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Abstract 

Recovery control methods have been proposed to tolerate the failure of the thrusters used 

in the attitude control system of spacecraft. Thrusters are used, in pair, in the spacecraft control 

system to exert external pure torques on the spacecraft. These torques can either be directly used 

to perform the rotational maneuvers or can be used to remove the angular momentum built up in 

the momentum wheels of the spacecraft. 

The problem o f stabilizing a spacecraft subjected to disturbance torques with control 

torques about two of its principal axes is addressed for the first time in this research. It has been 

shown that a stable equilibrium, best matching the objectives of the mission, has to be found. 

Two control laws have been proposed to arrive at the newly defined stable equilibrium. The first 

law, a nonlinear kinematic control scheme, is based on the Lyapunov method. The second law, 

which linearizes the system about the equilibrium point, uses the pole placement method as a 

kinematic controller. In both control laws, after the kinematic controller is developed, the 

backstepping method is used to derive the control efforts at each instance of the spacecraft 

corrective motion. 

Torque thrusters are used for momentum removal of the spacecraft momentum wheels. 

Malfunctioning o f these thrusters therefore hinders momentum dumping process. The spinning 

speeds o f the spacecraft momentum wheels increases by time until they become saturated and the 

control over the attitude of the spacecraft is lost. The momentum removal procedures using 

external control torques about two or even one principal axis of the spacecraft is proposed for the 

first time in this research. 

i i 



A l l the proposed control methods have been examined using numerical simulations and 

shown to achieve desired performance. 
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Chapter 1 

Introduction to actuators and control concepts 

1.1 Spacecraft navigation equipment 

The motions of a spacecraft as a rigid body can be divided into two categories, 

translational and rotational. The translational motions are performed by exerting an external 

force on the spacecraft. This force can be either a gravitational force or a thruster force. The 

gravitational force is dependant on the mass of the spacecraft, the nearby planet and the position 

vector from the center of mass of the planet to the center of mass of the spacecraft. The 

gravitational force had a significant role in propulsion of Voyager [1]. Although gravitational 

force does not consume any fuel, it does not provide spacecraft with sufficient autonomy either. 

Therefore, the fine-tuning o f the spacecraft path must still be done through other types of 

actuators. Figure 1.1. a shows the main thrusters of the Cassini spacecraft used for the propulsion 

tasks [2]. 

There are typically three types of actuators used for performing the attitude maneuvers: 

thrusters, momentum wheels and magnetorquers. 
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Figurel.l.a: Main thrusters of Cassini [2] Figurel.l.b: Momentum wheels of Cassini 

Thrusters of smaller size than those used for propulsion are used in pairs to exert external 

torques on the spacecraft. The generated torques using the thrusters are independent of the 

surrounding conditions, in contrast with magnetic torquers discussed later. Although the amount 

of torque is usually constant, by proper use of the pulse width modulation method any desired 

torque is achievable. Consider a desired torque over time. B y the manipulation of the "on" 

duration o f the thrusters, we can make the integral of the exerted torque over a small duration be 

equal to the integral of the desired torque over the same duration. The drawback of this method is 

the induced vibration due to the repeated switching of the exerted torque. A n advantage of using 

the thrusters is their capability to generate external torque on the system. Consider some angular 

momentum being accumulated over time due to the disturbance torques on the spacecraft. B y 

using the thrusters, we can compensate for this; i.e., "dump the momentum" of the spacecraft. 

The disturbance torques acting on a spacecraft can be generated from different sources 

[3] including the translational thrusters, the magnetic torques, the gravity gradient torques, the 

aerodynamic torques, the solar radiation pressure and the factional torques in the bearings. If the 

vector force generated by the thruster does not pass through the center of mass of the spacecraft 
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there w i l l be a torque acting on the system in addition to the exerted force. Electromagnetic 

torques, resulting from the interaction of the magnetic field generated by the spacecraft circuits 

and the external magnetic field, can act as disturbance torques. The gravity force changes 

nonlinearly with" the distance. This causes the distribution of the gravity to differ from the 

distribution of mass over the spacecraft. If we represent the gravity force on the spacecraft by a 

net force vector, this vector is applied slightly off the center o f mass and generates some torque. 

The gravity gradient torque tends to align the principal axis, associated with the lowest principal 

moment of inertia, along the direction of gravitational pull. Light carries momentum and when it 

is reflected from a surface an exchange of momentum occurs with the surface. This exchange of 

momentum results in a force being exerted on that surface. The solar panels of a spacecraft form 

the largest area of the exposure to the sunlight. A s the solar panels are extended far from the 

center o f mass the torque arm corresponding to the solar radiation force w i l l be large and 

therefore a noticeable torque is generated. The frictional torques present in the bearings of the 

spacecraft, such as in the momentum wheels, act as internal disturbance torques. The friction 

torque does not change the total angular momentum of the spacecraft, but it can deviate the 

direction of the spacecraft in space. A l l the above disturbance torques are minute, but in the 

resistance-free environment they affect the rotational motions of the spacecraft. 

The other instruments used for compensating the disturbance torques and performing the 

attitude maneuvers, are the reaction and momentum wheels, Figure 1.1.b. A reaction or 

momentum wheel is composed of a flywheel connected to the main spacecraft through an 

electric motor. The motor can exert torque on the flywheel, which in turn results in a reaction 

torque being exerted on the spacecraft. This reaction torque opposes the external disturbance 

torques. Therefore, the disturbance torques w i l l affect flywheels instead of the spacecraft and the 
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speed of the flywheel w i l l increase by time. If the nominal spin rate of the flywheel is zero the 

assembly is called reaction wheel. The momentum wheels typically have some momentum bias, 

and spin at high rates, which slowly change to absorb the environmental torques [4]. Since the 

principles of dynamics and control of the reaction and momentum wheels are the same all the 

discussions ahead holds for both assemblies and from this point on we wi l l use the terms 

interchangeably. A major advantage of using the momentum wheels is that they can exert 

accurate torques on the spacecraft. Another advantage of employing momentum exchange 

devices is that they use the electrical energy instead of consuming fuel. Electrical energy can 

easily be generated on the spacecraft using the solar panels in contrast with fuel, which is not 

recyclable. In fact, one of the key issues determining the life time of a spacecraft is the amount of 

fuel remaining on board. B y using the electrical energy the life time of the spacecraft w i l l be 

significantly increased. While using the momentum wheels for the attitude stabilization, the 

external torques on the spacecraft are accumulated and result in the speeding of the momentum 

wheels. There is an increasing relationship between the current passing through the electric 

motor and its torque, i f the speed of the motor is below a specific limit. When the speed o f the 

motor passes that limit, the motor is called saturated. The speed o f the momentum wheel must 

then be reduced during a process called "momentum dumping". During the momentum dumping 

an external torque must be applied to the spacecraft to cease the total angular momentum 

accumulated over time. This external torque is usually provided by using the thrusters or the 

magnetorquers. 
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Figure 1.2: A magnetic torquer [5] 

If a magnetic moment is generated in the spacecraft, the interaction between this 

magnetic moment and the magnetic field o f the earth wi l l result in a torque. This external torque 

can be used for the attitude stabilization, the attitude maneuvers or the momentum dumping of 

the momentum wheels. This is the principle o f using the magnetorquers, Figure 1.2. The exerted 

torque wi l l be dependant on both the magnetic moment of the spacecraft and the magnetic field 

of the earth present at the location of the spacecraft. Through momentum wheels we can generate 

external torques using the electrical energy. Therefore, without any fuel consumption or any 

need o f momentum dumping we can perform the attitude maneuvers. The drawback o f these 

instruments is their dependency on the outside magnetic field. This dependency is why they 

cannot be used in interplanetary spacecraft, which fly through the environments where there is 

no magnetic field present. The generated torques of the magnetic torquers are relatively small 

compared to other instruments and they cannot perform the fast attitude maneuvers. Since the 

earth magnetic field varies from point to point, the generated torque is not accurate. Therefore, 

the magnetorquers are used for the rough attitude maneuvers in near earth satellite. 
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1.2 Review of the stability and control concepts 

1.2.1 Equilibrium and stability 

B y controlling a system we try to reach the desired states of the system and maintain 

them afterwards. The desired state should be a stable equilibrium point of the controlled system. 

In this section the mathematical definitions are given for the concepts o f equilibrium and 

stability. The methods used for proving the stability are presented which can also be used for 

stabilizing an equilibrium of a system. 

We represent our system in the state space form as 

x = fix) 

A state x* is an equilibrium state (or an equilibrium point of the system) i f once x(t) 

equals x*it remains equal to x ' fo r all the future time. [6]. The following equation should 

therefore be satisfied 

/ ( * ' ) = 0 (2) 

A n equilibrium point of a system can be either stable or unstable which is defined as 

bellow. 

The equilibrium state x = 0 is said to be stable (in the sense of Lyapunov) if, for any 

R > 0 , there exists r > 0 , such that i f || x(0) ||< r , then || x(t) ||< R for all t > 0 . Otherwise, the 

equilibrium point is unstable. In the above definition || .|| represents the Euclidean norm of a 

vector. What is mostly expected from a controller is not only to keep the trajectory in the vicinity 

of an equilibrium point but also to make the system gradually converge to the desired point in 

time. This property is called the asymptotic stability; an equilibrium point, 0, is called asymptotic 

stable i f it is stable and i f in addition there exists some r > Osuch that || x(0) ||< r implies that 
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x(t) —> 0 as t —> oo . Intuitively, the stability of an equilibrium means that the system returns to 

the equilibrium i f slightly deviated from that equilibrium. A s there are always disturbances in 

real systems, a real system almost never stays at an unstable equilibrium point. The definition of 

the stability and the asymptotic stability were given considering x = 0 as the equilibrium point. If 

the equilibrium point of the control system is not located at the origin we can still use the above 

definitions by mean of a change of variables. Consider x ' t o be the equilibrium point of the 

system i f we define x = x - x*, since x* is constant we wi l l have x = x . Using equation (1) we 

obtain x = f(x + x*) = g(x). N o w x = 0 , which corresponds to x = x*, w i l l be the equilibrium 

of the system and the previous definition holds. 

The above definitions were used to define the stability and the asymptotic stability o f a 

system in a local sense. The behavior of a system while the states are in a neighborhood of the 

equilibrium points was discussed in the previous definitions. The global stability should be 

defined to address the behavior of the system, in a global manner. If the asymptotic stability 

holds for any initial state the equilibrium point is said to be asymptotically stable at large. It is 

also called globally asymptotically stable. 

N o w that the definitions of stability have been stated, we introduce some methods for 

checking the stability of a system. In the Lyapunov's linearization method the local stability of a 

system is checked by the behavior of its linearized model. Consider a system with the state space 

equations as (1). B y linearization of this system, we mean finding the best A matrix in the 

equation (3) that can approximate the behavior of the system about the origin. 

x- Ax (3) 

Considering the first order terms in the Taylor series, matrix A can be expressed as 
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A = 
\ d x / 

(4) 
'x=0 

rlf 
where, — is the Jacobian of the function / with respect to the states of the system. According 

dx 

to the Lyapunov's linearization method for local stability [6], 

• If the linearized system is strictly stable (i.e. all the eigenvalues of A are strictly in the 

left half of the complex plane) then the equilibrium point is asymptotically stable. 

• If the linearized system is unstable (i.e. i f at least one of the eigenvalues of A is strictly in 

the right half complex plane) then that equilibrium point of the nonlinear system is 

unstable. 

• If the linearized system is marginally stable (i.e. all the eigenvalues of^4 are in left half o f 

the complex plane but at least one of the poles is on the imaginary axis) then nothing can 

be concluded from the linear approximation. The nonlinear system can be stable, 

asymptotically stable or even unstable. 

The most common method for proving the stability of a system, especially the global 

stability is the Lyapunov's direct method. In this method a function of the states, like V(x), 

should be found such that it is positive definite while its time derivative negative is semi 

definite. A positive (/negative) definite function is a strictly positive (/negative) function o f states 

vanishing only at the origin. A positive (/negative) semi-definite function is defined similarly to 

the positive (/negative) definite function except, it can be zero or positive (/negative) throughout 

the domain. 

Lyapunov Theorem for local stability states that [6], i f in a ball BR>, containing the 

equilibrium point 0 there exists a scalar function with continuous first partial derivatives such 

that 
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• V{x) is positive definite (locally in BR)) 

• V(x) is negative semi-definite (locally in BR)) 

then the equilibrium point 0 is stable. If V(x) is locally negative definite in BR<, then the 

stability is asymptotic. 

For proving global stability of a system the Lyapunov's global stability condition should 

be checked. Assume that there exists a scalar function V o f the state x, with continuous first 

order derivatives such that 

• V{x) is positive definite 

• V(x) is negative definite 

• V{x) —> °° as || x ||—> oo 

then the equilibrium at the origin is globally asymptotically stable. 

It often happens that we can find a Lyapunov function with a negative semi definite time 

derivative, but we want to prove the global stability of the system. The powerful invariant set 

theorem attributed to L a Salle can be used in this case. A set G is an invariant set for a dynamic 

system i f every system trajectory which starts from a point in G remains in G for all future time. 

For instance, any equilibrium point is an invariant set. The global invariant set theorem can be 

stated as follows. Consider the system described in (1) with / b e i n g continuous. Let V(x)be a 

scalar function with continuous first partial derivatives. Assume that 

• V(x) < 0 over the whole state space 

• V(x) as || x ||—> oo 

Let R be a set of all points where V{x) = 0 , and M be the largest invariant set in R , then 

all the solutions globally asymptotically converge to M as / —> oo. 
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1.2.2 Homogeneity concept and applications 

When the controllability of a system is lost by linearization, the system has to be modeled 

nonlinearly. On the other hand, although we may have to keep the lower order nonlinear terms, 

the higher order terms can be neglected. Using the concept of homogeneity we can simplify the 

actual system to a lower order nonlinear system and develop a control law for the simplified 

system that stabilizes the actual system. In the following we define the homogeneous system and 

state how stability of the homogeneous approximation o f the system is related to the stability of 

the entire system. 

Dilation operator [7]: let X > 0 and any set of positive scalars rt > 0 , i = 1,..., n, then the 

attitude dilation operator 5X is defined as 

8x(xx,...,xn) = (tfxx,...,X°xn) (5) 

Where rt > 0 are the weights of dilation. N o w we can define the homogeneous functions based 

on the definition of the dilation. A function h : 9\" —> Si is said to be positively homogeneous of 

degree k with respect to a given dilation Sx i f 

h(8x{xx,...,xn)) = Akh{xx,...,xn) (6) 

A vector field is a function f(x) that assigns to each point XG Si" a vector f(x)s Si". For 

a vector field / : Si" —> 9?" being homogeneous means 

fi(dx(x],...,xj) = Ak^fi(x],...,xll) (7) 

where. f. stands for the ith component o f the vector field / . The following theorem states how 

homogeneity can be used similar to linearization in controlling systems. 
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Consider / to be a homogeneous vector field o f degree k with respect to a given dilation 

8X and let g be a continuous vector field both defined on , such that for all i = l,...,n 

l i m g , f e ( ^ - ^ J ) _ 0 

The origin is an equilibrium of the system so the function / vanishes at the origin. If the 

trivial solution x = 0 of x = f(x) is locally asymptotically stable, the same is true for the trivial 

solution of the perturbed system x = f(x) + g(x). This fact can be used in controlling general 

systems like x = h{x). W e should decompose the state space function to a function, / ( x ) with 

degree of homogeneity of k and the remainder of higher order terms, g(x). Therefore 

h(x) = f(x) + g(x) 

l i m g , . ( ^ ( x . . . , x n ) ) = ( ) 

Then we continue designing a controller to stabilize the trivial solution of x = / ( x ) . The 

origin w i l l be a locally stable equilibrium point of the entire system as a result of the above 

theorem. 

1.2.3 Lie derivative and Lie algebra 

In this section the mathematical definitions of the Lie derivatives, the Lie brackets and 

the Lie algebra are stated [6]. This mathematical tool is needed for proving controllability of a 

nonlinear system, while using the feedback linearization method the Lie algebra is used for 

checking the necessary and sufficient condition of the feedback linearizability of the system. In 

the following, a vector function / : IR" —> IR"is called a vector field. Given a smooth scalar 

function A(x)the gradient of this function denoted by Vh = dhldx is a row vector defined as 
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(V/z),. = dh/dxi. Similarly given a vector field f{x) the Jacobian of / denoted by V / is defined 

as ( V / ) , = dfildxJ. 

