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ABSTRACT

The effects.of viscous dissipation on the flow phenomena
and heat transfer rate for fully developed Taminar flow thfough
vertical ducts and passages has been analysed under the con-
dition of combined free and forced convection. The fluid
propertfes are considered to be constant except for the variation
of density in the buoyancy tefm‘of the momentum equation. The
thermal boundary conditioh of uniform heat flux per unit length
in the flow direction has been considered. The investigation
js carried out for two geometries; (a) - Circular ducts and (b)
Concentric annuli. The governing momentum and non-linear energy
equations are solved for the circular duct by three methods; (i)
Power Series Method (ii) Galerkin's Method and (iii) Numerical
Integration Method. The so]ﬁtions for the concentric annuli are
obtained by Numerical Integration Method. Results for the vel-
ocity and temperature distribution in the flow field are obtained,
and information of engineering interest like Nusselt numbers have
been evaluated. |

For combined free and forced convection, the momentum
and energy equations are coupled, and hence viscous dissipation
affects both the velocity and temperature fields. The effect of
viscous dissipation on the velocity field is to reduce the flow
velocity near the heated wall(s) and thus it counteracts the effect
of free convection on the velocity field for the present study
of heating in upflow. The effect of viscous dissipation on the

temperature field is to act as a‘'heat source in the fluid and



reduce the temperature differences in the system. Viscous dis-
sipation opposes’the exferhally impressed heating and reduces

the heat transfer rate when the surface transfers heat to the
fluid. . Consequently, Tower Nusse]t number values are obtained
when viscous dissipation is taken into considerafion. The quan-
titative effect of viscous dissipation on Nusselt number is found
to be small for the case of circular ducts. However, for flow
through annular passages and for the corresponding vé]ues of

the same parameters, the effect of viscous dissipation on the

heat transfer rate may not be ignored.
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NOMENCLATURE
Area of cross-section

Specific heat of the fluid at constant pressure

eV e temperature gradient in the flow.direction

4 x area of cross-section
heated perimeter

» equivalent diameter
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-(QR +-pr)D 2
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Radial coordinate
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h

%}e for concentric annuli, dimensionless
0
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-——TEEE———a Rayleigh number, dimensionless
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- Reynolds number, dimensionless

Temperature
Average axial velocity

Axial velocity ' ‘

v
—ﬁw dimensionless axial velocity
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¥u dimensionless

Axial coordinate in flow direction
Coefficient of volumetric expansion
(Ra)]/4

Thermal conductivity of the fluid

T
L, radius ratio, dimensionless

"o
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éUE'fﬁw%7ZE“ temperature function, dimensionless
h
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%w dimensionless
2

Subscripts
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1. INTRODUCTION

In the flow of -all real fluids, viscosity plays an im-
portaht role and when viscous fluids flow on solid surfaces by
and large velocity gradients exist. These velocity gradients
give rise to shear stresses which results in the dissipation of
frictional energy into heat. Consequently in a heat transfer
process for the flow of a real fluid, the omission of viscous
dissipation in the thermal energy balance of a moving fluid
element would be unrealistic from the physics of fluids.

Hallman [7]* and Morton [14] have investigated the effect
of free convection on forced convection and have shown that the
.effect of free convection on the forced velocity field is to increase
the velocity gradients near the walls of_the duct in up flow when
heat is transferred from the surface to the fluid. From the
results of these investigations it seems that the study of the
effects of viscous dissipatidn which is associated with velocity
gradients could be quite interesting in the field of combined free
and forced convection. |

The study of the effects of viscous dissipation can be div-
ided into two broad categories, (i) External flows and (ii) Internal
~flows. A brief survey of the available literature under these two
categories is presented below.

External Flows

For external flows, the effect of viscous dissipation is

found to be quite significant because of the energy generated in

*Numbers in brackets designate references at the end of the thesis.



the boundary layer, and the skin temperatures that are attained |

at very high velocities [8]. Several studies have been made in this

‘regard because the.phenomena of 'Aerodynamic Heating' at high

Mach numbers can cause severe problems due to the temperature
Timitations of structural maferia]s commonly used fn'the man-

ufacture of aircraft parts and missiles. Studies in the area

of Aerodynamié Heating have been reported by Schlichting [22],

Shapiro [23] and Truitt [24] among others.

The study of the effects of viscous dissipation in
natural convection was carried out by Gebhart [5] for flow over
a semi-infinite plate parallel to thé body force direction. He
used the perturbation method and has calculated the first temp-
erature perturbation function for Prandtl numbers from 10'2 to

10%.

He has shown that the magnitude of the viscous dissipation
effect depends upon the dissipation parameter which is small for
most engineering devices with common fluids for the gravitational
field strength of the earth.

Internal Flows

The study of the effects of viscous dissipation in internal
laminar flows can be divided into three parts, (i) Forced convection,
(i) Free convection and (iii) Combined free and forced convection.

(i) Forced Convection

Tyagi [25, 26, 27, 28] in a series of papers has studied
the effect of viscous dissipation in forced convection through non-
circular channels. He has used the method of complex variables and .
has obtained solutions for both Neumann and Dirichlet type thermal

boundary conditions showing that viscoué dissipation has significant



effect on the Nusse]t‘number.

Cheng [3] has studied the effects of viscous dissipation
for flow through regular pd]ygona] ducts using the method of
point-matching. Exact solutions were obtained for the governing
partial differential equations and the boundary conditions were
satisfied only at se]ected.points. He has also obtained résults
for a circular duct and has shown that the effect of viscous dis-
sipation is greater for circu1ar ducts than for non-circular ducts.

(ii) Free Convection

Ostrach [6, 15, 16, 17, 18] has investigated the effects of
viscous dissipation in natural convection flows through channels
formed by two parallel long plane surfaces and has shown that the
flow and heatAtransfer_are not only functions of Prandtl and
~ Grashof numbers but also depend on the dimensionless frictional
heating parameter which may éppreciab]y affect the mode of heat
transfer.

(iii) Combined Free and Forced Convection

The only available work in the field of combined free and
forced convection is that of Ostrach [19, 20]. He has used the
method of successive approximations to analyse the problem of taking
.into account the effects of frictional heating in flow between
vertical parallel plane surfaces and has obtained results similar
to his free convection analysis.

No work seems to have been done to study the effects of
viscous dissipation for flow through circular ducts and annular
passages and is the subJect of the present thesis. In the next

section, the formulation of the problem and the methods of so]ut1on

for the circular duct are presented.



2. SECTION I
CIRCULAR DUCTS



2.1 Formulation Of The Problem

Consider a vertical straight circular duct of constant
cross-section as’shown in Fig. 1. The flow is considered to be
laminar and fu]]y developed both hydrodynamically and thermally,
and is in the vertical upward direction along the poéftive Z-axis.
The thermal boundary condition of uniform heat flux per unit length
in the direction of flow is considered. The fluid properties are
considered to be constant ekcept for the variation of density in
the buoyancy term of the equation of motion. The pressure work
term in the‘energy equation has been_neg]ected..

Under the above mentioned conditions, the differential
form of the continuity equation is identically equal to zero.

The governing momentum and energy equations can be written as [1]*

0= - j—‘{% +#(§32‘1 + -L'ﬁﬁe)—ﬁj, )

CepVe 3T = %”TE 4 Y_'ar> +,u(0h"z> SNCY

For the condition of un1f0rm heat input in the flow dir-
ection and constant fluid properties, the axial temperature grad-

“ient at the wall and for the fluid are constant and equal. Thus

3T = C, where C is a constant.
32

In the above equations density is to be coﬁsidered var-
iable only in the buoyancy term of the momentum equation (1).
This assumption is known to be valid as long as the density var-
iations in'thé flow field are small [9]. Under this condition

the equation of state in the linear form can be written as,

¢

* For details see Appendix C
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FIGURE 1  Coordinate System for Flow Through a Vertical
Circular Duct



(= Q[l'—ﬁ(T—Tw)}, | (3)

where Py denotes the density of the fluid at the corresponding

axial point on the duct wall. The wall temperature is defined by,

- T
T, = -7; + E? %%i? )

where To is the reference temperature at Z = 0.

