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ABSTRACT 

A method of writing the solut i o n of a second order 

d i f f e r e n t i a l equation through a Volterra Integral Equation 

i s developed. The method i s applied to i n i t i a l value problems, 

to special functions, and to bounded Quantum Mechanical prob­

lems. Some of the res u l t s obtained are o r i g i n a l , and other 

r e s u l t s agree e s s e n t i a l l y with the work done previously by 

others. 
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INTRODUCTION 

The central theme of t h i s t h e s i s i s the use of a 

Yolterra Integral Equation to express the solutions of a 

second order d i f f e r e n t i a l equation i n terms of known 

functions. By the procedure which i s followed, i t i s then 

possible to derive c e r t a i n properties of these solutions 

systematically. The idea originated with Cauchy, Liou-

v i l l e ( 7 ) , and contemporaries i n the early nineteenth cen­

tury. In p a r t i c u l a r , L i o u v i l l e transformed the equation 

(a) u V ; +• f2-«&) = u&) 

into the i n t e g r a l equation of the second kind 
x 

(b) u&) = u&) coyf*.+ jruf(o)finf* + f-/ fr(t)s\*f(x<)u®tt. 
The c l a s s i c a l approach was to consider (a) as a non-

homogeneous d i f f e r e n t i a l equation whose homogeneous part 

has known solutions cos j>* and si^f-x f and to apply 

the method of v a r i a t i o n of parameters or Laplace Trans­

form theory to obtain the i n t e g r a l equation (b) i n terms 

of these known functions. The equation (b) was used to 

study the asymptotic behaviour of the eigenvalues and the 

eigenfunctions of (a) f o r large f • 

More recent investigators, notably Ikeda (4), 

Fubini (3), and Tricomi (15) have changed the viewpoint 

to that of comparing the unknown solutions of (a) with 

the known solutions of a d i s t i n c t d i f f e r e n t i a l equation 

(c) +• f^vC*) = O, 
or, i n general, of comparing the solutions of 
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(d) P&) ufo-h uCr) = O 

with the supposed known solutions &) and i / ^ &? of 

(e) ir"&) -f R&) ir'fr) + SfrJ *rfr) _- o 

through a Volterra Integral Equation. This approach w i l l be 

used throughout the discussion. 

In the f i r s t chapter, the i n t e g r a l equation asso­

ciated with the equation (d) w i l l be derived, and a procedure 

w i l l be given for the determination of the a r b i t r a r y cons­

tants i n order that the i n i t i a l conditions be s a t i s f i e d . The 

whole idea w i l l be generalized to an n- -r*« order l i n e a r 

d i f f e r e n t i a l equation, g i v i n g a r e s u l t e n t i r e l y analogous 

to the second order case. The appropriate existence theorems 

needed i n l a t e r chapters w i l l be proved. 

The very nature of the method suggests that i t be 

used to get expansions of solutions of c e r t a i n d i f f e r e n t i a l 

equations i n terms of better known solutions of other equa­

t i o n s . In the second chapter, we use t h i s idea to expand the 

solutions of the Confluent Hypergeometric Equation i n Bessel 

Functions of the f i r s t and second kind. The computational 

value of such an expansion has been discussed by K a r l i n (9). 

In the fourth chapter, we s h a l l show that boundary 

value problems as well as i n i t i a l value problems can be 

handled by adapting the method. In p a r t i c u l a r , the bounded 

Quantum Mechanical problems are discussed, and eigenvalues 

f o r the Hydrogen atom problem and for the r i g i d rotator 

problem are calculated. 
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CHAPTER ONE 

THE GENERAL METHOD 

1.1 Derivation of the Volterra Integral Equation. 

The object i s to express the solutions of the 

second order d i f f e r e n t i a l equation 

(1.1.1) " V ? + P(*) u'?) -h pGO u&) = O 

i n terms of the known solutions and of the equation 

(1.1.2) nru&) + R (x) *rV; + S&)*r&)^o 

by a Volterra Integral Equation. I t i s assumed that the U 

equation has the same s i n g u l a r i t i e s as the 'V equation. The 

r e s u l t w i l l be obtained by adapting the method of v a r i a t i o n 

of parameters f o r solving non-homogeneous d i f f e r e n t i a l 

equations: l e t (1 .1 .1) be rewritten i n the form 

(1.1.3) + + = CW-PCrlJ ur&? -4- Ls&l-Q&ijufr) 

with supposed s o l u t i o n 

(1 .1 .4) u&) = <ri &)*ri&)+ C^rJ^r) 

where v,6) and s a t i s f y ( 1 . 1.2). From equation ( 1 . 1 . 4 ) , 

( 1 . 1 .5) wV; •= ^ £ ? * / < - w - f c^i^z) 

provided that 

(1.1.6) c/@1 ir{&)+• &) «^&? =0} 

and 

(1 . 1 .7) uu&) = ct&)<yr{"(x) + ^ &) *r + c/&7 ^'(rf + c/fr) 

I f ( 1 . 1 . 4 ) , ( 1 . 1 . 5 ) , and ( 1 .1 .7) are substituted into (1.1.3), 

the r e s u l t i s 

(1.1.S) cfc)^?) <±(*)*'Gr> = LZ(zl-PQr)] </&)+ [?p)-QvJu0rl. 
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(.1.1.8) i s 

(1.1.9) 

where 

Hence, 

(1.1.10) 

and 

(1.1.11) 

o o 

§ 
Via) 

***>- * + / 
where and fi} are constants of integration, b i s a con­

stant , 

(1.1.12) 

and the Wronskian of ^ and i s given by 

AT, 'a? I 
I f (1.1.10) and (1.1.11) are put into (1.1.4), i t i s seen 

that U&) must s a t i s f y the i n t e g r a l equation 

(1.1.13) U&) - ci -f /?, *rj& + f NCttx)(^l- ffrl}(/e)Jx + f *M¥0(S-tp} u <lx 

where 

(1.1.14) M l v ) J W . 

or 

1 I f b i s not an ordinary point of the d i f f e r e n t i a l equation 

(1.1.1), there r e s u l t s apply only f o r the soluti o n U(2j of 

(1.1.1) which i s f i n i t e at b ; the d e f i n i t e i n t e g r a l s i n (1.1.10) 

and (1.1.11) do not exis t i n general f o r the other solutions. 

However, by deleting the constant b from the lower l i m i t of 

the i n t e g r a l s , the r e s u l t (1.1.15) i s expressed i n terms of an 

i n d e f i n i t e i n t e g r a l , and the above r e s t r i c t i o n i s removed. 
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In order to get ( 1 . 1 . 1 3 ) i n the form of a Volterra Integral 

Equation, we remove the u'fr) term by performing a p a r t i a l 

integration: with 

and 

we obtain % 

since /yf. from ( 1 . 1 . 1 4 ) • Thus, b 

if 

where ^ and /%, are constants. Putting t h i s into ( 1 . 1 . 1 3 ) , 

we obtain f i n a l l y 

( 1 . 1 . 1 5 ) U& = /?ntj& -4- /" K(*,x^) utvlJx y 

where 

( 1 . 1 . 1 6 ) K C*,TC) = Wa.x; {s | i { / V M f e - P « ) ) } 
and ^ c < J ' i + e / 7 . and /3^/J,-f /?_. are constants. 

1.2 Determination of the Arbitrary Constants. 

For i n i t i a l value problems, the constants and ft 

can be calculated e x p l i c i t l y . In order to arrive at the r e s u l t , 

we f i r s t need to develop a property of the function fCC^z) , 

stated i n the 

Lemma: K — /Z&)-Pgr) . 

Proof: From (1.1.14) 

( 1 . 2 . 1 ) ^ 7 ( T a ( * ; = o y / V M = o . 

Also from ( 1 . 1 . 1 4 ) , 
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Hence, 

(1.2.2) |Ofe*> „ _ K * ; ^ . » | . u / ^ ; 

941 foe? = f Ŵ ; n c e ^ ^ ^ l 

(1.2.3) 'd'iLift) = _ 7 

where use i s made of (1.2.1) and (1.2.2). From (1.1.16), 

The r e s u l t now follows because of (1.2.1) and (1.2.3). 

From (1.1.15), 

(1.2.4) = t>}'+ fl^W 

and 

(1.2.5) u f e = f* ?£(9>*7Jx-f- K(**)u&). 

Upon use of the Lemma, 

Hence, f o r t = i> 

(1.2.6) uV ~ teQ,)-Pto}nQ = <«i'<i>) + /nr^O-) . 

The solut i o n of the l i n e a r algebraic equations (1.2.4) and 

(1.2.6) then gives and (3 i n terms of the i n i t i a l values 

u(i) and u'ii? : 

where 

(1.2.8) <%)= u ^ ; - { zto-wy uQ,) . 

This i s the r e s u l t that Ikeda (4) obtained by a di f f e r e n t 

method• 
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1.3 The Vo l t e r r a Integral Equation For The.General Cauchy 

Problem. 

The solution of the n-th order l i n e a r d i f f e r e n t i a l 

equation 

(1.3.1) u PmJ5t? u 
assuming that i n i t i a l values U Q.) (4=/,Zj • - -

i s to be expressed i n terms of the l i n e a r l y independent 

solutions ^(xl C^=/}i .--•*,_) of the equation 

(1.3.2) -v(Hh?-<- Z * W C " \ x ) = o 

through a V o l t e r r a Integral Equation. We suppose that the 

functions P and K &) are analytic for a l l required value 

of ^ . Let (1.3.1) be rewritten i n the form 

(1.3.3) "C"}(*)-h Z Z^)*"*)- Z f ^ K ^ 1 ^ ; 
with supposed s o l u t i o n 

(1.3.4) u(*) = Z Cr&)«rr*). 
>--=/ 

Following the method of V a r i a t i o n of Parameters, we have 

« g6r? = IE CrQr? 4/^V>, 

(1.3.5) fi-i? * c « V 

provided that the cr
}s s a t i s f y 

(1.3.6) S, vJ&=o9 

Putting (I.3.5) into (I.3.3), we get 
(1.3.7) %<^*>V""^ = Z { *~&>-rjfr)}u"'i)= $ • 

Let iV^/) be the Wronskian of the n functions ' ̂ Ct) (*-l,Z ••• 
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(»->? 
( 1 . 3 . 8 ) \AI& = 

Since \AJ^)4=-0 , the unique solu t i o n of the n algebraic 

equation ( 1 . 3 . 6 ) and ( 1 . 3 . 7 ) i s 

(1.3.9) 

Putting these values into ( 1 . 3 * 4 ) , we obtain 

where are the n constants of integration involved i n 

computing the cjs , and where t i s a f i x e d constant. Summing 

the determinants under the i n t e g r a l sign i n ( 1 . 3 * 1 0 ) , we have 

( 1 . 3 * 1 0 ) " # = Z < ^ + I . 

