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ABSTRACT

A method of writing the solution of a second order
differential equation through a Volterra Integral Equation
is developed. The method is applied to initial value problems,
to special functions, and to bounded Quantum Mechanical prob-
lems. Some of the results obtained are original, and other
results agree essentially with the work done previously by

others.
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INTRODUCTION

The central theme of this thesis is the use of a
Volterra Integral Equatioh to express the solutions of a
-second order differential equation in terms of known
functions. By the procedure which is followed, it is then
possible to derive certain properties of these solutions
systematically. The idea originated with Cauchy, Liou-
ville (7), and contemporaries in the early nineteenth cen-

tury. In particular, Liouville transformed the equation

(a) u'a@) + §tu@) = ﬁ-é’) «w@)
into the integral equation of the second kind
(b) U@) = U@) cos g X+ f-é-u/(a)n'nfx + }!—o/xzy@nhf(x—f)u@c/‘f.

The classical approach was to consider (a) as a non-
homogeneous differential equation whose homogeneous part
has known solutions cos ex and smgx , and to apply
'thé method of variation of parameters or Laplace Trans-
form theory to obtain the integral equation (b) in terms
of these known functions. The equation (b) was used to
study the asymptotic behaviour of the eigenvalues and the
eigenfunctions of (a) for large & .

More recent investigators, notably Ikeda (&),
Fubini (3), and Tricomi (15) have changed the viewpoint
to that of comparing the unknown solutions of (a) with
the known solutions of a distinct differential equation
(c) v'la) + sfva) = o,

or, in general, of comparing the solutions of



(ii)

(d) W)+ PE) uld) + Q6 uG) =0
with the supposed known solutions ;@) and 4; @) of
(e) v'&) + R@) v&) 4 S&) &)= 0
through a Volterra Integral Equation. This approach will be
used throughout the discussion.
| -In the firét chapter, the integral equation asso-

ciated with the equation (d) will be derived, and a procedure
.will be given for the determination of the arbitrary cons-
tants in order that the initial conditions be satisfied. The
whole idea will be generalized to an «- ++ order linear
differential equation, giving a result entirely analogous
to the second order case. The apprépriate existence theorems
needed in later chapters will be proved. |

‘The very nature of the method suggests that it be
used to get expansions of solutions of certain differential
equations in terms of better known solutions of other equa-
tions. In the second chapter, we use this idea to expand the
solutions of the Confluent Hypergeometric Equatien in Bessel
Functions of the first and second kind. The computational
value of such an expansion has been discussed by Karlin (9).

In the fourth chapter, we shall show that boundary
value problems as well as initial value problems can be V
handled by adapting the method. -In particular, the bounded
Quantum Mechanical problems are diséussed, and eigenvalues
for the Hydrogen atom problem and for the rigid rotator

problem are calculated.
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CHAPTER ONE

THE GENERAL METHOD

1.1 Derivation of the Volterra Integral Equation.

The object is to express the solutions of the
second order differential equatibn
(1.1.1) " w'@+ Pe)ule) + Q@) ug) = 0
in terms of the known solutions a45@) and 4, &) of the equation
(1.1.2) v &) + Re)le) + sa)v@) = o
by a Volterra Integral Equation. It is assumed_that the (
equation has the same singularities as the 4~ equation. The
result will be obtained by adapting the method of variation
of parameters for solving non-homogeneous differential
equations: let (1.l.l) be rewritten in the form
(1.1.3) u'@ +Ra&) u'e) + 5&) ue) = [Ra)-Pa)] u'a) + [ 5€) -@a)[u&)
- with supposed solution
(1.1.k) u@) = @ vi@)+ @)Aia)
where 47¢) and VL @) satisfy (1.1.2). From equation (1l.1.4),
(1.1.5) W& = a@)v @) + c.@)v’a)
provided that
(1.1.6) @@+ G e) 6@ =0
and
(1.1.7) d'@) = @)vi"@)+ ¢, @ v 'a) + o'@) vi@)+G/&) v @)
If (1.1.4), (1.1.5), and (1.1.7) are substituted into -(1.1.3)',
the result is
(1.1.8) c@ve/+ §EIL @) = [Ra)-PO) @)+ [se)-Gu] u).
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The solution of the linear algebraic equations (1.1.6) and

