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Abstract 

This thesis presents modeling of the mechanics and dynamics of circular milling operations. 

With the recent advances in CNC machine tools which have high contouring accuracy, the 

circular milling operations are used in high speed opening of pockets in die, mold and aerospace 

machining industry. While the cutter rotates around the spindle axis, it follows a circular-tro-

choidal path, avoiding momentary pauses to change feed directions. The cutter engagement con­

ditions, hence the chip thickness, the cutting force directions and amplitudes, and the dynamic 

stability of the milling process continuously change in circular milling operations. This thesis pre­

sents the first research in modeling the mechanics and dynamics of circular milling operations in 

the literature. 

The kinematics of the chip removal generation is first modeled by considering the rigid body 

motions of the cutter and cutting edges. The time varying chip load and the resulting milling 

forces are predicted with experimental validation. 

The dynamic stability of the process is complicated by three factors. The system dynamics 

has two delay terms and two periodic behaviours. Additionally the parameters of the coupled dif­

ferential equations have time varying coefficients. First, the stability of the system is solved by 

taking the averages of the periodic coefficients in the frequency domain. The stability law devel­

oped by Altintas and Budak are extended to the circular milling. 

Two alternative methods were studied to improve the frequency domain stability solution. 

The direct method proposed by Olgac and Sipahi, converged to the frequency domain solution 

since the assumptions were identical. The Time Finite Element method proposed by Stepan, 

Bayly and Mann is a numerical, time domain method where the time varying directional coeffi­

cients can be considered. To simplify the time finite element solution and decrease the computa­

tion time, only the most flexible mode in each direction was taken into account. The experiments 

were conducted to verify the proposed dynamic models and the simulation results obtained from 

frequency domain solution and time finite element method were compared against experimental 
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results. Both methods gave reasonable results only for speed independent and low axial depth of 

cut region but they are not able to predict the stability of a circular milling operation accurately. 

iii 



Table of Contents 

Abstract ii 

Table of Contents iv 

List of Tables vi 

List of Figures vii 

Acknowledgement ix 

Nomenclature x 

1.Introduction 1 

2. Literature Review 3 

2.1.Introduction 3 

2.2. Mechanics of Milling Operation 3 

2.3. Dynamics of Milling Operation 7 

2.3.l.Tlusty's Approximate Solution 10 

2.3.2.0pitz's Approximate Solution 12 

2.3.3. Altintas & Budak's Frequency Domain Solution 15 

2.3.4. Bayly's Time Domain Solution 16 

2.3.5.Solution of a Linear Time Invariant Systems with a Time Delay u 17 

3. Mechanics of Circular Milling 19 

3.1.Introduction , . 19 

3.2.Geometric Modeling of Tool and Workpiece Intersection 21 

iv 



3.2.1 .Entry Transient Zone 22 

3.2.2.Steady State Zone 25 

3.2.3.Exit Transient Zone 26 

3.3. Cutting Force Formulation 2 6 

3.4.Simulations and Experimental Results 30 

4. Direct Method for Chatter Stability of Milling Operation 34 

4.1. Introduction 34 

4.2. Direct Method 35 

4.3. Stability of a Single Degree of Freedom M i l l i n g Operation 42 

4.4.Simulations 48 

5. Dynamics of Circular Milling Operation 52 

5.1. Introduction 52 

5.2. Dynamics of Circular M i l l i n g 52 

5.3. Analytical Chatter Stability 55 

5.3.1. Frequency Domain Solution 55 

5.3.2. Time Finite Element Analysis ( T F E A ) 61 

5.4.Simulations and Experimental Results 70 

6. Conclusion 77 

6.1. Conclusion 77 

6.2. Future Research Directions 79 

Bibliography 80 

v 



List of Tables 

Table 5.1 :Modal parameters in x direction 71 

Table 5.2 :Modal parameters in y direction 71 

Table 5.3 : Axial depth of cut and spindle speed values for cutting tests and simulations 72 

Table 5.4 :Common cutting conditions 72 

vi 



List of Figures-

Figure 2.1 Mi l l ing operation 3 

Figure 2.2 :Face, up and down milling 5 

Figure 2.3 :Orthogonal and oblique cutting operations 6 

Figure 2.4 :Dynamic chip generation in milling 8 

Figure 2.5 :Regeneration mechanism in orthogonal cutting 8 

Figure 2.6 :Tlusty's stability model for half immersion up milling 12 

Figure 2.7 :Single degree of freedom interrupted turning model ' 16 

Figure 3.1 :Formation of a slot by using circular milling ( Source: Sandvik Coromant) 19 

Figure 3.2 :Top view of circular milling 20 

Figure 3.3 :Tool positions during operation 27 

Figure 3.4 :Cutting forces in tangential and radial direction 29 

Figure 3.5 Simulated cutting forces in x and y directions 31 

Figure 3.6 Measured cutting forces in x and y directions 31 

Figure 3.7 Comparison of measured and simulated cutting forces at a small time window 32 

Figure 3.8 :Variation of exit angle during the rotation of the tool around the workpiece 32 

Figure 3.9 :Variation of chip thickness during the rotation of the tool around the workpiece 33 

Figure 4.1 degenerative effect in milling operation 35 

Figure 4.2 :A single degree of freedom milling system 43 

Figure 4.3 Comparison of direct method with frequency domain solution 49 

Figure 4.4 Comparison of direct method with experiments 50 

Figure 5.1 :General representation of 2-DOF milling system 62 

Figure 5.2 :Time finite element method developed for interrupted cutting operations 63 

Figure 5.3 Simulated displacements for a stable circular milling operation cutting conditions 

(n= 1500 [rpm] and b=6 [mm], See Table 5.3) 73 

vii 



Figure 5.4 :Simulated displacements for a stable circular milling operation cutting conditions 

(n=7200 [rpm] and b=ll [mm], See Table 5.3) 74 

Figure 5.5 :Comparison of experimental and theoretical results 75 

viii 



Acknowledgement 

I would like to express my sincere gratitude and appreciation to my research supervisor Dr. 

Yusuf Altintas for the valuable instruction, guidance, support and encouragement which he has 

provided throughout my research at University of British Columbia. I would like to thank Nesrin 

Altintas for her hospitality. 

I wish to thank my colleagues in the Manufacturing Automation Laboratory for sharing with 

me their knowledge and experience especially Doruk, Fuat and Kaan. I have a lot of good memo­

ries that I will remember forever. I feel very lucky to share the life with my close friends, Evren, 

Bahar, Gokhan, Kivilcim and my boyfriend, liter, during my stay in Canada. They were with me 

especially during tough times and made my life easier and enjoyable. I would also like to thank 

my friends in Turkey for their continuous presence and support. 

Finally, I am deeply grateful to my beloved family, my mother Zuhal, my father Erol and my 

sister Demet for their lifelong love, encouragement, unwavering support and patience they have 

provided me throughout my entire life. This thesis and my all previous success are dedicated to 

them. 

ix 



Nomenclature 

ax directional milling coefficient in x direction 

ax() average directional milling coefficient in x direction 

aqi coefficients of trial functions 

[A], [B], [G] constant state matrice 

b axial depth of cut 

bum critical axial depth of cut 

c step over feed 

cx modal damping in x direction 

dxy. directional milling coefficient 

[D] directional milling coefficients matrix 

[DQ] average directional milling coefficients matrix 

/ feed 

F resultant cutting force 

Fr radial cutting force 

Ft tangential cutting force 

Fx cutting force in the x direction 

Fy cutting force in the y direction 

h chip thickness 

h- t intended chip thickness 
int r 

X 



hm mean dynamic chip thickness 

[7] identity matrix 

j flute number 

k number of stability lobes 

kx modal stiffness in x direction 

Kc cutting force coefficient 

Ke edge force coefficient 

Kj-C feed cutting force coefficient 

Kje feed edge force coefficient 

Krc radial cutting force coefficient 

Kre radial edge force coefficient 

Kr ratio of radial to tangential force coefficient 

Ktc tangential cutting force coefficient 

Kte tangential edge force coefficient 

Ks resultant force coefficient 

me average number of teeth in cut 

mx modal mass in x direction 

n spindle speed 

«y number of elements 

np angular traverse speed along the tool path 

TV number of flutes 

q element number 

xi 



Rs radius of the slot 

Rc radius of the cutter 

st feed rate 

t time 

t i o c a i local time in an element 

Ts spindle period 

T period of tool's planetary motion 

tc time in cut 

tj- time spent during not cutting 

w number of revolutions 

z axial elevation 

a^- directional coefficients (i, j = x, y, z) 

(3 helix angle 

^ damping ratio 

s phase shift between two waves 

i|/ phase shift 

y- trial functions (1=1,2,3,4) 

TJ test functions (p=l,2 ) 

Ax, Ay, Az vibrations in x, y and z directions 

Au vibrations in chip thickness direction 

A eigenvalue 

A 7 , A ^ imaginary and real part of eigenvalue 

xii 



[O] transfer function matrix 

Re(<i>) real part of the transfer function 

Im(O) imaginary part of the transfer function 

O 0 oriented transfer function 

<S>XX , Oyy direct transfer function in x and y directions 

0 tool center position 

§st' §ex cutter entry and exit angles 

§ p pitch angle 

§ instantaneous immersion angle 

4 » . immersion angle 

C))Q geometric mean of immersion angle 

x time delay and tooth passing period 

co angular velocity of the tool 

Q angular velocity of the tool around the workpiece 

con natural frequency 

coc chatter frequency 

cox tooth passing frequency 

xiii 



Chapter 1 

Introduction 

Milling is one of the most common metal cutting processes in the aerospace and die & mold 
industries to produce wide variety of shapes from flat to angular and freeform surfaces. Periodic 
milling forces may cause deflections on the workpiece which lead to poor and wavy surface fin­
ish. The aim? of the manufacturing research is to understand, model and predict the parameters 
which influence the surface quality, dimensional accuracy, machining cycle time and the cost 
which are important criteria in industry. The problems caused by periodic cutting forces and chat­
ter vibrations can be avoided by selecting conservative depth of cut and spindle speed values and 
by increasing the dynamic stiffness of the machine tool-workpiece structure. However, such solu­
tions result higher cost and loss in productivity. On the other hand, the process parameters can be 
optimized by mathematically modeling the interaction between the machine tool structure, work-
piece, tool, cutting conditions and the machining process. 

Circular milling operation is a new machining strategy to empty pockets in die and mold 
industry, and to remove excess material from solid blanks to produce monolithic parts in the aero­
space industry. In regular milling operation, the tool follows a straight or curved path with a con­
stant immersion as long as the geometry of the workpiece remains constant along the tool path. In 
circular milling, the tool follows a circular trajectory in a plane. Due to kinematics of circular 
milling, the radial width of cut changes continuously which leads to time varying chip loads. 
Variation in chip load causes time and cutter position dependent periodic cutting forces in circular 
milling. Time varying chip loads may cause shifts in chatter stability lobes to higher axial depth of 
cut values for a given spindle speed value. The aim of this thesis is to model the mechanics and 
dynamics of circular milling operation which leads to the prediction of cutting forces and the 
chatter stability of the system. 

The thesis is organized as follows: 
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Chapter 1. Introduction 2 

Chapter 2 covers the necessary background and the review of literature in milling process. 

Fundamentals of milling operation, previous models for prediction of cutting forces and chatter 

stability models are reviewed. 

Chapter 3 is dedicated to the mechanics of circular milling operations. Mechanics of circular 

milling is modeled. The generated static cutting forces are predicted and verified experimentally. 

In Chapter 4, an alternative numerical stability method, so-called the Direct Method, pro­

posed by Sipahi et al. [31] for the stability analysis of linear time invariant time delay systems is 

presented. The chatter stability of single degree of freedom milling system is investigated by 

using the Direct method. The stability lobes simulated by using the Direct method is compared 

with the analytical, frequency domain solution presented by Altintas and Budak [11, 12]. The 

advantages and disadvantages of the Direct method are discussed. 

Dynamics of circular milling operation is explained in Chapter 5. Chatter stability of circular 

milling process is solved by implementing two different analytical solutions. The frequency 

domain solution proposed by Altintas and Budak [11, 12] and time finite element analysis intro­

duced by Bayly et al. [7, 8] are applied. Chatter stability lobes are predicted and compared against 

the experimental results. 

The thesis is concluded with a summary of the performed study and possible future research 

directions. 



Chapter 2 

Literature Review 

2.1. Introduction 

Since milling operations are widely used in the manufacturing industry, significant research 

has been reported in the literature which is reviewed in this chapter. 

