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ABSTRACT

Two different approaches have been used to diagnose faults in machinery such as
internal combustion engines. In the first approach, a mathematical model of the specific
engine or component under investigation is developed and a search for causes of change
in engine performance is conducted based on the observations made in the system output.
In the second approach, the specific engine or component is considered a black box.
Then, by observing some sensory data, such as cylinder pressure, cylinder block
vibrations, exhaust gas temperatures, and acoustic emissions, and analyzing them, fault(s)
can be traced and detected. In this research the latter approach is employed in which
vibration data is used for the detection of malfunctions in reciprocating internal
combustion engines. |

The objective of this thesis is to deveiop effective data-driven methodologies for
fault detection and diagnosis. The main application is the detection and characterization
of combustion related faults in reciprocating engines; faults such as knock, improper
ignition timing, loose intake and exhaust valves, and improper valve clearances.

To perform fault diagnosis in internal combustion engines, cylinder head
vibration data are used for characterizing the underlying mechanical and combustion
processes. Fault diagnosis includes two main stages: feature extraction and classification.
In the feature extraction stage, we have utilized wavelets for the analysis of acceleration
data acquired at the cylinder head to capture meaningful features that include necessary

information about the state of the engine. Wavelets have shown to provide suitable signal .
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processing means for analysis of transient data and noise reduction. Wavelet packeté, asa
generalization of wavelets, offer even a more powerful data analysis structure to extract
features that are capable of identifying combustion malfunqtions. Various concepts of
wavelets, wavelet packets, related algorithms and assessment techniques havé been
reviewed, analyzed and discussed.

As a result of this research, a novel methodology for fault diagnosis has been
developed. This has been achieved through critically investigating available
methodologies employed in fault diagnosis and classification, and by understanding their
shortcomings. The developed method not only avoids the demerits of the previous -
techniques, but also demonstrates superior performance.

To compare the performance of the proposed approach with major existing
methods, various sets of real-world machine data acquired by mounting accelerometer
sensors on the cylinder head, as well as a set of synthetic data, have been extensively

tested.
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CHAPTER 1

Introduction

1.1. Foreword

As machinery becomes more complex and costly to build and operate, pfeventive
maintenance measures also become increasingly important. Implementing machinery |
performance analysis has been found to offer several benefits including ﬁnmciﬂ,
operational, and even environmental advantages. When a machine breaks down it can
lead to significant problems including downtime cost, loss | of functionality and
productivity, catastrophic failure which might be beyond repair, and loss of life.

There is currently a great need for equipment and sofiware to automatically -
predict, detect, and diagnose faults in machines and components. Important examples of
such systems include rotors and turbines, compressors and engines, bearings and
gearboxes, and cutting and drilling tools.

Large reciprocating engines, such as diesel and spark ignited engines, are essential

elements of most industries. They can be seen in a wide range of applications, such as in




power plants, chemical plants, petroleum industries, and in the operation of compressors
and pumps, pipelines, ships, and trains.

Condition monitoring for fault detection and prevention is now an integral part of .
the operation of many industrial processes and machinery [1]. It plays an important role
in maintaining quality standards, increased productivity and cost reduction. Unlike
traditional reactive maintenance practices, condition monitoring and predictive
maintenance attempt to avoid unnecessary shutdowns and thus reduce machine downtime
and increase productivity.

This thesis focuses on the fault diagnosis of reciprocating engines, though once
the procedure is developed, the method can be extended for similar pattern recognition
applications.

In this chapter, the performance fundamentals of different internal combustion
engines along with some possible engine faults are introduced. The significance of using
vibration data in machine diagnosis is discussed. Such data are collected by means of
accelerometer sensors mounted on the cylinder head. A literature survey of fault

diagnosis is also followed.

1.2. Performance of Internal Combustion Engines

Internal combustion engines can be classified by the method of ignition into two
categories: spark-ignition (SI) and compression-ignition (CI) engines. SI engines usually
use gasoline, natural or liquid gas as fuel, while CI engines typically consume diesel fuel

or natural gas.




In conventional spark-ignition engines appropriate amounts of fuel and airv is
supplied to the engine cylinder. The mixture of fuel, air and residual gases are
compressed, and then combustion is initiated toward the end of the compression stroke by
the electric discharge of a spark plug. Inflammation develops and propagates by a
turbulent wave of flame throughout the entire air-fuel mixture up to the combustion
chamber (cylinder) walls.

In compression-ignition (diesel) engine combustion process, fuel-injection system
sprays the fuel into the combustion chamber just before the desired start (;f combustibn
which is toward the end of the compression stroke. Sprayed fuel which has be¢n
atomized through the high velocity injection is vaporized and mixed with high-
temperature high-préssure cylinder air. In a few crank angle degrees, pressure and
temperature reach the fuel’s ignition point. The portion of fuel which has properly been
mixed by air ignites spontaneously. As a result, the pressure and temperatﬁre increase and
cause the unburned portion to continue the combustion at an accelerated rate.

Usually the performance of every engine is measured by some parameters such as
power, torque, and specific fuel consumption [2]. Any significant deviation from nominal
conditions results in a change from the optimal condition in the above characteristic
parameters, which is generally referred to as a fault. This thesis focuses on the detectidn
of some of these faults that occur in the engine cylinder. Examples of such faults are

introduced in the next section.



1.3. Engine Faults

Requirement for efficient power generation, compliance with exhaustb control
standards for lower emissions, and finally prevention of engine wear caused by
occurrence of combustion fault are some of the main motives for the research in this area.
There are several faults associated with combustion; among them, intake and exhaust
systems related faults, knock, and ignition timing faults are our focus.

Faults in intake and exhaust systems include small and large valve gaps and gas
leakage in both intake and exhaust valves. Opening and closing of intake and exhaust

valves with appropriate timing are issues that also engage engineers. Research shows that

- correct exhaust valve timing reduces hydrocarbon emissions [3], and leads to better

engine performance.

In SI engines, knock phenomenon as a state of combustion event, refers to the
autoignition of end-gas (the unburned fuel-air mixture ahead of flame) inside the
cylinder. In fact, autoignition refers to any combustion activity which is not initiated by
an external ignition source. Knock, a “sharp metallic noise”, is caused by high :
compression and combustion of end-gas between the piston and burned gas behind the
flame. Autoignition of the end-gas is accompanied by shock waves inside the combustion:
chamber that causes high frequency pressure resonance, which is transmitted to the
cylinder head assembly. The frequency band of knock condition is determined by the
specifications of a given engine such as cylinder diameter and engine parameters [2].
Knock is a common abnormal combustion phenomenon in SI engines.

Even though CI engines operate based on autoignition (as there is no spark plug,

and ignition is based on compression as discussed in previous section), knock can still



occur in these engines. The non-uniformity of in-cylinder pressure generates some
combustion waves, known as detonation waves, that contribute to sonic velocities of the
hot gases in the cylinder. These fast moving combustion waves create knock.

Two important parameters that promote the occurrence of knock, are high load -
and over-advanced (too early) ignition. Detection of deviations in ignition timing is
another important issue in engine fault diagnosis since engine Efficiency is highly -
influenced by ignition timing. In fact, optimal power generation and lower pollutanf

emissions are achieved when ignition timing is set at the onset of knock occurrence.

1.4. Use of Acceleration Data

Non-intrusive measurements such as the use of cylinder head acceleration data in
engine monitoring applications offer clear advantages over other measurement types such '
as intrusive cylinder pressure measurement. The use of acceleration data — obtained from
vibration sensors located on cylinder head or engine block — has become popular in a
wide range of fault diagnosis applications, including detection of knock [4,5,6,7],
detection of valve clearance and gas leakage in both intake and exhaust valves [8], as '
well as detection of drift in ignition timings [9]. However, the accuracy of the diagnosﬁc
results is highly machine dependent and is subject to large errors when the speed of
~ engine is variable or the number of cylinders is high. Other factors may also affect the
accuracy of diagnostic results including size and type of the engine, manufacturer, aﬁd

more significantly, operating conditions such as sizable load variation.




There are inherent complexities in machine diagnosis that are accentuated using
non-intrusive methods. Vibration data are often contaminated with considerable noise
generated from overall engine vibration and from sources external to a given machine
fault. Noise masks the true fault signatures and can complicate information extraction.
The extent of noise content often differs for different engines and different applicatioﬁ
environments.

While the detection of combustion related faults has been a focus of study by

several groups in the past, there are still some challenges that are discussed next.

‘1.4.1. Challenges of Engine Diagnosis Using Acceleration Signals

The use of vibration data for engine diagnosis is accompanied with complexities
outlined below.

(1) Path dynarhics. Acceleration signals that are acquired at the location of the
sensors are characteristically different from the signals that were originally created within .'
the combustion process. While traveling from “source” to “sensor”, the signal is in faét
affected by the dynamics and the mechanical properties of the path. This phenomenon is
referred to as path dynamics. Different source-to-sensor paths will impact different “pathﬂj |
dynamics” upon the signal being transmitted. For example, accelerations measured in .
horizontal and vertical directions caused by the same combustion event can exhibit
different characteristics.

It is worth noting that path dynamics is a non-linear phenomenon whose modeling
is an intricate task, specially that the modeling must be done for every engine type.

(2) Machine Event Variations. Machine events, despite their cyclic. and

repetitive nature, exhibit variability from one cycle to the next [2]. Such variability is -




triggered by the underlying variability of source causes and processes governing different
machine events. Variability is best described by the statistical nature of the variables
defining these events that inhibits extraction of signatures for fault detection. It is
observed under both steady state nominal and faulty conditions. |

Variability is caused by several factors; they may be categorized as internal or
external for a given machine event. For example, variation in combustion quality may be
caused by variation in fuel mixing process or compression due to valve operation.
Variability as measured by standard deviation of vibration signals, may be different for
different engines, machine events, and locations. Vibration signals at the cylinder healld’
exhibit a higher degree of variability as compared with cylinder pressure signals; they
carry the effect of the variability of both source event and external factors such as'valife ‘
opening or closing events as well as non-linearity of machine response to combustion
- event.

Fig.1.1 illustrates spectral variability as measured by power spectral density of
vibration signals in 16 consecutive combustion cycles of a 12-cylinder industrial engine.
Power spectral density is a global measure of the engine operation and does not reflect
localized time variations of signal behavior. As such, it is a suitable measure to examixje
variability of engine operation from one cycle to the next. Variability of vibration data is
more observable in time domain. Using standard deviation as a measure of variability, the
ratio of std/mean rernains nearly unchanged in all frequencies. Other globél metrics of
acceleration data such as signal energy indicate similar statistical variability from one

cycle to the other.
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Fig. 1.1. Mean and standard deviation of FFT of acceleration data, and spectral variability

measured by std/mean.

Variability causes dilution and disguising of fault signatures and introduces
inaccuracies that are more pronounced when the intensity of faults is low. Under fnild
faults, fault signature falls within the variability range of the measured signals and
vremains undetected. For high intensity faults, such as hard knock, fault signature ié
dominant and variability is of lesser significance. In acceleration data, different frequéncy

bands may exhibit different variability.




(3) Noise. Vibration signals are often contaminated with noise that inhibits th:ev
extraction of true signal signatures for diagnosis. As mentioned before, Noise in machine
data is generated from the overall engine vibration caused by totality of machine events.
In diagnosis of combustion-related faults, noise is also caused by events that are external
to combustion event such as valve opening and closing, and cross-talk effects of
consecutive combustion in adjacent cylinders. Vibrations of engine components
oscillating at their harmonic frequencies are also transmitted to cylinder head position
and are compounded with acceleration signals. Noise reduction is considered as an
important part of machine data analysis; it can play an effective role in reducing

inaccuracies of diagnosis results.

1.4.2. Possible Solution

An approach used widely in dealing with non-linearity as well as variabilityi
effects in fault detection and classification problems is to search for changes in the
statistical distribution of the respective data derived under different operating conditions. -
In this approach, training data are used to extract necessary statistics under different fault
conditions. For example in knock detection, spectral energy at a set of des1gnated
frequency bands are considered as feature variables and used as 1nputs to a fault class1ﬁer ‘
such as a neural network. While statistical modeling and neural network classifiers have
been used in numerous fault detection problems, there are still limitations to their use in’
real-world applications. Access to sufficient number of training data under a given ‘
condition and known intensity level is not always possible. Ample data is necessary in ,
order to capture the statistics of a given condition with sufficient accuracy in order to

obtain acceptable discriminatory classification results.




Furthermore, changes in operating conditions of an engine require the use of a
new set of training data under the new conditions. In the absence of the necessary

knowledge about such changes, accuracy of diagnosis cannot be ensured. In addition,

while spectral and time signal energies are considered as valid indicators of knock B

intensity — as several research groups have used for knock quantification, such as in [10]
— spectral energy is a global measure which does not carry neces'sary' information about

the time behavior of the acceleration signal under a given knock condition. Changes in

the knock conditions are sought in both global and local features of the acceleration .

signals.

Due to the fact that vibration characteristics of faults are complex and normally -
buried within wide band engine background noise as well as high frequency structural
resonance, they cannot be easily identified through simple signal processing. The signais »
obtained from an engine are usually contaminated with noise or cross-talk effecfs. The
main purpose of signal processing is to manipulate the information contained within the
signal to enhance the view of a desired feature.

In recent years, there have been many attempts to diagnose different fauits
relating to knock [11,12,13], loose or cracked roller bearing [14,15], ignition timing [9],
valve clearance and operation under loose valve condition [16], cracked teeth in gear
train [17,18,19], cylinder and ring wear, and injection system problems occurring in

engines [20]. In terms of diagnosis, the problem becomes more complex when these

begin to develop concurrently. A more detailed literature review is given in the next -

section, in which wavelets have been employed as an efficient analytical tool used in

10 -



fault diagnosis. Wavelets as a classes of functions have information localization ability in

both time and frequency and will be presented in chapter 2.

1.5. Review of Previous Works

Coifman and Wickerhauser [21] established a mathematical foundation for-a
method that permits efficient compression of a variety of sigﬁals suéh as sbund and
images. Their method selects a set of functional forms known as basis that is best adapted
to the global properties of signal. Such bases are appropriately selected from a dictionary :
of orthogonal bases such as local trigonometric functions or wavelet packets family. They
used Shannon entropy measure as a cost function to match a basis to a given signal or
farnily of signals.

In wavelet packet transformation (which will be defined in the next chapter), theA
selection of best decomposition tree for signal representation is usually done throughv .
entropy cost function as introduced in [21]. Even though entropy is considefed
appropriate for signal compression, it may be unsuitable for signal classification [22,23].
Saito and Coifman [22] used the concept of relative entropy as a cost function in
classification applications, and termed their algorithm the local discriminant basis
(LDB). -Similar to the process in [21], LDB selects an orthonormal basis from .a
dictionary, which most discriminates different classes in a given set of data belonging tov '
several classes. We will expand more on their algorithm in chapter 6. They later modified

their algorithm by employing relative entropy of the empirical probability density

-estimate of each class in a wavelet packet domain [24].

11




Englehart et al. [25] applied LDB for myoelectric signals (MES) for clinical
diagnosis in biomedical engineering. As in LDB, they used the time-frequency enérgy
maps of each class as input to a symmetric relative entropy measure, in conjunction with
principal component analysis (PCA) for dimensionality reduction. In another MES
application, they proposed time-frequency methods such as short time Fourier transforfn
(STFT), wavelet transform (WT) and wavelet packet transform (WPT) for feature
extraction, along with PCA, and found WPT superior for classification purpoées’_

[3,23].

Mallat and Zhang [26] introduced an algorithm called matching pursuit which =~

searches for a set of wavelets to represent an individual signal, then efficiently -
decomposes the signal into a linear expansion of waveforms that belong to a library 6f
functions. Matchjng pursuit is referred to as a greedy algorithm in which a signal is
decomposed into a sequence of components generated iteratively with a projectionv
direction that has the highest match with the residual at each stage. This algorithm is
closely related to projection pursuit strategy developed in [27]. These methods have
proved their utility in sigrlal presentation and compression problems.

Using matching pursuit algorithm, in 1999, Liu and Ling [20] proposed a meaSufe :
to identify a small set of wavelets that carry meaningful information abou_t machinery
faults and tried to identify the wavelets that are sensitive to fault occurrence. The
application of this set of wavelets, which is called informative wavelet, has Been
expanded in [16] for combustién fault diagnosis. |

Samimi and Rizzoni [4] used time-frequency analysis of pressure signals in orderf

to detect knocks in an internal combustion engine. Since the pressure measurement is not

12




considerably affected by signals or noises from other mechanical sources, contrary to
vibration measurements, it is a very reliable measurement for knock detection, but using

pressure transducers in existing industrial engines is neither easy nor economical.

Yang et al. [28] used a dynamic model to simulate instantaneous angular speed to
obtain cylinder pressure information to diagnose combustion-related faults. This could be

a useful approach for single cylinder engines, but a slight pressure changes in one

cylinder of a multi-cylinder engine is expected to have a very little effect on the angular . |

velocity of the engine. For this reason their method can hardly be applied on engines with

several cylinders and large inertia.

