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Abstract

In any associative ring R an element x is not
right prime ‘urp) to an ideal A if yRx = A for some
y £ A. An ideal is primal if the elements nrp to it
form an ideal. These definitions differ from those of
Curtis (American Journal of Mathematics, vol. 76 (1952),
PPe 687;700) but.reduce to them for rings with unit
and A,C,C. for ideals. They also reduce to Fuchs!
(Proceedings of the American Mathematical Society;
vol. 1 (1950), pp. 1~8) for commutative rings. An
ideal B is nrp to A if every element of B is nrp to
A, Maximal nrp to A ideais always exist and their
intersection is called the adjoint of A. In a class
of rings, called uniform, the maximal nrp ideals of
any ideal are prime. The A,C.C. implies uniformity,
but not conversely. Results (similar to the classical
Noether theory) on representations of an ideal as the
intersection of primal ideals with prime adjoints are

obtained which include those of Fuchs and Curtis,

If A and B are ideals in any associative ring-
such that A € B, the lower right isolated B-component
of A, L(A,B), is the ideal sum of all ideals Am~1,
where m is right prime to B and Aw™l = {x|xRm £ 4},
The upper right isolated B-component of A, U(4,B),

(which always contains L(A,B)) is the intersection of



all ideals C 2 A and such that every m right prime to
B is right prime to C. If B is a maximal nrp to A
ideal then L(A,B) and U(4,B) are called lower and
"upper,right principal components of A. For B a prime
ideal in a commutative ring, these definitions reduce
to those of W. Krull. It is shown that every ideal
in an associative ring is the intersection of its
lower right principal components, and under certain
conditions is also the intersection of its upper

right principal components.



Table - of Contents

Introduction . . P °
Notation and Definitions o o
Primal Ideals . . . .

Representations by Primal Ideals .
Ascending Chain Condition . .
Maximal Primes and Associated Primes
Isolaﬁed Components of an Ideal ..
Principal Components.of-an Ideal
Remarks . . . . .

References . ° e . .

15

21

27

35

39

L2



THE UNIVERSITY OF BRITISH COLUMBIA

Faculty of Graduate Studies

PROGRAMME OF THE
FINAL ORAL EXAMINATION FOR THE DEGREE

OF DOCTOR OF PHILOSOPHY
of
WILFREED EATON BARNES

S.B. (Chicago) 1949
S.M. (Chicago) 1950

THURSDAY, APRIL 22nd, 1954 at 2:30 P.M.

IN ROOM 217, PHYSICS BUILDING

COMMLITTEE IN CHARGE
H.F. Angus, Chairman

S.A. Jennings R.D, James
A.P. Maslow W. Opechowski
B.N. Moyls B. Savery
D.C. Murdoch F.H., Soward

External Examiners - R,.H. Bruck,
C.W. Curtis, University of Wisconsin



THESIS
PRIMAL. IDEALS AND ISOLATED COMPONENTS

IN NON-COMMUTATIVE RINGS

A ring is a system consisting of a set of
elements and two binary operations, "addition" and
"multiplication", obtained by generalizing the pro-
perties of the ordinary integers. It is termed
commutative if the "product" a*b is the same as the
"product" b-a for all elements of the ring, and non-
commtative if this is not necessarily the case.
Certain subrings called ideals have divisibility
properties in many ways analogous to those of the
individual integers. In particular, the well-known
theory of unique representation of an integer as a
product of prime integers has been variously gen-
eralized to representations of ideals in commutative
rings by ideals analogous to powers of prime integers.

The representation by primal ideals of L. Fuchs
is here generalized to the case of non-commutative
rings, and for rings satisfying certain uniformity
or finiteness conditions the set of prime ideals
associated with the primal ideals occurring in the
representation is uniquely determined.

W. Krull's representation of an ideal by principal
component ideals is also generalized to the non-
commutative case, and 2 unique representation by
such ideals is obtained without imposing any re-
strictive conditions on the ring.
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INTRODUCTION

L. Fuchs (Proc. A.M,S. vol. 1 (1950)) has
given for Noetherian rings a t@eory$of the represen-
tation of an ideal as an intersection of primal ideals.

A primal ideal is an'ideal Q such that thé elements not
prime to Q form an ideal P, neéessarily prime, called

the adjoint of Q. Primary ideals are necessarily primal,
but not conversely. The theory is in many ways.analogous
to the classical Noether theory. In particular, every
ideal in a Noetherian ring has a normal representation
by primal ideals, and in any normal representation the
set of adjoint primes and the number of primal components
are uniquely determined. Analogous results have been |
obtained by Curtis (Am. J. of Math. vol. 74 (1952))

for non-commutative rings with unit element, using a
definition of primal ideal which does not however reduce
to that of Fuchs in a commutative ring.

In this thesis an alternative definition of
primal ideal in a general ring is given; which reduces
to Fuchs' definition in a commutative ring and to that
of Curtié in a ring with unit element and ascending
chain condition for ideals (A.C.C.). The new definition
is based on a definition of "not right prime to A" which
assocliates with every ideal A certain maximal not right
prime to A ideals, analogbus to Krull's maximal asséciated

primes. With Curtis' definition these ideals can be
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obtained ohly by assuming the A.C.C. These maxiﬁal
not right prime ideals are apparently not necessarily
prime unless a condition of M"uniformity", which is
weaker than the A,C.C.,is imposed. The Fuchs=Curtis
decomposition theorems are obtained using the new
definition,

If Mis a mltiplicative system, Krull defined
the isolated Mﬁcémponent of an ideal A in a commutative
ring to be the set A(M) of all x 'such that xm is in 4
for some m in M. For an ideal B which contains A, the
isolated B-component of A, A(B), can be defined as A(M)
where M is the set of elements prime to B If P is a
maximal prime associated with A, then A(P) is called a
principal component of A, Krull has shown that every
ideal in a commutativeAring is the intersection of its
principal components.

If P is a prime divisor of A in a non~commuta=
tive ring, Murdoch (Can. J. of Math. vol. 4 (1952)) has
defined.upper and lower P-components of A4, both of which
reduce to Krull's isolated P-component in the commutative
case. Upper and lower B=components of A are now defined
for any divisor B of A, The upper and lower principal
components of A are then taken}tblbe the upper and lower
Qg-components where the Q, are the maximal not right prime
to A ideals., It is shown that in any ring every ideal is

the intersection of its lower principal components.
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1.

