.5 Results from the Unconstrained Controller 

The optimal solution to the predictive controller is computed in the absence of constraints. Since 

in a real system there are always constraints, when the unconstrained controller is implemented 

the command signals computed by the controller are saturated at the maximum output of the 

servo card (±10 Volts). 
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Figure 4.1 - The simulation model of robotic satellite capture. 

In the simulations, the manipulator starts from rest, lying parallel to its platform base, and the 

M D M S attempts to catch a satellite that is moving with velocity v = [y t vy]T, and spinning with 

angular velocity co, as shown in Figure 4.1. 

Several different target cases are used. As an example, consider a target moving parallel to the 

platform with velocity v = [0 -0.05] T m/s, and rotating with angular velocity co = n/60 rad/s. In 

Figure 4.2 the advantages of using of using predictions in the controller are demonstrated. The 

simulated target point was initially 0.9 meters away from the end-effector with an initial mis

alignment of 75 degrees. When no predictions were used for the future positions of the target or 

the manipulator, the M D M S was able to reduce the steady tracking error to approximately 0.008 

meters and 1 degree in 2 seconds. When a prediction horizon of 30 and the second order ap

proximation of the target (Equation (3.6)) were used the tracking error was reduced to less than 

5x10"4 meters and less than 0.5 degrees in the same amount of time. 
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Figure 4.2 - Results from unconstrained controller showing the benefits of using predictions. 

The results in Figure 4.2 show how the predictive controller can be tuned to produce accurate 

tracking results. However, in achieving these results, the manipulator joints overshoot their target 

positions. The only way this could be corrected in the unconstrained controller was by decreasing 

the weights on the position tracking errors relative to the weights on the velocity tracking errors. 
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Unfortunately, when less importance was placed on the joint position errors the tracking perform

ance was found to suffer. 

When the saturation of the control input signal was removed the degree of overshoot was signifi

cantly reduced; however, very large control inputs were needed. The decrease in overshoot was 

due to the fact that the controller was making more accurate predictions. Without the inputs be

ing saturated the controller was able to apply the optimal solution that was calculated. So, when 

the controller is unaware of the abilities of the plant (i.e., its input and output constraints), the 

minimization of the plant error cannot be fully realized, and the performance degrades. 

4.3 Constrained Predictive Control 

When constraints are included in the predictive controller, the computations involved can become 

very time consuming and the online optimizer may not converge to the optimal solution within 

the control period. For this reason, most constrained optimal predictive controllers for high-

bandwidth processes have been limited to simulations. In this thesis, since both simulation and 

experimentation are carried out, multi-parametric programming techniques are used to improve 

the computational speed of the optimization. However, the calculation of the explicit offline so

lution to the constrained predictive controller can be very time consuming, and the solution must 

be re-computed every time an adjustment is made to the tuning parameters. So, as a means of 

comparison, and to show the full benefits of constrained predictive control, the optimal solution is 

first computed by solving the optimal control problem at each time step using the 'quadprog' QP 

solver from the Optimization Toolbox in M A T L A B . 

4.3.1 QP Solution 

The benefits of adding constraints into the predictive control problem can be seen from the results 

presented in figures 4.3 and 4.4. The tuning parameters were all kept the same, but the ±10V 

constraints on the inputs were formulated into the optimization. When the controller is aware of 

the input constraints it makes a much more cautious approach towards the target. The input con

straints let the controller know how fast the M D M S can slow down when it gets to the target. 
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Figure 4.3 - Results of input constraint realization with unconstrained controller tuning parameters 
in joint space. 
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Figure 4.4 - Results of input constraint realization with unconstrained controller tuning parameters 
in task space. 

When input constraints are used, the controller makes more knowledgeable decisions, and the 

tracking error weights can be adjusted to take advantage of this knowledge. In figures 4.5 and 4.6 

the velocity tracking weights were reduced until the controller gave a critically damped response. 

The results show that with the inclusion of constraints the manipulator is able to achieve a steady 

state tracking error equal to that of the unconstrained controller in Figure 4.2, and in the same 

interval of time, but now without overshooting the target position. 
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Figure 4.5 - Results from the re-tuned constrained controller with input constraints in joint space. 
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Figure 4.6 - Results from the re-tuned constrained controller with input constraints in task space. 

The results shown in figures 4.5 and 4.6 have been obtained by tuning the controller to give the 

fastest response without any overshoot for the target traveling at velocity v = [0 -0.05] T m/s, and 

rotating at angular velocity co = n/60 rad/s. Not all targets wi l l move and rotate at this speed, and 

as the speed of the target increases the accuracy of the model of the target wi l l decrease. Fur

thermore, the internal model of the M D M S used for predictions is linear, and i f it is linearized 
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using large gear ratios on the manipulator joints, the predictions from the linear model wi l l be

come less accurate as the joint velocities become larger. However, even for faster moving satel

lites that were considered, the M D M S was able to achieve similar results to those shown in fig

ures 4.5 and 4.6 without overshooting the target. Table 4.1 gives some typical results for several 

different target speeds. 

Table 4.1 - Results obtained with different target speeds. 

Target details Tracking accuracy 
Case 
No. v x (m/s) v y (m/s) co (rad/s) Position Orientation 

1 0 -0.05 7t/60 < 1mm <0.5° 
2 0.03 -0.15 Tt/16 < 1mm <0.5° 
3 0.05 -0.15 7T/8 < 1mm <0.5° 
4 0 -0.05 0 < 1mm <0.5° 
5 0.005 -0.05 71/12 < 1mm <0.5° 

In Table 4.1, constraints on the inputs are set at the maximum signal value that the servo card can 

send to the amplifiers of the robot drive system (±10V). As a result, when the input constraints 

become active, very large inputs are generated, which in turn lead to large joint velocities and 

accelerations on the approach towards the target. If the M D M S is capturing a satellite in space, 

these joint accelerations and velocities could be unacceptable because the space manipulator 

would be long and flexible, and the base of the manipulator would be attached to a space plat

form. The inputs from the controller can be further constrained to achieve the desired perform

ance from the manipulator. When the input constraints are reduced to ±3V on the slewing joints 

and ±5V on the deploying joint, the M D M S is still able to catch every target listed in Table 4.1 

without any overshoot and with the same tracking accuracy. 