Along the same line, Zavarehi and Schricker [29] employed the actual crankshaft
angular velocity information of a six-cylinder diesel engine to find kinetic energy of eéch
cylinder. They used suéh energy to detect possible power loss in a cylinder. They divided
the crank angle degree of one engine cycle by the number of cylinders, and used the
velocity fluctuations of crankshaft in each segment to find the kinetic energy of eabh
cylinder. This method may be appropriate for detecting complete power loss of one
cylinder, but is impractical for detecting small changes in the power of one cylinder, say

in a large 12-cylinder industrial engine.

| Wang and McFadden [17] applied the wavelet transform to the analysis of tﬁe
vibration signals of a helicopter gearbox in order to represent gear condition and detect
faults. They found that the Gaussian-enveloped oscillating wavelet is well-suited for
detection of gear faulfs. In another attempt Dellomo [24] also used accelerometer data to

detect gearbox fault in helicopters. He employed some elementary signal analysis to

13




identify the frequency band of faults and then applied Fourier analysis for faﬁlt :
monitoring. The particular gearbox signal he examined is a very simple example. Wang
[31] viewed time-frequency-scale distributioﬁ as a three-dimensional image and tried to
obtain the detailed features of a signal. He applied this method to the signals from geafs ‘
and a steel mill roll, but it’s difficult to interpret and quantify the prodilced three-

dimensional images.

Shiroishi et al. [32] investigated defect detection methods in frequency domain -

for rolling element bearings through accelerometer and acoustic emission (AE) sensor
and found that the latter is better at detecting the defect types. Their main goal was to
increase the signal-to-noise ratio. Ma et al. [33] presented a method to design a filter with
combination wavelets which is formed by frequency shift and single wavele_t :
superposition. They designed the Gaussian combination wavelet filter which has been
applied by Luo et al. [34] for condition monitoring. Their measure for diagnosis was
monitoring the system natural frequencies via vibration signals. They extended the design
in [33] to a very narrow frequency band wavelet filter to have mbre accuracy in
recognizing the system natural frequency, then used it in obtaining power spectrum of
different conditions in a turning machine to recognize the fault in bearings. Their method
is applicable to only high intensity faults which change the natural frequency of tﬁe
system; there is no guarantee to ensure that these changes are because of faults in
bearings and not from other sources.

Friedman [27] proposed an approach referred to as the projection pursuit method
(PP). This is a method for exploratory data analysis to find low dimensional projections

of high dimensional multivariate data which optimize a projection criterion via numerical
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computation. Rutledge and Mclean [35] extended this method to choose a subset of basis |
functions from the wavelet packet dictionary which are orthogbnal to one another. They
called this method the dictionary projection pursuit (DPP), which will be presented in

chapter 5.

1.6. Thesis Layout

Numerous research efforts have been made towards the diagnosis of different
engine faﬁlts. In this chapter, some of these were reviewed; more work carried out in
classification and engine fault detection will be outlined in subsequent chapters.

Chapter 2 outlines the process of pattern recognition, reviews Fourier and Short»b _
Time Fourier transforms and sets the context for introduction, definition and appli(.:ation._
of wavelets and wavelet packets in machine diagnosis. This is followed by an explanation
of the concept of entropy and discriminant measures, and their role in signal processing.

In chapter 3, different normalization and preprocessing methods will be
‘presented. The data sets that have been used throughout the thesis along with some
preliminary data analysis will be introduced.

In chapter 4, using mutual information and entropy defined in wavelet domain,
informative wavelet algorithm [20] will be explained and applied to real-world rriachine
data for classification and diagnosis of a set of designated faults in diesel engines. Seve;al
prototype wavelets and data under different operating conditions are employed to |
examine the effectiveness of the algorithm for the classification of two categories of

faults, namely, excess valve clearance and knock condition.
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Chapter 5 covers another method used in fault diagnosis known as the dictionary
projection pursuit and the underlying algorithm in which its relevance to the research
conducted in thesis is investigated in detail. |

In chapter 6 the best-basis algorithm and its extension, the local discriminant
bases algorithm, are investigated and their role in the research carried out in the present
work is outlined. Then, some representative test results are presented and thoroughl'y'
analyzed.

In chapter 7 some novel methods for fault diagnosis and classification are
introduced, and in chapter 8 concIusions, future work, along with contributions made in

this thesis are presented.

1.7. Closing Remarks

In many of the papers reviewed in this chapter, the respective authors have investigated
relatively harsh faults, such as gear faults, which are prirriarily time-invariant and could
practically be detected by Fourier analysis techniques as well. Nevertheless, they héve
shed light on new trends and approaches and some have developed innovative ideas in
the field of fault diagnosis. In this research, we develop a methodology for detecting
faults with lower levels of intensity in more transient and time-variént environmeﬁts. In
the process, we highlight the shortcomings of several available methods and deal with
development and application of wavelet-based techniques for engine fault detectién and

diagnosis.
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CHAPTER 2

Pattern Recognition and Wavelets

2.1. Introduction

Wavelets are classes of functions with properties suitable for the analysis of a
wide spectrum of signals found in engineering and scientific applications. Wavelets have
been utilized successfully in system modeling and control, image and signal processing,
data compression, communication, signal identification, pattern recognition, and feéture
extraction. An important property of wavelet analysis is the ability to localize feature ofé »
signal analysis both in time and in frequency. As such, wavelet transform is viewed as a
generalization of Fourier transform in the sense that it provides both spatial and
frequency localization éf a given signal. Often wavelets are considered for the analysis of
signals to characterize discontinuities, breakpoints, nonstationary and transients behavior
[36]. For feature extraction, they have found applications in industrial and biomedicai )

diagnostics where features for change detection are often sought in wavelet coefficients
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or in their characteristic parameters such as correlation structure and statistics of the
coefficients at different scales of signal decomposition.

In this chapter, basic concepts of pattern recognition and classification are
presented; then the fundamentals of wavelets signal processing is reviewed; The
significance of applying wavelets in machine diagnosis is discussed followed by
introducing the concept of Shannon entropy [45]. While entropy is successfully utilized
in data compression and signal representation applications, one needs a different criterion
in classification. Relative entropy is presented as a natural extension of entropy theory to -

be employed in classification applications.

2.2, Pattern Recognition

Fault detection and quantification problems may be analyzed within the scope of
patterri recognition problems whose goal is to classify objects or patterns into a num‘ber :
of categories or types [12]. Pattern recognition is an integral part of most machine.
intelligence systems built for decision-making. The major problem associated with
pattern recognition is the so-called curse of dimensionality, in which the high dimension
of data means the existence of high amount of unnecessary information in the original
data, and excessive computational time in the data analysis phase. |

Both traditional methods such as Fourier analysis and new methods such as time-
frequency and wavelet analyses generate large numbers of data features. For pattcfn
recognition and classification applications, it is highly desirable to determine as fev;r
features as possible while containing as much information about the faults as pbssible.

There is a pressing need to reduce the dimensionality of these data by extracting a limited
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number of features which best preserve the useful information. While researchers have
applied certain methods such as linear discriminant analysis [12] and neural networks
[47], it is clear that much remains to be done in this arena. There are many reasons th |
feature reduction is essential, including reduction of computational cost, reduced
requirements in terms of training time and data, noise reduction, increased robustness,
and more rapid training of classifiers. There will also be high mutual correlation among
the selected features which could increase the complexity without any gain. Furtheﬁnore,
high dimensionality causes the information to be diluted. |

A pattern recognition system is trained with a finite number of training samples.
The trained system must be well generalized to data which were not contained in the
training set, but without significant increase in the system complexity.

On the other hand, often, signals acquired for use in a fault detection process carry
unnecessary information and cannot be directly used in a given classification problem.
Such signals must be suitably preprocessed for order reduction before feature extraction.
Preprocessing attempts to associate each class of signals with a certain pattern (signature) |
that can be used as a feature for classification. In addition, in classification problems; nét
only we look for features that contain non-superfluous information but also we seek
information that can separate classes from each other as distinctly as possible. This type
of information is referred to as “discriminant”. Usually, it is the superﬂubus information
that turns the classification into a difficult task. The main objéctive in feature extraction
and classification problems is to find a coordinate system for projecting the signal along
its axes, that yields high discriminatory information residing on a few axes, with -

insignificant information along most axes.
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2.2.1. Definition and Process
A linear projection from R" to R™ is a linear map B represented as an 7 X m matrix:
Z=B"X, XeR™, ZeR™ (2-1)

which transforms n-dimensional data set X (consists of / data in each column) into an m-

dimensional space; Z is the m-dimensional transformed data set. Suppose b; is the n-

dimensional column vectors of matrix B=[b; b, ...bn). If b;s are orthogonal to each other,.
the projection is called orthogonal, and if they have unit magnitudes, the» projection is
called orthonormal. If m =1, then B is a one-dimensional projection, and Z is a scalar
sometimes referred to as the projection score.

Fig. 2.1 shows main stages of classification in which X is input signal, Y,
corresponding class label (e.g. Jaulty or healthy conditions), and F, feature space, which |
is the discriminant subspace of reduced dimension (m < n). The maps f: X — F and
g:F — 7Y are called feature extractor and classifier, respectively. It is computationally
more efficient to analyze the data in a discriminant subspace of lower dimension.

| Classification is a complex task because: 1) the signal space dimension is usually
very high which makes the classification computationally expensive, 2) as mentione(i
before, signal space usually includes some unnecessary information, 3) signal space is
usually contaminated with noise. Classification goal is to determine which class a given
data X belongs to by constructing a feature space F that provides the highest discriminant
information among all classes. |

This thesis deals with the analysis of cylinder-head acceleration data for engine
fault detection and diagnosis. Vibration signals of a machine always carry information

about its dynamic behavior, which can be used to identify faults in machine operation.
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Vibration signals in internal combustion engines are characterized as being transient, time
variant and extremely noisy. Wavelets are considered to be highly. suitable for the

analysis of transient signals for feature extraction used in fault detection problems.

Feature

Fig. 2.1. Main stages in classification.

The basic background concepts behind wavelet analysis along with formal

definition of wavelets are introduced in the next two sections.

2.3. Fourier and Short Time Fourier Transforms

Conventional techniques such as Fourier analysis are practically valuable for ,
many signals in which the signal’s frequency content is of great interest. Fourier analysis

decomposes a signal into a sum of constituent sinusoids of different frequencies:
f®= 1 J‘MF (@)e™do.
2 I~
It gives another view of the signal with details that cannot be seen in the signal itself. If f |
has finite energy; i.e., feL*(R) (L? is the space of square integrable functions), then the

amplitude F() of each sinusoidal wave e’ is the Fourier transform of f obtained by:
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+o0 —jot
F(o)= j FOe™at.
Sinusoidal waves {e/”}  are eigenfunctions (sometimes referred as -

eigenvectors) and Fourier coefficients F(w) are their associated eigenvalues [39,40].

Fourier analysis transforms a time-based signal to a frequency-based one, but in
the new (frequency) domain, there is no time information,; it is impossible to notify when -
a certain event occurred. If a signal is stationary — as is common in many applications =
this drawback may not be so important. However, many signals including engine sigﬂals ‘
have non-stationary or transitory chafacteristics; they exist in short periods of time, ‘l.)ut
consist of local information. Fourier analysis is not capable of detecting these transitory
and abrupt changes.

To resolve this deficiency, in 1946 the physicist Dennis Gabor [40] motivated by
quantum mechanics, modified the Fourier transform to analyze only a émall section of the
signal at a time. Gabor’s adaptation, called the Short-Time Fourier Trdnsform (STFT),
maps a signal into a two-dimensional function of time and frequency (Fig. 2.2). It
provides some information about both when and at what frequencies a signal event
occurs, but its precision is limited by the size of the time window used. Its other
weakness is that once one chooses a particular window size, that remains the same for a11.
frequencies. The time-frequency window of any STFT is rigid; in many applications wev‘ |
need a more flexible approach where we can vary the window size to examine an event

more accurately either in time or frequency.
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Fig. 2.2. Short Time Fourier Transform.
2.4. Wavelets

Wavelets are classes of wave-like functions that are often irregular, non- ..
symmetric, and with no analytical/mathematical expression. They have finite number of
oscillations and an effective length of finite duration. Wavelets are used as basis
functions for signal decomposition and signal processing. They allow function expansion -
in an orthogonal, non-orthogonal or redundant structures. Wavelets are considered as
unconditional bases with properties that allow efficient information extraction and codiﬁg'
[41,47].

Wavelets in signal processing can be considered as windowing functions
extracting signal information at variable-sized localized regions. It allows the use of
windows with long time intervals where we want more precise low frequency
information, and short time regions where we want to extract high frequency information.
Wavelet transform projects a given signal onto a two-dimensional array of coefficients
parameterized by scale (or frequency) and translation (time), while Fourier transform
maps a one-dimensional function into a sequence of single parameter coefficients. Two-

dimensional signal representation allows localized extraction of signal information both
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in time and frequency. In standard discrete wavelet transform (DWT) this representation

is achieved using basis function y dilated with a scale parameter j, and translated by ko
v, (O=2"y (2 t-k) s kve Z
where Z is the set of all integers and the factor 2 maintains a unity norm independént o_f
scale j. Any finite energy signal fin L?(R) can be decomposed using wavelet orthogonal
basis {y ;«} [41]: |
f®=)a,,2"y@'t-k)
I
or

OESIFING:

where the two-dimensional set of coefficients a; is referred to as wavelet coefficients of

f(#) and can be determined using inner products defined as
a,, =(¥ .. SO) = [ FO v *@)ae.

Decomposition of a signal can be carried out using a filter bank structure by |
breaking the signal into a set of low and high frequency components as illustrated in Fig.
2.3, where f=f;’ is the original signal, h/ and g’ are low and high pass filters of stage j, fdi . |
and f,’, j = 1,...,J, are called the approximation and detail at resolution level Js
respectively. J is the number of decomposition level considered for signal analysis. In
standard wavelet transform, low pass and high pass filters h’ and g’ remain unchanged

for all stages. At an arbitrary stage j, original signal can be reconstructed from the sum of

U
the all details up to stage j plus approximation at that stagei.e., f = f/ + Z £ [36].

i=1
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Filter bank structure can assume orthogonal or biorthogonal structure [42]. Théy_ '
are derived from a prototype wavelet function characterized by a set of parameters
including regularity, symmetry and wavelet order [42]. Selection of a particular prototype
wavelet for a given application is determined by the requirements of that application and

is an area of wide interest in function approximation and signal processing.

h' ; b , b’ n’ .
Py > 3
] > ﬂ > ﬁ > fv cen f;)J
2 3 -
g , 8 , 8 , g .
Fig. 2.3. Filter bank analysis and multi-resolution signal decomposition.

There are several families of wavelets that have proven to be useful in different
applications. One of the most well-known is the Daubechies family of wavelets, which is
shown by DbN, where N is the order; the greater the N, the more oscillating and smodth
the wavelet. Two examples of Daubechies family, Db4 and Db10, are shown in Fig. 2.4.

A wavelet transform of a given signal can be interpreted as a decomposition of the
signal into a set of components described at different frequency channels. In standard
wavelet decomposition, low frequency channels have narrow bandwidth, and high
frequencies have wide bandwidth [42]. Whilst this kind of signal decomposition is
appropriate for many purposes there are applications that need a more flexible frequency

pai‘titioning which is the theme of next section.
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Fig. 2.4. Two examples of Daubechies family of wavelets.

2.5. Wavelet Packets

Wavelet packet decomposition is an alternative and a more suitable structure for

signal decomposition in a narrow frequency band data analysis. Wavelet packet can be

- considered as an extension of the standard discrete wavelet transform in which the

outputs of high pass filters are further decomposed into high and low frequency sighal

components. Decomposition can be continued up to a level in which the last stage

consists of single sample only. A binary tree with a root as the original signal can - -

describe wavelet packet signal decomposition. Each node is associated with a basis
function spanning signal component at that node. |
While a Fourier basis provides a poor representation of functions that are highly
localized in time, standard discrete-time wavelet transform is also not well suited to
represent functions whose Fourier transforms have a narrow high frequency bandwidth.
To solve this problem, the wavelet packet, as a generalization of standard discrete
wavelet decomposition, offers a richer range of possibilities for signal analysis. Standard
wavelet technique decomposes the frequency axis in dyadic intervals where size of

bandwidth increases in an exponential manner [43]. Wavelet packet, introduced by
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Coifman, Meyer and Wickerhauser [44], on the other hand, generalizes dyadic
construction by decomposing the frequency axis in separated intervals of varying sizes.

In effect, wavelet packet is a redundant signal decomposition. The term
“redundant” refers to the fact that there are more than one set of basis functions which
can span a particular space. Non-orthogonality of wavelet basis functions atl the
parent/child nodes leads to a redundant signal representation. Redundancy in wavelet
backet provides a wider collection of basis functions for selecting the most suitable
- projection directions, and can have a great influence on fault diagnosis results. Using ‘" ‘
wavelet packet we can select bases from a library of basis functions that best match the

signal components at different resolution both in time and frequency.