1., Notation and definitionss We shall use R to

denote an associative ring which will be non=commutative
unless otherwise specified. The term ideal will always
mean twoe~sgsided ideal. Proper ideals in R will be denoted
byrA; B, «es and elements of R by a, b, x, ¥y, eses The
symbols ZA, and A+B will denote ideal sums of ideals,
and L}Aa and A V B will denote set theoretic unions. By
{a]4 has property P} and {x|x has property P} we shall

mean respectively the set of ideals having property P and
the set of elements having property P. The symbol (x)
will mean the principal ideal generated by x and (x,y,e..)
the ideal generated by X, ¥, ecee

Definition 1. Ax™l = {ylyRx ¢ £}and AB-1 ={y|yRB < A},

Evidently both Ax"1 and AB~l are ideals and both contain the
ideal A.

Definition 2. The element x is not right prime
(nrp) to A if Ax™! # A, Otherwise x is right prime
(rp) to Ao

Definition 3. The ideal B is nrp to A if every

b in B is nrp to K. Otherwise B is rp to A.

Thus x is rp to A if and only if yRx € A implies
y € A, and B is rp to A if and only if there exists some

b € B such that yRb € A implies y ¢ A,



Definition 4, The ideal A is right primal if

{zlx is nrp to A} is an ideal, which is then termed
the adjoint ideal of A. Sincé there are no ideals
nrp to the ring R, we shall say that R is primal.

As we shéll ébhsider only right primal ideals, we |
shall simply say "primal®™ instead of "right primal®.

Definition 5. An ideal B is uniformly nrp

(unrp) to A if ap™1 # A, or equivalently if there

exists some y not in A such that yRB& A,

Definition 6. A ring is termed (right) uniform

if for any two ideals A and B, if B is nrp to A it

follows that B is unrp to A.

For reference purposes we repeat here the

following definitions:

Definition 7. For commuitative rings Fuchs (2)

has defined x not prime to A to mean xy € A for some
v £ A, and A is primal to mean {x|x is not prime to A}

is an ideal.

Definition 8, For non-commutative rings with

unit element Curtis (1) has defined B nrp to A to
mean {ZCICBE4A} DA, or equivalently that there

exists y £ A such that yBcA, az;id A is primal to
mean that the ideal sum of the ideals nrp to A is

again nrp to A,



We note that B nrp to A in the sense of Curtis
implies B is unrp to A, and if B is umrp to A then
B is nrp to A. For if y £ A and yBSA then yRB£A4,
and if y ¢ A and yRB€A then yRb€ A for all b ¢ B.

If R has a unit element then B unrp to A
implies B is nrp to A in the sense of Curtis, for

if y # A and yRBE€ A then yB = yRBEA4,

' Since the ideal sum of an ascending chain of
ideals nrp to A is again nrp to A, Zorn's lemma
assures the existence of ideals which afe maximal
in the inclusion ordered set of'ideals nrp to A.
Such an ideal will be termed a maximal nrp to A
ideal, and thus A is primal if there is only one

maximal nrp to A ideal.

If R is commutative, then x nrp to A is
eéuivalent to x not prime to A, and thus our defi-
nition of primal agrees with that of Fuchs. For if
yRx €A for some y § A then yxxeA and either yx ¢ A
for y £ A or (yx)x € A for yx § A so that X is not
ﬁrime to A, and if yx ¢ A for y £ A then Ryx = yRx<A

and x is nrp to A,

If R has a unit element then A primal in the
sense of Curtis implies A is primal. For let x be
nrp to A so that yRx €A for some y £ A. Then
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(y)(x) €A and (x) is orp to A iﬁ the sense of
Curtis, If A is primal in the.sense of Curtis,
then (x) is contained in the sum P of all ideals
nrp to A in"the sense of Curtis, which is again ﬁrp
to A in his sense. As noted above, this implieé
that P is nrp to A, henge P is exactly the set of
all elements nrp to A and A is primal,

If R is a uniform ring with unit element then
A is primal in the sense of Curtis if and only if A
is primal. For by the previous remark we need only
show that if A is primal then A is primal in the‘
‘sense of Curtis. But if A is primal then the set
P of elements nrp to A is an ideal unrp to A since
A is an ideél in a uniforh ring. Since R has a
unit element this implies P is nrp to A in the sense
of Curtis. On the other hand if B is nrp to A in
his sense then B is nrp to A and hence contained in
P. Thus P is exactly the sum of all ideals nrputo
" A in the sense of Curtis and A is primal in his
sense, That the‘condition of uniformity is a
hecessary one is shown by an example of Curtis!
paper (1) of a non-uniform ring which has a primal

ideal that is not primal in his sense.
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2. Primal ideals.

Definition 9. By a prime ideal we mean an

ideal which is prime in the sense of McCoy (5), that
is, P is prime if xRy<P implies x or y is in P. DMNecCoy
has shown that this is equivalent to the property that
if P divides the product of two ideals then P mist

divide at least one of them.

Definition 10, A maximal prime of an ideal A

is an ideal which is maximal in the inclusion ordered

set of prime ideal diviseors of A which are nrp to A.

We note that in the generél case there may be
no maximal primes of A even if it happens that theré
are prime divisors of A which are nrp to A, since
- the union of an ascending chainvof prime ideals is not

necessarily prime,

Lemma 1., If B is maximal in the inclusion
ordered set of ideals nrp to A and is unrp to A then

B is a maximal prime of A,

Proof. Let xRy be contained in B and y be not
in B, Then since B is unrp to A there existsuz not in
A such that 2zRB is contained in A, hence zRxRy is
contained in A, Now B a4 maximal nrp to A ideal implies
the existence of some y' & (y) + B such that y' is rp
‘to A. But then zRxRy' is comtained in A, which implies

zRx is contained in A. Thus we have zR[(x) + B] €A and




(x) + B is nrp to A, Since B is maximal nrp to A

it follows that x is in B as required.,

Definition 11, An ideal A is strongly

irreducible if A cannot be expressed as an inter=
section, finite or infinite, of proper divisors. A is
irreducible if A cannot be expressed as a finite inter-

section of proper divisors.

Lemma 2. If A is strongly irreducible then

every ideal B nrp to A is unrp to A.

Proof. Since B is nrp to A we have Acap™t

for every b € B. Hence AS nbeBAb'l, and since A is
strongly irreducible the inclusion must be proper,
Thus there exists x ¢ A such that x ¢ L for all
b € B But then xRB€A and B is unrp to A,

Lemma 3. Every irreducible ideal is primal.
Every strongly irreducible ideal is primal with

prime adjoint,

Proof. Suppose by and b, are nrp to an
irreducible ideal A, Then 4b;~1> A and Ab,~10 4,

hence ASAbl‘ln Ab,~l, and since A is irreducible the

inclusion must be proper. Hence there exists x ¢ A
such that x & Aby~'N Aby~l. But then xR(b; - b,) €A

and bl - _b2 is nrp to A. Thus the sét of elements

nrp to A form an ideal and A is primal., If A is
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strongly irreducible then, as we have just seen, A
is primal, Then by Lemma 2 the adjoint P of A is

unrp to A, hence by Lemma 1, P is a prime ideal.

