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ABSTRACT 

Two different approaches have been used to diagnose faults in machinery such as 

internal combustion engines. In the first approach, a mathematical model of the specific 

engine or component under investigation is developed and a search for causes of change 

in engine performance is conducted based on the observations made in the system output. 

In the second approach, the specific engine or component is considered a black box. 

Then, by observing some sensory data, such as cylinder pressure, cylinder block 

vibrations, exhaust gas temperatures, and acoustic emissions, and analyzing them, fault(s) 

can be traced and detected. In this research the latter approach is employed in which 

vibration data is used for the detection of malfunctions in reciprocating internal 

combustion engines. 

The objective of this thesis is to develop effective data-driven methodologies for 

fault detection and diagnosis. The main application is the detection and characterization 

of combustion related faults in reciprocating engines; faults such as knock, improper 

ignition timing, loose intake and exhaust valves, and improper valve clearances. 

To perform fault diagnosis in internal combustion engines, cylinder head 

vibration data are used for characterizing the underlying mechanical and combustion 

processes. Fault diagnosis includes two main stages: feature extraction and classification. 

In the feature extraction stage, we have utilized wavelets for the analysis of acceleration 

data acquired at the cylinder head to capture meaningful features that include necessary 

information about the state of the engine. Wavelets have shown to provide suitable signal 
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processing means for analysis of transient data and noise reduction. Wavelet packets, as a 

generalization of wavelets, offer even a more powerful data analysis structure to extract 

features that are capable of identifying combustion malfunctions. Various concepts of 

wavelets, wavelet packets, related algorithms and assessment techniques have been 

reviewed, analyzed and discussed. 

As a result of this research, a novel methodology for fault diagnosis has been 

developed. This has been achieved through critically investigating available 

methodologies employed in fault diagnosis and classification, and by understanding their 

shortcomings. The developed method not only avoids the demerits of the previous 

techniques, but also demonstrates superior performance. 

To compare the performance of the proposed approach with major existing 

methods, various sets of real-world machine data acquired by mounting accelerometer 

sensors on the cylinder head, as well as a set of synthetic data, have been extensively 

tested. 
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CHAPTER 1 

Introduction 

1.1. Foreword 

As machinery becomes more complex and costly to build and operate, preventive 

maintenance measures also become increasingly important. Implementing machinery 

performance analysis has been found to offer several benefits including financial, 

operational, and even environmental advantages. When a machine breaks down it can 

lead to significant problems including downtime cost, loss of functionality and 

productivity, catastrophic failure which might be beyond repair, and loss of life. 

There is currently a great need for equipment and software to automatically 

predict, detect, and diagnose faults in machines and components. Important examples of 

such systems include rotors and turbines, compressors and engines, bearings and 

gearboxes, and cutting and drilling tools. 

Large reciprocating engines, such as diesel and spark ignited engines, are essential 

elements of most industries. They can be seen in a wide range of applications, such as in 
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power plants, chemical plants, petroleum industries, and in the operation of compressors 

and pumps, pipelines, ships, and trains. 

Condition monitoring for fault detection and prevention is now an integral part of 

the operation of many industrial processes and machinery [1]. It plays an important role 

in maintaining quality standards, increased productivity and cost reduction. Unlike 

traditional reactive maintenance practices, condition monitoring and predictive 

maintenance attempt to avoid unnecessary shutdowns and thus reduce machine downtime 

and increase productivity. 

This thesis focuses on the fault diagnosis of reciprocating engines, though once 

the procedure is developed, the method can be extended for similar pattern recognition 

applications. 

In this chapter, the performance fundamentals of different internal combustion 

engines along with some possible engine faults are introduced. The significance of using 

vibration data in machine diagnosis is discussed. Such data are collected by means of 

accelerometer sensors mounted on the cylinder head. A literature survey of fault 

diagnosis is also followed. 

1.2. Performance of Internal Combustion Engines 

Internal combustion engines can be classified by the method of ignition into two 

categories: spark-ignition (SI) and compression-ignition (CI) engines. SI engines usually 

use gasoline, natural or liquid gas as fuel, while CI engines typically consume diesel fuel 

or natural gas. 
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In conventional spark-ignition engines appropriate amounts of fuel and air is 

supplied to the engine cylinder. The mixture of fuel, air and residual gases are 

compressed, and then combustion is initiated toward the end of the compression stroke by 

the electric discharge of a spark plug. Inflammation develops and propagates by a 

turbulent wave of flame throughout the entire air-fuel mixture up to the combustion 

chamber (cylinder) walls. 

In compression-ignition (diesel) engine combustion process, fuel-injection system 

sprays the fuel into the combustion chamber just before the desired start of combustion 

which is toward the end of the compression stroke. Sprayed fuel which has been 

atomized through the high velocity injection is vaporized and mixed with high-

temperature high-pressure cylinder air. In a few crank angle degrees, pressure and 

temperature reach the fuel's ignition point. The portion of fuel which has properly been 

mixed by air ignites spontaneously. As a result, the pressure and temperature increase and 

cause the unburned portion to continue the combustion at an accelerated rate. 

Usually the performance of every engine is measured by some parameters such as 

power, torque, and specific fuel consumption [2]. Any significant deviation from nominal 

conditions results in a change from the optimal condition in the above characteristic 

parameters, which is generally referred to as a fault. This thesis focuses on the detection 

of some of these faults that occur in the engine cylinder. Examples of such faults are 

introduced in the next section. 
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1.3. Engine Faults 

Requirement for efficient power generation, compliance with exhaust control 

standards for lower emissions, and finally prevention of engine wear caused by 

occurrence of combustion fault are some of the main motives for the research in this area. 

There are several faults associated with combustion; among them, intake and exhaust 

systems related faults, knock, and ignition timing faults are our focus. 

Faults in intake and exhaust systems include small and large valve gaps and gas 

leakage in both intake and exhaust valves. Opening and closing of intake and exhaust 

valves with appropriate timing are issues that also engage engineers. Research shows that 

correct exhaust valve timing reduces hydrocarbon emissions [3], and leads to better 

engine performance. 

In SI engines, knock phenomenon as a state of combustion event, refers to the 

autoignition of end-gas (the unburned fuel-air mixture ahead of flame) inside the 

cylinder. In fact, autoignition refers to any combustion activity which is not initiated by 

an external ignition source. Knock, a "sharp metallic noise", is caused by high 

compression and combustion of end-gas between the piston and burned gas behind the 

flame. Autoignition of the end-gas is accompanied by shock waves inside the combustion 

chamber that causes high frequency pressure resonance, which is transmitted to the 

cylinder head assembly. The frequency band of knock condition is determined by the 

specifications of a given engine such as cylinder diameter and engine parameters [2]. 

Knock is a common abnormal combustion phenomenon in SI engines. 

Even though CI engines operate based on autoignition (as there is no spark plug, 

and ignition is based on compression as discussed in previous section), knock can still 
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occur in these engines. The non-uniformity of in-cylinder pressure generates some 

combustion waves, known as detonation waves, that contribute to sonic velocities of the 

hot gases in the cylinder. These fast moving combustion waves create knock. 

Two important parameters that promote the occurrence of knock, are high load 

and over-advanced (too early) ignition. Detection of deviations in ignition timing is 

another important issue in engine fault diagnosis since engine Efficiency is highly 

influenced by ignition timing. In fact, optimal power generation and lower pollutant 

emissions are achieved when ignition timing is set at the onset of knock occurrence. 

1.4. Use of Acceleration Data 

Non-intrusive measurements such as the use of cylinder head acceleration data in 

engine monitoring applications offer clear advantages over other measurement types such 

as intrusive cylinder pressure measurement. The use of acceleration data - obtained from 

vibration sensors located on cylinder head or engine block - has become popular in a 

wide range of fault diagnosis applications, including detection of knock [4,5,6,7], 

detection of valve clearance and gas leakage in both intake and exhaust valves [8], as 

well as detection of drift in ignition timings [9]. However, the accuracy of the diagnostic 

results is highly machine dependent and is subject to large errors when the speed of 

engine is variable or the number of cylinders is high. Other factors may also affect the 

accuracy of diagnostic results including size and type of the engine, manufacturer, and 

more significantly, operating conditions such as sizable load variation. 
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There are inherent complexities in machine diagnosis that are accentuated using 

non-intrusive methods. Vibration data are often contaminated with considerable noise 

generated from overall engine vibration and from sources external to a given machine 

fault. Noise masks the true fault signatures and can complicate information extraction. 

The extent of noise content often differs for different engines and different application 

environments. 

While the detection of combustion related faults has been a focus of study by 

several groups in the past, there are still some challenges that are discussed next. 

1.4.1. Challenges of Engine Diagnosis Using Acceleration Signals 

The use of vibration data for engine diagnosis is accompanied with complexities 

outlined below. 

(1) Path dynamics. Acceleration signals that are acquired at the location of the 

sensors are characteristically different from the signals that were originally created within 

the combustion process. While traveling from "source" to "sensor", the signal is in fact 

affected by the dynamics and the mechanical properties of the path. This phenomenon is 

referred to as path dynamics. Different source-to-sensor paths will impact different "path 

dynamics" upon the signal being transmitted. For example, accelerations measured in 

horizontal and vertical directions caused by the same combustion event can exhibit 

different characteristics. 

It is worth noting that path dynamics is a non-linear phenomenon whose modeling 

is an intricate task, specially that the modeling must be done for every engine type. 

(2) Machine Event Variations. Machine events, despite their cyclic and 

repetitive nature, exhibit variability from one cycle to the next [2]. Such variability is 
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triggered by the underlying variability of source causes and processes governing different 

machine events. Variability is best described by the statistical nature of the variables 

defining these events that inhibits extraction of signatures for fault detection. It is 

observed under both steady state nominal and faulty conditions. 

Variability is caused by several factors; they may be categorized as internal or 

external for a given machine event. For example, variation in combustion quality may be 

caused by variation in fuel mixing process or compression due to valve operation. 

Variability as measured by standard deviation of vibration signals, may be different for 

different engines, machine events, and locations. Vibration signals at the cylinder head 

exhibit a higher degree of variability as compared with cylinder pressure signals; they 

carry the effect of the variability of both source event and external factors such as valve 

opening or closing events as well as non-linearity of machine response to combustion 

event. 

Fig. 1.1 illustrates spectral variability as measured by power spectral density of 

vibration signals in 16 consecutive combustion cycles of a 12-cylinder industrial engine. 

Power spectral density is a global measure of the engine operation and does not reflect 

localized time variations of signal behavior. As such, it is a suitable measure to examine 

variability of engine operation from one cycle to the next. Variability of vibration data is 

more observable in time domain. Using standard deviation as a measure of variability, the 

ratio of std/mean remains nearly unchanged in all frequencies. Other global metrics of 

acceleration data such as signal energy indicate similar statistical variability from one 

cycle to the other. 
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Fig. 1.1. Mean and standard deviation of FFT of acceleration data, and spectral variability 

measured by std/mean. 

Variability causes dilution and disguising of fault signatures and introduces 

inaccuracies that are more pronounced when the intensity of faults is low. Under mild 

faults, fault signature falls within the variability range of the measured signals and 

remains undetected. For high intensity faults, such as hard knock, fault signature is 

dominant and variability is of lesser significance. In acceleration data, different frequency 

bands may exhibit different variability. 
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(3) Noise. Vibration signals are often contaminated with noise that inhibits the 

extraction of true signal signatures for diagnosis. As mentioned before, Noise in machine 

data is generated from the overall engine vibration caused by totality of machine events. 

In diagnosis of combustion-related faults, noise is also caused by events that are external 

to combustion event such as valve opening and closing, and cross-talk effects of 

consecutive combustion in adjacent cylinders. Vibrations of engine components 

oscillating at their harmonic frequencies are also transmitted to cylinder head position 

and are compounded with acceleration signals. Noise reduction is considered as an 

important part of machine data analysis; it can play an effective role in reducing 

inaccuracies of diagnosis results. 

1.4.2. Possible Solution 

An approach used widely in dealing with non-linearity as well as variability 

effects in fault detection and classification problems is to search for changes in the 

statistical distribution of the respective data derived under different operating conditions. 

In this approach, training data are used to extract necessary statistics under different fault 

conditions. For example in knock detection, spectral energy at a set of designated 

frequency bands are considered as feature variables and used as inputs to a fault classifier 

such as a neural network. While statistical modeling and neural network classifiers have 

been used in numerous fault detection problems, there are still limitations to their use in 

real-world applications. Access to sufficient number of training data under a given 

condition and known intensity level is not always possible. Ample data is necessary in 

order to capture the statistics of a given condition with sufficient accuracy in order to 

obtain acceptable discriminatory classification results. 
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Furthermore, changes in operating conditions of an engine require the use of a 

new set of training data under the new conditions. In the absence of the necessary 

knowledge about such changes, accuracy of diagnosis cannot be ensured. In addition, 

while spectral and time signal energies are considered as valid indicators of knock 

intensity - as several research groups have used for knock quantification, such as in [10] 

- spectral energy is a global measure which does not carry necessary information about 

the time behavior of the acceleration signal under a given knock condition. Changes in 

the knock conditions are sought in both global and local features of the acceleration 

signals. 

Due to the fact that vibration characteristics of faults are complex and normally 

buried within wide band engine background noise as well as high frequency structural 

resonance, they cannot be easily identified through simple signal processing. The signals 

obtained from an engine are usually contaminated with noise or cross-talk effects. The 

main purpose of signal processing is to manipulate the information contained within the 

signal to enhance the view of a desired feature. 

In recent years, there have been many attempts to diagnose different faults 

relating to knock [11,12,13], loose or cracked roller bearing [14,15], ignition timing [9], 

valve clearance and operation under loose valve condition [16], cracked teeth in gear 

train [17,18,19], cylinder and ring wear, and injection system problems occurring in 

engines [20]. In terms of diagnosis, the problem becomes more complex when these 

begin to develop concurrently. A more detailed literature review is given in the next 

section, in which wavelets have been employed as an efficient analytical tool used in 

10 



fault diagnosis. Wavelets as a classes of functions have information localization ability in 

both time and frequency and will be presented in chapter 2. 

1.5. Review of Previous Works 

Coifman and Wickerhauser [21] established a mathematical foundation for a 

method that permits efficient compression of a variety of signals such as sound and 

images. Their method selects a set of functional forms known as basis that is best adapted 

to the global properties of signal. Such bases are appropriately selected from a dictionary 

of orthogonal bases such as local trigonometric functions or wavelet packets family. They 

used Shannon entropy measure as a cost function to match a basis to a given signal or 

family of signals. 

In wavelet packet transformation (which will be defined in the next chapter), the 

selection of best decomposition tree for signal representation is usually done through 

entropy cost function as introduced in [21]. Even though entropy is considered 

appropriate for signal compression, it may be unsuitable for signal classification [22,23]. 

Saito and Coifman [22] used the concept of relative entropy as a cost function in 

classification applications, and termed their algorithm the local discriminant basis 

(LDB). Similar to the process in [21], LDB selects an orthonormal basis from a 

dictionary, which most discriminates different classes in a given set of data belonging to 

several classes. We will expand more on their algorithm in chapter 6. They later modified 

their algorithm by employing relative entropy of the empirical probability density 

estimate of each class in a wavelet packet domain [24]. 
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Englehart et al. [25] applied LDB for myoelectric signals (MES) for clinical 

diagnosis in biomedical engineering. As in LDB, they used the time-frequency energy 

maps of each class as input to a symmetric relative entropy measure, in conjunction with 

principal component analysis (PCA) for dimensionality reduction. In another MES 

application, they proposed time-frequency methods such as short time Fourier transform 

(STFT), wavelet transform (WT) and wavelet packet transform (WPT) for feature 

extraction, along with PCA, and found WPT superior for classification purposes 

[3,23]. 

Mallat and Zhang [26] introduced an algorithm called matching pursuit which 

searches for a set of wavelets to represent an individual signal, then efficiently 

decomposes the signal into a linear expansion of waveforms that belong to a library of 

functions. Matching pursuit is referred to as a greedy algorithm in which a signal is 

decomposed into a sequence of components generated iteratively with a projection 

direction that has the highest match with the residual at each stage. This algorithm is 

closely related to projection pursuit strategy developed in [27]. These methods have 

proved their utility in signal presentation and compression problems. 

Using matching pursuit algorithm, in 1999, Liu and Ling [20] proposed a measure 

to identify a small set of wavelets that carry meaningful information about machinery 

faults and tried to identify the wavelets that are sensitive to fault occurrence. The 

application of this set of wavelets, which is called informative wavelet, has been 

expanded in [ 16] for combustion fault diagnosis. 

Samimi and Rizzoni [4] used time-frequency analysis of pressure signals in order 

to detect knocks in an internal combustion engine. Since the pressure measurement is not 
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considerably affected by signals or noises from other mechanical sources, contrary to 

vibration measurements, it is a very reliable measurement for knock detection, but using 

pressure transducers in existing industrial engines is neither easy nor economical. 

Yang et al. [28] used a dynamic model to simulate instantaneous angular speed to 

obtain cylinder pressure information to diagnose combustion-related faults. This could be 

a useful approach for single cylinder engines, but a slight pressure changes in one 

cylinder of a multi-cylinder engine is expected to have a very little effect on the angular 

velocity of the engine. For this reason their method can hardly be applied on engines with 

several cylinders and large inertia. 