2.6. Machine Diagnosis and Wavelets

Vibration Signals, acquired from engine operation, generally correspond to .

machine events that are cyclic and are often associated with a burst of high energy. They'
are highly transient and last only for a short period of time. Acceleration (vibration)
signals acquired by sensors located at the cylinder head are of decaying oscillatory nature
and can reveal information about various engine events. Such information about the N
condition of machine operation resides in the overall time-frequency behavior of tﬁe

~ signal. Transient nature of machine signals and search for a particular time-frequency |
behavior for diagnostic purposes render wavelets as highly suitable for the anélysis of

such signals. Some of the reasons for the use of wavelets in machine diaghbéis ’

applications are as follows:
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Wavelets as Time-Frequency Analysis Tools. Wavelets are mainly time-
frequency analysis tools. They are highly suitable candidates for machine data
analysis as information about a given machine operation lie both in time and
frequency behavior of the signal.

Wavelets and Localized Signal Analysis. As stated earlier, machine data utilized
for diagnosis are highly transient where information about a given machine
condition reside in local behavior of the signal; i.e., changes occurring in part or the
entire segment of the signal. Wavelets are highly suitable to capture localized
changes and behavior.

Wavelet Coefficients as Feature Variables. Signal expansion by wavelets often

leads to a few wavelet coefficients of large magnitude and large number of =

coefficients of small magnitude. This leads to signal approximation with limited -
number of large amplitude coefficients used as feature variables. Considerablé.
reduction of dimensionality is achieved in this manner.

Wavelets as Unconditional Bases. Signal information lies in coefficient valﬁés' |
obtained from wavelet signal decomposition. Wavelets are unconditional bases [41]
which imply a very robust basis in which the coefficients dl;op off fast independent |
of the sign of the coefficients. Therefore, in an orthogonal signal decomposition, |
absolute values of the coefficients carry the necessary information about the signél.
This allows to ﬁse absolute values of wavelet coefficients for feature extraction.
Noise Reduction using Wavelets. Wavelets are used for noise reduction in whjcﬁ

wavelet coefficients of small amplitude (below a given threshold) are set to zero.

Often such coefficients belong to noise content of the signal at the highest
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frequency band. De-noising is different from the commonly used high frequency
filtering, as it can be carried-out at all frequencies. On the other hand, we utilize de-
noising scheme for reduction of machine background noise corresponding to

overall acceleration observed in machine data. Often it is composed of white noise. - -

Careful selection of threshold level in de-noising can successfully reduce machine -

background noise.

In this work, we employ wavelets for the analysis of vibration signals of a single-
cylinder engine. Wavelets are used for engine diagnosis, such as identifying knock, loose
valve, and different engine operating conditions produced by various ignition timings.

First, we present the concepts of entropy and discriminant measure, which have
been used as cost functions in many applications of signal representation and -
classification. Then, we introduce the neural network algorithm that has been used

throughout the thesis as the classifier.

2.7. The Concept of Entropy
There are many useful cost functions; one of the most well-known is Shannon
entropy [45]. Consider a probability distribution s={s,,...,s,} (where s;s are non-

negative) associated with a random variable X , i.e., P(X = x;) = s;, for i=1,...,n. Then,

entropy of the sequence is defined by the expression

h(X)=H(s)=-3 s, logs, | 2-2)

i=1

where
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D=1 (2-3)

assuming that
log0 = —o0, log(;v/O) =+o0 for s >0, and 0.(+) =0. (2-4)

Entropy was first encountered in thermodynamics by Clausius in 1867 as a part of
the second law of thermodynamics. Since the dynamic theory was unable to articulate all
the collisions of the molecules causing the thermal energy, in 1872, Boltzman empioyed
| entropy to express the uncertainty of the state of the molecules of a perfect gas. In 1940s,
Shanon introduced the concept of entropy in infdrmation theory [45] as an extensioﬁ of |
Boltzman’s idea to measure the uncertainty of information. The application of entroi:y
was then expanded to many fields such as information theory, task planning and
organization, system cofnmunication, image and signal processing, intelligent control and
machine intelligence, and stochaétic control [49].

By definitions (2-2) and (2-3), entropy is applied on a sequénce which forms a
probability density function (pdf) of a random variable. Entropy sometimes referred to as
a measure of uncertainty or randomness. It can also be considered as a measure of

complexity of a system [50].

Shannon entropy has several properties [51]; here three important propertiesv are.

introduced.
Property 1. Entropy is always non-negative, i.e., H(s)>0. Equality holds When‘
sequence s follows a éingle-value distribution, i.e.:
H(s)=0 if sy=1 and ;= 0 for all i except i # k.
Zero entropy in property 1 implies that the process is deterministic [51], and there

is no uncertainty involved. Since s is a pdf then every element of s is less than one;
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therefore, entropy is always non-negative (considering the negative sign in Eq. (2-2) and
the fact that logarithm of a value less than 1 is negative).
Property 2: Maximum entropy occurs when all probabilities are equal; in other

words:
HE)<SH(,5,p2)

where the maximum value is log n:

H(ozon) == 2 3108(0) = —n1(-logn)=logn. (25

i=1
From statistics and probability point of view, property 2 suggests that if thé
probability of every alternative of an n-state system is identical, the entropy of the system
equals to logn. In special case, when size of sequence s is n = 2, we have:
H(s)=H(s,1-s)=-slogs—(1-s)log(1-5s). |
If s has an equal probability, that is, s = 1/2, and assume that logarithm base is 2, the

maximum entropy will be:

H(5,5)=log,2=1.
Beforé introducing the third property of entropy, let us define the addiiive'
concept. |
Definition: Let s© ={s®} =(s,...s") and s? = {s®}" be two probabilityl
distributions related to independent random variables X () and X @ with the joint
probability distribution
P(X(l)=x,~(1),X(2)=x,~(2)) =s,~(1) Sj(z), ‘ i= 1,...;n; j=1,...,m.
Then operator H (consider H as a general operator) is said to be additive if

m 3

H(®,87) = H(s"s?,.., 550555082, s0sP) = HEV) + H(SP)  (2-6)
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Property 3: Entropy is additive because:

n m
1 2 1,2 (2
H(s®,s?)==3">" 55 log(s"s')

i=1 j=1

n m n n
- M (@ 100c® M (@ 10
==2.2.5"slogs” =33 s logs;

i=l j=1 i=1 j=1
- _z s;.2>gs,.ﬂ> logs® -Zs,wgs;n logs®
=H(s")+H(s?)
Eq. (2-6) implies that entropy of joint distribution of X"’ and X equals the sum
of entropies of X" and X®.
It can be shown that for all distributions with the same variance, enfropy, defined
by (2-2), is maximum if sequence s follows a normal distribution .
Entropy has been widely used as a valuable criterion in data and image
compression and signal representation. However, in classification applications, one needs
a principle to measure the distance between two or more sequences. The following

section pays attention to this important issue.

2.8. Discriminant Measures

The principal objective in a classification problem is to develop measures that are -
capable of discriminating different classes as much as possible. Accuracy of the
classification results is highly influenced by the extent of class separation in feature space |
generated by the chosen discriminating measure. Discriminant measure, in general, is
designed to evaluate the statistical distance among different classes. The choice of
discriminant measure depends on the application on hand. Different authors haVé

employed different discriminant measures in various applications [20,22,50]. The
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approach utilized in this work is based on using relative entropy as a measure for
discriminating different classes that is now defined.
In a two-class case, suppose s’ ={s""}" for /=12 be two non-negative

sequences satisfying:
D s =315 =1 (2-7)

Symmetric relative entropy for two-class is then defined as:
= o) 5@
D(sV,sP)=>"(s" log 35 + 5 log X (2-8)
P i Si

assuming that
log0 = —o0, iog(si /0) =400 fors; >0, and 0.(xw) =0. (2-9)
If we just use the first term in the right hand side of (2-8) then the relative entropy
is déﬁned as: |

D(s®,s?) =) 5" log 25 . 2-10)

i=1
Lemma: Equation (2-10) is always non-negative and will be zero if distributions

@

s and s® are the same.

Proof [11]: Recall the elementary inequality for real numbers
logx<x-1, (2-11)

with equality if and only if x = 1. Then, considering conditions (2-7) we have

L 1) 5P 1 2
Y sV logir <Y s -D =) s - 5P =0. (2-12)
i ! i ! i i

Therefore, »_ s log:f—?) > 0. Equality holds if and only if s;%=s", for all i.
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Note: Conditions (2-7) is not necessary for a symmetric relative entropy to be
non-negative, because the right-hand side of Eq. (2-12) in symmetric case results in-

cancellation of the corresponding terms:

Qs =2 s+ sP =Y sy =0. | 2-13)

i

As can be seen from the above lemma, if two random variables have the séme
distributions, discriminant measure D will be zero. In classification applications, one is‘ '
interested in those features that can separate the distribution associated with each ciass;'
therefore, one should look for those features that maximize D. The more separate are
these distributions, the higher the discriminant measure D is. |

Now, the challenge is to find appropriate features. By projecting a set of data in
different classes (vibration signals in our application) onto a set of basis (coordinates) andb
using the associated coefficients in different classes as s, the corresponding discriﬁminanf
measure D can be found. In a classification problem, the objective is to loéate those bases
(out of a dictionary of bases) that maximize the value of D. In this manner, the
distribution of each class can be transformed to a sharp distribution with least overlai)'_
with other distributions.

The discriminant function D measures how differently distributions of two classes o
are. Since s are non-negative sequences assimilating pdf functions, we can successfully
employ the normalized energy of the coefficients in each class as s and s in the
classification problem.

In general, if there are L classes, one can use this simple approach:

D( {s(l)}ll;l) = g i D(S(i), s(j)) . . (2_14)

i=l j=i+l
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Equation (2-14) is not always the best choice when the number of classes is more’
‘than three, since a large value for D may be obtained because of the suMation of many |
small terms, which is not a favorable outcome. In fact, the desirable situation fof tﬁ_e '
classification is a large D due to a few significant terms with most others havi;lg |
negligible values. To overcome this shortcoming, Watanabe and Kaminuma [52] split
training data into class i and non-class i and then form L sets of two-class problems ahd
construct a classifier for each of them. |

Relative entropy and its symmetric version have been used in chapters 5 to 7.

2.9. Neural Network Algorithms

Backpropagation algorithms, that use a multilayer perceptron network [71], have. |

been extensively used in classification applications. Backpropagation is an extension of -

least mean square (LMS), which in turn is an approximation of the steepest descent™ - -

algorithm [38] that is a simple, but a slow minimization method.

There are two diffefent approaches to improve the convergence speed j of
backpropagation learning rule [53]. The first approach employs heuristic methods such as
varying the learning rate to determine the length of steps in the steepest decént algoriﬂnn,
‘The other approach focuses on numerical optimization techniques since &aihiﬁg ‘
feedforward neural networks to minimize square error is basically an optir‘nizatién'
problem. As a result of latter approach, which has been the focus of fesearch for many
years, several variations of the main backpropagation algorithm have been developedf
For example, conjugate gradient algorithm and Newton’s method provide faster

convergence'. In these methods and many other backpropagation algorithms, in which
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goal is the optimization of a performance index, errors of network with respect to target
values are found from the last layer of the network to the first. The word
“backpropagation” refers to this process. The improved backpropagation training

algorithms have various computation and storage reqﬁirements.

Even though there are some heuristics and general guidelines for the selection of a =

specific learning method, such as convergence speed or storage needs, usually, a training
algorithm is chosen empirically for each application. We examined 12 different
backpropagation training algorithms in which Levenberg-Marquardt algorithm was found
to be the best algorithm with respect to both high classification accuracy and
computational efficiency. Classification errors for each of these 12 algorithms for the
Ricardo Hydra engine data (intr?duced in the next chapter) are shown in Table 7.1 in
chapter 7.

In the next two chapters the attention will be on two methods for fault diagnosis

based on wavelet analysis: mutual information and dictionary projection pursuit.

2.10. Closing Remarks

In this chapter, wavelets — as the class of tools we would like to examine in this
research — were introduced, along with a formal definition of the concept of entropy and
its extension, the relative entropy. The importance of feature extraction in pattern
recognition applications were emphasized and stated that data must be processed for
dimension reduction to degrade the effect of information dilution (due to both redundaﬁt

and unrelated information contained in the original data) and to decrease computational
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time. Reviews of literature in the signal processing and fault detection area as well as the

various approaches researchers have developed were presented.
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CHAPTER 3

Experimental Setup, Data

Collection and Preparation

3.1. Introduction

In Chapters 1 and 2, wavelets and wavelet packet transform including the basic
theory and potential capabilities in pattern recognition applications in general, and’ iﬂ
machine diagnosis in particular, were presented. In the coming chapters a more de_tailed _
and in depth analysis of a number of wavelet-based methodologies used in pattern
recognition will be introduced. In this chapter, various sets of data that will be used for'
the evaluations of these methodologies are discussed.

Experimental data used in this thesis are as follows:
* Acceleration data acquired at the cylinder head position of a single cylinder

research engine, namely Ricardo Hydra,
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e Acceleration data acquired at the cylinder head position of a mid-size single"
cylinder diesel engine, and |
e A set of synthetic data.

It .should be mentioned that main experiments were conducted and reported on
actual engine data. Synthetic data were used for test and validation and as a secdndary '
sourcé.

To use the real engine data for the analysis, it was necessary to carry out data

preparation and preprocessing as described below.

3.2. Preprocessing and Normalization

Data preprocessing is an integral part of statistical pattern recognition. Several :
preprocessing schemes have been proposed in the literature [53], which were examined in '
this thesis. Effectiveness of a given scheme in a particular application is highly cas_e-.
dependent and is influenced by the fequirements of a given application. Usually an
appropriate preprocessing method should be applied on both signal space and featll‘lrev - -'
space (please refer to .Fig. 2.1). The role of preprocessing is to remove bias .'and_ '
disproportionate differences in data so that a meaningful comparative analysis of the
results can be made. Normalization of data is a logical technique that may be done‘
through the following three options:

1- Normalization based on mean-centering and norm of every data:
data = data — mean(data) (-1
data = data/norm(data) (3-2)

This normalization has been used in [20] and [22].
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2-

Individual class normalization in which data are mean-centered and each class .
is normalized to its Euclidean norm, i.e., to the sum squared of the elements of
all data in the given class:

data = data — mean(data)
N

data = data/ Z norm(data®”) (3-3)
i=1

where N, is the total number of data in the ciass l. This normalization has been
used in [24].
Normalization of data in each class to confine the range of data to -1 and +1.
This is done by the following transformation:
dv=sd+b

where

s = 2/(max — min); b = (Max+Min)/(Max — Min).
dy can also be written as :

_ (d - Max) +(d - Min)

dN
Max - Min

(3-4)

in which 4 and dy are actual data and normalized data respectively, “Max” and

“Min” are the maximum and minimum values of all of data.

In our studjt, option 3 for the normalization of data in both signal and feature V'

domains has been used. Under this scheme, the relative position of data in different -

classes with respect to each other remains unchanged. Analysis and further discussion'on )

the application of this scheme and the effect of preprocessing are presented in chapter 7.

40




In the following sections the experimental setups of the sets of data, which will be - |

used throughout the thesis, are presented.

3.3. Ricardo Hydra Engine Experimental Setup

Ricardo Hydra, a single cylinder spark ignition research engine, was used for
conducting a set of ¢xperiments and test runs. The engine operates on both gasoline and
natural gas fuel modes, but only natural gas mode with a compression ratio of 9.26:1 was
used. The engine speed and throttling were set at 1500 RPM and 100% (wide open),
respectively. Different machine operations with three relative air/fuel ratios narhély
stoichiometric (A =1), fuel lean (A =1.5), and fuel-rich (A =0.8) mixtures, each with
normal, advance, and retard spark timing were obtained. One pressure sensor with 12.5
KHz and two accelerometers with 25 KHz and 12.5 KHz sampling rates were emplqyéd
to measure cylinder pressure and simultaneous vibrations at two positions on the cylirider _-
head in vertical (V) and horizontal (H) directions. A rotational encoder was used fo
monitor engine speed and to determine the starting point of each cycle. Data belonging to
A =1 condition were utilized in this work. To realize the effect of combustion on
cylinder head vibration and pressure signals, data were also collected in the absence of
combustion (no ignition) by externally driving the engine. This is referred to as the

motoring mode.