By choosing the following non-dimensional parameters,
R=ar/p, , V=Ve/U ,
¢= (T-T)/(CugC/aK),

-and inserting equation (3) in equation (1), the following non-

-dimensional forms of the momentum and energy equations are obtained,
2
VVi+Rad +L =0, (4)
2 | 2
Vo -v im0, o
where V j%_z +—é~;[0LR

In equations (4) and (5), Rayleigh number Ra and the

viscous dissipation parameter M are prescribed quantities while

V, ¢ and L are the three unknown quantities to be determined.
From the principle of continuity, for constant fluid

properties, the integral form of the continuity equation can be

written as,

HvzoLA_ = j UdA
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or ”\/o(g . HO{A L ~(6)
In the present analysis for the case of circular duct,

equations (4), (5) and (6) have been solved for the following

boundary conditions:

Boundary Conditions ‘
ft R=1,V=0=:0. (7)

In order to compare the results with viscous dissipation
effects to those without it, the available solution for the latter

case [7] is first presented here briefly.



3. SOLUTIONS
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3.1 Exact Solution Without Viscous Dissipation Term

When the viscous dissipation term is neglected from the
energy equation (2), the prbb]_em does not rerﬁain non-linear any
more, and an exact solution is available [7]. This exact so]vution
in the form of Kelvin functions 1'.s presented in a more simplified
manner below. _

By neglecting the viscous dissipation term, equations (4)

and (5) can be rewritten as,
VV+Ra® +L =0, 0
l ' .
V-V =0 (8)

Since the pressure drop parameter L is independent of the coordinate
system, equations (4) and (8) can be divided by L to give the

following equations:

vvl—\fﬁkﬁafﬁ + 1 =0, NG
Vl@ - V =0 ’ (10)
where \—/: \//\__ , @ = q)/[__ :

Equations (9) and (10) can be combined together to givé,

\74\7'+ )74V =0 -
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A general solution.of equation (11) can be written [13] as,

Vs A.MG(QR)+AQ(TBLO(’(K)+Asker;('zﬁ)vb,%kcé?'(»zR) . (12)

The non-djmensiona] temperature function can be obtained from

equation (9) as,

——

Boglevi] w

where V'V =n* [ Abeig (1R)+ Arbo (1R)- Askets (7R )+ A',,km;(rlk)].

In the present case of flow through a circular duct, the
.ker and kei terms drop out from equations (12) and (13). The
remaining constants A] and A2 are obtained by applying the boundary
conditions V = ¢ = 0 at .the wall. Once V is known, the pressure

drop parameter L is obtained from the continuity equation,

L. oA

ffvdh

The non-dimensional velocity and temperature functions are

then determined from,
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HaVing obtained the velocity and temperature functions,
the Nusselt numbers can be evaluated from the following expression,
M being zero for this case.

Nusselt Number¥*

Nu e +8Mj(§%)1RJQ] ,‘ "
(ovRdR / [VRAR

3.2 Solutions With Viscous Dissipation Term

Now we will deal with the methods of solution of the
problem when the viscous dissipation term‘is included in the energy
equation. Since the pfob]em is non-linear, an exact solution
does not seem possible at present. Therefore the solution for
the present problem was obtained by three approximate but fairly
accurate methods. The three methods used were,

| 1. Power Series Method

2. Galerkin's Method

3. Numerical Integration Method
'3.2.1 Power Series Method

In the theory of bending of circular plates with large
deflection, equations somewhat similar to equation (5) occur and
Way [29] has used the power series method to solve such a problem.

The essénce of this method is that an infinfte series is assumed

* For details see Appendix A



for the function, and after substitutihg this series expressﬁon
in thé differential equation, the unknown coefficients are
Tumped together in the form of a recursion expression. Now
assigning a numerical value to the first coefficient, all
the remaining coefficients of the séries can be determined
from this recursion expression. The values of these co-
efficients are then improved upon by iteration to satisfy
the boundary conditions.

The above method was used to obtain solutions for
V and ¢. Since V and ¢ are symmetrical functions of R, they

can be expanded in series of even powers of R.

15

Let the dimension]éss velocity and temperature functions

v and ¢ be expressed in the form of infinite power series with

unknown coefficients as,

V

Do + DR® + DR* + DR+ - -,

P

where Co’ C], C2 ....... C and D

1° 02 ....... Dn are the

unknown coefficients.

Substituting the power series expressions (15) and (16)

in equation (4) and performing the required differentiations the

Co + C,Rz + CzRészRé*""" » (15)

(16)
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following expression is obtained, |
| (4C+ 16CR + 3¢C,RY + C4C, R )
+Ra (D + DR+ DR+ DR+ Y Lz0. (7))

Now equating the coefficients of terms of 1like powers of R,

the following expressions result,

4¢, + RaDs + L = 0 for R’

» - (18)
16, +PaD, =0 fr R, o)
3¢C; +RaD, =0 for R’ )y (20)
§4C, + RaD; = | for- Qg , o (21)

From the above expressions it can be seen that except for the
coefficients of RO, the coefficients of the remaining powers of R can

be written as;

4n*Cp +RaDy, =0  forn=234. - -w. (2

Now substituting the power series expressions (15) and (16)
in the energy equation (5) and performing the required differentiations

the following expression is obtained,
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(4D, + 16D,R7+ 36 D,R"+ €4 D, RS+ - )
—(Co + CR*+ C1R1'+ C,RE+ - )
+4AM(2CR +4CR 6CRS ) - O,

(23)

In equation (23), the last term within the parenthesis can be

written as,

(QC;R F4CR 4 6CR e )
) 2—?—' -<QnCnR1n—l)l

An-l k-1

- ;Zﬁzn.zk.cnck-g R
= = ' (n+ak-2
R ey ank G G R e (24)

Let An + Ak -2 = S

- Therefore, n+K - | = S
or n = S+1-k |
Since n>1, therefore, K < S,

Thus expression (24) becomes

= [ < s
SZT—' I: E’ bk (S“”’k)csu_-k CK}R . (25)
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Now substituting expression (25)‘1'n equation (23), the

following expression is obtained,

C4D, + 16 DR+ 3¢D,R + 64D*R .- )
~(Co+ CRY+ GR'+ GRE )
+4MZ[Z_4K(S+1-!<)CS+,,< }K =0 . (26)

The coefficients of terms of like powers of R are now equated

to give the following set of equations,

4D, - C, = O - for R, (27)
’éD C+L1M ZQK(SH k>Cs+lkC 0 forR
or (S+I> D,, - C; +4MZQK(S+I k)c G0 29)

for S‘:’)—?.ISN
k < S.

Collecting equations (18), (22), (27) and (28) together,

we have, v
ZIC’ +R&D0+L =0 ’ | (18)

4)’[2 Cn + R.Q--Dn-l = O 'on Nn= QISIL'OO) (22)
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Z'/Dp .‘.Co = 0 ;  , | (27)

. S ' . ' L
11_ (-S+l) D,,- C.+4M gék(su—k)gﬂ_kq =0 - (28)
| | | for\g:l)l;g,....oo .
K<S.

From equations (18), (22), (27) and (28),it can be
seen that knowing the values of C , D  and L, all the successive
coefficients Cﬁ and D can be calculated for any prescribed valués
of Rayleigh number Ra and viscous dissipation parameter M.
Applying the boundary conditions (7) on equations (15)
and (16), the following expressions are obtained,

AtR=1,

]
o

' C) ) - (29)

0.

n=90 " (30)
Substituting the power series expression (15) in the integral
form of the continuity equation (6) and performing the required

integration,the following expression is obtained,

-]

(jo + EE: ~£;nh— = l : (31)
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In order to evaluate these coefficients, the initial
estimates of C0 and D0 were made from the results of the exact
solution as Co and D0 are the velocity and temperature differ-
ence at the centre of the duct. These values were then improved
by iteration so that the coefficients 6btained from equations
(18), (22), (27) and (28) satisfy the boundary conditions (29)
and (30) and equation (31).