Along the same line, Zavarehi and Schricker [29] employed the actual crankshaft 

angular velocity information of a six-cylinder diesel engine to find kinetic energy of each 

cylinder. They used such energy to detect possible power loss in a cylinder. They divided 

the crank angle degree of one engine cycle by the number of cylinders, and used the 

velocity fluctuations of crankshaft in each segment to find the kinetic energy of each 

cylinder. This method may be appropriate for detecting complete power loss of one 

cylinder, but is impractical for detecting small changes in the power of one cylinder, say 

in a large 12-cylinder industrial engine. 

Wang and McFadden [17] applied the wavelet transform to the analysis of the 

vibration signals of a helicopter gearbox in order to represent gear condition and detect 

faults. They found that the Gaussian-enveloped oscillating wavelet is well-suited for 

detection of gear faults. In another attempt Dellomo [24] also used accelerometer data to 

detect gearbox fault in helicopters. He employed some elementary signal analysis to 
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identify the frequency band of faults and then applied Fourier analysis for fault 

monitoring. The particular gearbox signal he examined is a very simple example. Wang 

[31] viewed time-frequency-scale distribution as a three-dimensional image and tried to 

obtain the detailed features of a signal. He applied this method to the signals from gears 

and a steel mill roll, but it's difficult to interpret and quantify the produced three-

dimensional images. 

Shiroishi et al. [32] investigated defect detection methods in frequency domain 

for rolling element bearings through accelerometer and acoustic emission (AE) sensor 

and found that the latter is better at detecting the defect types. Their main goal was to 

increase the signal-to-noise ratio. Ma et al. [33] presented a method to design a filter with 

combination wavelets which is formed by frequency shift and single wavelet 

superposition. They designed the Gaussian combination wavelet filter which has been 

applied by Luo et al. [34] for condition monitoring. Their measure for diagnosis was 

monitoring the system natural frequencies via vibration signals. They extended the design 

in [33] to a very narrow frequency band wavelet filter to have more accuracy in 

recognizing the system natural frequency, then used it in obtaining power spectrum of 

different conditions in a turning machine to recognize the fault in bearings. Their method 

is applicable to only high intensity faults which change the natural frequency of the 

system; there is no guarantee to ensure that these changes are because of faults in 

bearings and not from other sources. 

Friedman [27] proposed an approach referred to as the projection pursuit method 

(PP). This is a method for exploratory data analysis to find low dimensional projections 

of high dimensional multivariate data which optimize a projection criterion via numerical 
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computation. Rutledge and Mclean [35] extended this method to choose a subset of basis 

functions from the wavelet packet dictionary which are orthogonal to one another. They 

called this method the dictionary projection pursuit (DPP), which will be presented in 

chapter 5. 

1.6. Thesis Layout 

Numerous research efforts have been made towards the diagnosis of different 

engine faults. In this chapter, some of these were reviewed; more work carried out in 

classification and engine fault detection will be outlined in subsequent chapters. 

Chapter 2 outlines the process of pattern recognition, reviews Fourier and Short 

Time Fourier transforms and sets the context for introduction, definition and application 

of wavelets and wavelet packets in machine diagnosis. This is followed by an explanation 

of the concept of entropy and discriminant measures, and their role in signal processing. 

In chapter 3, different normalization and preprocessing methods will be 

presented. The data sets that have been used throughout the thesis along with some 

preliminary data analysis will be introduced. 

In chapter 4, using mutual information and entropy defined in wavelet domain, 

informative wavelet algorithm [20] will be explained and applied to real-world machine 

data for classification and diagnosis of a set of designated faults in diesel engines. Several 

prototype wavelets and data under different operating conditions are employed to 

examine the effectiveness of the algorithm for the classification of two categories of 

faults, namely, excess valve clearance and knock condition. 
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Chapter 5 covers another method used in fault diagnosis known as the dictionary 

projection pursuit and the underlying algorithm in which its relevance to the research 

conducted in thesis is investigated in detail. 

In chapter 6 the best-basis algorithm and its extension, the local discriminant 

bases algorithm, are investigated and their role in the research carried out in the present 

work is outlined. Then, some representative test results are presented and thoroughly 

analyzed. 

In chapter 7 some novel methods for fault diagnosis and classification are 

introduced, and in chapter 8 conclusions, future work, along with contributions made in 

this thesis are presented. 

1.7. Closing Remarks 

In many of the papers reviewed in this chapter, the respective authors have investigated 

relatively harsh faults, such as gear faults, which are primarily time-invariant and could 

practically be detected by Fourier analysis techniques as well. Nevertheless, they have 

shed light on new trends and approaches and some have developed innovative ideas in 

the field of fault diagnosis. In this research, we develop a methodology for detecting 

faults with lower levels of intensity in more transient and time-variant environments. In 

the process, we highlight the shortcomings of several available methods and deal with 

development and application of wavelet-based techniques for engine fault detection and 

diagnosis. 
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CHAPTER 2 

Pattern Recognition and Wavelets 

2.1. Introduction 

Wavelets are classes of functions with properties suitable for the analysis of a 

wide spectrum of signals found in engineering and scientific applications. Wavelets have 

been utilized successfully in system modeling and control, image and signal processing, 

data compression, communication, signal identification, pattern recognition, and feature 

extraction. An important property of wavelet analysis is the ability to localize feature of a 

signal analysis both in time and in frequency. As such, wavelet transform is viewed as a 

generalization of Fourier transform in the sense that it provides both spatial and 

frequency localization of a given signal. Often wavelets are considered for the analysis of 

signals to characterize discontinuities, breakpoints, nonstationary and transients behavior 

[36]. For feature extraction, they have found applications in industrial and biomedical 

diagnostics where features for change detection are often sought in wavelet coefficients 
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or in their characteristic parameters such as correlation structure and statistics of the 

coefficients at different scales of signal decomposition. 

In this chapter, basic concepts of pattern recognition and classification are 

presented; then the fundamentals of wavelets signal processing is reviewed. The 

significance of applying wavelets in machine diagnosis is discussed followed by 

introducing the concept of Shannon entropy [45]. While entropy is successfully utilized 

in data compression and signal representation applications, one needs a different criterion 

in classification. Relative entropy is presented as a natural extension of entropy theory to 

be employed in classification applications. 

2.2. Pattern Recognition 

Fault detection and quantification problems may be analyzed within the scope of 

pattern recognition problems whose goal is to classify objects or patterns into a number 

of categories or types [12]. Pattern recognition is an integral part of most machine 

intelligence systems built for decision-making. The major problem associated with 

pattern recognition is the so-called curse of dimensionality, in which the high dimension 

of data means the existence of high amount of unnecessary information in the original 

data, and excessive computational time in the data analysis phase. 

Both traditional methods such as Fourier analysis and new methods such as time-

frequency and wavelet analyses generate large numbers of data features. For pattern 

recognition and classification applications, it is highly desirable to determine as few 

features as possible while containing as much information about the faults as possible. 

There is a pressing need to reduce the dimensionality of these data by extracting a limited 
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number of features which best preserve the useful information. While researchers have 

applied certain methods such as linear discriminant analysis [12] and neural networks 

[47], it is clear that much remains to be done in this arena. There are many reasons why 

feature reduction is essential, including reduction of computational cost, reduced 

requirements in terms of training time and data, noise reduction, increased robustness, 

and more rapid training of classifiers. There will also be high mutual correlation among 

the selected features which could increase the complexity without any gain. Furthermore, 

high dimensionality causes the information to be diluted. 

A pattern recognition system is trained with a finite number of training samples. 

The trained system must be well generalized to data which were not contained in the 

training set, but without significant increase in the system complexity. 

On the other hand, often, signals acquired for use in a fault detection process carry 

unnecessary information and cannot be directly used in a given classification problem. 

Such signals must be suitably preprocessed for order reduction before feature extraction. 

Preprocessing attempts to associate each class of signals with a certain pattern (signature) 

that can be used as a feature for classification. In addition, in classification problems, not 

only we look for features that contain non-superfluous information but also we seek 

information that can separate classes from each other as distinctly as possible. This type 

of information is referred to as "discriminant". Usually, it is the superfluous information 

that turns the classification into a difficult task. The main objective in feature extraction 

and classification problems is to find a coordinate system for projecting the signal along 

its axes, that yields high discriminatory information residing on a few axes, with 

insignificant information along most axes. 
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2.2.1. Definition and Process 

A linear projection from R" to Rm is a linear map B represented as an n x m matrix: 

Z = BTX, l e F ' , Z<=Rmxl (2-1) 

which transforms H-dimensional data set X (consists of / data in each column) into an m-

dimensional space; Z is the /w-dimensional transformed data set. Suppose bi is the n-

dimensional column vectors of matrix B=[b\ b2 ...bm]. If &,s are orthogonal to each other, 

the projection is called orthogonal, and if they have unit magnitudes, the projection is 

called orthonormal. If m = 1 , then B is a one-dimensional projection, and Z is a scalar 

sometimes referred to as the projection score. 

Fig. 2.1 shows main stages of classification in which X is input signal, Y, 

corresponding class label (e.g. faulty or healthy conditions), and F, feature space, which 

is the discriminant subspace of reduced dimension (m «: n). The maps f :X ->F and 

g: F —> Y are called feature extractor and classifier, respectively. It is computationally 

more efficient to analyze the data in a discriminant subspace of lower dimension. 

Classification is a complex task because: 1) the signal space dimension is usually 

very high which makes the classification computationally expensive, 2) as mentioned 

before, signal space usually includes some unnecessary information, 3) signal space is 

usually contaminated with noise. Classification goal is to determine which class a given 

data X belongs to by constructing a feature space F that provides the highest discriminant 

information among all classes. 

This thesis deals with the analysis of cylinder-head acceleration data for engine 

fault detection and diagnosis. Vibration signals of a machine always carry information 

about its dynamic behavior, which can be used to identify faults in machine operation. 
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Vibration signals in internal combustion engines are characterized as being transient, time 

variant and extremely noisy. Wavelets are considered to be highly suitable for the 

analysis of transient signals for feature extraction used in fault detection problems. 

Fig. 2.1. Main stages in classification. 

The basic background concepts behind wavelet analysis along with formal 

definition of wavelets are introduced in the next two sections. 

2.3. Fourier and Short Time Fourier Transforms 

Conventional techniques such as Fourier analysis are practically valuable for 

many signals in which the signal's frequency content is of great interest. Fourier analysis 

decomposes a signal into a sum of constituent sinusoids of different frequencies: 

It gives another view of the signal with details that cannot be seen in the signal itself. If / 

has finite energy; i.e., feL2(R) (L2 is the space of square integrable functions), then the 

amplitude ̂ (co) of each sinusoidal wave eJti" is the Fourier transform of /obtained by: 
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F(ay)=rf(t)e~Ja>'dt. 

J -oo 

Sinusoidal waves W*'}^ are eigenfunctions (sometimes referred as 

eigenvectors) and Fourier coefficients F(co) are their associated eigenvalues [39,40]. 

Fourier analysis transforms a time-based signal to a frequency-based one, but in 

the new (frequency) domain, there is no time information; it is impossible to notify when 

a certain event occurred. If a signal is stationary - as is common in many applications -

this drawback may not be so important. However, many signals including engine signals 

have non-stationary or transitory characteristics; they exist in short periods of time, but 

consist of local information. Fourier analysis is not capable of detecting these transitory 

and abrupt changes. 

To resolve this deficiency, in 1946 the physicist Dennis Gabor [40] motivated by 

quantum mechanics, modified the Fourier transform to analyze only a small section of the 

signal at a time. Gabor's adaptation, called the Short-Time Fourier Transform (STFT), 

maps a signal into a two-dimensional function of time and frequency (Fig. 2.2). It 

provides some information about both when and at what frequencies a signal event 

occurs, but its precision is limited by the size of the time window used. Its other 

weakness is that once one chooses a particular window size, that remains the same for all 

frequencies. The time-frequency window of any STFT is rigid; in many applications we 

need a more flexible approach where we can vary the window size to examine an event 

more accurately either in time or frequency. 
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Fig. 2.2. Short Time Fourier Transform. 

2.4. Wavelets 

Wavelets are classes of wave-like functions that are often irregular, non-

symmetric, and with no analytical/mathematical expression. They have finite number of 

oscillations and an effective length of finite duration. Wavelets are used as basis 

functions for signal decomposition and signal processing. They allow function expansion 

in an orthogonal, non-orthogonal or redundant structures. Wavelets are considered as 

unconditional bases with properties that allow efficient information extraction and coding 

[41,47]. 

Wavelets in signal processing can be considered as windowing functions 

extracting signal information at variable-sized localized regions. It allows the use of 

windows with long time intervals where we want more precise low frequency 

information, and short time regions where we want to extract high frequency information. 

Wavelet transform projects a given signal onto a two-dimensional array of coefficients 

parameterized by scale (or frequency) and translation (time), while Fourier transform 

maps a one-dimensional function into a sequence of single parameter coefficients. Two-

dimensional signal representation allows localized extraction of signal information both 
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in time and frequency. In standard discrete wavelet transform (DWT) this representation 

is achieved using basis function v|/ dilated with a scale parameter j, and translated by k: 

yJk(t) = 2JI2y(2Jt-k) j,keZ 

where Z is the set of all integers and the factor 2!/2 maintains a unity norm independent of 

scale j. Any finite energy signal fin L (ic) can be decomposed using wavelet orthogonal 

basis [41]: 

/ ( 0 = 2>M2"V(27*-*) 
j* 

or 

/ ( 0 = I>MY,,*(0 

where the two-dimensional set of coefficients a^ is referred to as wavelet coefficients of 

/(t) and can be determined using inner products defined as 

« M = (vM(0,/(0) = J / (0 v W • 

Decomposition of a signal can be carried out using a filter bank structure by 

breaking the signal into a set of low and high frequency components as illustrated in Fig. 

2.3, where f=fv° is the original signal, h ; and gJ are low and high pass filters of stage j,fj 

and fw\ j = 1,..., J, are called the approximation and detail at resolution level j, 

respectively. / is the number of decomposition level considered for signal analysis. In 

standard wavelet transform, low pass and high pass filters h 7 and gJ remain unchanged 

for all stages. At an arbitrary stage j, original signal can be reconstructed from the sum of 

j 
the all details up to stage j plus approximation at that stage i.e., / = / / + Y]fj [ 36], 
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Filter bank structure can assume orthogonal or biorthogonal structure [42]. They 

are derived from a prototype wavelet function characterized by a set of parameters 

including regularity, symmetry and wavelet order [42]. Selection of a particular prototype 

wavelet for a given application is determined by the requirements of that application and 

is an area of wide interest in function approximation and signal processing. 

Fig. 2.3. Filter bank analysis and multi-resolution signal decomposition. 

There are several families of wavelets that have proven to be useful in different 

applications. One of the most well-known is the Daubechies family of wavelets, which is 

shown by DbN, where N is the order; the greater the N, the more oscillating and smooth 

the wavelet. Two examples of Daubechies family, Db4 and DblO, are shown in Fig. 2.4. 

A wavelet transform of a given signal can be interpreted as a decomposition of the 

signal into a set of components described at different frequency channels. In standard 

wavelet decomposition, low frequency channels have narrow bandwidth, and high 

frequencies have wide bandwidth [42]. Whilst this kind of signal decomposition is 

appropriate for many purposes there are applications that need a more flexible frequency 

partitioning which is the theme of next section. 

25 



-1 

0 

-1 

0 

0 2 4 6 0 s 10 15 

D M D b l O 

Fig. 2.4. Two examples of Daubechies family of wavelets. 

2.5. Wavelet Packets 

Wavelet packet decomposition is an alternative and a more suitable structure for 

signal decomposition in a narrow frequency band data analysis. Wavelet packet can be 

considered as an extension of the standard discrete wavelet transform in which the 

outputs of high pass filters are further decomposed into high and low frequency signal 

components. Decomposition can be continued up to a level in which the last stage 

consists of single sample only. A binary tree with a root as the original signal can 

describe wavelet packet signal decomposition. Each node is associated with a basis 

function spanning signal component at that node. 

While a Fourier basis provides a poor representation of functions that are highly 

localized in time, standard discrete-time wavelet transform is also not well suited to 

represent functions whose Fourier transforms have a narrow high frequency bandwidth. 

To solve this problem, the wavelet packet, as a generalization of standard discrete 

wavelet decomposition, offers a richer range of possibilities for signal analysis. Standard 

wavelet technique decomposes the frequency axis in dyadic intervals where size of 

bandwidth increases in an exponential manner [43]. Wavelet packet, introduced by 
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Coifman, Meyer and Wickerhauser [44], on the other hand, generalizes dyadic 

construction by decomposing the frequency axis in separated intervals of varying sizes. 

In effect, wavelet packet is a redundant signal decomposition. The term 

"redundant" refers to the fact that there are more than one set of basis functions which 

can span a particular space. Non-orthogonality of wavelet basis functions at the 

parent/child nodes leads to a redundant signal representation. Redundancy in wavelet 

packet provides a wider collection of basis functions for selecting the most suitable 

projection directions, and can have a great influence on fault diagnosis results. Using 

wavelet packet we can select bases from a library of basis functions that best match the 

signal components at different resolution both in time and frequency. 