(1.1.8) is ° 4"{:’} | WO °

(1.1.9) c'd) = £l %) /@) = ) ©
vig) Vi) @) V)

where 47/‘77 M’((n _ : v/a] A/L/a)

Hence, $ = {R(T)"Pé’)} u'@) -+ {5&’)”‘@(7)}“7) .

(1.1.20) ae)= d, + f‘ ‘“_%% £ dx

and

P ovi@ &
(1.1.11) <, )= ﬂ‘—‘{- 1! TS dx)
where ¢, and 4, are constants of integration, b is a con-

1 | . .
stant,  and the Wronskian of 4, and 4, 1is given by

@) 4&11)}
(1.1.12) We& = | ym) wal.

If (1.1.10) and (1.1.11) are put into (1.l.4), it is seen
that (@) must satisfy the integral equation

z .
“@= W@+ e+ [ ”M%M»W {ker~ve ) [2)-Qar)

or

' z
(L.1.13) Ue) =5 @) +4,7,0 + [ NaDRa)- rbulelic+ [N~} uds

where

(1.1.14) Nz 1) = vié) 4’“"@{/\/t/éf) = M=o/ we).

e @

1 If b is not an ordinary point of the differential equation
(1.1.1), there results apply only for the solution W@ of
(1.1.1) which is finite at b ; the definite integrals in (1.1.10)
and (1.1.11) do not exist in general for the other solutions.
However; by deleting the constant p from the lower limit of
the integrals, the result (1.1l.15) is expressed in terms of an

indefinite integral, and the above restriction is removed.
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In order to get (1.1.13) in the form of a Volterra Integral
Equation, we remove the u/&) term by performing a partial

integration: with

U = N(x) { re-P@)}
and _
vV = /@ dx

we obtain 2
L= [ NGz) {Re)»- PO} u'add
= U@ NG Re)-Pe} — ul) LEGE-VEVVep, by f 2 {N(R-#)}a

= —ubvi@)
= uw_(:'}’ {RE)-PE)} SE) + u@ar }{%, ~R &)~ f“ 2 {N(R_,,)}Jx

since N(gz2)=o from (1.1.14). Thus,

L= du@+ 44,6 — { w@Z § NGz (Ra>-P0)) } dx
where 4, and /3, are constants. Putting this into (1.1.13),
we obtain finally
(1.1.15) U@ = dv,@+ Av,@) —+ [%K(%,x)uer),Jx ,
where
(1.1.16) K (2,x) = N(3,x) {se)0a}- 2 { NeD(ew-re) ) }
and A= X+, and A =p,+ 3. are constants.

1.2 Determination of the Arbitrary Constants.

For initial value problems, the constants ot and £
can be calculated explicitly. In order to arrive at the result,
we first need to develop a property of the function K(zxx) ,
stated in the
Lemma: K(zz) = R@&) —P€&) .

Proof: From (1.1.1%)
(1.2.1) M (2,2) =0, N(n) =
Also from (l.1.14),
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AM(2x) _ 3 [M. O wo|_ (v& v
> Ve e viel @l
Hence,
oM(z ) e @
1.2.2 Y= - )
! ) o= vie)  v'e €,
N (##) _ ( we) 3_’”1(2 x) M(zx) 4 du/éf)] . -’ or
31. Wﬁ)z =2
(10203) 2_/!(%'%7

ax ='.1’)

where use is made of (1.2.1) and (1.2.2). From (1.1.16),

K(z,2) = 2GR {Re—re)) - N[ 2 {rRe-re)}]

The result now follows because of (l1.2.1) and (1.2.3).
From (1.1.15), | |

(1.2.4) ub)= an &)+ A, E)

and

(1.2.5) a/(t) = aw; /é')_(_ ABV/E) + {i %:(%17Jx + K(zg)u@).

