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Abstract 

In any associative r i n g R an element x i s not 
r i g h t prime 'nrp) to an i d e a l A i f yRx £ A f o r some 
y i A. An i d e a l i s primal i f the elements nrp to i t 
form an i d e a l . These d e f i n i t i o n s d i f f e r from those of 
Curtis (American Journal of Mathematics, v o l . 76 (1952), 
pp. 6S7-7O0) but reduce to them f o r rings with unit 
and A.C.C. for i d e a l s . They also reduce t o Fuchs 1 

(Proceedings of the American Mathematical Society, 
v o l . 1 (1950), pp. l-#) f o r commutative r i n g s . An 
i d e a l B i s nrp to A i f every element of B i s nrp to 
A. Maximal nrp to A ideals always exist and t h e i r 
i n t e r s e c t i o n i s c a l l e d the adjoint of A. In a class 
of r i n g s , c a l l e d uniform, the maximal nrp ide a l s of 
any i d e a l are prime. The A.C.C. implies uniformity, 
but not conversely. Results (s i m i l a r to the c l a s s i c a l 
Noether theory) on representations of an i d e a l as the 
int e r s e c t i o n of primal ideals with prime adjoints are 
obtained which include those of Fuchs and C u r t i s . 

I f A and B are ideals i n any associative r i n g 
such that A S. B, the lower r i g h t isolated B-component 
of A, L(A,B), i s the i d e a l sum of a l l ideals Am""\ 
where m i s r i g h t prime to B and Am""-*- = [x|xRm £ A} . 
The upper r i g h t isolated B-component of A, U(A,B), 
(which always contains L(A,B)) i s the i n t e r s e c t i o n of 



a l l ideals C 2 A and such that every m right prime to 
B i s right prime to C. I f B i s a maximal nrp to A 
i d e a l then L(A,B) and U(A,B) are c a l l e d lower and 
upper right p r i n c i p a l components of A. For B a prime 
i d e a l i n a commutative r i n g , these d e f i n i t i o n s reduce 
to those of W. K r u l l . I t i s shown that every i d e a l 
i n an associative r i n g i s the i n t e r s e c t i o n of i t s 
lower right p r i n c i p a l components, and under c e r t a i n 
conditions i s also the i n t e r s e c t i o n of i t s upper 
right p r i n c i p a l components. 
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T H E S I S 

PRIMAL. IDEALS AND ISOLATED COMPONENTS 

IN NON-COMMUTATIVE RINGS 

A ring i s a system consisting of a set of 
elements and two binary operations, "addition" and 
"multiplication", obtained by generalizing the pro
perties of the ordinary integers. It i s termed 
commutative i f the "product" a*b i s the same as the 
"product" b«a for a l l elements of the ring, and non-
commutative i f this i s not necessarily the case. 
Certain subrings called ideals have d i v i s i b i l i t y 
properties i n many ways analogous to those of the 
individual integers. In particular, the well-known 
theory of unique representation of an integer as a 
product of prime integers has been variously gen
eralized to representations of ideals i n commutative 
rings by ideals analogous .to powers of prime integers. 

The representation'by primal ideals of L. Fuchs 
is here generalized to the case of non-commutative 
rings, and for rings satisfying certain uniformity 
or finiteness conditions the set of prime ideals 
associated with the primal ideals occurring i n the 
representation i s uniquely determined. 

W. Krull's representation of an ideal by principal 
component ideals i s also generalized to the non-
commutative case, and a unique representation by 
such ideals i s obtained without imposing any re
strictive conditions on the ring. 
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INTRODUCTION 

L. Fuchs (Proc. A.M.S. v o l . 1 (1950)) has 
given f o r Noetherian rings a theory of the represen
t a t i o n of an i d e a l as an i n t e r s e c t i o n of primal i d e a l s . 
A primal i d e a l i s an id e a l Q such that the elements not 
prime to Q form an ide a l P, necessarily prime, c a l l e d 
the adjoint of Q. Primary ideals are necessarily primalj 
but not conversely. The theory i s i n many ways ̂ analogous 
to the c l a s s i c a l Noether theory. In p a r t i c u l a r , every 
ide a l i n a Noetherian r i n g has a normal representation 
by primal ideals, and i n any normal representation the 
set of adjoint primes and the number of primal components 
are uniquely determined. Analogous r e s u l t s have been 
obtained by Curtis (Am. J. of Math. v o l . 74 (1952)) 
f o r non-commutative rings with unit element, using a 
d e f i n i t i o n of primal i d e a l which does not however reduce 
to that of Fuchs i n a commutative r i n g . 

In t h i s thesis an al t e r n a t i v e d e f i n i t i o n of 
primal i d e a l i n a general r i n g i s given, which reduces 
to Fuchs' d e f i n i t i o n i n a commutative r i n g and to that 
of Curtis i n a r i n g with unit element and ascending 
chain condition f o r ideals (A.C.C). The new d e f i n i t i o n 
i s based on a d e f i n i t i o n of "not r i g h t prime to A n which 
associates with every i d e a l A c e r t a i n maximal not r i g h t 
prime to A i d e a l s , analogous to K r u l l ' s maximal associated 
primes. With C u r t i s 1 d e f i n i t i o n these ideals can be 
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obtained only by assuming the A.C.C. These maximal 
not r i g h t prime ideals are apparently not necessarily 
prime unless a condition of "uniformity", which i s 
weaker than the A.C.C,is imposed. The FuchsrCurtis 
decomposition theorems are obtained using the new 
d e f i n i t i o n . 

I f M i s a m u l t i p l i c a t i v e system, K r u l l defined 
the i s o l a t e d M-component of an i d e a l A i n a commutative 
r i n g to be the set A(M) of a l l x such that xm i s i n A 
f o r some m i n M. For an i d e a l B which contains A, the 
is o l a t e d B-component of A, A(B), can be defined as A(M) 
where M i s the set of elements prime to B. I f P i s a 
maximal prime associated with A, then A(P) i s c a l l e d a 
p r i n c i p a l component of A. K r u l l has shown that every 
i d e a l i n a commutative r i n g i s the i n t e r s e c t i o n of i t s 
p r i n c i p a l components. 

I f P i s a prime di v i s o r of A i n a non-commuta
t i v e r i n g , Murdoch (Can. J. of Math. v o l . 4 (1952)) has 
defined upper and lower P-components of A, both of which 
reduce to K r u l l ' s i s o l a t e d P-component i n the commutative 
case. Upper and lower B-components of A are now defined 
f o r any d i v i s o r B of A. The upper and lower p r i n c i p a l 
components of A are then taken to be the upper and lower 
Q^-components where the 0^ are the maximal not ri g h t prime 
to A id e a l s . I t i s shown that i n any r i n g every i d e a l i s 
the i n t e r s e c t i o n of i t s lower p r i n c i p a l components. 
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he l p f u l suggestions given me during the preparation 
of t h i s t h e s i s . 
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1. Notation and d e f i n i t i o n s . We s h a l l use R to 
denote an associative r i n g which w i l l be non-commutative 
unless otherwise s p e c i f i e d . The term i d e a l w i l l always 
mean two-sided i d e a l . Proper ide a l s i n R w i l l be denoted 
by A, B, ... and elements of R by a, b, x, y, •••• The 
symbols Z A a and A+B w i l l denote i d e a l sums of i d e a l s , 
and UA and A f B w i l l denote set theoretic unions. By a 
{A| A has property P} and{xjx has property P} we s h a l l 
mean respectively the set of id e a l s having property P and 
the set of elements having property P. The symbol (x) 
w i l l mean the p r i n c i p a l i d e a l generated by x and (x,y,...) 
the i d e a l generated by x, y, .... 

D e f i n i t i o n 1. Ax" 1 = (ylyRx Q A} and AB" 1 ={yj yRB £ A}. 
Evidently both Ax" 1 and AB""1 are ideals and both contain the 
id e a l A. 

D e f i n i t i o n 2. The element x i s not r i g h t prime 
(nrp) to A i f Ax" 1 £ A. Otherwise x i s right prime 
(rp) to A. 

De f i n i t i o n The i d e a l B i s nrp to A i f every 
b i n B i s nrp to A . Otherwise B i s rp to A* 

Thus x i s rp to A i f and only i f yRx A implies 
y e A, and B i s rp to A i f and only i f there exists some 
b e B such that yRb £ A implies y e A. 