2.6. Machine Diagnosis and Wavelets 

Vibration Signals, acquired from engine operation, generally correspond to 

machine events that are cyclic and are often associated with a burst of high energy. They 

are highly transient and last only for a short period of time. Acceleration (vibration) 

signals acquired by sensors located at the cylinder head are of decaying oscillatory nature 

and can reveal information about various engine events. Such information about the 

condition of machine operation resides in the overall time-frequency behavior of the 

signal. Transient nature of machine signals and search for a particular time-frequency 

behavior for diagnostic purposes render wavelets as highly suitable for the analysis of 

such signals. Some of the reasons for the use of wavelets in machine diagnosis 

applications are as follows: 
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Wavelets as Time-Frequency Analysis Tools. Wavelets are mainly time-

frequency analysis tools. They are highly suitable candidates for machine data 

analysis as information about a given machine operation lie both in time and 

frequency behavior of the signal. 

Wavelets and Localized Signal Analysis. As stated earlier, machine data utilized 

for diagnosis are highly transient where information about a given machine 

condition reside in local behavior of the signal; i.e., changes occurring in part or the 

entire segment of the signal. Wavelets are highly suitable to capture localized 

changes and behavior. 

Wavelet Coefficients as Feature Variables. Signal expansion by wavelets often 

leads to a few wavelet coefficients of large magnitude and large number of 

coefficients of small magnitude. This leads to signal approximation with limited 

number of large amplitude coefficients used as feature variables. Considerable 

reduction of dimensionality is achieved in this manner. 

Wavelets as Unconditional Bases. Signal information lies in coefficient values 

obtained from wavelet signal decomposition. Wavelets are unconditional bases [41] 

which imply a very robust basis in which the coefficients drop off fast independent 

of the sign of the coefficients. Therefore, in an orthogonal signal decomposition, 

absolute values of the coefficients carry the necessary information about the signal. 

This allows to use absolute values of wavelet coefficients for feature extraction. 

Noise Reduction using Wavelets. Wavelets are used for noise reduction in which 

wavelet coefficients of small amplitude (below a given threshold) are set to zero. 

Often such coefficients belong to noise content of the signal at the highest 
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frequency band. De-noising is different from the commonly used high frequency 

filtering, as it can be carried-out at all frequencies. On the other hand, we utilize de-

noising scheme for reduction of machine background noise corresponding to 

overall acceleration observed in machine data. Often it is composed of white noise. 

Careful selection of threshold level in de-noising can successfully reduce machine 

background noise. 

In this work, we employ wavelets for the analysis of vibration signals of a single-

cylinder engine. Wavelets are used for engine diagnosis, such as identifying knock, loose 

valve, and different engine operating conditions produced by various ignition timings. 

First, we present the concepts of entropy and discriminant measure, which have 

been used as cost functions in many applications of signal representation and 

classification. Then, we introduce the neural network algorithm that has been used 

throughout the thesis as the classifier. 

2.7. The Concept of Entropy 

There are many useful cost functions; one of the most well-known is Shannon 

entropy [45]. Consider a probability distribution s = {5,,...,^} (where 5,s are non-

negative) associated with a random variable X, i.e., P(X= x,) = Sj, for /=l,...,w. Then, 

entropy of the sequence is defined by the expression 

A(jr)«ff( i ) = -2>,logJ, (2-2) 

where 
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(2-3) 

assviming that 

logO = -oo, log(s / 0) = +oo for s >0, and O.(±oo) = 0. (2-4) 

Entropy was first encountered in thermodynamics by Clausius in 1867 as a part of 

the second law of thermodynamics. Since the dynamic theory was unable to articulate all 

the collisions of the molecules causing the thermal energy, in 1872, Boltzman employed 

entropy to express the uncertainty of the state of the molecules of a perfect gas. In 1940s, 

Shanon introduced the concept of entropy in information theory [45] as an extension of 

Boltzman's idea to measure the uncertainty of information. The application of entropy 

was then expanded to many fields such as information theory, task planning and 

organization, system communication, image and signal processing, intelligent control and 

machine intelligence, and stochastic control [49]. 

By definitions (2-2) and (2-3), entropy is applied on a sequence which forms a 

probability density function (pdf) of a random variable. Entropy sometimes referred to as 

a measure of uncertainty or randomness. It can also be considered as a measure of 

complexity of a system [50]. 

Shannon entropy has several properties [51]; here three important properties are 

introduced. 

Property 1: Entropy is always non-negative, i.e., /f(s)>0. Equality holds when 

sequence s follows a single-value distribution, i.e.: 

Zero entropy in property 1 implies that the process is deterministic [51], and there 

is no uncertainty involved. Since s is a pdf then every element of s is less than one; 

H(i) = 0 if Sk = 1 and st = 0 for all i except i * k. 
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therefore, entropy is always non-negative (considering the negative sign in Eq. (2-2) and 

the fact that logarithm of a value less than 1 is negative). 

Property 2: Maximum entropy occurs when all probabilities are equal; in other 

words: 

tf(s)<tf(I,I,...,I) 

where the maximum value is log n: 

/ / ( I , i , . . . , i ) = -X^og(i) = - » 4 ( - l o g « ) = log». (2-5) 

i=i 

From statistics and probability point of view, property 2 suggests that if the 

probability of every alternative of an n-state system is identical, the entropy of the system 

equals to logn. In special case, when size of sequence s is n = 2, we have: 

H(s) = H(s, 1 - s) = - 5 log s - (1 - s) log(l - s). 

If s has an equal probability, that is, s = 1/2, and assume that logarithm base is 2, the 

maximum entropy will be: 
i / ( i , I ) = log22 = l . 

Before introducing the third property of entropy, let us define the additive 

concept. 

Definition: Let s(1) = {s™}^ = (s[l),...,s™) and s(2) = { * , 2 ) K L i be two probability 

distributions related to independent random variables and X ( 2 ) with the joint 

probability distribution 

P(XV = x?\xW = xW) = sVsf2\ /=!,...,«; j = 1 « . 

Then operator H (consider H as a general operator) is said to be additive if 

tf(s<V2)) = tf(W (2-6) 
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Property 3: Entropy is additive because: 

n m 

//(S
(i),s

(2))=-XZ^(,M2)log^(I)^)) 
n m n m 

;=i y=i /=i 7=1 

w n n m 

=-2>!2)I*,(1) i°s*,(1) -2>,0)2>52) i o^ - 2 ) 

7=1 .=1 1=1 7=1 

= i/(s(1))+//(s(2)) 

Eq. (2-6) implies that entropy of joint distribution of A*1* and A*2) equals the sum 

of entropies ofX ( 1 ) and X(2). 

It can be shown that for all distributions with the same variance, entropy, defined 

by (2-2), is maximum if sequence s follows a normal distribution . 

Entropy has been widely used as a valuable criterion in data and image 

compression and signal representation. However, in classification applications, one needs 

a principle to measure the distance between two or more sequences. The following 

section pays attention to this important issue. 

2.8. Discriminant Measures 

The principal objective in a classification problem is to develop measures that are 

capable of discriminating different classes as much as possible. Accuracy of the 

classification results is highly influenced by the extent of class separation in feature space 

generated by the chosen discriminating measure. Discriminant measure, in general, is 

designed to evaluate the statistical distance among different classes. The choice of 

discriminant measure depends on the application on hand. Different authors have 

employed different discriminant measures in various applications [20,22,50]. The 
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approach utilized in this work is based on using relative entropy as a measure for 

discriminating different classes that is now defined. 

In a two-class case, suppose s ( / ) = {sf0}^, for 1 = 1,2 be two non-negative 

sequences satisfying: 

Z*,(,)=5>,(2)=1 (2-7) 

Symmetric relative entropy for two-class is then defined as: 

D(^,s<2>) = X ( ^ l o g ^ + ^ l o g ^ ) (2-8) 
1=1 

assuming that 

log0 = -oo, log(s,. / 0) = +oo for si >0, and O.(±oo) = 0. (2-9) 

If we just use the first term in the right hand side of (2-8) then the relative entropy 

is defined as: 

D ^ , ^ ) = ±sf>log%. (2-10) 
i=i 

Lemma: Equation (2-10) is always non-negative and will be zero if distributions 

s ( 1 ) and s ( 2 ) are the same. 

Proof [11]: Recall the elementary inequality for real numbers 

logx<x-l, (2-11) 

with equality if and only if x = 1. Then, considering conditions (2-7) we have 

2><*> log$ < 2 > , ( 1 > ( f -1) = 5>m -2><2) = 0. (2-12) 
i i i i 

Therefore, Y s™ log ̂  > 0. Equality holds if and only if J / 2 W 1 } , for all /. 
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Note: Conditions (2-7) is not necessary for a symmetric relative entropy to be 

non-negative, because the right-hand side of Eq. (2-12) in symmetric case results in 

cancellation of the corresponding terms: 

(Z*ji)-z*r))+(Ẑ )-Z'r))=°- (2-i3> 
As can be seen from the above lemma, if two random variables have the same 

distributions, discriminant measure D will be zero. In classification applications, one is 

interested in those features that can separate the distribution associated with each class; 

therefore, one should look for those features that maximize D. The more separate are 

these distributions, the higher the discriminant measure D is. 

Now, the challenge is to find appropriate features. By projecting a set of data in 

different classes (vibration signals in our application) onto a set of basis (coordinates) and 

using the associated coefficients in different classes as s(/), the corresponding discriminant 

measure D can be found. In a classification problem, the objective is to locate those bases 

(out of a dictionary of bases) that maximize the value of D. In this manner, the 

distribution of each class can be transformed to a sharp distribution with least overlap 

with other distributions. 

The discriminant function D measures how differently distributions of two classes 

are. Since s(/) are non-negative sequences assimilating pdf functions, we can successfully 

employ the normalized energy of the coefficients in each class as s(/) and s(2) in the 

classification problem. 

In general, if there are L classes, one can use this simple approach: 

m^tj'itt.1*10,*1"). (2-H) 
,=1 y=,+l 
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Equation (2-14) is not always the best choice when the number of classes is more 

than three, since a large value for D may be obtained because of the summation of many 

small terms, which is not a favorable outcome. In fact, the desirable situation for the 

classification is a large D due to a few significant terms with most others having 

negligible values. To overcome this shortcoming, Watanabe and Kaminuma [52] split 

training data into class / and non-class / and then form L sets of two-class problems and 

construct a classifier for each of them. 

Relative entropy and its symmetric version have been used in chapters 5 to 7. 

2.9. Neural Network Algorithms 

Backpropagation algorithms, that use a multilayer perceptron network [71], have 

been extensively used in classification applications. Backpropagation is an extension of 

least mean square (LMS), which in turn is an approximation of the steepest descent 

algorithm [38] that is a simple, but a slow minimization method. 

There are two different approaches to improve the convergence speed of 

backpropagation learning rule [53]. The first approach employs heuristic methods such as 

varying the learning rate to determine the length of steps in the steepest decent algorithm. 

The other approach focuses on numerical optimization techniques since training 

feedforward neural networks to minimize square error is basically an optimization 

problem. As a result of latter approach, which has been the focus of research for many 

years, several variations of the main backpropagation algorithm have been developed. 

For example, conjugate gradient algorithm and Newton's method provide faster 

convergence. In these methods and many other backpropagation algorithms, in which 

35 



goal is the optimization of a performance index, errors of network with respect to target 

values are found from the last layer of the network to the first. The word 

"backpropagation" refers to this process. The improved backpropagation training 

algorithms have various computation and storage requirements. 

Even though there are some heuristics and general guidelines for the selection of a 

specific learning method, such as convergence speed or storage needs, usually, a training 

algorithm is chosen empirically for each application. We examined 12 different 

backpropagation training algorithms in which Levenberg-Marquardt algorithm was found 

to be the best algorithm with respect to both high classification accuracy and 

computational efficiency. Classification errors for each of these 12 algorithms for the 

Ricardo Hydra engine data (introduced in the next chapter) are shown in Table 7.1 in 

chapter 7. 

In the next two chapters the attention will be on two methods for fault diagnosis 

based on wavelet analysis: mutual information and dictionary projection pursuit. 

2.10. Closing Remarks 

In this chapter, wavelets - as the class of tools we would like to examine in this 

research - were introduced, along with a formal definition of the concept of entropy and 

its extension, the relative entropy. The importance of feature extraction in pattern 

recognition applications were emphasized and stated that data must be processed for 

dimension reduction to degrade the effect of information dilution (due to both redundant 

and unrelated information contained in the original data) and to decrease computational 
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time. Reviews of literature in the signal processing and fault detection area as well as the 

various approaches researchers have developed were presented. 
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CHAPTER 3 

Experimental Setup, Data 

Collection and Preparation 

3.1. Introduction 

In Chapters 1 and 2, wavelets and wavelet packet transform including the basic 

theory and potential capabilities in pattern recognition applications in general, and in 

machine diagnosis in particular, were presented. In the coming chapters a more detailed 

and in depth analysis of a number of wavelet-based methodologies used in pattern 

recognition will be introduced. In this chapter, various sets of data that will be used for 

the evaluations of these methodologies are discussed. 

Experimental data used in this thesis are as follows: 

• Acceleration data acquired at the cylinder head position of a single cylinder 

research engine, namely Ricardo Hydra, 
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• Acceleration data acquired at the cylinder head position of a mid-size single 

cylinder diesel engine, and 

• A set of synthetic data. 

It should be mentioned that main experiments were conducted and reported on 

actual engine data. Synthetic data were used for test and validation and as a secondary 

source. 

To use the real engine data for the analysis, it was necessary to carry out data 

preparation and preprocessing as described below. 

3.2. Preprocessing and Normalization 

Data preprocessing is an integral part of statistical pattern recognition. Several 

preprocessing schemes have been proposed in the literature [53], which were examined in 

this thesis. Effectiveness of a given scheme in a particular application is highly case-

dependent and is influenced by the requirements of a given application. Usually an 

appropriate preprocessing method should be applied on both signal space and feature 

space (please refer to Fig. 2.1). The role of preprocessing is to remove bias and 

disproportionate differences in data so that a meaningful comparative analysis of the 

results can be made. Normalization of data is a logical technique that may be done 

through the following three options: 

1- Normalization based on mean-centering and norm of every data: 

data = data - mem(data) (3 -1) 

data = data/nonn(data) (3-2) 

This normalization has been used in [20] and [22]. 
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2- Individual class normalization in which data are mean-centered and each class 

is normalized to its Euclidean norm, i.e., to the sum squared of the elements of 

all data in the given class: 

data = data - mean(data) 

A 
data = data I ̂  norm(data\l)) (3-3) 

where TV/ is the total number of data in the class /. This normalization has been 

used in [24]. 

3- Normalization of data in each class to confine the range of data to -1 and +1. 

This is done by the following transformation: 

dtf — s.d + b 

where 

5 = 2/(max - min); b = -(Max+Min)/(Max - Min). 

du can also be written as : 

d ^(d-Max) + (d-Min) 
N Max - Min 

in which d and du are actual data and normalized data respectively, "Max" and 

"Min" are the maximum and minimum values of all of data. 

In our study, option 3 for the normalization of data in both signal and feature 

domains has been used. Under this scheme, the relative position of data in different 

classes with respect to each other remains unchanged. Analysis and further discussion on 

the application of this scheme and the effect of preprocessing are presented in chapter 7. 
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In the following sections the experimental setups of the sets of data, which will be 

used throughout the thesis, are presented. 

3.3. Ricardo Hydra Engine Experimental Setup 

Ricardo Hydra, a single cylinder spark ignition research engine, was used for 

conducting a set of experiments and test runs. The engine operates on both gasoline and 

natural gas fuel modes, but only natural gas mode with a compression ratio of 9.26:1 was 

used. The engine speed and throttling were set at 1500 RPM and 100% (wide open), 

respectively. Different machine operations with three relative air/fuel ratios namely 

stoichiometric (X =1), fuel lean (A. =1.5), and fuel-rich (X = 0.8) mixtures, each with 

normal, advance, and retard spark timing were obtained. One pressure sensor with 12.5 

KHz and two accelerometers with 25 KHz and 12.5 KHz sampling rates were employed 

to measure cylinder pressure and simultaneous vibrations at two positions on the cylinder 

head in vertical (V) and horizontal (H) directions. A rotational encoder was used to 

monitor engine speed and to determine the starting point of each cycle. Data belonging to 

X = 1 condition were utilized in this work. To realize the effect of combustion on 

cylinder head vibration and pressure signals, data were also collected in the absence of 

combustion (no ignition) by externally driving the engine. This is referred to as the 

motoring mode. 

3.3.1. Data Preparation 

The objective of the respective experiment was to collect acceleration data at the 

cylinder head position with three different ignition timings of: -23 (normal), -33 
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(advance), and -10 (retard) degrees under stoichiometric conditions assimilating healthy 

and faulty conditions. The numbers denote ignition timings measured as angles before 

top dead center. A data acquisition system from REM Technology Inc. [1] was used for 

data collection. This system was capable of acquiring data of 16 consecutive cycles of 

engine operation. For each of the engine conditions (class), three consecutive 16-cycle 

data were collected to provide sufficient number of data (48 sets) for the implementation 

of the algorithms introduced in the following chapters, and to evaluate their accuracy of 

classification results. We used the first 32 data cycles in each class as training and the 

remaining 16 as testing data sets. 