( 1 * 3 . 1 1 ) 

Writing 

( 1 . 3 . 1 2 ) 

,<•*-) 
V) 

V 

dx 

and replacing £? by i t s value from ( 1 . 3 . 7 ) , we get from ( 1 . 3 . 1 1 ) , 

( 1 . 3 . 1 3 ) u « . i « i r ^ + / KUtfLi^V-Zr1*)} *l*T*tix. 

or upon interchanging i n t e g r a t i o n and summation, 

( 1 . 3 . 1 4 ) «0 = Z*r*rti+LJ*NMl*&-Z& ( WvJft 
To transform t h i s into a Vol t e r r a Integral Equation, we need the 

Lemma. For r - / ^ . . - , and K-/,Z - • - (.»•*•-() , the following holds 

3 W 
( 1 . 3 . 1 5 ) [ \^ { % ) f ^ - ^ ) - t > J ] J = 0 

* = 2r 
Proof. From the d e f i n i t i o n of ( 1 . 3 . 1 2 ) , 
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ye] 

WW 

3* ^ CO 
v, en VK Or) Chi, 4? <n-l> 

Each determinant involved in the partial derivatives 

contains a non-derived f i r s t row. Hence, for = ? , 
this f i r s t row becomes identical with the last row, and the 
determinant vanishes; therefore, 

(1.3.16) 3x 
9 M ^ , * ? = 0 

From (1.3.12) i t follows that each of the partial derivatives 

contains only terms with 

as factors, so by (1.3.16) 

(1.3.17) NC*.*) = = = 

Cvi-i") , 

For t-=./,zi . . * . , and z . . w-k-/ , we have 

Since each term in the summation has as a factor one of the 
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p a r t i a l derivatives l^NCzrf/a* (j=o i-. (yt-2)), equation 

(1.3.17) shows that the r i g h t side vanishes when ?c=z . and 

hence the Lemma i s proved. 

We now perform ( *~) p a r t i a l integrations upon the 

integra l s on the r i g h t side of (1.3.14), and use the Lemma at 

each stage to simplify the integrated part: 

b 

where /3e = £ K » A N D A 1 1 T H E ^JI.K a r e constants de­

pending upon b • Putting these values into the summation i n 

(1.3.14), we get , . 

+ f*NC [Ro (x)- f&Ju&Jx, 

where the f r are constants, and the kernel i s given by 

(1.3.19) K (i,x) - f ^ ^ " " £ c ^ { / V ^ ) [ ^ - ^ J ^ . 
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The a r b i t r a r y constants of integration )V are . 

determined from the i n i t i a l values U®0>) • From.(1.3.lg), 
= Z , 

y=.i 
v. 

Now, the expansion of 3<u,Ji^Ct)7c)/^xi'''0 as a sum of determinants 

contains exactly one term with the f i r s t row derived once, as 

well as the other rows down to the (t«-̂ st derived once, and 

contains a l l other terms with a non-derived f i r s t row. Hence, 

fo r * = 2 , i t follows that 

(1.3.20) 9 l M " ; 1*1 (*, 9)/ ^x.iM'° - C->/*' W&) . 

From t h i s and from the d e f i n i t i o n (1.3.12), i t i s seen that 

3 N L ^ en 
Substitution of t h i s and the values (1.3.17) into (1.3.;l<9) gives 
(1.3.21) K(Z/ = « a) - . 
Hence, „ 

S i m i l a r l y , f o r the i-ru d e r i v a t i v e , we get an expression of 

the form 

(1.3.22) f£a) = z <w, 
where •§-^(i>) depends upon the i n i t i a l values U iS*\ ^„.J-^; 
and P {%) (f = ifi • • • m . j£=o, 1 z . - •• • The solut i o n 

of the l i n e a r equation (1.3.22) i s 

(1.3.23) V = -7-

where i s the Wronskian of the n functions rffi) . 

In conclusion, we have reduced the general Cauchy 



(10) 

problem to the problem of solving the in t e g r a l equation 

(1.3.20), where a l l the constants tr are given by 

(I.3.23) i n terms of the Cauchy i n i t i a l values. 

1.4 The Equation With The F i r s t Derivative Term Missing,. 

This section applies to the case w=A discussed 

i n section 1.1. From equation (1.1.16), we see that the 

kernel w i l l simplify to 

(1.4.1) { S&?-Q$)} 

i f Pfr?=0. We can arrange t h i s i n c e r t a i n problems by 

choosing the tr equation such that P= • however, i n other 

cases of in t e r e s t t h i s choice i s inconvenient, and instead 

we transform the variables so that the new functions P&9 and 

are zero i n (1.1.1) and (1.1.2). We now show that the 
l a t t e r e n t a i l s no loss of generality; that i s , s t a r t i n g with 

the second order d i f f e r e n t i a l equation 

(1.4.2) A"t?+ Ler)ji'e; + [nt) + 'hTei]JLe)=o 
with r e a l , continuous, d i f f e r e n t i a b l e c o e f f i c i e n t functions 

L£)t Mt) , and Tf? , and non-negative TP , i t i s possible to 

change the variables so that (1.4.2) becomes 

(1.4.3) [ Qfr? -+ 7iJ up) ̂  O . 

F i r s t , introduction of the integrating f a c t o r 

enables (1.4.2) to be written i n the s e l f - a d j o i n t form 
(1.4.4) + ItV+TVJ^ti^O, 

where <fi £-) -= p <& nfc) j ff?-=f>&T&. 

I f i n (1.4.4) we make the t r i a l s u b s t i t u t i o n 

(1.4.5) ' JL& = tf£lug) ; ^ = 9#7£x 
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then, i n order that the r e s u l t i n g U equation have the coef­

f i c i e n t s of U11 and "}\U the same, and i n order that the U ' 

term vanish, the functions ^fr) a n c* &fr) must s a t i s f y the 

equations 

2p9^4- [ pg'-h /&] fi-=^0 , and p9X = y? 

with solution & = (g/p) Vz, > = (pf)~,//4 

Putting these into (1.4.5), we obtain the change of variables 

(1.4.6) Jit) - (Pf)-l/+u(?) ; ^= } 

which changes (1.4.2) into (1.4*3)• 

We now obtain special properties of the solutions of 

(1.4*3)* Let. two l i n e a r l y independent solutions be u{ andu^fr]: 

u/V; 4- [ Q#7 4 7v J <tt&? =Oj 

-h [ Qfr) «J?) = O . 
I f we subtract U, times the second equation from times 

the f i r s t , we obtain 

I W> - u</(*) } "= ° • 
Integrating and then d i v i d i n g both sides by , we obtain 

V.fr)2- ~~ ~^frf 

Since U( and Uz. are l i n e a r l y independent, the constant OZ i s 

d i f f e r e n t from zero, and i t follows that 

(1.4.7) C u & f * ^ . 

Of course, the Wronskian i s given by 

(1.4.8) H/#;= ut?)«/fr?~ v-vfr/u/fr) = C • 

1.5 Solution of The Integral Equation. 

The i n t e g r a l equation (1.3.18) i s t o be solved by the 
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method of" successive approximations. By t h i s method, 

(1.5.1) Up*)* U6$r) + £*K(itx) ctpi&Uz 
i s the p-th approximation to (1.3.18), where 

(1.5.2) U6&) * dAT^) + . 

The Liouville-Neumann Theorem (#) states that a s u f f i c i e n t 

condition f o r the sequence to converge to the unique 

continuous solution of (1.3.18) i s that U0&) be continuous 

and K£ttx') be bounded with only r e g u l a r l y d i s t r i b u t e d discon­

t i n u i t i e s . However, i n the problems that we s h a l l consider, 

the theorem cannot be applied because of the unbounded nature 

of the kernel, and special consideration i s required. 

In the type of problem to be discussed i n Chapter 4, 

the d i f f e r e n t i a l equation to be solved has the form (1.4.3), 
with the f i r s t derivative term missing, and further S - Q - H 

where M i s a constant. In t h i s case, (1.1.16) gives 
(1.5.3) •< ( - y W ^ x ) . 
The i n t e g r a l equation (1.1.15) then has the form, (with ft - o ), 

(1.5.4) c<*/\£-;-4- pi jf* /VO,x; u ^ d r , 
where (1.1.14),(1.4*7), and (1.4.8) show that 

(1.5.5) = *r4 f * f i J 5 f - f \ % i f ] . 
The existence of the solution of the i n t e g r a l equation (1.5.4) 
under quite general conditions w i l l now be proved. 

Theorem 1 Suppose that <v~,&)/{(?-t>fa&}is analytic i n the 

f i n i t e z-plane with zeros of order v*\j at 2 = % ) , 

where i s an entire function without zeros, p i s a non-

negative number, and ba i s defined as b • Then the sequence 

{UH &} of successive approximations associated with (1.5.4) 
converges to the unique continuous solution of (1.5.4) f o r 
a l l z. 
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Proof. Let (1.5.4) be rewritten i n the form 
(1.5.6) U0 -- L ^ ; r ) u r ) J 3 C ; 

where 

By hypothesis, ^fr) may be expanded about any of the points 

i n a series of the form 

(i.5.«) *;« - 0(<*-yW], 
with i n f i n i t e r a d i i of convergence, where we define 

Successive approximations to the sol u t i o n of (1.5.6) are 
(1.5.9) «h& = -f f^&j 
where 

(1.5.10) Jt LC^z) ̂ £c) ft^&Jx 
and 

U. (?) = , = 1 

The proposed s o l u t i o n of (1.5.6) i s then 
(1.5.11) U.&) = *t Z. 'fr fe> . 
The nature of the functions ft^fc) w i l l now be examined; from 

(1.5.7) and (1.5.8), 

(1.5.12) L(hxl *0 - [^Ix-^+^te-^'XJfw^V. J 

(1.5.13) L ^ j ) . }[^C2-.p7lH]-
Suppose now without l o s s of generality that the zeros are 

ordered according to increasing moduli 

Since the series on the right of (I.5.8) has an i n f i n i t e 

radius of convergence, the f i r s t series involving % i n 
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(1.5.13) i s uniformly convergent f o r a l l f i n i t e x , and 

can be integrated termwise. Now, the function/v ( ATJ$C) can 

be represented i n the c i r c l e . C -' 0 < I?- fyl < 6j , where 

for an ar b i t r a r y small number r , by the product of the 

Laurent Series given i n the second term on the right of equation 

(1.5.12). The product series represents either an analytic func­

t i o n i n O , or a function with an i s o l a t e d pole at ^' . Since 

the expansion shows that the l a t t e r i s not the case, i t follows 

that ^C*) ̂ fr) i s analytic i n C . Application of t h i s rea­

soning for increasing ^ u n t i l a l l the points have been 

exhausted shows that ^P)^) i s analytic f o r a l l f i n i t e -x , 

and representable by any of the uniformly convergent series 

given i n the second term on the ri g h t of (1.5.12). 