2 

D e f i n i t i o n 4. The id e a l A i s r i g h t primal i f 
{x|x i s nrp to A} i s an i d e a l , which i s then termed 
the adjoint i d e a l of A. Since there are no ideals 
nrp to the ri n g R, we s h a l l say that R i s primal. 
As we s h a l l consider only right primal i d e a l s , we 
s h a l l simply say "primal" instead of "ri g h t primal". 

D e f i n i t i o n 5. An i d e a l B i s uniformly nrp 
(unrp) to A i f AB"̂ " / A, or equivalently i f there 
exists some y not i n A such that yRBSA. 

D e f i n i t i o n 6. A ri n g i s termed (right) uniform 
i f f o r any two ideals A and B, i f B i s nrp to A i t 
follows that B i s unrp to A. 

For reference purposes we repeat here the 
following d e f i n i t i o n s : 

D e f i n i t i o n 7. For commutative rings Fuchs (2) 
has defined x not prime to A to mean xy e A f o r some 
y ^ A, and A i s primal to mean {x|x i s not prime to A}-
i s an i d e a l . 

D e f i n i t i o n g. For non-commutative rings with 
unit element Curtis (1) has defined B nrp to A to 
mean (Zc)CB £ A} Z> A, or equivalently that there 
e x i s t s y i A such that yB^A, and A i s primal to 
mean that the id e a l sum of the ideals nrp to A i s 
again nrp to A. 
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We note that B nrp to A i n the sense of Curtis 
implies B i s unrp to A, and i f B i s unrp to A then 
B i s nrp to A. For i f . y i A and yBSA then yRBSA, 
and i f y / A and yRB S. A then yRb£A f o r a l l b e B. 

I f R has a unit element then B unrp to A 
implies B i s nrp to A i n the sense of C u r t i s , f o r 
i f y i A and yRB £ A then yB • yRB £ A. 

Since the i d e a l sum of an ascending chain of 
ideals nrp to A i s again nrp to A, Zornts lemma 
assures the existence of ideals which are maximal 
i n the i n c l u s i o n ordered set of ideals nrp to A* 
Such an i d e a l w i l l be termed a maximal nrp to A 
i d e a l , and thus A i s primal i f there i s only one 
maximal nrp to A i d e a l . 

I f R i s commutative, then x nrp to A i s 
equivalent to x not prime to A, and thus our d e f i 
n i t i o n of primal agrees with that of Fuchs. For i f 
yRx £A f o r some y i A then yxxeA and either yx e A 
for y i A or (yx)x e A f o r yx j, A so that x i s not 
prime to A, and i f yx s A f o r y i A then Ryx = yRx £ A 
and x i s nrp to A. 

I f R has a unit element then A primal i n the 
sense of Curtis implies A i s primal. For l e t x be 
nrp to A so that yRx £A f o r some y i A. Then 
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(y)(x) £A a n (i ( x) ^ s -to A i n the sense of 
Cu r t i s . I f A i s primal i n the sense of C u r t i s , 
then (x) i s contained i n the sum P of a l l i d e a l s 
nrp to A i n the sense of C u r t i s , which i s again nrp 
to A i n his sense. As noted above, t h i s implies 
that P i s nrp to A, hence P i s exactly the set of 
a l l elements nrp to A and A i s primal. 

I f R i s a uniform r i n g with unit element then 
A i s primal i n the sense of Curtis i f and only i f A 
i s primal. For by the previous remark we need only 
show that i f A i s primal then A i s primal i n the 
sense of C u r t i s . But i f A i s primal then the set 
P of elements nrp to A i s an i d e a l unrp to A since 
A i s an i d e a l i n a uniform r i n g . Since R has a 
unit element t h i s implies P i s nrp to A i n the sense 
of C u r t i s . On the other hand i f B i s nrp to A i n 
h i s sense then B i s nrp to A and hence contained i n 
P. Thus P i s exactly the sum of a l l i d e a l s nrp to 
A i n the sense of Curtis and A i s primal i n h i s 
sense. That the condition of uniformity i s a 
necessary one i s shown by an example of C u r t i s 1 

paper (1) of a non-uniform r i n g which has a primal 
i d e a l that i s not primal i n h i s sense. 
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2. Primal i d e a l s . 
D e f i n i t i o n 9. By a prime i d e a l we mean an 

id e a l which i s prime i n the sense of McCoy (5), that 
i s , P i s prime i f xRy£ P implies x or y i s i n P. McCoy 
has shown that t h i s i s equivalent to the property that 
i f P divides the product of two ideals then P must 
divide at l e a s t one of them. 

D e f i n i t i o n 10. A maximal prime of an i d e a l A 
i s an i d e a l which i s maximal i n the i n c l u s i o n ordered 
set of prime i d e a l d i v i s o r s of A which are nrp to A. 

We note that i n the general case there may be 
no maximal primes of A even i f i t happens that there 
are prime d i v i s o r s of A which are nrp to A, since 
the union of an ascending chain of prime id e a l s i s not 
necessarily prime. 

Lemma 1. I f B i s maximal i n the i n c l u s i o n 
ordered set of ideals nrp to A and i s unrp to A then 
B i s a maximal prime of A. 

Proof. Let xRy be contained i n B and y be not 
i n B. Then since B i s unrp t o A there exists z not i n 
A such that zRB i s contained i n A, hence ssHxRy i s 
contained i n A. Now B a maximal nrp to A i d e a l implies 
the existence of some y 1 e: (y) + B such that y 1 i s rp 
to A. But then zRxRy' i s contained i n A, which implies 
zRx i s contained i n A. Thus we have zE and 
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(x) + B i s nrp to A. Since B i s maximal nrp to A 
i t follows that x i s i n B as required. 

D e f i n i t i o n 11. An i d e a l A i s strongly 
i r r e d u c i b l e i f A cannot be expressed as an i n t e r 
section, f i n i t e or i n f i n i t e , of proper d i v i s o r s . A i s 
irr e d u c i b l e i f A cannot be expressed as a f i n i t e i n t e r 
section of proper d i v i s o r s . 

Lemma 2. I f A i s strongly i r r e d u c i b l e then 
every i d e a l B nrp to A i s unrp to A. 

Proof. Since B i s nrp to A we have ACAb""1 

f o r every b e B. Hence AS D^ ggAb~ 1, and since A i s 
strongly i r r e d u c i b l e the i n c l u s i o n must be proper. 
Thus there ex i s t s x f. A such that x e Ab" 1 f o r a l l 
b e B. But then xRB £A and B i s unrp to A. 

Lemma 3. Every i r r e d u c i b l e i d e a l i s primal. 
Every strongly i r r e d u c i b l e i d e a l i s primal with 
prime adjoint. 

Proof. Suppose b^ and b 2 are nrp to an 
irre d u c i b l e i d e a l A. Then A b j " 1 } A and Abg" 1^ A, 
hence A - Ab^'^AAb^'l, and since A i s i r r e d u c i b l e the 
in c l u s i o n must be proper. Hence there exists x i A 
such that x £ A b ^ V l Ab 2~ 1. But then x R ^ - *>2)£A 
and b^ - i s nrp to A. Thus the set of elements 
nrp to A form an i d e a l and A i s primal. I f A i s 
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strongly i r r e d u c i b l e then, as we have just seen, A 
i s primal. Then by Lemma 2 the adjoint P of A i s 
unrp to A, hence by Lemma 1, P i s a prime i d e a l • 

The following theorem and the method of i t s 
proof are taken from Curtis (1). 

Theorem 1. Every i d e a l i s the i n t e r s e c t i o n of 
i t s strongly i r r e d u c i b l e primal d i v i s o r s . 

Proof. I f x / A, consider the i n c l u s i o n 
ordered set of d i v i s o r s of A not containing x. The 
union of any ascending chain of such ideals i s again 
an i d e a l d i v i s o r of A not containing x. Thus i t follows 
from Zorn fs lemma that there e x i s t s an i d e a l d i v i d i n g 
A which does not contain x and such that any proper 
d i v i s o r of B x contains x. Then B x i s strongly i r r e d u c i b l e , 
hence primal by Lemma 3» Clearly A i s the i n t e r s e c t i o n of 
the ideals B x f o r a l l x not i n A. 