Upon use of the Lemma,

[ 2K (?1)

WE) = aw @) 4 B @ + d7 + §{Re-re)} u@).

Hence, for z =5,

(1.2.6)  uW — §RG)- PEI}al) = 4Av'®) + A7 G)

The solution of the linear algebraic equations (1.2.4) and

(lL.2.6) then gives « and g 1in terms of the initial values
ut) and u’e) |

oy

l@) u@/

O ‘ iz

j

where
(1.2.8) @) = W) - fRE-PGIY ul) .
This is the result that Ikeda (4) obtained by a different

method.
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1.3 The Volterra Integral Equation For The.General Cauchy
Problem.

The solution of the n~th order linear differentiasl

equation
L) - (nr2
(1.3.1) we+ z L@ @@=
assuming that initial values L(,(a)(i){l:/, Y, - (n-12)

is to be expressed in terms of the linearly independent
solutions ;&) (r=jz ----») of the equation

- .n ke "-
(1.3.2) v+ S R @) At ')u) =0

=t

through a Volterra Integral Equation. We suppose that the

functions £ a) and R @) are analytic for all required values

of =x . Let (1.3.1) be rewritten in the form

(1.3.3) (x) + Z /? (:r)u Gr)~ Z{l?y)—l’ q)}u(”)
with supposed solution

(1.3.4) «(®= 3 c@&ne)

=/

Following the method of Variation of Parameters, we have
wa@) = 2 @) v, @,

[

we) = 5 @)@,

N

(n-)

(1.3.5) u(".g) C.@) Vv (x),

TM:

]
-

-

" u-1)
ua) = b3 {C (1)4!‘ (f) + &) v @},
provided that the ¢//s satisfy
Z </ é) &) = O,

=t

(1.3.6) = Cr/@') &) =o,

=1

‘

i /(7) ("'2)1) o .
Putting (l 3 5) into (1.3. 3) we get

(1.3.7) 2 & wn"0 = 3 {R©I-£ 6} ) - &

Let W) be the Wronskian of the n functions 'nfr(qf} (,,,}g/
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1,/ Vi) S @)
wa) ) | v @
(103.8) Wé/) = . :
( -, L2 "
Y 3’)) "f cz)/ f. 2,;

Since W&)#0 , the unique solution of the n algebraic

equation (1.3.6) and (1.3.7) is

vig) M4 - - wf;,'(r) °o W .. v
Vi) @) v45d) O %0) v/@)
(1.3.9) C(}";/'&} X - ; ; . : c
’ " () ) ("'0 " rere
v &) 4!" ) r: O E L v (3)

Putfing these values into (1. 3.4), we obtain
T A ] e
“ 4 LTS @) 6 "fr @) "’w | Vv
(1.3.10) u@®= ch v,&) + Z : " R X wq)dx}

r=i ) - . (-4) (ney
P ) ,‘,a) B v,® Y@
where o, are the n constants of integration involved in

computing the ¢, /s , and where b is a fixed constant. Summing

the determinants under the integral sign in (1.3.10), we have
| vid) e - M@

" W) ) vie)| £
(1.3.11) «@= 2 .%e) + I'(.., rue) ‘y| WE) =
= R
b @ vl e
Writing
Vlﬁ/ Ve - - - "r'/'a? M( )
. L |va v wer) . DL
(1.3.12) N(x) = wol ; , w@)
V.é} "rz(ﬁ Vu@)

and replacing & by its value from (1.3.7), we get from (1.3.11),
. z. a
(1.3.13)  w@ =3 d,%e) + j N(iﬂ)Z{R”af)—P_ @} u G,

A or upon 1nterchang1ng 1ntegratlon and summatlon

(1.3.14) u@® = Zo(rv,e)—,_z N(z,x){R(r) Pﬁ))a“r)Jx-f- / N(zx){€ P}QJJ(.