From (1.5.10) we then have 

U.5.14) l ^ l ^ ^ ^ ^ ^ ^ ^ ^ - t 
By the same type of argument used above, the two series i n square 

brackets on the ri g h t side represent functions %&) and 

which are analytic i n the f i n i t e plane. Further, the series form-, 

ed from by putting £ ~o , dividing the f i r s t term by 

2t^+ip + i , di v i d i n g a l l the terms by (g-t? 2- , and dropping 

superscripts i s 

1=0 * 
with an i n f i n i t e radius of convergence, where 

(1.5.15) S' = ( 5 " , *=-°> 
Since the a n a l y t i c i t y of and n a s D e e n established, we 
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s h a l l hereafter use the series for j-o , and drop superscripts. 

Equation (1.5.14) then gives 

(1.5.16) 1^)1 < xri±iP_' A ( i»-t|* 

where i s a bound on the s e r i e s 

(1.5.17) S<'7 = Z S i " 

with 

Putting (1.5.16) in t o (li.5-.10). we get 

where A r i s a bound on the series 

with 

By induction, 

where A K i s a bound on the series 

(1.5.19) S . - ^ ' 

with . 

In 

(1.5.20) b r I ^ | / c 2 ^ ) ip+^v-n-^;^^ ,̂  
Since a comparison of (1.5.20)-with (1.5.15) shows that 

S V S 1 SS I f o r a l l ̂  and * , 

i t follows that the sequence of nunbers £ A^} i s bounded above 

by some number f\ . Hence, 

(1.5.21) i f„&\ c <3-±*e=jr A - ,,_ t," 

http://li.5-.10
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so that the series on the right of•(1.5.11) i s dominated by 
(1.5.22) a*f { (Zwf+ 2p_,; A H Iz-fcJ*} , 
and the convergence i s established. By the same reasoning as 

used i n the Liouville-NeumanmTheorem {&) ^Too U^CZ? 

s a t i s f i e s (i.5.6) 

To show the uniqueness of the bounded solution, sup­

pose that u)fej i s another bounded so l u t i o n of (1.5.6), 
(1.5.23) toty = + V &) /* L(ixx) co<?)J?c . 

Since i s bounded, there exists a constant £ such that 
) u fe)- u}&) I < E I v,C^ I 

fo r a l l z- . From (1.5.6) and (1.5-23), 

(1.5.24) / < f K ^ I (J \L(t,x)\\uCc)-vooo\\dx\ 

Putting t h i s back into the in t e g r a l on the r i g h t side of 

(1.5.24), we obtain 

Continuing the process, we get at the n-th stage, 

I U(2) - LA) &) J < 1̂ ",̂ ) I I I O as -

by (1.5.21), which proves the uniqueness. 

We can also state the following 

Corollary. The same r e s u l t holds i f the kernel has the form 

Hdtxl DC*), 
where Q ^ ) - D^' (x.-bj) S* 

for ( Si'=i,2j • • • ), and ( j= of *, Z, • • ' • } ). 

1.6 The General Solution Of A Related Integral Equation. 

In the footnote on page (2), i t i s observed that the 

i n t e g r a l equation (1.1.15) can be written 
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i n terms of an i n d e f i n i t e i n t e g r a l . It i s t h i s form ( 1 . 6 . 1 ) 

which w i l l be used i n Chapter 3 , and hence i t i s of intere s t 

to examine the convergence of i t s solution by successive 

approximations of the type ( 1 . 5 . 1 ) . Since both the second 

s o l u t i o n Wi0r) and the kernel Kfa.x) may be unbounded at 

a f i n i t e point i> , the general solu t i o n of ( 1 . 6 . 1 ) cannot 

be expected to exist f o r a l l 2- . However, i n the next theo­

rem we s h a l l show that under c e r t a i n conditions the soluti o n 

does e x i s t s f o r a l l * excluded from a small c i r c l e P about -» . 

Theorem 2 . Suppose that the function 'Vl&)/{U-b)r i s 

analytic i n the f i n i t e z-plane3- with zeros of order one at 

by C^^O1/" %) * a n ^ with one zero of order f»o>/ 1><> = L> , 

where i s an entire function without zeros, and p i s 

a non-negative number. Further, l e t kfyx) = NOi,x) t>£t) , where 

Dftl - Ps (?-b)S f o r p o s i t i v e i n t e g r a l s . Then the sequence 

{. Kn&l} of successive approximations associated with ( 1 . 6 . 1 ) 

converges f o r a l l 4- f to the unique solution of ( 1 . 6 . 1 ) . 

Proof. Successive approximations to the solution of ( 1 . 6 . 1 ) 

are 

( 1 . 6 . 2 ) 

where 

and 

( 1 . 6 . 4 ) 

and where we define 

1 The f i n i t e z-plane r e f e r s to a l l values of ? for which 

/*/ < I zj , where 3» i s f i x e d . 
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(1.6.$) U0&) = eL*/K&) -+J3^fr) • %afr)= I, -&&^<^&). 
The proposed solution of (1.6.1) i s then 

(1.6.6) u<t) - <*ot&)j[_ ^«&)+ /3 Z h"-^-^) • 
E s s e n t i a l l y the same procedure that was used i n Theorem 1 gives 

fo r f i n i t e z excluded from f , from which the convergence 

follows f o r these values of -? 

To show uniqueness of the general solution, suppose 

that i s a second solu t i o n of (1.6.1) which i s f i n i t e f o r 

a l l f i n i t e 2- outside of r , 

(1.6.7) U)fr) = elA/fr) •+ /3*fzfc) 4- f <C^X) u)(x)Ax. 

From„finiteness of fe) f , uLz) , and «-̂<£9 outside 
r 7 , i t follows that there exist constants C ( and so 

that 

From (1.6.1) and (1.6.7) 
(1.6.8") IU&-UJ&1 s. \4l*\K(%xn\«G)-»>M\lM 

(1.6.9) 1 ^ - u>&\<. Vl^&iC, \%{&\ + vCzl£K&\ • 

The su b s t i t u t i o n of (1.6.9) into the ri g h t side of (1.6.8) 

gives 

Repetition of the process gives at the n-th stage 

—> O •* —? —* . 
The following generalization can be proved by sim i l a r 

reasoning : 
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Theorem 3. Suppose that the function ^ ^ / { ( e - i / j ^ J - i s 

analytic i n the f i n i t e z-plane with zeros of order at 

2=b ' , where i s entire without zeros, and p i s 

non-negative. Further, l e t KC%)x)/'H(-^x) = 2- ^ C^-^O Cs^f^ ) 

Then the sequence., of successive approximations of (1.6.1) 
converges f o r a l l values of * ( i n the f i n i t e plane) ex­

cluded from small c i r c l e s r y about by to the 

unique solution of (1.6.1). 
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CHAPTER TWO 

APPLICATION TO INITIAL VALUE PROBLEMS 

2.1 Introduction. 

This chapter contains applications of the r e s u l t s of 

Chapter 1 to the type of i n i t i a l value problem i n which the 

d i f f e r e n t i a l equation to be solved d i f f e r s from a known equa­

t i o n by terms containing small parameters. In p a r t i c u l a r , the 

i n t e g r a l equation (1.1.5) i s used to obtain solutions as power 

series expansions i n one or two of these parameters. Also, as 

a general r e s u l t , the formulation of the general Cauchy prob­

lem as an i n t e g r a l equation, obtained i n section 1.3, i s used 

to give multiple power series expansions of higher order d i f ­

f e r e n t i a l equations i n several parameters. In the type of prob­

lem considered, the m-th successive approximation to the solution 

of the i n t e g r a l equation y i e l d s a l l the terms of the multiple 

power serie s having the sum of the powers of the various para­

meters l e s s than or equal to m. Since the d i f f e r e n t i a l equa­

tions under consideration w i l l be assumed to have no singu­

l a r points, so that the kernel tfte,*) and the second sol u t i o n 

are bounded, the Liouville-Neumann Theorem guarantees the 

convergence of the general sol u t i o n of the i n t e g r a l equation 

by successive approximations. 