Determination of the required coefficients gives the
solution for the velocity and temperature field. Knowing the
velocity and temperature functions, Nusselt numbers were then
evaluated from equation (14). H
3.2.2 Galerkin's Method

The second method used for the solution of the problem
js the Galerkin's Method [2, 10]. By this method an approximate
solution of a differential equation can be obtained by choosing
an expression with a certain system of functions for the unknown
quantity satisfying the boundary conditions and usihg the optimiz-
ation technique, the resulting equations are solved simultaneously
to determine the unknown coefficients of the expression.

Let the dimensionless velocity and temperature functions

be expressed as,

H

V

¢

(1-R*)(C, + C.R + C,RY) (52)
(1-R*)(D, + DR + D,RY), ()

i\
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where C, C], C2 and Do’ Dy, D, are the unknown coefficients. The
factor (1-R2) in expressions (32) and (33) ensuressatisfaction of
the boundary conditions (7).v

| Expressions (32) and (33) are not the exact solutions for V
and ¢ and substituting these expréssions in equations (4) and (5),

we obtain the following expressions which are a measure of the accuracy

of the approximations,

Y 2 4C + 16C,R -4C, - [6C,R = 36 C,R"
+ Ra. (Do + D,R*+ DR -D,R*-DR'-D,R")
+ L,

(34)

o<
]

4, +16D,R- 4D, - 16D,R*- 3¢(D,RY - (¢, +CR?
+CR* = (R CRY = CR® )+ 4M (2¢,R
+4C,R - 2C,R-4C R éCle)af (35)

If expressions (32) and (33) were exact solutions for V and
¢ respectively, then Yy and Y, would be identically equa] to zero.
| Now multiplying Y] with the first, second and third term

respectively of (32), and integrating over the duct cross-section, the

following equations are obtained,

IV, (-R)RdR- 0,

(36)



- } ' 22

SV, (I-R)R*dR - 0

o ‘ ’ ' (37)

¥ G- )ae. 0

(38)

Proceeding in a similar manner and using the expression for

Y, and equation_(33) we obtain,

fY (1-R rzoua 0, )

JYI(I-Rz)de&O ,

(40)

fY(r NRAR- 0.

(41)

After performing the required integrations, the following

combination of linear and non-linear algebraic equations are obtained,

_CO_C' .__Cz +_ZI:__ +%(Do+%l_ +Ql :O) (42)

lo
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-C - L o + D 2 ) =
C. - C, %C2+—Z,- +%_Q_.(__D_f+:b_5___"’%)_o) (43)
—Co _ 7 - C L QQ Do .Dl Dl =
L0 g Bl h)0 W
G _C _C _D, -D -D (e G2
Fn e e rm(s
+_§;__C_,,_C_,,+C,Cl)___ 0, (45)
35 s 5
-C -¢ -C _Do_p,_vb Co
% do 1 3 % 2+ M (
0 G+ GG o4 CC)= 0, (46)
30 60 / o5 ‘
—-CO “Cl —C .-.Dov— 7_D —_D Coz
0 120 20 & 30 —5%+17M(T"
+§j +_C3_2' + COCI +_Z_C0Cl+ C/ CQ):O (47)
72§ 5 105 35 |

In these six equations (42) to (47) there are seven unknowns

Co’ Cys C2, D(;, D], 02 and L to be determined. Therefore an additional

equation is required which is obtained by substituting equation (32) in
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the continuity equation}(G) to give,

C+CI*C :Q.
0 =y _Z; h (48)

Equations (42) to (48) are solved simultaneously by
Powell's method to obtain the values of the unknown coefficients
and‘the pressure drop parameter L. ane the values of the
unknown coefficients are determined they can be substituted in
‘expressions (32) and (33) to give the values of the velocity
“and temperature functions and Nusselt numbers can theh be
'evaluated;
3.2.3 Numerical Integration

The numerical integration method of RunQe—Kutta of
order four was used to obtain the solutions for the governing
differential equations (4) and (5). The method requires the
complete set of functional values V, ¢ and their gradients at
the starting bdundary point and the estimates of the missing
‘initial boundary conditions were made from the exact solution
results. The resulting solutions were then improved by iteration
to obtain the desired solutions satisfying the boundary conditions
(7) and the continuity equation (6) simultaneously.

The error involved in the fourth order R-K method is

5

of the order of h” where h is the step size. A step size of 0.01

was taken in this case and the solutions obtained were checked
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by reducing the step size to 0.001. VIf was seen that the

two sb]utions did hot differ up to six significaht figures.
This completes the methods of solutions for the cir-

cu]ar'duét. In tHe next secfion, the formulation énd‘§o1utions

for the concentric annulus are presented.



4. SECTION II
CONCENTRIC ANNULI
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4.1 Formu]atfon'Of The Problem

Consider the fully developed laminar flow of a fluid
in the vertical upward direction through the annular passage
as shown in Figure 2.

The assumptions made in the formulation of the problem,
and the governing equations in the dimensional form for the
concentric annulus remain the same as for the circular duct
(Seétion I), and are not repeated here. In addition, the
boundary condition of no slip at the walls will still apply.

vHowever, the thermal boundary conditionAwil1 depend on the

'fo1lowing three situations,

Case I: Outer wall heated and inner wall perfectly
insulated.

Case II: Inner wall heated and outer wall perfectly
 insulated.

Case IIT: Both walls heated with equal wall temperatures
 at a given axial position.

Choosing the following non-dimensional parameters,

FL = \P//’y7> >
Vz\j‘i’/ur

G- _(T-Tw)
(CUGCD/4K)




FIGURE 2

FLOW

1200

S ammy o

Coordinate System for Flow Through a Vertical
Concentric Annulus
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the non-dimensional form of the governing equations and the boundary

conditions for Case I, II and III respectively are as follows:

Case I: Outer Wall Heated, Inner Wall Insulated,

First of all we redefine the equivalent diameter and evaluate
it.

Equivalent Diameter

For this case, the equivalent diameter is given by,

Dh= 4 x Area of cross-section
Heated perimeter

_ : N
=av, (1-2%), (49)
where ro = radius of the outer tube
A = vradius of inner tube/radius of outer tube.

Substituting the non-dimensional parameters and equation (49)
in the momentum and energy equations (1) and (2) respective]y,fhe

following non-dimensional equations are obtained,

(t-)‘)zvzv +Rad+L = 0,

(50)



30

(=" V'0 -V« 40 MEf -0

Equations (50) and (51) along with the continuity equation

(6) are to be solved for the following boundary conditions:
Boundary Conditions

At R=>, %%

V
At R- 1 Ve ¢ -0 .‘ (53)

g, | (52)

Nusselt Number

The Nusselt number is g1ven by*

No . L g (1- »)M (& 'RlR]

f¢VRdR/ijdR
Case II: Inner Wall Heated ‘Outer’ Wa11 Insu]ated

Equiva1eht Diameter

For this case the equivalent diameter is given‘by,
Dk = Ao (I— )\2)/)\ : (55)

Using this value for D, in equations (1) and (2), the

non-dimensional momentum and energy equations are obtained as,

(_l__—;l&_)lvz\/ + Ra® +L = O, (56)
(297 -V ilmfll-o. o

* For details see Appendix B
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For case II equations (56).ahd (57) along with the .
continuity equation (6) are to be solved for the following
boundary conditions:

Boundary Conditions

At R= ), V- 0-
V-
d

0, (58)
, |

At R- d¢ -

R

Nusselt Number --

The Nusselt number expression is given by*

[_1 . @ﬁ_—_&)M;( Ram]
Nu - Tovrar/JvrRaR |

Case III: Both Walls Heated

(50)

Equivalent Diameter

For this case the equivalent diameter is obtained as,
Dk - Qvo<l—)>. (61)

‘Using this value for Dh’ the non-dimensional momentum and

energy equations are obtained as,
(l-—/\)lvl\/—#Ra(P-f-L = O, | (62)
(1-2)'V*¢ - V+4 (- /\)1M(§%)1:0, 63)