De f i n i t i o n 12. I f P i s a prime i d e a l d i v i s o r 
of A, the (right) upper is o l a t e d P-component of A, 
U(A,P), i s the i n t e r s e c t i o n of ..all ideals which contain 
A and are such that every element not i n P i s r i g h t 
prime to them. The upper i s o l a t e d R-component of A 
i s defined to be A. 

" This d e f i n i t i o n has been shown by Murdoch (6) 
to be equivalent to h i s d e f i n i t i o n , except f o r the case 



of the upper is o l a t e d R-component of A, which i n 
his d e f i n i t i o n i s the r i n g R. As may be r e a d i l y 
v e r i f i e d , however, i f the (right) lower is o l a t e d 
R«=component of A i s also defined t o be A, then a l l 
r e s u l t s i n Murdoch's paper (6) remain v a l i d , the 
only changes being s i m p l i f i c a t i o n s i n c e r t a i n theorems 
where p a r t i c u l a r cases no longer have to be considered. 

Lemma 4» I f A i s primal with prime adjoint 
P, then A = U(A,P), the upper i s o l a t e d P-component of A. 

Proof. By d e f i n i t i o n U(A,P) i s the i n t e r 
section of a l l ideals B such that B 2 A and i f x i P 
then x i s rp to B. But A i s i t s e l f such an i d e a l 
and the r e s u l t follows at once. 

Theorem 2. Any1 i d e a l A i s the in t e r s e c t i o n 
of i t s upper is o l a t e d Pa-components, where the P a are 
the adjoints of the strongly i r r e d u c i b l e primal 
d i v i s o r s A Q of A. 

Proof. By Theorem 1 we have, that A i s the 
int e r s e c t i o n of the A \ and by Lemma 3 each P i s 

a' a 
prime. Thus the theorem i s meaningful as stated. 
By Lemma 4 we" have A„ = U(A„.P ) and"Murdoch has 
shown i n (6) that i f P a 5 A a 2 A , then 
U(A a,P a)2U(A,P a)2 A. We thus obtain 
A - /OAa =nu(A Q,P a) ? r i U ( A , P a ) 2 A , and the equality 
follows. 
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3. Representations bv primal i d e a l s . 

D e f i n i t i o n 13. A representation 

(1) A = A^Ti A2n ...^A n 

of an i d e a l A as the in t e r s e c t i o n of i d e a l d i v i s o r s 
of A w i l l be c a l l e d irredundant i f no A^ contains the 
int e r s e c t i o n of the remaining ones, and reduced i f no 
A£ can be replaced by a proper d i v i s o r . 

Lemma 5. I f (1) i s a reduced representation 
of A by primal ideals A^ with prime adjoints P^, then 
an i d e a l B i s nrp to A i f and only i f B i s contained i n 
one of the P^. 

Proof, ( i ) I f B i s nrp to A, f o r any b e B we 
may f i n d x f e i A such that x t )Rb£A£A i f o r a l l i . But 
x^ ^ A implies x^ i A^ f o r some i , hence b i s nrp to A^ 
and b e P^ since A^ i s primal. Since b i s a r b i t r a r y 
i n B, we conclude that B £ P^u ?2U ...UP n. We may 
suppose the indexing to be such that B£ P^u F^U ... U P. 
but B i s not contained i n the unibn of any proper 
subset of pi> p2»• • • »̂ k* '^a-en w e choose p^ e BOP^ 
such that Pjl $ Pj f o r j / i , f o r each i = l,2,...,k. 

I f k = 2, then p^ + P 2 i s i n B, hence i n either 
P-̂  or ?2» either of which i s contrary to the choice of 
p. and p . Thus k £ 2. 
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I f k > 2, then P i R P 2 ^ P k s i n c e e i t h e r of 
p^, p 2 i s i n P^ and P^ i s prime. Choose r ^ so that 

P l r l P 2 = P{ P2 ̂  Pk* T h e n p l p 2 R p 3 ^ P k a n d w e 1 0 3 7 

choose r 2 so that p^ p 2 r 2 p ^ = p£ P 2 P3 i P^. 
Continuing i n t h i s way we obtain p = p^ p^ • ••Pj c..i i P f 
But b = p + p^ £ B, and b must be i n some P^ for i < k. 
I f i < k then p^ £ P^ contrary to assumption, and i f 
i = k then p E P^ contrary to assumption. Hence k ̂  2 
and we conclude that k = 1, and thus BSP^. 

( i i ) For p i £ P i , l e t y be such that y i Aj_ and 
yRp 1SA 1. Then AJ = (y) + AjO Since (1) i s 
reduced, there must exist y T £ k\f\k^C\ ... C\ A n and 
such that y T i A. But y lRp 1£ (y)Rp! + A ^ R p ^ A ^ 

hence y^p^S A and p^ i s nrp to A. But since p^ i s 
ar b i t r a r y i n P^ we conclude that P^ i s nrp to A^ and 
s i m i l a r l y the other P^ are nrp to A. 

Theorem 3. I f (1) i s a reduced representation 
of A by primal ideals with prime adjoints P^, then the 
maximal nrp to A ideals are the maximal primes of A 
and are i n f a c t the maximal elements of the i n c l u s i o n 
ordered set P^,P2,...,PQ. 

Proof. Suppose P i s maximal nrp to A, i . e . , 
P i s nrp to A and i f Q ) P then Q i s rp to A. By 
Lemma 5, P i s contained i n some P^. But P^ i s nrp 
to A f o r a l l i by the other h a l f of Lemma 5, hence 
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the maximality of P implies that P » P_̂  f o r some P^ 
which i s maximal i n the set Pi,P2>•••?^n» Thus P 
i s prime and hence a maximal prime of A. I f 
conversely P^ i s maximal i n P-^Pg, • •. ,P n, then P^ 
must be a maximal nrp to A i d e a l , f o r i f not, there 
e x i s t s Q̂ P,- and such that Q i s nrp to A. But then J 
by Lemma 5 we would have Q contained i n some P^ and 
Pj-CQSP^ contrary to the maximality of P^. 

Lemma 6. Let (1) be a reduced representation 
of A by primal ideals with prime adjoints P^. Then A 
i s primal i f and only i f one P_. divides a l l the others, 
i n which case P • i s the adjoint of A. 

Proof, ( i ) Let P. 2 P. f o r a l l i , so that 
J 

P . = P, U P_ U . .. U P . Then bv Lemma 5, B nrp to A 3 1 <c n 
implies that B£P. and since by Lemma 5 again P. i s 

J j 
nrp to A, i t follows that A i s primal with adjoint ?y 

( i i ) Let A be primal with adjoint P. Then 
since P i s nrp to A, P — P j f o r some j by Lemma 5» 

Also by Lemma 5, P^ i s nrp to A, hence P-9 P f o r a l l 
i , or P.SPSP. f o r a l l i . Then P = P. and the 
lemma i s proved. 

D e f i n i t i o n 1̂ .. I f (1) i s an irredundant 
representation of A by primal ideals A^, and i s such 
that A J L ^ A J - i s not primal i f i ̂  j , i t w i l l be c a l l e d 
a short representation of A by primal i d e a l s . 
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Theorem 4. Let (1) be a reduced representation 
of A by primal ideals with prime adjoints P^. Then 
A has a short representation by primal i d e a l s whose 
adjoints are the maximal primes of A. 

Proof. Since (1) i s reduced we may assume that 
the representation i s irredundant, since the i n t e r 
section of any subset of A^A2,...,An i s also reduced. 
Let the indexing be such that Pi,P2,•.•,P r are the 
maximal elements of the set P-^Pg,•..,Pn* Let A£ 
denote the i n t e r s e c t i o n of those A^ such that P^ < P^, 
and l e t At denote the i n t e r s e c t i o n of those A. such 
that P ± c Pj but P i $ P k i f k < j , j - 2,3,...,r. Each of 
M. »̂ 2 » •••»^r s a t i s f i e s the conditions of Lemma 6 and 
hence they are a l l primal with prime adjoints 
P^jPg,...,Pr« Now f o r j k, the in t e r s e c t i o n of the 
A, forming At and A* i s a reduced i n t e r s e c t i o n of 

1 J K 

primal ideals not a l l of whose adjoints are contained 
i n any one adjoint, hence by Lemma 6, A'/^A^ i s not 
primal and the representation A = A£/lk^f\ ...OA£ i s 
short. By Theorem 3, P-|̂ P2» • • • >Pr are the maximal 
primes of A, and the theorem i s proved. 