3.3.1. Data Preparation

The objective of the respective experiment was to collect acceleration data at the

cylinder head position with three different ignition timings of: -23 (normal), -33
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(advance), and -10 (retard) degrees under stoichiometric conditions assimilating healthy
and faulty conditions. The numbers denote ignition timings measured as angles Before ,
top dead center. A data acquisition system from REM Technology Inc. [1] was used for
data collection. This system was capable of acquiring data of 16‘consecutive cycles of
engine operation. For each of the engine conditions (class), three consecutive 16-cycie
data were collected to provide sufficient number of data (48 sets) for the implementation
of the algorithms introduced in the following chapters, and to evaluate their accuracy of
classification results. We used the first 32 data cycles in each class as tr'ain.ing and the
remaining 16 as festing data sets. A
The size of data for one complete engine cycle corresponding to two revolutions
- of crank shaft (720 degrees of crank angle) varied for different cycles and was 1975+15
sample points for data collected at a sampling rate of 25 KHz and 98848 sample points‘ |
for a sampling rate of 12.5 KHz. The variation in number of samples, caused by changes
in engine RPM, was found to be insignificant (less than 1%). In this experiment, 0111"
concern was to stﬁdy combustion event under different engine operating conditions as
affected by different ignition timings. As such, data belonging to combustion zone only
were considered for the analysis. This was done by defining a window of data, the size of -
which was carefully selected for investigating different ignition timings. The window wés |
to be wide enough to cover all of the characteristics of the combustion event undér |
different advance or retard spark timing conditions, but not too wide to overlap with other |
engine events.
Using a small window size was considered to be important to obtain low

computational time. Here we use a segment of data belonging to -15 to +31 degrees of .
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crank angle which covers the combustion event. For the accelération data, this
corresponds to data points ranging from 945 to 1072 for 25 KHz sampling rate and one
half length for the 12.5 KHz sensor data. Accordingly, the size of data for 25 KHz Sensor
was 128 sample points, and for the 12.5 KHz sensor it was 64. The maximum heat-
release of the engine as a measure of combustion quality, occurred at (-5.5) — (32), (-
14.5) — (26.5), and (9) — (47) degrees of crank angle for -23, -33, and -10 degrees Qf
ignition timing, respectively. The numbers in parenthesis correspond pairwise to the 5%'

and 95% of heat-release, which shows the amount of chemical energy of the fuel released

by the combustion process at the specific crank angle degree [2]. With regard to the heat -

release and practical considerations where we need an identical interval for all of data
categories, the above window size of -15 to +31 was found to be an appropriate selection.

Fig. 3.1 shows sample acceleration data acquired by the sensor in verticaj
direction with -23, -33, and -10 degrees of crank angle. We refer to these data as class 1,
‘class 2, and class 3 engine conditions, respectively. The sections of acceleration signal - |
from left to right with high magnitudes correspond to different machine events ie.
exhaust valve closing (EVC), intake valve closing (IVC), combustion, exhaust valve
opening (EVO), and intake valve opening events (IVO), respectively.

Fig. 3.2 shows the Ricardo Engine valve timings in which TDC and BDC stand
for top and bottom dead centers. The numbers above each event indicate crank ahgle in
degrees and the corresponding sample point with respect to the TDC and BDC,
respectively. For example, -(+)56 means 56 crank angle degrees before (after) BDC. Flg
3.1 demonstrates that vibration signals are also affected by other events during engine

operation. For instance, intake valve closing within the range of 650 and 820 data points
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shows two components of high amplitudes. However, comparison of ﬁgures 3.1 and 3.2
reveals that only the first high amplitude segment belongs to IVC; the second spike is

generated by other machine components oscillating at their harmonic frequencies.
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Fig. 3.1. One cycle of three classes of vertical vibrations with spark timings of: -23, -33,
and -10 degrees of crank angle, in stoichiometric conditions, 1500 RPM, and

25KHz sampling rate. Vertical axis unit is “g”.

Fig. 3.3 shows variations of in-cylinder pressure for the three classes of collected
data. Using pressure signal, classes are distinctly differentiated from each other,

indicating the usefulness of pressure signals for identifying different classes in engine
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diagnosis as compared with acceleration data. However, in practical applications using

pressure transducers is neither feasible nor economical.

+12/33 +56/649 -56/1331 -2/1947
EVC IvC EVO VO
) 1 T 1 ) 1 1 II
-360/0 -180/495 0/990 +180/1485 +360/1980
TDC BDC TDC BDC TDC

Fig. 3.2. Ricardo Research Engine valve timing characteristics.
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Fig. 3.3. Pressure signals for three classes of spark timing: -23, -33, and -10 degrees of
crank angle and with 12.5 KHz sampling rate.
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3.3.2. Data Analysis

Analysis of acceleration data indicates that horizontal vibration data do not carry -
useful information about the combustion event. The Fourier transform of horizontal -
vibration data sampled at 12.5 KHz (the solid graph in Fig. 3.4) indicates large spectral =
amplitudes in high frequeﬁcies as éompared with vertical vibration data (at 25 KHz
sampling rate) where high frequency components rapidly decay to zero (Fig. 3.5). An
inspection of the spectrum (FFT) of vertical acceleration data at low sampling rate (the
dotted graph in Fig. 3.4) exposes the nature of horizontal vibration data. They indicaté

that the reason horizontal accelerometer data do not carry the same valuable information

" is not due to the low sampling rate. We see that the dominant frequency band in vertical

- (2-4 KHz) and horizontal directions are not the same demonstrating that the information

extracted from the horizontal direction is not related to the combustion event but are from
other sources classified as noise interferences.

Spectral analysis of data for three classes indicates that frequency bandwidth with
high spectral energy is almost identical for the all classes with some variations in spéc_:tral
amplitudes (Fig. 3.5). This indicates that the spectral features cannot be directly used for _
the discriminatory classification of different engine conditions, specially for classes 1 and
3. An inspection of acceleration data showed that the engine was running relatively
smoothly with minor background noise where noise reduction was not actually necessary.
Investigating both vibration and pressure data indicated that engine operation was also
relatively uniform with a low variability in the data among differentv cycles. Spectral
characteristics shown in Fig. 3.5, however, will be exploited in chapter 7 in a different

context.
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A

histograms of data indicates that distribution of the training data (Fig. 3.6)

follows approximately the Gaussian distribution. Classes 1 and 3 exhibit highly clustered

data patterns when the mean value of data in each class is drawn against their standard

deviation.

Fig. 3.4.

_ Horizo]ntal Vibrations
.... Vertical Vibrations

0 1.26 2.5 3.75 5 6.25

1

0 1.25 2.5 3.75 5 6.25
KHz

FFT of horizontal and vertical vibrations with 12.5 KHz sampling rate, in
combustion zone, three classes of spark timing: -23, -33, and -10 degrees of

€699

crank angle. Vertical axis unit is “g”.
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Fig. 3.5. FFT of vertical vibrations in combustion zone with 25 KHz sampling rate and

three classes of spark timing : -23, -33, and -10 degrees of crank angle.

3.4. Mid-size Single Cylinder Diesel Engine Setup

The second test engine was a single cylinder dual mode unit operating either on -
diesel fuel or natural gas. Data presented here is from diesel mode operation.. ‘
Acceleration data of the intake valve closing and combustion events from this engine
were utilized for data analysis and algorithm testing. Two types of faults, namely intake
loose valve and engine knock conditions each with varying intensity levels were
considered. Engine knock condition was generated by judicious adjustment of load. Loa& ‘
changes were made in two incremental steps of approximately 15% above nominal lbad

corresponding to 18, 22, 25 HP, respectively.
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Fig. 3.6. Histograms and mean-std plots of training and testing data for three classes.
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For loose valve experiments, a set of progressively increasing valve ciearances, _
namely normal, 0.006 in. and 0.012 in. were set on the intake valve. Three categories of
data were collected simultaneously: (a) cylinder pressure measured through a connecting -
tube to the cylinder, (b) block acceleration (vertical vibration) measured at a carefully :
chosen location on the cylinder head, and (c) engine RPM. Block vibration was actﬁally
measured at several places and the best location was found to be at the center of the upper
part of the cylinder block which gave reliable signal intensities. Other supplementary data -
were also collected including engine power, peak cylinder pressure and peak pressure " i |
angle. For each test, data from sixteen consecutive cycle runs were acquired.

Fig. 3.7 shows sample cycle runs of the diesel engine iﬁ normal and knbck _
conditions. In this figure, the high amplitude components from left to right correspond to
exhaust valve closure, intake valve closure, combustion, exhaust valve opening, and |
intake valve opening. There were noticeable cycle-to-cycle changes in the signal pattems
and ‘intensities even under normal condition, which indicate the complexity and
variability of the machine operation. An initial review of data, in which mean values vé. o
standard deviation of each training data were examined, showed that a certain degree of
data clustering and class separation can be found (Fig. 3.8), though this could not be
observed in all of the data sets. Separation of classes was more vivid in training data

belonging to valve clearance conditions.
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Fig. 3.7. Sample vibration signal of the single-cylinder diesel engine in normal and knock ‘"

conditions.
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In the data analysis, 28 training data were used in each of the three classes for
both loose valve and knock conditions. Initially, two classes consisting of normal and one
faulty condition were examined. At a later stage, we considered three classes of healthy,

mild faults, and severe faults for two different intensity levels.

3.5. Synthetic Data

As a general example a set of synthetic data is also used in this thesis. This type of i

~ data, proposed in [54], has been very popular in waveform recognition and classification ”
studies. We adopted a sample data from [22], in which because of dyadic dimension;cllity‘ _
requirement in wavelet analysis the number of data points had been extended from 21 to
32. It is a three-class data based on triangular waveforms A,(¢), hx(f), and h3(¢) defined as

hi(t) = max(6 - |t - 7, 0)
ha(f) = hi(t—8)
hy(t) = hi(t - 4)

where ¢ = 1,..., 32. Each class of signal x is composed of a combination of two of the -
above triangles in addition to a uniform random number u over the interval (0,1), as well .
as 32 normally distributed random numbers ¢ (1),..., € (32), with zero mean and unit

(3

variance. Three classes of synthetic signals, *¥D x@ and ¥ , are then generated by:
gn g y

2O = u () + (1~ w) ba(0) +£(0)
XD =u (@) + (1 - u) hs(t) + £(2)
O =u b + (1 —u) hs(0) + ()

For each class 30 measurement vectors (data) were generated.
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3.6. Closing Remarks

In this chapter the importance of data preprocessing for pattern recognition and
classification was discussed and a number of methods were introduced. We gavé a
perspective on various sets of data that will be widely utilized throughout this thesis.
Different concepts and parameters of machine data, data collection, and data preparation
were presented, along with some necessary discussions on data representation and

analysis.

53




CHAPTER 4

Mutual Information and

Informative Wavelet

4.1. Introduction

This chapter deals with an application of wavelets for feature extraction and
classification of machine faults. The statistical approach referred to as informative
wavelet algorithm is utilized to generate wavelets and subsequent coefficients that are
used as feature variables for the classification and diagnosis of machine faults. |
Informative wavelets are referred to classes of functions generated from elements of é o
dictionary of orthogonal bases, such as wavelet packet dictionary. Training data are used to
construct probability distributions required for the computation of the entropy and_mutlial _
information. In our data analysis, we have used machine data acquired from a single
cylinder engine under a series of iinduced faults in a test environment. The objective of

the experiment was to evaluate the performance of the informative wavelet algorithm in
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classifying faults using real-world machine data and to examine the extent to which the
results were influenced by different analyzing wavelets chosen for data analysis.
The correlation structure of the informative wavelets as well as coefficient matrix

are also examined.

4.2. Informative Wavelets - Concept and Approach

Informative wavelets are classes of functions generated from a given analyzing
wavelet in a wavelet packet decomposition structure in which for the selection of ‘best’
wavelets, concepts from information theory, i.e., mutual information [20] and entropy [8]
are utilized. Entropy is a measure of uncertainty in predicting a given state of a system
where a system state refers to different operating conditions such as normal or féulty. '
Computation of entropy requires calculating state probabilities from training data and -
supplying them as inputs to the algorithm. An iterative process to identify appropriate
informative wavelets is used at each stage, whereby the algorithm selects a wavelet from
a dictionary of orthogonal wavelets in a wavelet packet signal decomposition structurbe',b
which results in a maximal reduction in entropy. This is equivalent to obtaining maximal
reduction in uncertaintyvof predicting a given system state. In this algorithm, reduction in’
uncertainty is expressed in terms of mutual information derived from the joint probability

distributions of the training data and coefficients. Entropy of a system is defined as:

H(S)=-)_ P(S)log(P(S))

i=1
where S, S, ..., Sy are the states of the system with probability of occurrences given by

P(Sy), P(S), ..., P(Sy). Entropy is a measure introduced for the quantification of the
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information. It can also be considered as a rheasure of complexity of prediction of the
state of the system. The reduction in uncertainty can be regarded as the quantity .of
information about the original system contained in the measurement system, which‘ is
referred to as mutual information [51].

To derive the mathematical definition of mutual information we need to describe
the states of the system. Such states can be observed by a measurement system with N
possible outcomes {T1,T5,...,T, ~} of a random variable T with a probability distribution
P(TY), P(Ty),..., P(Ty). Mutual information between the states and measurements is
defined as the difference between the uncertainty of predicting S before and aﬁér the

observation of T+

M N P(S,.Tj)

J5@,)=H(S)~HES/T) =33 PST)log reyprc

i=l j=1
Here H(S/T) and P(S;T}) indicate conditional entropy of state S given measurement T and

joint probability distribution of S = §; and T = T}, respectively. , is the wavelet indexed -

by the triplet parameter y = (j, k, m), where j, k, m are the indices of scale, oscillation, and |
translation (time position) in a wavelet packet dictionary. When a given state of a system
| is independent of the measurements, i.e. Js =0, a change in the state of the machine will
not cause any changes in the probability P(S;7}). Then the algorithm selects wavelets that
result in a maximal reduction of uncertainty i.e. maximal Jg®,). In informative
algorithm, the measurement system is wavelet. Such wavelets are obtained iterafively
where at each stage, the residual signal is considered for further signal expansion. These
wavelets are referred to as informative wavelets. The iterative selection of the informative
wavelets is very much similar to the classical matching pursuit algorithm [26]. Wavelet

coefficients are then used as feature variables and as inputs to a neural network classifier
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for classification [20]. Fig. 4.1 illustrates the main stages of the algorithm. The next .

section explains different steps of informative wavelet algorithm in more details.

Algorithm lteration-Residual

Analyzing
Wavelet l l
Training WP Aralvei Prolecti fDat NN Classes
Data nalysis, rojection of Data
— | Entropy Eval. |nf°rm'. Onto Wavelets Coeﬁs.’ Classifier >

Wavelets

Fig. 4.1. Block diagram of main stages of informative wavelet algorithm.

4.3. Informative Wavelet Algorithm

The algorithm has two stages: training stage and class recognition stage. In the
training stage, Fig. 4.2, by using wavelet filters, training data are decomposed into low
and high frequencies iteratively to form a wavelet packet (WP) for each training data.
Then the collection of these wavelet packet decomposition coefficients is quantized inté
N fixed and equally-spaced sub-intervals. At this step probability distributions of S, Tand
joint probability distribution of S and T are obtained. Each wavelet is considered as a , |
measurement system whose output is its decomposition coefficients obtained by
projecting data onto the selected wavelet. These wavelet coefficients, which are in fact
feafure variables, are later fed to a neural network to classify the system state. Using the
maximum mutual information (Js(®,)) its corresponding informative wavelet is then
selected. In the next step, the corresponding wavelet components are deducted from the

residuals of entire training data, much in the same way as in the matching pursuit
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~ algorithm. As the informative wavelets are successively selected from these residuals at

each iteration, they are less correlated with the ones selected previously.

At the final stage, the coefficients obtained above are used to train the neural -

network. Once the training is completed the NN weights are attained in order to

memorize the main features of different classes. If three classes are considered, these can

be, for example, severe fault, mild fault and healthy states.

Decompose Training Signals
(Obtain WPs)

;4

Quantize Coefficients
(Find ProbST, ProbS, ProbT, Js(wy))

v

Find Max{Js(wy)} & InfrWvit

v

lterate to
Find another
Infrwvit

(Jr, Jc) = position of Infrwvit in WP
G = WP of InfrWvit
WP =WP - WP(Jr, Jc) * G

D
(1)
For all of
WPs
(11D)

v

RESIDUE = Training Signals

v

coef = < RESIDUE, InfrWvit>
RESIDUE = RESIDUE — coef * InfrWvilt

For each | Foreach
4 Ts. | infweit

v

Neural Network
(Find Input & Output Weights)

Fig. 4.2. Informative wavelet algorithm: training stage.

The input signal along with informative wavelet and neural network weights

obtained from the previous stage are inputs to the second or class recognition stage. This
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stage consists of three steps: projecting the input signal — that we want to identify its class
— onto selected informative wavelets, computing their feature vector, and classifying the
state of machine (S;). Fig. 4.3 shows the flowchart of this stage. This algorithm éttempts
to match joint state and measurement probability distribution of data with wavelet

coefficients, the highér the probability the more the mutual information.

Input Signal, Infrwvit, N.N. Weights (W1,W2)

v

RESIDUE = Training Signals

coef = < RESIDUE, Infrwvit> 4 F°{-_%a.°h ﬁg{rs‘fﬁ?

RESIDUE = RESIDUE — coef * InfrWvit

v

S1=W1 * Coef
S2=W2*S1

Fig. 4.3. Informative wavelet algorithm: classification stage.