Definition of the Lie derivative: let h: IR" —> IRbe a smooth scalar function and 

/ : IR" —»IR"be a smooth vector field on IR" then the Lie derivative of h with respect to / is 

a scalar function defined by Lfh = Vh f. Thus, the Lie derivative Lfh is the directional 

derivative of h along the vector field / . The repeated Lie derivatives can be recursively defined 

as 

L/h = h (9) 

L/h = Lf(Lf'-lh) (10) 

Based on the definition of the Lie derivative, the Lie bracket is defined as: Let / and g 

be two vector fields onIR" . The Lie bracket o f / and g is a third vector field defined by 

\f,g] = Vgf-Vfg Ol) 

The following notation is often used for the Lie product of two functions 

adfg = [f,g] (12) 

Repeated Lie brackets are defined recursively as 

ad/g = g (13) 

ad/g = [f,adf'~]g] (14) 

The above definitions are used in section 4.10 to examine the feasibility of controlling the 

underactuated spacecraft using feedback linearization method. 
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1.2.4 Feedback linearization 

The traditional method of dealing with nonlinear systems has been to linearize the system 

(using for example the Taylor expansion) and then using the linear controller design methods. It 

may also be possible to define some parameters based on the states and inputs of the actual plant, 

such that the new parameters form states and inputs of a linear control system. The main point in 

the feedback linearization of a system is to find a mapping that can find a linear system 

resembling actual nonlinear plant. Consider the nonlinear system 

where x represents the states vector and u is the inputs vector. The input-state linearization 

technique, the feedback linearization technique used in this thesis, finds a state transformation 

z = z(x)and an input transformation u = u(x,u) such that the nonlinear system dynamics is 

transformed to an equivalent linear time invariant system [6]. 

in which z is the new state vector of the system. Not every nonlinear system can be 

linearized using input-state linearization. Before going through the necessary and sufficient 

condition for the feedback-linearizability we state the definition of the vector field distribution. 

Given a set of smooth vector fields X , , X2,..., Xm, a distribution G(x) is defined [8] as 

x = f(x,u) (15) 

z = Az + Bv (16) 

G(x) = Span (17) 

Equivalently 

G(x) = alXl +a2X2 + ... + amXl m (18) 

in which am (x) is a smooth function of x. 

The actual nonlinear system is represented in the following form 

x = fix) + g(x)u (19-a) 
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y = Mx) (19-b) 

In which x e Si" is the state vector, u e Si"' is the control effort vector and y is the output 

vector. Therefore, g (x) i s an nxm matrix, with gl,g2,...,gmbeing each of its columns. We 

define the following distributions [9]. 

G0 = span{g , , . . . , g„ ,} 

If x is the desired equilibrium o f the system (19), the system can be feedback linearized 

i f and only i f 

i . For each 0 < / < n -1, the distribution G, has constant dimension near x° 

i i . The distribution G n _, has dimension n 

i i i . For each 0 < i < n - 2 the distribution G,. is involutive. 

A distribution G is called involutive i f for any two vector fields T , , T 2 e Gtheir Lie 

bracket [T,,-r2]e G [8]. 

The feedback linearization method is used in chapter 5 for deriving the attitude changing 

controller. The feasibility of using this method for controlling underactuated spacecraft is studied 

in section 4.10. 

1.2.5 Backstepping method 

The backstepping is a useful method in controlling cascade systems. Consider the system 

G, =spm{gi,...,gm,adfgl,...,adfgm } 

(20) 

x = fix) + g(x)y, / ( 0 ) = 0, x e Si", y e Si (21-a) 
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4 = m (x, | ) + p (x, |) u,y = htf), £ e W, u s 91 (21-b) 

« and g are the integer numbers representing the dimension of the domains. Consider the 

states of the system to be [x, £ ] T . The states x are not directly related to the effort term vector 

u and are affected by y, a function of all the states and the effort vector. The subsystem in the 

equation (21-a) is considered first. The parameter y is considered as the effort term of this system 

and the rule y = <x(x) is derived to stabilize the origin of the subsystem. Using the backstepping 

method we derive a control rule for u such that the vector y converges to the prescribed value 

a(x) and even i f y is still not close to the prescribed values the entire system does not diverge. 

Since the subsystem described by the equation (21-a) is stable a Lyapunov function, V, can be 

found. If the function V is positive definite, its time derivative is negative semi-definite and i f 

V(x) is bounded provided x is also bounded, we say that the "condition 1" is preserved. 

According to the nonlinear backstepping theorem [10] i f a(x) is a differentiable function and the 

condition 1 is preserved there exists a feedback control law which guarantees the global 

boundedness and convergence of state vector to the largest invariant set contained in the set 

V(x) = 0,y = a(x)^ (22) 

One particular choice provided by the backstepping method [10] is 

X 

A. 

u = 
v ' r dh , daT i dV 

- c{y - a(x)) - ^ m(x, £) + ^ [f(x) + g(x)y] - — _ (x) j , c> 0 (23) 

This control low is expanded to multi input systems and to the systems with nonlinear 

effort state relation in the next chapters. The backstepping method is used for deriving the 

controller for underactuated spacecraft in chapter 4. 
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Chapter 2 

State of the art in control of underactuated spacecraft and 

momentum dumping 

2.1 Literature survey for control of underactuated spacecraft 

There are usually three control torques provided for controlling and correcting the 

attitude o f a spacecraft. These torques can be applied using different types of actuators including 

thrusters and momentum wheels. A s long as the actuators are all functional and we can change 

the attitude using a combination of the three linearly independent control torques, the spacecraft 

is referred to as "fully actuated". In case of a failure in any of these actuators, the spacecraft must 

be controlled using two or even one control torque. In this case, since the number of the control 

torques is less than the number of the attitude describing parameters, the spacecraft is called 

"underactuated". 

Attitude control of an underactuated spacecraft has been under attention for a long while 

and numerous methods have been used for stabilizing a spacecraft. Crouch [11] for the first time 

discussed the controllability of an underactuated spacecraft using either thrusters or momentum 

wheels and showed that the controllability is preserved with less than three pairs of thrusters 

while it is lost even i f one of the three momentum wheels becomes defective. Attitude 
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stabilization of underactuated spacecraft, using two pairs of thrusters, has been considered in 

[12] and has been shown that the spacecraft cannot be locally stabilized to a static equilibrium 

using a smooth feedback control law. The control method proposed in [13] and the first control 

method in [14] bring the spacecraft to the desired orientation using a sequence of maneuvers. 

The first step of this sequence makes the angular velocity of the spacecraft zero and later the 

desired attitude is reached by performing other maneuvers, each designed so that at the end o f 

each maneuver the angular velocity of the spacecraft is returned zero. Therefore, i f zero velocity 

is an unstable state o f the system or i f we want to track a time varying attitude, we cannot use 

either of these two methods. Stabilization o f a spacecraft has also been approached using the 

concept of homogeneity [15], [16], [17]. The general idea is to divide the states in the dynamic 

equations to a main part and a set of perturbation terms, which are of higher orders than the main 

terms. The main part is then globally stabilized and the entire system is shown to be locally 

asymptotically stable. This method works only i f the initial states are in a region close enough to 

the desired values. Another shortcoming of this method is the limit over the control gains; i f we 

want to reach the desired values faster by increasing the control gains, there w i l l be the danger of 

the trajectory entering the unstable zone. Intelligent control methods have also been used for 

controlling the underactuated spacecraft. Ge and Chen [18] used the genetic algorithm to 

optimize an objective function corresponding to the trajectory error and the control efforts. The 

derived control inputs are then used for the open loop controlling of the system. In addition to the 

inability of dealing with the modeling errors and the disturbances, the optimized control inputs 

are not generic and are highly dependent on the initial conditions. This means that the 

optimization must be done before performing any maneuvers; this demands either a huge 
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computational capability on board or a high speed and steady earth-based communication, which 

is hard to achieve especially for the interplanetary spacecraft. 

A new attitude parameterization has been introduced in [18] and [19]. Based on this 

approach a new control method has been developed in [20] and later modified [21], [22] to 

counter the bounded inputs. However, only the attitude stabilization of an axisymmetric 

spacecraft has been discussed. Bacconi et al [23] have used an internal supervisor to choose 

between the control laws in [17] and [24] at each instance based on the appropriate performance 

condition o f each control law. Recently, a control method [25] has been developed using the 

quaternions for the attitude parameterization. We used the same parameterization in deriving the 

control laws in chapter 5. Although a rigid (not necessarily axisymmetric) spacecraft has been 

considered for deriving the control law in the kinematics level, but with respect to the dynamics, 

the spacecraft has been assumed axisymmetric. 

In the first phase of this research, we consider a practical case where the control of an 

underactuated spacecraft is investigated. If any of the auxiliary thrusters responsible for the 

compensation of the disturbance torques becomes dysfunctional, not only the spacecraft w i l l 

become unactuated about one of the principal axes, but also there w i l l be a constant torque about 

the unactuated axis. B y using the Lyapunov control method, we employ the remaining two 

thrusters to bring the spacecraft into a rotational motion about any axis, and set that axis in the 

desired direction. If this axis is chosen to be the main propulsion thruster axis then, the 

translational motion of the spacecraft w i l l be unaffected by the failure. We divide the governing 

equations of the spacecraft into two subsystems. In controlling the first subsystem, a control law 

is developed to enable the spacecraft reach the desired motion by prescribing the values for the 

angular velocities about the actuated axes. This control law is shown to make the desired motion 
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of the spacecraft globally asymptotically stable. We then use a modification of the backstepping 

method for the systems with nonlinear effort-state relation, derived in the appendix, to find the 

control torques. Finally, several numerical simulations are performed which illustrate the 

robustness o f the system. 

2.2 Literature survey for momentum dumping 

The angular momentum accumulated in the momentum wheels can cause some trouble 

for the spacecraft. A s discussed before, the spacecraft is subjected to the disturbance torques. 

The effect of these torques is compensated by the implementation o f the momentum wheels 

which transfers the angular momentum caused by the disturbance torque to the wheels and leaves 

the spacecraft unaffected. The motors of the momentum wheel assemblies are torque controlled 

and the increasing relation between the torque implemented by a motor and the electrical current 

passing through it only holds i f the motor is spinning at low speeds. When the spinning speed of 

a momentum wheel becomes so high that the torque control is lost, it is called saturated. In 

addition, the gyroscopic torques generated during the attitude maneuvers is proportional to the 

angular momentum of the spacecraft. When the spinning speed o f the momentum wheels 

increases the gyroscopic torques intensify and more electrical energy is consumed during the 

attitude maneuvers. There are typically two approaches to prevent saturation of the momentum 

wheels; the momentum management and the momentum dumping. 

The first method is to try to have the speed of the momentum wheels zero at the end of 

each cycle of the periodic motion of a satellite. This approach is called momentum management. 

The momentum management of the spacecraft has two aspects. First, i f there are no disturbance 

torques acting on the spacecraft and the initial spinning speed of the momentum wheels has been 

zero, then at the end of each attitude changing maneuver the spinning speeds should vanish. If 
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the spacecraft uses three momentum wheels with linearly independent main axes, this condition 

is preserved according to the principle of conservation of the angular momentum. To avoid lack 

of control over the spacecraft in case of a momentum wheel failure, usually four momentum 

wheels are placed in the spacecraft. A l l four wheels are simultaneously implemented and it is 

possible that the total angular momentum of the spacecraft is zero but the momentum wheels are 

spinning. The momentum management of spacecraft in this case means adjusting the control rule 

to minimize the momentum wheels spin rate at the end o f the maneuver, as discussed in [26]. 

The second aspect of the momentum management is to diminish the total momentum change of 

the spacecraft at the end of each cycle of the periodic maneuvers. Consider a satellite orbiting the 

earth. A s mentioned before there are several disturbance torques acting on the satellite including 

the gravity gradient torques, the solar radiation pressure, the earth's magnetic filed effects and 

the aerodynamics drags. A l l these torques have periodic and secular components when 

considering their variation when the satellite orbits the earth. The periodic components are 

cancelled out when integrating their effect over an orbiting period. The secular terms however, 

build momentum in the reaction wheels. The gravity gradient torque depends on the orientation 

o f the spacecraft. Some external torques can also be generated implementing the magnetic 

torquers. So, by deviating the spacecraft slightly form its desired attitude or by continuously 

using the magnetic torquers it is possible to make the net momentum change vanish at the end of 

each rotation of the spacecraft about the earth. 

The gravity gradient torque has been used extensively in the momentum management of 

the space stations. The momentum management of the Sky lab space station has been performed 

by implementing the gravity gradient torque [27], [28]. The momentum management and the 

attitude stabilization control laws are designed together in [29] and [30] using the optimal linear 

20 



quadratic design methods. The control law proposed in [29] was later modified to a digital 

controller to be implemented on the Freedom space station [31]. ju synthesis from modern 

control theory has been applied to design the momentum dumping control law proposed in [32]. 

In [33] the pole placement techniques have been used to design the attitude controller and the 

momentum management controller for a multi-body and flexible spacecraft. Johnson and Skelton 

[34] took into consideration all the disturbance torques applied on the spacecraft. They used an 

estimator to measure online the disturbance torque being applied on the spacecraft and designed 

an optimal controller to make use of this disturbance torque to desaturate the momentum wheels. 

The magnetic torques have been implemented for a long while in the spacecraft attitude 

control and momentum management. Glaese et al [35] implemented the magnetic torquers in the 

low cost pointing control system for the space telescope. [36] and [37] addressed using the 

magnetic torquers for the momentum management of the earth pointing Global Positioning 

Satellite (GPS). Camilo and Markley [38] discussed the bang-bang and linear controllers for a 

spacecraft controlled with the magnetic torques. They came up with a control effectiveness ratio 

between the orbit-averaged magnetic torques and the disturbance torques acting on the 

spacecraft. This ratio should be greater than one for the satellite's entire life time. The ratio can 

be used in the preliminary studies instead of the detailed simulations. A n adaptive control law for 

unloading the angular momentum of a spacecraft was proposed by Burns and Flashner [39]. 

They made use of the magnetic torques in addition to the aerodynamic and gravity gradient 

torques for controlling the spacecraft. The magnetic torquers were used together with one 

momentum wheel to control the attitude of a small satellite [40]. Two complimentary control 

strategies were implemented to maximize the controllability in the varying Earth magnetic field. 

Steyn [41] made a detailed comparison between the optimal desaturation algorithms and the 
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conventional cross product law. Whi le there is a significant work on momentum management of 

the spacecraft, the problem of momentum dumping using less that three actuators has not 

previously been discussed. 
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Chapter 3 

Problem definition and significance 

3.1 Failure scenarios 

The focus of this research is on the motion recovery of the spacecraft in case o f the 

thruster failures. Thrusters play two main roles in the attitude control of spacecraft; they can be 

used for providing control torques needed in the attitude maneuvers and they are necessary in 

removing the accumulated momentum in the momentum wheels. 

The thrusters are placed in a special configuration on the spacecraft to generate pure 

external torques. The torques are determined by the attitude control system based on the attitude 

and angular velocity feedbacks and the estimation of the disturbance torque on the spacecraft. If 

the control torque about one of the principal axes is lost, we still desire to control the attitude of 

the spacecraft. In such a situation the spacecraft must be controlled using the control torques 

about two principal axes. The situation becomes worse i f we have a disturbance torque about the 

unactuated axis which we cannot compensate with the thruster torques. In such a situation the 

disturbance torque kicks the spacecraft out of the stability. It is shown in the next chapter that 

having a constant control torque about the unactuated axis causes no static attitude to be stable. 

Therefore, in order be stable, the spacecraft must rotate. For the first time a control law has been 
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developed to deal with this disturbance torque and to bring the spacecraft to a stable condition in 

which an arbitrary axis of the spacecraft is fixed in space and the spacecraft rotates with constant 

angular velocity about that axis. This arbitrary axis may be the main thruster, the communication 

antenna, the camera or a specific sensor of the spacecraft. 

The thrusters have the key importance in performing the momentum dumping 

procedures. A n y external torque, including the disturbance torques, change the total angular 

momentum of the spacecraft. When the momentum wheels are implemented for controlling the 

spacecraft this change of angular momentum is transferred to the momentum wheels, altering 

their spinning speed, so that the main body of spacecraft remains unaffected. The total 

disturbance torque consists of the persistent and periodic components. The periodic torques are 

cancelled out while being integrated over a period of time. The secular torques cause the 

momentum wheels to accelerate until their angular velocity passes the saturation limit. In this 

case the momentum wheel is saturated. The thrusters are then used to remove the angular 

momentum accumulated in the flywheels. The momentum dumping of the spacecraft using two 

or one external control torques is addressed for the first time in this research. Inability to remove 

the angular momentum of the momentum wheels results in lack o f control over the spacecraft, 

and eventually ends its functional life. Therefore, using the proposed control method keeps the 

spacecraft functional in spite of the loss of the external torque about one or even two of the 

spacecraft axes. 