The size of data for one complete engine cycle corresponding to two revolutions 

of crank shaft (720 degrees of crank angle) varied for different cycles and was 1975+15 

sample points for data collected at a sampling rate of 25 KHz and 988±8 sample points 

for a sampling rate of 12.5 KHz. The variation in number of samples, caused by changes 

in engine RPM, was found to be insignificant (less than 1%). In this experiment, our 

concern was to study combustion event under different engine operating conditions as 

affected by different ignition timings. As such, data belonging to combustion zone only 

were considered for the analysis. This was done by defining a window of data, the size of 

which was carefully selected for investigating different ignition timings. The window was 

to be wide enough to cover all of the characteristics of the combustion event under 

different advance or retard spark timing conditions, but not too wide to overlap with other 

engine events. 

Using a small window size was considered to be important to obtain low 

computational time. Here we use a segment of data belonging to -15 to +31 degrees of 
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crank angle which covers the combustion event. For the acceleration data, this 

corresponds to data points ranging from 945 to 1072 for 25 KHz sampling rate and one 

half length for the 12.5 KHz sensor data. Accordingly, the size of data for 25 KHz sensor 

was 128 sample points, and for the 12.5 KHz sensor it was 64. The maximum heat-

release of the engine as a measure of combustion quality, occurred at (-5.5) - (32), (-

14.5) - (26.5), and (9) - (47) degrees of crank angle for -23, -33, and -10 degrees of 

ignition timing, respectively. The numbers in parenthesis correspond pairwise to the 5% 

and 95% of heat-release, which shows the amount of chemical energy of the fuel released 

by the combustion process at the specific crank angle degree [2]. With regard to the heat 

release and practical considerations where we need an identical interval for all of data 

categories, the above window size of -15 to +31 was found to be an appropriate selection. 

Fig. 3.1 shows sample acceleration data acquired by the sensor in vertical 

direction with -23, -33, and -10 degrees of crank angle. We refer to these data as class 1, 

class 2, and class 3 engine conditions, respectively. The sections of acceleration signal 

from left to right with high magnitudes correspond to different machine events i.e. 

exhaust valve closing (EVC), intake valve closing (IVC), combustion, exhaust valve 

opening (EVO), and intake valve opening events (TVO), respectively. 

Fig. 3.2 shows the Ricardo Engine valve timings in which TDC and BDC stand 

for top and bottom dead centers. The numbers above each event indicate crank angle in 

degrees and the corresponding sample point with respect to the TDC and BDC, 

respectively. For example, -(+)56 means 56 crank angle degrees before (after) BDC. Fig. 

3.1 demonstrates that vibration signals are also affected by other events during engine 

operation. For instance, intake valve closing within the range of 650 and 820 data points 
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shows two components of high amplitudes. However, comparison of figures 3.1 and 3.2 

reveals that only the first high amplitude segment belongs to P/C; the second spike is 

generated by other machine components oscillating at their harmonic frequencies. 
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Fig. 3.1. One cycle of three classes of vertical vibrations with spark timings of: -23, -33, 

and -10 degrees of crank angle, in stoichiometric conditions, 1500 RPM, and 

25KHz sampling rate. Vertical axis unit is "g". 

Fig. 3.3 shows variations of in-cylinder pressure for the three classes of collected 

data. Using pressure signal, classes are distinctly differentiated from each other, 

indicating the usefulness of pressure signals for identifying different classes in engine 
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diagnosis as compared with acceleration data. However, in practical applications using 

pressure transducers is neither feasible nor economical. 
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Fig. 3.2. Ricardo Research Engine valve timing characteristics. 
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Fig. 3.3. Pressure signals for three classes of spark timing: -23, -33, and -10 degrees of 

crank angle and with 12.5 KHz sampling rate. 
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3.3.2. Data Analysis 

Analysis of acceleration data indicates that horizontal vibration data do not carry 

useful information about the combustion event. The Fourier transform of horizontal 

vibration data sampled at 12.5 KHz (the solid graph in Fig. 3.4) indicates large spectral 

amplitudes in high frequencies as compared with vertical vibration data (at 25 KHz 

sampling rate) where high frequency components rapidly decay to zero (Fig. 3.5). An 

inspection of the spectrum (FFT) of vertical acceleration data at low sampling rate (the 

dotted graph in Fig. 3.4) exposes the nature of horizontal vibration data. They indicate 

that the reason horizontal accelerometer data do not carry the same valuable information 

is not due to the low sampling rate. We see that the dominant frequency band in vertical 

(2-4 KHz) and horizontal directions are not the same demonstrating that the information 

extracted from the horizontal direction is not related to the combustion event but are from 

other sources classified as noise interferences. 

Spectral analysis of data for three classes indicates that frequency bandwidth with 

high spectral energy is almost identical for the all classes with some variations in spectral 

amplitudes (Fig. 3.5). This indicates that the spectral features cannot be directly used for 

the discriminatory classification of different engine conditions, specially for classes 1 and 

3. An inspection of acceleration data showed that the engine was running relatively 

smoothly with minor background noise where noise reduction was not actually necessary. 

Investigating both vibration and pressure data indicated that engine operation was also 

relatively uniform with a low variability in the data among different cycles. Spectral 

characteristics shown in Fig. 3.5, however, will be exploited in chapter 7 in a different 

context. 
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A histograms of data indicates that distribution of the training data (Fig. 3.6) 

follows approximately the Gaussian distribution. Classes 1 and 3 exhibit highly clustered 

data patterns when the mean value of data in each class is drawn against their standard 

deviation. 
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Fig. 3.4. FFT of horizontal and vertical vibrations with 12.5 KHz sampling rate, in 

combustion zone, three classes of spark timing: -23, -33, and -10 degrees of 

crank angle. Vertical axis unit is "g". 
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Fig. 3.5. FFT of vertical vibrations in combustion zone with 25 KHz sampling rate and 

three classes of spark timing: -23, -33, and -10 degrees of crank angle. 

3.4. Mid-size Single Cylinder Diesel Engine Setup 

The second test engine was a single cylinder dual mode unit operating either on 

diesel fuel or natural gas. Data presented here is from diesel mode operation. 

Acceleration data of the intake valve closing and combustion events from this engine 

were utilized for data analysis and algorithm testing. Two types of faults, namely intake 

loose valve and engine knock conditions each with varying intensity levels were 

considered. Engine knock condition was generated by judicious adjustment of load. Load 

changes were made in two incremental steps of approximately 15% above nominal load 

corresponding to 18, 22, 25 HP, respectively. 
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Fig. 3.6. Histograms and mean-std plots of training and testing data for three classes. 
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For loose valve experiments, a set of progressively increasing valve clearances, 

namely normal, 0.006 in. and 0.012 in. were set on the intake valve. Three categories of 

data were collected simultaneously: (a) cylinder pressure measured through a connecting 

tube to the cylinder, (b) block acceleration (vertical vibration) measured at a carefully 

chosen location on the cylinder head, and (c) engine RPM. Block vibration was actually 

measured at several places and the best location was found to be at the center of the upper 

part of the cylinder block which gave reliable signal intensities. Other supplementary data 

were also collected including engine power, peak cylinder pressure and peak pressure 

angle. For each test, data from sixteen consecutive cycle runs were acquired. 

Fig. 3.7 shows sample cycle runs of the diesel engine in normal and knock 

conditions. In this figure, the high amplitude components from left to right correspond to 

exhaust valve closure, intake valve closure, combustion, exhaust valve opening, and 

intake valve opening. There were noticeable cycle-to-cycle changes in the signal patterns 

and intensities even under normal condition, which indicate the complexity and 

variability of the machine operation. An initial review of data, in which mean values vs. 

standard deviation of each training data were examined, showed that a certain degree of 

data clustering and class separation can be found (Fig. 3.8), though this could not be 

observed in all of the data sets. Separation of classes was more vivid in training data 

belonging to valve clearance conditions. 
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Fig. 3.7. Sample vibration signal of the single-cylinder diesel engine in normal and knock 

conditions. 
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In the data analysis, 28 training data were used in each of the three classes for 

both loose valve and knock conditions. Initially, two classes consisting of normal and one 

faulty condition were examined. At a later stage, we considered three classes of healthy, 

mild faults, and severe faults for two different intensity levels. 

3.5. Synthetic Data 

As a general example a set of synthetic data is also used in this thesis. This type of 

data, proposed in [54], has been very popular in waveform recognition and classification 

studies. We adopted a sample data from [22], in which because of dyadic dimensionality 

requirement in wavelet analysis the number of data points had been extended from 21 to 

32. It is a three-class data based on triangular waveforms h\(f), h2(f), and h3(t) defined as 

h\(t) = max(6- \ t - l \ , 0) 

h2(t) = hl(t-S) 

hi(t) = hx<t-4) 

where t = 1,..., 32. Each class of signal x is composed of a combination of two of the 

above triangles in addition to a uniform random number u over the interval (0,1), as well 

as 32 normally distributed random numbers e (1),..., s (32), with zero mean and unit 

variance. Three classes of synthetic signals, x(2), and x(3), are then generated by: 

x(%) = u hi(t) + (1 - u) h2{t) + 8(r) 

x(2\t) = u hi(t) + (1 - u) h3(t) + e(0 

x°\t) = u h2(f) + (1 - u) h3(t) + 8(0 

For each class 30 measurement vectors (data) were generated. 
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3.6. Closing Remarks 

In this chapter the importance of data preprocessing for pattern recognition and 

classification was discussed and a number of methods were introduced. We gave a 

perspective on various sets of data that will be widely utilized throughout this thesis. 

Different concepts and parameters of machine data, data collection, and data preparation 

were presented, along with some necessary discussions on data representation and 

analysis. 
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CHAPTER 4 

Mutual Information and 

Informative Wavelet 

4.1. Introduction 

This chapter deals with an application of wavelets for feature extraction and 

classification of machine faults. The statistical approach referred to as informative 

wavelet algorithm is utilized to generate wavelets and subsequent coefficients that are 

used as feature variables for the classification and diagnosis of machine faults. 

Informative wavelets are referred to classes of functions generated from elements of a 

dictionary of orthogonal bases, such as wavelet packet dictionary. Training data are used to 

construct probability distributions required for the computation of the entropy and mutual 

information. In our data analysis, we have used machine data acquired from a single 

cylinder engine under a series of induced faults in a test environment. The objective of 

the experiment was to evaluate the performance of the informative wavelet algorithm in 
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classifying faults using real-world machine data and to examine the extent to which the 

results were influenced by different analyzing wavelets chosen for data analysis. 

The correlation structure of the informative wavelets as well as coefficient matrix 

are also examined. 

4.2. Informative Wavelets - Concept and Approach 

Informative wavelets are classes of functions generated from a given analyzing 

wavelet in a wavelet packet decomposition structure in which for the selection of 'best' 

wavelets, concepts from information theory, i.e., mutual information [20] and entropy [8] 

are utilized. Entropy is a measure of uncertainty in predicting a given state of a system 

where a system state refers to different operating conditions such as normal or faulty. 

Computation of entropy requires calculating state probabilities from training data and 

supplying them as inputs to the algorithm. An iterative process to identify appropriate 

informative wavelets is used at each stage, whereby the algorithm selects a wavelet from 

a dictionary of orthogonal wavelets in a wavelet packet signal decomposition structure, 

which results in a maximal reduction in entropy. This is equivalent to obtaining maximal 

reduction in uncertainty of predicting a given system state. In this algorithm, reduction in 

uncertainty is expressed in terms of mutual information derived from the joint probability 

distributions of the training data and coefficients. Entropy of a system is defined as: 

M 
Jf7(5) = -£p(S,.)log(/>(5,.)) 

where 5/, S2,..., SM are the states of the system with probability of occurrences given by 

P(S\), P(S2), P(SM)- Entropy is a measure introduced for the quantification of the 
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information. It can also be considered as a measure of complexity of prediction of the 

state of the system. The reduction in uncertainty can be regarded as the quantity of 

information about the original system contained in the measurement system, which is 

referred to as mutual information [51]. 

To derive the mathematical definition of mutual information we need to describe 

the states of the system. Such states can be observed by a measurement system with N 

possible outcomes {T\,T2,...,TN} of a random variable Twith a probability distribution 

P(T\), P(T2),..., P(TN). Mutual information between the states and measurements is 

defined as the difference between the uncertainty of predicting S before and after the 

observation of T: 

M N p($ f \ 

Js(coy) = H(S)-H(S/T) = Z E m ^ ) l o g p r s j p p . ) ' 

Here H(S/T) and P(SiTj) indicate conditional entropy of state S given measurement T and 

joint probability distribution of S = 5, and T = Tj, respectively, co,, is the wavelet indexed 

by the triplet parameter y = (J, k, m), where j, k, m are the indices of scale, oscillation, and 

translation (time position) in a wavelet packet dictionary. When a given state of a system 

is independent of the measurements, i.e. J$ =0, a change in the state of the machine will 

not cause any changes in the probability PiStTj). Then the algorithm selects wavelets that 

result in a maximal reduction of uncertainty i.e. maximal Js(<Oy). In informative 

algorithm, the measurement system is wavelet. Such wavelets are obtained iteratively 

where at each stage, the residual signal is considered for further signal expansion. These 

wavelets are referred to as informative wavelets. The iterative selection of the informative 

wavelets is very much similar to the classical matching pursuit algorithm [26]. Wavelet 

coefficients are then used as feature variables and as inputs to a neural network classifier 
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for classification [20]. Fig. 4.1 illustrates the main stages of the algorithm. The next 

section explains different steps of informative wavelet algorithm in more details. 

Algorithm Iteration-Residual 

Wavelet 

Training 
Data ^ 

• 1 r Training 
Data ^ W P Analys is, ^ Projection of Data NN Classes 

w Entropy Eval. Inform. Onto Wave l e t s Coeffs'" C lass if ier • 

Fig. 4.1. Block diagram of main stages of informative wavelet algorithm. 

4.3. Informative Wavelet Algorithm 

The algorithm has two stages: training stage and class recognition stage. In the 

training stage, Fig. 4.2, by using wavelet filters, training data are decomposed into low 

and high frequencies iteratively to form a wavelet packet (WP) for each training data. 

Then the collection of these wavelet packet decomposition coefficients is quantized into 

N fixed and equally-spaced sub-intervals. At this step probability distributions of S, T and 

joint probability distribution of S and T are obtained. Each wavelet is considered as a 

measurement system whose output is its decomposition coefficients obtained by 

projecting data onto the selected wavelet. These wavelet coefficients, which are in fact 

feature variables, are later fed to a neural network to classify the system state. Using the 

maximum mutual information (Js((Qy)) its corresponding informative wavelet is then 

selected. In the next step, the corresponding wavelet components are deducted from the 

residuals of entire training data, much in the same way as in the matching pursuit 
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algorithm. As the informative wavelets are successively selected from these residuals at 

each iteration, they are less correlated with the ones selected previously. 

At the final stage, the coefficients obtained above are used to train the neural 

network. Once the training is completed the NN weights are attained in order to 

memorize the main features of different classes. If three classes are considered, these can 

be, for example, severe fault, mild fault and healthy states. 

Decompose Training Signals 
(Obtain WPs) 

(I) Quantize Coefficients 
(Find ProbST, ProbS, ProbT, Js(co,,)) 

Find Max{Js(av)} & InfrWvIt 

For all 
WPs 

(II) 
(Jr, Jc) = position of InfrWvIt in W P 

G = W P of InfrWvIt 
W P = W P - WP(Jr, Jc) * G 

RESIDUE.= Training Signals 

(HI) coef = < RESIDUE , lnfrWvlt> 
RESIDUE = RES IDUE - COef * InfrWvIt I 

Iterate to 
Find another 

InfrWvIt 

For each 
• T.S 

For each 
InfrWvIt 

Neural Network 
(Find Input & Output Weights) 

Fig. 4.2. Informative wavelet algorithm: training stage. 

The input signal along with informative wavelet and neural network weights 

obtained from the previous stage are inputs to the second or class recognition stage. This 
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stage consists of three steps: projecting the input signal - that we want to identify its class 

- onto selected informative wavelets, computing their feature vector, and classifying the 

state of machine (S2). Fig. 4.3 shows the flowchart of this stage. This algorithm attempts 

to match joint state and measurement probability distribution of data with wavelet 

coefficients, the higher the probability the more the mutual information. 

Input Signal, InfrWvIt, N.N. Weights (W1.W2) 

RESIDUE = Training Signals 

— = -
coef = < RESIDUE, lnfrWvlt> 

RESIDUE = RESIDUE - coef * InfrWvIt 

* 
S1 = W1 * Coef 
S2 = W2 * S1 

Fig. 4.3. Informative wavelet algorithm: classification stage. 

The major disadvantage of informative wavelet algorithm may be its 

computational complexity. The computational time for box (I) is 0(N), where N is the 

total number of training data in all classes. Since the loop of this box must iterate for the 

whole wavelet packet elements (n log2 n times), and for the number of informative 

wavelets (W), the total cost is 0(WNnlog2n). This algorithm relies on the evaluation of 

probability density of training data; consequently, we usually need several training data. 

An empirical number is about the size of data («), therefore, the total computational cost 

is OiW n 2 logzri). If the time for decomposing each training data to wavelet packet 

coefficients is also added, i.e., 0(nlog2n), along with other overhead computations, which 
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is not insignificant in this algorithm, the real time cost will approach 0(n3). We note that 

since probability density function must be evaluated in every iteration, calculation of 

probability density function is the most time consuming part of the algorithm. 