The following theorem and the method of its

proof are taken from Curtis (1).

Theorem 1, Every ideal is the intersection of

its strongly irreducible primal divisors,

Proof. If x ¢ A, consider the inclusion
ordered set of divisoré of A not coﬁtaining Xo The
union of any ascending chain of such ideals is aga{h
an ideal divisor of A not containing x. Thus it follows
from Zorn's lemma that there exists an ideal By dividing
A which does not contain x and such that'ény proper
divisor of By contains x. Then Bx is strongly irreducible,
hence primal by Lemma 3., Clearly A is the intersection of

.~ the ideals Bx for all x not in A.

Definition 12. If P is a prime ideal divisor

of A, the (right) upper isolated P-component of 4,
U(A,P), is the-intersection of all ideals which contain
A and are such thatlevery element not in P is riéht
prime to them., The uppef isolated R~component of A

is defined to be A.

~ This definition has been shown by Murdoch (6)

to be equivalent to his definition, except for the case
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of the upper isolated R-component of A, which in

his definition is the ring R. As may be readily
verified, however, if the (right) lower isolated
R=component of A is also defined to be A, then all
results in Murdoch's paper (6) remain valid, the

only changes being.simplifications in certain theorems

where particular cases no longer have to be considered.

Lemma 4. If A is primal with prime adjoint -
P, then A = U(A,P), the upper isolated P-component of A.

Proof. By definition U(A,P) is the inter=
section of all ideals B such that B2A and if x ¢ P
then x is rp to B, But A is itself such an ideal

and the result follows at once,

Theorem 2, Any ideal A is the intersection
of its upper isolated Py-components, where the P, are
the adjoints of the strongly irreducible primal

divisors A_ of A.

Proof. By Theorem 1 we have that A is the
intersection of the A , and by Lemma 3 each P_ is
prime, Thus the theorem is meaningful as stated.

By Lemma 4 we have A, = U(A4 ,P ) and Murdoch has
shown in (6) that if P 2 A 24, then
U(4;,P,)2U(4,P )2 A, We thus obtain

A=NA =f\U(Aa',Pa) 2NU(A,P )24, and the equality

follows. .
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3. Representations by primal ideals.

Definition 13. A representation

(l) A= Aln Azf\ ooonAn

of an ideal A as the intersection of ideal divisors
of A will be called irredundant if no Ay contains the
intersection of the remaining ones, and reduced if no

Aj can be replaced by a proper divisor,

Lemma 5. If (1) is a reduced representation

of A by primal ideals Ai with prime adjoints P then

i»
an ideal B is nrp to A if and only if B is contained in

one of the Pj.

Proof, (i) If B is nrp to A, for any b € B we
may find x, ¢ A such that x RbS A €A, for all i. But
x, ¥ A implies x 4 A; for some i, hence b is nrp to Ay
and b e Py since A; is primal., Since b is arbitrary
in B, we conclude that B€P,UP

1 2LJ...L}Pn. We may

suppose the indexing to be such that BE&PlLIPZLJ ees U Pk
but B is not contained in the union of any proper
subset of Py,P5,e..,P e Then we may choose Pi € BNP;
‘such that p; ¢ Py for j # i, for each‘i = 1,2,400,k.

If k = 2, then p; + p, is in B, hence in either
P, or P,, either of which is contrary to the choice of

p, and p,e Thus k F 2.
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If k > 2, then lep2$ P, since neither of

P;s Py is in Pk and Pk_is prime. Choose r, so that

PyT1P2 = P P, 4 Ppe Then p{ szp3$ P, and we may
choose ry so that pj p,ryp; = p{ P} p; £ Pp.

Contimuing in this ﬁay we obtaih p.= pi 23 seoPr) ﬂ‘Pk.
But b =p + p ¢ B, and b must be in some P; for i < k.
If i <k then p, ¢ P; contrary to assumption, and if

i = k then p € P, contrary to assumption. Hence k + 2

and we conclude that k = 1, and thus BS Py,

(ii) For pj € Py, let y be such that y ¢ A; and
yRpy SA;. Then A} = (y) + A;D A;. Since (1) is |
reduced, there mst exist y' e AJNAN ..o NA) and
such that y' ¢ &. But yfnpis (y)Rpl + ARp S A,
hence y'Rpls;A and p; is nrp to A. But since Py is
arbitrafy in P, we conclude that P, is nrp to A, and

similarly the other Pi are nrp to A,

Theorem 3. If (1) is a reduced representation
of A by primal ideals with ptime adjoints Pi’ then the
maximal nrp to A ideals are the maximal primes of A
and are in fact the maximal elements of the inclusion

ordered set P;,P,,...,P .

Proof. Suppose P is maximal nrp to A, i.e.,
P is nrp'to A and if Q O P then Q is rp to A, By
Lemma 5, P is contained in some P,. But P; is nrp

to A for all i by the other half of Lemma 5, hence
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the maximality of P implies that P = Pi for some Pi
which is maximal in the set Py,P2,...,Ppe Thus P
is prime and hence a maximal prime of A. If

then P.

conversely Pj'is maximal in Py,P,...,P, 3

mist be a maximal nrp to A ideal, for if not.there

exists QIDPj and such that Q is nrp to A. But then

by Lemma 5 we would have Q contained in some Pi and

‘Pj cQ SPi contrary to the maximality of P

J

Lemma 6. Let (1) be a reduced representation
of A by primal ideals with prime adjoints Pj. Then A

is primal if and only if one'Pj divides all the others,

in which case Pj is the adjoint of A,

Proof. (i) Let P;2P; for all i, so that

Pj = P.UP kJ...\JPn. Then by Lemma 5, B nrp to A

17 %2
implies that BEP; and since by Lemma 5 again Pj“is

nrp to A, it follows that A is primal with adjoint Pj.
(ii) Let A be primal with adjoint P. Then

since P is nrp to A, PEP; for some j by Lemma 5,

Also by Lemma 5, P, is nrp to A, hence P,SP for all
1, or P;SPEP, for all 1. Then P = P, and the
lemma is proved; o

Definition 14, If (1) is an irredundant

representation of A by primal ideals A;, and is such
that A4;N 44 is not primal if i # J, it will be called

a short representation of A by primal ideals,



12,

Theorem 4. Let (1) be a reduced representation
of A by primal ideals with frime'adjdints P;» Then
A has a short representation by primal ideals whose

adjoints are the maximal primes of A.