The major disadvantage of informative wavelet algorithm may be its
computational complexity. The computational time for box (I) is O(N), where N is the
total number of training data in all classes. Since the loop of this box must iterate for the -
whole wavelet packet elements (n log; n times), and for the number of informative
wavelets (#), the total cost is O(WNnlog,n). This algorithm relies on the evaluation of
probability density of. training data; consequently, we usually need several training data.
An empirical number is about the size of data (n), therefore, the total computational cost
is O(Wn? log; n). If the time for decomposing each training data to wavelet packet

coefficients is also added, i.e., O(n loggh), along with other overhead computations, which
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is not insignificant in this algorithm, the real time cost will approach O(n*). We note that
since probability density function must be evaluated in every iteration, calculation of

probability density function is the most time consuming part of the algorithm.

4.4. Design of Experiments

To evaluate the performance of the algorithm and the accuracy of its classification
results we used machine data from the sihgle cylinder engine introduced in section 3.4.
Two types of faults, namely engine knock, and loose intake valve conditions each with
varying intensity levels were consideréd.
We note the following in the analysis:

e In informativé wavelet algorithm, the “number of informative wavelets”
corresponds to the number of feature variables used for the classification. In the
absence of any 4 priori knowledge about a suitable number of feature variables,
several values ranging from 1 to 50 were initially considered. At a later stage, the
number was confined to a smaller set ranging from 4 to 10.

e Wavelets from orthogonal and biorthogonal wavelet families were used including
Daubechies wavelets Db5, Db20, Db40 and Db45 as well as Coif5, Symlet5,
Bior3.1, and Bior6.8. o

e  Multi layer perceptron backpropagation was used for the neural network classifier.
For a three-class data set, five nodes of hidden layer were used in the network.

e We used 30 levels (bins) in quantification of coefficients and training data during :

construction of the probability distributions.
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4.5. Data Analysis and Classification

As indicated earlier the informative wavelet algorithm is mainly a statistical
approach for fault detection and classification in which probability distributions of
training data are utilized to generate wavelets during signal expansion. In this algorithm,
coefficients of the selected wavelet carry statistical properties that best matched those o.f »
the training data. |

At the first glance, it may seem that classification results are determined jointly by
capturing the statistical properties of the given training data as well as the analyzing
wavelet used for data expansion. But our observations using different data and with
several analyzing wavelets showed &at the former has a higher influence -on the
classification results. In fact, different analyzing wavelets capture more of less the same
amount of statistical information; therefore, the .choice of analyzing wavelet does not
significantly alter the correlation structure of coefficients, although Coiflet] wavelet
| perfonned marginally better.

Using Coiflet] we analyzed three load settings (leading to knock) as well as three
valve clearance conditions. Mean values vs. standard deviations of the coefficients of
training data for three classes as well as histogram of the coefficients were also exémined '
(Fig. 4.4). Separation of classes in coefficient domain followed a similar pattern as those
of training data. For both fault cases, classification errors were below 5%, which were
considered to be acceptable. Classification errors for different load changes and knock
conditions were influenced to a large extent by the uniformity of the training data in all

classes.
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Training Coeffs.
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4.5.1. Selected Informative Wavelets
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- Fig. 4.4. Histograms of the coefficients as well as mean vs. standard deviations for three o

Informative wavelet algorithm is a nonorthogonal signal decomposition in which

informative wavelets generated by the algorithm are in general correlated with each other

and a certain degree of redundancy always exists in signal decomposition. Accordingly,

the coefficients generated by projection of data onto informative wavelets follow the

same pattern of correlation. Non-orthogonality of signal decomposition is mainly due to

the iterative process of selecting informative wavelets where at each stage the residual
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signal is constructed and used for signal expansion. In our data analysis, we examined
deviation from the orthogonality of the informative wavelet for several analyzing
wavelets. We examined informative wavelets generated by orthogonal and biorthogonal
analyzing wavelets. While informative wavelets in both categories deviated frém
orthogonality, which was measured by the inner product of the wavelets, the extent of the |
deviation varied for the two groups. Orthogonal wavelets such as Db family of wavelets
or Coiflets, generate informative wavelets with a higher degree of orthogonality as ,
compared with biorthogonal wavelets such as Bior3.1. The same trend can be seen in the
correlation structure of coefficient matrix as well.

| Correlation structure Qf coefficient matrix under several analyzing wavelets and
for different number of iterations was examined for a given set of data. Differences were |
observed in correlation of the coefficients for different analyzing wavelets; however, such

- differences were insignificant to influence the classification results greatly.

4.5.2. Training Data and Number of Iterations

In our data analysis, a small change in training data resulted in a noticeable
change in the informative wavelets selected. For example, a small increase in the number
of training data (e.g. a simple repetition of data) caused a different set of informative
wévelets to be selected. This could be attributed to the application of matching pursuit
type approach in which a small change in the probability distribution of the coefﬁcieﬁts
leads to changes in mutual information value calculated. Often a small change in thé.

training data caused a change in about half of the informative wavelets.
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In the algorithm, the number of informative wavelets (iterations) is chosen a 'prioﬁ
as an input. It was observed that increasing the number of iterations in a given daf;d,
analysis does not alter informative wavelets derived from previous iterations. As éresult,
there were no changes in the corresponding coefficient values. The additional informafive
wavelets, selected with larger number of iterations, increased the number of feature
variables and thus expanded the dimension of feature space.

In the experiments, mostly 5-10 iterations were used, although higher. iterations
were also selectively examined. It was observed that an increase in the number ,ofl
iterations was not always accompanied by an increase in the accuracy of classification -
results. This could be traced to dilution of information, in which by selection of large

number of features unnecessary information is added.

4.6. Conclusions

In this chapter results of an experimental study for an application of informative

wavelet algorithm for the classification and diagnosis of machine faults were presented. -

Several prototype wavelets and different sets of machine data were used. Effectiveness of S

the algorithm for the classification of two categories of faults namely excess valve
clearance and knock conditions each with varying intensity levels were examined.
Accuracy of results under different parameters of the algorithm was also studied by
.employing different analyzing wavelets from both orthogonal and biorthogonal family of

wavelets. Some notable results are summarized as follows.
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e In majority of the experimental runs, using different analyzing wavelets,

satisfactory classification results were obtained when sufficiently large number
of training data with adequate uniformity was used. For load changes and knock
condition, accuracy of results varied for different training data and different
intensity levels of fault conditions.

Informative wavelets generated by the algorithm varied significantly when.
small changes were introduced in the number of training data. This was also the
case when minor changes were made in training data themselves. While
classification results remained almost unaffected under minor changes in the
training data, informative wavelets and subsequent coefficient values varied

significantly. This was attributed to the particular structure of the algorithm in

which minor modifications in the training data are followed by changes in

probability distributions which in turn modify mutual information and
informative wavelets derived by the algorithm. Changes in the informative
wavelets are amplified by the application of matching pursuit algorithm. In the
matching pursuit algorithm, wavelets generated at the later stages are highly
sensitive to changes in the wavelets chosen at the early stages.

The main problem in using informative algorithm is the high volume of
computation, which makes the algorithm unsuitable for real time

applications.
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The above observations were considered to be major deficiencies for the
application at hand, and as such, precluded further investigation and use of informative

wavelets in this research.
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CHAPTER 5

Dictionary Projection Pursuit

5.1. Introduction

To discover the outstanding and unspecified structire of a set of data, often visual
representation such as histograms or scatterplots are utiliied [55]. This can be easily déﬁe
for low (one, two, or even three) dimensional data, however compreﬁensive visual toc')ls'b
for higher .dimensions are not available.

Classical multivariate analysis provides powerful tools for gaining insight' and
understanding the nature of the phenomenon or the system that produced the data. Thése
tools include a set of useful summary statistics (such as mean and covariance) as well as
correlational structure of data. The summary statistics carries relevant information of the
system if the data follow an elliptically symmetric distribution, such as the Gaussian N
(normal) distribution, in an n-dimensional variable space. However, there are numerous

cases where real data deviates from a normal distribution, and consequently these
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summary statistics cannot represent the whole characteristics of data. Therefore, other
appropriate methods need to be implemented to divulge the main characteristics of data.

In this chapter, projection pursuit (PP) algorithm as a method of revealing
“interesting™ structure of data is introduced, then an extension of PP which is a fasf

version of PP along with some results are presented.

5.2. Projection Pursuit Approach

Projection pursuit (PP) is a method for exploratory analysis of multivariate data _
sets which extracts remarkable linear projections of data to view them in a lower
dimension; often onto a plane or a line. It numerically optimizes a certain criterion
function or projection index. Friedman and Tukey [56] first used the term “projection
pursuit”, but the main idea was initially introduced by Kruskal [57]. Projection pursuit
seeks a set of projections that are “interesting”, in the sense of their deviation from
Gaussian distribution [58]. PP is basically a method for revealing clusters among data. |

There are several projection indices, among them, Friedman [59] proposed an
index as the mean-squared difference.between the projection score distribution and the
Gaussian distribution, as the least structured density, to measure non,-normality'inv the
main Body of the distribution (rather than in its entirety). His projection index basically -
measﬁres departure from normality. Jones and Sibson [60] and Huber [58] set the PP idea
in a more structured form and expanded it in a practical implementation. The approach
involves an optimization process that starts at different random positions using the -
entropy concept from the information theory as the projection index to maximizé the

divergence of projected data from Gaussian distribution.
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Projection pursuit was further elaborated in different applications such as
regression [61], probability density approximation [S8], and probability density
estimation [62]. By employing a suitable projection index, PP technique can reveal an
inherent structure or clustering in data. This can then be used in supervised [63,64,65];
and unsupervised classification of high dimensional data [66,67], in detecting and
classifying images [68] and in feature extraction of acoustic spectra [35].

The use of PP has been limited because of its high computational complexity. To.
resolve such a difficulty, Rutledge and McLean [35] employed wavelet packet
decomposition during the search process of PP to introduce an extension of PP which is

computationally more efficient. The procedure is described next.

5.3. Dictionary Projection Pursuit

Rutledge and McLean [35] proposed a method whicﬁ looks for a set of Basis
functions from a dictionary of redundant wavelet packets in accordance with an '
orthogonality criterion, instead of optimizihg a criterion as is done in PP. The search is
performed in m iterations, where m is the required number of bases, and is decided upon
empirically. In each iteration, they use a one-dimensional version of projection pursuit
(which means m=1 in Eq. 2-1) to find the interesting features of acoustic waveforms. If 4
is a matrix consisting of all bases of a dictionary such as wavelet packets, then the first |
base is chosen from dictionary 4 according to a criterion described below. The dictionary
is sometimes called redundant, since there are more than one set of basis functions which
can span n-dimensional space. The one-dimensional version of prpjection pursuit is

repeated m times where a procedure such as the one in matching pursuit [26] is applied
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until a set of bases B=[b; b, ...bn] is selected. Then the data are projected onto the..
selected basis functions to find an interesting view of the data. This is done by the linear

projection Z=B'X, where X is the data set and Z is the transformed data in the space of

reduced dimension. The algorithm, so-called dictionary projection pursuit (DPP), is a
greedy approach in a sense that after a given basis is selected Ain each iteration, its

structure is eliminated from the data set before the next search for finding another basis is

carried out in the subsequent iteration.

For finding a set of basis functions B, that contain desired characteristic
information, a weight w is assigned to each basis function in the wavelet packet
dictionary. The weight w is a measure of linear independence of the selected basis from
all of the previously selected basis functions. For the initial condition, weight is set as a
vector of ones at the beginning of the procedure, and is updated in each iteration. The
weight vector is then changed in a manner that each selected basis is orthogonal to the
subspace of previously selected basis functions, resulting in a set of orthogonal basfs af-

the final stage of the algorithm . Here is the complete algorithmic procedure:

Step I: Find wavelet packet coefficients of each training datavin different classes, record
| them as a set of matrices of size n X (log n+1), where » is the signal dimensioﬁ
(call them map).
Step 2 Find the density (energy) of each packet by squaring each element in the wavelet
| packet matrices (map.”2 in Matlab notation) to obtain energy map of each training -

data.
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Step 3.

Step 4.

Step 5:

Sum all of the matrices in step 2 for each class. Normalize the resultant matrices
by dividing them by the number of training data in each class (V) to find

normalized total energy of training data (energy map) in each class:
NI
C(k,my=> (b7, . x" /N, for I=1,.,L (5-1)
i=1

C), the energy map of class /, is a table which can be rearranged in a matrix foﬁn

(call it e-map). At this stage, there are L (number of classes) matrices.

Find the relative entropy of e-map (call it ent_map) by applying Eq. (2-10) or the

symmetric version Eq. (2-8).

Repeat the following m times to find a set of orthogonal basis:

-. Find the basis b corresponding to wavelet packet indices associated wifh
maxarg(w.*ent_map(:)), which is the maximum of element-by-element .
multiplication of vector w and vector form of ent_map.

- Compute the part of basis b which is orthogonal to basis functions already
selected (call it residual), and normalize it to unity. (For more detail, please
refer to [35].)

- Starting from left enter and save the residual of b in a matrix as a new column
vector.

- Compute coef, wavelet packet coefficients of the new basis function (the
residual), and accumulate the energy of coefficients:
coef e_sum = coef _e_sum + coef2.

- Update w as w =1- coef e_sum.
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In DPP, the projection index, which is the entropy of normalized sum energy of
wavelet packet coefficients of all data set, is found in the beginning of the algorithm or_ﬂy
once, contrary to PP in which the projection index must be calculated every time. This is.
the key feature of the algorithm which makes it faster compared to PP approach.

The normalization in step 3 will be trivial (inconsequential) if the number of
training data in each class is the same. In chapter 7, a new normalization method is
proposed to improve the classification results. In step 5, if n bases are selected a complete
orthogonal basis is found. Then, another method such as principal component. andljzsis _
(PCA) [46,55] can be applied for further dimensional reduction. |

The above algorithm is a one-dimensional projection in the sense that matrix B is
replaced by a single vector b. In each iteration, a basis function b is selected and added to )
the previously selected basis functions in the form of an expanding matrix B”, where 7 is
the matrix transpose operator. In this sense, the final projection is not one-dimensional,
but a multi-dimensional projection.

In the next section, classification results of DPP obtained by applying the
algorithm on a set of machine data are presented. In the classification stage a neﬁrgil

network (NN) classifier is used which was described in section 2.9.

5.4. Classification Results

To evaluate the algorithm, a single-cylinder engine data set is used, which
contains 96 training data in three classes (32 data in each class). Data were normalized
between —1 and 1 according to Eq. (3-4) in which the three classes correspond to three

ignition timings of: -23 (normal), -33 (advance), and -10 (retard) degrees of crank éngle.'
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Fig. 5.1 shows the first 8 bases selected by applying DPP on the data, using Coiflet 1 (6 .

tabs) as the analyzing wavelet.
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Fig. 5.1. The first 8 selected bases using Coiflet 1.

DPP chooses the first base from wavelet packet dictionary (which is optimal

according to the criteria described in Step 5). The bases selected during the rest of the
iterations are components of WP bases that are orthogonal to the bases selected in
previous stages; they do not necessarily belong to the dictionary. Consequently, only the

first base is certainly a wavelet packet base, the rest of bases are components of packet
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that are orthogonal to the previously selected bases. Fig. 5.2 shows the wavelet packet -

bases, determined by DPP, corresponding to the following wavelet packet indices:
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Fig. 5.2. The wavelet packet bases corresponding to the selected bases in Fig. 5.1.

First to third rows are scale, oscillation, and translation (position) indices, respectively. In
this example, only bases 1 and 4 are packet bases, as can be seen by comparing Figs. 5.1
and 5.2. Further observation of the selected wavelets indicates similarity between the

selected bases and corresponding packet bases that gradually decreases as we move to
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latter iterations (lower subplots in Figs. 5.1 and 5.2). In other words, as the number of
selected basis increases (the number of columns in matrix B) the similarity of packet base
and the corresponding selected base decreases. This can be explained nothing the fact that
during the evaluation of the residuals in step 5, only a segment of packet basis that i_sv
orthogonal to the previously selected basis is chosen.

Fig. 5.3 illustrates training and testing coefficients for the first four bases befofe
and after normalization and mean-centering, which were derived from projecting thkck
training and testing data onto the first four bases. Four plots in each figure correspond fo
each of the four bases. Horizontal axis, segmented into three 32 training data (16 fof
testing data), corresponds from left to right to classes 1, 2, and 3. As it can be seen, the
coefficient normalization applied through Eq. (3-4) magnifies the differences among =
classes, which is a suitable outcome for classification purposes. Fig. 5.4 shows histograms ~
and mean-std plot of training coefficients in the same three classes, which indicates a spafsg
distﬁbution with overlaps among different classes in the coefficient domain.

A common practice in classification is to preprocess data (here, the coefﬁcients)v‘
before feeding them into the NN system. Such preprocessing may include a
normalization method and mean-centering. The same preprocessing method should be
applied to both training and testing data. To show the importance of preprocessing, a set
of runs was carried out with different preprocessing schemes, including Lz-norrﬁ

(Euclidean norm), norm defined by Eq. (3-4), both with and without centering. By. -

normalizing coefficients through Eq. (3-4) the best classification result with a small error

of 3% were obtained. While with no preprocessing the NN classification produces the
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worst results with about 13% error. Table 1 shows classification error under different

preprocessing schemes.
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Fig. 5.3. Training and testing coefficients before and after normalization and mean-
centering for bases 1-4: blue, green, red, and cyan, respectively. The horizontal

axes are the number of training/testing data.