3.2 Probability of actuation failure 

Considering the harsh conditions under which a spacecraft operates, the likelihood of a 

failure is not insignificant. These conditions include the very low ambient pressure, the severe 

temperatures, the significant temperature differences between the opposite sides of the 
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spacecraft, and the solar flares. The spacecraft is built on earth and usually at the ambient 

pressure. If there is any air bubble trapped in the spacecraft structure, it can cause significant 

stresses in the structure during the mission. A s there is little or no matter in the outer space there 

is essentially no heat transfer with the spacecraft through conduction or convection. The 

temperature of the spacecraft is therefore dependant on the amount of radiation from the planets 

or stars [42]. In case of a satellite facing the earth while not being exposed to the sunlight this 

temperature can be as low as -200°C [43]. Considering that the spacecraft has been manufactured 

at the room temperature, this is a significant temperature change. This temperature variation 

results in the joints loosening or tightening which may disable the joints. Since different 

materials have different expansion coefficients, this great temperature differential can also cause 

deflections in the structure of the spacecraft. On the other hand, since the only way o f heat 

transfer is radiation there can be huge temperature differences between the two sides o f the 

spacecraft, which can lead to severe deflection in the weak elements such as the antennas or the 

solar panels [44]. 

Another source of failure in spacecraft is the effect of the solar flares. A solar flare is an 

electromagnetic blast at the sun releasing the energy equivalent to tens of millions of hydrogen 

bombs. The energy is released in a wide spectrum of electromagnetic waves, ranging from the 

long wavelength radio to the short wavelength gamma rays [45]. Since there is no atmosphere 

protecting the spacecraft from the flares, they can cause severe damages to the spacecraft. For 

example, a solar flare has been identified as the main cause of the failure of the Nozomi 

spacecraft [46]. A s a whole, the undesirable and unexpected perturbation can lead to the 

structural failure, the equipment seizures and the electric noises. 
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The unpredictability of the situation is another factor that can result in a failure in the 

spacecraft systems. Interplanetary spacecraft go through new frontiers to gather some basic 

information about the new planets. Typically, the situation happening to the spacecraft is not 

well known and many scenarios can happen to the spacecraft which have not been experienced 

on earth before. 

There are three solutions for continuing the mission while a failure has occurred. The first 

one is to repair the spacecraft using another spacecraft or by the human intervention in space. In 

this case the faulty part must have been identified by the main spacecraft itself and that specific 

part must be replaced using the external help. Due to the complexity of such a process and the 

need for specialized instruments, this is a rare option. Sending a repairing spacecraft together 

with the spare part and conducting the repair action could cost more than the initial spacecraft. 

Therefore, the repair using external help is not feasible except in the case o f the extraordinary 

expensive and close to earth spacecraft such as the Hubble telescope. 

The second solution is to resort to redundancy of the key parts of the spacecraft. There 

should be a fault detection, diagnosis and reconfiguration system that identifies the faulty part 

and replaces it with the corresponding redundant part. The problem with this method is the 

additional weight of the spacecraft due to the weight of the redundant parts. The weight is a key 

factor in designing a spacecraft. The launching equipment usually weights ten times the actual 

spacecraft. Therefore, by doubling the weight of any module on the spacecraft the weight of the 

launching equipment w i l l proportionally increase and imposes huge numbers on the cost o f the 

mission. 

The third solution is the software manipulation of the system so that the desired 

performance is obtained in spite of the failure. This method w i l l impose no additional cost and is 
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the most desirable solution. The only problem is that it is not always possible to find such a 

recovery algorithm. Simply, i f the mission could be accomplished without using a part then what 

has been the reason for putting such a part in the spacecraft? The recovery algorithms are usually 

not efficient and wi l l impose some performance constraints on the spacecraft. In practice, a 

combination of the last two methods has proven to be the most practical. 

In this research, the recovery solutions have been proposed to determine the most 

desirable maneuvers to help accomplish the mission in the case of actuator failures. 
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Chapter 4 

Attitude control of underactuated spacecraft 

There are three independent parameters needed to uniquely identify the attitude of the 

spacecraft. The angular velocity vector of the spacecraft is a vector in the three-dimensional 

space and therefore has three components. A spacecraft is called fully actuated i f there are at 

least three linearly independent control torque vectors available for controlling the spacecraft. 

Otherwise, i f because of actuator failure, less than three linearly independent control torques are 

available, the spacecraft is called underactuated. 

4.1 Governing equations 

Different notations can be used to represent the orientation o f a rigid body. In this section 

the notation introduced in [20] is used. The orientation of a body-fixed coordinate system 

relative to the inertial frame is described using a real number, z, and an imaginary number, w. 

The inertial coordinate system can be transferred to the body coordinate system using two 

rotations. The first rotation is about the inertial z-axis with an amount of z radians. Let 

A A A A A A 

(z\,z'2,z3)represent the inertial coordinate system; (i>,,6 2,6 3) be the principal axes of the body 

coordinate system; and (i[,i'2,h) represent the intermediate coordinate system obtained by the 

rotation of the inertial coordinate system about its z-axis. Both ( 6 , , £ 2 , 4 ) and {i[,i'2ih) are 
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expressed in the inertial frame. If i'} = a'bx + j3'b2 + y'b3 then the complex attitude coordinate, 

w, is defined in [20] as w = — — i n which i . The second rotation that takes the 
1 + 7 

intermediate coordinate system to the body coordinate system is about the unit vector 

2w, o - 2iw2 c/ . n , . , n (1 ~ M 
u - —r-Ti, H r—r-h with the rotation angle 6 = arccos ——— 

M 2H [i+H2
y 

In which if w—w.+ iw2 , 

w = w, -iw2 and|w|2 =ww. The most significant advantage of this method of representing 

kinematics over the other methods is the relation between the kinematic parameters and the 

angular velocities; we have [24] 

w--i(03w + — + — w (24) 
3 2 2 

i = a>3 + \m(cow) (25) 

In which co3 is the component of the angular velocity of the body about its z-axis, and 

Im(.) stands for the imaginary part. According to [20], equation (24) can also be written as 

^ \ M \ 2 = (l + |w|2 )Re(6>vv) (26) 

or 

w, = w2(0)2wx + 6)3) + — (Ox(l + w,2 - w2 ) (27-a) 
2 

w2 - w , (a*x w2 - co3) +—co2 (l - wx + w2 ) (27-b) 

In which Re(.) stands for the real part of a number. The advantage of these equations over 

the kinematic relations in the Euler representation is that they are simple polynomial equations 
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rather than trigonometric functions. The equations governing w are independent from the 

equation for z, which we w i l l use from this point on in our proposed control law. 

The dynamic equations, describing the evolution of the angular velocities, are the well 

known Euler equations. The spacecraft i f subjected to the disturbance torques about three 

principal axes and the control torques. In this study, we assume that because of a failure in 

thrusters we have lost the control over one of the spacecraft principal axes. Therefore, only 

control torques about two of the spacecraft principal axes are available. Without loss of 

generality, it is assumed that the third principal axis has become unactuated. Therefore, the 

torque about the third principal axis w i l l be the only component corresponding to the disturbance 

torques. This component which is assumed to be constant is called M 3 c . The net torque applied 

about the first and second principal axes are respectively M , a n d M 2 . The Euler equations 

written in the principal coordinate system of the spacecraft is 

Ixcox = (l2 -I3)co20)3 + M , (28-a) 

I2(b2 = (l2 )(oiojl +M2 (28-b) 

= (A - h )°>x°>2 + M i c (28-c) 

In which // , h, h are the moments of inertia about bx, b2 and b3 and Mi, M2, Msc are the 

moments about each axis, respectively. From equations (28) we have 

<y, = A co^ +u[ (29-a) 

6)2 = Bct)^ +u2 (29-b) 

CDj - CcoxO)2 +uic (29-c) 
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In the above equations A = ———,B = ———,C = — — — are the differential inertial 

h ^2 ^ 3 

ratios and u, = ̂ -,u'0 =M± u = ^Ji. a r e the intermediate effort terms. Now we introduce I I I i, i2 J 3 

the new parameterization 

$>j = 0)j - 0)dJ 0)j = $>j + (odj j = 1,2,3 

In which codj is the desired angular velocity about the / * principal axis in the body 

coordinate system. Since the desired angular velocities are constant, we have 5 y = d)j. B y 

redefining the control inputs, we can linearize the dynamic equations for the first two angular 

velocities using the feedback linearization. 

u, = ACOJCOJ + u[ (30-a) 

u2 = Bcoxa>} +u'2 (30-b) 

Therefore, we have 

6)x =cox = ux (31-a) 

6)2 = 5)2 = u2 (31-b) 

So far we have feedback linearized the relation between co{, a>2 and the control torques 

about the actuated principal axes. 

4.2 Finding the equilibrium point 

Having a constant control torque about the unactuated axis causes no static attitude to be 

stable. During the typical missions of a spacecraft it is required that the spacecraft points to a 

specific location on the earth or in space. Therefore, the attitude of the spacecraft changes slowly 
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and the nominal attitude can be regarded constant which implies zero angular velocities. Having 

(Ox and co2 zero equation (28-c) results, 

hO)}=M3c (32) 

Since Mic is the nonzero third component of the disturbance torque, equation (32) 

implies that (W3 is also nonzero. Therefore, the angular velocity of the spacecraft changes by 

time; as a result the spacecraft attitude deviates from the nominal value and the nominal attitude 

become unstable. Since no constant attitude can be chosen as the desired stable direction, a 

rotational motion should be chosen as the desired trajectory, which is both stable and best, agrees 

with the spacecraft mission. A t each stage of the spacecraft mission, one of its instruments plays 

most crucial role among all the sensors and actuators on board. In transmitting data, the main 

antenna, for example must point towards the earth-based dishes. While taking the satellite 

images the camera(s) should be pointing exactly at the target(s). In the translational motion it is 

the main thruster engine that should fire in the correct direction. So, although we cannot hold the 

spacecraft stationary in any direction we may still be able to make the spacecraft rotate about one 

of its instruments so that the axis of the crucial instruments points a specific constant direction in 

space. Consider the translational maneuver of the spacecraft. The proposed desired equilibrium 

motion, while having a failure, is the net angular velocity vector of the spacecraft being collinear 

with the main thruster's direction. This means that the spacecraft w i l l rotate about the main 

thruster's axis of symmetry so that the direction of the exerted force on the spacecraft w i l l not 

change during the motion. Assume the direction of the thruster be [a,b,c]J in the coordinate 

system attached to the spacecraft and a2+b2+c2=l. We want the angular velocity o f the 

spacecraft to be in the same direction as the thruster's axis so the components of the desired 

angular velocity w i l l be 
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a 

= k b 

c 

(33) 

in which A: is a scalar and codx,(Od2,cod3represent the desired angular velocities in body 

coordinate system. If k is constant, using equations (28-c) and (33) we have 

k2ab(I2 -Il) = M3c ^>k2 =• 3c (34) 
ab(I2-Ix) 

Therefore, to be able to have the spacecraft rotate about its thruster axis with a constant 

angular velocity we require a positive value for which is not always the case. Even 
ab(I2 -/,) 

by admitting a time varying desired speed from equations (28-c) and (33) we w i l l have 

he 
3c (35) 

The above equation describes the steady state motion of the spacecraft. When equation 

(35) corresponds to a stable system the coefficient of k2 must be non-positive so i f we want the 

spacecraft to be able to function in spite of having any one of its auxiliary thrusters out of order 

the following equations must be simultaneously true, 

— ^ < 0 

(36) 

2-<0 
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A s all the moments of inertia are positive, the above equations w i l l never hold 

simultaneously. So we w i l l proceed with the assumption that k is constant and 
3c 

positive, hence from (34) we obtain 

ab(I2 -Ix) 
i s 

k = 

1 
M 

ab(I2-Ix) 
(37) 

So far, we have found the corrective angular velocity for making the spacecraft rotate 

about its thruster axis. In addition to this condition, the axis o f the spacecraft's thruster must lie 

in a specific direction. Without loss of generality, we assume this direction to be the z-axis of the 

inertial coordinate system. This means that the vector [0,0,1]T in the inertial coordinate system 

lies along the vector [a,b,c]T in the body coordinate system as depicted in Figure 4.1. 

A x i s of the 
main thruster 

JBodyC.S. 

F igu re 4.1: . Iner t ia l and body coordinate systems i n desired or ientat ion 
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4.3 Tracking of the desired rotation using linearization 

The equations (25), (27), (29-c) and (31) describe the kinematics and dynamics of the 

spacecraft. A t the kinematics level we have to manipulate the orientation so that the actual 

parameters wx and w2 are equal to wdX and wd2. W e do not have any specific desired value for z, 

but i f we only control the first two kinematic parameters, w, and w2, there is a possibility that z 

tends to infinity during the motion. A s z is an angle, its going to infinity is not an issue. 

Effectively it means a continuous rotation. Therefore, we continue with controlling only the 

parameters w, and w2 from the orientation coordinates (27). The equation (25) w i l l become 

redundant. We now categorize the remaining five equations into two groups each described in 

the equation sets (39) and (40), respectively; 

wx = w2(o)2wx + co3) + -^cox (l + w, z - w2 ) (39-a) 

w2 - w, (o)xw2 - co3) + ^o)2 (l - w, 2 + w2 ) (39-b) 

<2)3 = Ccoxco2 +uic (39-c) 

Q)x = ux (40-a) 

Q)2 = u2 (40-b) 

We w i l l first try to bring wx, w2, co3 to the desired values by using cox and co2 as control 

inputs. If wx, w2 gain the desired constant values, the spacecraft w i l l be in desired direction and 

spinning about the thruster's axis. If in addition » 3 reaches its desired value, the spin rate of the 
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spacecraft, and cox, co2 w i l l also reach their desired values. In the next step, we try to find the 

appropriate values for ux,u2 so that now the entire system converges to the desired state. We use 

the backstepping method in the second step. If the spacecraft reaches the desired motion, the 

parameters wx,w2, (D3 w i l l be constant and by using equations (39) we w i l l have 

>M» 2 ,w„+6> 3 ,) + ^ l r f ( l + w l r f

2 -w2d

2)=0 (41-a) 

C(OxdO)2d +u3c = 0 (41-c) 

Considering the error w, = wx-wXd, w2 =w2-w2d, 5>3 = 0)3 - co3d and using (41) we 

obtain 

w, = w2d[co2dwx +a2wld + a3]+w2[o)2dwXd +(Oid\+]-0)ld\lwu w, - 2 w 2 r f w 2 ] 
2 

+ | s i [ l + w l r f

2 - w 2 r f

2 ] + 0 2 ( f ) (42-a) 
2 

w 2 = wXd[o)Xdw2 + axw2d-a3]+wx[o)idw2d-coid)+^-Q)2d[-2wXd wx-2 
2 

w2dw2 

1 
+ ^ 2 [ l - > v w

2 + w 2 / ] + 0 2 ( ^ ) (42-b) 

a>3 = C(bx(Dd2 + CcQdXa>2 + O2 (e) (42-c) 

In the above equations i f e = [a>x,Q)2,co3,wx,w2,wi], 0 2 ( e ) i s a polynomial containing 

terms which are of the second or higher orders of e. We define 
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xx~ 
x = x2 = iv, 

_ X 3 _ 
w2 

(43-a) 

W2d 
— W, Id 

w2dco2d +W]dQ)ld 

Wld®2d -Mld+Wld^d 

w]d0)2d +0)3d-w2dCQld 

W2dCO2d+Wu0)u 

(43-b) 

COidx 
1 , 2 2 l + wXd -w2d 

2 
WldW2d 

g2 

Ceo. 
d2 

WidW2d 
W\d2 +W2d2 

(43-c) 

Introducing v, and v 2 to be the prescribed values for 5, and 5)2 which make the 

subsystem (39) stable, G = [gx\g2] andv the equation (42) can be stated as 

X = FX + Gv 

We now form the controllability matrix for the above system; C = [G\ FG | F2G]. Using 

the symbolic math software the rank of C was shown to be always three. This means that the 

linearized control system is always controllable. 

The control law proposed considers an input proportional to the states i.e. v = -KX . In 

which K is a 2 by 3 gain matrix. To determine the gain matrix, the method proposed in [47] is 

used. In this method, we first compute the following matrix functions for each desired eigenvalue 

of the system, Xt. 