Proof. Since (1) is reduced we may assume that
the representation is irredundant, since the inter-

section of any subset of Ay,A5,...,4, is also reduced,

n
Let the indexing be such that P,P5,...,P. are the
ma;imal elements of the set Pj,P5,e..,P o Let Ai
denote the intersection of those 4; such that P; € Py,
and let A! denote the intersection of those Ai such

that Pj QJPj but P; 4¢P, if k< j, j'= 2,3,...,re Each of
A ,A} , ...;A; satisfies the conditions of Lemma 6 and
hénce‘they are all primal with prime adjoints |
P1;Pp,eee,Pre Now for j # k, the intersection of the
Ai forming,A3 and Ai is a reduced intersection of
primal ideals not all of whose adjoints are contained
in any one adjoint, hence by Lemma 6, AslﬁAi"is not
primal and the representation A = Ai/TAéf\.;./\A; is
short. By Theorem 3, Py,P,,...,P, are the maximél_

primes of A, and the theorem is proved.

Corollary. If (1) is a representation of A by
strongly irreducible ideals, then A has a short
representation by primal ideals whose adjoints are

the maximal primes of A,
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Proof. By Lemma 3 each A, is primal with
prime adjoint. We may assuﬁe the representation is
irredundant., Since the A4 are irreducible, iemma
II of E. Noether's paper (4), which remains valid
in general rlngs assures that the representatlon is

reduced. The result now follows from the theorem,

Theorem 5, In any short reduced representation
of A by primal ideals with primé adjoints,'the adjoinﬁs
and the number of primal components are uniquely

determined.

Proof. Let 4 = A,NA,N...NA , where P, is
the adjoint of A; and A = ATNAL N cou N AL, where PS

1 "2
is the adjoint of As be any two such representatlons

of A. Since both representations are short, no P,
properly contains another PJ and no Pi properly
contains another P&; Then by Theorem 3 both
PyyPyyese P and Pl’Pz""’P are the set of maximal
primes of A, hence m = n and the P; arethe P& in some

order.

By Lemma 1, every primal ideal in a uniform
ring has a prime adjoint. Thus for uniform rings the
results of this section are valid without the
stipulation that the primal ideals in question have

prime adjoints.
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For later use we include here the following

lemma.

Leima « Let (1) be a reduced representation
of A by primal ideals such that the adjoint-Qi of Ai
is unrp to Ay. Then an ideal is nrp to A if and only
if it is contained in some Q; and every ideal nrp>to

A is unrp to A.

Proof. Since Q) is umrp to A,, there exists
C =
xf A such that xRQ) €A;. Let Ai (x) + A, and we
have AJNA, N «.. N A, D A since (1) is reduced and

Ai p) A.. Then there exists y § A-such that
e Al : c < AL
yeANAN ... NA . Now yRQ € (x)RQl + AJRQ S Ay,

and ii follows that yRQIE.A. Thus Ql is unrp to
A, and similarly each Q is unrp to A.

By Lemma 1 the Qi are all prime, and thus it
follows from Lemma 5 that an ideal B is nrp to A if
and only if B is contained in some Qi' But since
each Qi is unrp to A this implies that every ideal

nrp to A is unrp to A,
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L. Ascending chain condition. Throughout this

section we shall assume that the ring R satisfies the

ascending chain condition for ideals.

Theorem 6., If A is an irreducible ideal and

B is nrp to A, then B is unrp to A.

Proof. The ascending chain condition implies
that B has a finite basis, or B = (b,by,¢.4,b ).
Now (abTlNabzln...Napb>1)RB = aB~IRBEA. For each i,
Ab71> 4, hence ablNapZln...nab;l24; and equality
is impossible trivially if n =1, and if n > 1 since A
is irreducible. Thus there exists x & Ab7 N abz1n ...n b7t
such that x ¢ A. For this x we have xRB €4, and hence

B is unrp to A.

Theorem 7. Every ideal A has a short reduced
representation by primal ideals whose adjoints are

the maximal primes of A and are unrp to A,

Proof. The A.C.C, implies that A has a finite
representation, which.we may assume to be irredundant,
by irreducible ideals A;,A5,...,A s By Lemma II of
E. Noether's paper (4) which, together with Lemma IV
of the samé paper, remains valid in the non-commutative
case, the representation is reduced. Then by Lemma 3
each A; is primal, hence by Theorem 6 the adjoimt P,

of A; is unrp to A;. Then each P; is prime by Lemma 1,
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and by Lemma 7 is unrp to A. Suppose Pl,Pz,...,Pln

are the maximal elements of the inclusion brdered

qe  Let A3 be the intersection of

whose adjoints Pi are divisible by Pj but

set Pl.’Pz,ooo,P
those Ai
not by Pk for k <_j', j=1,2,00.,ms By Lemma 6
each A3 is primal. If we replace the Ai composing
A! by A!, E. Noether's Lemma IV assures that the

1 1 |
representation remains reduced, and similarly for
Aé;Aé;...;A&. By Lemma 6 the resulting representation,
A= ANALN...NAL, is short and by Theorem 3 the

maximal primes of A are exactly Pl;Pz,...,Ph.
{

Theorem 8, Every ideal A has a finite set of

maximal primes, which are the maximal nrp to A ideals.

Proof. The result is an immediate consequence

of Theorem 7 and Thearem 3.

Corollary. If A is primal the adjoint of A is

a prime ideal.

Theorem 9, Every ideal is the intersection of
its upper isolated components U(A;Pl)5 U(A,Pz),...;U(A,Pn)

where P,,P,,...,P are the maximal primes of A,

Proof. By Theorem 7, A has a representation
A=ANAN ... NA, where A; is primal with adjoint
P.. As in the proof of Theorem 2, we have
- A€ U(A,Pi) (= U(Ai,Pi) = Aj. Hence it follows that
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n n . ’
AC ﬂi=1U(A,Pi) c ﬂi___lAi = A, and the theorem is

proved.

‘Theorem 10. Any ring satisfying the A.C.C.

for ideals is a uniform ring.

Proof, If A is an ideal in a ring with A.C.C,.,
let B be any ideal nrp to A. Then B is contained in
a maximal nrp to A ideal P which by Theorem 8 is a
maximal prime of A, and by Theorem 7 is unrp to A,
Thus there exists x ¢ A such that xRPS A, hence
xRB € XRP € A and B is unrp to A.

That a uniform ring need not satisfy the A.C.C.

can be shown by the following example.

Let F be a field with a valuation & such that
the value group of F is the rational numbers. Let
R be the ring of all f ¢ F for which &(f) 2 1, and
let A be a proper ideal of R. Then there exists
a = 1 such that #(a) =2 a for all a € A and if a'! > «a
then ®(a') < a! for some a' ¢ A, Since A2RA ﬁe have
A contains all f ¢ F for which &(f) > a+l, and if
®(a) = a for some a € A then A contains all f € F for
which &(f) = a+l. There are then three possibilities.
(i) If B is an ideal contained in A, then for
any x € R such that x ¢ A we have xB S A,

(ii) Suppose for some x § A we have &(x) > «a.
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Then x ¢ R and for any r & R we have &(xr) = &(x) + &(r)ya+l

and hence xB € A for any ideal B of. R. - .
(iii) Suppose that for all f ¢ R, if

®(f)>a then £ ¢ A, If B is an ideal of R which is

not gontained in A, five cases may occur:

(1) A = {f|e(f)>a} and if b € B then &(b)>p .