Corollary. I f (1) i s a representation of A by 
strongly i r r e d u c i b l e i d e a l s , then A has a short 
representation by primal ideals whose i d j o i n t s are 
the maximal primes of A. 



13. 

Proof. By Lemma 3 each A^ i s primal with 
prime adjoint. We may assume the representation i s 
irredundant. Since the A^ are i r r e d u c i b l e , Lemma 
I I of E. Noetheris paper (4), which remains v a l i d 
i n general r i n g s , assures that the representation i s 
reduced. The re s u l t now follows from the theorem. 

Theorem 5. In any short reduced representation 
of A by primal ideals with prime adjoints, the adjoints 
and the number of primal components are uniquely 
determined. 

Proof. Let A = A . n A 0 / ^ . . . / l A . where P. i s 
the adjoint of A. and A = A ' A A ' n . . . n A ' - , where Pt 

i 1 2 m» j 
i s the adjoint of A* be any two such representations 
of A. Since both representations are short, no P^ 
properly contains another Pj and no P| properly 
contains another P j . Then by Theorem 3 both 
P 'P 0 >...,P and P» ,PJ>,... , P « are the set of maximal 1* 2* » n 1* 2' . m 
primes of A, hence m = n and the P^ are the Pf. i n some 

3 
order. 

By Lemma 1, every primal i d e a l i n a uniform 
r i n g has a prime adjoint. Thus f o r uniform rings the 
r e s u l t s of t h i s section are v a l i d without the 
s t i p u l a t i o n that the primal ideals i n question have 
prime adjoints. 
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For l a t e r use we include here the following 
lemma* 

Lemma 7. Let (1) be a reduced representation 
of A by primal ideals sueh that the adjoint of A^ 

i s unrp to A^. Then an i d e a l i s nrp to A i f and only 
i f i t i s contained i n some Qj^ and every i d e a l nrp to 
A i s unrp to A. 

Proof. Since Q-̂  i s unrp to A- ,̂ there e x i s t s 
x i A^ such that xRQ-^A^. Let A| = (x) + A^, and we 
have A£/1A 2^ ... n A Q ) A since (1) i s reduced and 
A£ } A^. Then there e x i s t s y i A-such that 
y e A£f> k2r\ ... r\ A n. Now yRQ^c (xjRQ^ + A ^ Q ^ A ^ 

and i t follows that yRQ^- A. Thus Qj_ i s unrp to 
A, and s i m i l a r l y each i s unrp to A. 

By Lemma 1 the are a l l prime, and thus i t 
follows from Lemma 5 that an i d e a l B i s nrp to A i f 
and only i f B i s contained i n some Q̂ . But since 
each i s unrp to A t h i s implies that every i d e a l 
nrp to A i s unrp to A. 
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4. Ascending chain condition. Throughout t h i s 
section we s h a l l assume that the r i n g R s a t i s f i e s the 
ascending chain condition f o r i d e a l s . 

Theorem 6. I f A i s an irr e d u c i b l e i d e a l and 
B i s nrp to A, then B i s unrp t o A. 

Proof. The ascending chain condition implies 
that B has a f i n i t e basis, or B = (b-^bg,.. • , b n ) . 
Now ( A b ^ n A b " 1 ^ .../lAb^jRB = A B " 1 R B £ . A . For each i , 
AbT 1) A, hence A b J 1 ^ A b ^ n ... n Ab"12 A, and equality 
i s impossible t r i v i a l l y i f n = 1, and i f n > 1 since A 
i s i r r e d u c i b l e . Thus there e x i s t s x e Ab^OAb^O ...f) Ab 
such that x i A. For,this x we have xRB£A, and hence 
B i s unrp to A. 

Theorem 7. Every i d e a l A has a short reduced 
representation by primal ideals whose adjoints are 
the maximal primes of A and are unrp to A. 

Proof. The A.C.C. implies that A has a f i n i t e 
representation, which.we may assume to be irredundant, 
by i r r e d u c i b l e ideals A^jAg,... J A J J. By Lemma I I of 
E. Noether Ts paper (4) which, together with Lemma IV 
of the same paper, remains v a l i d i n the non-commutative 
case, the representation i s reduced. Then by Lemma 3 
each A^ i s primal, hence by Theorem 6 the adjoint P^ 
of A. i s unrp to A ^ Then each P̂  i s prime by Lemma 1, 
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and by Lemma 7 i s unrp t o A. Suppose P ,P ,...,P 
1 2 m 

are the maximal elements of the i n c l u s i o n ordered 
set P-pPg,... ,P n. Let A*, be the i n t e r s e c t i o n of 
those A. whose adjqints P. are d i v i s i b l e by P. but 

-L 1 J 
not by P k f o r k < j , j = l,2,...,m. By Lemma 6 
each A*, i s primal. I f we replace the A. composing 
A£ by A£, E. Noether Ts Lemma IV assures that the 
representation remains reduced, and s i m i l a r l y f o r 
A£, Aj ,... ,Am.. By Lemma 6 the r e s u l t i n g representation, 
A • AJ^A AJ n ... nA m, i s short and by Theorem 3 the 
maximal primes of A are exactly P^jP^,•••,Pm« 

Theorem g. Every i d e a l A has a f i n i t e set of 
maximal primes, which are the maximal nrp to A i d e a l s . 

Proof. The r e s u l t i s an immediate consequence 
of Theorem 7 and Theorem 3» 

Corollary. I f A i s primal the adjoint of A i s 
a prime i d e a l . 

Theorem 9. Every i d e a l i s the in t e r s e c t i o n of 
i t s upper isolat e d components U(A,P 1), U(A,P 2),•..,U(A,P n) 
where P^,P2,...,Pn are the maximal primes of A. 

Proof. By Theorem 7, A has a representation 
A = A^ri A 2A ...HAjj where A^ i s primal with adjoint 
P^. As i n the proof of Theorem 2, we have 
A £ U(A,P ±) £ U(A ±,P i) = A ±. Hence i t follows that 
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A £ O i = 1 U ( A , P i ) £ fifc,^..- A , a n d t h e theorem i s 
proved. 

Theorem 10. Any r i n g s a t i s f y i n g the A.C.C. 
f o r ideals i s a uniform r i n g . 

Proof. I f A i s an i d e a l i n a r i n g with A.C.C, 
l e t B be any i d e a l nrp to A. Then B i s contained i n 
a maximal nrp to A i d e a l P which by Theorem 8 i s a 
maximal prime of A, and by Theorem 7 i s unrp to A. 
Thus there exists x £ A such that xRPSA, hence 
xRB £ xRP £ A and B i s unrp to A. 

That a uniform r i n g need not s a t i s f y the A.C.C. 
can be shown by the following example. 

Let F be a f i e l d with a valuation $ such that 
the value group of F i s the r a t i o n a l numbers. Let 
R be the r i n g of a l l f e F f o r which $(f) 2 1, and 
l e t A be a proper i d e a l of R. Then there e x i s t s 
a > 1 such that $(a) > a for a l l a e A and i f a» > a 
then $(a') < a 1 f o r some a 1 e A. Since A 2 RA we have 
A contains a l l f e F f o r which $(f) > a+1, and i f 
$(a) = a f o r some a e A then A contains a l l f e F f o r 
which $(f) > a+1. There are then three p o s s i b i l i t i e s . 

( i ) I f B i s an id e a l contained i n A, then f o r 
any x e R such that x / A we have xB £ A. 

( i i ) Suppose f o r some x i A we have $(x) > a. 



Then x e R and f o r any r e R we.have $(xr) = $(x) + $(r)>a+l 
and hence xB £ A f o r any i d e a l B of R. 

( i i i ) Suppose that f o r a l l f e R, i f 
$ ( f ) > a then f e A. I f B i s an id e a l of R which i s 
not contained i n A, f i v e cases may occur: 

(1) A - {f|$(f)>a} and i f b s B t h e n $ ( b ) ^ ? . . 
f o r some f i x e d p\ 1 < p < a,. 