A moderate increase in the number of bases will slightly enhance the

classification results but will escalate the computational cost.
DPP is still a time-consuming algorithm even though is much better than the

original PP method. The computational cost is O(m n log n), where m and n are number

of selected basis functions and signal size, respectively. If a complete set of basis
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functions is required, the computational cost will be O(n’ log ), which is relatively high.

In the next section a major drawback of DPP is highlighted.

do

N
o

Class 3
)
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o
(4, ]
T
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0.2

Fig. 5.4. Histograms and mean-std plot of normalized coefficients for three classes..

Table 5.1. Classification error using different preprocessing methods

Normalization | L°Normé& | Eq.(3-4)Norm | L’-Norm& | Eg.(3-4) Norm No
Method Centering & Centering | No-Centering | & No-Centering | Preprocessing |
Error (%) 6 3 6 10 13

5.5. Disadvantages of DPP

Recalling the definition of Entropy in Egs. (2-2) and (2-3) as
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M
H(s)= —Z s;logs,

i=1
where

Zs,. =1 and 5;>0.

Entropy calculationé require that each entry belongs to a probability density ﬁmctioﬁ
(pdf). Meanwhile, DPP uses the relative entropy of normalized sum of the coefficient
energies of all training data in L classes. It does not normalize ent_map to unity; instead,
normalization is done by the number of training data in each class. (It is worth noting that
normalizing ent_map to unity resolves the above problem; however, it adds another
~ technical glitch: since we are comparing numbers rather than sequences, normalization to
unity means that every element in the ent_map matrix must be one, which is trivial.)

As a result, and in accordance with the proof of lemma discussed in section 2.8,
relative entropy will not necessarily be non-negative. Conseqﬁently, relative entroﬁy as
used in DPP; does not represent a theoretically acceptable measure for the separation of
different distributions. However, while applying relative entropy measure under above
condition is theoretically incorrect, it may still be considered as a measure (though not a
robust one) for comparing different data and for the selection of wavelets for
discriminatory classification.

The symmetric relative entropy measure (Eq. 2-8), because of its “symmetric”
property, results in a non-negative value; whether or not the sum of sequence is unify
(please refer to Note in section 2.8). Still, the symmetric version cannot provide a robust

measure. In chapter 7 a method for resolving this problem is introduced.
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5.6. Conclusions

The goal of projection pursuit for multivariate data analysis is to find 1o‘w4 : “
dimensional projections, such as one or two dimensions, that provide the most revealing
views of the full-dimensional data. In each iteration, DPP Finds the component of the
selected basis that is orthogonal to the hyper-plane spanned by the previously selected
basis functions. In this manner, an orthogonal set of basis is obtained. In this chapter, the
usefulness of DPP in classification applications was shown.

Even though DPP is computationally faster than the projection pursuit algorithm,
one may need a much more efficient method for on-line applications. It was also shown
that DPP suffers from a technical deficiency in applying relative entropy on coefficients. o
To overcome this shortcoming, in chapter 7, DPP algorithm is modified to develop a ﬁew ' |

method for fault classification.
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CHAPTER 6

Local Discriminant Bases

6.1. Introduction

In chapters 4 and 5, two different methods for pattern recognitioﬁ and
classification were introduced. In this chapter, another method, referred to as local.
discriminant bases (LDB), which is computationally faster is presénted. Wavelets and
LDB selection algorithm is applied to vibration signals in a single-cylinder spark ignition
engine for feature extraction and fault classification. LDB selects a complete orth'ogonalb
basis from a wavelet packet dictionary of bases, which best discriminates the givenA
classes, based on their time-frequency energy maps [48]. An appropriate normalization
method in both data and wavelet coefficient domains, and a neural network classifier
. during the identification phase are used. By applying LDB to a real-world machine data
the accuracy of the algorithm in machine fault diagnosis and classification 1s

examined.
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first “best-basis algorithm”, which LDB’s basic idea is based on, will _Be
introduced. In order to make best-basis algorithm applicable to pattern recognition ana |
classification problems the concept of discriminant measure, introduced in chapter 2, is
employed. Then, cléssiﬁcation results of applying LDB to machine -data wilnl. be

presented.

6.2. Best-Basis Algorithm

Coifman and Wickerhauser [21] employed entropy to efficiently represent ‘a o

signal, mainly for data compression purposes. They introduced entropy as a real-valued
cost function on sequences of coefficients and searched for its minimum over a dictiénary
of orthonormal bases. Entropy cost function can accurately quantify a sequence in thc"
sense that entropy of a sequence is small when all but a few elements are negligible and
is large when its elements are about the same size. Geometrically, best-basis algorithiﬁ o
minimizes the flatness of the energy distribution; the lower the entropy, the less flat the
distribution is (see section 2.7 for more detail).

Best-basis algorithm selects a basis from a dictionary of orthonormal bases using
~ the entropy criterion. It minimizes the entropy of the normalized signal energy aﬁér
expanding a given signal or a collection of signals into a dictionary of orthonormal basie:s.»
This dictionary, which has a binary tree structure (Fig. 6.1), can be a set of reduﬁdémt

wavelet packet bases or local trigonometric bases.
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Fig. 6.1. Decomposition tree in a wavelet packet.

Best-basis algorithm uses a fast divide-and-conquer search. The algorithm is» as

follows:

Suppose B, , =(b,, -, b )" be a set of basis vectors of b;; spanning the .

k207 1
subspace ik for j=0,1,...,J, k=0,1,...,2’ —1, where n is the signal diménsionality, ny
is the maximum level of wavelet packet signal decomposition, and J is the highest level
of decomposition we would like to expand the signals to, with the upper limit of no

(n,=log,n2J). Q,, is the space of the basis vectors defined for node j k of a biriéry

tree constructed from a wavelet packet decomposition of the signal (Fig. 6.1). B;4 can be

written as a matrix corresponding to the subspace Q,,, which is the space of the basis

vectors b;xm, defined for the node j,k of a binary tree constructed from a wavelet packet

decomposition of the signal. In wavelet packet decomposition, basis vectors b, are
indexed by j, k, m representing scale; frequency band (oscillation), and time position,
respectively. The number of basis vectors b; . equals to n(1+log, n). We note that By is |
the basis set of standard Euclidean coordinate system, which is the basis for the signal af “
its highest resolution level. Also, suppose that A;; is the best-basis for the signal x € R”

restricted by the span of B;.
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Fig. 6.1 shows the subspace representation of a given signal in wavelet packet -
binary tree decomposition. Each node, which represents a subspace, is the orthogonal .
direct sum of the subspace of its two children. First, a .time-frequency decomposition '_
method such as wavelet packet transform or local trigonometric transform must be
chosen. Then, the best-basis can be found by induction on j as following:
Step 1: Decompose the given signal x by expanding it into a dictionary of orthogonal
bases to obtain coefficients.
Step 2: For the start of the algorithm, suppose that A, ;=B for k=0,....27 —1.
Step 3: Search for the best subspace A4;; starting from the last level of decomposition
(j=J—1,...,0) and by the following (k =0,...,27 —1):

if HB,,X)SH(A X+ A ,,,.%) set Ajx=B;

otherwise A, =A,  X+A 5. X.

To make the algorithm computationally efficient entropy map must be additive,
which fortunately is, i.e. H(0)=0 and H({s,})= Z,-H (s;) (see the proof in section 2.7).v
This property of entropy rﬁakes the best-basis algorithm a fast divide-and-conquer search.
To guarantee the condition s; > 0 in the definition of entropy, algorithm chooses the
entropy of normalized signal energy as s=[x;/|[x||, where ||.|| is the Euclidean norm. The
complexity of computation for a signal in R" is O(n).

Best-basis algorithm has shown its suitability for signal representation and data
compression applications but it is not necessarily appropriate for classification problems. -

In classification one should search for those bases that give the most discriminant

information about class separation.
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6.3. Local Discriminant Bases Algorithm

Saito and Coifman [22] introduced local discriminant bases (LDB) algorithm as
an extension of the best-basis algorithm by Coifman and Wickerhauser [21]. The bgét—
basis algorithm uses the entropy of normalized signal energy to represent a signal
efficiently, mainly for data compression applications. LDB approach, on the other hand, |
employs the relative entropy of normalized time-frequency energy map of all training

signals in each class for classification purposes.
The time-frequency energy map of {x’}, a set of training signals belonging to

class /, along the direction of a given basis b; is a table defined by:
NI Nl 2
CUkm)=2 (], . x") 13 [x) (6-1)
i=l i=1

for j=0,1,....J, k=0,1,..,2/ =1, m=0,1,.,2® —1, where N; is the number of training
sets in class /. Here “.” denotes the standard inner (dot) product in R". The energy map
defined by (6-1) is computed by summing the squares of expansion coefficients of the
signals at each position and then normalizing them with respect to the total energy of the
signals belonging to class /.

One can obtain expansion coefficients by decomposing a signal of length » info é
tree-structured bases such as wavelet packet or local trigonometric dictionaries where the
computational efficiency is O(nlogn) and O(n(logn)?), respectively. Here we have used
wavelet packet dictionary.

Discriminatory power associated with a given wavelet packet node indexed by j,k
is the sum of the discriminatory power of its constituent basis b, measured in the

coefficient domain. Additive property of discriminatory measure is used here as follows:; -
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2707/

D({CI(Jak9)}IL=1) = Z D(Cl(jak7m)a""CL(j’kam)) . (6'2)

m=0
As stated earlier, LDB selects a local orthogonal basis from a dictionary of basis
in a wavelet packet, which properly categorizes the given classes, based on the

discriminatory measures of their time-frequency maps. Suppose that A;, represents the
desired local discriminant basis restricted to the span of B,,, which is a set of basis
vectors at (j,k) node, and A, is the array containing the discriminant measure of the

same node. The additive property of discriminant measure D is advantageous for a:-

'computationally fast algorithm.

The algorithm first chooses a time-frequency decomposition method such as

wavelet packet transform or local trigonometric transform. Then, for a given training
dataset consisting of L classes of signals {{x’}\}%,, the local best-basis can be found

by induction on j as following:

Step 1: Decompose the given signal x by expanding it into a dictionary of orthogonal
bases to obtain coefficients and construct time-frequency energy maps C, for )
=1,...,L.

Step 2. For the start of the algorithm, suppose that A;; = By, and set

A,, = DUC(J, k,)}-,) for k=0,..,27 1.
Step 3: Set A, =D({C(j,k,)},) and search for the best subspace Aj,k. fo? :

j=J-1,..,0 and £=0,...,27 —1:

A, 24800+

Then Aj,k = Bj’k,
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Else A, =A,,,, ®A pandset A, =A, 0 +A 00

j41,2k+
Step 4: Rank in descending order the complete orthogonal basis functions found in Step 3
according to their discrimination power.
Step 5: Use k (much less than n) most discriminant basis functions for constructing
classifiers.
If we start from the last level of decomposition (which is usually the case), i.¢.,

J=ny, in step 3 there will be no summation and A, is simply the elements of level no.

During step 3, a complete ortﬁogonal basis with a fast computation of O(n) is built.
Orthogonality of bases is imposed in the algorithm to ensure that wavelet coefficients
used as features during classification are uncorrelated. After this stage, one can simpiy‘
-select & highest discriminant bases in step 5 and use the corresponding coefficients as
features in a classifier. It is also possible to employ a statistical method such as Fisher’s
criterion to reduce the dimensionality of the problem first and then input them into a 
classifier [22].

In brief, LDB algorithm starts by comparing the discriminatory power of the
nodes at the highest scale as “children” nodes with “parent” node residing oné scale
lower. For example, in a two level decomposition of wavelet packet tree (Fig, 6.1),
algorithm first compares the discriminant power evaluated for coefficients of trainingi,

data in different classes at node €,, with those nodes of Q,, and Q,,. If the entropy of
Q,, is larger, the algorithm keeps bases belonging to this node and omits the other two,

otherwise it keeps the two and disregards node €, bases. This process is applied to all

nodes in a sequential manner up to the scale j = 0. At this stage a set of complete
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orthogonal basis having the highest discriminatory power is obtained which can be sorted

out further at the second stage and used for classification of designated classes.

6.4. LDB Classification

The Ricardo Hydra data, introduced in chapter 3, was used to evaluate the
effectiveness of LDB algorithm for the classification. According to Eq. (3-4), 96 training
data in three classes (32 data in each class) were normalized between —1 and 1, in which " -
three classes correspond to three ignition timings of: -23 (normal), -33 (advance), and -IIYO
(retard) degrees of crank angle.

Coefficients were also normalized between —1 and 1, and then mean-centered.
This preprocessing method was found to yield the lowest classification error during
testing.

Normalization done by Eq. (3-4) was found to be promising since under this
" scheme low values remain low and high values remain high. Normalizing the data
reduces biasing among data, regulates the amplitude of the coefficients, and causes thé
algorithm to select wavelet bases which carry more discriminatory information. However, :
mean-centering of the data after normalization does not produce noticeable changes,
since the mean value of machine vibration data, due to (almost) symmetric property of
vibration with respect to neutral axis, is usually close to zero.

. Fig. 6.2 illustrates the first 8 bases selected by the algorithm and sorted accbrding -
to their discriminant power using Coiflet 1 (6 tabs) as the analyzing wavelet. Wavelet
packet indices of the selected bases are given below in which first to third rows are scale,

oscillation, and translation (position) indices, respectively:
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Fig. 6.2. The first 8 bases selected by the LDB algorithm using Coiflet 1.

Discriminant measures of all 128 complete orthogonal bases are ranked 1n
decreasing order as shown in Fig. 6.3. The figure exhibits a sharp drop of the measure
after the first few bases. Only bases with largest discriminatory measures may be
considered for classification purposes, as the discriminant measures of other baées are
insignificant.

Training coefficients were derived from projecting the training data on the first
four bases; they were applied as feature variables and as inputs to a backpropagation
neural network classifier after normalization and mean-centering (the specific method of

NN used for classification were explained in chapter 2). For evaluating the algorithm,
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testing data were projected onto the selected bases to generate the coefficients followed
by normalization and mean-centering as applied to the training data. Fig. 6.4 shows
training and testing coefficients for the first four bases before and after normalization and
mean-centering. Four graphs in each subplot correspond to each of the four bases. These .
plots indicate that the relative values of the coefficients among the classes have been -
preserved under the normalization method used here. Three classes can easﬂy be
identified by inspecting the values of the coefficients which are d1st1nct1y different in
three segments of size 32 each corresponding to 32 training data in each class (and 16 for

testing data).

D: Discriminant Measure

o o o © o o o
N w H (4, [e)] ~ (0]
T T T T T T

1 1 i 1 1 4

=)
—
T
1

i A 1 1 1

16 32 48 64 80 96 112 128
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o
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Fig. 6.3. Discriminant measure of all 128 selected bases.

Mean value vs. standard deviation of Ricardo Hydra data in each class, shown in

chapter 3 (Figs. 3.6 and 3.7), indicates that classes 1 and 3 are highly clustered. However,
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applying raw data to a classifier is neither accurate because of dilution of information,
nor time-efficient due to high dimensionality of the original data. On the other hand,
training coefficients are sparsely distributed having a non-clustered mean-std pattern
(Fig. 6.5) which is attributed to decorrelation effect caused by wavelet transform in the

coefficient domain.

Training Coef. Testing Coef.

2 2
0 32 64 96 0 16 32 48
Normalized Train. Coef. Normalized Test. Coef.
1
, |
0.5 A
N v ' v ‘Z‘h‘ A “.‘ NT"/\/ s
0 /\/\/\/:/\(IQ { \\ /0 \”\ L/ -
i W ‘ ~ VX H‘\l‘/‘\ ‘\‘
0.5 Ay
=1 1
0 32 64 96 0 16 32 48

Fig. 6.4. Training and testing coefficients before and after normalization and mean-
centering for bases 1-4: blue, green, red, and cyan, respectively. The horizontal

axes are the number of training/testing data.
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Training coefficients were applied to a two-layer NN backpropagation classifier

with 5 neurons in hidden layer and tan-sigmoid transfer (activation) function in both

hidden and output layers.
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Fig. 6.5. Histograms and mean-std plot of training coefficients for three classes.

The number of selected bases was considered to be an important factor as it
determined the number of features. In general, an increase in the number of bases, results
in a more discriminatory information that are passed to the classifier. However, in
classification applications, often a finite number of features is sufficient to describe
different classes, beyond which dilution of the information deteriorates the classification
results. Excessive number of features will also increase the computational cost during

classification. It was observed that when the number of bases was changed from 4 to 128
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—i.e. to include up to all of the orthogonal bases — the classification error increased from
1% for 4 bases to 6% for 128 bases. Generally, there is no analytical solution available
for determining an optimum number of bases (features); often an empirical approach
based on a priori information about the particular application is utilized.