2.2. Mechanics of Milling Operation 

Milling operation is an interrupted cutting process in which more than one point of the tool is 

contact with the workpiece. The workpiece is clamped on table and fed towards the rotating cutter 

with TV number of flutes placed in a rotating spindle ( See Figure 2.1 ). 

Rotational speed 

Figure 2.1 : Milling operation 

Unlike in the turning process, chip thickness changes continuously during milling operation 

due to rotation of the tool. Milling operation is classified into two groups namely face and periph-

3 



Chapter 2. Literature Review 4 

eral ( end ) milling. In face milling operations, the entry § s ( and exit <|> angles of the tool are 

different from zero ( See Figure 2.2 ). There are two types of peripheral milling operation: con­

ventional ( up ) and climb ( down ) milling. The entry angle § s t is zero and exit angle § is dif­

ferent from zero in up milling operations. Thickness of the chip is zero at the beginning and 

increases as the tool rotates. The case is vice versa of up milling in down milling. The chip thick­

ness takes its maximum value when the tool enters the workpiece and approaches to zero at the 

end of down milling operation. Since the cutting forces are a function of the chip thickness, the 

chip thickness generation is the main subject of early research [1, 9, 10, 28, 30]. Martellotti [22, 

23] showed that actual path of the flute is an arc of trochoid and therefore the chip thickness has a 

complicated definition. He approximated the chip thickness h when the radius of the tool is larger 

than feed rate as follows: 

h = s(sm§ (2.1) 

where 

s( is the feed rate and (j) represents the instantaneous immersion angle. ( See Figure 2.2 ) 

When the dynamics of milling operation such as vibrations and tool jumping out of cut is consid­

ered, the chip thickness expression given by Equation (2.1) can not explain the true kinematics. 

Altintas et al. [14, 21, 26] developed a more accurate kinematic model in time domain which dig­

itizes the cutting surface and tool locations. The previously and presently cut surfaces are divided 

into small segments and by taking the difference between the two at each time step, more accurate 

chip thickness is evaluated. The model covers both the dynamics of the machine tool-workpiece 

structure and the kinematics of chip formation. 

Cutting forces are dependent not only the chip thickness but also axial depth of cut and cut­

ting constants. The previous researchers, Tlusty&McNeil [35], Kline et al. [17], Sutherland and 

DeVor [32], and Montgomery, and Altintas [26], focused on the relation between the cutting 

forces arid cutting conditions. Armarego&Epp [6] developed a linear edge force model which is 

used in this thesis in order to calculate the cutting forces. 
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y 

Feed 

Face Milling 

y 
4 

Feed 

Up ( Conventional ) Milling 

y 

Feed 

Down ( Climb ) Milling 

Figure 2.2 : Face, up and down milling 
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In the model, cutting forces are defined in terms of axial depth of cut b, chip thickness h and 

cutting constants Kc, Ke: 

F = Kcbh+Keb (2.2) 

Cutting constants Kc, K£ are evaluated through either orthogonal to oblique transformation 

or using the mechanistic model [2, 17, 32, 35, 36]. 

In the orthogonal to oblique transformation cutting, the cutting velocity is straight. ( See Fig­

ure 2.3 ) The cutting coefficients ( Kc, Ke ) are expressed in terms of tool geometry ( rake and 

helix angles ) and material properties ( friction angle, shear angle and shear stress ) [13]. The 

method is applicable when the cutting edge is sharp and the rake face of the tool is smooth. 

Orthogonal Cutting Oblique Cutting 
r| Chip-flow 

Rake face / a n 9 l e 

Figure 2.3 : Orthogonal and oblique cutting operations 
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Mechanistic model studied by Tlusty&McNeil [35], Kline et al. [17], Sutherland and DeVor 

[32], and Montgomery and Altintas [26], is more practical when the cutting edge has a very com­

plex geometry. A set of milling experiments are conducted for specified workpiece material and 

tool geometry at different feed rates ( sf ) and the cutting forces are measured. Axial depth of cut 

b and radial width of cut (immersion ) are kept constant during the operation. By fitting a linear 

relationship to the experimental cutting force data as expressed in Equation (2.2), the average cut­

ting coefficients Kc, Ke are identified. 

2.3. Dynamics of Milling Operation 

When the vibrations of the machine tool-workpiece structure and its interactions with the cut­

ting process are included, the process becomes dynamic. When the process becomes unstable, 

dynamic chatter vibrations occur which is one of the most severe problems in hindering produc­

tivity in industry. Chatter, a self excited vibration, can be best explained by the "regeneration of 

waviness" phenomenon. When there is a relative vibration between tool and workpiece, the flute 

in cut generates undulations on the finished surface. The succeeding flute which also vibrates, 

cuts and leaves wavy surfaces. ( See Figure 2.4 ) The chip removed by the succeeding flute has a 

dynamic thickness because of the waviness on both sides of the chip. The dynamic chip thickness 

and hence the cutting forces may exponentially grow depending on the phase shift between the 

two subsequent waves while the machine tool-workpiece structure oscillates. Since the chatter is 

dependent on preceding pass of the flute, equation of motion of the milling operation has a time 

delay ( x ) term. The fundamental parameters, which affect the stability of dynamic cutting pro­

cess are the time delay (i.e. period of the tooth evaluated from the spindle speed ) and depth of 

cut. Unless avoided, chatter leads to large growing dynamic cutting forces that cause poor surface 

finish and may damage the machine. 
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y 

X 

x-y Cross section at elevation z 

Figure 2.4 : Dynamic chip generation in mil l ing 

Tlusty [34] and Tobias [39] were the first researchers who studied the dynamics of the 

machining operations and explained chatter theory by regeneration phenomenon. Merritt [24] ver­

ified the theory by using feed back control theory. The developed chatter stability theory is mainly 

valid for orthogonal cutting process in which the directions o f cutting forces and excitation are 

constant. ( See Figure 2.5 ) 

Figure 2.5 : Regeneration mechanism in orthogonal cutting 
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The model for chatter stability of milling operation is more complicated because of rotation 

of the tool with multiple flutes and coupled dynamics of the machine in orthogonal directions. 

Unlike in single point cutting, directional milling coefficients that determine the directions of cut­

ting forces and excitation are time dependent. 

Assume that there is only one tooth which is at the radial immersion position <j) measured 

clockwise from the y axis. The feed direction is aligned with the x axis of the machining system. 

Neglecting the axial force for simplicity, there are two rotating force vectors acting on the tooth, 

tangential force F( and radial force Fr (See Figure 2.4),. which are expressed as follows 

[11,12]: 

Ft = KtcbhQ) 

Fr = V , = W * < * > (2.3) 
Fr 

8 = atan— = atari AT 

where K is the ratio of radial to tangential cutting forces. The resultant cutting force on the 

tooth becomes: 

F(4») = KtJl +K2

rbh($) = KJbhib) (2-4) 

where the resultant cutting force coefficient is Ks = KtcJ\ + . When the tool has an 

approach angle, a three dimensional model of the milling force must be considered with a more 

detailed milling model as presented by Altintas [4]. The cutting forces in the feed and normal 

directions can be resolved as follows: 

FXW = -Fcos((|>-e), Fy(<|)) = Fsin(<|>-e) (2.5) 
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The dynamic chip load created by the tooth and vibrations is [11, 12]: 

A((j)) = s?sin<t) + Ax(0sin(j) + Ay(7)cos()> (2.6) 

where o) = co t is the angular position of the tooth for a spindle speed of co [rad/s]. Note that 

the static chip load ^sinc)^) is an input to the closed loop dynamics of the chatter, and does not 

affect the critical stability of the linear, dynamic machining system. Both vibration components 

(Ax, Ay) are dominated by the chatter vibration frequency (coc); so as the resultant cutting force, 

e.g. F(t) = Fei&ct. The vibrations at present t (x,y) and previous tooth period t-x (x^y^) 

can be expressed by [3]: 

x = ^xxdcoc)Fx(coc), x0 = e-^Oxx(mc)Fx(coc) 

y = %y(^c)Fy^ yo = e-^OyyiiasJFy'oiJ (2-7) 

Ax = x-xQ, Ay=y-yQ 

where <t>xx and O are direct frequency response functions (FRF) of the structure in x and 

v directions, respectively. Since the cutting forces F and F are both dependent on the vibra-
x y 

tions in the directions (x,y), the system has coupled dynamics. The stability of milling had been 

advanced steadily by Tlusty [37, 38], Opitz [27], Minis & Yanushevsky [25], Altintas & Budak 

[11, 12] as reviewed by Altintas [5]. 

2.3.1. Tlusty's Approximate Solution 

Tlusty simplified the process by orienting the cutting forces from the directions of orthogonal 

springs to the direction of resultant cutting force as follows [37, 38]) 
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Ax = ( e - ^ T - l)0„(/coc)cos(<|) - Q)Fei<a't 

Ay = -(e-i®^ - l)0^(i(Bc)sin(<|) - Q)Fei(a't 

(2.8) 

Substituting Equation (2.8) in the dynamic chip thickness Equation (2.6): 

h(t) = (e ' ^ T - l)[[sin<|)cos((|)-e) -cos (J) sin ((j) - 9)] ] 
yy 

{Fe'0'1} 

h(t) = (e~ia<x - \)[D(<$>)] xx 

yy 

{Fem<1} 

(2.9) 

The formulation given here orients vibrations and cutting forces from x, y spring directions to 

the direction of chip load §. D(§) is a periodic function and valid only between the entry § ( 

and exit angles § e x of cut. Tlusty used geometric mean of the immersion angle [37] 

( See Figure 2.6 ), rather than taking an average value of [D((j))] as used by Opitz [27] and Week 

[41] as: 

^0 = <kst + 
§ex §st (2.10) 

The direction factors then become constant as: 

ux = sin<})QCOs((j)Q — 9), u = -cos(|>0sin(<|)0 - 9) (2.11) 
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which leads to time invariant and constant oriented frequency response function: 

(2.12) 

> x 

Figure 2.6 : Tlusty's stability model for half immersion up mil l ing 

2.3.2. Opitz's Approximate Solution 

Unlike turning, the directional factors change as a function of spindle rotation, and they are 
2TI 

periodic at cutter pitch angle § p = — . Opitz [27] used the average of the periodic directional 

function of the resultant force as opposed to geometric mean adopted by Tlusty. 
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\-Do\ = T - J [ sin())cos((t)-e) -cos<j)sin((t)-0) ] ^ 

•ksin9)<|> ~cos(2(|>-0) I(sinG)(j) + icos(2(j)-e) 

(2.13) 

v v 
x y 

<!>„ 

The oriented frequency response function of Opitz is also time invariant and constant, but 

different than Tlusty's approach. 

0,2 V 0 + V 0 
x xx y yy 

(2.14) 

Week [41] further considered the influence of direct and cross frequency response functions 

of the machine tool compliance similar to turning. However, while noting the time variation of the 

directional factors, he also averaged them and oriented all the vibrations at the cutting edge loca­

tion. Hence, the time dependency from the chip thickness is still removed, and the chatter stability 

problem becomes a one-dimensional scalar problem since it is oriented in a fixed single direction 

like in turning. It can be solved by classical chatter theory presented earlier in 1950s by Tlusty 

[33] or Tobias [40]. The mean dynamic chip thickness becomes: 

hm = (e - , ' < n «T- \)0QFeia^ (2.15) 

The average of the periodic function corresponds to the average of the dynamic chip thick­

ness, which leads to mean dynamic resultant cutting force, 



Chapter 2. Literature Review 14 

FemJ = Ksbhm = Ksb(e-ia^- l)O0Fe1^1 (2.16) 

For critical borderline stability analysis, the characteristic equation of the dynamic milling 

becomes, 

l + ( l - ^ T ) ^ A w

O 0 ( / G )

c ) ( 2 - 1 7 ) 

where blim is the maximum axial depth of cut for chatter vibration free machining. The sta­

bility lobes are then solved using the same formulation given for one dimensional theory [33, 40]: 

b l i m 2/C f#e(On(m )))mc 

5 V
 v (Jv c''' e (2 18) 

2&7i + s v 60 x = > n = — 
co TVx 

where coc [rad/sec] is the chatter frequency, x [sec] is the tooth passing period, /V is the 

number of teeth on the cutter, k is number of stability lobes and n [rev/min] is the spindle speed. 

i?e(O0) is the real part of the oriented frequency response function that can be evaluated by 

either approximations given in Equation (2.12) by Faassen [15] or in Equation (2.14) by Opitz 

[27]. Tlusty [37] adjusted the stability limit by scaling the system by an average number of teeth 
JV(<|> -<)>,) 

in cut, m - — — . Since Opitz and Week used the average resultant force direction by 
e 2n 

considering the pitch angle, m = 1 must be used in their models. The phase shift of the chatter 

waves can be found from: 

7/w(O n) 
e = 3n + 2vi/->\i/ ='atan — (2.19) 

i?e(<P0) 
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The expression given in Equation (2.18) has been widely used as an extension of orthogonal 

chatter theory applied to milling. 