2.2 A Problem With A Perturbation In The F i r s t Derivative Term. 

Suppose that the solution of the d i f f e r e n t i a l equation 

(2.2.1) u"(*l + CLS-F&) uf(*) -f &&)ufr)=o 

having the i n i t i a l values tl(t>) and u'd?) i s required, when 
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^k) and ^fr) are known to be solutions of 

(2.2.2) v-'fr)-/- QGr) «rfr) = O • 

Equation (2.2.1) d i f f e r s from (2.2.2) by a term containing a 

small parameter s . From (1.1.14),(1.1.16), and (1.4.8), 

- s LC^x) 
where Lfr,*) i s independent of s . From (1.1.15) and (1.2.7), 

(2.2.3) u&)~ ^ &)+- -f S J* L C^x) u&^JXj 

where °L and /? are l i n e a r i n s . With 

the f i r s t approximation to (2.2.3) i s 

The m-th approximation then has the form 

giving the complete power series up to the term i n 5 • 

As a simple i l l u s t r a t i o n , consider the problem, whose 

solutio n i s e a s i l y obtained by other methods, i n which F^Sr)-/ f 

Q&) = (for r e a l ^ ), are put into (2.2.1). In t h i s case, 

l< = — as- cor . 
I f the i n i t i a l conditions are u(o)=i u^o) = o then (1.2.7) 
y i e l d s oi=-\ , ^ — 3£ , and the i n t e g r a l equation i s 

U&) = Cafvt-t- -4- %f St*** - a s f*cosnC-x~*~)ufr)<}vC; 
First 

with A approximation 
(2.2.4) U.&O + Tc{/>* «* ~ ^ "* s'" rt* • 
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This checks with the f i r s t two terms i n the power series 

expansion of the known so l u t i o n 
(2.2.5) u © = cos (Mi 4- sin J 

where ^ = c ^ _ _ 

2.3 Another Single Term Perturbation Problem. 

Consider the problem of fi n d i n g the solution of the 

equation 

(2.3.1) eQclu/&7+ [ Tfr)-(- sGCzll ucxp^o 

with the perturbation $G(x) i n the ufr? term, having the 

i n i t i a l values u(j?) and a %) , where ^ifr) and ^ & ) s a t i s f y 

(2.3.2) trig) + P&) v'C*? + 7-fr?«rfr?=-o • 

Again, use of ( 1 . 1 . 1 4 ) , ( 1 . 1 . 1 5 ) , and (1.1.16) shows that the 
i n t e g r a l equation f o r the problem i s 

(2.3.3) Ufr) - -h-ftf-ity-ir sj L£*tx) u&)Jx , 

where, from (1.2.7), oi and f) as well as Lfeix.') are indepen­
dent of the parameter s # The m-th approximation to the so­
l u t i o n of (2.3.3) then has the form 
(2.3.4) = J l ~&&) sX. 

£=0 * 

For example, suppose that the solution of 

(2.3.5) a" &) 4- { s(xl^ax)4- * } a&) = o 

with i n i t i a l conditions 

(2.3.6) u(o) = /; u/<?)=6 

i s required, where CL and n are r e a l constants. In t h i s 

case, the kernel i s 

whence the i n t e g r a l equation i s 

(2.3.7) U&J •=* oi cos n-z 4 /3sm«* +-£f 5\*»(x~+) %xl+ax} u&Ux . 
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From (1.2.7), the i n i t i a l conditions (2.3.6) give 

*-'-kl.tl - /; a- i l l II-°> 
and hence the f i r s t approximation to (2.3.7) i s 

o o 

where 
-£,(2-} = COS** 

2.4 Multiple Perturbation Problems. 

Consider the d i f f e r e n t i a l equation 

(2.4.1) uH &) •+ ZS.Ffr) [ QCt) + t CCt)] u&) = 0 , 

containing two independent perturbing parameters s and 't , 

Suppose the solut i o n of 

(2.4.2) AT + QCz) yirfr?^ D 

are known to be *st(x) and • Then, from (1.1.15) and 
(1.1.16), ufr) s a t i s f i e s the Volterra Integral Equation 

(2.4.3) *^i&+/3*70r) + sj\&x)ufr)Jx+t(%htXJa&Uxi 

A> b 
where the functions 

are independent of 5 and £~ . I f the i n i t i a l values f o r 

are u(l>) and u ^ ? \ i t follows from (1.2.7) that the constants 
<K and ft are given by 

l / u ^ \ _ , s 

* - J-1 u&) • l 

The f i r s t approximation to (2.4.3) then has the form 
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which gives a l l the l i n e a r terms i n the solut i o n u&j . Like -

wise, at the m-th stage of approximation, 

giving a l l the contributions to terms i n u{t) having the sum of 

powers of S and tr l e s s than or equal to *-n . 

As an example, consider the d i f f e r e n t i a l equation 

(2.4.5) u"frl+ . s( ( + *x) +• L^-ltvcJ ufr7=Oj 

of the type considered by Goveyou and Mullikgn (1). In t h i s 

case, the kernel i s 

~ ' ^ {tx-asj - Sc°s»(?c-?){ i-f-4?cj . 
For the i n i t i a l conditions UQ>) — / , a^ol-O , equations (2.4.4) 
give 

^ / ; /»- i f . • 

Hence, the i n t e g r a l equation f o r the problem is 
(2.4.6) U£7 = ra$>tS 4- ;|-Jn-**- -f-/ *ni ^ — t f eUx-sfcofiCx-yfl+arfutUx . 
With Wo^3* f«»*-f|-/-i<i»i«- , the f i r s t approximation to the 

soluti o n of (2.4.6) i s 
(2.4.7) =Ayo& +J^iJo&) 5 +£oj&lt+2,/l&st + A&s", 

where 
-Ao <^ = c u n ^ / 

A . fr> = ^ . + ( £ + - ^ V * M , * > 

The f i r s t approximation (2.4.7) gives a l l the l i n e a r terms i n the 

sol u t i o n (2.4.6). 
Consider now a general perturbation problem, i n which 

the solution of the n-th order l i n e a r d i f f e r e n t i a l equation 
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(2.4.8) cx% + £ 5 For)] uU'"h - O 
"•**t »-r —f 

having the i n i t i a l values U ^ . ( £~oJiJi/• - ••(-•>) ) i s 

required. Equation (2.4.8) i s changed by terms containing 

small parameters S^.y. from the equation 
(2.4.9) ^frl 4- £ frl «rc*"}*)= o 

whose solutions nrh ( x ) . (*"-/,? - - - "i ) are supposed to be 

known. From (1.3.18), the in t e g r a l equation for t h i s problem i s 

(2.4.10) U&) = 2. 2- S" H- J L fCr?«/xr 

where, from (1.3.19) 

L^C*.*) = c-o"'~'^'> { A / r w P » C-^,-

Here, N i s given i n terms of : ( "-^z, ' ' ) by 

(1.3.12). The constants KV , given by (I.3.23), w i l l i n 
general have the form 

where the exponent on each of the parameters 5; i s either one 
(y) 

or zero, and the c o e f f i c i e n t s • v „ depend upon 

the i n i t i a l values i4% , i r ^ V t / , and F{\) , (/^>/ •••(*>-(/ ) 
The m-th approximation of (2.4.10) i s 
(2.4.11) f u ^ - z z X-/*/ ; Tisdc-f- y 2 n <r*c 

This gives a l l the terms of ̂ ^/which have the sum of the 

exponents of the various parameters -V l e s s than or equal 

to • The second summation on the r i g h t of (2.4.11) gives 
incomplete contributions to terms of tt&) having the sum of 

exponents of 5/ equal to •*•*•/ • 
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2.5 Another Treatment Of The Problem In Section 2.2 

Consider the problem of finding the solution of 

the second order d i f f e r e n t i a l equation 

(2.5.1) + <Ls F ® ^ X^)=0 ; (F(o)^cl 

of the type (2.2.1) with Q(£)~n , f o r a r e a l constant * 

which s a t i s f i e s the i n i t i a l conditions 

(2.5.2) Mfil - / ; A'Co? =Q • 

Actually, the conditions (2.5.2) can be replaced by completely 
a r b i t r a r y ones without e s s e n t i a l l y changing the r e s u l t . I f th 

f i r s t d erivative term i s removed from (2.5.1) by the trans­
formations £ 

(2.5.3) AQrl = e~S f' u»l j ^ = x , 
obtained by following the procedure of section 1.4, the r e s u l t 

i s 

(2.5.4) u"0r)+ z'1 Ffrf-ir iS} u&/=o, 

where ~) must s a t i s f y the i n i t i a l conditions 

(2.5.5) = / ; = sa 
When (2.5.4) i s compared with 

(2.5.6) v" fr? 4- ^ ; = o y 

with solutions 

tsl gl — cos n<- > /v~-i(*') — st«i* y 

the r e s u l t i n g i n t e g r a l equation i s 

(2.5.7) Ufr)= cos«* 4- &^*-{*^x-tO[^F\^^{f/&)]u97Jx 

With Uofc}- cos**-4-r<^ n , the f i r s t approximation to thi 
s o l u t i o n of (2.5.7) i s 

(2.5.8) + **{^frtfiU - J L f ^ n ^ + ^(f^^rrux 



(27) 

The sequence of successive approximations associated 

with (2.5.7) actually does converge to the unique continuous 

solut i o n of (2.5.7) provided that the function together 

with i t s f i r s t derivative are bounded f o r a l l values of the 

argument. The m-th approximations of the form 

where the powers of S higher than s , represented 

by the second summation, w i l l i n general receive contributions 

from l a t e r approximations. 

As an example, suppose that f — C i n &.5.I); 

then (2.5.8) gives f o r the approximation , 

(2.5.9) U,&) = A* f*tc_y#r -Ji« «*t-r 

In t h i s p a r t i c u l a r example, the f i r s t approximation 

(2.5.9) gives a l l terms up to those containing & , and 

likewise the m-th approximation gives a l l terms up to those 

containing s , since there i s no overlapping of terms 

at the successive stages of approximation. The r e s u l t 

(2.5.9) checks with the expansion of the known s o l u t i o n 

(2.2.5) up to the s 3 term. 
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CHAPTER THREE 
APPLICATION TO SPECIAL FUNCTIONS 

3.1 Introduction. 
The object in this chapter i s to use the result of 

Section 1.1 to obtain expansions of special functions i n series 
of better known functions. Ikeda (4) f i r s t used this method to 
expand X,@x) and Y„ 6*7 i n terms of J"Mc*? and Y*,fr/ res­
pectively, where 7K<*7 and V*.(x) are the Bessel Functions 
of f i r s t and second kinds of order n . In addition to rederi-
ving Ikeda's formal results, we have examined the convergence of 
the series; in particular, we have found that the IT, &*) series 
converges for a l l x and a l l d. , but that a restriction must 
be imposed upon in order that the Y„'(_**) series converge, 
(for a l l x excluded from a neighbourhood of the origin.) For 
details, see M.A. Thesis of D.A. Trumpler (16). 