4.4. Design of Experiments 

To evaluate the performance of the algorithm and the accuracy of its classification 

results we used machine data from the single cylinder engine introduced in section 3.4. 

Two types of faults, namely engine knock, and loose intake valve conditions each with 

varying intensity levels were considered. 

We note the following in the analysis: 

• In informative wavelet algorithm, the "number of informative wavelets" 

corresponds to the number of feature variables used for the classification. In the 

absence of any a priori knowledge about a suitable number of feature variables, 

several values ranging from 1 to 50 were initially considered. At a later stage, the 

number was confined to a smaller set ranging from 4 to 10. 

• Wavelets from orthogonal and biorthogonal wavelet families were used including 

Daubechies wavelets Db5, Db20, Db40 and Db45 as well as Coif5, Symlet5, 

Bior3.1, and Bior6.8. 

• Multi layer perceptron backpropagation was used for the neural network classifier. 

For a three-class data set, five nodes of hidden layer were used in the network. 

• We used 30 levels (bins) in quantification of coefficients and training data during 

construction of the probability distributions. 
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4.5. Data Analysis and Classification 

As indicated earlier the informative wavelet algorithm is mainly a statistical 

approach for fault detection and classification in which probability distributions of 

training data are utilized to generate wavelets during signal expansion. In this algorithm, 

coefficients of the selected wavelet carry statistical properties that best matched those of 

the training data. 

At the first glance, it may seem that classification results are determined jointly by 

capturing the statistical properties of the given training data as well as the analyzing 

wavelet used for data expansion. But our observations using different data and with 

several analyzing wavelets showed that the former has a higher influence on the 

classification results. In fact, different analyzing wavelets capture more or less the same 

amount of statistical information; therefore, the choice of analyzing wavelet does not 

significantly alter the correlation structure of coefficients, although Coifletl wavelet 

performed marginally better. 

Using Coifletl we analyzed three load settings (leading to knock) as well as three 

valve clearance conditions. Mean values vs. standard deviations of the coefficients of 

training data for three classes as well as histogram of the coefficients were also examined 

(Fig. 4.4). Separation of classes in coefficient domain followed a similar pattern as those 

of training data. For both fault cases, classification errors were below 5%, which were 

considered to be acceptable. Classification errors for different load changes and knock 

conditions were influenced to a large extent by the uniformity of the training data in all 

classes. 
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4.5.1. Selected Informative Wavelets 

Informative wavelet algorithm is a nonorthogonal signal decomposition in which 

informative wavelets generated by the algorithm are in general correlated with each other 

and a certain degree of redundancy always exists in signal decomposition. Accordingly, 

the coefficients generated by projection of data onto informative wavelets follow the 

same pattern of correlation. Non-orthogonality of signal decomposition is mainly due to 

the iterative process of selecting informative wavelets where at each stage the residual 

62 



signal is constructed and used for signal expansion. In our data analysis, we examined 

deviation from the orthogonality of the informative wavelet for several analyzing 

wavelets. We examined informative wavelets generated by orthogonal and biorthogonal 

analyzing wavelets. While informative wavelets in both categories deviated from 

orthogonality, which was measured by the inner product of the wavelets, the extent of the 

deviation varied for the two groups. Orthogonal wavelets such as Db family of wavelets 

or Coiflets, generate informative wavelets with a higher degree of orthogonality as 

compared with biorthogonal wavelets such as Bior3.1. The same trend can be seen in the 

correlation structure of coefficient matrix as well. 

Correlation structure of coefficient matrix under several analyzing wavelets and 

for different number of iterations was examined for a given set of data. Differences were 

observed in correlation of the coefficients for different analyzing wavelets; however, such 

differences were insignificant to influence the classification results greatly. 

4.5.2. Training Data and Number of Iterations 

In our data analysis, a small change in training data resulted in a noticeable 

change in the informative wavelets selected. For example, a small increase in the number 

of training data (e.g. a simple repetition of data) caused a different set of informative 

wavelets to be selected. This could be attributed to the application of matching pursuit 

type approach in which a small change in the probability distribution of the coefficients 

leads to changes in mutual information value calculated. Often a small change in the 

training data caused a change in about half of the informative wavelets. 
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In the algorithm, the number of informative wavelets (iterations) is chosen a priori 

as an input. It was observed that increasing the number of iterations in a given data 

analysis does not alter informative wavelets derived from previous iterations. As a result, 

there were no changes in the corresponding coefficient values. The additional informative 

wavelets, selected with larger number of iterations, increased the number of feature 

variables and thus expanded the dimension of feature space. 

In the experiments, mostly 5-10 iterations were used, although higher iterations 

were also selectively examined. It was observed that an increase in the number of 

iterations was not always accompanied by an increase in the accuracy of classification 

results. This could be traced to dilution of information, in which by selection of large 

number of features unnecessary information is added. 

4.6. Conclusions 

In this chapter results of an experimental study for an application of informative 

wavelet algorithm for the classification and diagnosis of machine faults were presented. 

Several prototype wavelets and different sets of machine data were used. Effectiveness of 

the algorithm for the classification of two categories of faults namely excess valve 

clearance and knock conditions each with varying intensity levels were examined. 

Accuracy of results under different parameters of the algorithm was also studied by 

employing different analyzing wavelets from both orthogonal and biorthogonal family of 

wavelets. Some notable results are summarized as follows. 
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In majority of the experimental runs, using different analyzing wavelets, 

satisfactory classification results were obtained when sufficiently large number 

of training data with adequate uniformity was used. For load changes and knock 

condition, accuracy of results varied for different training data and different 

intensity levels of fault conditions. 

Informative wavelets generated by the algorithm varied significantly when 

small changes were introduced in the number of training data. This was also the 

case when minor changes were made in training data themselves. While 

classification results remained almost unaffected under minor changes in the 

training data, informative wavelets and subsequent coefficient values varied 

significantly. This was attributed to the particular structure of the algorithm in 

which minor modifications in the training data are followed by changes in 

probability distributions which in turn modify mutual information and 

informative wavelets derived by the algorithm. Changes in the informative 

wavelets are amplified by the application of matching pursuit algorithm. In the 

matching pursuit algorithm, wavelets generated at the later stages are highly 

sensitive to changes in the wavelets chosen at the early stages. 

The main problem in using informative algorithm is the high volume of 

computation, which makes the algorithm unsuitable for real time 

applications. 



The above observations were considered to be major deficiencies for the 

application at hand, and as such, precluded further investigation and use of informative 

wavelets in this research. 
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CHAPTER 5 

Dictionary Projection Pursuit 

5.1. Introduction 

To discover the outstanding and unspecified structure of a set of data, often visual 

representation such as histograms or scatterplots are utilized [55]. This can be easily done 

for low (one, two, or even three) dimensional data, however comprehensive visual tools 

for higher dimensions are not available. 

Classical multivariate analysis provides powerful tools for gaining insight and 

understanding the nature of the phenomenon or the system that produced the data. These 

tools include a set of useful summary statistics (such as mean and covariance) as well as 

correlational structure of data. The summary statistics carries relevant information of the 

system if the data follow an elliptically symmetric distribution, such as the Gaussian 

(normal) distribution, in an n-dimensional variable space. However, there are numerous 

cases where real data deviates from a normal distribution, and consequently these 
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summary statistics cannot represent the whole characteristics of data. Therefore, other 

appropriate methods need to be implemented to divulge the main characteristics of data. 

In this chapter, projection pursuit (PP) algorithm as a method of revealing 

"interesting" structure of data is introduced, then an extension of PP which is a fast 

version of PP along with some results are presented. 

5.2. Projection Pursuit Approach 

Projection pursuit (PP) is a method for exploratory analysis of multivariate data 

sets which extracts remarkable linear projections of data to view them in a lower 

dimension; often onto a plane or a line. It numerically optimizes a certain criterion 

function or projection index. Friedman and Tukey [56] first used the term "projection 

pursuit", but the main idea was initially introduced by Kruskal [57]. Projection pursuit 

seeks a set of projections that are "interesting", in the sense of their deviation from 

Gaussian distribution [58]. PP is basically a method for revealing clusters among data. 

There are several projection indices, among them, Friedman [59] proposed an 

index as the mean-squared difference between the projection score distribution and the 

Gaussian distribution, as the least structured density, to measure non-normality in the 

main body of the distribution (rather than in its entirety). His projection index basically 

measures departure from normality. Jones and Sibson [60] and Huber [58] set the PP idea 

in a more structured form and expanded it in a practical implementation. The approach 

involves an optimization process that starts at different random positions using the 

entropy concept from the information theory as the projection index to maximize the 

divergence of projected data from Gaussian distribution. 
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Projection pursuit was further elaborated in different applications such as 

regression [61], probability density approximation [58], and probability density 

estimation [62]. By employing a suitable projection index, PP technique can reveal an 

inherent structure or clustering in data. This can then be used in supervised [63,64,65], 

and unsupervised classification of high dimensional data [66,67], in detecting and 

classifying images [68] and in feature extraction of acoustic spectra [35]. 

The use of PP has been limited because of its high computational complexity. To 

resolve such a difficulty, Rutledge and McLean [35] employed wavelet packet 

decomposition during the search process of PP to introduce an extension of PP which is 

computationally more efficient. The procedure is described next. 

5.3. Dictionary Projection Pursuit 

Rutledge and McLean [35] proposed a method which looks for a set of basis 

functions from a dictionary of redundant wavelet packets in accordance with an 

orthogonality criterion, instead of optimizing a criterion as is done in PP. The search is 

performed in m iterations, where m is the required number of bases, and is decided upon 

empirically. In each iteration, they use a one-dimensional version of projection pursuit 

(which means m=\ in Eq. 2-1) to find the interesting features of acoustic waveforms. If A 

is a matrix consisting of all bases of a dictionary such as wavelet packets, then the first 

base is chosen from dictionary A according to a criterion described below. The dictionary 

is sometimes called redundant, since there are more than one set of basis functions which 

can span n-dimensional space. The one-dimensional version of projection pursuit is 

repeated m times where a procedure such as the one in matching pursuit [26] is applied 
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until a set of bases B=[b\ b2 ...bm] is selected. Then the data are projected onto the 

selected basis functions to find an interesting view of the data. This is done by the linear 

projection Z=BTX, where X is the data set and Z is the transformed data in the space of 

reduced dimension. The algorithm, so-called dictionary projection pursuit (DPP), is a 

greedy approach in a sense that after a given basis is selected in each iteration, its 

structure is eliminated from the data set before the next search for finding another basis is 

carried out in the subsequent iteration. 

For finding a set of basis functions B, that contain desired characteristic 

information, a weight w is assigned to each basis function in the wavelet packet 

dictionary. The weight w is a measure of linear independence of the selected basis from 

all of the previously selected basis functions. For the initial condition, weight is set as a 

vector of ones at the beginning of the procedure, and is updated in each iteration. The 

weight vector is then changed in a manner that each selected basis is orthogonal to the 

subspace of previously selected basis functions, resulting in a set of orthogonal basis at 

the final stage of the algorithm . Here is the complete algorithmic procedure: 

Step 1: Find wavelet packet coefficients of each training data in different classes, record 

them as a set of matrices of size n x (log n+l), where n is the signal dimension 

(call them map). 

Step 2: Find the density (energy) of each packet by squaring each element in the wavelet 

packet matrices (map.A2 in Matlab notation) to obtain energy map of each training 

data. 
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Step 3: Sum all of the matrices in step 2 for each class. Normalize the resultant matrices 

by dividing them by the number of training data in each class (Ni) to find 

normalized total energy of training data (energy map) in each class: 

qUXm^j^tf^.jy/N,, for /=1,...,L. (5-1) 

i=i 

C/, the energy map of class /, is a table which can be rearranged in a matrix form 

(call it e-map). At this stage, there are L (number of classes) matrices. 

Step 4: Find the relative entropy of e-map (call it entmap) by applying Eq. (2-10) or the 

symmetric version Eq. (2-8). 

Step 5: Repeat the following m times to find a set of orthogonal basis: 

- Find the basis b corresponding to wavelet packet indices associated with 

maxarg(w.*ent_map(:)), which is the maximum of element-by-element 

multiplication of vector w and vector form of entmap. 

- Compute the part of basis b which is orthogonal to basis functions already 

selected (call it residual), and normalize it to unity. (For more detail, please 

refer to [35].) 

- Starting from left enter and save the residual of b in a matrix as a new column 

vector. 

- Compute coef, wavelet packet coefficients of the new basis function (the 

residual), and accumulate the energy of coefficients: 

coef_e_sum = coef_e_sum + coef.^2. 

- Update w as w = 1 - coef_e_sum. 
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In DPP, the projection index, which is the entropy of normalized sum energy of 

wavelet packet coefficients of all data set, is found in the beginning of the algorithm only 

once, contrary to PP in which the projection index must be calculated every time. This is 

the key feature of the algorithm which makes it faster compared to PP approach. 

The normalization in step 3 will be trivial (inconsequential) if the number of 

training data in each class is the same. In chapter 7, a new normalization method is 

proposed to improve the classification results. In step 5, if n bases are selected a complete 

orthogonal basis is found. Then, another method such as principal component, analysis 

(PCA) [46,55] can be applied for further dimensional reduction. 

The above algorithm is a one-dimensional projection in the sense that matrix B is 

replaced by a single vector b. In each iteration, a basis function b is selected and added to 

the previously selected basis functions in the form of an expanding matrix BT, where T is 

the matrix transpose operator. In this sense, the final projection is not one-dimensional, 

but a multi-dimensional projection. 

In the next section, classification results of DPP obtained by applying the 

algorithm on a set of machine data are presented. In the classification stage a neural 

network (NN) classifier is used which was described in section 2.9. 

5.4. Classification Results 

To evaluate the algorithm, a single-cylinder engine data set is used, which 

contains 96 training data in three classes (32 data in each class). Data were normalized 

between -1 and 1 according to Eq. (3-4) in which the three classes correspond to three 

ignition timings of: -23 (normal), -33 (advance), and -10 (retard) degrees of crank angle. 
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Fig. 5.1 shows the first 8 bases selected by applying DPP on the data, using Coiflet 1 (6 

tabs) as the analyzing wavelet. 

Sample Point 

Fig. 5.1. The first 8 selected bases using Coiflet 1. 

DPP chooses the first base from wavelet packet dictionary (which is optimal 

according to the criteria described in Step 5). The bases selected during the rest of the 

iterations are components of WP bases that are orthogonal to the bases selected in 

previous stages; they do not necessarily belong to the dictionary. Consequently, only the 

first base is certainly a wavelet packet base, the rest of bases are components of packet 
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that are orthogonal to the previously selected bases. Fig. 5.2 shows the wavelet packet 

bases, determined by DPP, corresponding to the following wavelet packet indices: 

5 4 3 5 2 7 4 6 
6 2 1 9 0 25 3 12 
0 6 11 0 25 0 5 0 

Sample Point 

Fig. 5.2. The wavelet packet bases corresponding to the selected bases in Fig. 5.1. 

First to third rows are scale, oscillation, and translation (position) indices, respectively. In 

this example, only bases 1 and 4 are packet bases, as can be seen by comparing Figs. 5.1 

and 5.2. Further observation of the selected wavelets indicates similarity between the 

selected bases and corresponding packet bases that gradually decreases as we move to 
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latter iterations (lower subplots in Figs. 5.1 and 5.2). In other words, as the number of 

selected basis increases (the number of columns in matrix B) the similarity of packet base 

and the corresponding selected base decreases. This can be explained nothing the fact that 

during the evaluation of the residuals in step 5, only a segment of packet basis that is 

orthogonal to the previously selected basis is chosen. 

Fig. 5.3 illustrates training and testing coefficients for the first four bases before 

and after normalization and mean-centering, which were derived from projecting the 

training and testing data onto the first four bases. Four plots in each figure correspond to 

each of the four bases. Horizontal axis, segmented into three 32 training data (16 for 

testing data), corresponds from left to right to classes 1, 2, and 3. As it can be seen, the 

coefficient normalization applied through Eq. (3-4) magnifies the differences among 

classes, which is a suitable outcome for classification purposes. Fig. 5.4 shows histograms 

and mean-std plot of training coefficients in the same three classes, which indicates a sparse 

distribution with overlaps among different classes in the coefficient domain. 

A common practice in classification is to preprocess data (here, the coefficients) 

before feeding them into the NN system. Such preprocessing may include a 

normalization method and mean-centering. The same preprocessing method should be 

applied to both training and testing data. To show the importance of preprocessing, a set 

of runs was carried out with different preprocessing schemes, including Z -̂norm 

(Euclidean norm), norm defined by Eq. (3-4), both with and without centering. By 

normalizing coefficients through Eq. (3-4) the best classification result with a small error 

of 3% were obtained. While with no preprocessing the NN classification produces the 
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worst results with about 13% error. Table 1 shows classification error under different 

preprocessing schemes. 

Training Coeffs. Testing Coeffs. 

Normalized Train. Coeffs. Normalized Test. Coeffs. 

-0.5 

Fig. 5.3. Training and testing coefficients before and after normalization and mean-

centering for bases 1-4: blue, green, red, and cyan, respectively. The horizontal 

axes are the number of training/testing data. 