Equations (62) and (63) along with the continuity

equation (6) are to be solved for the following boundary conditions:



Boundary Condjtions
AER=D>, V-0 -
At R=1, V=20

Nusselt Number

The Nusselt number expression is obtained as*,

-1 s

Nu. - ( ®VRAR / [VRAR
A A

* For details see Appendix B
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5. SOLUTIONS
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5.1 Exact Solution withoﬁt Viscous Dissipation
A general form of the exact solution without viscous
.dissipation [11] for the concentric annulus in the form of Kelvin
functions is presented in a more simplified manner for case I on]y,»
" the approach for the other two casés being similar.
| For case I, outer wall heated, inner wall insulated

equations (50) and (51) reduce to,

V\/+_&Q~__4>+__,_=O, (67)
v‘cp = 0. | (68)
- . (l A.l)lo
Let | = B . (69)
(1=X%)* -
Substituting equation (69) in (67) and (68) and dividing
'equations (67) and (68) by the pressure drop parameter L we obtain

the following equations,
V'V + BRa G +B =0, (70)
Vo -8V =0, (71)

—

_-where | » V = V/L ,'aiz (D/L.

Combining (70) and (71) we obtain,
XY Ty |
V'V + 72 V= 0, (72)
where }?11 = BlRa ' (73)

Equation (72) is identical to (11) and the solution'is
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given by (12)_in Section I and is repeated here.
V= C ber, (1R)+ CJGCLO(YIR)—r C ke, (7R)+ qua'o(?K) . (74)

from equation (70) we obtain,

@:—_B_lé;[B-r V%VJ, . ‘(75)

where . :
VLV } ?1 [_ C bei, (vZR)+ G, bex, (1R) -G ke, (7R)7LC4/(€Y0(7K)J~ (76)

The unknowns C;, C,, C3 and C4 in (74) and (75) are
obtained by applying the boundary conditions (52) and (53). This

fesults in the foj]owing four equations:
0= ¢, bev, (M) + Cobeio (7)) + Cker, ('Z N+ Coke, (0)0), (77)
0- -gga[—fahe'(v)%bv;' (qh)-gkeg’(rp)%% kcn'(ﬂ)]» (78)
0= C ler,(m)+ Cybei, () + Csker, (7) + Gkei,(7), (79)

0= ‘-RL - ;J‘C'Wo (7)+Cobex, (7) - Cg Keg, () + G, ke, (7)]-(8?)

Equations (77), (78), (79) and (80) are solved simultan-
eously to determine the values of the unknown coefficients C], C2,

€, and C

3 4°

Thus V and ¢ can be evaluated and the pressure drop

parameter L is obtained from the continuity equation,
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The non-dimensional velocity ahd temperature functions

are then determined from |
V = §;7' t_ ) <1) = (1> ' L— !
and Nusselt numbers can be evaluated from equation (54).
| The solutions for case II, inner wall heated and outer

wall insulated and for case III, both walls heated were obtained
in a similar manner. |

5.2 Solutions With Viscous Dissipation Term

Now we will deal with the probiem taking intd account
the viscous dissipation term in the energy equation. A power
series method similar to that for circular duct was attempted
without succeés. It appears that Galerkin's method could be
applied for case III where it is easier to set up the temperature
function to satisfy the wall conditions. However, for cases I and
I where one of the walls is insulated,it is difficult to set up
suitable expreséions for the temperature function. Thus the numer-
ical integration method of Runge-Kutta of order four was used to
obtain the solutions. The general procedure for the Runge-Kutta
method is given in section (3.2.3). The step size taken for this
problem was h = 0.01 (1 - 1) where h is the Step size and A is
the radius ratio (ri/ro)' Solutions were also obtained by reducing
the step size but no difference was observed in the solutions up to

six significant figures.
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6. DISCUSSION OF RESULTS

The effects of viscous diseipation on the f]ow.phen-
omena and heat transfer rate as studied from the results obtained
are discussed under two sections, (i) Circular ducts and (ii)
~ Concentric annuli. |

6.1 Circular Ducts

For the circular ducts, we will first discuss briefly
the solution details and then present the results for the ve10c1ty
and the temperature fields and the Nusselt numbers.
6.1.1 Solution Details

A11 calculations were made on an IBM digital computer.
For the exact solution without viscous dissipation effects (M=0),
the Kelvin function terms‘ber and bei were evaluated
in Double Precision Arithmetic giving an.accuracy up to fourteen
significant figures. These functions were evaluated from the expres-
sions in the form of infinite series given in McLach]én [13]. In
the evaluation of the functiens, the eonvefgence was very rapid for
the value of the argument up to eight. |

In the power series method, seven sets of initial estimates
very close to the values obtained from the exact solution results
were used and employing the minimizing and iteration procedure the
final coefficients were obtained. The coefficients of the series
were very fast converging and the maximum number of terms in the
series to be calculated did not exceed more than thirty five.

The Galerkin's method involved the solution of simultaneous
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non-1inear algebraic equations and close enough initial guesses
of the solutibn were very essential for rapid convergence. These
'educated' gquesses were estimated from the results obtained
with the exact solution for M=0.

In the Runge-Kutta's fourth order method,estimates of
the initial guesses of fhe missing boundary conditions and ihe
pressure drop paramefer L were made from the results of the
exact solution,and were then iterated upon to obtain the desired
solution satisfying the boundary conditions at the end point.
The error involved in the Runge-Kutta's fourth order method is of
the order of h5 where h is the step size for integration. Results
for the present case were obtained by taking a step size of 0.01
~and it was noted that theAreduction in step size to 0.001 did
not alter the solution up to six significant figures.

Coming to the accuracy of the methods used, a first
check on the accuracy was carfiéd out by calculating results for
M=0 (no viscous dissipatioﬁ effects) by the three methods and
comparing them with the exact solution results as shown in Tables
1and 2. Table 1] is‘for velocity and temperature functions and
Table 2 shows the Nusselt number values. From these tables it can be
seen that the resy]ts obtained by the three methods are in good‘
agreement with the exact solution. These tables also show that for
non-zero finite values of the dissipation parameter M, the agreement
between the three methods is very good. |

In upflow heating of a fluid the effect of free convection
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is to accelerate the velocity near the wall [12]. To satisfy con-
tinuity, the velocity néar the tube centre is reduced. If the
buoyancy rate is increased sufficiently, then it is theoretically
possible to create flow reversal at the centre of the duct.
However, it is known [7, 24] that just before negative velocity
could occur, the flow becomes unstable and eventually turbulent.
We,'therefore, need to 1imit our attention only up to that value
of Rayleigh number which creates flow reversal. Rayleigh number
as defined in the nomenclature for the present study should not

' exceed 625 to maintain laminar flow. Thus for the present analysis
the maximum value of Rayleigh number used was 625 for the case of
vcircu]ar duct.

| The viscous dissipation parameter is defined as M=Eckert
number/Reyno]ds number. The maximum value of this parameter used
in the present analysis was 5 x 1074,

Now the effect of viscous dissipation on the velocity
and temperature fields and the Nusselt numbers will be discussed.
6.1.2 Velocity Field |

For the case of pure forced convection (Ra=0), the
vve1oc1ty field is independent of the temperature field and hence
viscous dissipation has no effect on the velocity field. However,
for the case of combined free and forced cdnvectioﬁ, the momentum
and energy equations (4) and (5) respectively are coupied and
hence viscous dissipation not only affects the temperature field

but also the velocity field. The measure of free convection is the
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non-dimensional parameter Rayleigh number and as Rayleigh number
increases the coupling becomes more and more strong and hence the
dissipation effect becomes more pronounced.