More recently, F. Tricomi (15) has obtained expansions 
of the Confluent Hypergeometric Function in series of Bessel 
Functions. Using Laplace Transform methods, he arrived at an 
expansion for the well-behaved solution of the Confluent Hyper­
geometric Equation, and gave a four-term recurrence for the 
coefficients in the series. Also, by setting up an integral 
equation similar to that which we have derived in Section 1.1, 
he obtained asymptotic formulae, but no general expansions. In 
this chapter, we use the result of Section 1.1 to obtain the 
general solution of the Confluent Hypergeometric Equation as 
series in T^q and Y^(x) , and as a special case, the 
well-behaved solution of this equation as a series in Xx(*') • 
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Further, we arr i v e at a sim i l a r series of Bessel Functions f o r 

the solution of a generalized Confluent Hypergeometric Equation. 

T h e o r e t i c a l l y , the procedure could be generalized to obtain 

expansions of various other functions i n terms of known functions 

except f o r the computational d i f f i c u l t i e s i n evaluating c e r t a i n 

i n t e g r a l s involving the l a t t e r . 

3.2 The Expansion Of The Solution Of The Confluent Hypergeo­

metric Equation In Series Of Bessel Functions. 

The object i s to express the so l u t i o n W(a)c} t) of 

the Confluent Hypergeometric Equation 

(3.2.1) irW11^ -h (c-6) W ' - «UJ<£) « O 

i n terms of the solutions a n ( * VI, <£) of Bessel's 

Equation 

(3.2.2) trA"6r) + ? -h ( 4- •£) Xit) = O -

We now proceed to set up an integral equation l i n k i n g the solu­

tions of (3.2.1) and (3.2.2). In order to obtain the simple 

expression (1.4.1) f o r the kernel, we use (1.4.6) to get the 
transformat ion 

(3.2.3) t ir&l; 17=*> 
which changes (3.2.2) into 
(3.2.4) AT" Cf? + [ 4 ^ •+ * ]ir#? = 0 • 
Likewise, we can remove the f i r s t d erivative term from (3.2.1) 
by the change of variable 

(3.2.5) <*lfc)= tf* 
which changes (3.2.1) into 
(3.2.6) + J£ - 1L^> } U t f ~ o^ 
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where 

(3.2.7) 1^= f - / ; \4= s= . 

The further transformation 

changes (3.2.6) into 
(3.2.9) aV;+ { % r - 7* + <} o} 

where 

(3.2.10) £ = n= U!+\ = c-i 7V-^H -

We now use the r e s u l t of Section 1.1 to write the solutions 

of (3*2.9) i n terms of the known solutions cx^- X*fr? and 

Y^Cx) of (3.2.4) by a Volterra Integral Equation. 

From (1.1.14, (1.1.16), and (3.2.3), we obtain 

upon taking £x& , JL*,6r) = , and using the 
i d e n t i t y (See Watson (17) ) 
(3.2.11) Yji<l - = ; 

(3.2.12) = £ * V f ^ G o Y ^ ) - x ^ y « « ; } 
1 ' 

The i n t e g r a l equation (1.1.15) i s then 
(3.2.13) = jft«v,«-^r»jscVu^«vx. 
To obtain the solut i o n of (3.2.13), we s h a l l need the following 

special r e s u l t s : 

(3.2.14) t . - ^ ^ ^ - u t * ) ; 
(3.2.15) Y-<*) = £ Y ,̂<*; - Y^CO ; 
(3.2.16) x =£f*[ZM&-iHw\p>]{f)**J*)Jx (fj'x^ + 0 ^ ; + . ^ ; •t-fjk M"! Hf» + I 

1 See the footnote on page 2 
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where > i s a p o s i t i v e i n t e g e r , and cfy (L-I,z,i,^) a r e 

c o n s t a n t s o f i n t e g r a t i o n . The r e c u r r e n c e r e l a t i o n s ( 3 . 2.14) 

and (3 . 2.15) are well-known ( 1 6 ) , and t h e r e s u l t s ( 3 « 2 . l 6 ) 

and (3 . 2.17) w i l l be e s t a b l i s h e d i n S e c t i o n 3«6» 

I f we t a k e i/t@j = * * l^TQi) + /3 Y„&} and c a l c u l a t e 

t h e f i r s t few a p p r o x i m a t i o n s o f ( 3 . 2 . 1 3 ) , i t becomes apparent 

t h a t t h e s o l u t i o n o f ( 3 . 2 . I 3 ) w i l l have t h e f o r m 

(3.2.18) « » - .* f [AXt) 3>>+ eM\*-)]> 

upon rearrangement of t h e terms i n t h e s e r i e s . We t h e n s u b s t i ­

t u t e (3 . 2.18) i n t o ( 3 . 2 . I 3 ) and d e t e r m i n e t h e n e c e s s a r y r e c u r ­

r e n c e f o r m u l a e f o r t h e c o e f f i c i e n t s and S K so t h a t 

(3 . 2.13) i s s a t i s f i e d . The r e s u l t o f the s u b s t i t u t i o n i s 

A p p l y i n g ( 3 . 2.14) and ( 3 . 2.15) t o t h e B e s s e l F u n c t i o n s i n t h e 

summation under t h e i n t e g r a l s i g n , and t h e n u s i n g (3 . 2.16) and 

(3 . 2.17) , we o b t a i n i n t u r n 

where W, and /?, are c o n s t a n t s depending upon d. , 

(3 , and ('='^,3, * ; * = '/V'. ' ). R e p l a c i n g r 

b y > + / i n t h e f i r s t and t h i r d terms under t h e summation on 

th e r i g h t s i d e , we may r e w r i t e t h i s i n t h e f o r m 
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Equating separately the c o e f f i c i e n t s of (±y+3j (*) and 
V2-' 

I fc) on both sides, we obtain the ~ 
recurrence r e l a -

t>r | we can rewrite 

r+i J 

Putting 4 , and ^ 

(3.2.18) i n the form 

(3.2.20) u&- ** f W, £ ^ ^ J ^ ) + A f b r (ff Y ^ J ? 

where now 

(3-2.21) j<?„ = ^ ^ « g)*i!±L ; 

Since the conditions of Theorem 2 of Section 1.6. are s a t i s f i e d , 

the sequence of successive approximations to the s o l u t i o n of 

(3.2.13) converges f o r a l l f i n i t e Z- excluded from a small 

neighbourhood of the o r i g i n . However, the series (3.2.20) has 
been obtained by rearrangement of terms, so that the convergence 

of t h i s s e r i e s does not follow immediately. This question is 

treated i n more d e t a i l i n the M.A. Thesis of D.A. Trumpler (16). 

To "obtain the solu t i o n which i s f i n i t e at the o r i g i n , we set 

/3, = O i n (3.2.20). The constant oi] i s determined from 

the appropriate normalization. It can be shown (16) that the 

second solution of (3.2.9) i s obtained by taking opooial 
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special values for ^ and 

The solut i o n \A/(^?c-t of (3.2.1) i s obtained 
from (3.2.20) by changing back to the o r i g i n a l v ariables, 

using (3.2.5) and (3-2.8) : 
(3.2.22) WC^C;*) = e * -t«~€ C((2-[ ^ 

where the constant 'A i n the recurrence (3.2.21) i s given by 
(3.2.23) ^ - He-4-4- • 

3.3 A Generalization Of The Problem. 

Consider a generalization of the Confluent Hypergeo­

metric Equation 

(3.3.D V'&) + i~±xftf-'+J±. - ^ } ^ ; = o , 
which i s d i f f e r e n t from (3.2.6) i n that the term — ij_ i n 

(3.2.6) i s replaced by —4 ^ ~tp ' , where ^ i s a constant, 

( f = l>l
} ' "' )• As i n (3.2.6), y\ and J? are constants of 

the problem. The case discussed e a r l i e r (f=/) is r e l a t e d to 

the quantum mechanical problem f o r an harmonic o s c i l l a t o r i n 

space. The more general form here (and the generalization 

considered i n Section 3«4) could therefore be interpreted as 

an anharmonic o s c i l l a t o r i n space. The change of variable 

(3.2.8) transforms (3.3.1) into 
(3.3.2) u > ) + { - ^ ! _ +{ y u^r) - Oj 

where now 

(3.3.3) * - ItkfJ? . 

As i n Section 3*2, we use the r e s u l t s of Section 1.1 to com­

pare (3.3.2) with (3.2.4), and obtain the i n t e g r a l equation 

(3.3.4) Ufr) = ^TS^i + /3 X® + ^ ^ f / f t ^ X ^ ) - W t o J ^ « W c / > r 

In order to obtain the solut i o n of (3.3.2) which is f i n i t e at 
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the o r i g i n , we take a-o ; a simple modification would give 

the general solution, (as i n Section 3 . 2 ) ' . Following the 

method of Section 3 . 2 , we look for the solution of ( 3 . 3 . 4 ) 

i n the form 

( 3 . 3 . 5 ) u&>=*>* 2 <v ( f f ^ c * - ; 

and determine the necessary recurrence formulae for the coef­

f i c i e n t s i n order that ( 3 . 3 . 4 ) be s a t i s f i e d . Putting 

( 3 . 3 . 5 ) into ( 3 . 3 . 4 ) , we get 

( 3 . 3 . 6 ) 1 ar^jjr-) - zc*i+i-Z/fr^a-w^^ 

In the evaluation of the i n t e g r a l , we need the r e s u l t 

( 3 - 3 - 7 ) q ^ # - - C-^)}7^J)> 

where f i s a po s i t i v e integer. This w i l l be proved i n 

Section 3 . 6 . Substituting ( 3 . 3 . 7 ) into ( 3 - 3 . 6 ) and using 

( 3 . 2 . 1 5 ) , we get, upon interchanging summation and integration, 

( 3 . 3 . 8 ) / 

The change of dummy s=r-p-f leads to 

i-<o 4 VI/ I 

After the dummy of summation s i n the right member has 
V 

been replaced by r , equating the c o e f f i c i e n t s of ff/ J " (*? 
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gives the recurrence formula 

This gives <3-r-+zp+\ t e r m s of . - • • <lr+p . In 
order to apply the recursion, however, we need the e x p l i c i t 

forms of d0i at> •• - 4*? . From ( 3 . 3 . 8 ) 

( 3 . 3 . 1 0 ) 40 - ' ; 4, = •• • - <zp - o -

Now, i n ( 3 . 3 . 8 ) , the only term on the right which contributes 

to J~ (t) i s the f-o term i n the f i r s t single summation. 