Alternatively, joint velocity constraints can be defined to improve the performance of the control

ler and restrict the motion of the manipulator to desirable operating limits. In figures 4.7 and 4.8, 

the target in Case 1 of Table 4.1 is caught using velocity constraints on the joints. The slewing 

velocity is constrained to less than 0.785 rad/s and the deployment velocity to less than 0.1 m/s. 

The maximum joint velocities produced in figures 4.7 and 4.8 are equal to the user defined con

straints, therefore demonstrating the ability of the predictive controller to realize user defined 

output constraints. 
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Figure 4.7 - Results from the predictive controller under MDMS output constraints in joint space. 
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Figure 4.8 - Results from the predictive controller under MDMS output constraints in task space. 

4.3.2 Mp-QP Solution 

A l l things being equal, the mp-QP optimization should produce the exact same results as the 

online computation. Even though this could be true, the number of optimization parameters, Np, 

in the M D M S satellite capturing problem can lead to incredibly large look-up tables. To find a 

solution in these look-up tables a search algorithm must determine to which region a point 

£ e 9 ? N P belongs, and then apply the corresponding affine control law for that region. Efficient 
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methods of searching through these polytopes to find the region containing £, have been devel

oped [Borelli, 2002; Tondel, 2003], but these methods have not been incorporated into the multi-

parametric toolbox. 

In addition to the problem of large look-up tables, it was found that the mp-QP solver in the 

multi-parametric toolbox in M A T L A B was much more sensitive to ill-conditioned problems than 

the QP solver that was used at each time step in the previous simulations. The numerical difficul

ties arose when the constraints were defined at every future time in the prediction horizon. En

forcing the constraints only at select points throughout the prediction horizon often mitigated the 

numerical problems, and it reduced the size of the look-up table; however, this also made the con

troller sub-optimal. The sub-optimal mp-QP controller was found to be better than the uncon

strained controller because it had some knowledge of the input constraints, and it was still able to 

realize user defined output constraints. 

To demonstrate the ability of the mp-QP controller, constraints were placed on the inputs only at 

the beginning and the end of the horizon. The result was a look-up table with Nr = 384 regions 

and took just over five minutes to compute on a Pentium4 2.4GHz processor in M A T L A B 6.1. 

This set of constraints was chosen because when constraints were placed on the inputs over the 

entire horizon, the mp-QP solver ran into numerical problems. With this set of constraints de

fined the controller predicted that it was able to move slightly beyond the constraint in the middle 

of the horizon, but because the optimization was performed at each time step, and the maximum 

input constraints were satisfied at the beginning of the horizon, no constraint violations occurred. 

In figures 4.9 and 4.10 the satellite in Case 1 of Table 4.1 is captured. The results show that de

spite the sub-optimal predictions, the controller is still able to intercept the target with only the 

first joint overshooting by just under 2 degrees. This level of overshoot is still considerably less 

than that of the unconstrained solution. Furthermore, restricting the inputs to smaller values can 

eliminate the overshoot. The results in figures 4.5 and 4.6 are superimposed in figures 4.9 and 

4.10 to compare the performance of the fully constrained and sub-optimally constrained control

lers. The results from the mp-QP controller are more aggressive because the controller is not 

fully aware of the constraints that wil l be met when the manipulator has to decelerate upon arrival 

at the target, and this is the cause of the overshoot in the first joint. 



Figure 4.9 - Results from the mp-QP simulation in joint space. 
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Figure 4.10 - Results from the mp-QP simulation in task space. 

During the tracking of the target none of the constraints are active and the mp-QP solution pro

duces the same results as the QP and unconstrained solutions. The tracking error is reduced to 

less than 1 mm and less than 0.5 degrees. So, other than the slightly more aggressive approach 

towards the target, the sub-optimally constrained mp-QP solution and the fully constrained QP 

solution produce very similar results. 
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4.4 Summary 

The simulation results presented in this chapter have shown that the predictive controller is capa

ble of successfully performing a robotic task of approaching and tracking a spinning satellite for 

the purpose of capturing it. The fact that the controller was able to make the robot track a variety 

of satellite targets with the same level of accuracy demonstrates the robustness of the predictive 

controller against the unmeasured (not modeled) disturbances due to the nonlinearities in the 

MDMS. The results showed the ability of the second order approximation of the target to provide 

predictions that helped to improve the performance of the controller. 

Constraints were added to the predictive controller to demonstrate the benefits of making the con

troller aware of the physical limitation of the MDMS. The constraints were then used to show 

how the smoothness of the approach towards the target could be improved. Finally, output con

straints could be placed on the MDMS joints to maintain the robot within the possible operation 

limits of its space-based system. 

Multi-parametric quadratic programming was presented in this chapter to show that despite defin

ing the constraints only at a select few points,throughout the prediction horizon, the mp-QP con

troller was able to realize user defined constraints and overall increase the performance of the 

predictive controller during the satellite capture. 

The model used in the simulations is not completely accurate and as a result the mp-QP controller 

developed in this chapter may not produce identical results when applied to the prototype ma

nipulator in the experimental investigation. Experimental results from the unconstrained and 

constrained predictive controllers will be presented and discussed in the next.chapter. 