Tobias [39, 40] invented the stability lobes by relating chatter free axial depth of cut blim 

with spindle speed n. 

Averaging the time varying constants in direct and cross directions takes the maximum 

energy in exciting the structural modes, and the coupling between the vibrations in two directions 

via the cutting process is maintained by Altintas et al. [4]. The coupling treats the dynamic milling 

as an eigenvalue problem. Averaging the dynamic resultant force as proposed by Opitz [27], or 

forcing the resultant force to act at the geometric mean of the cut proposed by Tlusty [38] reduce 

the eigenvalue problem into a scalar one. Depending on the strength of modes in x and y direc­

tions, geometric averaging may shift the energy towards one direction more than the other, hence 

it may not lead to accurate results when the modes in both directions are equally strong or weak. 

2.3.3. Altintas & Budak's Frequency Domain Solution 

Floquet theory was used by Minis and Yanushevsky [25] to solve the stability of milling 

operation in frequency domain. An analytical method which considers the milling process as a 

two dimensional operation is developed by Budak & Altintas [11, 12]. They transformed the sta­

bility into an eigenvalue problem and solved it in frequency domain. They expressed chatter free 

axial depth of cut b l i m as follows: 

b1; 

- 2 T T A , 

l i m NKtc v 

1 + 
2 \ 

(2.20) 

where K( is the cutting coefficient in tangential direction, A ^ and A^ are the real and imag­

inary parts of the eigenvalue A , respectively. Eigenvalues A are calculated by taking the determi­

nant of the characteristic equation of the milling system. Coupling between two orthogonal 

directions JC and y is taken into account in this solution. Later, Altintas [4] extended the theory to 

three dimensions. 
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2.3.4. Bayly's Time Domain Solution 

A new method, time finite element analysis, is used for the time domain stability of low 

immersion interrupted cutting operations by Bayly et al. [7]. The system was assumed to be a sin­

gle degree of freedom system. The interrupted cutting operation was investigated in two parts, 

namely cutting ( forced vibration ) and not cutting ( free vibration ). They divided the time in cut 

into finite elements and estimated displacement on each element during wth pass of the flute as 

follows: 

4 

m = Z S ' T i ( U (2-21) 
(•= 1 

where yi{tlocal) are trial functions, cubic Hermite polynomials, aqi are coefficients of the 

trial functions used for position and velocity boundary conditions of the elements and tlocal is the 

local time on qth element. Single degree of freedom interrupted cutting operation (turning ) is 

shown in Figure 2.7: 

N ^ ^ 

Cutt ing velocity 

tf 

l12 

w-1 
'21 
?22 

i t h 

w-1 

*q2 

w-1 
'n f3 

w-1 

(w -1 ) i n revolution 

Ts 

tc 

*11 
>12 

w 
*21 
l22 

w 
q 1 

*q2 

w 

(w)* n revolution 

Figure 2.7 : Single degree of freedom interrupted turning model 
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where Ts is spindle period, tc defines time spent in cut, tj- = Ts- tc shows time spent during 

not cutting. 

Boundary conditions between elements were set by equating the displacement and velocity at 

the end of each element with the displacement and velocity at the beginning of the next element. 

The interrupted cutting operation is modeled as a discrete system. Equation of motion of the dis­

crete system is rearranged in order to express the coefficients of the estimated displacement 

expression of an element at current pass a^ in terms of the coefficients at previous pass a™(~ 1 

and intended chip thickness hi t: 

aw = [Q]aw-l + [S] (2.22) 

Magnitudes of the eigenvalues of [Q] matrix are determined for stability analysis of the dis­

crete system. If the magnitudes are within the unit circle, the cutting is stable, and it is unstable 

otherwise. 

Later, Bayly's et al. [8] extended their work to two degrees of freedom interrupted systems. 

Two dimensional low immersion milling was used as an example. The rotation of the cutting 

forces in milling operation was considered as a function of immersion angle. The equation of 

motion was written in matrix-vector form in order to extend the model for multi degrees of free­

dom systems easily. The time finite element method is explained in detail in Chapter 5. 

Time finite element method gives accurate results for low immersion interrupted cutting 

operations. The displacement and cutting forces can be simulated by using time finite element 

method but can not be predicted by frequency domain solution introduced by Altintas et al. 

[11,12]. 

2.3.5. Solution of a Linear Time Invariant Systems with a Time Delay 

Sipahi et al. [31] presented an analytical solution for the stability of linear time invariant time 

delay systems. Time delay t in the equation of motion makes the system nonlinear. In order to 
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eliminate the nonlinearity, they replaced the time delay term e x s in the characteristic equation 

with a bilinear expression [29]) 

e~xs = (2-23) 

The solution is exact when the system is critically stable. They checked the stability of the new 

characteristic equation of the system by using Routh Hurwitz array. The details of the method and 

its application to milling system is explained in Chapter 4. 



Chapter 3 

Mechanics of Circular Milling 

3.1. Introduction 

Circular mil l ing is used for removing excess material from workpiece such as enlarging holes 

and forming slots in industry. The tool is following a circular toolpath in xy plane while the 

workpiece is being fed towards the tool as shown in Figure 3.1 

Figure 3.1 : Formation of a slot by using circular mil l ing ( Source: Sandvik Coromant) 

The process is completed in xy plane with a constant axial depth of cut, followed by axial plung­

ing to the workpiece at a fixed increment followed by circular mil l ing again. A s the tool travels 

around the circular path, the intersection of tool and workpiece changes as shown in Figure 3.2. 

19 
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View A: Entry transient 

View B: Exit transient 

Figure 3.2 : Top view of circular mil l ing 
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The tool follows a trochoidal trajectory [22,23,26], and has a time varying orientation along the 

cut which determines variation in chip load and the cutting forces. Circular milling operation is 

studied in three different zones shown in Figure 3.2 namely entry transient, steady state and exit 

transient zones. In this chapter, mathematical modeling of the tool-workpiece intersection is 

explained; prediction of cutting forces is discussed and consequently experimental validation of 

the mathematical model by using A17075-T6 is given. 

3.2. Geometric Modeling of Tool and Workpiece Intersection 

The entry § s t and exit § e x angles of the tool, which change continuously in circular milling, 

must be identified to predict the chip load as well as the cutting forces. The entry <j)5/ and exit § e x 

angles are evaluated from the geometric intersection of tool and circular slot, which needs to be 

milled. The coordinates of a point P on the tool and on the previous path measured from the cur­

rent circular trajectory center O can be expressed as ( See Figure 3.2 ): 

(x-(Rs-Re)smB))2 + (y-(Rs-Rc)coaB))* = R2 ( 3 1 } 

(x + c)2+y2 = R2 

The upper and lower boundaries of the workpiece are given as: 

y = bx y = -b2 (3.2) 

The local immersion angle <)) is measured in clockwise direction from the (yc ) axis normal to the 

finish surface in tool coordinates. The tool may enter the workpiece with non-zero entry angle § s t 

if the upper width of cut is less than the radius of the slot, i.e. ( bx < Rs ) as shown in Figure 3.2. 

As soon as the tool enters the workpiece at point Pen, the entry angle of the tool will approach 

towards zero ( § s t - 0 ) after a short transient phase ( entry transient zone ), but the exit angle 

§ e x will vary as the tool - slot intersection point changes its coordinates with the tool center posi-
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tion, 9 = 6(0- By substituting Equation (3.2) into the previous slot trajectory expression in 

Equation (3.1), the intersection of the previous tool path and workpiece boundaries can be evalu­

ated at the entry Ps and exit Pe points respectively ( See Figure 3.2. ) Out of two solutions, the 

one which has positive x leads to the desired intersection points as follows: 

In the following subsections, the entry § s t and exit § e x angles are expressed in the entry transient, 

steady state and exit transient zones. 

yc> bj + Rc not cutting 

yc>bl-Rc and xen<xs not cutting 

yc>bl-Rc and xen>xs Entry transient zone 

(y3 < bx and xe > xex) -» §st = 0 Steady state zone 

y3<bl and xe<xex Exit transient zone 

y3 = b2 end of cutting 

Here, the sub-indices of each coordinate indicates the point ( P ) they belong to. 

3.2.1. Entry Transient Zone (y3 > b{ ): 

The tool enters the workpiece at point Pen, and its coordinates are given by substituting 

(y = bx ) into the tool expression given in Equation (3.1). 

{xs,ys) = (-c + jRf-Jlbx) (3.3) 

(Xe,ye) = (-c + jR^~bl-b2) (3.4) 
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V J 

(3.5) 

where 

cl =-2(Rs-Rc)sinQ 

c 0 = R}- 2RSRC + b2-2(Rs - Rc)bx cos 6 

The larger of the two solutions from Equation (3.5) yields the x coordinate of the entry point 

Pen . By substituting the expression for the previous slot trajectory ( y2 = R2 - (x + c)2 ) given 

in Equation (3.1) into the tool expression in Equation (3.1), their intersection points 

(xi> y\) a n < ^ F2^x2' yf) c a n ' 3 e f ° u n ( i a s a function of the step over feed c and angular position 

of the tool 0 with respect to circular slot center ( O ): 

x = Ay + B (3.6) 

where 

A=-
2(Rs-Rc)cosQ 

B = -

2c + 2(Rs-Rc)sind 

2R2-c2 + 2RsRc 

2c + 2(Rs-Rc)smQ 

By substituting x into the previous trajectory expression in Equation (3.1): 

y2 = R2-(Ay + B + c)2 

a2y2 + axy + a 0 = 0 
(3.7) 
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where 

a2=A2+l 

ax = 2AB + 2Ac 

a0 = B2 + 2Bc + c2-R2 

The quadratic equation has two roots which yields two intersection points 

P\(x\>y\) a n d P2(xj,y-i) between the tool and circular slot segment ( See Figure 3.2 ): 

(xh2,yh2)=Ayx2 + B, * ^ (3-8) 

where 

A = a2 - 4a2aQ 

The tool does not cut any material behind its front periphery, hence the chip is not generated 

between P^x^y^) and P3(x3, y3) ( See Figure 3.2). The tool starts entering the work material at 

P3(x3,y3) and exits at P2(x2,y2) point. The coordinates of the tool center C and entry point P3 

can be expressed in global slot coordinates as: 

(*3> ^ 3 ) = C^sinB, i^cosG) 
(xc,yc) = «Rs-Rc)smQ,(Rs-Rc)cosQ) 

A triangle is formed by Pen(xen, yen), P3(x3, y3), C(xc, yc) on the tool and the entry angle of 

the tool § s t into the workpiece at point P'en(xen, yen) is evaluated parametrically as: 

(,L\nC + L\r L2 

1 _ „ 1 ~"enC 3 C en3 i n i m 

$ s t ~ a c o s l 1 T T J (3-10) 

where 
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Lzc = J(x3-xc)2 + (y3-yc)2 

LenC = J(xen-xc)2 + (yen-yc)2 

Len3 = J(xen-x3)2 + (yen-y3'2 

From the triangle connecting points P3(x3, y3), C(xc, yc), P2(x2, y2), the exit angle of the 

tool fyex at point P2(x2, y2) can be calculated as: 

where 
L2C = J(x2-xc)2 + (y2-yc)2 

L23 = J(x2-x3)2 + (y2-y3)2 

Points P3(x3, y3), C(xc, yc), P2(x2, y2) are expressed parametrically as a function of tool's 

angular position 8 in Equations (3.8) and (3.9). By incrementing ( 0 ) at discrete intervals, the 

variation of entry § s t and exit § e x angles can be evaluated from Equations (3.10) and (3.11). 