- for some fixed g, 1 < g <a,.

(2) A = {f|]a(f) 2 o} and if b ¢ B then &(b) >4
for Some fixed g, 1.< g <a,

(3) A= {f|e(f)> a} and if b & B then 2(b) 28
for some fixed g, 1 <8 < a,

(4) A = {f]®(f) Z a} and if b & B then &(b) 2 .
for some fixed g; 1 S p <a, '

(5) &(x) =a and.é(y) = a for some X £ A, ye A

If any of (1), (2), or (4) is the case then there
exists x € R such that ®(x) = max(a-g,l) and x ¢ A
while xB € A, In case (3), since 1 < g < a, there is
an integer n =21 such that (n-;-l)p> a=ng, Let xe R
be such that @(#) = ng and for b ¢ B we have that
@(xb) = &(x) + i(b) = (n+l),é so that x # A while xB <€ A,
In case (5), y"lxr e R since @(y'lxr) = &(r) = l", for
any r € R. Then xr = y(y™txr) ¢ A since y ¢ A, and we
have. xB E A while x £ A.

Thus if A is a proper ideal in R and B is any
ideal of R we can always find x € R such that x F A
while xB € A, hence xRB € A and B is unrp to A. But
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the A,C.C. clearly does not hold in R,

We may remark that the above is an example
of a ring in which every proper ideal‘is primal.with
adjoint R, as cases (ii) and (iii) remain valid if

we replace B by R throughout,

McCoy (5) has defined an m;system as a set
S € R such that if x and y are in S then there exists
r € R such that xry ¢ S. He then defined the McCoy
radical of an ideal A to be the set consisting of
those elements r € R such that every m=system contain-
ing r intersects A, and has proved this set to be

the intersection of the minimal prime divisors of A.

Murdoch (6) has defined an ideal Q to be rlght
primary if every .element not in the McCoy. radlcal of

Q is rp to Q..

. Lemma 8. If Q is right primary with radical

P, then Q is prlmal with prlme adjoint P, '

Proof. By a result of Murdoch (6) P is nrp to
Q. By definition all elements not in P are rp to Q,
hence the set of all elements nrp to Q is exactly P
and Q is primal with adjoint P. By the corollary

to Theorem 8, P is prime,

N

Theorem 11, Let A = Qir}sz\.../\Qn be an
irredundant representation of A by right primari

ideals with radicals Pl;Pz,...,Pn. Then the maximal
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elemept; of the set F,,P,,...,P are phe maximal

primes of A.

Proof. Murdoch has shown in (6) that an
element x is rp to A if and only if x is in the
complement of every P;j. Hence each P; is mrp to A
and if B is nrp to A then B &£ P{UP,U,..UP,s By
Lemma 8 each P; is prime, We now repeat the argument
used in part (i) of the proof of Lemma 5, and obtain
B < P; for some i. The‘argument now proceeds exactly

as in the proof of Theorem 3,
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5. Maximal primes and associated primes.

If a minimal prime ideal of A is defined to bé ah
ideal which is minimal in the inclusion ordered set
of prime divisors of A, then as we have noted, the
intersection of the minimal primes of A has been

shbwn to be the McCoy radical of A.

For commtative rings Fuchs has characterized
in (3) the intersection of the maximal primes of an
ideal. 1In the case of ideals which possess reduced
representations by primal ideals with prime adjoints
it is possible to extend Fuchs! result to non-
commutative rings. As we have-seen, this condition

is satisfied for any ideal in a ring with A.C.C.

Definition 15, If A is any ideal in a general

ring, the adjoint ideal of A is defined to be the set
of all x such that (x,y) is nrp to A whenever y is

nrp to A,

That this set does form an ideal is easily
shown., Evidently if x is in the adjoint of A then so
are rx, xr and rxr' for any r and r' in R. If both
Xy and x, are in the adjoint of A then if y is nrp to
A we have (x,,y) is nrp to 4, and (xj=x,,y) is nrp to

A since any x in (x7-X5,y) is in (x;) + (x;,y), hence

1’
to A, In virtue of the fact that if R is commutative

is in some (x 3

x}) for x) in.(xz,y) and thus is mrp
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then x nrp to A is equivalent to x not prime to A,
we see that the above definition is the same as

Fuchs! (3) in the commutative case.

We note that A is trivially contained in
the adjoint of A. In the event that A is primal, then
" the adjoint Q of A defined previously coincides with
the adjoint Q' of Definition 15. For if x ¢ Q', then
X is nrp to A and hence x & Q, Q'& Q. Converéely,
if x € Q and y is nrp to A4, then-y e Q, (x,y) € Q
since Q is an ideal and (x,y) is nrp to A, hence X £ Q!

and QS Q'o

Theorem 12, The adjoint ideal Q! of A is the

intersection of the maximal nrp to A divisors of A,

Proof. Suppose x € Q' and B is any ideal nrp
to A. Then (x) + B is nrp to A since ye (x) +B
implies y € (x,b) for some b ¢ B and thus y is nrp
to A by the definition of Q'. Hence Q' is contained
in every maximal nrp to A ideal. Convérsely, let x
be in every maximal nrp to A ideal and y be nrp to A.
Then y is some maximal nrp to A ideal B, (x,y) € B
and (x,y) is nrp to A so that x € Q' and the theorem

is proved.

Theorem 13. If A has a reduced representation

by primal ideals with prime adjoints, then the adjoint

of A is the intersection of the maximal primes of A,
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Proof. By Theorem 3 the maximal nrp to A
ideals are precisely the maximal primes of A, nameiy,
the maximal elements of the set of adjoint primes
of the primal ideals in the given representation of

A, The result now follows at once from Theorem 12,

McCoy (5) has noted that any prime divisor of
A contains a minimal prime of A, Thus it follows
that the adjoint of an ideal possessing a reduced
representation by primal ideals with prlme adjoints

always contains the McCoy radical of A.

"We turn now to a consideration of the prime
ideals "associated" with a given ideal. Such ideals
have been defined by Krull (4) for non-commutative
rings. Since our point of view is considerably
different from that of Krull, however, we shall give
a new definition which is derived from the methods of
Murdoch (6). He has shown that if an ideal A in a
ring with A.C.C. has a short represemtation by right
primary ideals with radicals Py,P,,...,P  then P,
is nrp to A, and a prime P which divides A is nrp

to U(A P) if and only if P is one of P_,P ,...,P .