Using wavelet transform and the coefficients as feature variables, considerable
computational efficiency was gained during the classification. Noting that the
computational order of backpropagation algorithm is of O(nz), with 7 as the size of NN
input, reducing the size of training data from {96x 128} to coefficients of size {96 x4}
significantly contributed to computational efficiency. In order to compare the advantagés
gained from using wavelet transform, the original data were also applied to the NN. The
classification error was observed to be higher (about 7%) as compared with 1% whén' :
using wavelet coefficients. |

Something that we have to be aware of is that in both best-basis algorithm and

LDB, the energy of every node is normalized by the norm of original signal; therefore,

only in the root of the tree (the signal itself) condition (2-6), i.e. Z‘_si =1, holds true. In

fact, in both “best-basis” and LDB algorithms, we are comparing entropy of different
node energies, while these energies may not be comparable since they are not normalized |

in the same basis/foundation. This may bring some inaccuracies.

6.5. LDB Shortcoming

Despite the potent capabilities of LDB, it encounters drawbacks somehow
analogous to DPP. In step 2 of LDB algorithm (i.e., in the last level of wavelet packet

decomposition), for example for a two-class case, we basically find the relative entropy -
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of two positive scalars, instead of two sequences. It is noted that each node in the last
level of decomposition includes only one base, thus each node contains one coefficient
only; as a result, relative entropy is derived between two scalars. According to the
definition (2-10), when sW/s@® <1 (which is highly probable), relative entropy is negative.
Then in step 3 of LDB, during comparison of the sum of discriminant measures of two
children nodes with their parent node, we may add up a negative number with a positive
number and compare the sum with the discriminant measure of the parent node. Undér
this situation, we will not have an effective measure of “distance” between two clas‘sesA
since distance is to be a positive number. This is the shortcoming of DPP as well, as
mentioned in section 5.5.

On the other hand, in different levels of wavelet packet decomposition, other than

the last level, relative entropy measure is not always positive, since condition 2-6 is not

satisfied.

As it is described in lemma in section 2.8, the symmetric relative entropy measure .
is always non-negative, regardless of whether condition 2-7 holds (sums of sequenc_:éS are
one). However, this is not the case for the relative entropy, as mentioned above.

To overcome these shortcomings of LDB, a new methodology is outlined in the

next chapter.

6.6. Conclusions

As the use of pressure signals for fault detection in internal combustion engines,
due to their costly retrofit, is prohibitive, the suitability of using acceleration data for

engine diagnosis was investigated. As well, due to the large size of data, direct
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~ application of NN classifier to data in different classes is extremely time consuming.
Noting that sensor data usually include redundant information, direct use of sensor data,
may also lead to dilution of information about engine faults and produce unacceptable
classification results. Alternatively, transformation of the data into wavelet domain and ‘
use of wavelet coefficients as feature variables will reduce the data dimenSion}alzit};' .
considerably.

Transient nature of the machine vibration signals requires the use of basis
functions that capture localized features of the signals. It was shown that wavelets with
finite support width both in time and frequency domain are highly suitable for analysié of
these signals in diagnostic applications. Along this line, using wavelet packet and
redundant signal decomposition, local discriminant basis algorithm enabled us to select a
subset of basis with highest discriminatory power to classify different engine operating
conditions.

LDB algorithm attempts to select a set of orthogonal bases from a wavelet pa_éket
dicﬁonary which best discriminates different states of the system. Wavelet coefficients
constructed by projecting data onto the selected bases are used as feature variables and as
inputs to a backpropagation neural network (NN) classifier. We employed LDB -
algorithm for data analysis with three classes of ignition timings. For acquiring wavélet
coefficients, normalized training data were utilized.

It was shown that using proper normalization both in signal and feature domains, B
accurate classification results could be obtained. Furthermore, the use of orthogonal bases
selection in LDB significantly contributed to the reduction of the number of bases where

we used the first few bases with high discriminatory measure. This consequently -
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enhanced the accuracy of classification results. Further, high computational efficiency ;)f
LDB lends itself to on-line performance monitoring.

Normalization was considered to be an important factor in the classification
process. The particular normalization strategy was found to influence the accuracy of
results considerably.

Choosing the number of features is also an important task; this number should
neither be too large to dilute the information nor too small to miss important
discriminant information. Roughly speaking, a value around log(n) (n is the length of

data, or the space dimension) is considered optimum for the number of features.
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CHAPTER 7

A New Approach for the
Construction of Entropy

‘Measure and Energy Map

7.1. Introduction

In chapters 5 and 6 details of two wavelet-based methods namely DPP and LDB
for feature selection and classification were described. They were applied for machine

fault diagnosis using real-world data. In sections 5.5 and 6.5 shortcomings of these

methods for feature extraction were discussed. It was stated that a close examination of ' B

the DPP and LDB methods reveals that their interpretation of entropy is non-standard and
this poses certain technical glitches. In both methods, relative entropy is applied on
sequences of numbers that do not constitute a probability density function (pdf), in the

sense implied by the condition (2-7).
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Furthermore, in both DPP and in the last level of decomposition in LDB (as
expanded in section 7.3), the relative entropy of two scalars instead of two sequences is
evaluated. To satisfy condition”(2-7), it is neéessary that these two scalars be unity;
however, such a circumstance corresponds to a trivial case of entropy evaluation wher_eb
no useful information can be extracted. Therefore, both methods face a theoretical‘
dilemma.

We note that for a sequence to be used in entropy measure, it must be expressed
in the form of a pdf where the total sum of the sequence is unity. Nevertheless, one can :
still use entropy as a distance measure even if the sequences are not pdfs as is the case iﬁ -
LDB and DPP. This may result in negative relative entropies being calculated. .But, in’
order to properly compare the relative entropies D, as a discriminant measure, it is
essential that all Ds be non-negative. Necessary and sufficient condition for this is still
relation (2-7) (please see lemma in section 2.8).

The use of symmetric relative entropy, which because of its “symmetric” property

is always non-negative, can be considered as an option. (See the proof in the note of

section 2.8 and Eq. 2-12). However, in symmetric relative entropy calculations sorﬁe
negative and positive terms cancel out. This poses a problem since the magnitude of '
discriminant measure has been reduced. This indicates that the measure cannot be _
considered as an effective measure for the discriminatory classification.

To resolve this dilemma, in this chapter, a novel method is presented that can be -

combined with other searching algorithms such as LDB and DPP. Also, the application of . -

singular value decomposition (SVD), and its importance in statistical pattern recognition,

along with some results and discussions are presented. SVD is a technique that is widely
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used for evaluating the correlation among experimental data composed of p sets where
each set is a sequence of length g. Then, data can be expressed as a p X g matrix B.
Singular values (SV) of matrix B are the eigenvalues of the correlation matrix B'B ranked -
from high to low (for more detail and mathematical definition of SV readers can refer to. -
statistical or linear algebra texts, such as [55]). In our data analysis, SVD of the

coefficient matrix, constructed from projecting the data onto the selected bases, is

employed to determine the extent of correlation among coefficients. We, first, introducea

modification to the normalization scheme used in DPP.

7.2. Class-Based Normalization

In DPP, coefficients are normalized as defined by Eq. (5.1), where the |
normalization is basically the average of the sum of the squared coefficients in each class.
Consequently, the total energy of coefficients in each class is divided by the number of
training data in that class. Under this scheme, normalization basically conespoﬁds to
scaling down the signal energy in each class. In the special case, where the number of
training data is the same for all classes, energy values are scaled down by the same
proportion which corresponds to a uniform scaling of the entropy map values, thus there
will be no relative changes in the final outcome.

In the proposed approach, normalization as used in step 3 of DPP algorithm
(section 5.3), is modified. Under the new approach, a class-based normalization is used in
which each class is considered separately where the sum of squared coefficient values of
different wavelet packet nodes, is adjusted by the sum squared values of all the training

data in that class as:
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N, N, ,
le(bf,k,m-XY’)z /;HX?”H | (7-1)

where A, is the number of training data in class /. Under normalization defined by Eq. (7-
1), different classes are normalized with respect to their own factors, resulting in further '_
class differentiation during feature extraction stage and an improved accuracy m the
classification stage.

To examine the effectiveness of this modification, many trial runs were carried oﬁt
in which the new normalization scheme was applied to Ricardo Hydra experimental data |
— the set of data that was introduced in chapter 3. In order to ascertain and generalize the
effectiveness of the proposed method, a wide range of data analysis using different
wavelets was planned and performed. These included the use of 32 different anal_yzing
wavelets from the family of orthogonal, biorthogonal, symmetric as well as selectéd
wavelets from Battle-Lamorie spline functions as follows:

1-Haar, 2-Beylkin, 3-Coifletl, 4-Coiflet2, 5-Coiflet3, 6-Coiflet4, 7-Coiﬂét5, 8;
Daubechies2 (Db2), 9-Db3, 10-Db4, 11-DbS, 12-Db6, 13-Db7, 14-Db8, 15-Db9, v16-
Db10, 17-D‘t320, 18-Db40, 19-Db45, 20-Bior22, 21-Bior31, 22-Bior68, 23-Symmlet4. '
(Sym4), 24-SymS5, 25-Sym6, 26-Sym7, 27-Sym8, 28-Sym9, 29-Syml0, | 30-

Vaidyanathan, 31-Battle3, 32-BattleS5.

Fig. 7.1 shows the classification results of DPP with the two normalization

schemes, in which the horizontal axis indexed from 1 to 32 corresponds to the numbers
used above to list the analyzing wavelets. For the majority of wavelets the proposed
normalization scheme produced superior performance. For exarﬁple, by applying Coiﬂeti
as the analyzing wavelet (number 3 in Fig. 7.1), misclassification rate was reduced from

4% with the Ni-normalization to 0.5% with the modified normalization scheme. This is
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considered as a notable improvement. In fact, with class-based normalization of signals
additional separation of classes is induced. In the next section, a novel approach for using

relative entropy in the construction of energy map is proposed.
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Fig. 7.1. Classification percentage error using DPP under two normalization schemes,

with 32 different analyzing wavelets listed in section 7.2.

7.3. Cross-Data Entropy Approach

The use of entropy measure for feature extraction and classification requires that:

1) Entries to Eq. (2-10) for the evaluation of relative entropy be all non-negative,
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2) Relative entropy among different classes in each node (in every base of the

dictionary in the case of DPP), i.e., the outcome of Eq. (2-10), be also non-»y -

negative.

Condition (1) is met by considering sum of energy of coefficients as the entries to
the relative entropy measure. However, the use of relative entropy of the above sum in
each class, as prescribed by LDB and DPP methods, does not guarantee condition (2), |
i.e., we may not have non-negative relative entropies for each and every data at all times.
(Refer to the explanation given in sections 5.5 and 6.5).

Another consideration for the use of relative entropy measure is the requirement
that the sequence constitutes a pdf. While in LDB method we observed that in the last
level of decomposition in wavelet packet tree (refer to step 3 of LDB algorithm described
in section 6.3), relative entropy is applied on singular scalars. Moreover, in DPP
approach, relative entropy is applied to singular scalars in all levels of the decomposition
process.

To resolve these shortcomings, an approach is proposed here, in which training
data are used to generate the required sequence of numbers for proper applicatioﬂ and
evaluation of entropy. It is proposed that in constructing the of entropy measure, instead
of using the sum of coefficient energies of all training data in each class, and at each

node, as used in LDB (and with some variations in DPP as described in 5.3), we consider-

individual coefficients for the evaluation of the entropy measure. As a result, the role of -~

every single data is taken into account in the sense that the relative entropies of each

element in the wavelet packet matrix are used to find the appropriate bases. Under this
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approach we deviate from the concept of “averaging of data” as is the case in both LDB
and DPP methods. Two advantages are gained using the proposed scheme.
1) Averaging of all training data as used in LDB and DPP methods essentially

utilizes the first order statistics only. By not involving a second order statistics, such as

standards deviation, the dispersion of data is masked. This is considered a limitation of =

the LDB and DPP methods. The proposed scheme eliminates this limitation by
considering all training data where coefficients are obtained and used for each and every |
training déta.

2) In the proposed algorithm, each coefficient is evaluated for all training data and
thus at all nodes including the last level of wavelet packet tree, evaluation of entrop)‘{‘i‘s
carried-out on a sequence of scalars rather than on a single scalar. The scheme can then
be interpreted as a cross-data entropy evaluation or cross-data energy map approach.
Since we still use relative entropy, dfscriminatory bases will be derived as before. Under
this scheme the relative entropy of distributions of the coefficients in different classes is
taken into acéount, that is, discriminant information of every data (mutual discrimination
among all data) is considered. For this reason, we will refer to this method as a cross-data
entropy or mutual-based approach. The cross-data entropy approach alleviates the
shortcoming of standard relative entropy measure used in LDB and DPP methods.

The proposed method can also be used in conjunction with the main idea of other
searching algorithms. In the following sections, formalization of the extended versions of
DPP and LDB methods referred to as cross-data or mutual dictionary projection pursuit
(MDPP), and mutual local discriminant bases (MLDB) is given. We define the following

notations before describing the methods.
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Let “map” be the wavelet packet coefficients of each training data x;, for

i = 1,..., N, which can be demonstrated as a set of N matrices of size n X (logzn + 1), -

where 7 is the signal length, N is the number of training data, ny is the maximum level of v o

wavelet packet signal decomposition, and J is the scale index of decomposition levél; '

with n, =log,n2J. Let C™"(j,k,m)=(b],,X,.y)’ be the energy map of each

J.k,m et

training data derived by squaring each element of the map matrices, where C*" is used to o -

denote N energy map matrices each of the size of map. (Matrices C*" can also be viewed

as a 3D-array, e-map, of size n X (logon + 1) X N.)

. — o
Recall that N; is the number of training data in class /, where N = ZN, is the - -

=1

total number of training data in all classes. If C;"™ are energy maps of each training data

in class / then [C;Y(j,k,m)] can be defined as a vector consisting of N number of =

element (j,k,m) of C;"V:
[C (. ke, m)]=[C; (j, k,m),...,C}" (j, e, m)] for=1,...L
Similarly, we can think of C;'¥ as a 3D-array e-mapy.

The process used in the new mutual dictionary projection pursuit (MDPP), and |
mutual local discriminant bases (MLDB) is described next.

Consider a time-frequency dictionary such as wavelet packet transform. For a
training dataset consisting of L classes of signals {{x®}"}*., MDPP and MLDB can be

implemented by induction on the scale j, as follows.
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7.3.1. Mutual Dictionary Projection Pursuit

Step 1 Expand each training signal into a dictionary of orthogonal bases (map matrices)
to obtain coefficients. o

Step 2: Find energy map of the coefficients, C*", composed of squared values of eégh
element of map matrices. |

Step 3: Normalize matrices C'" according to the new method proposed in chapter 3. | E

Step 4: Find discriminant power (by applying Egs. 2-8 or 2-10) amongst L ’ifeét()»rs
[V (j, k,m)].,, for j=0,1,..,J, k=0,1,.,2" -1, and m=0,1,..,2™~ —’1,
where ny is the maximum level of signal decomposition. Call the resultant matﬁx '
ent_map. |

Step 5: Apply step 5 as outlined in section 5.3.

7.3.2. Mutual Local Discriminant Bases

The first four steps of MLDB and MDPP are the same; here we show the rest of

the procedure:
Step 5. As initial values for the algorithm, suppose that A = By; and ,se\t:
2m~7 g ' S
A, = E ent _map(J,k,m) for k=0,..,2" —1 (if we start from the last level =

m=0

of decomposition, i.e., J = ny, there is no summation and A,, is simply the

elements of level ngp).

2707/ 1

Step 6: Set A = Z ent _map(j,k,m) and search for the best subspace A;x for
: m=0 . — _—

j=J-1,..,0 and k=0,..,2/ —1:
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A28 0%+ 0005
Then A = B;,
Else A k= A 41,2k DA j41,2k41 and set A jk = A L2k +A L2k

Step 7: Rank in descending order, the complete orthogonal basis functions found in Step
6 according to their discriminant power.
Step 8: Use k most discriminant basis functions for constructing the classifiers. Note that

k is much less than n.

Let us reiterate that the mutual-based approach is not founded on the “sum” of
energy map of data in each class as LDB and DPP are. Instead, by employing the energy
maps of “every” data in each class, it finds a set of discriminént values at every base of
wavelet packet dictionary that “truly” represents the discriminant power of every data.

Computational efficiencies of MDPP and MLDB are similar to those of ]jPP and
LDB methods, respectively. Expectedly, the new methods have more data storage
requirements since energy map of each training data must be saved for the evaluation of
the entire relative entropy map.

In the following, some results and analysis of MDPP and MLDB are presented.

7.4. Data Analysis Results

To assess the effectiveness of the new proposed algorithms, MDPP and MLDB,
and to compare them with each other and against DPP and LDB, the algorithms are
applied on Ricardo Hydra test data. The new normalization method employed in sections

5.4 and 6.4 is also utilized.
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Fig. 7.2. The first 8 bases selected by MDPP using Coiflet1.