From the results obtained it ié seen that the effect
~ of viscous diséipation on the velocity field is to reduce fhe flow
velocity near the duct walls and consequently increase it near the
centre. Table 1 shows the inérease in velocity at the centre of the
duct under the influence of viscous dissipation for various values of
Rayleigh number. This trend becomes more pronounced with the increase”
in Rayleigh number. As stated, the reduction in the ve]dcity near |
the duct walls has been observed, however; this data is not presented
here for brevify. From Hallman's [7] investigation it is known
' fhat for the case of upflow heating, the effect of free convection
on the velocity field is to increase the flow velocity near the
duct walls and to reduce it near the centre. Thus viscous dis-
sipafion acts contrary to the free convection (buoyancy) effect on
the flow field. From this {t therefore follows, that fhe effect
of free convection is to increase the shear stress at the wall
whereas the effect of viscous dissipation is to reduce the same.
6.1.3  Temperature Field

The effect of viscous dissipation is to convert frictional
energy into heat and hence it reduces the temperature differehces
in the system when the transfer of heat takes place from the surface
to the fluid. Table 1 shows the temperature differences at the centre

of the duct for various values of Rayleigh number taking into account
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viscous dissipation effect, and it can be seen that the temperature
differences are reduced. This trend is also observed at all
points along the tube radius, however, this data is not presented
here .
6.1.4 Nusselt Numbers

One of the main parameters of engineering interest is
the Nusselt number which is a measure of the heat transfer rate,
and the effect of viscous dissipation on Nusselt number is an
impbrtant aspect of the present ana]ysis. As mentioned earlier,
due to the conversion of frictiona] energy into heat the impressed
.externa1 heating is opposed and the heat transfer rate is reduced.
‘Consequently because of viscous dissipation effect, lower Nusselt
number values are obtained. Table 2 shows the values of Nusselt
numbers for different Rayleigh numbers taking into account viscous
dissipation effects. From this table it can be seen that the
Nusselt number values are reduced and the reduction becomes more
pronounced at higher Rdy]eigh numbers.

6.2 Concentric Annuli

Now wé will discuss the solutions obtained and the viscous
dissipation effects for the three cases of the annular flow.
6.2.1 Solution Details

The exact solutions with M=0 for the concentric annulus
also involved the derivatives of Kelvin functions becaﬁse of the
thermal boundary condition of one wall being insulated. These

functions were evaluated in Double Precision from MclLachlan [13].
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The number of terms required for convergence was of the order

 of 20. The non-linear problem (M>O).was solved by Runge;Kutta
fourth order method in Double Precision and the accuracy of

R-K method was judged by obtaining results for M=0 and comparing
" them with the exact solution results. Table 3 shows the Nussé]t
number values as obtained by the exact solution and Runge-Kutta
method for different values of Rayleigh number. From this table
it can be seen that the results obtained by the two methods are in
good agreement. A further check on the accuracy was made by‘
comparing the results obtained by the two methods for Ra=1 which
~approximates to forced convection flow with the results of Cheng
[4] since no results seem to be available in published literature
for combined free and forced convection through annular passages.
These results were also found to be in véry close agreement.

Now we will discuss the velocity and temperature fields
and the effect of viscous dissipation, for the three cases studied.
6.2.2 Velocity Field

_First of all we will discuss the velocity profiles for
M=0 as shown in figures 3 to 8.

Figure 3 shows the velocity profiles for the case of
outer wall heated, inner wall insulated (case I) for A=0.25.

From this figure it can be seen that as Rayleigh number increases,
the velocity gradients near the outer wall (heated wall) increase.
This increase fn velocity near the outer wall reduces the same
near the inner wall and eventually flow reversal takes place at

Ra=2000. In Figure 4 are shown the velocity profiles for 1=0.5.
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A similar trend is observed here by increasing Ra with flow
reversal taking place now et Ra=4000.

The velocity profiles for the case of inner wall heated,
outer wall insulated (case II) are shown in Figure 5 for x=0.25.
From this figure it can be‘seen that by increasing Rayleigh
number, the velocity gradients near the inner wall (heated wall)
are increased with flow reveréa} occuring at Ra:28x104. Figure
6 shows the velocity profiles for A=0.5 and for this case flow
reversal occurs at Ra:5x104.

For the case of both walls heated (case III), the
velocity profiles for 1=0.25 are shown in Figure 7. This figure
shows that as Ra increases, the velocity gradients near both
~ the walls increase. This increase in velocity near both the walls
reduces_the same near the cehtra] region and eventea11y a reversal
of flow occurs at Ra=6500. Figure 8 shows the velocity profiles
for 1=0.5. The same effect of Rayleigh number is observed here
on the velocity field with flow reversal now occuring at Ra=7000.
6.2.3 Temperature Field

o Now we will discuss the temperature profiles for M=0.
‘Figures 9 and 10 show the temperature profiles for outer wall
heated, inner wall 1nsu1ated for 2=0.25 and 0.5 respectively.

From these figures it can be seen that the temperature differences
are reduced by increasing the Rayleigh number.

Figures 11 and 12 show the temperature profiles for the
case of inner wall heated and outer wall insulated with 1=0.25

and 0.5 respectively. For this case also it can be seen that with
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the increase in Ra, the temperature differences are reduced.

In Figures 13.and 14 are shown the temperature profiles
for the case of both walls heated for A=0.25 and 0.5 respectively.
For this case too, the temperature differences are reduced with
increasing Rayleigh number,

Since the effects of viscous dissipation on the velocity
and temperature field is found to be very small, it is not conven-
ient to present the results graphically and, therefore, a general

trehd is represented by the following tables.

Tables 4 and 5 show the effect of viscous dissipation
lon the.ve1ocity and temperature fields for the case of outer wall
‘heated, inner wall insulated with 2=0.75 for Ra=1 and 1000 res-
'pectively. Table 4 for Ra=1 is almost a pure forced convection
case and it can be seen that there is no significant effect of
viscous dissipation on the velocity field as the velocity field is
independent of the temperature field. However, it can be seen
that the temperature differences are reduced. Table 5 shows that
as Ra has increased, the effect of viscous dissipation on thé
velocity field becomes more pronounced. The velocity near fhe
outer wall (heated wall) is reducéd while it is increased near
the inner wall. The temperature differences are reduced throughout.

Table 6 and 7 show the dissipatidn effects for inner wall
heated and outer wall insulated. From Table 6 it can be seen that
for Ra=1, dissipation parameter M has no effect on the velocity

field but the temperature differences are reduced. As Ra inéreases,
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it can be seen from Table 7 for Ra=1000, that viscous dissﬁpation’
reduces the flow velocity near the inner wall (héated wall). The
temperature differences are also reduced with increasing M.

For the case of both walls heated the effectAof M is
~shown in Tab]es 8 and 9.' From Table 8 for Ra=1, it can be seen
that there is no significant effect of M on the velocity field
though the temperature differences are reduced. Table 9 for Ra=2000
shows that for higher values of Ra,viscous dissipation reduces the
flow velocity near both the wé]]s and the temperature differences.
6.2.4 NUsse]t-Number |

As mentioned earlier viscous dissipation 6pposes the
impressed external heating and reduces the heat transfer rate
resulting in lower values of Nusselt numbers. Figure 15 shows the
effect of viscous dissipation on Nusselt numbers for outer wall .
heated, inner wall insulated with 1=0.25 and 0.5. From this figure
it can be seen that Nusselt numbers decrease with increase in the dis-
sipation parameter M. The reduction in Nusselt numbers becomes more
pronouhced at higher Rayleigh numbers.

Figure.16 shows the effect of M on Nusselt numbers for
inner wall heated, outer wall insulated. For this case too, it can
be seen that Tower values of Nusselt numbers are obtained when
viscous dissipation is taken into account.

The effect of M on Nusselt numbers for the case of both
walls heated is shown in Figure 17. As anticipated the Nusselt

numbers are again reduced with increasing M and this reduction
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becomes more pronounced at higher Rayleigh numbers°
6.2.5 Radius Ratio*

The effect of radius ratio A on the Nusselt numbers
can be seen from Figures 15, 16 and 17. Figures 15 and 17 show
that for outer wall heated and inner wall 1n§u1ated or for both
walls heated,Ahigh values of Nusselt numbers are obtained by
increasing A whereas from Figure 16 it can be seen that for
inner wall heated, outer wall insulated the Nusselt number values
are reduced.