Hence, 

S i m i l a r l y , we obtain 

( 3 . 3 . 1 1 ) * p H r =c-o*-'(lJ^[(^(^+o-~ c*+r)] 

for t=l:>l) -•••{> . i n summary, ( 3 . 3 . 1 0 ) and 

( 3 . 3 . 1 1 ) give the c o e f f i c i e n t s 46 a • •- dtp , and 

( 3 . 3 . 9 ) then gives a l l subsequent <Zr = zf*'j V"*^ ) * 

2 . 4 A Further Generalization. 

Consider a further g e n e r a l i z a t i o n of the Confluent 

Hypergeometric Equation 

(3 .4.D \/"e)+{-i2 Ct$~+¥ - ^)=0; 
where the X ̂  are constants ( £ =',lt •• • p ; z, * ' ), 

and |H and ^ are again constants. As i n Section 3 . 3 , the 

change of variable ( 3 . 2 . 8 ) transforms ( 3 . 4 . 1 ) into 

( 3 . 4 . 2 ) C t s
x % * + * 1 « & = 0 , 

where 
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(3.4-3) A = ^ M ; c f r - fr-'O*"' / KJ. • 

Using the r e s u l t s of Section 1.1 to compare (3.4.2) with 

(3.2.4), we get, f o r /i = o , 

(3.4.4) um-^^r^-f-f,^?f Lw&}-X-*flji)h^%*Mi • 

Substitution of the proposed solution,(3*3*5) into (3.4*4), 

and use of (3.3*7) and (3.2.15) gives 

+ 221 %«m Q^pz [(>*»«<)••• 
^ ft 

The successive changes of dummy s = r-f+^ , and 

t = S-2.p-f2.g_ transform (3.4*5) into 

(3*4*6)^ ~° . 

where 

and' * * f ^ " - < j c V T i T ^ ^ ^ 

+c^LL%z-^ & ̂ [(^- c^^j x+t+s® 
•+ 

Equating the c o e f f i c i e n t s of y r ^ i n (3.4.6) gives 
"4- t̂> —1 

the recurrence r e l a t i o n 

(3.^.7) ^ ' i l ^ M ^ ^ ^ ^ , 

where ^ ^ --- 4^ are obtained from (3.4.6) i n any 

given example. However, the complicated nature of the functions 

http://S-2.p-f2.g_
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and l-Jv,Cip makes i t i n c o n v e n i e n t t o g e t g e n e r a l 

e x p r e s s i o n s f o r t h e s e c o e f f i c i e n t s . 

F o r f i n i t e numbers P , Theorem 3 o f S e c t i o n 1.6 

shows t h a t t h e sequence o f s u c c e s s i v e a p p r o x i m a t i o n s a s s o -

s i a t e d w i t h t h e i n t e g r a l e q u a t i o n (3.4.4) a c t u a l l y converges 

t o t h e unique c o n t i n u o u s s o l u t i o n o f (3.4.4). As i n S e c t i o n 

3.2, however, we have r e a r r a n g e d t e r m s i n o b t a i n i n g (3.3.5), 

so t h a t f u r t h e r a t t e n t i o n i s r e q u i r e d i n o r d e r t o e s t a b l i s h t h e 

con v e r g e n c e . 

3.5 S o l u t i o n s o f R e l a t e d D i f f e r e n t i a l E q u a t i o n s Expanded 

I n Terms Of B e s s e l F u n c t i o n s . 

I n t h i s s e c t i o n , i t w i l l be shown t h a t the s o l u t i o n s 

of a number o f i m p o r t a n t d i f f e r e n t i a l e q u a t i o n s a re r e l a t e d 

t o t h e C o n f l u e n t H y p e r g e o m e t r i c F u n c t i o n t h r o u g h v a r i o u s 

changes o f v a r i a b l e . Hence, t h e r e s u l t s of S e c t i o n 3.2 can 

be u s e d t o e x p r e s s t h e s e s o l u t i o n s as s e r i e s o f B e s s e l 

F u n c t i o n s . N u m e r i c a l v a l u e s f o r t h e s e s o l u t i o n s c o u l d t h e n 

be computed a c c u r a t e l y by making use o f th e e x t e n s i v e t a b u ­

l a t i o n of the B e s s e l F u n c t i o n (17), and i n f a c t , f o r A « 1 , 

o n l y a few terms o f t h e r a p i d l y convergent s e r i e s (3.2.19) 

would be needed t o guar a n t e e a c c u r a t e r e s u l t s ( 9 ) . 

(a) The W h i t t a k e r F u n c t i o n ( 1 8 ) . 

P u t t i n g i*i=vt?-A£ i n t o (3.2.6) g i v e s 

(3.5.1) v"Gr)+ i - i _ + %+'^irlvC^=6' 

w h i c h , by (3.2.5), has as i t s s o l u t i o n the W h i t t a k e r Func­

t i o n 

(3.5.2) »„.. ft - H / < V ; t) 



(3d) 
Since (3.2.7) gives f , H = € - c t , 

equation (3.5.2) can be written 

(3.5.3) A l ^ ^ , e ^ £ * U/(*»*~i-hs ^ 

which i s now i n a form to which (3.2.21) can be applied. 

(b) The Laguerre Function Density; 

By the substitutions 

(3.5.4) ± - ^ ; 

equation (3.2.6) becomes 

(3.5.5) L."tf+ i -4 - UQ> --fr] L&?^6; 

with sol u t i o n 

0.5.6) Lnj(,)= n,,^& = n „ i t H . 

(c) The "Associated Hermite Equation". 

The so-called Associated Hermite Equation 

(3.5.7) r ' W f L-(2*HKtj+i?_ _ t f + M j r 6 ; = o , 

obtained from (3.2.6) by the substitutions 

(3.5.8) t= -f ; v&= gfrbi 

has the solution 

(3.5.9) n>) - k r ^ r ^ H ( £ i 

or 

(d) Hermite Ts Equation (18) 

Hermite Ts Equation (or Weber's Equation) is 

(3.5.10) t>£(*)-r E(3+i) - P# . 

which i s related to (3.2.9) by the transformations 

(3.5.11) * = x = «(*)=pd&>; «=i 
Hence, the solution of (3.5.10) may be written 

where i n the expansion (3.2.19) for U 'f and i n the 
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recurrence r e l a t i o n (3.2.20), 

; ij + i • 
(e) The Equation For The Harmonic O s c i l l a t o r In Space 

This equation i s 

(3.5.12) K/'fc?* i ̂ C-A f+vJ ^b)=oJ 

which i s related, to (3.2.9) by the transformation 

(3.5.13) "CJ= K ^ f ; U*. to) . 

The solu t i o n of '(3.5.12) i s then 

(3'.5.14) K,:<b?~ « ( . 

3.6 Appendix To Chapter Three. 

(a) Proof Of (3.2.16) and (3.2.17). 

Consider the i n t e g r a l 

(3.6.1) / * Z. ft> ?• ** - f*[*~*HZ<iO ll**"4?*}} ** 

Sine e 

(3.6.2) *~'X.g)--&L»-Mtl^}; &[*"*M,7 0T-£*rv 

a p a r t i a l integration of (3.6.1) gives 

/**.*> X, h„ «x^Jx - E-7M 7^ **»] * + / * ̂  T _ x**l«/x 

using the r e l a t i o n (17) 

(3.6.3) = * X ^ ^ J T ' W -

A p a r t i a l i n t e g r a t i o n of the l a s t i n t e g r a l on the r i g h t gives 

(3.6.4) , * / AH . /r* 

Upon use of the i d e n t i t y (17) 

(3.6.4) becomes x + z A + 2. ^ * 
T ^ T T v- = f T j x - J j % / 
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Upon transposing terms i n t h i s equation, we get f i n a l l y 

(3.6.5) f'lnlfU™*-^[XuZfoF-JjoZj*)?*]* 

Since the functions Ynfr) s a t i s f y the same recurrence r e l a ­

t i o n s as T*(z) , the following r e s u l t i s obtained i n the 

same way as (3*6.5) 

(3.6.6) S\*>T„e) - ̂  lWT^c*>^\0 T ^ ? n * . 
Upon use of (3.6.5) and (3.6.6), we get 

Now, from (3.6.3) and (3.2.11), 
(3.6.7) Y H H (tF) Z&) - & Y..G-) = a / r r * , 
and the r e s u l t (3.2.16) follows. 

Again, following the same procedure with X.+. (x) 

replaced byY , we get, instead of (3.6.5) and (3.6.6) 

(3.6.8) J^XVX+M ^ [ l ^ l ^ - r c ^ l ^ x ^ ] 

(3.6.9) f\lnln*)x'*,J*- ^ £ Y A W ^ - Y « U V 

from which the r e s u l t (3.2.17) follows. 

(b) Proof Of (3.3.7) 
We need the following 

Lemma. For J?-!^, --- f> , the following r e l a t i o n holds 

(3.6.10) = CF? • 

We now prove the r e s u l t (3.3.7) by f i n i t e induction upon P 

For p-/ , (3.3.7) gives 

(3.6.11) £ &) - &G}*Z+lCX? - ( i ) l ^ l 
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where f o r convenience, we put n-tr ( y--o,/jz) - - - - ) 

which i s correct by (3.2.14). Assuming the r e s u l t (3»3»7) i s 

true f o r P=fr ^ o b t a i n , with the help of (3.2.14), 

(3.6.12) Z & - {T'f-H-Vj-L Tfi, 

where 

( X- 0,1,1, • •--
Hence, 

upon app l i c a t i o n of the Lemma. Putting t h i s into (3.6.12), 

we get f 

which completes the proof by induction. 
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CHAPTER FOUR 

PHYSICAL APPLICATIONS 

4.1 Introduction. 

Although the method of Section 1.1 was: o r i g i n a l l y 

designed f o r i n i t i a l value>• problems, i t can be adapted to 

solve boundary value problems. In t h i s chapter, we s h a l l 

discuss a type of boundary value problem which a r i s e s i n 

Quantum Mechanics. Now, i n the usual problems treated i n 

Quantum Mechanics, i t i s required to f i n d the solutions of 

the Schrodinger Wave Equation which s a t i s f i e s a set of 

"natural boundary conditions", f o r which the p o s i t i o n of 

the mass p a r t i c l e i s u n r e s t r i c t e d . The p r o b a b i l i t y i n t e r ­

p r e t a t i o n of the wave function then leads to the boundary 

conditions of f i n i t e n e s s at the singular points of the wave 

equation. I f , however, the system under consideration i s en­

closed, then these conditions are replaced by the " a r t i f i c i a l 

boundary conditions" that the wave function vanish at c e r t a i n 

ordinary points of the d i f f e r e n t i a l equation. In f a c t , f o r 

these so-called bounded Quantum Mechanical problems, the 

boundary conditions require that the wave function vanish 

on some surface i n f i n i t e three-space, such as a sphere or a 

cone. The corresponding physical condition i s that there be 

an i n f i n i t e l y high and i n f i n i t e l y steep potential wall on 

t h i s surface. 