(2) A = { f j $ ( f ) > o> and i f b e B then $(b)>/9 
for some f i x e d p\ 1 <p < a» 

(3 ) A = ff |$(f) > a} and i f b e B then $(b) 2: p 
f o r some f i x e d /S, 1 < p < a, 

(4) A = f f | $ ( f ) > a} and i f b e B then $ ( b ) ^ 
f o r some f i x e d fit 1 < p < a, 

(5) $(x) = a and ${y) = a f o r some x i A, y e A, 

I f any of (1), (2), or (4) i s the case then there 
exists x e R such that $(x) = max(a-^,l) and x i A 
while xB S A. In case (3), since 1 <p < a, there i s 
an integer n S 1 such that (n+l)y?> a > np. Let x e R 
be such that $(x) = np and f o r b e B we have that 
®(xb) = $(x) + $(b) > so that x i A while xB £ A. 
In case (5), y"^xr e R since $(y~^xr) = $(r) ̂  1, f o r 
any r e R. Then xr = y(y~^-xr) e A since y e A, and we 
have xB £ A while x i A. 

Thus i f A i s a proper id e a l i n R and B i s any 
idea l of R we can always f i n d x e R such that x ̂  A 
while xB != A, hence xRB £ A and B i s unrp to A. But 
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the A.C.C. c l e a r l y does not hold i n R. 
We may remark that the above i s an example 

of a r i n g i n which every proper i d e a l i s primal with 
adjoint R, as cases ( i i ) and ( i i i ) remain v a l i d i f 
we replace B by R throughout. 

McCoy (5) has defined an m-system as a set 
S £ R such that i f x and y are i n S then there e x i s t s 
r e R such that xry £ S. He then defined the McCoy 
r a d i c a l of an i d e a l A to be the set consisting of 
those elements r E R such that every m-system contain
ing r intersects A, and has proved t h i s set to be 
the in t e r s e c t i o n of the minimal prime d i v i s o r s of A. 

Murdoch (6) has defined an ide a l Q to be r i g h t 
primary i f every element not i n the McCoy r a d i c a l of 
Q i s rp to Q.. 

Lemma 8. I f Q i s r i g h t primary with r a d i c a l 
P, then Q i s primal with prime adjoint P. 

Proof. By a res u l t of Murdoch (6) P i s nrp to 
Q. By d e f i n i t i o n a l l elements not i n P are rp to Q, 
hence the set of a l l elements nrp to Q i s exactly P 
and Q i s primal with adjoint P. By the c o r o l l a r y 
to Theorem 8, P i s prime. 

Theorem 11. Let A - Q^n Q^n ... DQ^ be an 
irredundant representation of A by r i g h t primary 
ideals with r a d i c a l s ^2.^2* * ** , P n * ^ e n t^ l e maximal 
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elements of the set ̂ ^^2**",Pn a r e t i i e m a x ^ m a l 

primes of A. 

Proof. Murdoch has shown i n (6) that an 
element x i s rp to A i f and only i f x i s i n the 
complement of every P^. Hence each P^ i s nrp to A 
and i f B i s nrp to A then B £ P 1^P 2W ...U?n. By 
Lemma 8 each P^ i s prime. We now repeat the argument 
used i n part ( i ) of the proof of Lemma 5, and obtain 
B £ P^ f o r some i . The argument now proceeds exactly 
as i n the proof of Theorem 3. 
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5. Maximal primes and associated primes. 
I f a minimal prime i d e a l of A i s defined to be an 
id e a l which i s minimal i n the i n c l u s i o n ordered set 
of prime d i v i s o r s of A, then, as we have noted, the 
int e r s e c t i o n of the minimal primes of A has been 
shown to be the McCoy r a d i c a l of A. 

For commutative rings Fuchs has characterized 
i n (3) the i n t e r s e c t i o n of the maximal primes of an 
i d e a l . In the case of ideals which possess reduced 
representations by primal ideals with prime adjoints 
i t i s possible to extend Fuchs 1 r e s u l t to non-
commutative ri n g s . As we have seen, t h i s condition 
i s s a t i s f i e d f o r any ideal i n a r i n g with A.C.C. 

D e f i n i t i o n 15. I f A i s any i d e a l i n a general 
r i n g , the adjoint i d e a l of A i s defined to be the set 
of a l l x such that (x,y) i s nrp to A whenever y i s 
nrp to A. 

That t h i s set does form an ideal i s e a s i l y 
shown. Evidently i f x i s i n the adjoint of A then so 
are r x , xr and r x r T f o r any r and r T i n R. I f both 
x^ and x 2 are i n the adjoint of A then i f y i s nrp to 
A we have (x2,y) i s nrp to A, and (x-^-x^y) i s nrp to 
A since any x i n (x-^-x^y) i s i n (x^) + ( x 2 , y ) , hence 
i s i n some (x^,xp f o r x£ i n (x 2,y) and thus i s nrp 
to A. In vir t u e of the fa c t that i f R i s commutative 
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then x nrp to A i s equivalent to x not prime to A, 
we see that the above d e f i n i t i o n i s the same as 
Fuchs 1 (3) i n the commutative case. 

We note that A i s t r i v i a l l y contained i n 
the adjoint of A. In the event that A i s primal, then 
the adjoint Q of A defined previously coincides with 
the adjoint Q» of D e f i n i t i o n 15. For i f x e Q», then 
x i s nrp to A and hence x e Q, Q* S Q. Conversely, 
i f x e Q and y i s nrp to A, then y e Q, (x,y) £ Q 
since Q i s an ideal and (x,y) i s nrp to A, hence x e Q1 

and Q £ Q*. 

Theorem 12. The adjoint i d e a l QT of A i s the 
int e r s e c t i o n of the maximal nrp to A d i v i s o r s of A. 

Proof. Suppose x e Q» and B i s any i d e a l nrp 
to A. Then (x) + B i s nrp to A since y e (x) + B 
implies y e (x,b) f o r some b e B and thus y i s nrp 
to A by the d e f i n i t i o n of Q'. Hence QT i s contained 
i n every maximal nrp to A i d e a l . Conversely, l e t x 
be i n every maximal nrp to A i d e a l and y be nrp to A. 
Then y i s some maximal nrp to A i d e a l B, (x,y) £ B 
and (x,y) i s nrp to A so that x E Q F and the theorem 
i s proved. 

Theorem 13. I f A has a reduced representation 
by primal ideals with prime adjoints, then the adjoint 
of A i s the int e r s e c t i o n of the maximal primes of A. 
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Proof. By Theorem 3 the maximal nrp to A 
ideals are precisely the maximal primes of A, namely 
the maximal elements of the set of adjoint primes 
of the primal ideals i n the given representation of 
A. The r e s u l t now follows at once from Theorem 12. 

McCoy (5) has noted that any prime d i v i s o r of 
A contains a minimal prime of A. Thus i t follows 
that the adjoint of an id e a l possessing a reduced 
representation by primal ideals with prime adjoints 
always contains the McCoy r a d i c a l of A. 

We turn now to a consideration of the prime 
ideals "associated" with a given i d e a l . Such ideals 
have been defined by K r u l l (4) f o r non-commutative 
rin g s . Since our point of view i s considerably 
d i f f e r e n t from that of K r u l l , however, we s h a l l give 
a new d e f i n i t i o n which i s derived from the methods of 
Murdoch (6). He has shown that i f an i d e a l A i n a 
r i n g with A.C.C. has a short representation by r i g h t 
primary ideals with r a d i c a l s ^ i * ^ »* * * »̂ n ^ e n ^± 
i s nrp to A, and a prime P which divides A i s nrp 
to U(A,P) i f and only i f P i s one of P ',P P . 

1 z n 
D e f i n i t i o n 15. A prime i d e a l P containing 

A i s a (right) associated prime of A i f P i s nrp to 
A and also nrp to U(A,P). 
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Thus i n a r i n g with A.C.C, i f an i d e a l 
A has a short representation by r i g h t primary i d e a l s , 
t h e i r r a d i c a l s are exactly the associated primes of A. 

Lemma 9. Let A be an i d e a l with a short reduced 
representation by primal ideals Ai,A2,...,A n whose 
adjoints Pi,P 2,...,P n are such that P^ i s unrp to A^. 
Then P.̂  i s unrp to U(A,P i) f o r i = l,2,...,n. 