V=
To transform this into a Volterra Integral Equatlon, we need the

Lemma. For r=,2--- (u-) , and Kz2h,2 - - (w-r=t) , the following holds

(1.3.15) [ " 0 {N(zx) [R...e)- ”(Y)]}] 0.

xX=2
Proof. From the definition of (1.3.12),

™ (zl.z.) =0
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¥
Mz, 1) ) V?g))
— : w
o9x 1}',<"'(2 ol 3
P v, aj
J (t) V&)

. Y &) Vv, &) ViE) V. @
> Mz z) v.’(?) vjo| |9 rv',,’év;

})“L é/ ‘tn) + 2 (nei) ;¢n-l)

| ) 4/;' d) 1 a) "’:, /
v &) AW €) v @) V@)

(n) M) c ATy YE) - .- ALE) via) - @
3____( M,_;i’X7 - /\f',/a) ,v‘.",(@,)) —+ 4{,’6’) wa) 4. Y‘/(j) "’v-/é()
—31 n- (- (i) “¢an-s) ' :

- @ % @) o vl ey
) 'V"e? v, &) B %Y 5 v.@ - ";vl@

Each determinant involved in the partial derivatives

PI N (2,x)/ 2x ‘¥

contains a non-derived first row.

€-)

for =x=2 |,

(é:/,z .o e .

/
Hence,

this first row becomes identical with the last row, and the

determinant vanishes; therefore,

c..J?m (2,2)_ 0

D (n-1D

ez _ DMGxe _ ... . 2
dx _ x*

(1.3.16)

From (1.3.12) it follows that each of the partial derivatives

2__;14%,%; ) 93 :164,9 2 ‘"(“7 NG
> 2x >
contains only terms with )
M 2,x), a_l_‘lf%zt) FMlex) .. .. D M(g—x)
P g,x (n-1
as factors, so by (1.3. 16) ) o
_ AN(za) _ P N(za) _ L N (3o _
(1.3.17) N(zz) = 3% = It C e o Cn-v O
For r=/z @-;) ’ and /4:/2 | y W€ have

200 G0k 01-6 ]} = z(:);‘::“:?f‘w 20 [ ©o-Pw]

Since each term in the summation has as a factor one of the
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partial derivatives a(éf\l(z,x)/ax(y ( §=0,1 - t=2)), equation
(1.3.17) shows that the right side vanishes when ==#, and
hence the Lemma is proved.

We now perform ( n-v) partial integrations upon the
integrals on the right side of (1.3.14), and use the Lemma at
each stage to simplify the integrated part:

/ N(%x){ﬁ @)~ P'g)}u“’ " dx
b

[ (2,2) {R”_gf)- P e} u(”-z;))] - f 5% {N(%,x)[@_(ﬂ- ﬁ'{“)]}tf" »—(;)7 dx
[ b

i

i d. s 4/‘(2} f g'ax{'\/(*»‘)[’enl”“’:-f‘ﬂ} U dx
&

- [l g 4 -27.
; 01 V@) - [ ;ax{wczﬂ[ R@-calfu @)z)]b%z)f%‘z{/v(zx?[z e

it

- T (w-r—‘l7
Z_ Z (2/—{- ) /i-z{N(z,x)[@.’.g)—fgzr)_]}u a)dx
€= & /
.S v < e L4 Z" y ) e
) Izz(delz /Ve‘({)-‘_ Z 42 ) + : &= I/h*l’—-l £ '

e :[ X INGHR, ,,-,]}ua)]—#(—i) / (.,){/V(ez}[f P]}ugux

— 5 J
‘Z:‘ /5 4{ @& + [(r} dz (..-r){N(ex)[f(‘ all cr}]} ug)dx
where g’) é\j dez , and all the d;ef,z are constants de-