3.2.2. Steady State Zone ( y3 < bx and xe > xex ): 

As the tool enters the steady state zone (y3 = bx ) the entry angle § s t becomes zero and dur­

ing the rest of the cutting operation the entry angle fyst is always zero. The exit angle § e x can be 

evaluated as: 

^2C + ^3C ^23 (3.12) 
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3.2.3. Exit Transient Zone (y3 < bx and( xe < xex) ): 

The entry angle § s t is always zero in this zone, while the exit angle § e x decreases which is 

shown at point Pex(xex, yex). (Figure 3.2 ) By substituting (y = -b2 ) to the tool expression in 

Equation (3.1), the x coordinate of the exit point can be evaluated as: 

(Xex> yex) 
r dx + Jd]-4d2d0 ^ 

,-b 
(3.13) 

where 

d2 = 1 
dx =-2(^- i? c ) s in6 

d0 = R2-2RsRc + b2 + 2(Rs-Rc)b2cosQ 

The expression for the varying exit angle <j)eA. as the tool leaves the workpiece can be evaluated 

from the triangle P3(x3, y3), C(xc, yc), Pex(xex, yex): 

•„ - 0. • „ - a c o s ( I " c ; ^ Y ' " 3 ) ( 3 ' 1 4 ) 

V LLexCLl>C 

where 
LexC = J(Xex-Xc)2 + iyeX-yc)2 

Lex3 = J(xex-x3)2 + (yex-y3)2 

3.3. Cutting Force Formulation 

The engagement conditions ( § s t , § e x ) leads to the prediction of varying chip thickness h at 

each tool location ( See Figure 3.3 ) as it rotates. 

The spindle speed ( n ) and angular traverse speed along the tool path ( np ) in [rad/sec] are 

given as follows: 
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to 
2 n n Q = 2 n n £ 

60 60 
(3.15) 

J .y 

— 
""*""*'tif..,t 

" ^ s H V 1 

/ C / w S 4 

*-> 
C 10 

, u , r t « « s w W ' ' ' ' " 

Figure 3.3 : Tool positions during operation 

The feed / and feed rate st are measured along the feed axis of the tool ( xc ), which is tangent to 

the circular tool path as shown in Figure 3.2 and given by: 

f=n{R,-Rc) 

, 6 0 
' Nn 

(3.16) 

The tool is traversed along the circular path at uniform, discrete time intervals ( t ): 
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Q(k) = Q0 + Qkt, ^{(k) = §l0 + (okt k = 0,1,2,... (3.17) 

6 0 and (j)10 are the initial positions of the tool and the first tooth respectively. The tool will be in 

the cutting zone and the tooth / will be cutting chip.only if the following conditions are met: 

where the entry fyst and exit § e x angles are identified along the path as given in the previous sec­

tion. Otherwise the tooth will not cut any chip and contribute zero force to the process at that 

instance. Unless the width of cut varies, the process will be periodic both at the tooth passing fre­

quency as well as at each frequency due to planetary motion. 

As an example, a cylindrical endmill with N flutes and (3 helix angle is considered. The instanta­

neous immersion angle of tooth / , fy, at axial elevation z is expressed as ( See Figure 3.4 ) 

(3.18) 

^ ( 6 ) < Uk) < < U 9 ) 

<>/*) = Mk)+v-mp+z tan (3 (3.19) 

The immersion dependent chip thickness /*• (Figure 3.1) cut by tooth /' is given by: 

hj = stsin§j(k) (3.20) 

The tangential Ftj and radial F • forces (Figure 3.4 ) acting on the tooth / are: 
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Ktch^Kte 

(3.21) 

Figure 3.4 : Cutting forces in tangential and radial direction 

B y scanning all the teeth which are cutting the material, instantaneous cutting forces acting 

on them can be projected in the global coordinate system of the machine as follows: 

N 
FX(Q, o» = X g^j)[(-Ftjcos^-FrJsin^)cosB + (F^.sin^-F^cos^Osine] 

J = l (3.22) 
N 

Fy(&,o» = X gC^H-Fy.cos^ . -F^ .s in^s inG + {Ftjsin^-Frjcosfy)cos9] 
y = i 

N 

FX(Q,$) = I g(bj)[-FtJcosty + B)-FrJsmWj + Q)] 

N 

Fy{B, (J)) = 2 g(<bj)[Ftjsm(<bj + 9)-F /7.cos((j)y. + 9)] 
7-1 

(3.23) 
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3.4. Simulations and Experimental Results 

The circular milling algorithm presented in the thesis is experimentally verified with an end 

mill having Rc - 10 [mm] radius, |3 = 30° helix angle and N = 4 teeth. The cutting condi­

tions were given as follows: the axial depth of cut b = 2 [mm], the step over feed c = 0.9 

[mm]; the feed rate per tooth st = 0.75 [mm/rev/tooth]; the radial width of cut b{ = b2 - 25 

[mm]; the radius of the slot Rc = 10; the spindle speed n = 1000 [rpm]; np = 31.831 [rpm]. 

The work material was selected A17075-T6 with the cutting force coefficients of Ktc = 796.077 

[N/mm2] and Krc = 168.829 [N/ram2]. The edge force coefficients were Kte = 27..711 [N/mm] 

and Kre = 30.801 [N/mm]. 

The simulated and measured cutting forces in global coordinates are given in Figure 3.5 and 

Figure 3.6, respectively. The predicted cutting forces are in close agreement with the measure­

ments. The normal forces, which represent tangential cutting force components, are largest when 

the tool is close to the center of the circular path ( 0 = - ). A detailed view of the predicted and 

the measured cutting forces is given in Figure 3.7. The slight difference may be due to poor syn­

chronization of the measured and simulated forces, as well as slight errors in cutting force coeffi­

cients. Variation of exit angle § e x and chip thickness h due to the angular position of the tool 0 

are shown in Figure 3.8 and Figure 3.9. Exit angle § e x and chip thickness h take their maximum 

values near the circular slot center ( O ). 
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Theoretical Cutting Forces in x Direction 
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Figure 3.5 : Simulated cutting forces in x and y directions 

Figure 3.6 : Measured cutting forces in x and y directions 
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Figure 3.7 : Comparison of measured and simulated cutting forces at a small time window 
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Figure 3.8 Variation of exit angle during the rotation of the tool around the workpiece 
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Variation of Chip Thickness 
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Figure 3.9 : Variation of chip thickness during the rotation of the tool around the workpiece 



Chapter 4 

Direct Method for Chatter Stability of Milling Operation 

4.1. Introduction 

Rotating cutting forces that continuously change direction of oscillation are generated during 

milling operation. As periodic cutting forces excite one of the structural modes of the machine 

tool-workpiece structure, the cutting tool begins to vibrate and the flute in cut leaves a wavy sur­

face on the workpiece. Each flute removes the existing surface and continue to leave a wavy sur­

face behind ( See Figure 4.1), creating chips with waves on both sides. If two waves are in phase, 

dynamic chip thickness stays constant during milling operation and forced vibrations occur in the 

machine tool-workpiece structure. If there is a phase shift between these two waves, the dynamic 

chip thickness and the periodic dynamic cutting forces may increase exponentially, and the 

machine tool-workpiece structure experiences self excited vibrations called chatter. Chatter vibra­

tions are dependent on the previous tooth pass, hence the mathematical representation of dynam­

ics of milling operation contains a time delay term. 

A new analytical method, called Direct method, was developed for the stability of linear time 

invariant time delay systems by Sipahi et al. [31]. The difficulty in investigating the stability of 

time delay systems is that they have infinite number of roots, and up to now there have been no 

methods reported to find exact solution. 

Direct method is an exact and a general solution to stability of time delay systems, and it can 

be applied to milling process for assessment of stability lobes. In this chapter, Direct method is 

introduced, then steps followed for implementation to single degree of freedom (SDOF) milling 

operation are described. The stability lobes constructed from Direct method are compared to the 

stability lobes simulated by using frequency domain solution developed by Altintas et al. [12] and 

experimental results presented by Bayly et al. [8]. 

34 
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y CHATTER VIBRATION 
dynamic 
chip vibration marks 

left by tooth (j) 

I-

kx 

FORCED VIBRATION 

constant chip load 

static chip 
(no vibration) 

Figure 4.1 : Regenerative effect in mil l ing operation 

4.2. Direct Method 

A general time delay expression [31] in state space form given by following equation: 

where; 

x(n x 1) state vector, 

[d]n x „, [B]n x n , [ G ] n x n constant state matrices, 

[B]nxn state feedback matrix, 

[G]nxn derivative part o f control, 

x time delay ( x > 0 for causality reasons ) 

Dynamic behavior o f a time delay system is investigated by calculating roots of characteristic 

equation. B y taking Laplace transformation of Equation (4.1) the time delay expression can be 

represented in s-domain: 

x(t) = [A]x(t) + [B]x(t-T) + [G]x(t-x) (4.1) 
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sx(s) = [A]x(s) + [B]e~xsx(s) + [G]se~xsx(s) (4.2) 

(sI-[A]-[B]e-™-[G]se-™)x(s) = 0 (4.3) 

The characteristic equation of the time delay system is the determinant of Equation (4.3). 

Three different states are used to describe the dynamics of a system i.e. stable, unstable and criti­

cally stable state. Critically stable conditions form a boundary between stable and unstable condi­

tions. The main goal is to identify time delay values x at which the dynamic system is critically 

stable. D Subdivision method [19] is used in Direct method. According to D Subdivision method, 

there are regions, so-called pockets, in which the number of stable and unstable roots are fixed. 

Therefore the characteristic equation of the time delay system given by Equation (4.4) has at least 

one pair of purely imaginary roots s = ±corz while crossing the boundaries between these 

regions, co,. defines frequency in [Hz]. The time delay values x corresponding to the purely imag­

inary roots s = ±cori represent transition from a stable state to an unstable state or vice versa. 

Equation (4.4) has infinite number of roots because of the time delay term e~xs. Therefore in 

order to simplify solution of the characteristic equation ( Equation (4.4)) time delay term e~TS 

can be replaced with a bilinear expression [29] shown below: 

CE(s, x) = det(sl- [A] - [B]e~xs - [G]se~xs) = 0 (4.4) 

e 
l-Ts 
l + Ts 

(4.5) 

The equality given by Equation (4.5) is exact and valid only when the time delay system is in crit­

ically stable state (the time delay system has purely imaginary roots s = ±cori ). The relation 

between the time delay x (positive real number) and T (real number) is written as: 
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1 - ico T 
e m ' T = c o s c c > T - z ' s m c o / r , = 

r r 1 + i<orT 
(4.6) 

r i+Kr)2 
cosco^x = - , sinco r x = (4.7) 

tan 
co/c sinco r x 

1 + cosco/c 

2corT 

l + ( c o r J ) 2 

1 
1-(GVT)2 

1 + 

= corT = corT+ In 

1 + (<orT)2J 

(4.8) 

x = —[atan(co„7) + In] (4.9) 

where / = / Q > / Q + 1, / 0 + 2, / 0 + 3;' . . .oo , ' i s t h e smallest positive integer number that 

makes the time delay T given by Equation (4.9) greater than zero. After substitution of bilinear 

expression ( Equation (4.5) ) into the characteristic equation given by Equation (4.4), resultant 

characteristic equation which has n number of roots is obtained as a function of 5 and T: 

CE(s, T) = detl si- [A] - [B][ - [G]sf 1 T s 

l + Ts l + Ts 
(4.10) 

CE = det 

f 
s . . 0 ~An . •• ^ln 

f 
• -Bin 

-s 
~Gn . • Gu 

0 . •
 s . f^nl • V '' Bnn pm • • Gnn JJ 
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( , In 
CE(s, T) = £ mrsln-r + £ brsn~r = 0 (4.11) 

a + r 5 ) \ r 0 ; , r 0 

where w r = mr(T) and 6 r is an integer. Equation (4.11) is multiplied by (1 + Ts)n to elim­

inate the denominator, hence new characteristic equation becomes (2n)th order polynomial: 

2n 
CEnew(s,T) = X ars2n~r = 0 (4.12) 

k = 0 

where ar = ar(T). Although order of the characteristic equation of the time delay system 

( Equation (4.11) ) increases, both equations ( Equation (4.11) and Equation (4.12) ) have the 

same imaginary axis crossings, furthermore Equation (4.12) is easier to solve. 