Proof. By Lemma 1, each P^ i s a prime i d e a l . 
By Lemma 7 each P^ i s unrp to A. H ence there exists 
x. i A such that x.RP. £ A and thus x.RP.£U(A,P .) f o r 
A A A A A J 

every j . Now x^ i A implies x^ i Aj f o r some j . Then 
x.RP. c A . implies P. £ P. but since P. and P. are 
both maximal t h i s implies P^ = Pj and i = j . From 
A i = U ( A i » P i J 2U(A,P ±) i t follows that x ± i U(A,P ±) 
and P^ i s unrp to U(A,P^). 

Theorem 14. In a uniform r i n g , i f an i d e a l A 
has a short reduced representation by primal ideals 
with adjoints Pi,P2>•••>pn» t n e n a P r i m e i d e a l P i s 
a maximal prime of A i f and only i f P i s a maximal 
element i n the i n c l u s i o n ordered set of associated 
primes of A. 

Proof. By Lemma 9 each P^ i s an associated 
prime of A, and by Theorem 3 the P^ are the maximal 
nrp to A i d e a l s , hence the maximal primes of A. 
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Clearly every associated prime of A i s contained i n 
a maximal nrp to A i d e a l , and hence i n some P^. 
Thus i f P i s a maxima] associated prime of A i t 
must be one of the P^, hence a maximal prime of A. 
Conversely, every maximal prime of A i s one of the 
P^ and hence a maximal associated prime of A. 

Corollary. I f A i s an i d e a l i n a r i n g with 
the A.C.C. f o r i d e a l s , then the maximal primes of A 
are the maximal associated primes of A. 

Proof. By Theorem 7 every i d e a l A has a 
short reduced representation by primal i d e a l s , and 
by Theorem 10, R i s a uniform r i n g . The r e s u l t now 
follows at once from Theorem 14. 

As we noted i n Section 1, i f R i s a uniform 
r i n g with unit element then the d e f i n i t i o n of B nrp 
to A i s equivalent to that of C u r t i s (1). Hence the 
respective d e f i n i t i o n s of the maximal primes of A 
are also equivalent i n such a r i n g . For a r i n g with 
unit element s a t i s f y i n g the A.C.C. f o r i d e a l s , Curtis 
defined the (right) i s o l a t e d B-component i d e a l of A 
to be the id e a l I(A,B) = AB"^ f o r q > 0 and such that 
AB"^ = AB"^"^, and a (right) associated prime i d e a l of 
A to be a prime i d e a l P such that I(A,P) 0 A and 
[ K A . P O ^ A S P where [l(A,P)j ~^A = [ZC |l(A,P)C £ A} . 
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He then proved that the maximal primes of A are the 
maximal elements of the in c l u s i o n ordered set of (right) 
associated prime ideals of A. Thus we see that f o r a 
ri n g with unit element and A.C.C. f o r i d e a l s , the two 
de f i n i t i o n s of associated prime ideals of an i d e a l A 
both lead to the same set of maximal associated prime 
ide a l s . 



27. 

6. Isolated components of an i d e a l . McCoy 
has defined i n (5) an m-system to be a set M of 
elements of R with the property that i f x and y 
are i n M then there exists r i n R such that xry 
i s i n M. The n u l l set i s also considered an 
m-system. Thus an i d e a l i s prime i f and only i f 
i t s complement i s an m-system. Murdoch has defined 
(6) a r i g h t M-n-system to be a set N containing an 
m-system M and with the property that f o r given m 
i n M and n i n N there e x i s t s r i n R such that nrm i s 
i n N. I f M i s the n u l l set then the only M-n-system 
i s M i t s e l f . He then defined the (right) upper 
is o l a t e d M-component of an i d e a l A not i n t e r s e c t i n g 
M to be the set of elements x such that every r i g h t 
M-n-system containing x also contains an element of 
A. We s h a l l adopt these d e f i n i t i o n s with the exception 
that i f M i s the n u l l set then any set i n R i s a right 
M-n-system, a change which r e s u l t s i n our D e f i n i t i o n 12 

of the (right) i s o l a t e d P-component of A where P i s a 
prime d i v i s o r of A. We now define the (right) upper 
iso l a t e d B-component, U(A,B), where B i s any i d e a l 
d i v i s o r of A. We s h a l l c a l l a set M e n t i r e l y rp (erp) 
to A i f every element i n M i s rp to A. 

D e f i n i t i o n 16. I f B 5 A, then the (right) 
upper is o l a t e d B-component of A, U(A,B), i s the 
inte r s e c t i o n of a l l i d e a l d i v i s o r s of A to which the 
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set M of elements rp to B i s erp. 

De f i n i t i o n 17. Let B be a (proper) i d e a l i n 
R and M be the set of elements i n R which are rp to 
B. I f M i s non-null a set N containing M i s a (right) 
B-v-system i f f o r every m e M and n e N there exists 
some r e R such that nrm e N. I f M i s n u l l (R i s 
nrp to B) then any set i s a B-v-system. S i m i l a r l y , 
any set i s considered to be an R-v-system. 

We note that C(B), the complement i n R of B, 
i s a B-v-system. For i f M i s non-null then" m" e M and 
xRmSB implies x e B, hence m e M and x e C(B) implies 
the existence of some r e R such that xrm e C(B), 
while i f M i s n u l l then C(B) i s a B-v-system by 
d e f i n i t i o n . 

Lemma 10. Let N be any B-v-system d i s j o i n t 
from A. Then A i s contained i n a maximal i d e a l Q 
d i s j o i n t from N and M i s erp to Q. 

Proof. Since the union of any ascending chain 
of ideals containing A and d i s j o i n t from N i s again an 
idea l containing A and d i s j o i n t from N the existence 
of Q follows at once from Zorn's lemma. I f y i Q then 
by the maximality of Q, there ex i s t s n e N such that 
n e (y) + Q. Then n has the form 
n » i y + ry + y r T + 2T ij-r iyrj + q, f o r r ^ 1 , ^ , ^ a l l 
i n R and q i n Q. Now i f m i s rp to B there exists x e 
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such that nxm e N, or 
nxm = iyxm + ryxm + yr'xm + 2 l . -r-yr .xm + qxm 
i s i n N. But i f yRm£Q then nxm e Q^N, contradicting 
Q d i s j o i n t from N. Hence yRm£Q implies y e Q and m 
i s rp to Q as required. 

Theorem 15. The complement i n R of U(A,B) 
i s the maximal B-v-system d i s j o i n t from A, and U(A,.B) 
i t s e l f i s the set consisting of a l l x such that every 
B-v-system containing x intersects A. 

- Proof. Let N be the complement of U(A,B). 
Then x e N implies that x i Q f o r some i d e a l Q 2 A 
and such that M i s erp to Q. Hence f o r m e M there 
e x i s t s r e R such that xrm e N. Thus N i s a B-v-system, 
and i s t r i v i a l l y d i s j o i n t from A. Suppose N* i s any 
B-v-system which i s d i s j o i n t from A. Then by Lemma 
10 we have A £ Qt f o r Q1 an i d e a l d i s j o i n t from N» and 
such that M i s erp to Qf. But then U(A,B)S Q» by 
d e f i n i t i o n , hence N 2 G ( Q » ) 2 N » . Thus N i s the maximal 
B-y-system d i s j o i n t from A. The second assertion 
follows at once from the f i r s t ^ and the theorem i s 
proved. 

Corollary. I f B 2 A 2 A ' , then U(A,B) 2 U(A» ,B). 

Proof. Every i d e a l J containing A t o which M 
i s erp also contains A r, and hence the i n t e r s e c t i o n of 
a l l such ideals containing A contains the i n t e r s e c t i o n 
of a l l such id e a l s containing A'. 
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We may remark that the l a s t property i n 
Theorem 15 could have been used to define U(A,B), and 
the others derived therefrom. Such a method would 
have been more conventional, the proof proceeding by 
way of the standard three lemmas (Cf. e.g. McCoy (5) 

or Murdoch ( 6 ) ) , our versions of which would have read 
as follows: ( i ) i f R 2 B 2 A then there e x i s t s a 
unique maximal B-v-system d i s j o i n t from A, ( i i ) same 
as Lemma 10, and ( i i i ) a set Q i s a minimal i d e a l 
d i v i d i n g A such that M i s erp to Q i f and only i f 
C(Q) i s a maximal B-v-system d i s j o i n t from A. 