CHAPTER 5: 
EXPERIMENTAL IMPLEMENTATION 

5.1 Preamble 

Before the development of explicit solutions for model predictive control (MPC) , the application 

of constrained predictive control to high bandwidth servomechanisms was found to be quite l im

ited. Even with the current speed of computers the computational cost of performing an online 

optimization at high frequencies could severely limit the size of the problem to be solved. O f 

course, the explicit M P C solution does have its limitations. Offline solutions to the constrained 

optimal control problem require very large look-up tables to be stored and searched through in 

order to find the optimal solution at each time step, and this wi l l also put limitations on the size of 

the problem, but not to the same degree. With these considerations in mind, a physical imple

mentation of the constrained M P C was made on the prototype multi-module deployable manipu

lator system ( M D M S ) in our laboratory. In this chapter, this physical implementation is described 

and the experimental results are discussed. The results demonstrate the effectiveness of using a 

predictive controller in the satellite-capturing problem using a deployable manipulator. 

5.2 Experimental Setup 

The M D M S , as shown in Figure 5.1, was designed for the purpose of testing various control 

schemes on a physical system, with a focus on space-based applications. It is the second genera

tion of prototype deployable manipulators that has been developed in our laboratory at the Uni

versity of British Columbia. The new design is comprised of lighter links than its predecessor. 

Harmonic gear drives are used to help reduce the effects of backlash and the gear ratio has been 

increased [Wong, 2000]. A l l of these changes have, to some degree, mechanically linearized the 

prototype manipulator. In view of this, the linear predictive controller has been applied directly to 

the M D M S , without using the inverse dynamics of the robot. Real-time experiments were per

formed using this prototype manipulator system. 
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Figure 5.1 - M D M S used in the experimental investigation. 

Feedback from the joints is obtained through incremental optical encoders attached to the motor 

shafts and is fed to a servo card installed on a desktop computer running Windows 2000. The 

controller is programmed in C++, and VenturCom's Real-Time Extension ( R T X ) provides an 

application programming interface (API) to add real-time capabilities to Windows. 

The use of R T X is a recent addition to the prototype manipulator [de Silva, McCourt & Ohmiya, 

2003]; previously Q N X real-time operating system was used. One of the main advantages to 

R T X for Windows is the ease of use. This was certainly true for the predictive controller devel

oped in this thesis. The offline multi-parametric quadratic programming (mp-QP) solution is 

computed in M A T L A B using the Multi-Parametric Toolbox [Kvasnica, M . , et al., 2004]. With 

R T X , the controller can be run on the same computer immediately after the mp-QP solution has 

been computed in M A T L A B . This significantly decreases the time it takes to tune the controller, 

and therefore makes the development process much easier. 

The M D M S used in the experiments does not have an end-effector capable of capturing targets. 

Consequently, for the experiments carried out as presented in this chapter a simulated target has 

been used. The controller is used to minimize the position and orientation error between the end-
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effector and the target, and continue to track the target as long as it is in the operating range of the 

M D M S . The coordinate system for the experiments has been kept the same as shown in Figure 

4.1, and the manipulator started the satellite capture from the initial configuration shown in 

Figure 5.2. 

Figure 5.2 - Initial configuration of the manipulator for the experiments. 

5.3 Results from the Unconstrained Controller 

When the unconstrained predictive controller was applied to the prototype manipulator, the ex

perimental results were found to be slightly more damped than the corresponding simulation re

sults in Chapter 4, and the end-effector did not track as closely to the target as desired. In view o f 

this, when running the subsequent tests on the manipulator, as reported in this chapter, the 

weighting matrices were adjusted to give the desired performance. The results from the simu

lated capture of a satellite traveling at v = [0.03 -0.15] T m/s and rotating at 7i/8 rad/s (Case 3 of 

Table 4.1), are shown in figures 5.3 and 5.4. 
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Figure 5.3 - Results from the unconstrained PFC in joint space. 
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Figure 5.4 - Results from the unconstrained PFC in task space. 

The results in figures 5.3 and 5.4 show that as the joints of the MDMS approach the target, only 

the third joint overshoots its desired value. However, the end-effector itself did not overshoot the 

satellites position during the approach. The results from target satellites at different velocities are 

summarized in Table 5 .1. 
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Table 5.1 - Unconstrained controller results for various conditions of target satellite. 

Target details Tracking accuracy 
Case 
No. v x (m/s) v y (m/s) co (rad/s) Position Orientation 

1 0 -0.05 Tt/24 1.1±0.8mm -0.09°±0.13° 

2 0.03 -0.15 7C/8 1.0±0.7mm -0.12°±0.11° 

3 0 -0.1 0 1.5±1.0mm -0.17°±0.12° 

4 0.005 -0.05 Tt/12 0.9±0.5mm 0.10°±0.11° 

As seen, the unconstrained controller was able to minimize the error between the end-effector and 

the target with no overshoot. However, during the approach towards the target, the inputs gener

ated by the controller were saturated at the maximum signal value of the servo card, which re

sulted in large joint velocities and accelerations. If this controller were implemented on a space-

based system, then constraints should be placed on the maximum joint velocities and accelera

tions to ensure that the robot would operate within safe limits and furthermore, undesirable vibra

tions could be avoided. 

5.4 Results from the Constrained Controller 

Benefits of the constrained controller have been demonstrated in Chapter 4. Similar benefits are 

realized in the experimental operation, while demonstrating the ability of the prototype M D M S to 

realize user defined constraints, as presented now. The mp-QP solver, which is found in the 

multi-parametric toolbox in M A T L A B , was used to determine the constrained solution to the pre

dictive control problem. Unfortunately, the multi-parametric toolbox used in this thesis is known 

to be numerically sensitive to a large degree [Kvasnica, et al., 2004]. When a large number of 

constraints are defined for the problem, the regions in the space partitioned by the mp-QP solver 

become smaller. Within these small regions the mp-QP solver may face difficulty in computing 

the corresponding optimal control law (see Appendix A for details on mp-QP). Furthermore, 

when a large number of constraints are defined the number of regions created by the mp-QP 

solver becomes very large, and as a result it can be difficult to find the optimal solution in the 

look-up table that is produced. To limit the size of the problem, and overcome the numerical 

problems, in the present implementation the constraints are only defined at a select few points 

along the prediction horizon. By doing this, the computed solution does become sub-optimal. 