A comparison of the reductfon in Nusselt numbers for
the same value of the dissipation parameter M has also been
studied. It is found that the maximum reduction occurs for the
case of inner wall heated, outer wall insulated and the minimum

reduction occurs for the case of both walls heated.

* For details see Appendix C
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7. CONCLUSIONS

The effects ofvviscous dissipation on the flow phen-
omena -and heat transfer rafe for combined free ahd forced con-
vection through vertical circular ducts and concentric annuli
has been studied.

From the results obtained it is concluded that the
effects of viscous dissipation on the flow field is to reduce the
velocity near the heated wall(s) thereby counteracting the effect
of free convection on the velocity field in upflow when the
transfer of heat takes place from the surface to the fluid.

‘Thus it follows that due to viscous dissipation effects, the
shear stress at the wall(s) is reduced. Viscous dissipation
reduces the temperature differences in the system and hence the
effect of buoyancy is deéreased} The dissipation of frictional
energy into héat reduces the heat transfer rate when heat is
transferred from the surface to the fluid and results in lower

Nusselt number values.



TABLE I

Velocities and Temperature Differences at the Centre of
a Vertical Circular Duct due to Viscous Dissipation Effects.

Power Senies Method

Galerkin's Method

Runge-Kutta Method

-Exact Sq]ution

Viscous 4
Rayleigh |Dissipa- | Velocity Temp- Velocity Temp- | Velocity Temp- Velocity Temp-
Number [tion Para- ' erature Vv erature Vv erature Vv erature
Ra meter M Difﬁgrence Diffgrence Difﬁgrence Difference
1 0 1.9913 -0.3742 1.9912 -0.3742 1.9913 -0.3742 1.9924 | -0.3744
‘0.0001 ' 1.9913 | -0.3739 1.9913 -0.3739 | 1.9924 -0.3740
0.0005 1.9913 -0.3723 1.9913 .| -0.3723 1.9924 -0.3725
10 0 1.9152 -0.3681 1.9152 -0.3681 1.9152 -0.3681 1.9163 -0.3682
0.0001 : 1 1.9153 -0.3677 1.9153 -0.3677 1.9164 -0.3679
0.0005 1.9155 -0.3663 1.9154 -0.3663 1.9165 -0.3665
50 0 1.6139 -0.3432 1.6139 -0.3432 1.6131 -0.3433 1.6149 -0.3434
0.0001 ' 1.6139 -0.3432 1.6132 -0.3430 1.6150 -0.3432
0.0005 1.6143 -0.3420 1.6135 -0.3420 1.6154 -0.3422
100 0 1.3061 -0.3173 1.3061 .| -0.3173 1.3035 -0.3173 1.3069 -0.3175
0.0001 1.3061 -0.3173 1.3035 -0.3171 1.3070 -0.3173
0.0005 1.3065 -0.3163 1.3038 -0.3163 1.3073 -0.3165
500 0 0.1564 -0.2091 0.1564 -0.2091 | 0.1346 -0.2079 0.1563 -0.2093
0.0001 0.1583 -0.2087 0.1370 -0.2073 0.1583 -0.2089
0.0005 -0.1660 -0.2069 0.1465 -0.2052 0.1660 -0.2071
625 0 0.0123 -0.1921 0.0123 -0.1921 0.0123 | -0.1904 0.0121 -0.1923
0.0001 0.0149 -0.1915 | -0.0090 -0.1898 0.0146 -0.1918
0.0005 0.0248 -0.1895 0.0035 -0.1873 0.0246

-0.1897

8Y



Effect of Viscous Dissipation Parameter on
Nusselt Numbers for a Vertical Circular Duct

TABLE II

Nusselt Number Nu

Rayleigh Viscous Dissipa- ~ ) :

Number tion Parameter Exact Solution Power Series Galerkin's Runge-Kutta

Ra M Method Method Method

1 0 4.3743 4.3734 4.3742 4.3713

0.0001 4.3653 4.3665 4.3633

0.0005 4.,3329 - 4.,3354 4,3308

10 0 - 4.4688 4.4679  4.4689 4.,4658

0.0001 4.4591 4.4604 4.4568

0.0005 4.4237 4.4267 4.4214

50 0 4.8735 4,8721 4.8735 4.8694

0.0001 4,8542 4.8619 4.8572

0.0005 _4.8105 4.8156 4.8079

100 0 5.3429 - 5.3407 5.3428 5.3375

0.0001 5.3181 5.3270 5.3204

0.0005 - 5.2552 5.2633 5.2519

500 0 7.9516 7.9445 7.9518 7.9369

0.0001 7.8782 7.8925 7.8705

0.0005 7.6122 7.6538 7.6040

625 0 8.4911 8.4827 8.4934 8.4739

0.0001 8.3998 8.4196 8.3908

0.0005 8.0665 8 8.0579

.1228

i

6v



TABLE III

Nusselt Number Vaiues for M=0
Obtained by Exact Solution and Runge-Kutta
Method for Concentric Annulus with Radius Ratio 0.5

50

Nusselt Number Nu
. ' |
Ray- | Case I: Case II: . Case III:
leigh | Quter Wall Heated, | Inner Wall Heated, | Both Walls Heated.
Num- | Inner Wall Insul- Outer Wall Insul-
ber ated. ated.
' Runge- Runge- Runge-
Ra S§?3§§on Kutta So%ﬁ%?gn Kutta Sg¥zg$on Kutta
Method Method Method
1 7.556 7.557 18.546 18.545 8.117 8.117
500 8.923 8.927 18.747 18.750 9.318 9.334
1000 | 10.078 10.086 18.949 18.953 10.362 . | 10.396




Velocity Distribution and Temperature Differences due
to Viscous Dissipation Effects for Concentric Annulus

TABLE 1V

with Outer Wall Heated, Inner Wall Insulated for Ra=1, 1=0.75

Dissipation Parameter

M=0.0 M= 0.0003 M= 0.0005
; : Temperature : Temperature . (Temperature
Rag1us Ve13c1ty Diffe;encev Ve]3c1ty Difference Ve]sc1ty Diffgrence
0.75 0.0 -0.1517 0.0 -0.1451 0.0 -0.17406
0.77 0.5625 -0.1514 0.5625 -0.1450 0.5625 -0.7406
0.79 0.9893 -0.1493 0.9894 -0.1434 0.9893 -0.1394
0.82 1.2852 -0.1442 1.2852 -0.1388 1.2852 -0.1352
0.84 1.4543 -0.1350 1.4543 -0.1304 1.4542 -0.1273
0.87 1.4873 -0.1215 1.4873 -0.1175 1.4872 -0.1149
0.89 1.4271 -0.1036 1.4271 -0.1003 1.4270 -0.0981
0.92 1.2376 -0.0816 1.2376 -0.0790 1.2375 -0.0772
0.94 0.9348 -0.0563 0.9348 -0.0543 0.9348 -0.0530
0.97 0.5214 -0.0286 - 0.5214 -0.0275 0.5214 -0.0268
1.0 0.0 0.0 0.0 0.0 0.0 0.0

Ls



TABLE V
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Ve]ogity Distribution and Temperature Differences due
. to Viscous Dissipation Effects for Concentric Annulus
with Outer Wall Heated, Inner Wall Insulated for Ra=1000, A=0.75

Dissipation Parameter M

M=0.0 M=0.0003 M=0.0005
Témpér- Temper- Temper-
Radius [Velocity S?%?ir— Velocity 8§¥¥Zr- Velocity B???gr_
R v ence v ence v ence
¢ ) )