By using the coefficients of the characteristic equation given by Equation (4.12), elements of 

Routh-Hurwitz array [20] are formed to find the purely imaginary roots. The idea behind Routh-

Hurwitz is to find number of unstable roots without solving the characteristic equation of time 

delay system. The information about stability of the time delay system can be obtained by using 

only the coefficients of the characteristic equation ( Equation (4.12) ). The new characteristic 

equation of the time delay system (Equation (4.12)) can be extended as follows: 

2n 2n -1 , 2n-2 A , ^ 
a0s + a{s + a2s + ... + a2n_ xs + a2n = 0 (4.13) 
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Since the order of the characteristic equation of the time delay system ( Equation (4.13)) is 2n, 

Routh-Hurwitz array becomes ( 2 « + l ) x ( 2 n + l ) matrix. The general representation for Routh-

Hurwitz array and calculation of the elements are as follows: 

a2 aA . • a2n • . . 0 . . 0 

a l a3 a5 . • a2n- \ • . . 0 . . 0 

h b2 b 3 . . . 0 . . 0 

. . 0 . . 0 

h h2 h3 . . . 0 . . 0 

. . 0 . . 0 

u2 u2 . . . 0 . . 0 

. . 0 . . 0 

(4.14) 

(2 / i + 1) x ( 2 / i + 1) 

Sample calculations for some of the elements of Routh-Hurwitz array are given by following 

expressions [20]: 
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b. 

a\a2-a0a3 
a. 

ala4-a0a5 

c, = 
bxa3 — a^b2 

(4.15) 

di = 
clb2-c2bl 

The number of sign changes ( NS ) in the first column of the Routh-Hurwitz array in Equation 

(4.14) gives the number of unstable roots of the characteristic equation (NU) expressed by Equa­

tion (4.13). Routh-Hurwitz array of a second order system is given as an example: 

-+n = 2^>NS = NU=2 

Positive a2 a4 0 0 
Negative a 3 0 0 0 
Negative b2 0 0 0 
Positive 0 0 0 0 
Positive 0 0 0 0 j 5 x 5 

There are two special cases that have to be taken into account when using Routh-Hurwitz array 

[20]. Some difficulties occur in the calculation of number of sign changes in the first column of 

Routh-Hurwitz array when only the first element of any one row is zero and the rest of the ele­

ments are nonzero, or all the elements of one row are zero. To solve the first problem, zero in the 

first column of the row is replaced by a small positive integer number v or the characteristic 

equation of the system is multiplied by s + d where d is an arbitrary positive number. In the sec-
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ond case, the zero row is handled by taking derivative of the equation formed by using the ele­

ments of the row above the zero row, then the elements of zero row is replaced by the coefficients 

of the new equation. 

The elements in the first column of Routh-Hurwitz array given by Equation (4.14) are a func­

tion of T. By scanning T from - co to oo various Routh-Hurwitz arrays are obtained representing 

the time delay system. The number of sign changes in the first column may change between sub­

sequent T values. When the number of sign changes is different from the previous one, an imagi­

nary axis crossing is assumed to occur. The characteristic equation given by Equation (4.13) has 

two purely conjugate imaginary roots if the difference in number of sign changes between subse­

quent T values equals 2. If the difference is 1, one of the roots is equal to 0. The difference 

( NSprevious - NScurrent ) can be either positive or negative. If the difference is positive, the 

dynamic time delay system may change its state from unstable to stable as following: 

Positive a2 a4 0 0 
Negative a 3 0 0 0 
Negative b2 0 0 0 
Positive 0 0 0 0 
Positive 0 0 0 0 

Positive a 2 a 4 0 0 
Positive s 3 0 0 0 

Positive b2 0 0 0 
Positive 0 0 0 0 
Positive 0 0 0 0 

5x5 

•NS = NU=2 
previous 

NS = NU=0^> T, present 

(4.16) 

5x5 

The purely imaginary roots of the characteristic equation (Equation (4.13)) is evaluated based on 

present T. If T is a negative real number, multiplication of a second order characteristic equation 

( n = 2 in Equation (4.11)) by (1 + Ts)2 brings 2 unstable roots to the time delay system. In 

order to decide whether the state of dynamic system is stable or not, unstable roots coming from 
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negative T have to be considered during investigation of the stability. The second order system is 

stable if: 

NS = NU=0 and T>0 
NS = NU=2 and T<0 

The time delay x is found by substituting the obtained purely imaginary root co,. and present T 

values in Equation (4.9). Investigation of stability of a time delay system is concluded by calculat­

ing the time delay x. 

4.3. Stability of a Single Degree of Freedom Milling Operation 

Dynamics of a single degree of freedom ( SDOF ) milling system and application of Direct 

method to investigate stability of the system are explained in the section. 

Since milling operation is an intermittent cutting operation and the periodic cutting forces 

change direction of oscillation, dynamics of milling operation is very complicated. In general, at 

least two orthogonal degrees of freedom need to be taken into account. Depending on the machine 

tool-workpiece structure, milling system can be simplified to a single degree of freedom system. 

If modal parameters of machine-tool-workpiece structure in one direction are significantly higher 

than modal parameters in other directions, the system is rigid in all other directions and therefore 

considered to be a SDOF system. The system can also be assumed a SDOF system if the radial 

width of cut is small (low immersion angle ). 

A SDOF milling system shown in Figure 4.2 consists of mass mx, dash pot cx and spring kx 

elements. The tool rotates with a spindle speed of co [rad/sec], and the workpiece is fed towards 

the tool with a feed rate of st [mm/rev/tooth]. Immersion angle (cj) = §(t) = co*) is measured 

from positive y axis in clockwise direction, and radial width of cut is defined by entry § s t and 

exit § e x angles. The periodic cutting forces generated in tangential Ft-(t) and radial Frj-(t) direc­

tions at tool-workpiece contact point are calculated as follows: 

Ftj(t) = Ktcbhj(t) 

Frj(t) = Krcbhj(t) 
(4.17) 
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/ represents the flute number Ktc and Krc are empirical cutting force coefficients in tangential 

and radial directions, b is axial depth of cut, h is dynamic chip thickness = § + l)<t)p is 

instantaneous angular immersion of flute /' and § p is the pitch angle of the milling cutter. 

Figure 4.2 : A single degree of freedom milling system 

Dynamic chip thickness hp) is expressed in terms of feed rate (st), instantaneous angular 

immersion (fy) of / * flute, dynamic displacement of tool in chip thickness direction at current 

(u(t) = Uj) and at previous (u(t-x) = Uj_ L ) passes: 

hp) = stsm$j+ {u(t - x) - u(t)} (4.18) 

Dynamic displacements in chip thickness direction {u(t), u(t-x)} can be expressed as a func­

tion of structural vibrations in x direction: 

{u(t - x) - u(t)} = {jc(0-*(f-T)}sin<|>- (4.19) 

Time delay x is equal to the tooth passing period — in milling operation. Equation of motion of 
TYco 

the milling system can be described by projecting the periodic cutting forces in tangential Ftp) 
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and radial Frj(t) directions given by Equation (4.17) on x axis. The total periodic cutting force in 

x direction is obtained by summing forces generated by all flutes which are in cut: 

N 
Fx(t) = X g((t>,)[-^.(0cos(t);-Fry(0sin(t);] (4.20) 

7=1 

th 
To determine whether the /' flute is in cut or out of cut a step function g(<t>y) is used: 

Sty) =1 ( 4 . 2 1 ) 

When the periodic cutting forces (Fx(t)) expressed in Equation (4.20) excite the machine tool-

workpiece structure, the equation of motion for the milling system can be represented by: 

mxx(t) + cxx(t) + kxx(t) = Fx(t) (4.22) 

By substituting Equations (4.17), (4.18) and (4.20) into Equation (4.22): 

mxx(t) + cxx(t) + kxx(t) = ^Ktcbax(t){x(t)-x(t-x)} (4.23) 

where 

N 
ax(0 = I -gty)[sm2ty + Kr(l - cos2(|);)] (4-24) 

Kr = — is the ratio between radial (Krc) and tangential (K(c) cutting coefficients and ax(f) is 

time varying directional milling coefficient, which is periodic at tooth passing period. By consid-
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ering only zero order term of its Fourier series expansion, the time variation of the directional 

coefficient is eliminated: 

«*o = -*\"x(t)dt (4.25) 
o 

axQ can be written as a function of instantaneous immersion angle § by substituting t by § into 

Equation (4.25): 

"xo = T - ( 4 - 2 6 ) 

Resultant average directional milling coefficient fx^ becomes: 

axo = |^Q[cos2<|>-2£r<|>-.Krsin2<|>] (4.27) 

By substituting Equation (4.27) into Equation (4.23), the regenerative milling system dynamics is 

reduced to the following delayed differential equation: 

/ M O + M O + M O = ^K(cbax0{x(t)-x(t-x)} (4.28) 

Direct method of Sipahi et al. [31] is applied to the milling system with flexibility in x direction. 

The structural displacement and velocity of the vibrating system are considered as states: 
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X\(t) = x(t) 

x2(t) = xx(t) = x(t) (4-29) 

X2(t) = X j ( / ) = x(t) 

State space representation of the SDOF milling system is formed by substituting the states 

into Equation (4.28): 

1 0 
0 mv 

*i(0 
x2(t) K + 2KtcbaxO ~Cx 

xx(t) 

x2(t) 

0 0 X\(t — x) 

x2(t - x) 
(4.30) 

In order to express the equation of motion in the form of 

x(t) = Ax(t) + Bx(t-x) + Gx(t-x) ( Equation (4.1) ), Equation (4.30) is multiplied by the 

inverse of 1 0 
0 w v 

r 1 - l 
*i(0 1 0 

- l 

x2(t) 0 mx_ k+-K,ha tcu^x0 

Xl(t) 

x2(t) 
1 0 
0 

0 0 

2KtcbaxO 0 

x^t-x) 

x2(t-x) 
(4.31) 

where 

[A] 2x2 

0 1 

M-kx + \Ktcbaxo) ^r(-cx) 
mx 2 mx 2x2 

[B] 2x2 

- 0 0 

2x2 

2x2 
0 0 
0 0 2x2 
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Since [G] is a zero matrix, the milling system is called a retarded time delay system and 

therefore characteristic equation of SDOF milling system can be found by substituting only [A] 

and [B] matrices into Equation (4.10): 

CE(s, T) = det 

CE(s, T) = det sl-

0 
r-k+-Ktrba} x 2 *c x 

l-Ts 
l + Ts 

2x2 

' \ K t M x 

2x2. 

(4.32) 

= 0 

To simplify the solution of the characteristic equation, Equation (4.32) is multiplied with 

(1 + Ts)2, and the new (2n)th = 4th order characteristic equation with a form similar to Equa­

tion (4.13): 

4 3 2 

a0s +axs + a2s +a3s + a4 = 0 

a^T2 

CxT1 

a , = - ^ + 2T 
mx 

a2 = 
_kxT2 + 2cxT-Ktcbax0T2 

+ 1 

_ 2 k

X

T + C x - K t c b a x O T 

a4 = 

(4.33) 

By using the polynomial coefficients a0, ax, a2, a3, a4 given by Equations (4.33) and (4.15), 

the elements of Routh-Hurwitz array are evaluated: 
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a0 a2 a4 0 0 

ax a3 0 0 0 

bx b2 0 0 0 

d, 0 0 0 0 

(4.34) 

The elements of Routh-Hurwitz array given by Equation (4.34) are functions of (T) and axial 

depth of cut b. By scanning T from -co to oo for a desired axial depth of cut b, Routh-Hurwitz 

arrays are evaluated and the number of sign changes in the first column of each array is detected. 

For the corresponding T values, where the number of sign changes varies, the characteristic equa­

tion of the SDOF milling system given by Equation (4.33) is solved based on the present value of 

T to find purely imaginary roots s = ±(ori. Minimum positive integer / 0 which makes the tooth 

passing period x greater than zero is found by substituting present value of T and corresponding 

positive value of cor into Equation (4.9), and by incrementing the / 0 by one, tooth passing period 

values of x are evaluated. Spindle speed (n), where the milling system behaves critically stable 

for the given axial depth of cut b, can be obtained as: 

(435) 
yVx 

The stability lobes of the SDOF milling system can be evaluated by repeating the given steps 

for the specified range of axial depth of cut b. 

4.4. Simulations 

A MATLAB program has been developed to evaluate the validity and applicability of the 

method applied to the milling stability problem. The stability lobes are simulated by using both 

the Direct method and the frequency domain solution proposed by Altintas et al. [12] and com­

pared against each other. 
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In the simulations, a cylindrical end mill having Rc = 9.525 [mm] radius with 2 flutes is 

used for slotting operation. A l 7050T6 is selected as workpiece. The dynamic parameters of the 
4 

SDOF milling system in x direction are natural frequency (£>nx = 500 [Hz], stiffness kx = 10 

[N/mm] and damping ratio \ x = 0.05. Since the stiffness values in y and z directions are 

assumed to be 10 times greater than the stiffness value in x direction, the milling system is consid­

ered as rigid in y and z directions. The cutting coefficients in tangential and radial directions are 

Ktc = 900 [N/mm2], Krc = 270 [N/mm2]. Axial depth of cut b is scanned from 3 [mm] to 25 
-2 -7 

[mm] and T is swept from -6x10 to-1x10 .The step sizes for axial depth of cut b and T 
_7 

are Ab = 2 [mm] and AT = 1 x 10 . The purely imaginary root of the characteristic equation 

s = (ori show chatter frequency coc for given axial depth of cut b and tooth period x. 