1’

Dgfinition 15. A prime ideal P containing

A is a (right) associated prime of A if P is nrp to

A and also nrp to U(A,P).
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Thus in a ring with A.C.C., if an ideal
A has a short representation by right primary ideals,

their radicals are exactly the associated primes of A,

Lemma 9., Let A be an ideal with a short reduced
representation by primal ideals Aj,A,,...,A, whose
adjoints Py,P5,...,P, are such that P; is unrp to 4;.

Then P; is unrp to U(A,Pi) for i = 1;2,..T,n.

Proof. By Lemma 1, each Pi is a prime ideal.
By Lemma 7 each P; is unrp to A. Hence there exists
x; ¥ A such that x,RP; € A and thus xiRPiQU(A,PJ.) for
every j. Now x; # A implies xy ﬁ'Aj for some j. Then
x.RP, € A, implies P, € P, but since P, and P_ are

ii J . i J 1 J

both maximal this implies P; = Pj and i = j. From
A; = U(A;,P;)2U(4,P;) it follows that x, ¢ U(A,Pi)

and P; is unrp to U(A;Pi).

Theorem lh. In a uniform ring, if an ideal A

has a short reduced representation by primal ideals
with adjoints P ,P5,...,P,, then a prime ideal P is
a maximal prime of A if and oniy if P is a maximal
element in the inclusion ordered set of associated

primes of A.
$

- Proof. By Lemma 9 each P, is an associated
prime of A, and by Theorem 3 the Pi are the maximal

nrp to A ideals, hence the maximal primes of A,
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Clearly every associated prime of A is contained in
a maximal nrp to A ideal, and hence in some P,.
Thus if P is a maximal associated prime of A it

must be one of the P;, hence a maximal prime of A.

i»
-Conversely, every maximal prime of A is one of the

P; and hence a maximal associated prime of A. '

Corollary. If A is an ideal in a ring with
the A.C.C. for ideals, then the maximal primes of A

are the maximal associated primes of A,

Proof. By Theorem 7 every ideal A has a
short reduced represermtation by primal ideals, and
by Theorem 10, R is a uniform ring. The result now

follows at once from Theorem 1l4.

As we noted in Section 1, if R is a uniform
ring with unit element then the definition of B nrp
to A is equivalent to that of Curtis (1). Hence the
respective definitions of the maximal primes of A
are also equivalent-%?'such a ring. For a ring with'
unit element satisfying the A.C.C. for ideals, Curtis
defined the (right) isolated B-component ideal of A
to be the ideal I(4,B) = AB™4 for q = O and such that
AB"? = AB-q-l; and a (right) associated prime ideal of
A to be a prime ideal P such that I(A,P) > A and
[1(a,P)]~1a<P where [T(4,P))-1a = {Zc|1(a,P)c<a}.
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He then proved that the maximal primes of A are the
maximal elements of the inclusion ordered set of (right)
associated prime ideals of A. Thus we see that for a
‘ring with unit element and A.C.C. for ideals, the two
definitions of associated prime ideals of an ideal A
both lead to the same set of maximal associated prime

ideals.
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6. Isolated components of an ideal. McCoy

has defined in (5) an m=system to be a set M of
elementé.of R with the property that if x and y

are in M then there exists r in R such that xry

is in M, The null set is ais& éonsidered aﬁ

m-system. Thus an ideal is prime if and only if

its complement is an me~system. Murdoch has defined
(6) a‘right M-n-system to be a set N containing an
m-system M and with the propefty that for given m

in M and n in N there exists r in R such that nrm is
in N, If M is the null set then the only M~n-system
is M itself. He then defined the (right) upper
isolated M-component of an ideal A not intersecting

M to be the set of glements x such that every right
M-n-system containing x aiso contains an element of

A, We shall adopt these definitions with the exception
‘that if M is the null set th;n,any set in R is a right
M-n-system, a change which results in our Definition 12
of the (right) isolated P=-component of AAwhere P is a
prime divisor of A. We now define the (right) upﬁer
isolated B-componént; U(A,B), where B is any ideal
divisor of A, Wé shall call a set M entirely rp (erp)

to A if every element in M is rp to A.

Definition 16, If B 2 A, then the (right)

upper isolated B-component of A, U(4,B), is the

intersection of all ideal divisors of A to which the
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set M of elements rp to B is erp.

Definition 17. Let B be a (proper) ideal in

R and M be the set of elements in R which are rp to

B. If Mis non-null a set N containing M is a (right)
B-V;sYstgm if for every m € M and n € N there exists
some r £ R such that nrme N, If M is null (R is

nrp to B) then any set is a B=-v-gsystem. Similarly,

any set is considered to be an R=v=~system,

We note that C(B), the complement in R of B,
is a B=v=system. For if M is non-null then'm ¢ M and
XRm €B implies x € B, hence m ¢ M and x ¢ C(B) implies
the existence of some r & R such that xrm & C(B),
while if M is null then C(B) is a B-v-system‘by

definition,

Lemma 10, Let N be any B-v-system disjoint
from A. Then A is contained in a maximal ideal Q

disjoint from N and M is erp to Q.

Proof. Since the union of any ascending chain.
of ideals containing A and disjoint from N is again an
ideal containing A and disjoiﬂt from N the existence
of Q follows at once from Zorn's lemma., If y ¢ Q then,
by the maximality of Q, there exists n & N such that
- ne (y) + Q. Then n has the form |
n = iy'+ ry + yrt + Z:ijriyrj +‘q, for r,r',ri;rj all
in R and q in Q.' Now if m is rp to B theré existé X e R
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such that mxm € N, or

nxm = iyxm + ryxm + yr'xm + ZEIJ 1yrjxm + gxm

is in N, But if yRmCQ then nxm € QNN, contradlctlng
Q disjoint from N, Hence yRn < Q implies y ¢ Q and m

is rp to Q as required.

Theorem 15. The complement in R of U(A,B)
is the maximal B=v-system disjoint from A, and U(A,B)
itself is the set consisting of all x such that every

B=vagystem containing x intersects A.

Proof. Let N be the complement of U(A,B).
Then x € N implies that x ¢ Q for some ideal Q24
" and such that M is erp to Q. Hence for me M .tﬁhere
exists r ¢ R such that xrm ¢ N, Thus N is a B=vesysten,
and is trivially disjoint from A. Suppose N'!' is any
'B=vV=gystem which is disjoint from A. Then bf Lemma
10 we have ASQ' for Q' an ideal disjoint from N! and
such that M is érp to Q'. But then U(A,B)< Q! b};
definition, hence N?.C(Q').?N'. Thus N is the maximal
B-S!-system- disjoint from.A. The 8second assertion
follows at once from the first, and the theorem is

proved.
Corollary. If B2A2A', then U(A,B)2U(A',B).

Proof. ‘Every ideal J containing A to which M.
is erp also contains A', and hence the intersection of
all such ideals containing A contains the intersection

of all such ideals containing A‘',



30..