- 0.75 | 0.0 -0.1327] 0.0 -0.1287 | 0.0 -0.1260
0.77 0.3472 | -0.1325| 0.3540 | -0.1286| 0.3586 | -0.1260
0.79 0.6693 | -0.1312| 0.6788 | -0.1275| 0.6852 | -0.1250
0.82 0.9630 | -0.1278} 0.9718 | -0.1243| 0.9777 | -0.1220
0.84 1.2182 -0.1214 1.2238 -0.1183| 1.2276 -0.1162
0.87 1.3055 | -0.1113{ 1.3094 | -0.71085| 1.3120 | -0.1066
0.89 1.5237 | -0.0969} 1.5201 -0.0945| 1.5176 | -0.0929
0.92 1.4993 | -0.0781| 1.4919 | -0.0760| 1.4869 | -0.0747
0.94 1.2851 -0.0550] 1.2761 -0.0533} 1.2701 -0.0522
0.97 0.8117 | -0.0284| 0.8045 | -0.0273| 0.7997 | -0.0266
1.0 0.0 0.0 0.0 0.0 0.0 0.0
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TABLE VI

VELOCITY DISTRIBUTION AND TEMPERATURE DIFFERENCES
DUE TO VISCOUS DISSIPATION EFFECTS FOR CONCENTRIC ANN-
ULUS WITH INNER WALL HEATED, OUTER WALL INSULATED FOR Ra=1, x=0.75

Dissipation Parameter M
M=0.0 M=0.0003 M=0.0005
Temper- Temper- Temper-
. . ature . ature . ature
Rag1us Ve13c1ty Di ffer- Ve13c1ty Differ- Ve18c1ty Differ-
ence ence ence
¢ ) ¢
0.75 | 0.0 0.0 - 0.0 0.0 0.0 0.0
0.77 0.5629 | -0.0208 | 0.5630 (-0.0194 |0.5627 |-0.0184
0.79 0.9899 | -0.04071 |0.9900 {-0.0375 {0.9896 {-0.0358
0.82 1.2857 | -0.0570 |1.2859 |-0.0535 [1.2854 |-0.0512
0.84 1.4546 |-0.0710 |1.4548 |-0.0667 |1.4542 |-0.0638
0.87 1.4875 |-0.0820 11.4877 |-0.0770 |1.4871 -0.0736
0.89 1.4269 |-0.0901 {1.4271 -0.0843 [1.4265 [-0.0803
0.92 1.2372 |-0.0953 {1.2374 |-0.0888 |1.2369 |-0.0844
0.94 0.9343 |-0.0982 {0.9344 |[-0.0910 |0.9341 -0.0862
0.97 0.5210 |-0.0993 {0.5211 -0.0917 |0.5209 |[-0.0866
1.0 0.0 -0.0995 (0.0 -0.0917 |0.0 -0.0865




TABLE VII

VELOCITY DISTRIBUTION AND TEMPERATURE DIFFERENCES
DUE TO VISCOUS DISSIPATION EFFECTS FOR CONCENTRIC ANN-
ULUS WITH INNER WALL HEATED, OUTER WALL INSULATED FOR Ra=1000, A=0.75

54

Dissipation Parameter M

M=0.0 M=0.0003 M=0.0005
Temper- , rTemper- Temper-
. : . ature . ature . ature
Rag1us ,Ve13c1ty Diffor- Ve13c1ty Diffor- Ve13c1ty Differ-
ence : ence ence
9 9 ¢
0.75 0.0 0.0 0.0 0.0 0.0 0.0
0.77 0.6896 | -0.0208 [0.6820 |-0.0194 |0.6768 |-0.0185
0.79 1.1438 | -0.0398 [ 1.1341 -0.0375 {1.1274 {-0.0359
0.82 1.4046 | -0.0561 {1.3964 |-0.0531|1.3908 |-0.0510
0.84 1.5076 | -0.0695 | 1.5031 -0.0657 | 1.5000 |-0.0632
0.87 1.5113 | -0.0797 {1.5086 | -0.0754 |1.5067 |-0.0724
0.89 1.3490 | -0.0870 |1.3534 |-0.0821 |1.3564 |-0.0787
0.92 1.1257 {-0.0917 {1.1332 | -0.0862 [1.1382 |-0.0824 -
0.94 0.8226 | -0.0942 1 0.8308 |-0.0882 {0.8364 |-0.0842
.0.97 0.4462 | -0.0951 |0.4521 -0.0888 | 0.456] -0.0846
1.0 0.0 -0.0953 |0.0 -0.0888 [ 0.0 -0.0845




TABLE VIII
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VELOCITY DISTRIBUTION AND TEMPERATURE DIFFERENCES

DUE TO VISCOUS DISSIPATION EFFECTS FOR CONCENTRIC ANNULUS

WITH BOTH WALLS HEATED FOR Ra=1, A=0.75

Dissipation Parameter M

M=0.0 M=0.0003 M=0.0005

Temper- Temper- Temper-
_ ature . .| ature ature

. ... Differ- ... Differ- . Differ-

Ra§1us Ve13c1ty ence Ve13c1ty ence Velocity ance

)

¢ ¢ ¢

0.75 0.0 0.0 0.0 0.0 0.0 0.0
0.77 0.5632 | -0.0520 | 0.5632 | -0.0515 {0.5630 |-0.0511
0.79 0.9900 | -0.0969 [ 0.9900 !|-0.0961 | 0.9896 |-0.0955
0.82 1.2853 | -0.1308 | 1.2853 | -0.1299 | 1.2849 |-0.1293
0.84 1.4539 | -0.1511 | 1.4539 | -0.1502 | 1.4534 |-0.1495
0.87 1.4868 | -0.1566 | 1.4867 | -0.1557 | 1.4863 |-0.1550
0.89 1.4265 | -0.1472 | 1.4265 | -0.1463 | 1.4269 |-0.1456
0.92 1.2373 1 -0.7241 | 1.2373 | -0.1232 | 1.2369 |-0.1226
0.94 0.9349 | -0.0895 { 0.9349 | -0.0888 | 0.9346 |-0.0882
0.97 0.5217 | -0.0467 | 0.5217 | -0.0462 | 0.5215 |-0.0458

1.0 0.0 0.0 0.0 0.0 0.0 0.0
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TABLE IX
VELOCITY DISTRIBUTION AND TEMPERATURE DIFFERENCES
DUE TO VISCOUS DISSIPATION EFFECTS.FOR CONCENTRIC ANNULUS
WITH BOTH WALLS HEATED FOR Ra=2000, A=0.75

Dissipation Parameter M

M=0.0 M=0.0003 M=0.0005

Temper- ' Temper- Temper-
ature ature ature

Radius |Velocity Differ- | Velocity|Differ- |Velocity Di ffer-

R v ence v ence v ence

) ¢ s

0.75 0.0 0.0 0.0 0.0 0.0 0.0
0.77 1.2565 | -0.0483 | 1.2510 |-0.0472 |1.2475 |-0.0466
0.79 1.3567 | -0.0835 | 1.3537 |-0.0822 |1.3517 |-0.0814
0.82 1.0294 | -0.1047 |1.0306 |-0.1032 {1.0313 |-0.1023
0.84 0.7093 | -0.1151 10.7135 |-0.1136 |0.7162 |-0.1127
0.87 0.6360 | -0.1180 | 0.6409 |-0.1165 [0.6440 |-0.1156
0.89 0.7721 1 -0.1146 | 0.7769 |-0.1131 |0.7799 |-0.1122
0.92 1.1313 1 -0.1036 | 1.1333 |-0.1021 |1.1346 |-0.1011
0.94 1.4545 1 -0.0817 1 1.4523 | -0.0803 |1.4509 |-0.0795
+ 0.97 1.3050 | -0.0463 | 1.3002 |-0.0453 |1.2972 |-0.0446

1.0 0.0 0.0 0.0 0.0 0.0 0.0
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| APPENDIX A
DERIVATION OF NUSSELT NUMBER EXPRESSION
FOR CIRCULAR DUCTS
The Nusselt number expression for circular ducts in

terms of the dimensionless variables is obtained as shown be10w,

Nuzlll}b - b _9 (A-1)

K K Tw-Ty
where q = average heat flux
Tw = temperature of the wall
Tb = bulk temperature of the fluid.
The bulk temperature can be written as,
I, = HTU’Z oA /ff\?z dA . (A-2)