The simulated stability lobes are shown in Figure 4.3, where frequency domain solution and 

direct method are in consistent. Also, if point A ( b = 4.99742 [mm], n = 5000 [rpm] ) in 

Figure 4.3 is considered, both methods give the same chatter frequency coc = 550.6 [Hz] as well. 
Stability Lobes 

25 

H - ^ L 
b=4.99742 mm | 
n=5000 rpm I 
coci=550.66lHz j 

0 02 04 0.6 0.8 1 1.2 
Spindle Speed [rpm] 

14 16 1.8 
4 

x 10 

2 

Figure 4.3 : Comparison of direct method with frequency domain solution 
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Stability lobes are also constructed for different cutting conditions in order to compare the 

Direct method with experimental results published by Bayly et al. [8]. In the experiments, a cylin­

drical end mill having Rc = 9.525 [mm] radius with one flute was used. Modal parameters in x 
3 

direction were natural frequency a>nx = 146.5 [Hz], stiffness kx = 2.18 x 10 [N/mm] and 

damping ratio t,x - 0.0032. Setup of the experiment was designed in such a way that stiffness 

values in y and z directions are more than 20 times greater than the stiffness value in x direction. 

The cutting coefficients in tangential and radial directions were Ktc = 550 [N/mm2], Krc = 200 

[N/mm ] respectively. The ratio between time in cut tc and total time was p = 0.162. 

In the simulation, scanning range for axial depth of cut b is from 0.3 [mm] to 3.9 [mm] and 
-1 -4 

for T is from -3 x 10 to -1 x 10 . The step sizes for axial depth of cut b and T are 

Ab = 0.3 [mm] and A r = 5 x l 0 5 . The simulated stability lobes and experimental results are 

shown in Figure 4.4. They are in good agreement. 

Stability Lobes 

1 1 1 
Direct Method 

o Stable Cutting 
• Unstable Cutting 
• Stability Border 

0 1 i i \ i i L 
2600 2800 3000 3200 3400 3600 3800 4000 

Spindle Speed [rpm] 

Figure 4.4 : Comparison of direct method with experiments 
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The disadvantage of the Direct method is its long computational time. The MATLAB pro­

gram for Direct method takes approximately 1 day. The most time consuming part of Direct 

method is scanning of T values with very small increments between -co to oo for each axial 

depth of cut b value. Later, Sipahi & Olgac improved their method by including a new algorithm 

and the computational time for new method ( CTRC method ) is same as the frequency domain 

solution. 



Chapter 5 

Dynamics of Circular Milling Operation 

5.1. Introduction 

Chatter is a self excited vibration originated by regenerative effect caused by phase shift 

between two successive waves left on both sides of the chip during circular milling operation. 

Since the poor surface finish, tool breakage, tool wear and large dynamic loads on machine tool 

structure are the main outcomes of chatter, dynamics of the circular milling operation has to be 

investigated in order to increase the quality of the process and material removal rate. Dynamics of 

regular milling operation has been summarized in Chapters 2 and 4. Dynamics of circular milling 

operations is more complicated than regular milling operations due to the planetary motion of the 

tool around the workpiece. Cutting forces are periodic not only at tooth passing period but also at 

period of circular motion of the tool around the workpiece. Although variation in entry § s t and 

exit <|> angles of the tool brings additional complexity to the dynamics, varying radial depth of 

cut may cause a shift in stability lobes. In this chapter, dynamic cutting forces are discussed and 

two analytical approaches, namely frequency domain solution presented by Altintas et al. [4] and 

time finite element method developed by Bayly et al. [8], are used to investigate the chatter stabil­

ity of circular milling. Finally the theoretical stability lobes are compared with the experimental 

results. 

5.2. Dynamics of Circular Milling 

Dynamic cutting forces excite the machine tool-workpiece structure in global x and y direc­

tions and form dynamic displacements. Dynamic displacement in chip thickness direction is eval­

uated in terms of tool's angular position, 9, instantaneous immersion angle <|>. of tooth /, and 

vibrations in global coordinates as follows: 

h(Q, fy) = JfSinCty) + Axsin(9 + fy) + A.ycos(9 + fy) (5.1) 

52 
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where 

h(fy) = stsinfy + Axc(t)sinfy + Ayc(t)cos^j 

Axc(t) = Ax(*)cos9-A>'(/)sin0 

&yc(t) = Ax(0sin8 + Ay(Ocos0 

5fsin((|).) defines the static part and Ax(/)sin(0 + <|>.) + Ay(*)cos(0 + fy) represents the dynamic 

part of chip thickness in Equation (5.1). h(fy) is the dynamic chip thickness in tool coordinates, 

xc and yc. Axc(t) = xc(t)-xc(t-x) and Ayc(t) = yc(t)-yc(t-x) express difference 

between dynamic displacements at previous and current cuts in xc and yc directions. 

Ax(t) = x(t)-x(t - x) and A.y(t) = y(t)-y(t - x) show the same difference in global coor­

dinates. Since the static part has no effect on stability [3], s^s in^) can be eliminated from the 

chip thickness definition in Equation (5.1) and the resultant dynamic chip thickness expression 

becomes: 

Dynamic cutting forces acting on tooth / in global coordinates F •, Fy- can be evaluated as a 

function of cutting coefficients Ktc, Kr, axial depth of cut b, chip thickness h, angular position of 

the tool 0 and instantaneous immersion angle of tooth / as follows: 

h(Q,fy) = Ax(Osin(0 + ()>;) + A>;(Ocos(0+ ()>,.) (5.2) 

FX(Q, fy) = -Ktcbh(Q, fyHcosCe + <t>.) + tfrsin(e + fy)] 

Fy(Q, fy) = -Ktcbh(Q, ());)[-sin(0 + fy) + /C rcos(0 + fy)] 
(5.3) 

By substituting Equation (5.2) into Equation (5.3): 

(5.4) 
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where 

E = 9 + (5.5) 

Total dynamic cutting forces Fx, Fy are calculated by summing the forces generated by each 

tooth j Fxj, Fyj in Equation (5.4): 

FX(Q, 4,) = £ Fxj 

j= i 

Fy(d, *) = x ^ 
(5.6) 

{F(0} = ^ C 6 [ D ( 0 ] { A ( 0 } (5.7) 

where 

[0(01 = ^xx ^xy 

dyx ^yy_ 

is directional milling coefficient matrix and 

drr, d „ „ d „ r , d,n. are directional milling coefficients in global coordinates which show the 

direction of excitation as the tool rotates during circular milling operation given by: 
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N 
d

xxi^ <t>)= £ gjfy) [~Kr - s i n 2 £ + Krcos2E] 
j= i 

N 
dxy(Q> <l>) = T.-gjty) [-l-Krsin2E-cos2E] 

j ° x (5.8) 
N 

dyx(Q, ((>) = X gjfy) [1 - cos2E-Krsin2E] 
j= i 

^ ( 9 , ())) = ̂  g/ty) [ - * r - t f r c o s 2 £ + s i n 2 £ ] 

5.3. Analytical Chatter Stability 

In this section, two analytical models, namely frequency domain solution developed by Alt­

intas et al. [12] and time finite element analysis proposed by Bayly et al. [8] are applied to the sta­

bility of circular milling process. 

5.3.1. Frequency Domain Solution 

The frequency domain solution introduced by Altintas et al. [12] is a practical method for the 

assessment of stability of milling operations that defines the dynamics in terms of material prop­

erties, tool-workpiece intersections, tool geometry and frequency response function of machine 

tool structure [4]. The analytical model is based on linear system, and the circular milling dynam­

ics need to be simplified based on the physics of the process. 

Directional milling coefficients are periodic at tooth passing period x as well as at period of 

the tool's planetary motion around the workpiece (T =' — = —). Since the problem is very 
p np Q 

complicated from mathematical point of view due to presence of double periodicity, the direc­

tional matrix is expanded for the tooth passing period x:; 
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[D(t)]= X [Dr]eim^ 
r = - oo 

[Dr] = ±)[D(t)]e-iraSdt 
o 

In order to simplify the solution only the zero order term of Fourier series is considered: 

(5.9) 

[D0] = -)[D(t)]dt (5.10) 
x 

0 

Angular position of the tool around the workpiece 9 and time t are written in terms of instanta­

neous immersion angle § to decrease the number of unknown variables in Equation (5.10): 

9 = Qt, = cor —> 0 = — 4> = — <|> 
0 0 H (5.11) 

dQ = —d§, dt = — d§ 
co co 

which leads to the following average directional factor: 

[Z) 0 ] = i- | Z ) ( « 4 (5-12) 

Main differences between frequency domain solution of circular milling and regular milling are 

varying entry § s t and exit § e x angles of the tool that determine the limits of integration in circular 

milling operation. Entry angle § s [ is assumed to be §st =. 0, and exit angle § e x is assumed to be 

§ex = m a x ( . § e x ) t 0 c a r r y o u t t n e integration. Exit angle § e x is taking its maximum value when 
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the tool is close to center of the circular slot as mentioned in Chapter 3. New immersion depen­

dent average directional milling coefficients are given as follows: 

a 

a 
•yy 

2 V / / + 1 H 2 r^H+l H 

Xy 2 W + 1 2 r V / / + l 

V ^ T T T T ) s i n f 2 4 , (2± i y ) + k f 7 7 7 T J cosl 2 * 
2 V / / + 1 7/ 2 

H+ 1 
7Y 

2V//+ 1 H JJ 2 r^H+l H 

(5,13) 

The resultant dynamic cutting forces are defined by substituting the zero order term of Fourier 

series [D 0] ( Equation (5.12)) into dynamic cutting forces expression in time domain given by 

Equation (5.7): 

{F(t)} = l-Ktcb[D0]{A(t)} (5.14) 

where 

axx axy 

*fyx (Xyy_ 

The vibrations {A(/co)} are written in terms of dynamic cutting forces {F(z'co)} and fre­

quency response function of the machine tool structure [O(z'co)]. 

{F(zco)} = l-Ktcb[DQ-\{A(m)} (5.15) 
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A * ( / C 0 ) I = ( l . g - I C D T ) ^ ^ ) ] , 

A y ( / c o ) J 

Fx(m) 
(5.16) 

where 

{ A ( / c o ) } = j ^ i a ) 1 = ( l - e - ' W '̂(°) } 
I A j / ( / a ) J I ^ ( / c o ) J 

[<D(/co)] 
Fy(m) 

J x(/co) 1 

1 ;K'co) J 
As circular milling operation is a two dimensional process, frequency response function matrix 

contains direct Oxx(i(o), O (/co) and cross O (/co), O (/co) frequency response functions in 

global x and y directions. Two degrees of freedom are considered to be orthogonal to each other, 

therefore cross frequency response functions O (/co), O (/co) are zero: 

[CP(/C0)] = 
L O ^ ( / C O ) O v v ( / c o ) 

y y \ 

®xx(m) 0 

yy 0 O v v(/co) 

(5.17) 

Dynamic cutting forces in frequency domain at chatter frequency coc are obtained by substituting 

Equation (5.16) into Equation (5.15): 

e1^ = \KtMDQ](\'e-i^)mmc)]\ >e 
F., 

(5.18) 

>e I-^Ktcb[D0](\-e-'^)[O(icoc)] = 0 



Chapter 5. Dynamics of Circular Milling Operation 59 

The stability problem turns into an eigenvalue problem which is easier to solve for a given 

chatter frequency, co c , and has a nontrivial solution when the determinant equals to zero [3]: 

det[I+ A[00(icoc)]] = 0 (5.19) 

where 
TV A = -—Ktb( 1 - e ' ( ° c T ) is the eigenvalue of the characteristic equation of the system. 

[O 0 (zco c )] 
axx °"xy 

ayx ayy_ 
is the oriented frequency response function matrix and 

characteristic equation becomes a second order polynomial: 

1 0 + A 
axx axy 

_ 0 1 ayx v 
det 

h0A2 + h{Al + 1 = 0 

0 %y(iac) 
= 0 

(5.20) 

where 
h0 = ^ x x i ^ c ^ y y i ^ c ^ x x ^ y y - ^ y j 
h \ = axx®Ji(»c) + ayy(I>yy(iuc) 

A = — L - ± J 2 = A + iAIm 

2h0

 R I m 

Chatter free critical axial depth of cut b l i m is given by: 

NKtc(l-e m<x) 

where 

e l(°cX = coscocx - / s inco c x 
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Critical axial depth of cut b l i m has to be a real number, hence imaginary part of Equation (5.21) 
must be zero: 

blim ~ 
2K 

NK tc 

AR(l - coscocx) + A/msincocx + A / J f l( 1 - coscocx) + A^sina^f 
(1 - COS CO x) (1 - COS CO x) 

(5.22) 

A / m ( l - coscocx) + A^sincocx 
(1 - cos co x) (5.23) 

The ratio between the real A^ and imaginary A I m parts of eigenvalue 
is substituted in Equation (5.22) and resultant critical axial depth of A 

K 
Im sincocx 

A R (l-coscocx) 
cut bUm can be expressed as follows: 

2rcA 
'lim NK 

£ [ 1 + K 2 ] (5.24) 
tc . 