pending upon b . Putting'these values into the summation in

(1.3.14), we get

w-{ n " () |
w@ = Z; @)+ ; %‘ 6.)4/'(2-)_(_2 f(-/)"'"g‘ .;{N(*’O[R-, “_'}u@u‘x

o+ / N2 [R (X)- Pe)] «@)dx,
(1.3.18) u@ = > Y, U—(%)_,_/ K(2x) u@dx,

=y

where the Y, are constants, and the kernel is given by

o =~ yn-¥)
(1.3.19) K(zx) =3 1) };gn.ﬁ{N(z;z)[@_@—ag)]},
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The arbitrary constants of integration Y, are

determined from the initizl values. « W(,,) . From (1.3.18) ;
ut) = v )
R

Mr TMs

/ — /
e/ = LUe) + Kb ub) .
Now, the expansion of 3““’M(:x)/ax™" as a sum of determinants

A
v

contains exactly one term with the first row derived once, as
well as the other rows down to the (@-i)s' derived once, and
contains all other terms with a non-derived first row. Hence,

for =x=2 , it follows that
(1.3.200 3"V M52/ "= enTwWe) .

From this and from the definition (1.3.12), it is seen that

(n-l) -1

(n)

P N(i:,%)/ ox = (—I)“

Substitution of this and the values (1.3.17) into (1.3.:19) gives
(1.3.21) K(z 7 = R @ - F_ @ .

Hence, u,/a,) ~ Z" o _
- = V(b)) + {r\:_l(b) - ':_‘(lv?} M(L)) or

ﬁla) = rZa: Yr 'V;/(L).

Similarly", for the {-r. derivative, we get an expression of
the form |

e o W (e)
(I.3.22) Zﬁ,([,) = > Yr/v:_ (4,))

=1 ,)
where vp',e (1’) depends upon the initial values L(Gl(b), :Q"_r(l.)j
and  £__(b) (r=iz - n ; A=o42. - (w-1)) » The solution
of the linear equation (1.3.22) is

‘V',/@ / M;'/(” T My H o Vo - - - Vulb)
ARV R SR TR

.3. 3 - — N - . : .
v w(b) _
(wa) (wv _ () 1) (n=)
vi6) N wh LY e vy

where W &)  is the Wronskian of the n functions a &) .

In conclusion, we have reduced the general Cauchy
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pfoblém to the probiem of solving the integral equation
(1.3.20), where all the constants Iy are given by

(Le3.23) in terms of the Cauchy initial values.
1.4, The Equation With The First Derivative Term Missing ..

This section applies to the case n=2 discussed
in section l.1. From equation (1.1.16), we see that the

kernel will simplify to

(1.4.1) K(gx) = N(2,x) §{ S&a)-Qa)}

if R@)-Pa)=0.  We can arrange this in certain problems by
choosing the 4~ equation such that P= K ; however, in other.
cases of interest this choice is inconvenient, and instead
we transform the variables so that the new functions ¢/ and

fﬁ? are zero in (1l.1.1) and (1.1.2). We now show that the
latter entails no loss of generality; that is, starting with
the second order differential equation

(1oh.2) RYE)+ LERE) + [ ME)+ATEJLE =0
with real, continuous, differentiable coefficient functions
LE) M¢) , and 7¢/) , and non-negative T¢), it is possible to
change the variables so that (l.4.2) becomes

(1.4.3) u'e) + [ Q&) + 2] u&) = o .
First, introduction of the integrating factor

pE) = ep § [T LEOIC)
enables (l.4.2) to be written in the self-adjoint form

(1) £{rO} + {30+ A r@) &) =0,

where §E) = p&rE); r€)=pl T .
If in (l.L4.4) we make the trial substitution

(1.5.5) RO = gaiu@) ; 2= 0ald ,
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then, in order that the resulting U equation have the coef-
ficients of u' and AU the same, and in order that the u’

term vanish, the functions [{G'Y) and O@) mst satisfy the

equations
, .
o'+ [po'+ p'8] g =0 , and po= g,
with solution  @= (s/p)% &= E)~+
Putting these into (1l.4.5), we obtain the change of variables
_ ~t/ . — z
(1.4.6) RE) = (Ps)"*u@) § f= ) L,