Substituting (A-2) in (A-1), we obtain,

(A-3)

Now Do v
~ e (T dA/ [ dA]

y SR R

ol . e ——

| ? r

PN S —l

AZ

Energy Balahce Between Sections 1&2
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Now consider a fluid flowing between sections 1 and 2
of a circular duct as shown in the figure. By making an

energy balance, we obtain,
Cuc A (T, —T,) _ ?/PA%fﬂ[ﬂ(j_%);lA]AZ, (A-4)

where
T].and T2 are the bulk temperatures at sections 1

and 2 respectively and P is the heated perimeter

of the duct.

aT

Substituting 37 = C in equation (A-4), we obtain,

g=CoUDC - 2ul f(dV) RdR . © (a5)
: Now-substituting (A-5) in (A-3), we obtain,

Dh [Pcf,ubkc_z_&__f Rdﬁ]
o [T oLA/ffv ]’

D, [Pcfu C - -z&__f(g_v ,Qaue] (A7)
— UG Chr J‘cpvedz/ak]vkdk ’ |
S gMY Rg -

[OVRAR / [VRAR

(A-6)

Nu
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APPENDIX B
DERIVATION OF NUSSELT NUMBER EXPRESSIONS
FOR CONCENTRIC ANNULI
" The Nusselt number expressions for the concentric annuli
are obtained.as shown beTow,

Case I: OQuter Wall Heated, Inner Wall Insulated

Nusselt number is given by the expression

Ne

i

WD oD g (8-1)
s |

K Tw-T,,

The equivalent diameter for this case is given by,
P!
D o= ar, (1-x%), (8-2)

where ro is the radius of the outer tube and A is the radius

ratio ry/r,. |
By making an energy balance as shown for the circular

duct we obtain the following expression,

GCFUA(T -T) = QPAZ-#/AU{ dA]AzZ (B-3)

where P is the heated perimeter.

From equation (B-3) we obtain,
= CoUDC_ U (dVYRAR . (6-4)
[l i 4 %Yo ;((OUZ)

Using the value of Dh from (B-2) and substituting (B-4) in (B-1) we

obtain,
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L9 € -t ]

NUL =
] .
%[GCPUQAC—/_‘_U—ZJKQ zRoLK]
_ (8-6)
-CuCCh’ f(PVRo(R/‘{KfVRo(R |
-1+ 8("‘)‘>MX( )RO{R (B-7)
(@ VRdR / [VRdR
X A
Case II: Inner Wall Heated, OQuter Wall Insulated
Nusselt Number Ny = hDy — Dy - ] (B-1)
- K ' i%i
- The equivalent diameter for this case is given by,
D - ar, (l—)*)//\ : (-8)

By making an energy balance the following expression is

obtained,
CCFL/A(T -T)= QPAZ +/A[H( )O(A]AZ (8-9)

From equation (B-9), substituting (B-8) for D), we obtain,
1
bl 2
= oD~ U ___O(V) RdR . B-10
4= Copudic - pl” (e (3-10)

Substituting (B-10) in (B-1), we obtain,
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|
%[@CPU_DLC - ul

Nu = - M !@J ) KGIR] (8-11)
Tw - Tt

ﬁk[ec Ldie - uu foW)szR}

. Y-L > (B-]Z)
~CUG (D, jcpvr{o(R/L,K fVRdR
—'+&(_':A)Mf(dy)RdR -

_ At (B-13)

fovrdR/ [VRdR
p) X
‘Case III: Both Walls Heated
Nuw = hD, - Dy 9 . (B-1)

K K Tw-T,

The equivalent diameter for this case is given by,
D, = 2r, (1-1)

By making an energy balance we obtain,
C(fUA(‘I}-T) (QP+7PAZ+;A[H(_,§ ] (5-14)

where q; and q, are the average heat flux at inner and outer wall .
respectively.

From equation (B-14) we obtain,

(B-15)
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where'q = Yaverage

Substituting (B-15) in (B-1) the following equation

is obtained,

[C’CPU C—/uu (Oi—‘)RalR]

(%71 LR (B-16)

Nu

H

-T\N - _TL
D
] k{GCPUDAC /Lo'fm!( )RolR] (517)

-€CUc, cp,’ fcpvgom/ém[vmk

—'+8(~*)Mf(dV)RdR

I+ A *

[ OvRAR/ [ VRAR
» A :

(B-18)

—
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~ APPENDIX C ,
DETAILS OF GOVERNING EQUATIONS AND LIMITATIONS
The final form of the governing equations as given by
(1) and (2) were obtained in the following manner:
On the basis of the assumptfons on page 7, the equations
of motion in r and o directions can be ignored. The basic momen-

tum equation in Z-direction for constant o and u is given by [1],

6( O Vz + Uy Vg +H99_Vz+17;531} = -—-@72 +/u(rar(r9\7

N ¥V 36 o Z
+ $29% /56" + o -
v 2/9Z |29, (c-1)
av
For steady flow 3{5 = 0 and because of symmetry the com-
ponent of velocity in ©-direction vanishes. For fully developed
dv _ . .
laminar flow, Ve = azz = 0 and since pressure is only a function

of Z, equation (C-1) reduces to

O= — +/.L<zrz oﬁf’) 4 Fyz L e l

Since Z is measured positive in the upward direction,
the negative sign before 9, is taken.

. Thus we have,

__._d +/u(_0_&_zz+’ ) @93 (c-3)

The basic differential energy equation for constant «, ﬁ
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and p can be written as,
¢, DT _ k ’.T-f-az-i— TD-, _
O DT - kv /u@+,85,§ (c-a)

where Qi = Internal heat generation source energy
= Viscous dissipation function.

is given by [1],

{@)r (58] ( ” {(%‘_’e:_jr_%_"é;)l
MCRE LRS- S COII T

Re-writing (C-4) in an expanded form we have,

T
Cc (BI+U,~DT+\J9 §I+VZBI) KlL2 (Y'QT)+_L 2T,

Eliminating the terms which are equal to zero for condi-
tions mentioned earlier, and for no internal heat generation source,

equation (C-6) reduces to

2
Cev, 3L K[_L_D_.(YQI J + 1 (ﬁk)+T,ez;.§lp.(c_7)
Z Y r ar Y Zz
| The relative significance of compression work to that of
viscous_dissipation can be seen by comparing the last two terms on
. the right hand side of equation (C-7)Q Equation (C-7) in the non-
dimensional form can be written as,

V+4 uolv CUCDCDL Vv
VOV b (g Cueasue. oo
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Dividing the coefficient of compression work term by that
of viscous dissipation, we obtain the factor (1/16) Pe Re 8 C Dy, -
This factor shows that for small values of Peclet number, Reynolds
number, B the coefficient of volumetric expansion and the temper-

ature rise in the flow direction, the compression work term can be

neglected.
| Thus equation (C-7) reduces to
2 S
o - K[ gr(f | u(gE) - e
A discussion on the inclusion of compression work term
‘has also been given by Tyagi [273. |
The variability of the physical properties with temper-
ature makes the problem highly non-iineaf and thus éxtremely diffi-
cult to so]ve; Hence for this reason, the present study deals with
constant properties except for the variation of density in the
buoyancy term of the momentum equation. To ensure this, the temp-
erature differences in the system'shou1d be small since all the
physical properfies are a function of temperature. Moreover, the
duct length has to be small to avoid variation of properties aTQng

the duct length.
LIMITATIONS OF THE RADIUS RATIO FOR ANNULUS

For the concentric annulus, the range of radius ratio A is
from 0 to 1. For » = 0, the annulus reduces to a circular duct

with a wire in the centre parallel to the axis, whereas for 2 =1,
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the configuration of parallel plates is obtained. The range of A
used for the present analysis is from 0.25 to 0.75. If the annular
gap is too small, the physical properties may not remain constant
due to large viscous heating effects. On the other hand, if the
annular gap is too'1arge, the system approximates almost to flow
q]ong a single vertical cy]inder in which case a fully developed
flow is obtained only beyond a very large entrance length and is

not of interest for the present study.