03x,(Al) = (V3-^)"' 

%x2(Ai) = ^(Ai)G 3x2 

(44-a) 

(44-b) 
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In the next step the matrix E is formed as 

E = MAX)\V(A2)\V(A})] 

We should then choose three independent columns of E. If we call these independent 

columns 77,, i = 1,2,3 the following equations can be used to determine K: 

KT]i=-ei,i = \,2,3^K[T], 7]2 773] = - k e2 e3] => K = -[77, 7]2 773 ]"1[e1 e2 e}] 

(45) 

In the above equations each e, is an arbitrary unit vector. We choose the following normal 

vectors. 

V "0" 
e, — e2 — 

0 
' e 3 = 1 

To make the K matrix have three different eigenvalues each column vector r\i must be 

chosen from the corresponding *F 3 x 2 (A,) function. Then we can compute K from the equations 

(43)-(45). 

B y finding the matrix K we can determine the desired first and second angular velocities 

at each instance so that the remaining subsystem has the specified eigenvalues and so w,, w2,5)3 

go to zero i f time approaches infinity. 

v = -KX (46-a) 

v = -KX (46-b) 
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In the next step, we derive the control law for the entire system based on the subsystem 

control law (46) and the backstepping method. For the system 

X = FX + G% (47-a) 

£ = u (47-b) 

If the subsystem (47-a) is stable provided £ = v , and the Lyapunov function V can be 

used for proving this stability, considering z - £ - v and using the following control law ensures 

the stability of the entire system [10]. 

u = -CQz + v-GTVVx (48) 

In which C 0 i s the positive gain coefficient and V F ^ i s the gradient o f V with respect 

to X. The linearized governing equations, (40) and (42), should be expressed in the form o f 

equations (47). To this end the X and t, vectors are chosen as 

X = 

a>, 

w, 

CO, 

CO, 

(49-a) 

(49-b) 

The matrices F and G are then defined as previously defined in (43) and the effort 

vector is defined as u = [ W , , M 2 ] t . The Lyapunov function used for proving the stability o f the 

subsystem (47-b) is 

r = ^ ( w 1
2 + w 2

2 + s 3
2 ) = | | ^ l l 2 ii (50) 
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Since all the eigenvalues of the controlled system are placed in the negative half plane of 

the complex plane, the time derivative of the above Lyapunov function is always negative. 

Taking the gradient of the Lyapunov function with respect to the X vector, V Vx is equal to 

VVX = (51) 

A t the beginning of the implementation of the control law there is a substantial difference 

between the actual angular velocities and the prescribed angular velocities derived from the 

control law for the first subsystem. This difference multiplied by the gain factor C 0 w i l l result in 

a huge control torque, which typically exceeds the torque limit o f the thrusters. To prevent this 

happening we set C 0 t o be a function of the error term: 

The property of the above modified gain factor is when there is a great difference 

between co and v , such as at the beginning of the implementation o f the control law, the gain 

factor w i l l be reduced to prevent the thruster saturation. Meanwhile, the performance w i l l not be 

affected when the angular velocity errors are small. 

Having ux and u2 the control torques can be found from 

C, 
(52) 

Mx -Ix{ux - Aco2(03) (53-a) 

M2 = I2(u2 -Bcoxa>3) (53-b) 
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4.4 Feasibility of gain optimization in linear control of the 

underactuated spacecraft 

The energy consumed during the attitude maneuver is a critical factor in assigning the 

control gains. This energy is associated with the fuel consumption during the mission. Since the 

refueling of the spacecraft is a rare option, the less energy is consumed during the maneuvers the 

longer is the life span of the spacecraft. In this section, we consider the flexibility in assigning 

the control gain matrix while having the locations of the poles of the control system unchanged. 

It has been proven [47] that i f a linear control system is completely controllable, any set 

of desired closed loop poles can be achieved using a constant gain matrix. To study the 

flexibility in assigning the control gain matrix controllability of the system using one control 

torque is examined. In controlling the system X = FX + Gv using the first component of the 

effort vector, v , the open-loop system turns into 

X = FX + gxvx (54) 

The controllability matrix of the control system in (54) is 

C,=[g]\Fgi\F2g,] (55) 

Using the Symbolic Math Toolbox of the Matlab® software it has been derived that in 

case of nonzero disturbance torque, the rank of the controllability matrix, C , , is three. This 

implies that the controllability is preserved even for controlling the system using the first 

component of the angular velocity. If only the second component of effort vector is used for 

controlling the system X = FX + Gv, the system becomes 

X = FX + g2v2 ' (56) 

The controllability matrix corresponding to the control system (56) is 
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C2={g2\Fg2\F2g2] (57) 

Similarly, using the Symbolic Math Toolbox of the Matlab® software the rank o f the 

controllability matrix, C 2 , was found to be three, i f the disturbance torque was nonzero. 

Therefore, the desired eigenvalues of the controlled system can be achieved by prescribing any 

of the first two components of the angular velocity vector. If we set the second component of the 

angular velocity vector to zero and assign the first component to achieve the poles of the closed 

loop system the gain matrix w i l l be in the form 

K = 
Ku Kn Kn 

(58) 
0 0 0 

i _ 

Since 

v = Kx (59) 

the second component of vector v is always zero. Similarly, i f the second component of 

the angular velocity is assigned to determine the poles of the closed loop system, the gain matrix 

w i l l be in the following form 

K = 
0 0 0 

K2X K22 K2i 

(60) 

Therefore, the constant gain matrix that results in the desired poles of the system is not 

unique and can be optimized to be associated with the least energy consumption. 

4.5 Numerical simulations for the linear controller and discussions 

The numerical simulations have been performed to evaluate the performance of the 

proposed control law. Inspired by the Venus Express spacecraft [48] the simulated spacecraft is 

assumed to have a mass of 1400 K g with the moments of inertia about the first, second and third 

principal axes of 600, 640 and 500 K g m 'respectively. 
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The undesired constant torque about the unactuated axis is assumed to be 10 N m . Initially 

the spacecraft is considered to be quite off the desired orientation, w, m = -0.4, wlinjl = 0.5, 

while rotating with angular velocity, coMlial = [0,0, codesired ]. After several trial and error 

simulations, the eigenvalues of the controlled subsystem were selected as [0.3, 0.4, 0.5] and 

C, =10 which results in recovery of the motion within 35 seconds. These values were not 

explicitly optimized as we only want some reasonable values for the runs. The variations of the 

attitude parameters, the angular velocities and the implemented torques for a representative 

simulation are illustrated in Figure 4.2. It can be seen that the states converge smoothly to their 

desired values. The effect o f the gain modification expressed in (52) can be seen as torque 

fluctuation at the beginning of simulations. This modification has successfully reduced the initial 

control torques from 200 K N m to 600 N m . 

time (sec) time (sec) 

F igu re 4.2a: Or ienta t ions er rors var iat ions F igu re 4.2.b: Va r i a t i on of the er ro rs of the f i rst and 
second components of angu lar velocit ies 
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F igu re 4 .2d: The cont ro l Torques 

4.6 Tracking of desired rotation using nonlinear control methods 

In this section the system is stabilized without linearization. This can improve the 

robustness o f the controller in sense of convergence over a broader range of initial conditions. 

The equations (25), (27), (29-c) and (31) describe the kinematics and dynamics of the spacecraft. 

At the kinematics level we have to manipulate the orientation so that the actual parameters w, 

and w2 are equal to their desired values, wd] and wd2. Since z is associated with the rotations 

about the non-rotating axis of the spacecraft, we do not have any specific desired value for z, but 

i f we only control the first two kinematic parameters, w, and w2, there is a possibility that z goes 

to infinity during the motion. A s z is an angle, its going to infinity is not an issue. Effectively it 

means a continuous rotation. Therefore, we continue to control only the parameters w, and w2 

from the orientation coordinates, and as a result equation (25) becomes redundant. We now 

categorize the remaining five equations into two groups each described in the equation sets (61) 

and (62) respectively; 
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wx=w2(co2wx+coJ) + — 0)x\l + wx -w2 j (61-a) 

w2 = wx(coxw2 -co,) + ̂ co2(l- w, 2 + w2 ) (61-b) 

cb3 - Ccox co2 + uic (61 -c) 

cbx = M , (62-a) 

cb2 =u2 (62-b) 

W e w i l l first try to bring wx,w2,coi to the desired values by using cox and co2 as the 

control inputs. If wx, w2 have the desired constant values the spacecraft w i l l be in the desired 

direction and spinning about the desired axis. If in addition, 6>3 reaches its desired value the spin 

rate of the spacecraft w i l l be the desired spin rate and cox, co2 w i l l have their desired values as 

well . Let ax,a2be the prescribed values for cox,co2 resulting from controlling the equation set 

(61). In the next step, we attempt to find the appropriate values for the control effort 

parameters ux and u2 so that the entire system converges to the desired values. We use the 

backstepping method in this step. 

For controlling the first subsystem, we use the Lyapunov stability concepts. If V(x) is a 

strictly positive function of the states except at the origin and V(x) is always negative the states 

w i l l asymptotically converge to zero when time goes to infinity. Consider the following 

deviation measuring parameters. 

co, =co3-co3d 
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wJ=w-wJd 7 = 1,2 

We introduce the following Lyapunov function for the subsystem described in (61) 

Vs = | ^ 2 / 2 + 5 3

2 / 2 (63) 

It can be easily seen that Vs is strictly positive except at the origin, where w,, w2 and 0)3 

reach their desired values. In the first step we should define the control laws ax,a2 such that the 

time derivative o f the Lyapunov function, Vs, is negative except when w,, w2, co} are all zero. 

From (63) we have 

Vs = w, w, + w2 w2 + ft*, cd3 (64) 

If we prescribe the control inputs such that +vv 2iv 2 =-A^|w| in which K is a 

positive real number, and 5}3 = -c 0a> 3 where CQ is also a constant positive number, then the time 

derivative of the Lyapunov function wi l l be VS =-K\M)\ - C 0 S 3

2 which is a negative definite 

function. In this case, w],w2,co^ converge to their desired values by time. A s wXd,w2d are 

constant w, = w,, w2 =w2. If we set cox = ax and co2 = a2 by using (61) we w i l l have 

w,w, + w 2 w 2 = max + na2 + p (65) 

In which 

m = (1 + w , 2 - w, 2)W[ 12 + wxw2w2 (66-a) 

n — w, w2vv, + (1 - w , 2 + w2

2 )w212 (66-b) 
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p = w,w2ft>3 - w2wxco, (66-c) 

In order to have w , w , + iv 2 w 2 = — AT |w j 2 while cot = ax,co2 - a2 we should have 

ma , +ncx2 = - A j w | - p (67) 

Since coidis constant cd, - co,. Then from (39-c) we have5)3 = Ccoxco2 +u2c. Therefore, 

to have &>3 - -c0dj3 we should have 

axa2 = d (68) 

Where 

d = -(c0coi +uic)/C (69) 

B y multiplying (67) by a ' and using (68), we wi l l have 

max

2+(K\w\2 +p)ai+nd = 0 (70) 

The condition for the equation (70) to have real roots is that 

A = CK"| w\2 +p)2 -4mnd>0 (71) 

If mnd > 0 , K\w\2 +p> l^mnd results in having a nonnegative discriminant. A s K 

must be a positive real number, we set the lower limit for K to be Ko, a positive gain, later tuned 

during the simulations. 

K = max^2*Jmnd -p)/\w2 \,K0] ^ A > 0 

Setting K = (2^mnd - p) I \ w2 \ results in vanishing of the discriminant. In which case 

the numerical errors may cause the discriminant to become "slightly" negative, which results in 

unacceptable imaginary values. Since increasing K w i l l always increase the stability o f the 
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system, to avoid the numerical errors causing problems we consider ten percent safety buffer and 

set 

K = \Axmax{(2y/mnd-p)/\ w2 \,K0\ ,mnd>0 (72) 

If mnd<0 the discriminant of the equation (70) w i l l always be negative. In this case, K 

must be chosen so that there is no discontinuity in or, and a2 i f mnd changes sign. This means 

that K must vary smoothly while mnd passes through the origin. One way is to make K an even 

function of mnd: 

K = \Axmax^24^mlri-p)/\w2\,K0\ mnd < 0 (73) 

We can now compute a, from (70): 

a _-{K\w\2+p)± 4{K \w\2 +p)2 - Amnd 
1 2m 

and from (68) 

oc2=— (75) 
a, 

The equations (74) and (75) yield two sets of roots: 

• (K | w\2 +p) - ^(K \w\2 +p)2 - 4mnd -{K\w\2 +p) + ̂ (K\w\2 +p)2 -Amnd 
a, = 

1 2m " 2n 
a _ y»-1 " M 1 yj r y v v i r v i 1 f > (76-a) 

-(K\w\2 +p) + J(K\w\2 +p)2 -Amnd -(K\w\2 +p) - J(K I w\2 +p)2 -Amnd ,_, , . 
a - i > a f i 1 ( / o - b ) 

2m ' In 

(K | w \2 +p) is a positive number, so for the first set of roots, (76-a), we have 

l i m ^ a, =oo , l im„^ 0 a2 

while for the second set of roots, (76-b), 
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So i f we use only one of the answer sets, there is a possibility that when m or n 

approaches zero either ax or a2 goes to infinity. We w i l l decide which solution to consider based 

on observing which coefficient is going to vanish. If \mln\ < .5 the probability of vanishing m is 

higher, so the second solution set must be chosen. Similarly, i f n approaches zero, \m I n\ 

increases in magnitude until it passes 2. In which case, we switch and use the solution described 

in (76-a). In other cases, the control law w i l l remain unchanged to prevent the unnecessary 

switchings. Therefore, we wi l l have a hysteresis shape kinematic control as depicted in the 

Figure 4.3. 

(76-b) 

o 

O '—' 
O 

(76-a) 

<7 
Switching of 
control law 

.5 \m/n\ 

F igu re 4.3: Solut ion choice for k inemat ic cont ro l L a w 

Note that as can later be seen in the simulations some switchings occur in the beginning 

stages of control and this is needed regardless of the initial choice of the control law. It is 

preferred not to have any discontinuities in the control law. If we want to eliminate the 
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discontinuities generated by the switching, the term (K \ w \2 +p)2 - Amnd in (74) must be zero. 

. This means that 

K\w\2+p = ±j4mnd (77) 

The above equation leads to a real K only i f mnd>0, which it not always the case. Even i f 

(77) results in a real K, this answer can be negative which is not acceptable since it makes the 

time derivative of the attitude error positive. 

If we define, / = K | w \2 +p the time derivatives of a, and a2 w i l l be 

mi - /±2ff-4(M + mhd + mnd) _ J_ f ±jf2 _ w ) 

—i ^ (78) 
2m 

da, -a,d 
a2= 1

 2

 1 (79) 
a , 

in which 

1 , 2 2 

, . . 1 + w, -w2 ^ . _ . „ ^ 
w = (v^w, - w 2 w 2 ) w , H ! — w, + wxw2w2 + w2wxw2 + wxw2w2 (oU-a) 

1 2 , 2 

n = (-w, w, + w 2 w2)w2 H L ^ — w 2 + w, w2 w, + w 2 w, w, + w, w 2 w, (80-b) 

p = wlw2coi + w,w2<y3 + w,w 2(i; 3 - w2w,<y3 - iv2vv,6)3 - vv2w,ri)3 (80-c) 

d = - ^ - (8 i ) c 
We use these time derivatives to design the control law for the stabilization of the entire 

system. 
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4.7 Modification of the nonlinear kinematic control law 

Unti l now we have developed a control law that guarantees that the time derivatives of 

both | vv | 2 12 and 8J212 are negative except at the origin. A problem arises when | w | goes to 

zero faster than a>3 and we get | w | 2 = 0 while &>3has not vanished. Having | w\2 = 0 for all the 

future time means that the spacecraft is rotating about its thruster axis. In other words, the first 

and second components of the angular velocity are related to the third one through (33) so we 

have 

a, =aco2/c (82-a) 

a2 = bct)3 Ic (82-b) 

in which [a,b,c]T is the direction of the main thruster in the spacecraft coordinate system 

that should now be the direction of the angular velocity in spacecraft coordinate system. 