Chapter 5 71 

However, depending on where these constraints are defined, the controller is still able to obey 

user defined constraint. 

5.4.1 Searching for the Optimal Control Law 

When the mp-QP algorithm computes the offline solution, it generates Nr different regions. Each 

of these regions are defined by the convex polytope 

where i^(k) = [x(k)T, w(k-l) T , x r (k ) T ] T is a vector in the parameter space *R A / ' . Each row of the 

relation (5.1) describes a facet of the A^-dimensional polytope for the corresponding region. 

Within each of these Nr different regions the set of active constraints for the optimization problem 

remains constant; therefore, an affine control law can define the control solution, in the following 

form. 

So, in order to compute the control solution, the controller must first determine the region in 

which %(k) is located. The simplest way to do this is through a sequential search of all the re

gions: i f the z'th region is defined by Na facets (i.e., Na rows in H, and K,), then to determine i f a 

point is within a polytope, the controller must make Na-Np multiplications, Ncr(Np-\) additions 

and Na comparisons, for a total of 2-Np-Na arithmetic operations. In the worst case, the control

ler wi l l have to search through every region for a total of2-Np-Nc arithmetic operations, where 

< K{ for /= 1,2,3, ...,Nr (5.1) 

(5.2) 

(5.3) 

Borrelli, et al. [2001] developed a method for searching through these polytope regions that 

chooses a "steepest descent" type search direction. The algorithm decreased the worst-case 

search time to 2-NpNr + Nc arithmetic operations. Tondel, et al. [2003b] improved on Borrelli 's 
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method by formulating the polytopes in a binary search tree, which produce 0 ( \og(Nr) ) search 

times. These search algorithms can allow for a problem of much larger size to be solved by the 

offline mp-QP scheme. However, these algorithms have not yet been incorporated into the multi-

parametric toolbox and, as mentioned earlier, the number of constraints has been reduced because 

of numerical issues in the mp-QP solver in M A T L A B . Consequently, in the examples that are 

demonstrated in this thesis the number of regions found in the mp-QP solution are fairly small, 

and in most cases a sequential search could still be performed within the sampling time of the 

controller. For simplicity then, only a sequential search algorithm is used. 

5.4.2 Dealing with Infeasibilities 

When standard predictive controllers are used with online minimization of the cost function, a 

method must be available for dealing with situations when the constrained optimization problem 

is infeasible. In mp-QP, the most optimal way of dealing with a set of infeasible optimization 

parameters is to choose the polytope region that is the shortest distance away from the infeasible 

point. The simplest way to find the closest region is via another sequential search through the Nr 

regions and by determining how far away the infeasible point is from each region. However, do

ing this would significantly increase the maximum search time needed to find a sub-optimal solu

tion. 

Instead, when the region containing i;(/c) could not be found, the controller would revert to the 

unconstrained solution, but with much more restricting saturation values. This method was cho

sen because it ensured that the manipulator continued to move towards the target, however, it 

moved slower towards the target until a feasible parameter value could be found. 

5.4.3 Experimental Results 

In the tests with the unconstrained predictive controller, as given in Figure 5.3, the third joint 

generated the highest velocity of approximately 3.5 rad/s, and this joint was the only joint to 

overshoot its target value. Consequently, the first output constraint was defined so that the joint 

velocity of the third joint remained below 0.75 rad/s. This value was chosen so that the joint 

would still be able to track its target without violating the constraint. 
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The next constraint was placed on the joint velocity of the prismatic joint (joint #2). In the un

constrained controller the inputs to this joint were saturated during its approach toward the target, 

which resulted in a maximum joint velocity of approximately 0.225 m/s. A constraint was placed 

for the joint velocity to remain below 0.1 m/s, which was, again, chosen so that it would not limit 

the ability of the joint to track its target. 

The joint constraints were defined only at the beginning and the end of the prediction horizon, 

which resulted in a controller consisting of Nr = 92 regions. A controller sampling frequency of 

200 H z was used, and the sequential search was able to search through these 92 regions in an av

erage of 0.5ms on the Pentium4 2.4 G H z PC used in the experiments. 

The results from the constrained predictive controller are given in figures 5.5 and 5.6. These re

sults show the constrained joint velocities in the second and third joints, but more importantly 

they show an improvement in the way the manipulator approaches the target and the inputs gen

erated by the controller. When the velocity of the third joint is constrained to 0.75 rad/s the level 

of overshoot is significantly reduced. Moreover, the total control effort used during the capture 

of the satellite is significantly reduced. In particular, in the unconstrained controller, the control 

inputs saturated whenever the second and the third joints were not at their target values. In the 

constrained controller the inputs only became saturated when the joint limits were reached. If the 

joint limits were formulated into the control problem then the controller would be aware of the 

limit that it has reached, and would not command the joint to extend any further. 
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Figure 5.5 - Constrained predictive controller results obtained using the prototype MDMS 
in joint space. 
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Figure 5.6 - Constrained predictive controller results obtained using the prototype MDMS 
in task space. 

The results from the capture of other target satellites are very similar to those summarized in 

Table 5.1, with the exception that the joint velocities of the second and third joints have been 

constrained. Results from various other satellite targets are given in Appendix C. 