A moderate increase in the number of bases will slightly enhance the 

classification results but will escalate the computational cost. 

DPP is still a time-consuming algorithm even though is much better than the 

original PP method. The computational cost is 0(m n log «), where m and n are number 

of selected basis functions and signal size, respectively. If a complete set of basis 
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functions is required, the computational cost will be 0(n2 log n), which is relatively high. 

In the next section a major drawback of DPP is highlighted. 

20 | 1 1 1 1 r 

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 

o: Class 1; x: Class 2;D: Class 3 

Fig. 5.4. Histograms and mean-std plot of normalized coefficients for three classes. 

Table 5.1. Classification error using different preprocessing methods 

Normalization Z,2-Norm & Eq. (3-4) Norm i2-Norm & Eq. (3-4) Norm No 
Method Centering & Centering No-Centering & No-Centering Preprocessing 

Error (%) 6 3 6 10 13 

5.5. Disadvantages of DPP 

Recalling the definition of Entropy in Eqs. (2-2) and (2-3) as 
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M 
#(s) = logs,. 

i=l 

where 

^s,. =1 and st>0. 

i 

Entropy calculations require that each entry belongs to a probability density function 

(pdf). Meanwhile, DPP uses the relative entropy of normalized sum of the coefficient 

energies of all training data in L classes. It does not normalize entmap to unity; instead, 

normalization is done by the number of training data in each class. (It is worth noting that 

normalizing entmap to unity resolves the above problem; however, it adds another 

technical glitch: since we are comparing numbers rather than sequences, normalization to 

unity means that every element in the entjnap matrix must be one, which is trivial.) 

As a result, and in accordance with the proof of lemma discussed in section 2.8, 

relative entropy will not necessarily be non-negative. Consequently, relative entropy as 

used in DPP, does not represent a theoretically acceptable measure for the separation of 

different distributions. However, while applying relative entropy measure under above 

condition is theoretically incorrect, it may still be considered as a measure (though not a 

robust one) for comparing different data and for the selection of wavelets for 

discriminatory classification. 

The symmetric relative entropy measure (Eq. 2-8), because of its "symmetric" 

property, results in a non-negative value; whether or not the sum of sequence is unity 

(please refer to Note in section 2.8). Still, the symmetric version cannot provide a robust 

measure. In chapter 7 a method for resolving this problem is introduced. 
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5.6. Conclusions 

The goal of projection pursuit for multivariate data analysis is to find low-

dimensional projections, such as one or two dimensions, that provide the most revealing 

views of the full-dimensional data. In each iteration, DPP Finds the component of the 

selected basis that is orthogonal to the hyper-plane spanned by the previously selected 

basis functions. In this manner, an orthogonal set of basis is obtained. In this chapter, the 

usefulness of DPP in classification applications was shown. 

Even though DPP is computationally faster than the projection pursuit algorithm, 

one may need a much more efficient method for on-line applications. It was also shown 

that DPP suffers from a technical deficiency in applying relative entropy on coefficients. 

To overcome this shortcoming, in chapter 7, DPP algorithm is modified to develop a new 

method for fault classification. 
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CHAPTER 6 

Local Discriminant Bases 

6.1. Introduction 

In chapters 4 and 5, two different methods for pattern recognition and 

classification were introduced. In this chapter, another method, referred to as local 

discriminant bases (LDB), which is computationally faster is presented. Wavelets and 

LDB selection algorithm is applied to vibration signals in a single-cylinder spark ignition 

engine for feature extraction and fault classification. LDB selects a complete orthogonal 

basis from a wavelet packet dictionary of bases, which best discriminates the given 

classes, based on their time-frequency energy maps [48]. An appropriate normalization 

method in both data and wavelet coefficient domains, and a neural network classifier 

during the identification phase are used. By applying LDB to a real-world machine data 

the accuracy of the algorithm in machine fault diagnosis and classification is 

examined. 
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First "best-basis algorithm", which LDB's basic idea is based on, will be 

introduced. In order to make best-basis algorithm applicable to pattern recognition and 

classification problems the concept of discriminant measure, introduced in chapter 2, is 

employed. Then, classification results of applying LDB to machine data will be 

presented. 

6.2. Best-Basis Algorithm 

Coifman and Wickerhauser [21] employed entropy to efficiently represent a 

signal, mainly for data compression purposes. They introduced entropy as a real-valued 

cost function on sequences of coefficients and searched for its minimum over a dictionary 

of orthonormal bases. Entropy cost function can accurately quantify a sequence in the 

sense that entropy of a sequence is small when all but a few elements are negligible and 

is large when its elements are about the same size. Geometrically, best-basis algorithm 

minimizes the flatness of the energy distribution; the lower the entropy, the less flat the 

distribution is (see section 2.7 for more detail). 

Best-basis algorithm selects a basis from a dictionary of orthonormal bases using 

the entropy criterion. It minimizes the entropy of the normalized signal energy after 

expanding a given signal or a collection of signals into a dictionary of orthonormal bases. 

This dictionary, which has a binary tree structure (Fig. 6.1), can be a set of redundant 

wavelet packet bases or local trigonometric bases. 
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^2,3 

Fig. 6.1. Decomposition tree in a wavelet packet. 

Best-basis algorithm uses a fast divide-and-conquer search. The algorithm is as 

follows: 

Suppose BJk = ( b M 0 , . . . , b . i 2 ^ _ l ) r be a set of basis vectors of by* spanning the 

subspace Ckjk for j = 0,1,...,J, k = 0,1,...,2J -1 , where n is the signal dimensionality, no 

is the maximum level of wavelet packet signal decomposition, and J is the highest level 

of decomposition we would like to expand the signals to, with the upper limit of no 

(n0= log2 n>J). Q.jk is the space of the basis vectors defined for node j,k of a binary 

tree constructed from a wavelet packet decomposition of the signal (Fig. 6.1). By,* can be 

written as a matrix corresponding to the subspace £ljk, which is the space of the basis 

vectors by*,m, defined for the node j,k of a binary tree constructed from a wavelet packet 

decomposition of the signal. In wavelet packet decomposition, basis vectors by,*,m are 

indexed by j, k, m representing scale, frequency band (oscillation), and time position, 

respectively. The number of basis vectors by,*,m equals to n(l+log2»). We note that Bo,* is 

the basis set of standard Euclidean coordinate system, which is the basis for the signal at 

its highest resolution level. Also, suppose that A,,* is the best-basis for the signal x e R" 

restricted by the span of By;*. 

2,0 Q '2,1 2,2 
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Fig. 6.1 shows the subspace representation of a given signal in wavelet packet 

binary tree decomposition. Each node, which represents a subspace, is the orthogonal 

direct sum of the subspace of its two children. First, a time-frequency decomposition 

method such as wavelet packet transform or local trigonometric transform must be 

chosen. Then, the best-basis can be found by induction on j as following: 

Step 1: Decompose the given signal x by expanding it into a dictionary of orthogonal 

bases to obtain coefficients. 

Step 2: For the start of the algorithm, suppose that Aj^= Hj,k for k = 0,...,2J -1 . 

Step 3: Search for the best subspace Aj^ starting from the last level of decomposition 

(j = J - 1 , 0 ) and by the following (k = 0,...,2j -1): 

i f # ( B ; , * X ) " H ( A y + U * X + A y + l , 2 * + l x ) s e t A/,* = By,* 

otherwise Ajk = AJ+h2kx + A.+l2k+1x. 

To make the algorithm computationally efficient entropy map must be additive, 

which fortunately is, i.e. 77(0)=0 and H({s,}) = ̂  H(s,) (see the proof in section 2.7). 

This property of entropy makes the best-basis algorithm a fast divide-and-conquer search. 

To guarantee the condition s, > 0 in the definition of entropy, algorithm chooses the 

entropy of normalized signal energy as s,-=|x,|/||x||, where ||.|| is the Euclidean norm. The 

complexity of computation for a signal in R" is 0(ri). 

Best-basis algorithm has shown its suitability for signal representation and data 

compression applications but it is not necessarily appropriate for classification problems. 

In classification one should search for those bases that give the most discriminant 

information about class separation. 
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6.3. Local Discriminant Bases Algorithm 

Saito and Coifman [22] introduced local discriminant bases (LDB) algorithm as 

an extension of the best-basis algorithm by Coifman and Wickerhauser [21]. The best-

basis algorithm uses the entropy of normalized signal energy to represent a signal 

efficiently, mainly for data compression applications. LDB approach, on the other hand, 

employs the relative entropy of normalized time-frequency energy map of all training 

signals in each class for classification purposes. 

The time-frequency energy map of {xj0} ,̂ a set of training signals belonging to 

class /, along the direction of a given basis bjXm is a table defined by: 

i=i i=i 

for j = 0,1,..., J , k = 0,1,..., 2J -1, m = 0,1,.., 2""~J -1, where TV} is the number of training 

sets in class /. Here "." denotes the standard inner (dot) product in R". The energy map 

defined by (6-1) is computed by summing the squares of expansion coefficients of the 

signals at each position and then normalizing them with respect to the total energy of the 

signals belonging to class /. 

One can obtain expansion coefficients by decomposing a signal of length n into a 

tree-structured bases such as wavelet packet or local trigonometric dictionaries where the 

computational efficiency is O(nlogn) and 0(«(log«) 2), respectively. Here we have used 

wavelet packet dictionary. 

Discriminatory power associated with a given wavelet packet node indexed by j,k 

is the sum of the discriminatory power of its constituent basis bjXm measured in the 

coefficient domain. Additive property of discriminatory measure is used here as follows: 
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2"<>-J-\ 

D<{C,<jX.))U)= E D(q(j,k,m),...,CLU,k,m)). (6-2) 
m=0 

As stated earlier, LDB selects a local orthogonal basis from a dictionary of basis 

in a wavelet packet, which properly categorizes the given classes, based on the 

discriminatory measures of their time-frequency maps. Suppose that Aj k represents the 

desired local discriminant basis restricted to the span of B} k , which is a set of basis 

vectors at (J, k) node, and AJk is the array containing the discriminant measure of the 

same node. The additive property of discriminant measure D is advantageous for a 

computationally fast algorithm. 

The algorithm first chooses a time-frequency decomposition method such as 

wavelet packet transform or local trigonometric transform. Then, for a given training 

dataset consisting of L classes of signals {{x^}^}^, the local best-basis can be found 

by induction on j as following: 

Step 1: Decompose the given signal x by expanding it into a dictionary of orthogonal 

bases to obtain coefficients and construct time-frequency energy maps Q for 

1=1,...JL. 

Step 2: For the start of the algorithm, suppose that Ay,* = By* and set 

A / J k = D({Q(J,k,.)}iA for k = 0,...,2J -1 . 

Step 3: Set AJk = D({C,(j,k,.)}f=]) and search for the best subspace Ay,* for 

j = J-l,...,0 and k = 0,...,2J-I: 

Then Ay* = By,*, 
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Else Ajk = Aj+h2k 0 AJ+l2k+l and set A M = A J + U k + A j + h U + l . 

Step 4: Rank in descending order the complete orthogonal basis functions found in Step 3 

according to their discrimination power. 

Step 5: Use k (much less than n) most discriminant basis functions for constructing 

classifiers. 

If we start from the last level of decomposition (which is usually the case), i.e., 

J=m, in step 3 there will be no summation and AJk is simply the elements of level no. 

During step 3, a complete orthogonal basis with a fast computation of 0(n) is built. 

Orthogonality of bases is imposed in the algorithm to ensure that wavelet coefficients 

used as features during classification are uncorrelated. After this stage, one can simply 

select k highest discriminant bases in step 5 and use the corresponding coefficients as 

features in a classifier. It is also possible to employ a statistical method such as Fisher's 

criterion to reduce the dimensionality of the problem first and then input them into a 

classifier [22]. 

In brief, LDB algorithm starts by comparing the discriminatory power of the 

nodes at the highest scale as "children" nodes with "parent" node residing one scale 

lower. For example, in a two level decomposition of wavelet packet tree (Fig. 6.1), 

algorithm first compares the discriminant power evaluated for coefficients of training 

data in different classes at node Q,, with those nodes of Q 2 2 and Q 2 3 . If the entropy of 

fiu is larger, the algorithm keeps bases belonging to this node and omits the other two, 

otherwise it keeps the two and disregards node Q,, bases. This process is applied to all 

nodes in a sequential manner up to the scale j = 0. At this stage a set of complete 
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orthogonal basis having the highest discriminatory power is obtained which can be sorted 

out further at the second stage and used for classification of designated classes. 

6.4. L D B Classification 

The Ricardo Hydra data, introduced in chapter 3, was used to evaluate the 

effectiveness of LDB algorithm for the classification. According to Eq. (3-4), 96 training 

data in three classes (32 data in each class) were normalized between -1 and 1, in which 

three classes correspond to three ignition timings of: -23 (normal), -33 (advance), and -10 

(retard) degrees of crank angle. 

Coefficients were also normalized between -1 and 1, and then mean-centered. 

This preprocessing method was found to yield the lowest classification error during 

testing. 

Normalization done by Eq. (3-4) was found to be promising since under this 

scheme low values remain low and high values remain high. Normalizing the data 

reduces biasing among data, regulates the amplitude of the coefficients, and causes the 

algorithm to select wavelet bases which carry more discriminatory information. However, 

mean-centering of the data after normalization does not produce noticeable changes, 

since the mean value of machine vibration data, due to (almost) symmetric property of 

vibration with respect to neutral axis, is usually close to zero. 

Fig. 6.2 illustrates the first 8 bases selected by the algorithm and sorted according 

to their discriminant power using Coiflet 1 (6 tabs) as the analyzing wavelet. Wavelet 

packet indices of the selected bases are given below in which first to third rows are scale, 

oscillation, and translation (position) indices, respectively: 
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5 4 6 5 4 6 7 5 
0 2 12 9 2 16 34 7 
3 6 0 0 7 0 0 3 

64 
Sample Point 

96 128 

Fig. 6.2. The first 8 bases selected by the LDB algorithm using Coiflet 1. 

Discriminant measures of all 128 complete orthogonal bases are ranked in 

decreasing order as shown in Fig. 6.3. The figure exhibits a sharp drop of the measure 

after the first few bases. Only bases with largest discriminatory measures may be 

considered for classification purposes, as the discriminant measures of other bases are 

insignificant. 

Training coefficients were derived from projecting the training data on the first 

four bases; they were applied as feature variables and as inputs to a backpropagation 

neural network classifier after normalization and mean-centering (the specific method of 

NN used for classification were explained in chapter 2). For evaluating the algorithm, 
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testing data were projected onto the selected bases to generate the coefficients followed 

by normalization and mean-centering as applied to the training data. Fig. 6.4 shows 

training and testing coefficients for the first four bases before and after normalization and 

mean-centering. Four graphs in each subplot correspond to each of the four bases. These 

plots indicate that the relative values of the coefficients among the classes have been 

preserved under the normalization method used here. Three classes can easily be 

identified by inspecting the values of the coefficients which are distinctly different in 

three segments of size 32 each corresponding to 32 training data in each class (and 16 for 

testing data). 

48 64 80 
Wavelet bases 

96 112 128 

Fig. 6.3. Discriminant measure of all 128 selected bases. 

Mean value vs. standard deviation of Ricardo Hydra data in each class, shown in 

chapter 3 (Figs. 3.6 and 3.7), indicates that classes 1 and 3 are highly clustered. However, 
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applying raw data to a classifier is neither accurate because of dilution of information, 

nor time-efficient due to high dimensionality of the original data. On the other hand, 

training coefficients are sparsely distributed having a non-clustered mean-std pattern 

(Fig. 6.5) which is attributed to decorrelation effect caused by wavelet transform in the 

coefficient domain. 

Training Coef. Testing Coef. 

Tli '< 
j """"" 
1 

32 64 

Normalized Train. Coef. 

96 16 32 

Normalized Test. Coef. 

48 

Fig. 6.4. Training and testing coefficients before and after normalization and mean-

centering for bases 1-4: blue, green, red, and cyan, respectively. The horizontal 

axes are the number of training/testing data. 
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Training coefficients were applied to a two-layer NN backpropagation classifier 

with 5 neurons in hidden layer and tan-sigmoid transfer (activation) function in both 

hidden and output layers. 

ID o 
1 -0.4 
0 * 
% 
8 1 
c 
1 o 
S -0.1 0.1 0.2 0.3 0.4 

o: Class 1; x: Class 2 ; a : Class 3 
0.5 

i 1 1 — 

x x x x * X 

X x 'St X 

X 

QD 0j 

0.6 

Fig. 6.5. Histograms and mean-std plot of training coefficients for three classes. 

The number of selected bases was considered to be an important factor as it 

determined the number of features. In general, an increase in the number of bases, results 

in a more discriminatory information that are passed to the classifier. However, in 

classification applications, often a finite number of features is sufficient to describe 

different classes, beyond which dilution of the information deteriorates the classification 

results. Excessive number of features will also increase the computational cost during 

classification. It was observed that when the number of bases was changed from 4 to 128 
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- i.e. to include up to all of the orthogonal bases - the classification error increased from 

1% for 4 bases to 6% for 128 bases. Generally, there is no analytical solution available 

for determining an optimum number of bases (features); often an empirical approach 

based on a priori information about the particular application is utilized. 