In order to obtain the stability lobes, spindle speeds n that correspond to critical axial depth 
of cut b l i m must be evaluated by using K : 

K sincocx 
(1 - cos co x) 

„ . co„x co.x 
2 sin cos 

2 2 

2 s i n ^ 
2 

= tan - -2 2 
(5.25) 

where K = tanvj/ = tan^-
Phase angle between current and previous cuts becomes: 

cocx - n - 2\y + 2kn - e + 2kn (5.26) 
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where 

k, a positive integer number, represents the number of stability lobes and e = 7 t - 2 \ | / is the 

phase shift between the waves on each side of the chip. Spindle speed n can be expressed as fol­

lows: 

n = §- (5.27) 
Nz 

Stability lobes are formed by plotting the chatter free critical axial depth of cut b l i m with cor­

responding spindle speed n on the same graph. Stability curve is forming a boundary between 

stable and unstable regions. Since the region above the curve represent unstable cutting, chatter 

free ( smooth) surface finish can be generated by choosing cutting conditions below the curve. 

5.3.2. Time Finite Element Analysis ( TFEA) 

Time finite element analysis was established by Bayly et al. [7] for SDOF interrupted cutting 

operations such as milling to predict the stability and prevent chatter vibrations. Later the method 

was extended to 2DOF and higher cases by Bayly et al. [8]. The method can also be used for the 

stability of interrupted metal cutting processes such as circular milling operation. In this subsec­

tion, theory behind the extended time finite element analysis is introduced and application to cir­

cular milling operation is explained. 

A general 2-DOF milling system with an endmill is given in Figure 5.1.The equation of 

motion of the system is: 

N 

;=i (5.28) 
N 

myKt) + cyy(t) + kyy(t) = X gtyftFysmty-F^costy] 
j= i 
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Workp iece j gS f 

-> x 

Figure 5.1 : General representation of 2-DOF milling system 

In order to obtain resultant equation of motion, tangential Ft- = Ktcbhj and radial 

F • = Krcbhj cutting forces acting on tooth / and dynamic chip thickness 

hj = sts'm$j+[x(t)-x(t-T)]sm§j + [y(t)-y(t-T)]cos§j expressions are substituted in 

Equation (5.28): 

[M]hO + [C]x(t) + [K]x(t) = [Kc(<k)]b[x(t)-x(t-T)] + bf0(<b) (5.29) 

where 

[M] = 
m 0 

,[C] = 
cr 0 

,[K] = K 0 
X ,[C] = X ,[K] = X 

0 

0 m^ 0cy. 0 
,x = J'*(0 

I y(t) 

N 

[Kcm = x g ( « K . ) 

N 

/0(<l>) = I gfyX 
j= 1 

-Ktc cos <j)y- sin 4> /-A" r c sin2 - £ , c cos2 4»y—A r̂c sin cos fy-

A:,c sin2 fyj-Krc cos sin AT,C sin cos <t>y- r̂c cos2 J 

-AT/C cos <|) • sin fy-^-csm2 

sin2 $rKrc cos sin J 



Chapter 5. Dynamics of Circular Milling Operation 63 

Time finite element method subdivides the low immersion milling operation in two parts: 

cutting ( forced or chatter vibration ) and not cutting ( free vibration ). The method divides the 

time in cut into multiple finite time elements shown in Figure 5.2 and defines x and y displace­

ments approximately at the beginning and end of each element during each pass as a linear combi­

nation of polynomial trial functions. Displacement of the tool on qth element during wth pass of 

the tooth is: 

*w(0 yd*local) • 
i= 1 

N N N N j ^ N 

C u t t i n g v e l o c i t y Ts 

t f t c 

a « } U2J W i 3 "^} 

( W - 1 ) t h r e v o l u t i o n 

a H H a O H a„J a. '21 
J22 

q 1 *nf3 

( w ) * n r e v o l u t i o n 

(5.30) 

Figure 5.2 : Time finite element method developed for interrupted cutting operations 

Velocity and acceleration on qth element during wth pass of the tooth are: 

4 4 

no = rco = x Ki • y tCiocai)* no = '""co = I ^ • Y/( (5 .3 D 
J = 1 ( = 1 
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where 

Qq\i&q2>Qq3>Q'q4 a r e m e coefficients of the polynomials for qth element and tlocal 

expresses the local time in qth element during wth pass of the tooth: 

q-l 

hocaid) = t - w x - ^ t k (5-32) 
k= l 

where 0 < tlocal ^tq, t defines total time, tk is time length of kth element. If the length of all 

elements are same, tk can be given as follows: 

«y shows the total number of finite elements. Total time passed during cutting tc is: 

tc = X tk (5.34) 
k= 1 

Ji(tlocal), cubic Hermite polynomials that are selected for their boundary conditions, given 

in Equation (5.30) are trial functions: 
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v uj v uj 

I <i U q \ 

^ lq 

y 4 ( w ) = ^ - { - ( M 2 + ( M 3 } 
1 - 9 ^ J 

7.(0)= 1 .7 i (0 ) -0 ,y , (g = 0 ,y ' 1 (g = 0 

Y2(0) = 0, y2(0) = 1, y2(tq) = 0, y2(tq) = 0 

y3(0) = o,y3(0) = o , y 3 ( g = i , y 3 ( g = 0 

y4(0) = 0, y4(0) = 0, y4(tq) = 0, y4(tq) = 1 

Because of the boundary conditions stated in Equation (5.36), the displacement x(t) and 

velocity v(t) at the beginning ( tlocal = 0 ) and end ( tlocal = tq ) of qth element during wth 

pass of the tooth are equal to one of the coefficients. aqi,aq2, aq3, aq4 of the polynomials: 

Displacement x(t) and velocity v(t) on qth element at initial point ( tlocal = 0 ): 

Xihq) = aq\ V^bq) = Uq2 

Displacement x(t) and velocity v(t) on qth element at final point (t l o c a l = tq ): 
q-\ q 

* ( ' c ? ) = fl

93 v(/ e ?) = aq4 where ̂  = wx + £ tk, teq = wz+ % tk 

k=l k=\ 

Time delay displacement of qth element x(t-x) is obtained from the approximately 

defined displacement of qth element x(t) given by Equation (5.30): 

4 i 

x(t-x) = £ a j ; ~ -yft^J (5.37) 
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Since the displacement on qth element x(t) is determined approximately, a non-zero error is 

formed when the displacement expression ( Equation (5.30)) is substituted in equation of motion 

of the 2DOF milling system (Equation (5.29)). A set of test functions, r| (/) p = 1, 2 [16], 

is used for weighting the error. Later weighted error is set to zero by taking the integral of the 

equation of motion. Two vector equations are written for each element. r|,(r) = 1 is chosen in 

order to measure average error and r\2(t) = t^^^t — 1 /2 is selected for linearly increasing 

error. 

f ( 4 ^ ( 4 1̂ ( 4 ^1 
f [M]- £ * 2 i - Y / - T i , +[C]- X ^ - Y r % +[*]• 2 « J - Y r 1 P f*/ O C f l / 

; •=i 

- f 6 - k ( * ) - T l p + [ ^ c ( * ) ] Z ^ - Y / ' l 
° ^ S = l 

(5.38) 
A 4 

- 1 

S = i 

Two algebraic equations for element q are obtained in matrix form by calculating the defi­

nite integral given by Equation (5.38): 

Nu Nl2 Nl3 Nl4 

N2l N22 N23 N24 

aq\ 

I aq4 

Fll P\2 P\3 P\4 

P2\ P22 P23 P2A 

aq\ 

"q2 

Zq3 

Vq4 

w - 1 

(5.39) 

where 

Npi = ^{myt

+[Qyi + ([^-b[Kcm)Ji}^pdt,ocai (2x2) 

cD local (2x1) 

^ r - f ' W ) ] ^ ! ( 2 x 2 ) 
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As [̂ c(<|))] and fQ(§) are dependent on instantaneous immersion angle (|), for evaluating 

Equation (5.39) immersion angle has to be expressed in terms of local time in qth element tlocal: 

tlocal) = 2 n 

9 -1 A 
* local + Z h 

k = 1 
(60/n) CO 

- 1 ^ 
t local + Z lk (5.40) 

The displacement and velocity vectors at the end of qth element ( tlocal = tq ) are equal to 

the displacement and velocity vectors at the beginning of (q + 1 )th element ( tlocal = 0 ) during 

cutting: 

M w

 = f a ( 9 + D i (5.41) 

When the tool is out of the cut ( free vibration ), displacement and velocity relations in one 

direction between finite elements are given as follows: 

I w- 1 

a u 

. « 1 2 . 

anf3 
A. 

anj4 
(5.42) 

where 

[F] = 
0 [M] - l [K] [C] 

_[/] 0_ 

tj- = x-tc is time passed during free vibration (not cutting). 
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Dynamics of milling operation is defined in terms of present and previous revolutions by sub­

stituting the boundary relations between finite elements given by Equation (5.41) and Equation 

(5.42) into Equation (5.39) in order to obtain the coefficients aq\, aq2, aq3, aq4: 

7 0 0 
TV*! 7Y2 0 

0 /Vj N2 

0 0 0 
0 0 0 

0 0 0 

0 0 
0 0 

0 0 

0 0 
N2 0 

N,N2 

flu 

a2l 

a22 

fly 
%2 

0 0 0 

PXP2 0 
0 Pl P2 

0 0 0 
0 0 0 

0 0 0 

0 e[F]tf\ 

0 0 

0 0 

0 0 

7>2 0 
px p2 

flu 

A21 

«22 

anf\ 

anf2 

anF4 

+ 

C n 

Cl2 

C21 

C22 

Cnj\ 

C„f2 

C„f3 

CnF4 

(5.43) 

where 

_ *11 Nn 

^2 = 
NH 

N22 (4 x4) N23 N24_ 

_ 'Pl! Pn P2 = 'Pn Pu 
P21 P22 (4 x4) P23 PTA 

(4x4) (5.44) 

The dimension of global [TV] and [P] matrices in Equation (5.43) is (4«y+4) x (4nf+4) 

and the dimension of global [C] matrix is (4ny+ 4) x 1. Linear discrete dynamical system given 

by Equation (5.43) can be described as: 

aw = [Q]aw~l + [S] (5.45) 
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where 

[N]aw = [P]aw~l + [C] 

[Q] = [N]~i[P] 

[S] = [N]~i[C] 

By verifying magnitudes of eigenvalues of [Q] matrix, stability of 2D0F milling system is 

determined. If one of the magnitudes is greater than 1, the system is unstable. 

In order to investigate the stability of circular milling operations, the application of the time 

finite element method has to be explained. [Kc] and fQ in Equation (5.29) are different from reg-
_ A 

ular 2-DOF milling operation because of the planetary motion of the tool. [Kc] and f0 are depen­

dent on not only instantaneous immersion angle (j) but also angular position of the tool 9: 

y = i 2 

tc 
-Kr - s'm2E + Krcos2E -\-Krsin2E- cos2is 

1 - cos2i?-.ft",.sin2£ -K-Krcos2E + sin2£' 
(5.46) 

N 

/o(*) = I ^ ( ^ P t c 
- sin (()).) cosE - Kr sin ( 4 » . ) sinis 

sin ((()•) sinE - Krsm($j) cosE 

f 

In order to eliminate one of the variables, the relation between instantaneous immersion 
angle <|> and angular position of the tool 9 given by Equation (5.11) ( 9 = &,E = <))• + ^ ) is 

H H 

substituted in Equation (5.46). 

Exit angle § e x (immersion) is assumed to be constant during one tooth passing period and is 

calculated as mentioned in Chapter 3 for the starting condition of each tooth passing period 
( 9 = Q?-^ ,r = 0, 1,2, ... -^-number of tooth passing periods ) while variation of 

co 
exit angle § e x is calculated by time finite element method. 

The planetary motion of the tool is modeled in time finite element method by summing up the 

successive rotations of the tool around itself to form the circular toolpath around the workpiece. 