4.2 The Integral Equation For The Bounded Quantum Mechanical 

Problem. 

Let generalized c u r v i l i n e a r coordinates x, , , and x3 
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i n three dimensional Euclidean space be chosen so that the 

surface on which the wave function vanishes i s ̂  - c , 

where C i s a constant. We assume that the surface i s of 

s u f f i c i e n t l y simple nature that the Schrodinger Wave Equation 

i s separable (12) i n the chosen coordinates xx , "*z_ , ^ . 
equation 

The space dependent wave Ais, f o r a p a r t i c l e of 

mass M , 
(4.2.1) ~ ^ V > = Ce-Vlifs, 
where i s Planck's constant divided by , £T i s the 

i. 

energy constant, V i s the potential energy, and V i s the 

Laplacian operator i n the coordinate system , ^ , ̂ c3 . 

The s u b s t i t u t i o n 

permits the separation of (4.2.1) into three ordinary d i f f e r e n ­

t i a l equations for the functions Xfa) • The equations for 

Y^Cxv) and y3faj) have the same solutions as i n the unbounded 

problem, ahd the l a t t e r are supposed known. The Xt(^) equa­

t i o n has the form 

< ^ 2 - 2 ' 4 [ & ) a ; ] -t- i•%(•*,)+ YA)'0 

where JP i s the quantum number a r i s i n g from the X^lXJ 

equation. From Section 1.4, (4.2.2) can be transformed into 

(4.2.3) u'<fc] -f C ?}(xl+ n 3 «Cr?^0; 
which we suppose has the two singular points b and ^ , 

with no other singular points between them. In the bounded 

problem, ufc) must be continuous f o r a l l ^ s a t i s f y i n g 

and must vanish at a£ . Hence, the boundary conditions to 



(44) 
be s a t i s f i e d are 
(4.2.4) Fv'rte ; u C^0?-=0 • 

Following Section 1.1, we compare (4.2.3) with the 

equation 

(4.2.5) + E F£&1+ 1ol<r0c>Oj 

where ^Ofl s a t i s f i e s the boundary conditions 

(4.2.6) srQ,] F,«,+e ; = o 

We suppose that a so l u t i o n of (4.2.5) which i s analytic i n 

the f i n i t e plane i s known to be 

(4.2.7) t/7 = Mt<&, 

and that the eigenvalue i s known. From Section 1.4, 

the second solu t i o n of (4.2.5) and the Wronskian of the 

two solutions are given by 

(4.2.8) ^ 7 = C j f f g f o f , 
and 

(4.2.9) - C -
Hence, from (1.1.14), (1.1.15), and (1.1.16), the i n t e g r a l 

equation connecting the solutions of (4.2.3) and (4.2.5) i s 

(4.2.10) 

The convergence of the solution of (4.2.10) by successive 

approximations i s established by Theorem 1 of Section 1.5, 

since i t has been assumed that -#\h fr) i s analytic i n the 

f i n i t e plane. The f i r s t of conditions (4.2.4) requires 

that /3~o . I f we take u0&) A*&, the f i r s t approxi­

mations to the solution of (4.2.10) i s 

(4.2.11) u, & - A* m [<- A ) ( * f i«?T<hc $x * f^fg *] 

By applying the second of (4.2.4) to (4.2.11), we get for the 
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f i r s t approximations to the eigenvalue 

( 4 . 2 . 1 2 , ^ [ i ^ ^ ^ ^ ^ y 1 

The problem is then reduced to evaluating inte g r a l s of the 

type appearing on the right of (4.2.12). However, we are now 

prevented from continuing the general discussion because of 

our i n a b i l i t y to obtain expressions f o r these i n t e g r a l s . 

4.3 The Bounded Hydrogen Atom Problem. 

The Dutch Ph y s i c i s t s Michels, de Boer, and B i j l 

(10) were interested i n the behaviour of gaseous matter 

under pressure, and i n p a r t i c u l a r they wished to determine 

the ef f e c t of pressure upon the spectral l i n e s of Hydrogen 

gas. In order that the mathematical problem be solved, i t i s 

assumed that the effect of pressure can be replaced by an 

i n f i n i t e l y high and i n f i n i t e l y steep p o t e n t i a l wall on the 

surface of a sphere of f i n i t e radius 2 0 . Although physical 

objections to such an assumption have been pointed out, (de 

Groot and ten Seldam (2),) i t i s nevertheless useful to solve 

the quantum mechanical problem of finding the eigenfunctions 

and the eigenvalues f o r the Hydrogen atom wave equation, 

under the condition that the atom be enclosed i n a sphere 

of radius ^ • 

The Q(&>? and parts of the wave equation 

c l e a r l y have solutions which are i d e n t i c a l with the solutions 

corresponding to the natural boundary condition 

It remains to solve the r a d i a l part of the Hydrogen atom 

wave equation 

(4.3.1) W&+ [ f ~ + 1] « & ~ O, 



under the a r t i f i c i a l boundary conditions 

(4.3.2) F^rte ; i4(*J=o, 

instead of the natural boundary conditions 

( 4 - 3 . 3 ) "(0? F.Vrfe ; u(o°7=o . 

The conditions (4.3.3.) give solutions of ( 4*3 « 1 ) e a s i l y 

by the Frobenius method; the eigenvalues are 7i,(w? = =L , 

f o r p o s i t i v e integers , and the eigenfunctions are the 

Laiguerre Function Densities. 

However, (4.3.2) require that 'A s a t i s f y the 

equation u C ; ) = o , where c<£>j ̂  denotes the 

Laguerre Function Density (corresponding to the eigenvalue " A , ) 

which i s related to the Confluent Hypergeometric Function 

U/(a,c> *) ( c f . equation (3.5.6)). Michels et a l (10) have found 

approximations for the eigenvalues of the ground l e v e l , and 

de Groot and ten Seldam (2) have extended t h e i r method to the 

2s and the 2p l e v e l s , g i v i n g graphs and tables for the s h i f t 

i n X . Soon afterward, Sommerfeld and Welker ( 1 4 ) applied 

the formulae of Michels et a l f o r values of 2» equal t o three 

and four times the Bohr radius. Also, Sommerfeld and Welker 

stressed the importance of a general investigation of the be­

haviour of the Confluent Hypergeometric Function near =2- = <=*> 

Sommerfeld and Welker ( 1 4 ) have also discussed a 

graphical method for obtaining the eigenvalues, which gives 

accurately the curve " X - A ^ 7 f© r small values of ^ . By 

t h i s method, the known standard solutions u C ? ; are plotted 

f o r various pos i t i v e i n t e g r a l n , and the f i r s t zeros 

of these solutions are located. These functions are then solu­

tions of the problem f o r the p a r t i c u l a r values 2 ^ of ^ 8 . 

A graph of against * i s drawn, and by i n t e r p o l a t i o n , 
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the value of n(it) corresponding to a given value Z6 i s 

taken from the graph. Then the ground l e v e l eigenvalue i s 

^ L%) ~-i/n • The eigenvalues for higher l e v e l s are 

obtained by a similar procedure. 

The preceeding gives an h i s t o r i c sketch of work done 

on the problem up to the present. We now proceed to give our 

own treatment, using the method of Section 4.2. The mathema­

t i c a l problem amounts to solving equation (4*3.1) under the 

boundary conditions (4.3*2), when we know that the solutions 

of the equation 

(4*3*4) i r " & + [ f - £Ug) + * J = o, 

s a t i s f y i n g the boundary conditions 

(4*3*5) •vfc) Fi'«i-fe • v<**>l — o 

are 

(4*3*6) vx@) = A\&) , with 

Since the problem thus presented i s of the same type consi­

dered i n Section 4*2, the Vol t e r r a Integral Equation cor­

responding to equation (4*3*1) is (4*2.10), with f i r s t approxi­

mation (4.2.11). For the ground l e v e l , 

Ai& - -
and (4*2.11) gives 

(4*3*7) ut®= *ec~*[ i-(* + 0 f**e-** J* r^-^r] 

With U - / * , and dtf= x l
c - w < / r 

a p a r t i a l integration gives 



(48) 
or 

- i = f + f *t)[ - f [ ± + £ + i b } * < } . 

Now, 

Hence, 

_ * M_, 4s c-1 IL± I 1 1 * ^ z 2 -*wy 
- _ x S" _&*2— 

and (4.3.7) gives 

(4.3.8) 2 " - ^ Z ^ f k ~ ] -

Application of the f i r s t of the conditions (4*3«2) gives 

(4.3.9) * f f (^ , -I +~±%i,r 

The second approximation to the i n t e g r a l equation i s ob­

tained by putting (4.3.8) back into (4.2.11): 

e—JtcU 7 

Again integrating by parts and l e t t i n g ' 6 0 , we get 

(4.3.10) u «, -*«.-'«/• l - f i & L + < ^ Z A Z M J 

Upon making the approximation fa+l) = C V •+ I,) , where 

A 0 J i s given by (4.3*9), and applying (4-3«2), we get for 
the second approximation to the eigenvalue, 

(4.3.11) \ , 0.) - X^o) + ,~ W l * 

The r e s u l t (4.3.9) i s i n essential agreement with that ob­

tained by de Groot and ten Seldam (2), and i n f a c t the c a l -
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culated eigenvalues f i t the curve of Sommerfeld and Welker 

(cf. the bottom of page 46) better than the r e s u l t s of 

de Groot and t e n Seldam. The values of are within one 

percent of the correct value when zg i s at lea s t f i v e times 

the Bohr radius. 