Therefore, we can no longer seta, and a2 independent from co3. In addition, the desired rotation 

of the spacecraft is about the thruster's axis: 

cou = acoid Ic (83-a) 

co2d -bco3d Ic (83-b) 

The angular velocity in the desired rotation is constant so from (29-c) we have 

uic=-CcoXd(02d (84) 

Using the equations (29-c), (82), (83) and (84) we have 

d_ 

dt 

f ^ 2 \ C b C b 
S 3 ^ 3 = -4"S 3((S 3 + Q)id f - Q ) 3 d

2 ) = - ^ 2 - d ) i

2 ( S 3 + 2co3d) (85) 
c c 

co3 

2 
V J 

Only i f the right hand side of the equation (85) is negative then cb3 converges to zero. 

The right hand side of (85) depends on cb3 and can become positive which can lead the system 
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to diverge from the desired angular velocity. Thus, we suggest using a two-stage control law. In 

the first stage of which the desired angular velocity is reached and in the second stage the 

spacecraft is moved to the desired orientation for which we use the control law in (76). In the 

first stage i f we set 5 3 = - c 0 S 3 t h e n we have— 
dt 

obtain 

CO, 

2 
V J 

= - c 0 S 3 < 0 , from (68) and (69) we 

a \ a 2 = ~(C0®2 + U i c ) / C (86) 

The assignment of ax and a2 must be done in such a way that the spacecraft eventually 

rotates with the desired angular velocity. This means that the first and second components of the 

angular velocity, a , and a2, must also converge to cold and co2d. If a , and a2 have the same 

ratio as cold and co2d, not only the convergence is achieved but also it is assured that the 

magnitude o f a , and a2 are appropriately proportional to each other. In other words, it is assured 

that the magnitude of a, is neither much larger nor much smaller than the magnitude o f a2. 

Using (86) and the stated assignment rule we obtain 

Cab 

a ( c 0 5 3 + w 3 c ) 

Cb 

C 0 f t ) 3 + M 3 c 

*3c 

(87-a) 

ex. 
- ( c 0 S 3 +w 3 c ) 

C a , 

Z>(c053 +u3c) 

Ca 
= co. 2d 

c0co} +uic 

*3c 

(87-b) 

A problem arises when the terms under the square root vanish. In which case the 

derivatives of a , and a2 w i l l go to infinity. To avoid this possibility ten percent safety buffer 

was added to the assignment: 

«! =®ld-

\0.l\u3c | + | c 0 5 3 +uic 

1.11 w 
(88-a) 

3c 
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a2 = 
-(c0a>3 +u3c) 

Time derivative of the kinematic control law parameters wi l l then be 

«i r f s ign (c 0 S 3 + w 3 c ) c 0 S 3 

a, = ^ / l . l | w 3 c |x2 A/0.11w 3 c | + | c 0 S 3 +u 

c 0 S 3 a , - « , ( c 0 S 3 + w 3 c ) 

3c 

a 2 = -
Ca? 

which w i l l be used for computing the control torques. 

(88-b) 

(89-a) 

(89-b) 

4.8 Complete model extension 

N o w that we have a , , a2 and their time derivatives, we can apply the backstepping 

control method to make the entire system stable. The method used for deriving the control law is 

discussed in section 4.9. From the equations (61) we have 

(l + w2 - w2 )cox 12 + wxw2co. 

d d_ 

dt 

W2COx 

w2 — wxco3 

— + 

s3 
U3c 

2 2 i 
wxw2cox + (1 - w, +w2 )co212 

Ccoxco2 

N o w we introduce the following vectors 

x • 
CO, 

CO, 

(l + wx

2 -w2)coxl2 

( l - w , 2 +w2

2)a>212 

+ wxw2co2 

wxw2cox + 

Ccoxco2 

(90) 

(91) 

We then have 

54 



(1 + w, 2 - w 2

2 ) / 2 

Ca, 
w,w 2 

( 1 - w , 2 + w 2

2 ) / 2 Ca, (92) 

In which <y, and co2 have been set to their prescribes values of a, and a 2 . Since 

2 r~*i 

Vs = w 12 +co112 and x = [H>,, w2, to3 ] we have 

dx 
(93) 

Using equations, (92), (93) and (101), we obtain the control inputs, u, as 

u. <°\ -a, a, u — 1 = -c0 + — 

u2 

= -c0 Q)2 

-a2 a2 

(1 + w, 2 - w 2

2 ) / 2 w, w2 Ca, 
( 1 - w , 2 + w 2

2 ) / 2 Ca; 

w, 
Wo (94) 

in which CO is a constant positive gain factor. After finding u the actual torques can be found as 

M , - / , («, -Aco2(03) 

M2 = I2(u2 -5<y,<y3) 

(95-a) 

(95-b) 

4.9 Numerical simulations 

Two sets of numerical simulations have been performed to illustrate the performance o f 

the proposed control law. The Simulink® simplified scheme of the controller is illustrated in 

Figure A.2 .1 . Inspired by the Deep Impact Flyby spacecraft [49] the spacecraft in our 
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simulations is assumed to be 601 K g with the moments of inertia about first, second and third 

principal axes to be 690, 810 and 410 K g m 2 respectively. 

In the first simulation, the third component of the initial angular velocity is the same as 

its final desired value. While the initial orientation and the first two components of the angular 

velocity differ from the final desired values. This simulation aims to illustrate the part of control 

law that corrects the orientation of the spacecraft. The results of the simulation are shown in 

Figure 4.4. 

time (sec) time (sec) 

F igu re 4.4.a: Or ien ta t ion e r ro r var ia t ions F igu re 4.4.b: A n g u l a r velocity e r ro r var ia t ions 

The spacecraft is oriented into the desired direction rotating with the constant angular 

velocity in less than three seconds. The control coefficients used here areK = .5,c 0 = 1,C 0 = 50 . 

The rapid changes in the angular velocities and the slope of the attitude coordinates correspond 

to the switchings in the control law for the first subsystem. It can be seen that the switchings are 

essential in controlling the spacecraft since the switchings are more than one and none of the 

kinematic laws in (76) can control the system individually. 

The second simulation resembles a typical fault occurrence situation. The spacecraft is 

initially stationary and in the desired orientation so that the thruster is aligned with the inertial z-
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axis. It is assumed that it takes fault detection and diagnosis systems of the spacecraft 10 seconds 

to identify the fault and switch to the proposed control law for the recovery of the spacecraft 

motion. This is considered ample time. The recovery is done by first reaching the desired angular 

velocity about the unactuated axis and then putting the thruster in the desired orientation as 

illustrated in Figures 4.5.a - 4.5.c. 

time (sec) time (sec) 

Figure4.5 .a : Or ien ta t ion e r ro r var iat ions F igu re 4.5.b: var ia t ion of e r ro r in f i rst and second 
components of angu lar veloci ty 

5 
CD -0.2 

I I L_l I I I 
0 5 10 15 20 25 

time (sec) 

F igu re 4.5.c: V a r i a t i o n of the e r ro r in the th i rd 
component of angular velocity 
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The total motion illustrated in the above figures consist of three parts; from time zero for 

10 seconds the recovery control law has not been implemented, so the spacecraft is only 

subjected to a constant torque about the unactuated axis. In this phase, the third component of 

angular velocity increases and the orientation of the spacecraft deviates from the desired 

direction. After 10 seconds, the recovery law is implemented. It takes about 1.5 seconds to reach 

the desired value of the third component of the angular velocity. The solid vertical lines in the 

figures illustrate the beginning of the third phase of the simulation during which the spacecraft 

reaches its desired orientation. With the gain parameters being c 0 = C 0 = 10 for the co, correction 

phase a n d ^ 0 = 0.2, C 0 = 10, c 0 = 0.2 for the attitude stabilization phase, the entire recovery of 

spacecraft takes about 8 seconds. B y increasing the control gain factors the recovery takes less 

time while demanding more torques. The rapid changes in the angular velocities and the attitude 

representation parameters correspond to either the switchings between the different phases of the 

simulation, as those at 10 and 11.2 seconds, or the intrinsic switchings in the attitude stabilization 

control law. It can be seen that the error value for the third component of angular velocity is 

always decreasing except during the switchings, which is then compensated shortly after the 

switching is completed. 

To illustrate the effect of the moments of inertia on the performance of the controller, 

another simulation has been performed. The results of this simulation are illustrated in Figure 

4.6. The spacecraft under consideration is the same, but the unactuated axis is the y-axis of the 

body coordinate system. Considering the equations (66) and (69) it can be seen that the only 

parameter not related to initial conditions that affects the response of the system is 

C = (/, —I2)/I}. Computing the parameter C for the two different choices of the unactuated 

axis, it can be seen that in the current simulation C = 0.35 while in the previous simulations it 
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has been 0.3. Therefore, the difference in the choice of the unactuated axis does not have a 

significant effect on the response of the system from the inertia variation point of view. 

0 1 n i rr7:—: 1 1 U J r : ;n—TT- 1 ii 

time (sec) 

Figure 4.6.c: V a r i a t i o n of the e r ro r in the th i rd 
component of angular velocity 

The results o f the simulations, however, differ from the previous one in the number of 

switchings and the duration of the convergence. The initial conditions for both simulations are 

the same. The recovery controller is implemented after 10 seconds from the start of the 

simulation. During these 10 seconds the attitude and angular velocities of the spacecraft vary. 

These variations differ for each simulation since the disturbance torque is applied about different 
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axis. Therefore, the initial conditions of the controlled systems vary. Since the change o f the 

inertia related factors are not significant, the variations in the controlled system response can be 

associated with the change o f the initial value of the states. This simulation shows that the trend 

and duration of approach can be different for different initial conditions. 

Because o f the complete modeling of the system, i.e. the avoidance of using the 

simplification methods such as the concept of homogeneity, and the globally stable control law 

for the first subsystem, the proposed control law is highly robust. Since the initial errors in the 

orientation and the angular velocity only show up in the governing equations for the first 

subsystem, which has become globally stable, they do not have any effect on the stability of the 

system. On the other hand, linearization has been used for derivation of the control law for the 

entire system. During the switchings, the second subsystem may not be able to catch up to the 

prescribed values, which can result in the instability. This issue can be solved by increasing the 

gain factor, C 0 , at the cost of higher control torques. Being globally stable is the main advantage 

of the proposed control law over other methods such as that in [50]. 

4.10 Generalization of the backstepping method to systems with 

nonlinear effort-state relation 

In this section the theoretical base for deriving the control law for the entire system, 

having the kinematic control law is presented. 

Consider the system 

(96) 

£ = u (97) 
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In which x is the state vector corresponding to the first subsystem and u is the control 

effort vector. Assume that x = 0 is a global asymptotical equilibrium of (96) required £ = a. If 

we define the parameter v = £ - a we have v = u- d(x) on the other hand using the first terms 

dg 
of the Taylor's expansion we have x = f(x) + g(v + a) = f(x) + g(a) + —v 

dv 

dg dg 
We now define g' as e'= — = —- so we have 

x = f(x) + g(a) + g\x)v (98) 

Suppose that the subsystem described by x = f(x) + g(a) is stable, so there w i l l be a 

Lyapunov function Vs which is positive except at zero and has a negative time derivative. We 

now introduce the Lyapunov function for the entire system 

J / = F + | v | 2 / 2 (99) 

So 

K=K+ v - v = ^-*(f(*) + g(a) + g'(x)v) + v •(u-d) 
ox 

where " • " represents the dot-product. 

Since i f £ = a the (96) subsystem w i l l be stable 

dx 
<{f(x) + g(a)) = -W(x)<0 

in which W{x) is a positive function except at the origin 

dV 
Ve = -W{x) + — • g ' (x)v + v(u-d) = -W(x) + 

dx Kdx j 
g\x)v + (u-a)iv 

= -W{x) + 
Kdx j 

g\x) + (uT-dT) (100) 
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If we define the control input, u, such that (dVs /dx)Tg'(x) + (uT -aT) = -CavT the 

Lyapunov function of the entire system wi l l become negative definite and the system wi l l be 

stable. Therefore, we define the control input u as 

uT =-C0vT-{dVJdxf g\x) + aT =>u = -C0v + d-g'(x)T(dVs/dx) (101) 

in which 

8-
dg_ 

3 £ 
(102) 

This introduced control law has been used to derive the control law for the entire system 

from the kinematic controller in section 4.7. 

4.77 Feasibility of controlling underactuated spacecraft using 

nonlinear feedback linearization method 

One of the most common methods in the nonlinear control of the systems is the feedback 

linearization method. In this section it is examined whether the underactuated spacecraft system 

can be controlled using the feedback linearization method. The feedback linearization method 

has been briefly discussed in section 2.2.4. To be able to check whether the system is feedback 

linearizable, the governing equations of the system should be organized into the form of (19). 

Equations (25), (27) and (29) are the governing equations. Choosing the state vector of the 

system to be 

rco, 

x = 

X, 
CO-, 

co, 

w. 
(103) 

62 



Using equations (25), (27), (29) and (103) the governing equations of the system w i l l 

turn into 

X-^ ^^.X^X I 

X>2 BX\ X^ ~r* 

x 5 ( x 2 x 4 + x 3 ) + ^ - ( l + x 4

2 - x 5

2 ) (104) 

X5 ~ X4 iX\ X5
 Xi ) 2 (l *4 *5 ) 

X^X^ X^X^ I •̂ '̂  

Equations (104) can be written in the form of (19) as 

x = f(x) + g, (x) + g2 (x) 

where 

(105) 

f(x) = 

5x ,x 3 

£*x^ x^ 

x 5 ( x 2 x 4 + x 3 ) + ^ - ( l + x 4

2 - x 5

2 ) 

x 4 ( x , x 5 - x 3 ) + ^ ( l - x 4

2 + x 5

2 ) 

"̂ 2"̂ 4 X-^X^ H - X^ 

(106) 

gi(x) and ^ f j c J : 

6x1 
6x1 

The next step is to form the feedback linearizability matrix 
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Gs=[si g2 <*dfgi adfg2 ••• ad5

fg, ads

fg2\ (107) 

The Lie algebra should be computed as discussed in section 2.2.3. Computing the L ie 

derivatives and the Lie brackets using the codes written in Matlab® symbolic math, it can be seen 

that the rank of the matrix G5, when the first three components of the state vector vanish is four. 

Vanishing of the first three components of the state vector corresponds to vanishing of the 

angular velocity of the spacecraft. Since this rank is less than the rank of the state space, which is 

six, the system cannot be feedback linearized when the desired attitude is fixed. For control of 

the underactuated spacecraft subjected to the disturbance torques, the desired motion involves 

rotation of the spacecraft. Therefore, the first three components of the state vector are not zero at 

the desired equilibrium and the system can be feedback linearized. Therefore, the feedback 

linearization is a globally stable alternative to the linear controller introduced before. Two points 

must be considered in applying feedback linearization. First, the trajectory must not pass through 

the states with zero angular velocity. This means that the spacecraft must never stop rotating. A 

stop causes loss of controllability and the spacecraft cannot be guided to the desired attitude 

afterwards. The second point is that feedback linearization cannot be used i f the disturbance 

torques are not present and the spacecraft is supposed to reach a non-rotating attitude. 

4.72 Comparison of the proposed control methods 

In comparison, nonlinear controller is insensitive to the initial conditions, while the linear 

controller is smooth and therefore requires much less actuation torques. Linear controller has 

been derived by approximating the system by a linear system. This approximation differs from 

the reality as we get further from the desired point where the system has been linearized about. 
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The controller may not converge i f the initial conditions are far from the desired values or the 

control gains are set to high values. The other point about linearization is that it cannot be 

performed i f the desired angular velocity is zero. If the angular velocity vanishes the 

controllability over the unactuated axis is lost. 

Nonlinear controller stabilizes the desired states whatever the initial conditions are. It is 

also applicable for stabilization of a non-rotating direction. A non-rotating direction is chosen as 

the desired state i f there is no disturbance torques acting on the spacecraft. However as proved in 

[12] a spacecraft controlled by two pairs of gas jet actuators cannot be stabilized to a static 

equilibrium using a smooth feedback control law. The fluctuations in the control law demands 

high control torques to make the system keep up with the prescribed values. The backstepping 

method used in deriving the controller results in global stability only i f the kinematic law is 

smooth. To make the overall system stable, the trajectory must be kept as close to the prescribed 

non-smooth values as possible. This prevents from reducing the control torques by reducing the 

gains. Overall, the nonlinear control method works under difficult conditions but it demands high 

control torques. 