5.5 Summary 

In the previous chapter the benefits of predictive control were demonstrated through computer 

simulations. In the present chapter, the controller was implemented on the prototype M D M S and 
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experiments were carried out to study its performance on a real system. The experimental results 

were found to be slightly different from the corresponding simulations. Nevertheless, in the ex

periments the prototype M D M S was able to approach the target with very large joint velocities 

without overshooting the desired values. It should be emphasized that these joint velocities could 

be undesirable in space-based applications, and a solution to this problem was found with the 

constrained predictive control. 

Constraints were added to the predictive control system via offline explicit solutions, resulting in 

a constrained predictive control problem. The offline solutions were compiled into a look-up ta

ble using a multi-parametric quadratic programming solver in the multi-parametric toolbox of 

M A T L A B . The solutions were then read by the controller, which was programmed in C++ with 

the help of VenturCom's R T X for Windows. 

The addition of the joint velocity constraints not only produced the required improvement in the 

joint motion as the M D M S approached the target, but also resulted in a significant decrease in the 

control effort that was needed. The constraints were defined only at the beginning and the end of 

the prediction horizon. Still , the controller was still able to restrict the joint velocities to the user-

defined values. 



CHAPTER 6: 
CONCLUSIONS AND 
SUGGESTIONS FOR FUTURE WORK 

6.1 Conclusions 

This thesis investigated the use of model-based predictive control for the capture of a multi-

degree-of freedom object that moves in a somewhat arbitrary manner, using a deployable manipu

lator. While the study was conducted through both computer simulation and ground-based ex

perimental investigation, the intended application was focused on automating the robotic capture 

of a free-floating and spinning satellite. The main motivation for this application came from the 

fact that robotic satellite capture in space, for retrieval, correction, repair, etc., can significantly 

eliminate the risks involved when astronauts are used in space walk scenarios to manually exe

cute the necessary tasks. Maneuvering a robot in the successful capture of a spinning satellite can 

be a difficult task. When a satellite is spinning, the maneuvering of a robotic manipulator by a 

human operator for a successful capture becomes increasing difficult. The difficulty of the task 

increases when the robot is tele-operated from a ground control station, because of communica

tion delays. For this reason, satellite capturing using an autonomous robot is particularly attrac

tive, and was studied in the thesis. 

Predictive control was shown to be a feasible method for autonomously guiding a prototype ma

nipulator towards a target satellite. When predictions are made the controller anticipates the fu

ture movements of both the target and the robot. Optimal control moves can then be calculated to 

minimize these predicted position and velocity errors between the target and the manipulator. 

A predictive controller was developed and evaluated first using computer simulation. Next it was 

implemented in the joint space of a prototype manipulator called multi-module deployable ma

nipulator system ( M D M S robot), which has been developed in our laboratory. A linear model of 

the robot was used for predictions. The M D M S has many attractive features. Particularly impor

tant in the present investigation is the fact that it uses harmonic drives with large gear ratios on 

the joint motors to reduce the nonlinear effects. Any remaining nonlinear effects were left as 

unmeasured disturbances for the controller. Predictions of the target were also made in the joint 
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space of the manipulator and a second order Taylor series approximation of the target was used in 

these predictions. Despite the approximations in the internal models, the simulation and experi

mental results from the predictive control of the M D M S showed that the tracking of a moving 

target was considerably improved when predictions were incorporated. 

In addition to the improvements in the tracking performance, predictive controller was capable of 

directly incorporating constraints into the optimal control problem. When constraints were ex

plicitly incorporated, the controller was made to be aware of its limitations, thereby guarding 

against unrealistic control actions. In the satellite capturing problem this can, for example, indi

cate to the controller how fast it would be able to decelerate when reaching the target. Conse

quently, when the controller was predicting into the future, it would be aware of how early it had 

to decelerate in order to reach the target with the right position and velocity, and this knowledge 

could be used to improve the way the M D M S approached the target. 

In order to realize these constraints in real-time, a multi-parametric quadratic programming (mp-

QP) technique was used. With mp-QP the constrained predictive control problem was solved 

explicitly offline and a look-up table was used online. Unfortunately, the mp-QP algorithm was 

found to be more susceptible to numerical problem than the standard QP solver. These numerical 

issues were resolved by defining the constraints only at select points throughout the prediction 

horizon, but this made the predictive controller sub-optimal. Fortunately the sub-optimal control

ler was still able to obey the user defined constraints and the approach towards the target was im

proved using the constrained predictive controller on the prototype M D M S . 

6.2 Suggestions for Future Work 

This research has demonstrated the advantages of using predictive control in the autonomous ro

botic capturing of a spinning satellite. Even though this research was the first to apply predictive 

control techniques to the M D M S , there are a number of improvements that could be made over 

this first attempt. Some suggestions for future work on this research area are indicated below. 

(1) Simulations should be performed on a complete space-based model of the M D M S . In the 

space-based system the M D M S is situated on a mobile carriage that can move along an 

orbiting platform. The flexibility of the manipulator joints and links, the flexibility in the 
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platform, and the dynamic coupling between the manipulator and the orientation of the 

platform must be considered when maneuvering, for improving the accuracy of the sys

tem model. A separate controller may be employed to regulate the orientation of the plat

form; however, i f a controller is aware of the coupling between the manipulator and the 

platform, then more accurate control decisions can be made. Furthermore, i f the mass of 

manipulator is sufficiently large when compared to the platform, then the motion of the 

manipulator can cause the platform to move. This wi l l change the position of the target 

satellite relative to the base of the robot, and this effect must be considered in the control

ler. 

(2) In the actual application of the predictive satellite-capturing controller, imaging and asso

ciated image processing techniques would most likely be used to determine the position 

and orientation of the target satellite. In that case, the controller wil l have to compensate 

for the delays in receiving the reference signal from the cameras. A n observer may be 

built in order to estimate the current position of the target based on the known delays in 

the image processing. 