We may remark that the last property in
Thecrem 15 could have been used to define U(A4,B), and
the others derived therefrom. Such a method would
have been more conventional, the proof proceeding'by
way of the standard three lemmas (Cf. e.g. McCoy (5)
~or Murdoch (6)), our versions of which would have read
as follows: (i) if R2B2A then there exists a
unique maximal B-v-system disjoint from A, (ii) same
as Lemma 10, and (iii) a set Q is a minimal ideal
dividing A such that M is erp to Q if and only if

C(Q) is a maximal B=v-system disjoint from A.

In the event P is a prime ideal divisor of A,
then the ideal U(A,P) is the upper isolated P=component
of A of Definition 12, as in this case the set of elements

rp to P is just the complement of P,

Murdoch has defined in (6) the right lower
isolated component of an. ideal A, relative to an
m-system M disjoint from A, te.be the set of all
elements x of R such that xRm €A for some m of I,
Thus if P is a prime divisor of A the right lower
isolated component of A relative to P is the set
{x | xRmS A for some m ¢ P}, We now extend this _
concept to the case of B any ideal divisor of A, and
establish relations between the upper and lower
isolated B=components of A corresponding to those

obtained by Murdoch.
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Definition 18, If B is an ideal containing

A, let M be the set of all m in R which are rp to B,

If M is non-null the (right).lower isolated B-component
of A is the ideal L(4,B) = {Zam~}|{m ¢ M}, If M is
null then L(A,B) is A, and L(4,R) is.also.A.

We note that if P is a prime ideal different
from R this definition agrees with that of Murdoch,

since then the set M is an me=gsystem,
Lemma 11, If R2B=2A then U(A,B)2 L(A,B)2 A,

Proof. By definition L(A,R) = A = U(4,R),
and if M is null then L(A,B) = A = U(4,B) also by
definition,

Suppose M is non~rull and R # B. That -L(4,B)2 A

1

follows at once from the fact that Am 2 A for any

me M. If xe& L(A,B) thenx = 7 0 x, for x, e Aml,

m; € Mo Now x5 € Ami‘limplies X4 RmiéA and every
B=v=system containing x5 certainly contains an elememnt
of A, hence x; € U(4,B) for i = 1,2,...,n. Thus

n s ~ : \
x = Zi=lxi is in U(A,B) and L(A,B)SU(A,B).

Theorem 16. (a) U(U(4, B),B) = U(4,B),
(b) L(U(4,B),B) = U(A,B),
(¢) U(L(4,B),B) = U(A,B).

Proofe (a) The complement in R of U(A,B)
is a B=Vegystem N not intersecting U(4,B) by Theorem 15.

Hence it is certainly :the maximal such system, and it
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follows from the same theorem that C(N) = U(A,B)
is the upper isolated B-component of U(4,B).

(b) By (a) just proved and Lemma 1l we
obtain L(U(4,B),B) € U(U(4,B),B) = U(4,B) € L(U(4,B),B)
and the desired equality follows.

(¢c) Since L(4,B) € U(A,B) we may apply the
corollary to Theorem 15 to obt.ain'U(L(A,B),B) c
U(U(A,B),B)., Since A € L(A,B) we apply the same
corollary to obtain U(A,B) € U(L(A,B),B). Combining
these results with part (a) we have
U(L(A,B),B) < U(U(A,B),B) = U(4,B) € U(L(A,B),B) and
the equality follows. o

Definition 19, For all ordinal numbers a

we define L*(A,B) by induction as follows:

L} (A,B) = L(A,B). If a is not a limit ordinal then
La(A;B) = L(Lanl(A;B),B); and if a is a limit ordinal
then L?(A;B) is the union of all Lp(A,B) for f < a,

Evidently if #< a then L°(4,B) € 1%(4,B).

Theorem 17. For all ordinal numbers a,

U(4,B) 2 L%(4,B).

Proof. For a = 1 the result is known by Lemma
1l1. We assume the result for all ordinals less than a
and proceed by induction.

(1) If o is not a limit ordinal and so has

an immediate predecessor @ - 1 then we have
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1%(a,B) = L(1*"}(4,B),B) by definition,

| < y(z*"}(,B),B) by Lemma 11,
€u(u(a,B),B) by Theorem 15, Corollary,
= U(4,B) by Theorem 16(a).

(ii) If a is a limit ordinal, then by the
definition of L*(A,B) we have that x ¢ L*(4,B) implies
X € LP(A,B) for some @ < a, But then by the inductive
assumpﬁion x € U(A,B) and hence L*(4,B) € U(4,B).

Theorem 18, For any ordinal number a,

L%(A,B) = 1%*1(A,B) if and only if L®(A,B) = U(A,B).

Proof. (i) . If L*(A,B) = U(A,B) then by
Theorem 16(b) we have L®*1(4,B) = L(U(4,B),B) = U(4,B).
(ii) Suppose L*(4,B) = 1%*1 (A B) for some a,
and xBm € L*(A,B) for some m rp to B. (If M is mull,
the result is trivial, as then all the component ideals
are just A.) Then x ¢ L%(A,B)ut = 1%*1(4,B) = 1%(4,B)
and m is rp to ﬂu(A;B)<if m is rp to B. But U(A,B)
is the minimal ideal containing A to which every m rp
‘to B is rp, hence U(A,B) € L%(A,B). Since
1%*(A,B) € U(A,B) for all a, the result follows.

Corollary 1. There exists an ordinal a,

finite or transfinite, such that L%(A,B) = U(4,B),

Proof. Under inclusion the LU(A;B) form a
bounded, well ordered set such that the union of any

subset is again an LP(A,B). Hence there exists a
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maximal element L%*(A,B) which must contain all

L9(A,B), thus L*(4,B) = L%*1(4,B) = U(4,B).

Corollary 2., If the A.C.C. for ideals
holds in R/A then LP(A,B) = U(A,B) for some finite

n,

In the event R is a commutative fing,,then
the set of elements rp to an ideal B is the set of
elements prime to B, which forms a multiplicative
system. Thus both U(A,B) and L(A,B) as we have
defined them are the samé as the components defined
by Murdoch in (6), which he has shown to be both
equivalent to Krull's isolated component in the

commitative case,
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7. Principal components.of an ideal. In

Theorem 2 we saw that'any ideal A is the iﬁtérsection
of its upper isolated Py~-components, where the Py

are the prime adjoints of the strongly irreducible
primal divisors of A. The difficulty of determining
the strongly irreducible divisors of an ideal, however,
keeps this representation of an ideal from being a
particularly desirable one. If the ring R satisfies
the A.C.C. for ideals we can do somewhat better. For
in this case Theorem 9 shows that A is the finite
intersection of its upper isoclated components corres-
ponding to the maximal primes of A. Since for any
divisor B of A we have A € L(A,B) € U(4,B), Theorems
2 and 9 remain valid if we replace "™upper" by "lower®.
Moreover, we can then obtain a result for general

‘rings similar to the modified version of Theorem 9,

Definition 20 If R2 Q and Q is a maximal

nrp to A ideal, then L(A,Q) is a (right) lower
principal component of A, and U(4,Q) is a (right)

upper principal component of A.