The best way of controlling an underactuated spacecraft subjected to disturbance torques 

is to use a combination the of control laws. The nonlinear controller should be used i f the 

trajectory is far from the origin or i f the desired state is a non-rotating direction. However, when 

the spacecraft is close to the desire orientation using linear controller rotates the spacecraft to the 

desired attitude smoothly. If the desired angular velocities are not zero feedback linearization 

methods can be used for controlling the spacecraft as shown in section 4.10. This method results 

in smooth globally stable controller stabilizing the desired motion. Therefore, it is a globally 

stable alternative for the linear controller. 
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Chapter 5 

Momentum dumping of a spacecraft using less than three 

external control torques 

If the spacecraft is controlled using the momentum wheels, the external torques applied 

on the spacecraft, including disturbance torques, are accumulated. This w i l l cause the angular 

velocity of the momentum wheels to increase and to prevent their saturation this accumulated 

momentum must be eliminated. The vanishing of the accumulated momentum in momentum 

wheels is called momentum dumping and it is achieved through the use of external control 

torques. Momentum dumping is a crucial stage in the attitude control of the spacecraft. If the 

momentum wheels saturate, the attitude controller of the spacecraft w i l l become unstable. 

Therefore, the spacecraft w i l l no longer point to the desired directions and wi l l naturally be out 

of service. 

The external torques can be generated using the thrusters or the magnetic torquers. If one 

of the actuators is out of order due to a failure, the principal axis corresponding to that actuator 

wi l l become unactuated. The angular momentum of the system w i l l be affected by the external 

torques as 

H = T (108) 
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in which H is the angular momentum vector of the spacecraft and T is the net external 

torques applied. If we are not able to apply external torque about any of the principal axes, 

according to (108) that component of the angular momentum cannot be changed. In this section, 

a control method has been developed to diminish the angular velocities of all the momentum 

wheels using two or even one external torque actuator. 

5.1 Governing equations 

The angular momentum of the spacecraft is derived [51] as 

H = [I*]co + [A]Cl (109) 

in which [/*] is the inertia tensor o f the spacecraft and the momentum wheels with all 

the wheels locked. Matrix [A] contains the components of the inertia tensor o f the momentum 

wheels that contribute to the total angular momentum after multiplication by the spinning speed 

o f the wheels. 

a 

in which Q, is the spinning speed o f the z'th momentum wheel. The angular momentum 

th 

vector of the i momentum wheel due to the spinning of the motor, described in the spacecraft 

coordinate system is AiQ.j. Therefore, the matrix A can be formed as 
A = [... A, ...] ( I l l ) 

(110) 
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Considering the coordinate system attached to the center o f mass of the spacecraft and 

rotating with that, from (108), we wi l l have. 

c c (112) 

in which Hc is the angular momentum vector of the spacecraft and Tc is the net external 

torques applied, both about the center of mass of the system, C. Hc has been described in the 

body coordinate system, which is rotating with the angular velocity co. Considering the effect of 

the rotation of the body coordinate system, we have [52] 

Hc =—([/* ]co + [A]£l) =[r]cb+ [A]Q + a)x![I*]a) + [A]0) 
dt 

(113) 

In the above equation, the term cox(lI*]co + [A]Q) corresponds to the effect of the 

rotation of the coordinate system. Defining the skew symmetric matrix [a] 

[a] = 

0 —a-, a 

°3 

-a. a, 

(114) 

Using the above definition we can obtain [53] 

axb = [d]b 

We can now rewrite the equation (113) into the matrix form 

Hc = —([/> + [A]£l)= [l']d> + [A]Q + [o)]Hc 

dt 

Rewriting (112) using (116) we wi l l have 

[f]a + [A]n + [co]Hc=Tc 

in which [cd] is the skew symmetric matrix defined as in (114). 

(115) 

(116) 

(117) 
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N o w we obtain the governing equations of the spinning of each of the momentum 

wheels. 

The flywheel of the momentum wheel assembly is carefully balanced to be symmetric. 

Therefore, from the three principal moments of inertia the two, which correspond to the axes 

perpendicular to the axis of symmetry, are the same. We call the moment of inertia about the axis 

of symmetry 1^ and the moment of inertia about the other two axes I±. Using the Eller 's 

equation [52] we get 

J A = - I ± ) ° ) l - ^ X 2 + T \ \ ( 1 1 8 ) 

In which con and a>12 are the angular velocity components perpendicular to the axis of 

symmetry and 7J is the torque exerted by the momentum wheel motor. 0)^ is the component of 

the angular velocity of the flywheel along the axis of the momentum wheel, viewed by an inertial 

th 
observer. The spinning velocity of the motor of the i momentum wheel assembly is Q.i and 

BI = [BN,BI2 2? ( 3 ] T is the unit vector along the axis of that flywheel in the body coordinate 

system. The component of the angular velocity of the flywheel about the motor axis is computed 

as 

coh = Q , +5,. •co = Qi+ B^co (119) 

We can represent all the momentum wheel governing equations in a single matrix 

relation 

[j]{Q + [5]d;}=w (120) 

In the above equation [Q] = [ . . . , Q . , . . . ] t and [u] = [...,un...]T, where ut is the actuation 

torque of the z'th momentum wheel. The moment of inertia of the / t h momentum wheel about its 

motor axis is JT. The matrices [J] and [B] are defined below 
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[ J } = (121) 

(122) 

(123) 

We can rewrite the equation (120) as 

Q = - [ B ] o ) + [J]'lu 

Then substituting (123) into (117) we obtain 

«& = {M -[A][B]-ll-[A][JY]u-[cd]Hc+Tc} (124) 

The angular momentum of the z'th wheel caused by the spinning of the motor w i l l be 

J . Q . S . These vectors should be summed over all o f the momentum wheels to result in the 

angular momentum vector of the spacecraft due to spinning of all the momentum wheels, this 

w i l l be 

(125) 

0" '. 

J, [••• * , ...] 

0 * 

or 

Comparing this to equation (109) and considering the definition (122) we get 

A = B T J 

Therefore, the equation (124) can be rewritten as 

s = { [ r ] - k ] / [5]n - k ] M - [ s K + rc} 

^[/Af'{-kH5R+rJ 

(126) 

(127) 

(128) 

In which IA is defined as 
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Uf = { [ / * ] - k ] J[B]} (129) 

The quaternion vector is used for representing the attitude of the spacecraft. Consider [D] 

to be the direction cosine matrix corresponding to the coordinate transformation between the 

inertial coordinate system and the body-fixed coordinate system. This direction cosine matrix is 

known [26] to have three eigenvalues one of them being equal to unity. If e is the eigenvector 

corresponding to the unit eigenvalue, we have[l)]e = e. The inertial coordinate system can be 

brought to the body coordinate system by a pure rotation about the eigenaxis of the direction 

cosine matrix, e, with the amount of a radians. The quaternion vector describing the attitude of 

the spacecraft is now defined as [54] 

(130) 

In which 

qx = ex s in(a /2) 

q2 = e2 sin(ec/2) 

q3 = e} s in(a / 2) 

q4 = cos(a /2) 

e — [<?|, e2, 6j ] 

(131) 

If dtJ is the element of the direction cosine matrix located at the z t h row and the fh column, 

the quaternion elements can be found as follows, 
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q4 = ±0.5^j\ + du + d22 + J 3 3 

qx =0.25(d2i-di2)/q4 

q2 = 0.25(J 1 2 -d2X)/q4 

q3 = 0.25(<f12 -d2X)lqA 

The kinematic equation for the quaternion changes is 

d 1 n' (132) 

In which 

0 

-co2 0 

-cor 

-coy cox 

co„ 

cor - CO,, 

0 

-co, 0 

(133) 

The equation (132) can be rewritten in the following form [54]. Equation (132) is the 

kinematic equation of the system and together with the dynamic equations (128) and (123) forms 

the governing equations o f the system. 

It is assumed that there are three acting momentum wheels, installed to rotate about the 

principal axes o f the spacecraft. The 5-matrix introduced in (122) w i l l then be 
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1 0 0 

B = 0 1 0 (134) 

0 0 1 

Therefore the equations (123), (128) and (129) w i l l change to 

Q. - -cb+[J] u (135) 

(136) 

[if = {[/'M (137) 

N o w that we have the governing equations, we can move on to deriving the control scheme. 

5.2 Momentum dumping maneuvers 

During the momentum dumping process the angular velocity o f the momentum wheels of 

the spacecraft must be removed. So, the initial conditions of the momentum dumping process are 

identified as the spacecraft being in the desired orientation while the momentum wheels are 

rotating near the saturation velocities. The desired final condition is having the spacecraft in the 

desired orientation while the angular velocity o f the wheels have vanished. 

5.2.1 Momentum dumping with two control torques 

If we have three acting external torques, the momentum dumping can be performed while 

having the spacecraft in the desired direction throughout the process [26]. If one of the thrusters 

is out of order due to a failure, the orientation has to be temporarily changed for facilitating the 

momentum dumping; without loss of generality, we assume the failed thruster to be the one 

incorporated with the third principal axis. If the spacecraft is stationary then CO = 0 , CO = 0 and 

[cd] = 0 . From the equation (136), we have 0 = [i* ]"' {- u - [o]Hc + Tc}. Since the third thruster 
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is out of order Tci = 0, so w3 = 0. J is defined to be a diagonal matrix so J 1 is also diagonal 

and therefore the third component of [j]~lu w i l l be zero. Then, from the equation (135) we have 

£2 3 = 0. This means that the angular velocity of the third momentum wheel remains unchanged 

and cannot be dumped. Therefore, the attitude of the spacecraft has to be temporarily changed 

during the momentum dumping procedure. 

Since the orientation of the spacecraft must be changed for momentum dumping of the 

underactuated spacecraft, there is a possibility that the spacecraft w i l l not be in the desired 

direction by the end o f momentum dumping maneuver. We should now see i f correcting the 

attitude of the spacecraft accumulates speed in the momentum wheels. Consider that the 

spacecraft is stationary at the orientation Q with all the momentum wheels not rotating (the 

common situation after the momentum dumping). The angular momentum of the spacecraft from 

(109) is computed to be zero. We then rotate the spacecraft to the desired orientation R, using the 

momentum wheels. Since the spacecraft wi l l be stationary at the orientation R, co = 0 . From the 

conservation o f the angular momentum we have H = [I*][0] + [A]Q = 0 therefore [y4JQ = 0. 

From (126) and (134) we have [A]- [j]. Thus, [A] is not singular and Q = 0. Therefore, none o f 

the momentum wheels w i l l be rotating after the attitude maneuver is performed. This means that 

correcting the attitude o f the spacecraft does not accumulate speed in the momentum wheels. 

A s a momentum dumping procedure, i f the angular velocity of the third momentum 

wheel is vanished we can dump the angular momentum in the rest of the momentum wheels 

while the spacecraft is stationary. The motors of the momentum wheels apply internal torque 

which does not affect the total angular momentum of the system. If the spacecraft is rotationally 

stationary and its angular momentum vector lies in the x-y plane of the spacecraft, H, = 0. 
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Therefore, the third component of A[Q] w i l l be zero. Since U]=[j] is a diagonal matrix 

Q 3 = 0. the maneuver of rotating the spacecraft using its momentum wheel, such that the 

angular momentum vector lies in the x-y plane is proposed for vanishing the third momentum 

wheel angular velocity. In that final orientation, the z-axis of the spacecraft w i l l be perpendicular 

to the angular momentum vector, H. We call this intermediate stage attitude Q. 

The shortest rotation from the initial orientation to Q is done about the vector Z 0 xH . In 

which Z 0 i s the z-axis of the initial body coordinate system. In this rotation, the z-axis of the 

spacecraft coordinate system remains in the plane normal to Z0xH. 

Figure 5.1: M o m e n t u m dump ing intermediate att i tude 

It can be seen from the Figure 5.1 that the final orientation of the z-axis, 

unit vector along the normal component of Z 0 to H. Therefore, we have 

7 - 7 
J " I TLT ! I TT I 

Zf, should be a 

(138) 
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In the above equation is the unit vector along H. The value ^ is the 
\H\ \H\ 

component of Z 0 along the vector H. Therefore, in the equation (138) we have subtracted the 

component of Z 0 along the angular momentum vector from Z 0 to get to the normal component. 

Since before the momentum dumping the spacecraft has been in the desired direction, the 

spacecraft coordinate system is assumed to coincide with the inertial coordinate system at the 

beginning of the motion. The spacecraft coordinate system is then rotated about Z0xZf with an 

angle o f a so that the z-axis reaches' Zf. Zj is along one of components o f Z 0 , so the angle of 

rotation w i l l be -71 I2<a <n 12 . Therefore, the angle o f rotation can be computed as 

a = s i n 
Z 0 x Zf 

(139) 

W e know the vector which rotation has been about and the angle o f rotation, so the 

quaternions describing the attitude of the spacecraft in the final orientation can be derived as 

follows. 

= (z0xZf)sin(a/2) (140) 

q4 = cos(a/2) (141) 
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5.2.2 Momentum dumping with one external control torque 

The accumulated momentum in the momentum wheels can be removed using even one 

external control torque. This means, even i f the control over the external torques about two of the 

principal axes of the spacecraft is lost, the momentum dumping process can be performed and 

the spacecraft w i l l be able to perform the attitude maneuvers afterwards. The general solution is 

to first rotate the spacecraft so that the actuated axis aligns with the direction of the total angular 

momentum vector. This causes the angular velocity of the momentum wheels incorporated with 

the other two principal axes to vanish. In the next step the available thrusters are used to exert a 

torque in the reverse direction of the momentum vector, which is now in the same direction as 

the actuated axis. While this external torque is applied the attitude stabilization method using the 

momentum wheels is active. A s a result, the attitude o f spacecraft does not change while the 

angular velocities of the momentum wheels diminish by time. After all the angular momentum of 

the spacecraft has been removed the spacecraft is returned to its initial attitude implementing the 

momentum wheels and using the same control scheme for the attitude stabilization as that of the 

previous two steps. We should now quantify the attitude in which the actuated axis lies in the 

direction o f the angular velocity vector. Without loss of generality, the x-axis is assumed to be 

the external torque actuated axis of the spacecraft. The fastest and shortest way of bringing 

e, = [1,0,0]T , the unit vector along the x-axis, along the H, the angular momentum vector, is the 

rotation about their cross product e, x H. Therefore, the inertial frame can be taken to the 

intermediate frame, in which the intermediate x-axis lie in the direction of the angular 

momentum vector, by a rotation about e{xH with the angle of a . sin(a) and cos («) can be 

found from the magnitude of the cross and dot products as follows 
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sin(g) = 1 6 ' * H 1 (142) 
I H I 

cos(a) = -̂ 4r- , (143) 
\H\ 

The unit vector along e, x / / is the unit vector determining the first three quaternion 

coordinates. Therefore, the quaternions representing the intermediate coordinate system are 

q3 

A ^ | - s i n ( a ) (144) 

q4 = cos(a) (145) 

N o w that the quaternions associated with the desired attitude have been derived, a control 

law must be implemented to bring the attitude of the spacecraft to the desired setting using the 

momentum wheels. 

5.3 Attitude changing control methods 

In this section, we present two control methods for performing the attitude changing in 

the momentum dumping maneuvers. Having a look at equation (136) we find that the momentum 

wheels torque vector, u , i f negated, w i l l act similarly as the external torque terms, Tc. Therefore, 

the control laws for controlling the attitude of the spacecraft using the thrusters can be 

generalized to control of the spacecraft using the momentum wheels in addition to the control 

methods developed for controlling spacecraft using the momentum wheels. 

5.3.1. Control law with quaternion sign indifference 

Consider the control law in which the momentum wheels control torque is derived as 
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-u = [K][q]-[D][Q)] + [cd]Hc (146) 

in which [K] and [D] are the proportional and derivative gain matrices. Inspired by [54] 

these matrices are assigned as 

[K] = k[lA] (147-a) 

[D]=d[lA] (147-b) 

[q] contains the three components of the quaternion vector corresponding to the 

spacecraft coordinate system. 

[*] = q2 

? 3 

(148) 

It has been shown in appendix 1 that using this control law the spacecraft undergoes an 

eigenaxis rotation. This means that it w i l l rotate about the Euler axis corresponding to the initial 

attitude. The Euler axis corresponding to an attitude is the eigenvector corresponding to the unit 

eigenvalue o f the direction cosine matrix. Note that since the quaternion vector is a unit vector, 

the absolute value o f the fourth component of the quaternion vector can be derived having the 

first three components. Therefore, no information is lost by not including q4 in the control law. 

In the quaternion attitude representation [q] and - [q] represent the same orientation. Therefore, 

in deriving the quaternion parameter from the direction cosine matrix, the output of the attitude 

sensors, there is a danger of the negation of the quaternion vector. To prevent this negation 

passing on to the control torques we modify the previous control method inspired by [51]. 