Using wavelet transform and the coefficients as feature variables, considerable 

computational efficiency was gained during the classification. Noting that the 

computational order of backpropagation algorithm is of 0(n ), with n as the size of NN 

input, reducing the size of training data from {96x128} to coefficients of size {96x4} 

significantly contributed to computational efficiency. In order to compare the advantages 

gained from using wavelet transform, the original data were also applied to the NN. The 

classification error was observed to be higher (about 7%) as compared with 1% when 

using wavelet coefficients. 

Something that we have to be aware of is that in both best-basis algorithm and 

LDB, the energy of every node is normalized by the norm of original signal; therefore, 

only in the root of the tree (the signal itself) condition (2-6), i.e. E,5; = *» holds true. In 

fact, in both "best-basis" and LDB algorithms, we are comparing entropy of different 

node energies, while these energies may not be comparable since they are not normalized 

in the same basis/foundation. This may bring some inaccuracies. 

6.5. LDB Shortcoming 

Despite the potent capabilities of LDB, it encounters drawbacks somehow 

analogous to DPP. In step 2 of LDB algorithm (i.e., in the last level of wavelet packet 

decomposition), for example for a two-class case, we basically find the relative entropy 
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of two positive scalars, instead of two sequences. It is noted that each node in the last 

level of decomposition includes only one base, thus each node contains one coefficient 

only; as a result, relative entropy is derived between two scalars. According to the 

definition (2-10), when s(1)/s(2) <1 (which is highly probable), relative entropy is negative. 

Then in step 3 of LDB, during comparison of the sum of discriminant measures of two 

children nodes with their parent node, we may add up a negative number with a positive 

number and compare the sum with the discriminant measure of the parent node. Under 

this situation, we will not have an effective measure of "distance" between two classes 

since distance is to be a positive number. This is the shortcoming of DPP as well, as 

mentioned in section 5.5. 

On the other hand, in different levels of wavelet packet decomposition, other than 

the last level, relative entropy measure is not always positive, since condition 2-6 is not 

satisfied. 

As it is described in lemma in section 2.8, the symmetric relative entropy measure 

is always non-negative, regardless of whether condition 2-7 holds (sums of sequences are 

one). However, this is not the case for the relative entropy, as mentioned above. 

To overcome these shortcomings of LDB, a new methodology is outlined in the 

next chapter. 

6.6. Conclusions 

As the use of pressure signals for fault detection in internal combustion engines, 

due to their costly retrofit, is prohibitive, the suitability of using acceleration data for 

engine diagnosis was investigated. As well, due to the large size of data, direct 
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application of NN classifier to data in different classes is extremely time consuming. 

Noting that sensor data usually include redundant information, direct use of sensor data, 

may also lead to dilution of information about engine faults and produce unacceptable 

classification results. Alternatively, transformation of the data into wavelet domain and 

use of wavelet coefficients as feature variables will reduce the data dimensionality 

considerably. 

Transient nature of the machine vibration signals requires the use of basis 

functions that capture localized features of the signals. It was shown that wavelets with 

finite support width both in time and frequency domain are highly suitable for analysis of 

these signals in diagnostic applications. Along this line, using wavelet packet and 

redundant signal decomposition, local discriminant basis algorithm enabled us to select a 

subset of basis with highest discriminatory power to classify different engine operating 

conditions. 

LDB algorithm attempts to select a set of orthogonal bases from a wavelet packet 

dictionary which best discriminates different states of the system. Wavelet coefficients 

constructed by projecting data onto the selected bases are used as feature variables and as 

inputs to a backpropagation neural network (NN) classifier. We employed LDB 

algorithm for data analysis with three classes of ignition timings. For acquiring wavelet 

coefficients, normalized training data were utilized. 

It was shown that using proper normalization both in signal and feature domains, 

accurate classification results could be obtained. Furthermore, the use of orthogonal bases 

selection in LDB significantly contributed to the reduction of the number of bases where 

we used the first few bases with high discriminatory measure. This consequently 
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enhanced the accuracy of classification results. Further, high computational efficiency of 

LDB lends itself to on-line performance monitoring. 

Normalization was considered to be an important factor in the classification 

process. The particular normalization strategy was found to influence the accuracy of 

results considerably. 

Choosing the number of features is also an important task; this number should 

neither be too large to dilute the information nor too small to miss important 

discriminant information. Roughly speaking, a value around log(n) (n is the length of 

data, or the space dimension) is considered optimum for the number of features. 
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CHAPTER 7 

A New Approach for the 

Construction of Entropy 

Measure and Energy Map 

7.1. Introduction 

In chapters 5 and 6 details of two wavelet-based methods namely DPP and LDB 

for feature selection and classification were described. They were applied for machine 

fault diagnosis using real-world data. In sections 5.5 and 6.5 shortcomings of these 

methods for feature extraction were discussed. It was stated that a close examination of 

the DPP and LDB methods reveals that their interpretation of entropy is non-standard and 

this poses certain technical glitches. In both methods, relative entropy is applied on 

sequences of numbers that do not constitute a probability density function (pdf), in the 

sense implied by the condition (2-7). 
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Furthermore, in both DPP and in the last level of decomposition in LDB (as 

expanded in section 7.3), the relative entropy of two scalars instead of two sequences is 

evaluated. To satisfy condition (2-7), it is necessary that these two scalars be unity; 

however, such a circumstance corresponds to a trivial case of entropy evaluation where 

no useful information can be extracted. Therefore, both methods face a theoretical 

dilemma. 

We note that for a sequence to be used in entropy measure, it must be expressed 

in the form of a pdf where the total sum of the sequence is unity. Nevertheless, one can 

still use entropy as a distance measure even if the sequences are not pdfs as is the case in 

LDB and DPP. This may result in negative relative entropies being calculated. But, in 

order to properly compare the relative entropies D, as a discriminant measure, it is 

essential that all Ds be non-negative. Necessary and sufficient condition for this is still 

relation (2-7) (please see lemma in section 2.8). 

The use of symmetric relative entropy, which because of its "symmetric" property 

is always non-negative, can be considered as an option. (See the proof in the note of 

section 2.8 and Eq. 2-12). However, in symmetric relative entropy calculations some 

negative and positive terms cancel out. This poses a problem since the magnitude of 

discriminant measure has been reduced. This indicates that the measure cannot be 

considered as an effective measure for the discriminatory classification. 

To resolve this dilemma, in this chapter, a novel method is presented that can be 

combined with other searching algorithms such as LDB and DPP. Also, the application of 

singular value decomposition (SVD), and its importance in statistical pattern recognition, 

along with some results and discussions are presented. SVD is a technique that is widely 
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used for evaluating the correlation among experimental data composed of p sets where 

each set is a sequence of length q. Then, data can be expressed as a p X q matrix B. 

Singular values (SV) of matrix B are the eigenvalues of the correlation matrix BTB ranked 

from high to low (for more detail and mathematical definition of SV readers can refer to 

statistical or linear algebra texts, such as [55]). In our data analysis, SVD of the 

coefficient matrix, constructed from projecting the data onto the selected bases, is 

employed to determine the extent of correlation among coefficients. We, first, introduce a 

modification to the normalization scheme used in DPP. 

7.2. Class-Based Normalization 

In DPP, coefficients are normalized as defined by Eq. (5.1), where the 

normalization is basically the average of the sum of the squared coefficients in each class. 

Consequently, the total energy of coefficients in each class is divided by the number of 

training data in that class. Under this scheme, normalization basically corresponds to 

scaling down the signal energy in each class. In the special case, where the number of 

training data is the same for all classes, energy values are scaled down by the same 

proportion which corresponds to a uniform scaling of the entropy map values, thus there 

will be no relative changes in the final outcome. 

In the proposed approach, normalization as used in step 3 of DPP algorithm 

(section 5.3), is modified. Under the new approach, a class-based normalization is used in 

which each class is considered separately where the sum of squared coefficient values of 

different wavelet packet nodes, is adjusted by the sum squared values of all the training 

data in that class as: 
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)=i 1=1 

where A7/ is the number of training data in class /. Under normalization defined by Eq. (7-

1), different classes are normalized with respect to their own factors, resulting in further 

class differentiation during feature extraction stage and an improved accuracy in the 

classification stage. 

To examine the effectiveness of this modification, many trial runs were carried out 

in which the new normalization scheme was applied to Ricardo Hydra experimental data 

- the set of data that was introduced in chapter 3. In order to ascertain and generalize the 

effectiveness of the proposed method, a wide range of data analysis using different 

wavelets was planned and performed. These included the use of 32 different analyzing 

wavelets from the family of orthogonal, biorthogonal, symmetric as well as selected 

wavelets from Battle-Lamorie spline functions as follows: 

1-Haar, 2-Beylkin, 3-Coifletl, 4-Coiflet2, 5-Coiflet3, 6-Coiflet4, 7-Coiflet5, 8-

Daubechies2 (Db2), 9-Db3, 10-Db4, Il-Db5, 12-Db6, 13-Db7, 14-Db8, 15-Db9, 16-

DblO, 17-Db20, 18-Db40, 19-Db45, 20-Bior22, 21-Bior31, 22-Bior68, 23-Symmlet4 

(Sym4), 24-Sym5, 25-Sym6, 26-Sym7, 27-Sym8, 28-Sym9, 29-SymlO, 30-

Vaidyanathan, 31-Battle3, 32-Battle5. 

Fig. 7.1 shows the classification results of DPP with the two normalization 

schemes, in which the horizontal axis indexed from 1 to 32 corresponds to the numbers 

used above to list the analyzing wavelets. For the majority of wavelets the proposed 

normalization scheme produced superior performance. For example, by applying Coiflet 1 

as the analyzing wavelet (number 3 in Fig. 7.1), misclassification rate was reduced from 

4% with the AVnormalization to 0.5% with the modified normalization scheme. This is 
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considered as a notable improvement. In fact, with class-based normalization of signals 

additional separation of classes is induced. In the next section, a novel approach for using 

relative entropy in me construction of energy map is proposed. 

0 5 10 15 20 25 30 35 
32 Different Analyzing Wavelets; Signal Energy (o), and No.of.Data (*) Norm methods 

Fig. 7.1. Classification percentage error using DPP under two normalization schemes, 

with 32 different analyzing wavelets listed in section 7.2. 

7.3. Cross-Data Entropy Approach 

The use of entropy measure for feature extraction and classification requires that: 

1) Entries to Eq. (2-10) for the evaluation of relative entropy be all non-negative, 
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2) Relative entropy among different classes in each node (in every base of the 

dictionary in the case of DPP), i.e., the outcome of Eq. (2-10), be also non-

negative. 

Condition (1) is met by considering sum of energy of coefficients as the entries to 

the relative entropy measure. However, the use of relative entropy of the above sum in 

each class, as prescribed by LDB and DPP methods, does not guarantee condition (2), 

i.e., we may not have non-negative relative entropies for each and every data at all times. 

(Refer to the explanation given in sections 5.5 and 6.5). 

Another consideration for the use of relative entropy measure is the requirement 

that the sequence constitutes a pdf. While in LDB method we observed that in the last 

level of decomposition in wavelet packet tree (refer to step 3 of LDB algorithm described 

in section 6.3), relative entropy is applied on singular scalars. Moreover, in DPP 

approach, relative entropy is applied to singular scalars in all levels of the decomposition 

process. 

To resolve these shortcomings, an approach is proposed here, in which training 

data are used to generate the required sequence of numbers for proper application and 

evaluation of entropy. It is proposed that in constructing the of entropy measure, instead 

of using the sum of coefficient energies of all training data in each class, and at each 

node, as used in LDB (and with some variations in DPP as described in 5.3), we consider 

individual coefficients for the evaluation of the entropy measure. As a result, the role of 

every single data is taken into account in the sense that the relative entropies of each 

element in the wavelet packet matrix are used to find the appropriate bases. Under this 
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approach we deviate from the concept of "averaging of data" as is the case in both LDB 

and DPP methods. Two advantages are gained using the proposed scheme. 

1) Averaging of all training data as used in LDB and DPP methods essentially 

utilizes the first order statistics only. By not involving a second order statistics, such as 

standards deviation, the dispersion of data is masked. This is considered a limitation of 

the LDB and DPP methods. The proposed scheme eliminates this limitation by 

considering all training data where coefficients are obtained and used for each and every 

training data. 

2) In the proposed algorithm, each coefficient is evaluated for all training data and 

thus at all nodes including the last level of wavelet packet tree, evaluation of entropy is 

carried-out on a sequence of scalars rather than on a single scalar. The scheme can then 

be interpreted as a cross-data entropy evaluation or cross-data energy map approach. 

Since we still use relative entropy, discriminatory bases will be derived as before. Under 

this scheme the relative entropy of distributions of the coefficients in different classes is 

taken into account, that is, discriminant information of every data (mutual discrimination 

among all data) is considered. For this reason, we will refer to this method as a cross-data 

entropy or mutual-based approach. The cross-data entropy approach alleviates the 

shortcoming of standard relative entropy measure used in LDB and DPP methods. 

The proposed method can also be used in conjunction with the main idea of other 

searching algorithms. In the following sections, formalization of the extended versions of 

DPP and LDB methods referred to as cross-data or mutual dictionary projection pursuit 

(MDPP), and mutual local discriminant bases (MLDB) is given. We define the following 

notations before describing the methods. 
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Let "map''' be the wavelet packet coefficients of each training data x,-, for 

i = 1,..., N, which can be demonstrated as a set of YVmatrices of size n x (log2 n + 1), 

where n is the signal length, N is the number of training data, no is the maximum level of 

wavelet packet signal decomposition, and J is the scale index of decomposition level, 

with n 0 = l o g 2 « > J . Let C'=VN(j\k,m) = (bT

jkm.xi=VN)2 be the energy map of each 

training data derived by squaring each element of the map matrices, where C1:N is used to 

denote N energy map matrices each of the size of map. (Matrices ChN can also be viewed 

as a 3D-array, e-map, of size n x (log2 n + 1) x N.) 

Recall that Ni is the number of training data in class /, where N = ^N, is the 
i=i 

total number of training data in all classes. If C]N' are energy maps of each training data 

in class / then [C}N' (j,k,m)] can be defined as a vector consisting of Ni number of 

element (j,k,m) of C]'N': 

[CfN'UXm)] = [CXj,k,m),...,Cf'U,k,m)f for/=l,...^ 

Similarly, we can think of CfN' as a 3D-array e-mapi. 

The process used in the new mutual dictionary projection pursuit (MDPP), and 

mutual local discriminant bases (MLDB) is described next. 

Consider a time-frequency dictionary such as wavelet packet transform. For a 

training dataset consisting of L classes of signals { (xf} }̂ ', }f=1, MDPP and MLDB can be 

implemented by induction on the scale j, as follows. 
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7.3.1. Mutual Dictionary Projection Pursuit 

Step 1: Expand each training signal into a dictionary of orthogonal bases (map matrices) 

to obtain coefficients. 

Step 2: Find energy map of the coefficients, Cl:N, composed of squared values of each 

element of wop matrices. 

Step 3: Normalize matrices ChN according to the new method proposed in chapter 3. 

Step 4: Find discriminant power (by applying Eqs. 2-8 or 2-10) amongst L vectors 

[C}N'U,k,m)hv.L for j = 0,1,..., J, k = 0,l,-,2J -1, and m = 0,1,..,2^-1, 

where no is the maximum level of signal decomposition. Call the resultant matrix 

entjnap. 

Step 5: Apply step 5 as outlined in section 5.3. 

7.3.2. Mutual Local Discriminant Bases 

The first four steps of M L D B and M D P P are the same; here we show the rest of 

the procedure: 

Step 5: As initial values for the algorithm, suppose that Aj^ = B a n d set 

A J k = ^2 ent_map(J,k,m) for k = 0,...,2J -1 (if we start from the last level 

m=0 

of decomposition, i.e., J = no, there is no summation and AJk is simply the 

elements of level «o)-

Step 6: Set A M = ])P ent_map(j,k,m) and search for the best subspace Ay,* for 
H!=0 

7=J-1,...,0 and/c = 0,...,2 /-l: 
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Then Ay,* = By,*, 

Else A y. 4 = A y + 1 > 2 t 0 A , + 1 2 i + 1 and set A j k = A J + l 2 k + A , + 1 2 i + 1 . 

Step 7: Rank in descending order, the complete orthogonal basis functions found in Step 

6 according to their discriminant power. 

Step 8: Use k most discriminant basis functions for constructing the classifiers. Note that 

k is much less than n. 

Let us reiterate that the mutual-based approach is not founded on the "sum" of 

energy map of data in each class as LDB and DPP are. Instead, by employing the energy 

maps of "every" data in each class, it finds a set of discriminant values at every base of 

wavelet packet dictionary that "truly" represents the discriminant power of every data. 

Computational efficiencies of MDPP and MLDB are similar to those of DPP and 

LDB methods, respectively. Expectedly, the new methods have more data storage 

requirements since energy map of each training data must be saved for the evaluation of 

the entire relative entropy map. 

In the following, some results and analysis of MDPP and MLDB are presented. 

7.4. Data Analysis Results 

To assess the effectiveness of the new proposed algorithms, MDPP and MLDB, 

and to compare them with each other and against DPP and LDB, the algorithms are 

applied on Ricardo Hydra test data. The new normalization method employed in sections 

5.4 and 6.4 is also utilized. 
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Sample Point 

Fig. 7.2. The first 8 bases selected by MDPP using Coifletl. 