We note that if R is commtative, these
definitions are equivalent to that of Krull's
principal compenent, which for R # P, P a maximal
not prime to A ideal is defined as the set

A(P) = {x]xy € A for some y ¢ P}, For in this case
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U(A,P) = L(A,P) and "not prime to A" is equivalent
to "nfp toiA" as remarked before. Also, since P is
necessarily prime, the set of elements not in P is
exactly the set of elements rp to P, Clearly, if
x € A(P) then xy ¢ A for some y ¢ P, and hence
Rxy = xRy € A, and x € L(4,P), On the other hand, if
x € L(A,P) then xRy € A, hence xyy € A, for some y £ P,
But since P is prime, yy £ P and we have x € A(P).
Hence A(P) = L(A,P) = U(A,P), if R is commutative,

Theorem 19, In any ring R, any ideal A is

the intersection of its lower principal components.

Proof. Let {Q;} be the set of maximal nrp to
A ideals. |

(1) If R = Qg for some a, then L(A,Q;) = A by
definition, or if R is nrp to Q, for some a, then
L(4,Q,) = A by definition, and since AS () L(4,Q;)
the result follows trivially in either of these cases.

(ii) Suppose R # Q, and R is rp to Q, for all
@, and suppose x € /VL(4,Q ). Then for each a,
x = Z:;: Xx; Where thére exists ma; Tp to Q, such
that Xu Rma; €4, i=1,2,...,n05. Let B = {y| xRyc4}.
Clearly B is an ideal. Now we have
XR (M RM o o oMoy Rio) = (Z7 X JR(mBI, oo ol _(RE,, ) CA,
hence my,Rlla, «s el Rla, < Be

‘Now if BEQ,, then (md'Rm,z...mo(nd_.)RmdmsQa

and my, Tp to Qu implies (my, Rmdz...mqnﬂ)Rmam_, € Quxe
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,Coht_inui‘ng this process, we find ma:L € Q;, a contra-
diction. Hence B¢ Q, for any a, and B must be rp
to A. But then there exists b ¢ B such that yRb £ A
implies y € A. Now xRb € A by definition of B, hence
x ¢ A, and we have shown NL(A,Q;)S 4, But

AS NL(A,Qy) trivially and the result follows.

It appears unlikely that a similar result
holds in general for the upper principal components
of an ideal. However, under some circumstances such

a result can be obtained.

Theorem 20. If the adjoint P, of a strongly

irreducible divisor A, of A is rp to A, then U(A P,)
is redundant in A =/ U(4,P Pg)e

Proof. We recall that by Theorem 1, A = nAa,
where {Aa} is the set of strongly irreducible divisors
of A, and by Theorem 2, A =) U(A,Pa), where P is the
adjoint of A,. Now if U(A,Pa)" is irredundant, then 4,
is also. Hence Aa;p.b MNptxhs and A, +Npza A A o
Since by Lemma 2 P, is unrp to A , there exists y £ A
such that yRP, S Ay, Let A} = (y) + A DA, and we have
that AL N [A +Npsahp] = A, + AN g2akp)> Ay by
Dedekind's law and the fact that Ay is irreducible.
Hence there exists x f Ay such that x € Ay + (y) and
x € Ag for ,éia. Now x = a;, + y' for some a, € A, and
y! € (y), hence xRP, & a RP, + y'RP, € A . But xRP, < Ag
for all £ ¥ @, hence xRP, S A and P, is unrp to A. Thus
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if P, is rp to A, then U(A,P ) must be redundant.

Theorem 21, If in A ={)U(A,P ), where the

P, are the adjoints of the strongly irreducible divisors
of A, all the redundant components can be eliminated,
then A is the inmbersection of its upper principal

components.

Proof. If all the redundant components can
be eliminated (certainly any finite number can), then
by Theorem 20 the remaining ones have Pa unrp to A.
Now each of these Py is contained in a maximal nrp
to A ideal Q,. But P, c Q, implies that
U(4,P ) 2 U(A,Q ) 2 A, Thus A =/NU(4,Q ), the

intersection of the upper principal components of A.
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8. Remarks.. There are many. questions remain-
ing to be answeféd in connection with the results we
have obtained and those of related papers. Some are
in the nature of gaps which should be filled in to
complete the picture here presented, while others are
concerned with relating these developments to previous

work along the same general lines.

Of the first class of questions, two are rather
obvious. First, it should be established whether or not
the maximal nrp to A ideals are necessarily prime, and
secondly whether or not an ideal is always the inter=
section of it3 (right) upper principal components. As
already noted, we expect that the answer inh each case
is negative, but examples have not yet been found to

establish phis.

Since a corresponding theory of not left prime
to A ideals can be stated, it is natural to ask under
what conditions an ideal will be both not right prime
and not left prime to A, particularly with respect to
maximal ideals of these classes. If, as expected, it
turns out that such maximal ideals need not be priume,
one would also like to know under what conditions the
(right) maximal primes of A are also left maximal primes,
Answers to questions such as these might enable one to
define "symmetric®™ upper and lower isolated, and principal,

components of -an ideal and investigate their properties,
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particularly with reéard to Theorems 19 and 21. Related
to these considerations would be a study of the

characteristics of ideals both left and right primal,

In view of the characterization given in
Theorem 13 of the intersection of the maximal primes of
an ideal, one might also ask what.properties are
possessed“by tﬁe intersection of the maximal not
right prime to A ideals, and its possibié relation
to the McCoy radical of A. Questions of left-right
symmetry might well arise here also, particularly;in
view of the known relationships between the Jacobsqn"
radical and the intersections of the left (or right)
primitive ideals and of the left (or right) regular
maximal ideals.

The connection between primal ideals and primary
ideals in a general ring should also be susceptible to
further development.  In particular, the theory of primal
ideals might be able to throw more light on the éuestion
of when an ideal has a finite representation as the
intersection of primary ideals. The‘properties of the
associated primes of an ideal might prove to be useful
in this regard, as their definition was derived from
results on primary decompositions. It would also be of
interest to know just when a primary ideal is primal,
and vice versa. Here again it seems possibie that

considerations of left-right symmetry might be of
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congiderable importance,

The above comments regarding possible lines
of related investigation will be seen to have in
common the desirability of results concerning the
relationship between the concepts of ™not right prime"
and "not left prime"™. In the opinion of the author, it
is along this line that future investigation might most

profitably begin.
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