Sums of the type appearing i n (4.3*9) and (4.3*11) 

are most e a s i l y handled by using a method of de Groot and 

ten Seldam, which depends upon the properties of the 

exponential i n t e g r a l 

/
•x — **» 

which i s tabulated (6). 

4.4 The Bounded Rigid Rotator. 

For the general rotator problem i n three-space, 

a mass p a r t i c l e f i s r e s t r i c t e d to rotate at a constant 

distance <x. from the o r i g i n , and f o r the bounded problem, 

p i s not allowed to enter a cone defined by an azimu-

t h a l angle. In other words, there i s an i n f i n i t e l y high and 

i n f i n i t e l y steep potential wall on the surface of the cone, 

and i n solving the quantum mechanical problem, i t i s required 

that the wave function vanish there. This rotator problem 

has been considered graphically by Sommerfeld and Hartmann 

(13), who used the "one-sided boundary conditions" that M 

be r e s t r i c t e d from entering only the lower nappe of the cone; 

that i s , they applied the boundary condition that the wave 

fun c t i o n vanish only for 0= 0O , where &0 i s an angle 

near TT . They obtained the eigenvalues graphically by 

constucting nodal curves analogous to the curves used by 
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Sommerfeld and Welker i n the hydrogen atom problem, (cf. 

section 4*3) and also arrived at an analytic r e s u l t for the 

ground l e v e l i n the l i m i t i n g case that &„ i s near 1T . 

They gave references to the o r i g i n of the problem leading 

back to a paper by Pauling (11) i n 1926. 

In spherical polar coordinates r , & , and 

<P , the Schrodinger wave equation for the r i g i d rotator 

~ ^ — /V-P 4- ^ 1 = E V 

where the f a c t that r has the constant value has 

been used. The usual separation of the variables i s 

where 0 (&) s a t i s f i e s the equation 

with A _ ^^a2- £ £ 

By (1.4.6), the change of variable 

(4.4.2) ug-) _ ©(©7 - <9 
transforms (4.4.1) into 

(4.4.3) r ^ - ^ + ^ -+ -ii^=o. 

The boundary conditions to be s a t i s f i e d by the solutions 

of (4.4.3) are 
(4.4.4) u(oy Fr^-te ; u(Xj = o/ 

where <- ar„ TT . 

Now, i t i s known that solutions of the equation 

(4.4.5) *rtt&? 4 [ 4 * 4 ±] v6r?= O 

s a t i s f y i n g the conditions 
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(4.4.6) ir(o) F<Wife • <TS(IT? = o 

are 

(4.4.7) ^('0 = - f l J Y * ) - sin1 p^tox), 

where are the associated Legendre Functions, and that 

the corresponding eigenvalues are $($+0 for ̂ - ° / ^ J ' " • 

Hence, reference to (4.2.10) shows us that U&) s a t i s f i e s 

the i n t e g r a l equation 

i n which 0 =• O by the f i r s t of conditions (4.4-.4). The 
existence of the solution of t h i s equation is guaranteed 

by Theorem 1 of Section 1.$. 

4.5 The Ground Level Of The Bounded Rigid Rotator. 

For the ground l e v e l , 

so that (4.4.8) becomes 

(4.5.1) = oifm - /W.wV J si»xx U(x)) J-=£ • 

The f i r s t approximation to the soluti o n of (4.5.1) i s 

(4.5.2) ^ ^ . A ^ - A ^ v i ^ x ^ i ^ ^ - j ^ ^ ^ j ^ J 

or, upon making the subsitutioris 

(4.5.3) y - c*>* , c t o € , 

or ~l- J 

(4.5.4) ^ J V t ^ [/+ j\ A i j ± ^ T ] . 
Application of the second of conditions (4«5*4) gives f o r the 
f i r s t approximation to the ground l e v e l eigenvalue, 
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(4-5.5) y « l % ) . = ± > 

where 

(4.5«6) -») = 14- c°s • 

The second approximation to the solution of (4«5«D 

i s obtained by putting (4.5.4) back into the right side of 

(4.5-1) : 

Again making the sub s t i t u t i o n (4.5*3), we obtain 

or 
X 

(4*5*7) ^ 
In order to evaluate the expression 

(4.5.8) - T - ^ ^ l / ! * ( , + 5 ) ^ 

on the r i g h t side of (4.5*7), we need the following r e s u l t s : 

(4.5.9) ( \ ( i+>))<ly = 0+W)-CkCI-*«) -C< + ui) - -fr 2j 

(4.5.10) J ^ V H - ^ = 64-^)^Vl^-^6+wJ^/W^'+^-2i; 42-l-4in2-4j 

(4.5.11) ,.jfwA,CMry? ̂ ( i - y ? * (i+*)J^(i+»)Mi-u,)+Ci-ut-2J^z)J^(i-**) 

Putting these into (4.5.8) and simplifying, we obtain 
(4.5.12) 1= -20»Ct + ̂ ) + u) 4 2^2.-1 

Since i*J i s close to -/ , the summation on the right side 

of (4.5.12) i s close to -2 i - I } , where $ Q>) i s the 

Riemann Zeta-Function. Putting (4.5.12) in t o (4-5.7), and us­

ing the value = ^/^> , we get 
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or 

(4.5.13 ) « ^si'n^g / )+ A i , l ± ^ J t ~ A / U ' ± ~ £ + / . l 4 S - ^ J f j 
By applying the second of conditions (4.4.4) to equations 

>jOJ L 0.0 (4.5.13) and using the approximation 7*= f/\('tf'. where 
6; 
0,0 i s given by (4.5.5), we obtain for the second approxi­

mation to the eigenvalue 

(4.5.14) 

^3) 

where ^ i s given by (4.5.6). 

Again, the t h i r d approximation to the eigenvalue i s 
found to be 

(4.5.15) 
where 

III the l i m i t ^ -» o , equation (4.5.14) reduces to 

(4.5.16) - + f i T l l ' 

which i s the re s u l t obtained by Sommerfeld and Hartmann (13) 

by a d i f f e r e n t method. The following table gives, f o r small 

values of ^ , a comparison of the eigenvalues obtained 

from (4.5.16) and those from the f i r s t three approximations 

(4.5.5), (4.5.14) and (4.5.15). 
TABLE I 

rr-ze *) 
CSH) 

A 0,0 
o°4S' \0"* O. tow OAOHS O. \0^\ 0. IU2 

10" O.I3I5 01450 OA443 OJ4SS 

I0'2 o.iSU O.ZIOZ 0.1.20-3 

il'zf zw~l 0.9.111 0.XH-3Q 

18° ll' 5 W0"z o.illi 0-3/22 0.30*2 0.344C 

Z5°5\y 10" 0.333S 0.3100 0.3UO 0.44+1 
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4.6 Higher Energy Levels Of The Bounded Rigid Rotator. 

For the 1-1 l e v e l , 

Putting these values into (4.4.8), and following the same 
procedure that was used i n Section 4.5, we get for the 

f i r s t and second approximations t o the eigenvalue 

(4.6.1) 7.- ^ (^=i+coizo)y 

a. -*t 2. 

* W + 

or f o r small values of ->\ , ^ 

(4-6-2) * [ W + £ £ i i > * * 

The rapid convergence of the successive approximations 

for small values of ->) i s i l l u s t r a t e d i n the following 

t a b l e : ( A \f' = ^ ~ 2) 
' , 1 ' hi 

TABLE 2 

^ 7 A *?, 

%°34J \o-3 1.0011 2 0021 own 

r G' I D " 2 1.01S5 10211 OOZ<\\ 

I f " 2 7 ' ix lo"1' 20541 2.0S&S O-0S(>5 

18° ll' 5XlcTt 2.12(>(p 2-1343 0.i3>42> 

2S°s\ 10'' 2- 230 2-253 o.xss 

2.-40{ 0.4C5 
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The following graph compares the r e s u l t s of TABLES 1 and 2: 

GRAPH OF EIGENVALUES FOR THE (0,0) and (1,1) ENERGY LEVELS 

* *o C<*cSr«e*) *0 IS tO S o 

The graphs i l l u s t r a t e that, as ->j-^o , the increments 

i n the eigenvalues of the bounded rotator approach those 

of the free rotator for the (0,0) and (1,1) energy l e v e l s . 

Further, there are v e r t i c a l and horizontal tangents res­

p e c t i v e l y to the (0,0) and (1,1) curves at the o r i g i n . For 

higher energy l e v e l s , we have calculated only the f i r s t 

approximation to the eigenvalues. The r e s u l t s are tabulated 

below. 

TABLE 3 

Pj (a*) 

( 2 , 2 ) sin** 

(3,3) s i n 3 * /2 
• H 

S i n at 20 -l/C^f- its 

Cr}r) Si'n'ac 

(o}0 cos x 2 
(0,1) -5/ C-in 2 ~ V") 
OA) SlU X cos* C 

0-,3) S i ' h * x cos* l-Z -7 / (JU 2 " Jos V-) 
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In TABLE 3, the extreme right hand column involves only the 
highest power of °\ which appears i n the exact formu­
lae for ^ l l ^ , ' • Also, for the (r,r) l e v e l , KV i s a 

> o 

constant which can be determined f o r each p a r t i c u l a r value 

of r ; for example, - /j <3 = 2; <H = G • 

The eigenvalues obtained from the formulae i n the 

extreme r i g h t hand column again approach those of the free 

rotator as -* ° . The tangents to the curves are v e r t i c a l 

for the (r,0) curves, (r=.<v_,z;- - '' ) and horizontal for the 

other curves. The qu a l i t a t i v e r e s u l t s are i n agreement with 

those obtained graphically by Sommerfeld and Hartmann (13). 

In conclusion, the l a s t chapter gives a systematic 

procedure f o r reformulating a given quantum mechanical prob­

lem as a Volterra Integral Equation. Reference to Chapter 1 

has shown that, under quite general conditions, the sequence 

of successive approximations associated with such an equation 

converges to the unique continuous s o l u t i o n of the equation. 

Although computational d i f f i c u l t y i n evaluating c e r t a i n d e f i ­

nite integrals has prevented us from obtaining general r e s u l t s , 

we have nevertheless demonstrated the use of the method i n 

evaluating eigenvalues for- the Hydrogen atom problem and 

the bounded r i g i d rotator problem. 
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