-u = [K]q4[q]-[D][C0] + [5)]Hc (149) 

79 



In the modified control law, i f the sign of [q] changes the sign of both [q] and q4 w i l l 

change and the sign of q4 [q] w i l l remain unchanged. Therefore, there w i l l be no abrupt changes 

in the applied torques. The control law presented in (149) stabilizes the angular velocity zero and 

the quaternion vector [q] = [0,0,0,l] T. To make the attitude represented by [qd ] stable, the 

quaternion representing the orientation of the spacecraft relative to the frame fixed at the desired 

orientation must be computed. This quaternion is called [#]and then [q] and <74are defined 

similarly. The control law is now modified to 

- u = [K]g4 [q] - [D] [CO] + [co]Hc (150) 

This modification make the spacecraft reach the attitude represented by [qd ]. 

The stability of the proposed control method is proved using the Lyapunov method [6]. 

We consider the following Lyapunov function. 

V = ̂ COR[KY[lA](0+q{

2+q2

2+q}

2 = ^COT[K]-][lA]co+\-q2 (151) 

The matrices [K]~X and [/A] are positive definite, so ^(W T[/C]~'[/ A]<y w i l l always be a 

positive scalar except at co = 0 , where it vanishes. The introduced V function is a positive 

function only vanishing i f CO = 0 , q4 = 1 and qx = q2 =q} = 0 , which corresponds to the 

spacecraft being stationary at the desired orientation. 

N o w we should check to see i f the time derivative of V is always negative. 

V = UT [KV [iA ]CO + Ur [K]~] [lA]cb- 2q4qT4 (152) 

From the definitions (137) and (147-a) it is known that both [/A] and [K] matrices are 

symmetric therefore [K]~1 [/ a ] w i l l be a symmetric matrix as well . A s a result 
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Then having 

([KY [lA \oj co = ([Ki1 [lA \o)»Q)=cbJ [K]-' [lA \O (154) 

we obtain 
c 

<yT [KY [lA\b = cbT [K]-1 [lA\o (155) 

N o w we can rewrite equation (152) as 

V = cbT[KY[lA]co-2q^4 (156) 

Using the equation (136) and (150) we get 

[/A] d) = -[D](0-[K]q4q (157) 

The governing equation for the fourth component of the quaternions w i l l be [54] 

$ A = - ± - 0 J r q (158) 
2
 [ 

Substituting the equations (157) and (158) into (156) we get 

V = C0j[KY {-[D](0-[K]q4q)+0)rqq4 (159) 

So we obtain 

V = -COJ[KY[D\CO (160) 

Both [A-]-1
 and [D] are negative definite matrices. Therefore, [K]-1[D] is a positive 

definite matrix and the right hand side of the equation (160) w i l l always be negative except when 

co - 0 . The vanishing of the V function does not necessarily occur at the origin, whatever the 

attitude is, i f the angular velocity vector vanishes, V w i l l vanish as well . Therefore, the time 

derivative of the Lyapunov function is a positive semi-definite function of the states. According 

to the Lyapunov theorem for the local stability [6], this implies local stability of the origin. 
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For proving the global stability, we use the global invariant set theorem, described in 

section 1.2.1. According to (132), i f the attitude of the spacecraft does not change the angular 

velocity vector of the spacecraft, co, is zero. The 0) vector being constantly zero implies co = 0 . 

Using the equation (157), this condition is preserved i f either q = [0,0,0]T or q4 = 0. q = 0 3x1 

corresponds to the spacecraft being at the desired attitude, however the vanishing of q4 does not 

correspond to the desired attitude. Therefore, to be able to prove the global stability it must be 

shown that the equilibrium corresponding to q4 - 0 is unstable. Stability of the attitudes 

identified by q4 = 0 and <y = 0 i s determined using the Lyapunov's linearization method. The 

state vector o f the system w i l l be 

X = [<7l ,q2 >ai >a4 » a \ > ® 2 > ^ 3 7 (161) 

Using the equations (132) and (157), and linearizing the equations as described in section 

1.2.1 the controlled system can be linearized to 

x = Ax 

A = 

- / A ' ^ 4 L L - / A M x , 

o 

o 

o 

o 

o o 

o o 

0 0 

0 0 

(162) 

Form the seven eigenvalues of the matrix A four are zero at q4 = CO = 0 and the others 

are the eigenvalues of the matrix -IA D. Since 7 A and D are both positive definite matrices 

-IA D w i l l also be a positive definite matrix with three strictly positive eigenvalues. Therefore, 

the matrix A has three positive eigenvalues which makes the equilibrium q4 - 0 unstable. A s a 

result, the system converges to the only stable invariant attitude, which is the desired attitude. 
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5.3.2. Control law with quaternion sign dependency 

Considering the dynamic equations of the spacecraft (136) it can be seen that, provided 

we use the feedback linearization method to compensate the gyroscopic terms, the external 

torques and the momentum wheel motor torques play the same role. Although applying internal 

control torques changes the angular momentum of the wheels, as far as the gyroscopic term, 

coxHc, is compensated it does not have any effect on the behavior of the system. Here a well 

known control method for deriving external control torques [54] is expanded to the momentum 

wheel actuation case. 

-u = [K][q]-[D][a>] + [®]He (163) 

in which [K] and [D] are the proportional and derivative gain matrices assigned as 

[/T| = & [ / A ] (164-a) 

[£>] = 4/A] (164-b) 

Using (136) the dynamic equation of the system is 

IAQ) = -[K]q-[D]co (165) 

To prove the stability of the system we choose the following Lyapunov function 

V' = \/2 COT[KY IAQ) + qf +q2

2 + q\ + (q4-lf = 1 / 2 Q)T [K]~1
 I A C D + 2(l - q4 ) (166) 

The time derivative of this Lyapunov function is determined similar to the previous case as 

V' = CDT[KYlIAd)-2qA (167) 

Provided [ iT]~ ' / A is a symmetric matrix. This condition is preserved by the choices for 

gain matrices (164). Using (165) and (158) we obtain 

V' = co1 [KY (- [K\ - [D]Q?)+ o)Tq = -ojT [KY [D]co (168) 
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Since both [K] 1 and [D] are positive definite matrices F ' w i l l be a negative semi-

definite function of states. Using the Lyapunov's theorem for local stability the function is 

proven to be locally stable. Using (165) the invariant attitudes of a spacecraft controlled using 

this method can only be the origin which corresponds to the desired attitude. Therefore, the 

global invariant set theorem implies that the origin is globally stable. 

5.3.3 Comparison of the attitude changing control methods 

Both control rules are proven globally stable and can be used for the attitude maneuvers 

of the spacecraft. One of the advantages of the control law with the quaternion sign indifference 

over the other method is its independence from the sign of the quaternion fourth element. A s 

stated before by multiplying q4 by q the control torques wi l l be the same for assigning either 

[q] or -[q] to a single attitude. This can prevent sudden changes in the applied control torques 

and the vibrations resulted. But the main advantage o f this control method is its intrinsic gain 

scheduling. If the spacecraft attitude is close to the desired direction, q4 w i l l be close to one. This 

means that while close to the desired attitude both control laws result in the same control torques 

except the sign compensation that is done in the former method. The total proportional gain in 

the sign insensitive method is equal to - q4 [K] which is q4 times the control gain in the sign 

sensitive method. While far from the desired direction g 4 i s a small number increasing as we 

approach to the desired attitude. Therefore, the total proportional gain varies and increases as the 

spacecraft approaches the desired attitude. This variation prevents having the significant control 

torques at the beginning of the maneuver, where since the error vector is large, the torques can be 

huge i f treated with the same gain coefficient. On the other hand, the behavior o f the system 
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remains unchanged in the vicinity of origin, which makes sure that the approach behavior of the 

system is not affected. Due to the two stated advantages, we choose the sign insensitive control 

method for performing the attitude maneuvers. 

5.4 Angular momentum removal using external control torques 

In the previous sections we determined the attitude at which the angular momentum 

removal should be performed and we derived the control laws to bring the spacecraft to that 

desired attitude implementing the momentum wheels. In this section, we derive a control law for 

deriving the external control torques to cease the angular momentum of the spacecraft. The main 

idea is to stabilize the attitude of spacecraft using the momentum wheels, while exerting the 

appropriate external torques to reduce the angular momentum. When the spacecraft is stabilized 

using the momentum wheels, all the external torques are transferred to the momentum wheels to 

prevent the rotation of the spacecraft. We assign this external torque to be negatively 

proportional to the angular momentum vector 

Tc=~kdnmpHc . (169) 

In the above equation kdumpis the positive scalar gain. Using the equations (112) and (169) we 

obtain 

Since [-k d u m pI i x }] is a negative definite matrix, with three eigenvalues being equal to 

- kd , the angular momentum of the spacecraft converges exponentially to zero. If the direction 

of the angular momentum of the spacecraft changes during the momentum removal process the 

attitude o f the spacecraft must be altered so that the angular momentum vector be always in the 

plane or direction which the external torque actuation is available. Since the direction of the time 
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derivative of the angular momentum vector is in the same direction as the vector (refer to 

equation (170) ), its direction remains constant and attitude changes meanwhile the momentum 

removal is not necessary. Figure 5.2 illustrates the block diagram of the attitude control and 

momentum management control system. 

External 
torque 
controller 

0 command 

-̂ r>-H [K] N>^-

disturbance 

[D] 

1 hi 1 e 1 

r w 
S 

W 

S 

e 

F igu re 5.2: M o m e n t u m remova l system 

In the above figure hw = [A]Q is the angular momentum of the momentum wheels. The 

other parameters have been defined in section 5.1, 5.3 and 5.4. The external torque controller in 

the control system is augmented to the attitude control system introduced in (163). Therefore, 

while the attitude is stabilized using the momentum wheels, an external torque proportional to 

the angular momentum vector of the momentum wheels is implemented on the spacecraft to 

remove the accumulated angular momentum. 
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5.5 Numerical simulations and discussions 

The numerical simulations have been performed to illustrate the performance of the 

control laws in action. The Simulink® simplified scheme of the controller is illustrated in Figure 

A.2.2. Inspired by [51] the specifications o f the spacecraft is assumed to be 

M = the total mass of the spacecraft and the momentum wheels 515 kg 

/ , = the moment of the inertia of the spacecraft without the momentum wheels about x-axis 

=86.215 kg m 2 

12 = the moment of the inertia of the spacecraft without the momentum wheels about y-axis 

=85.07 k g m 2 

7 3 = the moment of the inertia of the spacecraft without the momentum wheels about z-axis 

=113.565 k g m 2 

Ja = axial moment of inertia of the wheel =0.5 kg m 

The momentum wheels are assumed to be mounted in the direction of the principal axes 

and the thrusters are assumed to exert external torques about the principal axes. Figure 5.3 

illustrates the simulation results for the momentum dumping of the spacecraft using the available 

thruster torques about two axes. 
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Figure 5.3.e: The thruster control torques 

The initial condition is considered as the spacecraft being coincident with the inertial 

coordinate system, while the momentum wheels rotating with high spin rates. The maneuver is 

composed of three phases. In the first phase starting at time zero and lasting for about 70 seconds 
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the spacecraft is brought to the intermediate attitude using the momentum wheels. In this 

orientation the angular momentum vector lies in the xy-plane of the spacecraft coordinate system 

and therefore the spin rate of the momentum wheel corresponding to the z-axis vanishes. The 

second step is angular momentum removal which starts from about the 70 second and last t i l l 

the 250 t h second. The external torques proportional to the angular momentum of the spacecraft 

are being exerted. The attitude of the spacecraft should remain unchanged and since the 

disturbance torques are negligible compared to the thruster torques during the momentum 

removal phase, the momentum wheel torques are equal to the external thruster torques. The last 

phase of the maneuver is bringing the spacecraft coordinate system back to the inertial 

coordinate system using the momentum wheels. Note that the momentum wheel control torques 

are significantly smaller than those in the first phase. This difference corresponds to the 

gyroscopic torques that are compensated in the feedback linearized attitude control system. Since 

the spin rate of the momentum wheels were high in the first phase after being cross product with 

the spacecraft angular velocity vector it w i l l result in huge gyroscopic toques. 

The effect of the sizing o f the momentum wheels has been illustrated by simulating the 

response of a spacecraft with five times the mass of the spacecraft in previous simulation and the 

same momentum wheels. The principal moments of inertia of the spacecraft w i l l be five times 

more than that in the previous simulation. The results are illustrated in the Figure 5.4. 
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Figure 5.4.e: The thruster control torques 

From equation (175) it can be seen that the dynamic equations of the controlled system is 

independent of the moment of inertia of either the spacecraft or the momentum wheels. This 

implies that the attitude and the angular velocity response of the spacecraft should not alter from 
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the previous simulation. The moment of inertia and the initial spinning speed of the momentum 

wheels is the same as those in the previous simulation. The angular momentum stored in the 

momentum wheels is therefore the same. The thruster torques during the momentum dumping 

are determined based on the angular momentum stored in the momentum wheels. Therefore, the 

thrusters' torques should not vary from those in the previous simulation either. Figures 5.4.a, 

5.4.b and 5.4.e are identical to Figures 5.3.a, 5.3.b and 5.3.e as predicted. The momentum wheels 

control torques have increased in the current situation which is necessary to give the larger 

spacecraft the same angular accelerations. It can be observed in Figure 5.4.d that the magnitude 

of the control torques corresponding to the second attitude alteration at time 200 second, is closer 

to that magnitude for the initial attitude change. In the initial attitude change the momentum 

wheels are spinning rapidly and this spin induces some gyroscopic toques during the direction 

variations. The closeness of the magnitude of the control torques in the initial and final attitude 

maneuvers implies that the control torques needed for rotating the body of the spacecraft are 

larger than those caused by the gyroscopic effects. 

The angular momentum of the spacecraft can also be removed by having the external 

torque actuation about even one principal axis. Figure 5.5 illustrates the maneuver for this 

momentum dumping maneuver. 
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The only external torque actuated axis of the spacecraft is considered the x-axis. The 

spacecraft is initially assumed coincident with the inertial coordinate system while the 

momentum wheels are spinning at high rates. The momentum dumping procedure consists of 

three steps. In the first step, lasting about 70 seconds, the spacecraft is rotated so that the 

spacecraft x-axis coincides with the direction of the total angular momentum vector remaining 

unchanged by time. The second phase is the spacecraft net angular momentum removal, which is 

performed by exerting torque about the x-axis which is kept in the direction o f the angular 

momentum vector. This phase lasts for about 180 seconds. Finally, after the angular momentum 

of the spacecraft has been removed it is brought back to the inertial coordinate system. 
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The successive performance of the proposed procedure and the low-level control laws 

have been illustrated in the numerical simulations. The missions were accomplished in about six 

minutes. The duration o f the procedure can be reduced by increasing the gains at the cost of 

increasing the control torques. 
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Chapter 6 

Conclusions and future directive 

6.1 Conclusions 

This research was performed to develop the attitude control methods that can tolerate the 

spacecraft actuator failures. Two main roles are considered for the thrusters on board of the 

spacecraft; the attitude maneuvers and the momentum dumping. Fault tolerant control laws have 

been developed for accomplishing each of these tasks. 

In performing the attitude maneuvers using thrusters, the effect of the disturbance torque 

was considered for the first time. At first, the desired equilibrium motion was defined to be 

ultimately tracked by the controller. A kinematic control law was derived to find the prescribed 

angular velocities that guide the spacecraft to the desired attitude. The Lyapunov control method 

was used to derive the two solutions for the kinematic controller. As predicted in the literature 

none of the solutions alone could stabilize the desired attitude. A switching criterion was then 

developed to employ the proper solution for the kinematic controller at each instance of the 

corrective maneuver. The backstepping method was finally used to derive the thruster torques to 

track the prescribed angular velocities determined by the kinematic controller. 
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Through this research the following contributions were made in controlling an 

underactuated spacecraft subjected to a constant torque about the unactuated axis: 

• The equilibrium motion best matching the mission objectives was determined. 

• The backstepping control method was extended for controlling the multi-input multi-

output systems with a nonlinear effort-state relation. 

• A nonlinear control method was developed to stabilize the decided equilibrium motion 

using the devised backstepping method. 

• A linear control method was developed to locally stabilize the equilibrium motion. 

• The numerical simulations were performed demonstrating the satisfactory performance of 

the control laws. 

Fault tolerant control methods were developed for the first time for dumping the angular 

momentum of the spacecraft using less than three external torque actuators. The angular 

momentum accumulated in the momentum wheels, corresponding to the unactuated axes, was 

ceased by an attitude maneuver. During this maneuver, the angular momentum was transferred to 

the momentum wheels corresponding to the axes with active external torque actuation. The 

thruster torques were then implemented to remove the angular momentum of the spacecraft. The 

spacecraft was finally rotated back to the original orientation to continue its mission. The 

following contributions were made in momentum dumping of spacecraft. 