Global [N], [P] and [C] matrices in Equation (5.43) are different for each tooth passing period 

since [Kc(§, 9)] and f0(§, 9) in Equation (5.46) are changing as the angular position of the tool 

9 alters. 
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Although the immersion as well as time in cut tc varies during circular milling operation, the 

number of finite elements «y is kept constant for each tooth passing period by changing the length 

of elements tk from one tooth passing period to another to make the size of the global [TV], [P], 

[C] and hqi matrices given by Equation (5.43) equal. Time in cut tc is divided in such a way that 

all the finite elements have the same time length during one tooth passing period. 

The stability of the circular milling system is obtained by verifying magnitudes of the 

dynamic displacements at the end of one tooth passing period of the tool around the workpiece. If 

the dynamic displacements increase exponentially, the system behaves unstable, otherwise it is 

stable. The periodicity coming from successive revolutions of the tool around the workpiece is 

ignored during the simulations. 

5.4. Simulations and Experimental Results 
In the previous sections, dynamics of circular milling operation have been introduced and 

two analytical approaches have been explained in detail. In order to verify the chatter stability 

models for circular milling, experiments were held for a range of axial depth of cut and spindle 

speed values, which are given in the Table 5.3. An end mill having Rc = 10 [mm] radius and 

N = 4 teeth was used. A l 7075T6 was used as the workpiece. The tangential and radial cutting 

force coefficients obtained experimentally by using mechanistic approach were Ktc = 796.077 

[N/mm2] and Krc = 168.829 [N/mm2]. The step over feed c = 5.7738 [mm], the feed rate per 

tooth st = 0.1 [mm/rev/tooth], the width of the slot Rs = 25 [mm], the maximum immersion 

angle & m . r = 65° and the ratio between speeds H = 235.6 were determined as cutting condi-

tions for the experiments. Chatter detection is made based on the ratio of dynamic over static chip 

thickness as well as the frequency content of both cutting force and tool vibration. The modal 

parameters in x and y directions given by the Table 5.1 and Table 5.2 are used in both the fre­

quency domain and time finite element simulations: 
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Table 5.1 : Modal parameters in x direction 
Mode Natural Frequency co„ Damping Ratio £, Stiffness k 

Number [Hz] [N/mm] 
1 486 0.0463 9.41 x 104 

2 617 0.0138 38.06 x 10 4 

3 714 0.0175 9.51 x 104 

4 1007 0.0556 2.37 x 10 4 

5 1380 0.0137 155.77 x 104 

6 1874 0.0200 43.4 x 10 4 

7 2270 0.0233 22.57 x 104 

8 2770 0.0184 23.03 x 10 4 

9 3010 0.0183 32.32 x 10 4 

10 4059 0.0083 23.65 x 104 

Table 5.2 : Modal parameters in y direction 
Mode Natural Frequency con Damping Ratio £, Stiffness k 

Number [Hz] [N/mm] 
1 759 0.0315 4.43 x 104 

2 980 0.0444 5.97 x 104 

3 1695 0.0177 82.6 x 10 4 

4 1909 0.0079 272.57 x 10 4 

5 2045 0.0086 219.89 x 104 

6 2395 0.0192 32.55 x 10 4 

7 2770 0.0181 32.69 x 10 4 

8 3010 0.0191 37.94 x 10 4 

9 4045 0.0136 21.13 x 104 
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Table 5.3 : Axial depth of cut (b) and spindle speed (n) values for cutting tests and simulations 
Test no Axial depth 

of cut b 
[mm] 

Spindle speed 
n 

[rpm] 

Stability 
(Experiment) 

Stability 
( T F E A ) 

Stability 
(Frequency) 

1 6 1511 S S S 
2 6 1992 S S S 
3 11 3000 S S US 
4 11 3501 US s S 
5 11 3750 S s S 
6 11 4211 US us US 
7 4188 S s s 
8 11 4600 US us s 
9 11 5201 us s s 
10 5185 S s s 
11 11 5850 S ' • s cs 
12 11 6598 us us us 
13 6594. s s cs 
14 11 7205 us us us 
15 11 7515 us us cs 
16 8 7506 s s s 
17 11 8024 us s s 
18 8 8000 s s s 

S, US and CS are used for stable, unstable and critically stable cuts respectively in Table 5.3. 

Common cutting parameters are given in Table 5.4: 

Table 5.4 : Common cutting conditions 
Workpiece=Al 7075T6 
N=4 teeth (endmill) 
Rc=10 [mm] 
K tc=796.077 [N/mm2] 
K rc=168.829 [N/mm2] 
Rs=25 [mm] 
c=5.7738 [mm] 
st=0.1 [mm/rev/tooth] 

KK235.6 
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Figure 5.3 : Simulated displacements for a stable circular milling operation cutting 
(n=1500 [rpm] and b=6 [mm], See Table 5.3 ) 

conditions 



Chapter 5. Dynamics of Circular Milling Operation 

5 0.5 

x 
0 

0.3 0.4 0.5 
Time [sec] 

1 

0 .5 

-0 .5 ! — 

0.3 0.4 0.5 
Time [sec] 

x l 0

8 F F T of Displacement in y Direction (TFEA) 

4 

3.5 

3 

2.5 

2 

1 .5 

1 0 4 0 1 2 6 0 1 5 0 0 2 0 0 0 2 5 0 0 300C 

Frequency [Hz] 

F F T of Cutting Forces in y Direction (MalDAQ) 5 
x l O 

XL 

c ° n y _ 1 

JLLJ 
4 8 0 7 4 0 1 0 0 0 1 2 2 0 1 5 0 0 2 0 0 0 

Frequency [Hz] 

Figure 5.4 : Simulated displacements for a stable circular milling operation cutting conditions 
( n-7200 [rpm] and b=l 1 [mm], See Table 5.3 ) 
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In order to simplify the solution and shorten the simulation time & required memory for time 

finite element analysis, only one mode is taken into account from each direction. The 4 t h mode of 

x direction and the 1 s t mode of y direction are considered as they are the most flexible modes in 

these directions. The time finite element simulation results for stable ( test 1 ) and unstable 

(test 14 ) cutting and FFT's are given as an example in Figure 5.3 and Figure 5.4. 

The chatter frequency for the unstable cutting condition obtained from time finite element 

analysis is coc = 1260 [Hz] as shown in Figure 5.4. The chatter frequency in the experimental 

result for the same cutting condition is coc = 1220 [Hz]. Since the time length of the elements are 

different for each tooth passing period, the data are resampled in order to take FFT. The differ­

ence between the chatter frequencies is coming from the resampling of the data obtained from the 

displacement simulation. 

Stability Lobes 

0 10 15 20 30 3537.542 46 52 58.5 66 7275 80 90 
2 

Spindle Speed [rpm] x 10 

Figure 5.5 : Comparison of experimental and theoretical results 

The experimental and simulation results are compared in Figure 5.5. The continuous curve, 

the stability curve is predicted in frequency domain by averaging time varying directional factors. 
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Although the directional factors vary both in tooth and circular feed periods, their average leads to 

linear frequency domain solution which is computationally efficient and practical. However the 

frequency domain solution does not lead to accurate prediction of stability pockets and can be 

considered only for speed independent or low axial depth of cut region around 8 [mm]. The time 

finite element simulation considers the time varying directional factors but does not show any 

improvement over frequency domain solution either. Although it is computationally several 

orders of magnitude more costly. 



Chapter 6 

Conclusion 

6.1. Conclusion 

Mechanics and chatter stability of circular milling operations are studied in the thesis. 

First, the mechanics of circular milling is developed by modelling the kinematics of cutter 

motion and intersection with the workpiece. The dynamically changing cutter engagement condi­

tions are mathematically modelled as a function of cutter radius, orbital radius of the tool path, 

spindle speed, step-over feed of the path, and feed rate. Since the immersions, the cutter engage­

ment conditions, change continuously during circular milling, chip thickness and cutting forces 

vary with cutter position and time. The operation is simulated at discrete time intervals and the 

immersions, chip thickness and the cutting forces are predicted for chatter vibration free cutting 

conditions. The chip load and the static cutting forces are calculated and compared well against 

experimental results. 

The circular milling has double periodicity with two time delays and time varying directional 

factors. The stability problem belongs to delayed differential equations with time varying param­

eters. First, the stability of milling with single delays is investigated by investigating the applica­

bility of direct stability method proposed by Olgac and Sipahi [31] for time invariant, delayed 

differential equations. In direct method, the equation of motion for the milling system is defined 

in state space, and the time delay term is replaced by a bilinear expression [29] which is valid 

when the system is critically stable. Routh-Hurwitz array is formed by using the coefficients of 

the characteristic equation, which leads to the stability check of the system for each trial cutting 

speed and depth of cut. It is shown that Direct Method leads to the same solution with Frequency 

Domain stability law proposed by Altintas and Budak [11, 12], but with higher computational 

cost. Direct method still uses the frequency domain mathematical model of the process where 

time varying, periodic directional factors are assumed to be constant by averaging them. It is not 

possible to extend the direct method to the case where parameters are time variant, which is the 

77 
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fundamental issue in circular milling. Hence, the stability of the circular milling is studied in fre­

quency domain by extending the method proposed by Altintas and Budak [11, 12], as well as time 

domain method presented by Bayly et al. [7, 8]. 

The dynamics of the circular milling is modelled in time domain by considering the structural 

vibrations in two orthogonal directions. The dynamic model consists of two coupled differential 

equations with time varying parameters which are periodic at the tooth passing frequency as well 

as circular path frequency. Typically, the circular path frequency is at least an order of magnitude 

less than the tooth passing frequency. The cutting forces which excite the structure have a delay 

term which is equal to the tooth period. The stability is studied in frequency domain by linearizing 

the process as follows. The time variation of directional factors are opened to Fourier Series by 

considering the double periodicity. The circular path frequency is assumed to be a known integer 

ratio of the tooth passing frequency. By taking the average of the directional factors at tooth and 

circular path periods, the equation of motion became time invariant and linear. Also, the time var­

iation of the immersion is neglected by considering the worst immersion which becomes highest 

at the center of the path. The stability of the process is solved by extending the chatter law pre­

sented by Budak and Altintas [11, 12]. The stability lobes obtained from the frequency domain 

solution did not lead to perfect agreement with experimental results due to approximations made 

to linearize the system dynamics. 

In order to include the time varying dynamics of the process, the stability is solved numeri­

cally in time domain. The time finite element analysis presented by Bayly et al. [7, 8] is applied to 

circular milling. The time in cut is divided into multiple finite elements, and displacements on 

each element are defined in terms of shape functions and boundary conditions. The system 

becomes a linear discrete map and the stability is tested by checking the magnitudes of the eigen­

values. Dynamic displacements are simulated and used to determine the stability. Only the most 

flexible modes in x and y directions are chosen in order to reduce the running time and complex­

ity of the MATLAB program. The displacement simulations are compared against the experimen­

tal results and they are not in good consistency because of the assumptions made to simplify the 

solution. As the time finite element method is a linear analysis, the method neglects the saturation 

of the process such as tool jumping out of cut. By taking the difference between the displacements 
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of successive passes and checking whether the tool is in cut, saturation of the process may be 

implemented to time finite element analysis. After determining the elements where the tool jumps 

out of cut, free vibration equations are substituted into the equation of motion matrix of circular 

milling and the simulation is repeated for new conditions. 

Both frequency domain solution and time finite element method give reasonable results at 

low axial depth of cut b values but time finite element method is more time inefficient. Time 

finite element leads to exact numerical solution but the matrix sizes become unmanageable if 

more than one structural mode is considered in each direction. The prediction may improve all 

active modes are considered. However even a simulation of a single mode in each direction takes 

about twenty five minutes on Pentium IV CPU with 1.50 GHz clock frequency. Hence the 

required computational cost and matrix sizes do not make time finite element approach feasible in 

stability lobes. Therefore the circular milling dynamics can be analyzed by the proposed fre­

quency domain solution or computationally efficient, more accurate and new stability laws must 

be studied. 

6.2. Future Research Directions 

The mechanics of circular milling requires further research by considering the helical plunge 

motion of the cutter, which makes the process three dimensional. Only a two dimensional case is 

studied in this thesis. The helical-circular milling is used as an alternative to boring and straight 

plunge milling operations. 

The chatter stability of the circular milling requires further investigation where the double 

periodicity and time varying directional factors can be more accurately considered. The study 

belongs to solution of delayed differential equations with time varying parameters, which is still 

an unsolved problem in the literature. Instead of linearizing the process, time domain simulation 

of the circular milling may need to be developed to verify the feasibility of various, approximate 

analytical solutions. 
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