7.4.1. MDPP Classification 

Applying MDPP algorithm on Ricardo Hydra test data with Coifletl wavelet 

results in selecting the bases plotted in Fig. 7.2 (only the first 8 bases have been shown). 

Their corresponding wavelet packet indices are as shown below. From first to third row 

are scale, oscillation, and translation indices, respectively. 

4 5 5 5 4 5 4 3 
3 6 8 0 2 9 3 0 
3 0 0 3 6 0 4 2 
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If the above indices are compared with indices obtained from DPP (section 5.4) 

we observe that the second, fifth, and sixth bases of MDPP have also been selected by 

DPP. The rest of the bases selected by MDPP and DPP belong to similar frequency 

bands; as a result, the classification errors of both methods are almost identical. Fig. 7.3 

shows DPP and MDPP classification errors for 32 different analyzing wavelets listed in 

section 7.2. Even though the general performance of MDPP is acceptable (a maximum 

classification error of 6% for most of the analyzing wavelets) DPP's performance is 

slightly better. 

As the classification results of MDPP and DPP were close, we also examined the 

synthetic data set introduced in chapter 3. Fig. 7.4, the classification error evaluation of 

two methods, shows that the performance of MDPP is slightly superior with the synthetic 

data. Overall, the comparison of results from both techniques with two different types of 

data indicates that their performance is similar. 

7.4.2. MLDB Classification 

The wavelet packet indices associated with bases selected by applying MLDB 

algorithm on the same set of data are as follows: 

4 7 4 4 4 5 7 7 
3 33 3 2 3 9 35 34 
3 0 4 6 5 0 0 0 
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32 Different Analyzing Wavelets; DPP (o), and MDPP (*) 

32 

Fig. 7.3. DPP classification percentage error vs. MDPP for 32 different analyzing 

wavelets listed in section 7.2. 

where the first to third row are again scale, oscillation, and translation indices of wavelet 

packet, respectively. The corresponding wavelet bases are plotted in Fig. 7.5. By 

comparing the above indices with indices obtained from LDB (section 6.4), we observe 

that the first basis of LDB indexed by (5,0,3) has not been selected by MLDB. This basis 

belongs to the interval (0,TC/32) frequency band of wavelet packets which corresponds to 

(0, 0.4) KHz frequency band of the signal as 

12.5 KHz / 32 = 0.4 KHz. 
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Fig. 7.4. DPP classification percentage error vs. MDPP for 32 different analyzing 

wavelets listed in section 7.2 with synthetic data set defined in chapter 3. 

By examining typical signal spectrum shown in Fig. 3.5, one can notice that this 

frequency band is not located in a dominant frequency band of the signal; thus, it does 

not carry considerable energy. Since a combustion event can be viewed as a set of 

impulses, it is accompanied by a high energy release; a superior searching algorithm 

should readily pick those bases of wavelet packets, which are located in a high-energy 

node. As a result, the selection of this basis by LDB has not been a good choice. 

On the other hand, the forth and eighth bases of MLDB have also been selected 

by LDB. The above frequency analysis shows that these bases along with other first three 
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bases chosen by MLDB carry significant amount of energy and have been successful 

selections. In fact, the frequency band of wavelet packet nodes, which the bases 2 and 4 

belong to, is located in the middle of the dominant frequency band of the signal (around 

rc/4 or 3.1 KHz) and the one associated with bases 1 and 3 is placed at the beginning of 

the dominant frequency band (around 37t/16 or 2.3 KHz). 

Sample Point 

Fig. 7.5. The first 8 bases selected by MLDB using Coifletl. 

Fig. 7.6 illustrates discriminant measure of all 128 complete orthogonal bases 

selected by MLDB. By comparing this figure with Fig. 6.3, we can see that the 
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discriminant measures of bases selected by MLDB possess higher values, with almost the 

same drop rate. Part of the large magnitude of discriminant measures may be attributed to 

the way that mutual approach calculates the relative entropy of the energy maps, in which 

all training data in each class are encountered, not just their average. Nevertheless, the 

error analysis shows that the mutual approach has a greater discriminant power. 

Fig. 7.7 compares LDB and MLDB classification errors for the 32 different 

analyzing wavelets. It shows that for most of the analyzing wavelets MLDB performs 

better or as good as LDB, which shows the overall superiority of the proposed approach 

To assess the accuracy of the classification results we use the singular value 

decomposition (SVD) of the coefficient matrix. Its application, results and discussions 

are presented next. 

Wavelet bases 

Fig. 7.6. Discriminant measure of the complete orthogonal 128 bases. 
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Fig. 7.7. LDB classification percentage error vs. MLDB for 32 different analyzing 

wavelets listed in section 7.2. 

7.4.3. Analysis of Coefficient Correlation using Singular Values 

We used SVD of the coefficient matrix, obtained by projecting data onto the 

selected bases, to determine the extent to which the feature variables, i.e., the 

coefficients, are correlated. 

SV decay, Fig. 7.8, which is the drop rate from first to second, second to third, so 

on, is an important parameter in statistical analysis. For a matrix with large rank, usually 

the decay of the first few SVs is of interest; where rank is the maximum number of 

linearly independent rows (columns) [69]. In our case, where the coefficient matrix is of 
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size 96 x 4, there are four SVs (the rank is only four); therefore, the decay from first to 

second SV is of great importance. 

To obtain acceptable classification results, SV decay of coefficient matrix must be 

neither too large nor too small. Large SV decay shows that the useful information of 

coefficients is just in one direction (i.e., the direction of the eigenvector corresponding to 

that SV); therefore, the rest of selected directions, which are the bases found by the 

algorithm, contain redundant information. In other words, they are correlated with the 

first direction. On the other hand, choosing one direction to represent a multi-dimensional 

data is not usually a reasonable approach, specially noting that dimension reduction has 

already been implemented in the wavelet coefficient domain. Such a case shows that 

selected bases, from which coefficients are derived, do not contain all of the essential 

information about the system performance. Indicating that the respective algorithm has 

found a set of bases where only one of them includes useful information, the rest of the 

bases do not disclose anything new. As a result, a coefficient matrix with very high SV 

decay is not actually desirable. Similarly, having low SV decay means that all of bases 

(directions) have more or less the same information content, since there is a high 

correlation among them. 

To support the above argument, in Fig. 7.8, we have shown four singular values 

of coefficient matrix corresponding to the first four bases selected by MDPP when 

applied on Ricardo Hydra test data. The figure demonstrates the SVs in each class and the 

average for all classes, along with the corresponding classification results. The horizontal 

axis numbered from 1 to 32 corresponds to the same analyzing wavelets given in section 

7.2. Db2 analyzing wavelet (number 8 in Fig. 7.8) maintains a coefficient matrix with 
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large SV decay in all of the classes, which leads to a relatively large classification error 

of over 10%. Conversely, Bior3.1 wavelet (number 21) produces a very low SV decay 

with mutually very close values, but still attains a high classification error of over 25%. 

Haar wavelet is also in the same category. Wavelets other than these three extreme cases 

have almost the same SV pattern with proper decay rate and produce an acceptable 

classification result - typically with less than 7% error. With highly variable data and the 

performance errors observed with other classification methods, 7% is considered as a 

relatively low and acceptable error. 

Another interesting observation is that SVs in different classes shown in Fig. 7.8 

follows a discernible pattern, in which SVs of different classes are quite distinct. For 

instance, the first singular values in each class associated with Coifletl (wavelet number 

3) are 4.5, 3.6, and 2.2 for classes 1, 2, and 3, respectively, which show at least 20% 

difference among different classes. This is considered as an important aspect ofthe algorithm 

which extracts the information that makes different classes distinguishable from each other. 

7.4.4. Application of Different Analyzing Wavelets 

To attain a comprehensive view of the effect of using different analyzing wavelets 

in classification, several wavelets from various wavelet families, such as Daubechies, 

Coiflet, Symlet, and biorthogonal were used and tested in multiple runs. By examining 

Fig. 7.8 and our experience on other SVD graphs related to various data sets, we 

conclude that the use of different wavelets has no significant influence on the correlation 

structure of the coefficients. For this reason, the classification errors for most of the 

wavelets are almost the same with only minor deviations. We can then postulate that the 

improved classification is due to the algorithm. 
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12 16 20 24 
32 Different Analyzing Wavelets 

28 32 

Fig. 7.8. Singular values of coefficient matrix corresponding to the first 4 bases selected 

by MDPP for 32 analyzing wavelets, along with consequent classification results. 
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7.4.5. LDB versus DPP 

LDB and DPP methods were introduced and examined in previous chapters. 

During numerous simulations conducted while developing and examining MDPP and 

MLDB algorithms, a closer observation of LDB and DPP algorithms revealed that often 

the outcome of LDB and DPP methods were the same. For instance, three out of four of 

the selected bases in these two algorithms were the same when Coifletl was used as an 

analyzing wavelet on Ricardo Hydra data set. This can be traced to rather similar process 

they use in searching for the best set of basis. Both search methods are based on the first 

order statistics, in which the sum-squared coefficients in each class are used for the 

construction of the relative entropy measure. However, there are some differences in 

details which were explained in chapters 5 and 6. Classification results with different 

analyzing wavelets are also very similar for LDB and DPP, and the differences are within 

a few percentage points. 

7.4.6. Different Neural Network Algorithms 

An overview of different neural network backpropagation algorithms was 

introduced in section 2.9. It was mentioned that among 12 different backpropagation 

learning rules, Levenberg-Marquardt algorithm was found to be both fast and accurate. 

This was the overall observation using multiple runs with different analyzing wavelets. 

Table 7.1 shows the classification errors of the proposed cross-data entropy algorithm for 

each of these 12 methods, in which the Ricardo Hydra engine data (introduced in chapter 

3) with Coifletl as analyzing wavelet was used. 
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Table 7.1. Classification error using different backpropagation algorithms. 

Algorithm Error (%) 
Basic gradient descent 12.77 
Gradient descent with momentum 11.18 
Adaptive learning rate 5.22 
Resilient backpropagation 3.81 
Fletcher-Reeves conjugate gradient 4.49 
Polak-Ribiere conjugate gradient 4.77 
Powell-Beale conjugate gradient 4.05 
Scaled conjugate gradient 4.24 
BFGS quasi-Newton 4.08 
One step secant 4.12 
Bayesian regularization 4.84 
Levenberg-Marquardt 2.95 

7.5. Conclusions 

The importance of normalization method in the wavelet domain was shown in this 

chapter. As one of the steps during preprocessing and to improve classification results, 

we modified DPP algorithm by applying an appropriate normalization, as defined in 

chapter 3. It was demonstrated that with the new normalization scheme a more accurate 

classification results can indeed be obtained. 

A novel method, referred to as mutual or cross-data entropy approach, was then 

presented. Using this approach, two well-known discriminant algorithms in classification 

were modified. It was shown that the new methods are as efficient as the previous 

methods, and that for MLDB the classification results are consistently superior under a 

wide range of analyzing wavelets with both real and synthetic data. 

The classification results were influenced by the selection of appropriate bases; 

but the question was how we could relate the accuracy of classification to the selected 

bases. In this respect, we related the accuracy of the classification results to the 
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correlation of coefficient matrix through singular value decomposition. We detailed the 

assessment process and interpreted the relevance and meaning of various drop rates. 
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CHAPTER 8 

Conclusions 

8.1. Introduction 

In this chapter, a summary of work accomplished in this thesis is given, and an 

overall conclusion of the research conducted is presented. Particular contributions to 

the pattern recognition, classification, and fault diagnosis systems are specified. To 

conclude the chapter and the dissertation, possible future research directions are 

proposed. 

8.2. Synopsis and Conclusions 

With the objective of engine performance diagnosis, we employed wavelets for 

the analysis of vibration data collected at the cylinder head position of a number of 

internal combustion engines pertaining to normal operation and operation under faulty 

conditions. An outline of the work carried out in this thesis may be stated as follows. 
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The importance of condition monitoring for fault detection and prevention in 

modern industrial settings was emphasized. The specific case of internal combustion 

engines and possible engine faults were introduced. As obtaining in-cylinder pressure 

information is prohibitive due to high cost and difficulty in retrofitting of pressure 

sensors in the existing engines, the significance of using acceleration data (vibration 

signals) of cylinder block in detecting these faults were highlighted. A literature review 

of previous works on machine fault diagnosis was also presented. 

We reviewed basic concepts of statistical pattern recognition and classification, in 

addition to fundamentals of wavelet theory and its comparison to Fourier and short time 

Fourier transforms. We noted that acquired acceleration data exhibit variations from 

cycle to cycle, which is caused by variation in the combustion process, fuel-air mixture 

and variation in inertial system response of the cylinder head assembly to the combustion 

events. As such, information about a particular state of the combustion process for fault 

diagnosis is to be sought in the statistical behavior of acceleration data. Accordingly, the 

use of statistical pattern recognition methods using training data was judged to be suitable 

for fault detection in the application considered. 

It was shown that the expansion of the concept of entropy into the domain of 

wavelet transform and its application on the sequence of wavelet coefficients, 

demonstrate a very promising approach for tackling fault diagnosis problems. Significant 

order reduction was achieved using wavelet transform where a countable number of 

feature variables in the coefficient domain were considered to be sufficient for 

discriminatory classification of different engine faults. Along the same line, two well-

known approaches in pattern recognition and classification, referred to as dictionary 
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projection pursuit (DPP) and local discriminant bases (LDB) were introduced, in which 

relative entropy - as a logical extension of entropy for using in classification - as well as 

wavelets were utilized. 

Normalization and preprocessing are essential parts of a classification system. An 

appropriate normalization method, which can successfully be employed in both time 

domain and wavelet coefficient domain, was introduced. A neural network classifier was 

needed in the training and classification stage. For the training phase, embedded in the 

algorithm, many exploratory runs with different neural network algorithms showed that 

for the nature of machine data used, Levenberg-Marquardt backpropagation learning rule 

performed consistently and reliably. This was maintained as the main classifier for all the 

results reported in this thesis. , 

DPP and LDB were applied on a set of real world machine data and their 

classification results were given. By critically examining both methods, their 

shortcomings were revealed. We showed that none of these methods were using relative 

entropy in a theoretically correct manner. To overcome this dilemma, a novel method, 

referred to as cross-data entropy map or mutual-based approach was presented, in which 

a correct interpretation and application of relative entropy were made. In this approach, 

each training data contributes to the evaluation of relative entropy for discrimination 

purposes, contrary to the previous methods, which only use the first order statistics. 

Consequently, a superior classification results were obtained with a range of engine test 

data. 
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8.3. Contributions 

Contributions of this thesis are as follows: 

• Successfully applying wavelets to engine diagnosis using statistical pattern 

recognition methods and neural network classification. 

• Utilizing wavelet packets for signal decomposition in which redundancy of signal 

decomposition by wavelet packets was used to select wavelet basis for a 

discriminatory classification of different faults. Furthermore, effectively 

associating singular value decomposition and correlation of coefficient matrix 

with the classification error. 

• Successfully relating signal energies in wavelet packet nodes to the node(s) 

selected by the search algorithm. Demonstrating that a superior search algorithm 

can indeed select the nodes with high energy. 

• Introducing a normalization method in DPP that improved classification results 

considerably - from 5% error in the original method to 1% in the new approach. 

• Introducing a novel method, referred to as cross-data entropy approach for 

discriminatory classification and demonstrating the effectiveness of the method 

for entropy-based feature extraction using dictionary of orthogonal bases. 

• Employing the new cross-data entropy approach in DPP search algorithm, and 

conducting tests with promising results. 

• Employing the proposed approach in LDB search algorithm, and demonstrating 

superior results with various real-world data. 
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8.4. Future Research Direction 

As a result of this research, a novel methodology for fault diagnosis was 

developed. It would be possible to extend the application of this method for the detection 

of malfunctions in multi-cylinder industrial engines. The initial results (conducted in 

[70], but not reported in this thesis) indicate that the extension as proposed above, is 

promising although there are still a number of obstacles to overcome. In industrial 

engines, due to several signal disturbance sources, that exhibit themselves as background 

noise, as well as the cross-talk effects generated from events which are simultaneous or 

are at the proximity of combustion in a given cylinder, detection of malfunction in 

combustion event in one cylinder poses a very challenging problem. In other words, 

differentiating abnormal from normal operation cannot be easily achieved. Fault 

diagnosis of multi-cylinder engines is considered a natural extension of this project for 

future research. 

Another area as an extension of this research is the application of the proposed 

methodology to other faults that occur in internal combustion engines such as cylinder 

and ring wear, injection system problems, cracked teeth in gear train, and loose or 

cracked bearings. 

Thus potential opportunities for the expansion of the project and application of the 

modified DPP and LDB methods to other classification problems in other areas do exist. 

One may continue exploring the possible extension of fault diagnosis for developing new 

techniques/methodologies in areas dealing with biomedical applications and analysis of 

signal in EEG (Electroencephalogram or brain waves) and EMG (Electromyography or 

electrical activity of the muscles). 
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In the course of this work we had collaboration with other research groups in our 

department and benefited from accessing their research engines for data collection. 

Similar collaborations with other research teams can be considered in future which can 

lead to a multi-disciplinary research project in the areas of vibration analysis, signal 

processing, automatic control, internal combustion engine research, and clean energy. 
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