In the event P i s a prime i d e a l d i v i s o r of A, 
then the i d e a l U(A,P) i s the upper is o l a t e d P-component 
of A of D e f i n i t i o n 12, as i n t h i s case the set of elements 
rp to P i s just the complement of P« 

Murdoch has defined i n (6) the r i g h t lower 
i s o l a t e d component of an i d e a l A, r e l a t i v e to an 
m-system M d i s j o i n t from A, to.be the set of a l l 
elements x of R such that xRm^A f o r some m of M, 
Thus i f P i s a prime d i v i s o r of A the r i g h t lower 
i s o l a t e d component of A r e l a t i v e to P i s the set 
fx | xRm£A f o r some m 4 P}. We now extend t h i s 
concept to the case of B any i d e a l d i v i s o r of A, and 
est a b l i s h r e l a t i o n s between the upper and lower 
i s o l a t e d B-components of A corresponding to those 
obtained by Murdoch, 

http://to.be
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D e f i n i t i o n 18. I f B i s an i d e a l containing 
A, l e t M be the set of a l l m i n R which are rp to B. 
I f M i s non-null the (right).lower isol a t e d B-component 
of A i s the i d e a l L(A,B) = ( l A m " 1 ^ e M}. I f M i s 
n u l l then L(A,B) i s A, and L(A,R) is.also.A. 

We note that i f P i s a prime i d e a l d i f f e r e n t 
from R t h i s d e f i n i t i o n agrees with that of Murdoch, 
since then the set M i s an m-system. 

Lemma 11. I f R 2 B 2 A then U(A,B)- L(A,B)2 A, 

Proof. By d e f i n i t i o n L(A,fc) = A - U(A,R), 
and i f M i s n u l l then L(A,B) • A = U(A,B) also by 
d e f i n i t i o n . 

Suppose M i s non-null and R ^ B. That L(A,B)2A 
follows at once from the fact that Anf^2 A f o r any 
m e M. I f x e L(A.B) then x = 7~ ? -,x- f°r x. e AmT1, 

7 *— i = l l i l 
m̂  e M. Now x^ e Am^-implies x^ Rm^£A and every 
B-v-system containing x^ c e r t a i n l y contains an element 
of A, hence x A e U(A,B) f o r i «= l,2,...,n. Thus 
x = Z i a l

x i i s i n U(A,B) and L(A,B) £ U(A,B). 
Theorem 16. (a) U(U(A, B),B) - U(A,B), 

(b) L(U(A,B),B) « U(A,B), 
(c) U(L(A,B),B) « U(A,B). 

Proof, (a) The complement i n R of U(A,B) 
i s a B-v-system N not in t e r s e c t i n g U(A,B) by Theorem 15. 

Hence i t i s c e r t a i n l y the maximal such system, and i t 
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follows from the same theorem that C(N) « U(A,B) 
i s the upper i s o l a t e d B-component of U(A,B). 

(b) By (a) just proved and Lemma 11 we 
obtain L(U(A,B),B) £ U(U(A,B),B) = U(A,B) £ L(U(A,B),B) 
and the desired equality follows. 

(c) Since L(A,B) £ U(A,B) we may apply the 
c o r o l l a r y to Theorem 15 to obtain U(L(A,B),B) £ 
U(U(A,B),B). Since A £ L(A,B) we apply the same 
co r o l l a r y to obtain U(A,B) £ U(L(A,B),B). Combining 
these r e s u l t s with part (a) we have 
U(L(A,B),B)S U(U(A,B),B) = U(A,B) £ U(L(A,B),B) and 
the equality follows. 

D e f i n i t i o n 19. For a l l ordinal numbers a 
we define L a(A,B) by induction as follows: 
L 1(A,B) = L(A,B). I f a i s not a l i m i t o r d i n a l then 
L°(A,B) - L(La"^"(A,B) ,B), and i f a i s a l i m i t o r d i n a l 
then L a(A,B) i s the union of a l l L^(A,B) f o r (* < a. 

Evidently i f p< a then L/?(A,B) £ L a(A,B). 

Theorem 17» For a l l o r d i n a l numbers a, 
U(A,B) — L a(A,B). 

Proof. For a = 1 the r e s u l t i s known by Lemma 
11. We assume the r e s u l t f o r a l l ordinals l e s s than a 
and proceed by induction. 

( i ) I f a i s not a l i m i t o r dinal and so has 
an immediate predecessor a - 1 then we have 
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L a(A,B) - L d ^ f A . B j . B ) by d e f i n i t i o n , 
£ U(La""^(A,B),B) by Lemma 11, 
£U(U(A,B),B) by Theorem 15, Corollary, 
= U(A,B) by Theorem 16(a). 

( i i ) I f a i s a l i m i t o r d i n a l , then by the 
d e f i n i t i o n of L a(A,B) we have that x e L a(A,B) implies 
x e L^(A,B) f o r some P < a. But then by the inductive 
assumption x e U(A,B) and hence L a(A,B) £ U(A,B). 

Theorem 1&, For any o r d i n a l number a, 
L a(A,B) = L a + 1(A,B) i f and only i f L a(A,B) = U(A,B). 

Proof, ( i ) . I f L a(A,B) = U(A,B) then by 
Theorem 16(b) we have L a + 1(A,B) • L(U(A,B),B) - U(A,B). 

( i i ) Suppose L<*(A,B) - L a + 1(A,B) f o r some a, 

and xfim £ L a(A,B) f o r some m rp to B. ( I f M i s n u l l , 
the r e s u l t i s t r i v i a l , as then a l l the component ideals 
are just A.) Then x E L a(A,B)m- iS L a + 1(A,B) = L a(A,B) 
and m i s rp to L a(A,B) i f m i s rp to B. But U(A,B) 
i s the minimal ideal containing A to which every m rp 
to B i s rp, hence U(A,B) £ L a(A,B). Since 
L a(A,B) S U(A,B) f o r a l l a, the res u l t f o l l o w s . 

Corollary 1. There e x i s t s an o r d i n a l a, 
f i n i t e or t r a n s f i n i t e , such that L a(A,B) = U(A,B). 

Proof. Under i n c l u s i o n the Lff(A,B) form a 
bounded, w e l l ordered set such that the union of any 
subset i s again an L f f(A,B). Hence there exists a 
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maximal element L a(A,B) which must contain a l l 
L a(A,B), thus L a(A,B) = L a + 1(A,B) = U(A,B). 

Corollary 2. I f the A.C.C. f o r ide a l s 
holds i n R/A then L n(A,B) = U(A,B) f o r some f i n i t e 
n. 

In the event R i s . a commutative r i n g , then 
the set of elements rp to an i d e a l B i s the set of 
elements prime to B, which forms a m u l t i p l i c a t i v e 
system. Thus both U(A,B) and L(A,B) as we have 
defined them are the same as the components defined 
by Murdoch i n (6), which he has shown to be both 
equivalent to K r u l l ' s i s o l a t e d component i n the 
commutative case. 



7. P r i n c i p a l components of an i d e a l . In 
Theorem 2 we saw that any i d e a l A i s the i n t e r s e c t i o n 
of i t s upper i s o l a t e d Pa-components, where the P a 

are the prime adjoints of the strongly i r r e d u c i b l e 
primal d i v i s o r s of A. The d i f f i c u l t y of determining 
the strongly irre d u c i b l e d i v i s o r s of an i d e a l , however, 
keeps t h i s representation of an i d e a l from being a 
p a r t i c u l a r l y desirable one. I f the r i n g R s a t i s f i e s 
the A.C.C. f o r i d e a l s we can do somewhat better. For 
i n t h i s case Theorem 9 shows that A i s the f i n i t e 
i n t e r s e c t i o n of i t s upper i s o l a t e d components corres
ponding to the maximal primes of A. Since for any 
d i v i s o r B of A we have A £ L(A,B) £- U(A,B), Theorems 
2 and 9 remain v a l i d i f we replace "upper" by "lower"• 
Moreover, we can then obtain a r e s u l t f o r general 
rings s i m i l a r to the modified version of Theorem 9» 

De f i n i t i o n 20. I f R 2 Q and Q i s a maximal 
nrp to A i d e a l , then L(A,Q) i s a (right) lower 
p r i n c i p a l component of A, and U(A,Q) i s a (right) 
upper p r i n c i p a l component of A. 