• A n attitude control plan was developed leading to the momentum dumping o f the 

spacecraft implementing two or one external control torques. 

• The common control laws for the rotational maneuvers were considered and the global 

stability of two of the methods was proved for the first time using the Lyapunov stability, 

invariant set and the Lyapunov local stability theorems. 

95 



• Implementing the most appropriate attitude maneuver methods in the attitude control 

plan, a globally stable control method was developed to remove the angular momentum 

of a spacecraft in case of having less than three external torque actuators. 

• Numerical simulations were performed illustrating the robust performance and the 

effectiveness of the proposed control method. 

6.2 Future scope 

• The nonlinear control method proposed encounters some essential switchings in the 

kinematic control law. These switchings result in some significant control torques and 

may result in the saturation of the thrusters. Some scheduling methods can be used to 

implement the nonlinear control method while the trajectory is far from the set point that 

switches the control law to the smooth linear controller when being close to the desired 

values. This control scheme can make use of the robustness of the nonlinear control 

method while avoiding the subsequent switchings when it is not essential. 

• Other nonlinear control methods such as the state feedback linearization can be used to 

develop a control law. The only problem is these methods are not applicable i f the 

disturbance torque vanishes. In that case, the desired angular velocities w i l l be zero and 

the system is not feedback linearizable as shown in chapter 5. 

• The control laws proposed assumes having the exact values of the moment of inertia 

matrix of the spacecraft. The adaptive control methods can be incorporated for handling 

the inexactness of the inertia tensor. 

• In the momentum dumping control method the external control torques applied by the 

thrusters were used for computing the torque of the momentum wheels. The thruster. 
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torques can be computed using an estimator to make the system insensitive to the 

inaccuracies of the thruster torques. 

In the numerical simulations the gain factors of the controllers were set to roughly 

compromise between the duration of the mission and the control efforts. The value of the 

controller gains relative to each other determines the trend of the approach and is a factor 

to be decided as well . These gains can more precisely be determined through using the 

optimal control methods. The objectives of the spacecraft mission must be precisely 

known so that the objective function can be determined. The control gains should then be 

determined to maximize this objective function throughout the maneuver. 

97 



References 

[I] "Voyager, the interstellar mission," (cited 05/06/2006), 2006, Available 
from :http: //voyager .j pi .nasa. gov/index .html. 

[2] A . Wesson, "Cassini-Huygens mission to Saturn and Titan," (cited 05/03/2006), 2005, 
Available from: http://saturn.jpl.nasa.gov/spacecraft/subsystems-cassini.cfrn. 

[3] P. Fortescue and G . Swinerd, "Attitude control," in Spacecraft Systems Engineering , vol . 1, 
P. Fortescue, J. Stark and G . Swinerd, Eds. England: John wiley and sons Ltd, 2004, pp. 287-
324. 

[4] C. D . Hal l , "Integrated spacecraft power and attitude control system using flywheels," 
Airforce Institute of Technology, Tech. Rep. A F I T / E N Y / T R - 0 0 0 , 2000. 

[5] P. Graven, "Magnetic Torquers for Spacecraft," (cited 05/04/2006), Available from: 
http ://www. smad.com/analysis/torquers.html. 

[6] J. J. E . Slotine and W . L i , Applied Nonlinear Control. Englewood Cliffs, N J : Prentice Hal l , 
1991, 

[7] P. Tsiotras and A . Schleicher, "Detumbling and partial attitude stabilization of a rigid 
spacecraft under actuator failure," in AIAA Guidance, Navigation and Control Conferenceand 
Exhibit, 2000, 

[8] S. Sastry, Nonlinear Systems: Analysis, Stability and Control. New York: Springer, 1999, pp. 
667. 

[9] A . Isidori, Nonlinear Control Systems. ,Third ed.London: Springer-Verlag, 1995, pp. 549. 

[10] M . Krstic, P. V . Kokotovic and I. Kanellakopoulos, Nonlinear and Adaptive Control 
Design. New York , N Y , U S A : John Wiley & Sons Inc., 1995, pp. 563. 

[II] P. Crouch, "Spacecraft attitude control and stabilization: Applications of geometric control 
theory to rigid body models," Automatic Control, IEEE Transactions on, vol . 29, pp. 321-331, 
1984. 

[12] C . Byrnes and A . Isidori, "On the attitude stabilization of rigid spacecraft," Automatica, 
vol .27 , pp. 87-95, 1991. 

[13] H . Krishnan, M . Reyhanoglu and H . McClamroch, "Attitude stabilization of a rigid 
spacecraft using two control torques: A nonlinear control approach based on the spacecraft 
attitude dynamics," Automatica, vol . 30, pp. 1023-1027, 1994. 

98 

http://saturn.jpl.nasa.gov/spacecraft/subsystems-cassini.cfrn
http://smad.com/analysis/torquers.html


[14] G . C. Walsh, R. Montgomery and S. S. Sastry, "Orientation control of the dynamic 
satellite," in American Control Conference, 1994, pp. 138-142. 

[15] P. Mor in , C. Samson and S. A . INRIA, "Time-varying exponential stabilization of a rigid 
spacecraft with two control torques," IEEE Transactions on Automatic Control, vol . 42, pp. 528-
534, 1997. 

[16] J. M . Coron and E . Y . Kerai, "Explicit Feedbacks Stabilizing the Attitude of a Rigid 
Spacecraft with Two Control Torques," Automatica, vol . 32, pp. 669-677, 1996. 

[17] P. Tsiotras and A . Schleicher, "Detumbling and partial attitude stabilization of a rigid 
spacecraft under actuator failure," in AIAA Guidance, Navigation and Control Conference, 2000, 

[18] X . S. Ge and L . Q. Chen, "Attitude control of a rigid spacecraft with two momentum wheel 
actuators using genetic algorithm," Acta Astronaut., vol . 55, pp. 3-8, 2004. 

[19] P. Tsiotras and J. M . Longuski, " A new parameterization o f the attitude kinematics," J. 
Astronaut. Sci., vol . 43, pp. 243-262, 1995. 

[20] P. Tsiotras and J. M . Longuski, "Comments on a new parameterization of the attitude 
kinematics," in AIAA/AAS Astrodynamics Conference, 1996, pp. 514-522. 

[21] P. Tsiotras, M . Corless and J. M . Longuski, " A Novel Approach to the Attitude Control of 
Axisymmetric Spacecraft," Automatica, vol . 31, pp. 1099-1112, 1995. 

[22] P. Tsiotras and J. Luo, "Reduced effort control laws for underactuated rigid spacecraft," 
Journal of Guidance, Control, and Dynamics, vol . 20, pp. 1089-1095, 1997. 

[23] F. Bacconi, D . Angel i and E . Mosca, "Attitude control of asymmetric spacecrafts subject to 
actuator failures," in Proceedings of2003 IEEE Conference on Control Applications, 2003, pp. 
474-479. 

[24] P. Tsiotras and J. Luo, "Control of underactuated spacecraft with bounded inputs," 
Automatica, vol . 36, pp. 1153-1169, 2000. 

[25] A . Behal, D . Dawson, E . Zergeroglu and Y . Fang, "Nonlinear tracking control of an 
underactuated spacecraft," in Proceedings of the 2002 American Control Conference, 2002, pp. 
4684-4689. 

[26] M . J. Sidi , Spacecraft Dynamics and Control: A Practical Engineering Approach. 
Cambridge, U . K . : Cambridge University Press, 2000, 

[27] C. H . Ross and E . Worley, "Optimized momentum and attitude control system ( M A C S ) for 
Skylab," AIAA, pp. 931, 1971. 

[28] B . K . Powell , "Gravity Gradient Desaturation of A Momentum Exchange Attitude Control 
System," AIAA Paper, pp. 71-940, 1971. 

99 



[29] J. W . Sunkel and L . S. Shieh, "Optimal momentum management controller for the Space 
Station," Journal of Guidance, Control, and Dynamics, vol . 13, pp. 659-668, 1990. 

[30] J. Mapar, "Innovative approach to the momentum management control for Space Station 
Freedom," Journal of Guidance, Control, and Dynamics, vol . 16, pp. 175-181, 1993. 

[31] J. W . Sunkel, L . S. Shieh and J. L . Zhang, "Digital redesign of an optimal momentum 
management controller for the Space Station," Journal of Guidance, Control, and Dynamics, 
vol . 14, pp. 712-723, 1991. 

[32] G . J. Balas, A . K . Packard and J. Harduvel, "Application of m-synthesis techniques to 
momentum management and attitude control of the space station," in AIAA Guidance, 
Navigation and Cont.Conf, 1991, pp. 565-575. 

[33] B . Wie, A . H u and R. Singh, "Multibody interaction effects on Space Station attitude 
control and momentum management," Journal of Guidance, Control, and Dynamics, vol . 13, 
pp. 993-999, 1990. 

[34] C. D . Johnson and R. E . Skelton, "Optimal desaturation of momentum exchange control 
systems," AIAA Journal, vol . 9, pp. 12-22, 1971. 

[35] J. R. Glaese, H . F. Kennel, G . S. Nurre, S. M . Seltzer and H . L . Shelton, "Low-Cost Space 
Telescope Pointing Control System," J. Spacecraft Rockets, vol . 13, pp. 400-405, 1976. 

[36] G . T. Kroncke and R. P. Fuchsi, " A n Algorithm for Magnetically Dumping GPS Satellite 
Angular Momentum," Journal of Guidance Control and Dynamics, vol . 1, pp. 269-272, 1978. 

[37] J. R. Ferguson and T. Kroncke, "Dumping Momentum Magnetically on GPS Satellites," 
Journal of Guidance and Control, vol . 4, pp. 87-91, 1981. 

[38] P. J. Carnillo and F. L . Markleyt, "Orbit-Averaged Behavior o f Magnetic Control Laws for 
Momentum Unloading," Journal of Guidance and Control, vol . 3, pp. 563-568, 1980. 

[39] T. F. Burns and H . Flashner, "adaptive control applied to momentum unloading using the 
low earth orbital environment," Journal of Guidance Control and Dynamics, vol . 15, pp. 325-
333, 1992. 

[40] D . H . Chang, "Magnetic and momentum bias attitude control design for the H E T E small 
satellite," in Proceedings of the 6th AIAA/USU Conference on Small Satellites, 1992, 

[41] W . H . Steyn, " A Mult i -Mode Attitude Determination and Control System for Small 
Satellites," pp. 4-1-4-11, PhD. 1995. 

[42] C. Kittel and H . Kroemer, Thermal Physics. , vol . 1, W . H . Freeman, 1980, pp. 496. 

[43] A . Shultz, "Near Infrared Camera and Multi-Object Spectrometer Instrument Handbook for 
Cycle 15," (cited 05/02/2006), Available from: 

100 



http://www.stsci.edu/hst/nicmos/documents/hand 
926. 

[44] J. Jackson, "Alouette-ISIS Program Summary," (cited 05/03/2006), 1986, Available from: 
http://www.ewh.ieee.Org/reg/7/millennium/alouette/alouette_nssdcsummary.html. 

[45] Wikipedia, "Solar flare," (cited 05/03/2006), 2006, Available from: 
http://en.wikipedia.org/wiki/Solar_flare. 

[46] D . Will iams, "Nozomi," (cited 05/03/2006), 2005, Available from: 
http://nssdc.gsfc.nasa.gov/nmc/tmp/1998-041A.html. 

[47] W . L . Brogan, Modem Control Theory. Upper Saddle River, N J , U S A : Prentice-Hall, Inc., 
1991, 

[48] M . Quandt, "Europe Goes to Venus," (cited 03/08/2006), 2005, Available from: 
http://www.astronomy.com/asy/default.aspx?c=a&id=3587. 

[49] D . Beasley, D . Agle and L . Tune, "Deep impact comet encounter," National Aeronautics 
and Space Administration, 2005. 

[50] M . A . Karami and F. Sassani, "Attitude tracking control of an underactuated asymmetric 
spacecraft subject to undesired constant torque about the redundant axis," in CSME Forum 2006, 
2006, 

[51] S. R. Vadali and J. L . Junkins, "Optimal open-loop and stable feedback control of rigid 
spacecraft attitude maneuvers," Journal of the Astronautical Sciences(ISSN 0021-9142), vol . 32, 
pp. 105-122, 1984. 

[52] J. L . Meriam and L . G . Kraige, Engineering Mechanics, Dynamics. John Wi ley and Sons, 
Inc, 1992, 

[53] M . W . Spong, S. Hutchinson and M . Vidyasagar, "Velocity kinematics, the jacobian," in 
Robot Modeling and Control, John Wiley and Sons, 2005, pp. 119-162. 

[54] B . Wie, H . Weiss and A . Arapostathis, "Quarternion feedback regulator for spacecraft 
eigenaxis rotations," Journal of Guidance, Control, and Dynamics, vol . 12, pp. 375-380, 1989. 

101 

http://www.stsci.edu/hst/nicmos/documents/hand
http://www.ewh.ieee.Org/reg/7/millennium/alouette/alouette_nssdcsummary.html
http://en.wikipedia.org/wiki/Solar_flare
http://nssdc.gsfc.nasa.gov/nmc/tmp/1998-041A.html
http://www.astronomy.com/asy/default.aspx?c=a&id=3587


Appendix 1 

Spacecraft eigenaxis rotations using the control law 

proposed in [54] 

The control law proposed in (146) and (147) was primary developed to perform eigenaxis 

rotation for attitude changing maneuvers. It was later proved that this method is globally stable 

and can be used to stabilize a desired orientation even i f the initial condition is such that the 

eigenaxis rotation cannot be undertaken. In this appendix it is proven that that the transition from 

one orientation to the desired attitude is performed trough an eigenaxis rotation, provided the 

initial angular velocity is zero. 

Each orientation can be represented by a Direction Cosine Matrix. The eigenvector 

associated with the unit eigenvalue of this matrix is called the eigenaxis corresponding to that 

orientation. The frame attached to the current orientation can then be performed through a single 

rotation about the eigenaxis. The eigenaxis of an orientation can simply be derived from the 

quaternion corresponding to that attitude. Recalling equation (131) we have 

= sin(a / 2) e2 

3 . 

102 



in which [e, ,e 2 ,e 3 ] T is the eigenaxis of the spacecraft. Therefore, the eigenaxis, e, is the 

unit vector in the direction of the first three components of the quaternion vector. 

Kinematic equations for quaternion representation, (132), can be written in the following 

form [54] 

b]=^®xfe]+^4® ( 1 7 2 ) 

in which 

(174) 

Substituting the control law, equations (146) and (147), into the dynamic equations, equation 

(128), we get 

G) = -dG)-k[q] (175) 

Equations (172), (173) and (175) form the differential equation of the controlled system. 

If the angular velocity has the same direction as the [q] vector since co is a linear 

combination o f a> and [q], both in the direction o f eigenaxis, it w i l l be in the direction o f 

eigenaxis as well . This implies that the angular velocity vector does not deviate from the 

eigenaxis direction once aligned with that. 

It should also be checked weather the direction of the eigenaxis itself changes while the 

angular velocity is along e. If e and consecutively [q] are collinear with co, CDX [q] = 0. Then, 

from equation (172) we have 
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[q\ = \q*» (176) 

Since [q] is equal to angular velocity vector scaled by a factor of , it w i l l be collinear 

with co and consecutively along [q]. This implies the direction of the eigenaxis does not change 

provided the angular velocity vector is along the eigenaxis. 

Yet, we have proven that once the angular velocity vector is aligned with the eigenaxis 

neither the direction of eigenaxis nor the direction of angular velocity changes afterwards. In the 

rest-to-rest rotational maneuver the angular velocity of the spacecraft is zero at the beginning. It 

can be considered as co(t = 0) = 0 = 0 x e . Therefore, the initial angular velocity of the spacecraft 

is along the eigenaxis. This implies that the direction of angular velocity remains along the 

eigenaxis and the direction of the eigenaxis remains constant throughout the maneuver. In other 

words, the direction of the spacecraft is altered by a rotation about the fixed eigenaxis of the 

initial orientation. 
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Appendix 2 

Simulink® simplified schemes of the controllers 

attitude representation parameters 
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MATLAB 
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Terminators 
Equations of Motion 
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F igu re A.2.1 S imp l i f i ed underactuated spacecraft S imu l i nk® att i tude cont ro l scheme 
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State values 
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F igu re A.2.2 S impl i f ied spacecraft S imu l ink momentum dump ing scheme 
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