7.4.1. MDPP Classification

Applying MDPP algorithm on Ricardo Hydra test data with Coifletl wavelet )
results in selecting the bases plotted in Fig. 7.2 (only the first 8 bases have been shown).
Their corresponding wavelet packet indices are as shown below. From first to third row

are scale, oscillation, and translation indices, respectively.
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If the above indices are compared with indices obtained from DPP (section _5.4) 
we observe that the second, fifth, and sixth bases of MDPP have also been selectf;dxby .
DPP. The rest of the bases selected by MDPP and DPP belong to similar frequencvy'
bands; as a result, the classification errors of both methods are almost identical. 'Fig; 73 E
shows DPP and MDPP classification errors for 32 different analyzing wavelets listed .in »

section 7.2. Even though the general performance of MDPP is acceptable (a maximum .

classification error of 6% for most of the analyzing wavelets) DPP’s performance s

slightly better.
As the classification results of MDPP and DPP were close, we also examined the
synthetic data set introduced in chapter 3. Fig. 7.4, the classification error evaluation Of

two methods, shows that the performance of MDPP is slightly superior with the synthetic

- data. Overall, the comparison of results from both techniques with two different types of -

data indicates that their performance is similar.

7.4.2. MLDB Classification

The wavelet packet indices associated with bases selected by applying MLDB . .

algorithm on the same set of data are as follows:

4 7 4 4 4 5 7 7
3 33 3 2 3 9 35 34
3.0 4 6 5 0 0 O
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Class1

Class2

Class3

Average

32 Different Analyzing Wawelets; DPP (0), and MDPP (*)

Fig. 7.3. DPP classification percentage error vs. MDPP for 32 different analyzing a

wavelets listed in section 7.2.

where the first to third row are again scale, oscillation, and translation indices of wavelet

packet, respectively. The corresponding wavelet bases are plotted in Fig. 75 By
comparing the above indices with indices obtained from LDB (secﬁon 6.4), we observe -
that the first basis of LDB indexed by (5,0,3) has not been selected by MLDB. This basis
belongs to the interval (0, n/32) frequency band of wavelet packets which corresponds to
(0, 0.4) KHz frequency band of the signal as

12.5 KHz /32 = 0.4 KHz.
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Fig. 7.4. DPP classification percentage error vs. MDPP for 32 different analyzing

wavelets listed in section 7.2 with synthetic data set defined in chapter 3.

By examining typical signal spectrum shown in Fig. 3.5, ong can notice that this
frequency band is not located in a dominant frequency band of the signal; thus, it does |
not carry considerable energy. Since a combustion event can be viewed as a set of
impulses, it is accompanied by a high energy release; a superior searching algorithmv
should readily pick those bases of wavelet packets, which are located in a high-e_nergy N
node. As a result, the selection of this basis by LDB has not been a good choice. |

On the other hand, the forth and eighth bases of MLDB have also been selected

by LDB. The above frequency analysis shows that these bases along with other first three
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bases chosen by MLDB carry significant amount of energy and have been successful
selections. In fact, the frequency band of wavelet packet nodes, which the bases 2 and 4
belong to, is located in the middle of the dominant frequency band of the signal (around

/4 or 3.1 KHz) and the one associated with bases 1 and 3 is placed at the beginning of -

the dominant frequency band (around 37/16 or 2.3 KHz).
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Fig. 7.5. The first 8 bases selected by MLDB using Coifletl.

Fig. 7.6 illustrates discriminant measure of all 128 complete orthogonal bases

selected by MLDB. By comparing this figure with Fig. 6.3, we can see that the
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- discriminant measures of bases selected by MLDB possess higher values, with almost the

same drop rate. Part of the large magnitude of discriminant measures may be attributed to

- the way that mutual approach calculates the relative entropy of the energy maps, in which . | .

all training data in each class are encountered, not just their average. Nevertheless, the -
error analysis shows that tﬁe mutual approach has a greater discriminant power.
Fig. 7.7 compares LDB and MLDB classification errors for the 32 diﬁ&enf |
analyzing wavelets. It shows that for most of the analyzing wavelets MLDB perfoﬁns
better or as good as LDB, which shows the overall superiority of the proposed approach.
To asséss the accuracy of the classification results we ﬁse the singular value
decomposition (SVD) of the coefficient matrix. Its application, results and discussiqﬁs

are presented next.
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Fig. 7.6. Discriminant measure of the complete orthogonal 128 bases.
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Fig. 7.7. LDB classification percentage error vs. MLDB for 32 different analyzing

wavelets listed in section 7.2.

7.4.3. Analysis of Coefficient Correlation using Singular Values

We used SVD of the coefficient matrix, obtained by projecting data onto the.'v
selected bases, to determine the extent to which the feature variables, i.e., the:
coefficients, are correlated.

SV decay, Fig. 7.8, which is the drop rate from first to second, second to third, S0
on, is an important parameter in statistical analysis. For a matrix with large rank, usually
the decay of the first few SVs is of interest; where rank is the maximum number of -

linearly independent rows (columns) [69]. In our case, where the coefficient matrix is of
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size 96 X 4, there are four SVs (the rank is only four); therefore, the decay from first té
second SV is of great importance.

To obtain acceptable classification results, SV decay of coefficient matrix must b¢
neither too large nor too small. Large SV decay shows that the useful information of
coefficients is just in one direction (i.e., the direction of the eigenvector corresponding to
that SV); therefore, the rest of selected directions, which are the bases found by the
algorithm, contain redundant information. In other words, they are correlated with the
first direction. On the other hand, choosing one direction to represent a multi-dimensional |
data is not usually a reasonable approach, specially noting that dimension reduction has
already been implemented in the wavelet coefficient domain. Such a case shows that
selected bases, from which coefficients are derived, do not contain all of the esséntial
information about the system performance. Indicating that the respective algorithm has i
found a set of bases where only one of them includes useful information, the rest of the
bases do not disclose anything new. As a result, a coefficient matrix with very high SV
decay is not actually desirable. Similarly, having low SV decay means that all of bases
(directions) have more or less the same information content, since there is a high -
correlation among them.

To support the above argument, in Fig. 7.8, we have shown four singular values
of coefficient matrix corresponding to the first four bases selected by MDPP wﬁe’n
applied on Ricardo Hydra test data. The figure demonstrates the SVs in each class and the
average for all classes, along with the corresponding classification results. The horizontal . ’
axis numbered from 1 to 32 corresponds to the same analyzing wavelets given in section

7.2. Db2 analyzing wavelet (number 8 in Fig. 7.8) maintains a coefficient matrix with
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| large SV decay in all of the classes, which leads to a relatively large classification error

of over 10%. Conversely, Bior3.1 wavelet (number 21) produces a very low SV'decay '
with mutually very close values, but still attains a high classification error of over 25%.
Haar wavelet is also in the same category. Wavelets other than these three extreme cases .
have almost the same SV pattern with proper decay rate and produce an acceptable
classification result — typically with less than 7% error. With highly variable data and the
performance errors observed with other classification methods, 7% is considered as a
relatively low and acceptable error.

Another interesting observation is that SVs in different classes shown in Fig. 7.8 .
follows a discernible pattern, in which SVs of different classes are quite distir;ct. For
instance, the first singular values in each class associated with Coiﬂetl (wavelet numbef
3) are 4.5, 3.6, and 2.2 for classes 1, 2, and 3, respectively, which show at least 20%

difference among different classes. This is considered as an important aspect of the algorithm -

which extracts the information that makes different classes distinguishable from each other.

7.4.4. Application of Different Analyzing Wavelets

To attain a comprehensive view of the effect of using different analyzing wavelets
in classification, several wavelets from various wavelet families, such as Daubechies;
Coiflet, Symlet, and biorthogonal were used and tested in multiple runs. By examining
Fig. 7.8 and our experience on other SVD graphs related to various data sets, we
conclude that the use of different wavelets has no significant influence on the correlation
structure of the coefficients. For this reason, the classification errors for most of the:
wavelets are almost the same with only minor deviations. We can then postulate that the

improved classification is due to the algorithm.
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Fig. 7.8. Singular values of coefficient matrix corresponding to the first 4 bases selected

by MDPP for 32 analyzing wavelets, along with consequent classification results.
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7.4.5. LDB versus DPP

LDB and DPP methods were introduced and examined in previous chapters.
During numerous simulations condﬁcted while developing and examining MDPP:;énd
MLDB algorithms, a closer observation of LDB and DPP algorithms revealed that oﬁ_en
the outcome of LDB and DPP methods were the same. For instance, three out of fdur of
the selected bases in these two algorithms were the same when Coiflet] was used as an
analyzing wavelet on Ricardo Hydra data set. This can be traced to rather similar pfocess
they use in searching for the best set of basis. Both search methods are based on the first )
order statistics, in which the sum-squared coefficients in each class are used for the
construction of the relative entropy measure. However, there are some differeﬁces in
details which were éxplained in chapters 5 and 6. Classification results with different
analyzing wavelets are also very similar for LDB and DPP, and the differences are within

a few percentage points.

7.4.6. Different Neural Network Algorithms

An overview of different neural network béckpropagation algorithms .was':.r ;
introduced in section 2.9. It was mentioned that among 12 different backprop»aga}tiotlgl |
learning rules, Levenberg-Marquardt algorithm was found to be both fast and accuféte.“
This was the overall observation using multiple runs with differént analyzing wéveléts;
Table 7.1 shows the classification errors of the proposed cross-data entropy algorithrﬁ’:for
each of these 12 methods, in which the Ricardo Hydra engine}data (introduced in chaﬁter

3) with Coifletl as analyzing wavelet was used.
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Table 7.1. Classification error using different backpropagation algorithms.

Algorithm Error (%)
Basic gradient descent 12.77
Gradient descent with momentum 11.18 -
Adaptive learning rate 5.22
Resilient backpropagation 3.81
Fletcher-Reeves conjugate gradient 4.49
Polak-Ribiére conjugate gradient 4.77
Powell-Beale conjugate gradient 4.05
Scaled conjugate gradient 4.24
BFGS quasi-Newton 4.08
One step secant 412
Bayesian regularization 4.84
Levenberg-Marquardt 295

7.5. Conclusions

The importance of normalization method in the wavelet domain was shown in this
chapter. As one of the steps during preprocessing and to improve classification reéults,
we modified DPP algorithm by applying an appropriate normalization, as deﬁned in -
chapter 3. It was demonstrated that with the new normalization scheme a more accurate
classification results can indeed be obtained. |

A novel method, referred to as mutual or cross-data entropy approach, was tﬁén
presented. Using this approach, two well-known discriminant algorithms in classiﬁc_:ation
were modified. It was shown that the new methods are as efficient as the previous
methods, and that for MLDB the classification results are consistently superior under a
wide range of anaiyzing wavelets with both real and synthetic data.

The classification results were influenced by the selection of appropriaté bases;
but the question was how we could relate the accuracy of classification to the selected

bases. In this respect, we related the accuracy of the classification results to the -
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correlation of coefficient matrix through singular value decomposition. We detailed the

assessment process and interpreted the relevance and meaning of various drop rates.
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CHAPTER 8

Conclusions

8.1. Introduction

In this chapter, a summary of work accomplished in this thesis is given, and‘ an
~ overall conclusion of the research conducted is presented. Particular contributions t§ .
the pattern recognition, classification, and fault diagnosis systems are speciﬁe'd.‘ To
conclude the chapter and the dissertation, possible future research directions ére

proposed.

8.2. Synopsis and Conclusions

With the objective of engine performance diagnosis, we employed wavelets fbr
the analysis of vibration data collected at the cylindér head position of a number of
internal combustion engines pertaining to normal operation and operation under féulty

conditions. An outline of the work carried out in this thesis may be stated as follows. ’
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The importance of coﬁdition monitoring for fault detection and prevention inv'
modern industrial settings was emphasized. The specific case of internal combustion
engines and possible engine faults were introduced. As obtaining in-cylinder pressure
information is prohibitive due to high cost and difficulty in retrofitting of pressure
sensors in the existing engines, the significance of using acceleration data (vibratio‘n.'
signals) of cylinder block in detecting these faults were highlighted. A literature review

of previous works on machine fault diagnosis was also presented.

We reviewed basic concepts of statistical pattern recognition and classification, in .-
addition to fundamentals of wavelet theory and its comparison to Fourier and short timé
Fourier traﬁsforms. We noted that acquired acceleration data exhibit variations frorﬁ
cycle to cycle, which is caused by variation in the combustion process, fuel-air mixture
and variation in inertial system response of the cylinder head assembly to the combustion |
events. As such, information about a particular state of the combustion process for fauli
diagnosis is to be sought in the statistical behavior of acceleration data. Accordingly, the
use of statistical pattern recognition methods using training data was judged to be suitable

for fault detection in the application considered.

It was shown that the expansion of the concept of entropy into the domain of

wavelet transform and its application on the sequence of wavelet coefficients,

demonstrate a very promising approach for tackling fault diagnosis problems. Significant

order reduction was achieved using wavelet transform where a countable number of
feature variables in the coefficient domain were considered to be sufficient for
discriminatory classification of different engine faults. Along the same line, two well-

known approaches in pattern recognition and classification, referred to as dictionary
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‘projection pursuit (DPP) and local discriminant bases (LDB) were introduced, in which
relative entropy — as a logical extension of entropy for using in classification — as well as

wavelets were utilized.

Normalization and preprocessing are essential parts of a classiﬁcatibn system. An
appropriate normalization method, which can successfully be employed in both time
domain and wavelet coefficient domain, was introduced. A neural network classifier was
needed in the training and classification stage. For the training phase, embedded in the
algorithm, many exploratory runs with different neural network algorithms showed that
for the nature of machine data used, Levenberg-Marquardt backpropagation learning rule
performed consistently and reliably. This was maintained as the main classifier for all the |

results reported in this thesis. .

DPP and LDB were applied on a set of real world machine dgta and their
classification results were given. By critically examining both methods, theif
shortcomings were revealed. We showed that none of these methods were using relative
entropy in a theoretically correct manner. To overcome this dilemma, a novel method,
referred to as cross-data entropy map or mutual-based approach was presented, in which
a correct interpretation and application of relative entropy were made. In this approach,
each training data contributes to the evaluation of relative entropy for discrimination
purposes, contrary to the previous methods, which only use the first order statistics. .
Consequently, a superior classification results were obtained with a range of engine test

data.
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8.3. Contributions

Contributions of this thesis are as follows:

e Successfully applying wavelets to engine diagnosis using statistical paﬁern
recognition methods and neural network classification.

o Utilizing wavelet packets for signal decomposition in which redundancy of sighal
decomposition by wavelet packets was used to select wavelet basis for a
discriminatory classification of different faults. Furthermore, eﬂ'éctivély
associating singular value decomposition and correlation of coefficient matrix
with the classification error.

e Successfully relating signal energies in wavelet packet nodes to the node(s)
selected by the search algorithm. Demonstrating that a superior search algorithm |
can indeed select the nodes with high energy.

e Introducing a normalization method in DPP that improved classification resulté |
considerably — from 5% error in the original method to 1% in the new approach. ‘

e Introducing a novel method, referred to as cross-data entropy approach fof '
discriminatory classification and demonstrating the effectiveness of the method‘
for entropy-based feature extraction using dictionary of orthogonal bases. |

¢ Employing the new cross-data entropy approach in DPP search algorithm, and
conducting tests with promising results. -

e Employing the proposed approach in LDB search algorifhm, and demonstrating

superior results with various real-world data.
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8.4. Future Research Direction

As a result of this research, a novel methodology for fault diagnosis was
developed. It would be possible to extend the application of this method for the detgction
of malfunctions in multi-cylinder industrial engines. The initial results (conducted in
[70], but not reported in this thesis) indicate that the extension as proposed above, is
promising although there are still a number of obstacles to overcome. In ind;strial
engines, due to several signal disturbance sources, that exhibit themselves as background
noise, as well as the cross-talk effects generated from events which are simultaneous or
are at the proximity of combustion in a given cylinder, detection of malfunction in
combustion event in one cylinder poses a very challenging problem. In other words,
differentiating abnormal from normal operation cannot be easily achieved. Fault »
diagnosis of multi-cylinder engines is considered a natural extension of this project for -

future research.

Another area as an extension of this research is the application of the proposed
methodology to other faults that occur in internal combustion engines such as cylinder
and ring wear, injection system problems, cracked teeth in gear train, and loose or

cracked bearings.

Thus potential opportunities for the expansion of the project and application of the
modified DPP and LDB methods to other classification problems in other areas do exist.
One may continue exploring the possible extension of fault diagnosis for developing new
techniques/methodologies in areas dealing with biomedical applications and analyéis of
signal in EEG (Electroencephalogram or brain waves) and EMG (Electromyography or

electrical activity of the muscles).
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In the course of this work we had collaboration with other research groups in our -
department and benefited from accessing their research engines for data collection. .
Similar collaborations with other reseafch teams can be considered in future which can |
lead to a multi-disciplinary research project in the areas of vibration analysis, signal -

processing, automatic control, internal combustion engine research, and clean energy.
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