(3) In this thesis, the approach and the tracking problem of the target satellite were consid

ered. Future work should be done to study the completion of the capture and the retrieval 

of the satellite. The dynamics of the spinning satellite wi l l directly affect the M D M S and 

its space platform when the capture is completed. Furthermore, the mass properties of 

the satellite may not be known, and the controller wi l l have to adapt to compensate for 

the extra mass of the satellite at the end-effector. 

(4) A rather ad hoc method was used in the thesis in dealing with infeasibilities. A more op

timal solution to the infeasibility problem would be desirable. In the multi-parametric 

toolbox, i f the optimization parameters define a point that is not within any region, then 

the search algorithm finds the region that is closest to this point and applies the corre

sponding affine control law. This solution was not used because of the increase in search 

time to find this closest region. One possible solution to this problem would be to create 

new regions that f i l l in the holes left by the mp-QP solver to ensure that no matter what 

the measured parameters are, they wi l l always correspond to a defined region in the pa

rameter space. 
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(5) It may be advantageous to have constraints that can change with the problem; for exam

ple, the joint velocity constraints could be dependent on how close the joint, is to its target 

value. In this case the current value of the joint velocity constraint wil l become a pa

rameter in the mp-QP problem, and the implementation becomes quite straightforward. 

(6) In general, a satellite may possess a fairly more complex geometry that what is presented 

in figures 3.3 and 4.1. Solar panels, antennae and various other structures may be pro

truding from the body of the satellite. A more sophisticated controller should take them 

into account. A future version of the satellite capturing controller for the M D M S may 

use multiple and redundant modules and incorporate obstacle avoidance techniques when 

approaching the satellite to further ensure that the manipulator would not collide with the 

satellite during the capture. 
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APPENDIX A: 

Multi-Parametric Quadratic Program
ming (mp-QP) A.l Preamble 

Multi-parametric quadratic programming (mp-QP) has been used throughout this thesis. The al

gorithm provides an offline solution to the quadratic programming (QP) problem so that con

strained optimal control problems of high-bandwidth systems can be implemented in real time. 

In addition, explicit solutions to the QP problem allow for a simpler online implementation, and 

provide a better understanding of the optimal controller. 

In this appendix, a theoretical background is given for the explicit solution to constrained predic

tive control problems. Work in this area has been developed by several people including Bempo

rad, et al. [2002]. This appendix outlines the mp-QP algorithm developed by Bemporad, fol

lowed by the online implementation of the explicit solution. The Multi-Parametric Toolbox of 

M A T L A B provides the offline optimization algorithm [http://control.ee.ethz.ch/~mpt/]. 

A.2 Multi-Parametric Quadratic Programming for Model Predictive Control 

Recall the predictive controller cost function discussed in Chapter 3: 

In the minimization of this cost function, the parameters that change at each time step are the 

measured states of the plant, x(k), the previous control inputs to the plant, u(k-\), and the state of 

the desired values, xr(k). These parameters have been combined into a single vector, %(k), in 

equation ( A . l ) . The values of these parameters wi l l determine the location of the unconstrained 

minimum point in the space ${M'"" defined by the optimization variables, n(k). 

V{k) = h(kf Y^k) + ^(kf H fi(k)H(kf F fi{k) ( A . l ) 

84 
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In constrained optimization, fi(k) is confined to a subset U c 3 i '"", which is defined in Chapter 

3 as 

Gfi(k)<W + E$(k) (A.2) 

The location of the minimum point wi l l now correspond to an active set of these constraints. 

Since the Hessian of V{k) is symmetric and positive definite, the necessary and sufficient condi

tions for a minimum of the cost function are given by the first-order Karush-Kuhn-Tucker ( K K T ) 

conditions: 

VML(ii',r) = 0 (A.3a) 

GfT{k)<W + E%(k) (A.3b) 

A* > 0 (A.3c) 

X){Wj +E£(k)-G/M (k)) = 0 (A.4d) 

where L [fi, 2.) = V (/c) - X1 (w + E% (k) - G/i (/c)) is the Lagrangian, with corresponding Lagrange 

multipliers, k, and-the subscript j denotes the row. By solving (A.3a) we get 

(ft', X ) = Rfi' (k) + FT$(k) + GTA' = 0 

ft'{k) = -W1(¥Tit(k) + GTX) (A.4) 

where the X and G contain only the rows corresponding to the active set of constraints. For the 

inactive constraints, Xj = 0 in (A.4d), and for the rows in the active set, equation (A.4d) gives 

W + E$(k)-GS(k) = 0 ( A 5 ) 

Substituting (A.4) into (A.5) and solving for k we get, 
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W + E^ (k) + G I T 1 (¥'%(k) + GTi) = 0 

i = ( G H G R ( w + (E + GH'F7)5(Jfc)) 

i = -(GWiGT)~l(w + SZ>(k)) (A.6) 

where S - E + G H _ 1 F 7 . Equation (A.6) can now be substituted back into (A.4) to give, 

At the beginning of each control cycle, a new set of parameters is defined and equations (A.3) 

must be satisfied to determine the set of active constraints. Within a certain neighborhood of a 

given set of parameters, the active set of constraints wi l l remain constant, and an affine control 

law wi l l be defined throughout this region. The mp-QP algorithm determines (offline) the re

gions where the K K T conditions can be satisfied with the same set of active constraints. In doing 

N 

so, the parameter space, 91 '' , is partitioned into a total of Nr different regions. The regions are 

defined by the inequalities (A.3b) and (A.3c), which can be written in terms of the parameters, 

£;(£), using equations (A.6) and (A.7). As a result (A.3c) becomes, 

ft* (k) = IT' (G 7' (GH-'G 7')"' S - F 7 ' W / C ) + H - ' G 7 ' (GH-'G 7')"' W, (A.7) 

which is affine in the optimization parameters, %{k) e 91 

0 

(A.8) 

and equation (A.3b) becomes, 
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The rows of equations (A.8) and (A.9) form the facets of an A^-dimensional convex polytope, 

within which the active constraints at the minimizer of the cost function remain unchanged. Each 

%(k) e SR^' wi l l belong to one of the N, polytopes, and the optimal solution is given by the corre

sponding affine control law. The mp-QP algorithm stores these Nr polytopes and their corre

sponding control laws into a look-up table. 