We note that i f R i s commutative, these 
d e f i n i t i o n s are equivalent to that of K r u l l T s 
p r i n c i p a l component, which f o r R ^ P, P a maximal 
not prime to A i d e a l i s defined as the set 
A(P) » [xjxy e A f o r some y i P}. For i n t h i s case 
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U(A,P) = L(A,P) and "not prime to A" i s equivalent 
to "nrp to A" as remarked before. Also, since P i s 
necessarily prime, the set of elements not i n P i s 
exactly the set of elements rp to P. Cl e a r l y , i f 
x e A(P) then xy e A f o r some y i P, and hence 
Rxy = xRy £ A, and x e L(A,P). On the other hand, i f 
x e L(A,P) then xRy <L A, hence xyy e A, f o r some y i P. 
But since P i s prime, yy i P and we have x e A(P). 
Hence A(P) = L(A,P) • U(A,P), i f R i s commutative. 

Theorem 19. In any r i n g R, any i d e a l A i s 
the i n t e r s e c t i o n of i t s lower p r i n c i p a l components. 

Proof. Let {o^} be the set of maximal nrp t o 
A i d e a l s . 

( i ) I f R • f o r some a, then L U , ^ ) = A by 
d e f i n i t i o n , or i f R i s nrp to f o r some a, then 
LUjQg) «= A by d e f i n i t i o n , and since k£f\~L{k\%) 

the r e s u l t follows t r i v i a l l y i n either of these cases. 
( i i ) Suppose R £ and R i s rp to f o r a l l 

a, and suppose x E H l I A , ^ ) , Then f o r eaeh a, 
x = Z l j l * x«j where there e x i s t s m«; rp to 0^ such 
that x^Rm^eA, 1=1,2,...,^. Let B • [y \ xRySk}. 

Clearly B i s an i d e a l . Now we have 
xR^Rm*x...marVj<_lRmAKJ = ( E ^ i x<*; )R(m*,Rmrfl...nLx^Rm^) 
hence m^jRmot,.. •m«n^_,Rm0(rtix £ B. 

Now i f B£Qai then ( n ^ Rm*l...n n̂<_,)Rm*v,JI £ 
and m^^ rp to Qa implies (mri( Rm*z.. .ma^Rm^., £ Q«. 
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Continuing t h i s process, we f i n d m £ Q_, a contra-
1 

d i c t i o n . Hence B ̂  0^ f o r any a, and B must be rp 
to A. But then there e x i s t s b e B such that yRb £ A 
implies y e A. Now xRb £ A by d e f i n i t i o n of B, hence 
x e A, and we have shown flL(A,O t I) S A. But 
A S O L J A J Q J J ) t r i v i a l l y and the re s u l t follows. 

I t appears u n l i k e l y that a si m i l a r r e s u l t 
holds i n general f o r the upper p r i n c i p a l components 
of an i d e a l . However, under some circumstances such 
a r e s u l t can be obtained. 

Theorem 20. I f the adjoint P a of a strongly 
i r r e d u c i b l e d i v i s o r A a of A i s rp to A, then U(A,P a) 
i s redundant i n A = H U(A,P a). 

Proof. We r e c a l l that by Theorem 1# A = f\ A^, 
where {k^ i s the set of strongly irre d u c i b l e d i v i s o r s 
of A, and by Theorem 2, A = C\ U(A,P a), where P a i s the 
adjoint of A a. Now i f U(A,PaV i s irredundant, then A a 

i s also. Hence A a ̂  D/s^akf and A a + 0 ^ * A ^ Aa« 
Since by Lemma 2. Pft i s unrp to A a, there e x i s t s y / A a 

such that yRP a£A c t. Let A a » (y) + A a ^ A o and we have 
that A£H [ A a +n / 3^A / 8l = A a + A» H (D^^A^) D A a by 
Dedekind Ts law and the fact that ^ i s i r r e d u c i b l e . 
Hence there e x i s t s x / A a such that x e + (y) and 
x e kp f o r Now x « a a + y T f o r some e 1^ and 
y» e ( y ) , hence xRP a £ a aRP a +'y»RPa S A a. But xRP a £ A^ 
fo r a l l p£ a, hence xRP a £ A and P a i s unrp to A. Thus 
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i f P a i s rp to A, then U(A,P a) must be redundant. 

Theorem 21. I f i n A =nu(A,Pa), where the 
P a are the adjoints of the strongly i r r e d u c i b l e d i v i s o r s 
of A, a l l the redundant components can be eliminated, 
then A i s the in t e r s e c t i o n of i t s upper p r i n c i p a l 
components. 

Proof. I f a l l the redundant components can 
be eliminated ( c e r t a i n l y any f i n i t e number can), then 
by Theorem 20 the remaining ones have P^ unrp to A. 
Now each of these P a i s contained i n a maximal nrp 
to A i d e a l 0^. But P a c implies that 
U(A,P a) 2 U U , ^ ) a A. Thus A »nU(A,^), the 
in t e r s e c t i o n of the upper p r i n c i p a l components of A. 
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8. Remarks.... There are many-questions remain
ing to be answered i n connection with the r e s u l t s we 
have obtained and those of related papers. Some are 
i n the nature of gaps which should be f i l l e d i n to 
complete the picture here presented, while others are 
concerned with r e l a t i n g these developments to previous 
work along' the same general l i n e s . 

Of the f i r s t class of questions, two are rather 
obvious. F i r s t , i t should be established whether or not 
the maximal nrp to A ideals are necessarily prime, and 
secondly whether or not an id e a l i s always the i n t e r 
section of i t s (right) upper p r i n c i p a l components. As 
already noted, we expect that the answer i n each case 
i s negative, but examples have not yet been found to 
es t a b l i s h t h i s . 

Since a corresponding theory of not l e f t prime 
to A ideals can be stated, i t i s natural to ask under 
what conditions an i d e a l w i l l be both not r i g h t prime 
and not l e f t prime to A, p a r t i c u l a r l y with respect to 
maximal ideals of these classes. I f , as expected, i t 
turns out that such maximal ideals need not be prime, 
one would also l i k e to know under what conditions the 
(right) maximal primes of A are also l e f t maximal primes* 
Answers to questions such as these might,enable one to 
define "symmetric" upper and lower i s o l a t e d , and p r i n c i p a l , 
components of an i d e a l and investigate t h e i r properties, 
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p a r t i c u l a r l y with regard to Theorems 19 and 21. Related 
to these considerations would be a study of the 
ch a r a c t e r i s t i c s of id e a l s both l e f t and ri g h t primal. 

In view of the characterization given i n 
Theorem 13 of the i n t e r s e c t i o n of the maximal primes of 
an i d e a l , one might also ask what.properties are 
possessed by the i n t e r s e c t i o n of the maximal not 
r i g h t prime to A i d e a l s , and i t s possible r e l a t i o n 
to the McCoy r a d i c a l of A. Questions of l e f t - r i g h t 
symmetry might w e l l arise here also, p a r t i c u l a r l y i n 
view of the known relationships between the Jacobson 
r a d i c a l and the intersections of the l e f t (or r i g h t ) 
p r i m i t i v e ideals and of the l e f t (or r i g h t ) regular 
maximal i d e a l s . 

The connection between primal ideals and primary 
ideals i n a general r i n g should also be susceptible to 
further development. In p a r t i c u l a r , the theory of primal 
ideals might be able to throw more l i g h t on the question 
of when an i d e a l has a f i n i t e representation as the 
int e r s e c t i o n of primary i d e a l s . The properties of the 
associated primes of an i d e a l might prove to be useful 
i n t h i s regard, as t h e i r d e f i n i t i o n was derived from 
r e s u l t s on primary decompositions. I t would also be of 
interest to know just when a primary i d e a l i s primal, 
and vice versa. Here again i t seems possible that 
considerations of l e f t - r i g h t symmetry might be of 
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considerable importance. 

The above comments regarding possible l i n e s 
of related i n v e s t i g a t i o n w i l l be seen to have i n 
common the d e s i r a b i l i t y of r e s u l t s concerning the 
r e l a t i o n s h i p between the concepts of "not r i g h t prime" 
and "not l e f t prime". In the opinion of the author, i t 
i s along t h i s l i n e that future i n v e s t i g a t i o n might most 
p r o f i t a b l y begin. 
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