A.3 Offline Algorithm 

The offline mp-QP algorithm is used to partition the TVp-dimensjonal space into the TV, different 

regions. The algorithm developed by Tondel, et al. [2003a] is outlined here to show the main 

steps taken in generating the predictive controller look-up table. 

Algorithm A . l 

Let R be the regions explored. 

Let nR be the number of new regions found. 

1) Start with an arbitrary, feasible point, <f«; 

R = 0,nR=\ 

2) Solve the QP problem for the initial set of parameters to obtain an initial active set A . 

3) Form the constraints (A.8) and (A.9), given the current active set. 

4) Combine (A.8) and (A.9) and remove any redundant constraints. 

5) Check i f result of Step 3a is identical to any previous region stored in the look-up table. 

If not, store new region description. 

6) If new critical region found, store the matrix gain, and offset terms that describe the af

fine solution for this region, i.e., terms in equation (A.7); R = R + 1 

7) For each border in the current region, check i f there exists a new region just outside of it. 

8) For each new region found in Step 7, form the optimal active set on the other side of the 

border by examining the type of border that is being crossed: 

a. If a border of type (A.8) is being crossed, i.e., a Lagrange multiplier is becoming 

negative, then remove the corresponding constraint from the current active set. 

b. If a border of type (A.9) is being crossed, i.e., a user-defined constraint is being 

violated, then add the corresponding constraint to the current active set 

c. For each new active set formed, nR = nR+\ 

9) Repeat steps 3 through 8 for each new region that has been found. 
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10) Repeat steps 3 through 9 until the number of explored regions, R, equals the number of 

regions found, nR 

A.4 Online Algorithm 

The online algorithm is responsible for searching through the look-up table produced by the mp-

QP solver to determine which region the current measured set of parameters belongs to, and then 

applying the corresponding control law. Several efficient algorithms exist for performing this 

search [Borelli, et al., 2001; Tondel, et al., 2003b], however, a sequential search is used in Chap

ter 5 and it is a sequential search, which is outlined in Algorithm A.2 . 

Algorithm A.2 

1) Measure the current optimization parameters, £(&). 

2) Sequentially search through the Nr regions, until the region is found, which satisfies 

Hi^(/c) <Ki for i = 1,2,3, Nr {Equation (5.1)} 

3) Implement the z' t h control law, 

p(k) = Fr§0t) + G, {Equation (5.2)} 

A.5 The Multi-Parametric Toolbox (MPT) of MATLAB 

The multi-parametric toolbox (MPT) of M A T L A B provided all the mp-QP offline solutions used 

in the present thesis. Version 1.2 of the toolbox was used. It provided the mp-QP solver 

'mpt_mpqp().' Once equations ( A . l ) and (A.2) had been formed, the matrices Y , H , F , G , WanA 

E were used as inputs to this function. 

[Pn, Fi, Gi, activeConstraints, Phard] = mpt_mpqp(Ma/n'ce5, Options) 

Pn = an array containing the description of the Nr regions found in the parti

tion 

Fi = an array of the matrix gains used in the affine control law for the corre

sponding region {see Equation (5.2)} 

Gi = array of the vector offsets used in the affine control law for the corre

sponding region {see equation (5.2)} 
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activeConstraints 

Phard 

list of constraints that are active in the corresponding regions 

the union of all the explored regions; the convex hull of all feasible 

points in 91 * 

Matrices = structure containing the matrices Y, H, F, G, W, and E 

Options = allows the user to: 

• select which LP/QP solvers are used; 

• choose the level of debugging performed during the partition

ing; 

• define the step size taken when crossing over a facet 

In addition to the mp-QP solver, the MPT provides several computational geometry algorithms, 

which are used by the mp-QP solver. These algorithms can be used to further analyze the explicit 

MPC solution. In particular, when only two parameters are considered in the optimization, the 

MPT provides several plotting functions that allow the user to graphically view the partitioned 

regions. 

The multi-parametric toolbox is constantly being upgraded. Developers continue to improve the 

numerical stability of the algorithms, and add new features, like efficient search algorithms for 

online implementation. Material related to the MPT, along with the most recent version of the 

toolbox, can be found at http://control.ee.ethz.ch/~mpt/. 

http://control.ee.ethz.ch/~mpt/


APPENDIX B: 
Dynamic Formulation of the MDMS 

Kinet ic Energy of the System 

Link 1 (slewing): 

Tx = X-mxll6x

2

 +

 X-lA2 (B.l) 

Link 2 (deployable): 

T2 =}-m2{d2 -\ld%2 +^m2d2 + U292 (B.2) 

Link 3 (slewing): 

1 ( 2 2 \ * 2 ^ * 2 ^ 2 " 2 

T3=—m3[d2 + Isd2cos03j9x +—m3d2 + — m3ls 93 

2 2 8 

--^m3ls s'm830]d2 -^m3lx s\x\93d293 +^m3(lsd2 cos03 +jl2^9\d3 

+ \h{0\+0i)2 (B.3) 
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Total kinetic energy: 

T = TX +T2 + r3 (B.4) 

N . B . : no potential energy terms are present because the planar manipulator is supported by roller 

bearings to remove the effects of gravity and joint and links are known to be fully rigid. 

Applying the Lagrangian procedure, the equations of motion are given as 

(B.5) 

where: 

q = vector of joint positions [t9, d2 93]' 

q = vector of joint velocities [t9, d2 t93] 

q = vector of joint accelerations d2 t93] 

T = vector of joint forces, f, and torques, r, T = [r, f2 r 3 ] 7 

M(q) = 

>1/,2+/1+/2 + / 3 

+m2(d2-±lJf 

(d2 + T/,2 +lxd2 cos f?3) 

jm3lx sinf?3 

j m3 (lsd2 cos 6̂  + y / v

2 j 

2 1 " '3 m,/.. sin 6, 2 '"3*.v 

Ym 3 (lsd2 cos t93 + Y / V

2 ) + 7 3 - y w 3/ t sin #3 T w 3 / v 2 + / 3 

(B.6) 
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\lm2 (d2 - jl^ + lm^ +m3lx cos03J0, J 2 

-mJsd2 sin#30,03 -\m3lsd2 sin0 30 3

2 

C(q,q) = 
~ { m i {^2 ~\h) +

 m2,^7  + \ m J s cos03}0,2 

-mds cos0,0,03 -\mds cos0303

2 
(B.7) 

jmJsd2 sin 030,2 + mJx cos 030,c/2 

Viscous (F v ) and Coulomb (F s) friction terms were then added to give the complete model: 

The model parameters used in the design of the controller are found in [Wong, 2000]. The pa

rameters are: 

• mi = 2.3 kg 

• m2 = 0.75 kg 

• W5 = 3.05kg 

• /,. = 0.30 m 

• la — 0.22 m 

Equation (B.8) assumes that the friction in the manipulator can be described by only static and 

viscous friction terms at the joints. O f course, this is a considerable simplification, and since the 

linear predictive controller is applied directly to the manipulator, the friction terms do not directly 

affect the internal model of the controller. So, values for F s and F v are chosen so that input com

mands to the simulated robot and the experimental setup display similar results. 

M(q)q + C{q,q ) + F ssgn(?) + Fv? = T (B.8) 



APPENDIX C: 
Further Results in Satellite Capturing 
Using Predictive Control 

C . l Control Horizon M P C Results 

A control horizon form of the predictive satellite capturing controller was developed prior to the 

PFC version discussed in this thesis [McCourt & de Silva, 2003]. This unconstrained controller 

used the least squares solution as discussed in C H A P T E R 2: . The full nonlinear predictions of 

the target satellite's position, and orientation, were used to form the vector of future setpoints, 

T(k), which was then used in the controller shown in Figure C. 1. 

A prediction horizon of 50 and a control horizon of 20 were used and three simulated satellite 

captures were performed. In the first, a simulated target passed by the manipulator at 0.1 m/s, 

parallel to the platform, and with no rotational velocity. In the second, the center of gravity of the 

target remained stationary relative to the base of the manipulator, and the target rotated at a con

stant angular velocity of 0.087 rad/s (5°/s). In the third scenario, the target both translated and 

rotated as it passed by the manipulator. 

The results in Table C . l are similar to the results in Figure 4.2, i.e., predictions of the future target 

position improve the tracking performance of the manipulator. This result is presented graphi

cally in Figure C.2, where the joint space tracking results have been plotted for the capture of the 

spinning, and translating, satellite. 
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IS 
^ M P C 

Au(k) 

2 - 1 

U(k) 
Linear 
Plant 

IS 
^ M P C 2 - 1 

Linear 
Plant 

r z->I 

y(k) = x(k) 

Figure C.l - Block diagram of the unconstrained control horizon form of the predictive controller. 

Table C. l - Steady state tracking error results from the control horizon form of the predictive con
troller. 

Target 
Prediction? 

Average Steady State Tracking Errors Target 
Prediction? 0/ error d2 error 63 error 

Translating only 
yes 0.02211° 0.000819 m 0.18336° 

Translating only 
no -2.08490° 0.000692 m 1.83530° 

Spinning only 
yes 0.22539° 0.002350 m 0.35425° 

Spinning only 
no -1.12806° -0.003110 m 1.81234° 

Translating 
and 

Spinning 

yes -0.21157° -0.002330 m 0.57952° Translating 
and 

Spinning no -1.72780° -0.003540 m 0.98413° 

\ 
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Figure C.2 - MDMS joint-space tracking error response with, and without, predictions of the targets position. 
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C.2 More Experimental Satellite Capture Results 

96 

Experimental results from Chapter 5 demonstrated the implementation of the unconstrained and 

constrained predictive controllers on the prototype manipulator in our laboratory. Results from 

satellite targets with different angular and translatory speed have been presented in the following 

table, and figures to show the ability of the linear predictive controller to guide the Multi-module 

Deployable Manipulator System (MDMS) towards a variety of spinning targets. 

Table C.2 - Experimental results from various satellite captures 

Target details Tracking accuracy 

Case No. v, (m/s) vv (m/s) co (rad/s) Position Orientation Figure No. 

1 0.005 -0.050 71/12 1.8±2.7mm 0.09°±0.14° D.3, D.4 

2 0.000 -0.050 TC/24 l.l±0.8mm 0.15°±0.09° D.5, D.6 

3 0.000 -0.100 0 1.7±0.9mm 0.29°±0.08° D.7, D.8 



Figure C.3 - Joint space constrained predictive controller results for Case #1. 
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Figure C.4 - Task space constrained predictive controller results for Case #1. 
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Figure C.5 - Joint space constrained predictive controller results for Case #2. 
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Figure C.6 - Task space constrained predictive controller results for Case #2 
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Figure C.7 - Joint space constrained predictive controller results for Case #3. 
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Figure C .8 - Task space constrained predictive controller results for Case #3. 