which changes (l.4.2) into (1.4.3).
We now obtain speci\al properties of the solutions of
(1.4.3). Let two linearly independent solutions be v, @ and(ia):
w’e)y + [ Qa) + 2] 4@ =o,
W'@) + [ Qa) + A] Ux&) =0 .
If we subtract U, times the second equation from «, times
the first, we obtain '
EZ{40 ws) - wwuw)} <o
Integrating and then dividing both sides by L{,Q’)Z , we obtain
U@ /@)~ da)u/e) -

u @)% u@)*

Since U; and U, are linearly independent, the constant C is

different from zero, and it follows that
(147 wd) = Cue [,
| ¢ [u@]

Of course, the Wronskian is given by

(1.k.8) CWE) = del &) - v uy) = C

1.5 Solution of The Integral Equation.

The integral equation (1.3.18) is to be solved by the
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method of successive approximations.. By this method,
(1.5.1)  dp®= W)+ [ K(2,x) dpny 19z
is the'p-th approximation to (1.3.18), where
(1.5.2) Us @) = dAN;@) + 2 VZE) -
The Liouville-Neumann Theorem (8) states that a sufficient
condition for the sequence{Y%éj} to converge to the unique
continuous solution of (1.3.18) is that Wes&) be continuous
and K(zx) be bounded with only regularly distributed discon-
tinuities. However, in the problems that we shall consider,
"the theorem cannot be applied because of the unbounded nature
“of the kernel, and special consideration is required.

In the type of problem to be discussed in Chapter 4,
the differential equation to be solved has the form (1.4.3),
with the first derivative term missing, and further S$S-Q@=#
where M is a constant. In this case, (1.1.16) gives
(1.5.3) K (z,x) = ¢ N(z,x),
The integral equation (1;1.15) then has the form, (withp =0 ),

(1.5.4) U@ )= AU @) + ¢ ff N(z,x) u@)dx
where (1.1.1%4),(1.4.7), and (1.4.8) show that
s *4c (74T

The existence of the solution of the integral equation (1.5.%4)
under quite general conditions will now be proved.

Theorem 1 Suppose that 4/7(%)/{(2-575&&?}:13. analytié in the
finite z-plane with zeros of order g at z=éy’(f=q¢4'—~8)/
where .4&) is an entire function without zeres, P is a non-
negative number, and b, is defined as b . Then the sequence’
{u, @} of successive approximations associated with (1.5.4)
converges to‘the unique continuous solution ef (l.5.4) for

all z.
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Proof. Let (l.5.4) be rewritten in the form
(L.5.6) = ue) = awme)+ wné)/t L{zx) umJéc)
. b

where

(1.5.7) L (22)= ,a)/[m] - ,éoj[m@]

By hypothesis, ~76&) may be expanded about any of the points

in a series of the form

=AY KA g+ Py 41
(1.5.8) V&) = b) + O [ (x=k) ]
with infinite radii of convergence, where we define
: o g 0
Successive approximations to the solution of (1.5.6) are
(1.5.9) U,6) = 4. & + dp v,e) §,.@),
where

z

(1.5.10)  fuG) = [ Lizn) v f, @ dx
and

“0(2') = d‘ﬂé') ; 60@) = 1

The proposed solution of (l.5.6) is then
(1.5.11) Ue) = A n@ 2 K1 f@ .
=y
The nature of the functions ﬁhéo will now be examined; from
(1.5.7) and (1.5.8) |
z
L) v = ve) 28 - vave),
] 2mi+2p4 2n } ~1p; +1
(1.5.12) L (z,2) vi&@) = [d,(z)(x-b,) 3 f;’,o( b&)a“"a _](/ﬂ b, Jﬁ ]
) my +2p) $2p5H Gl 20, -2p) 44
~ [« PV o ;,)a [ A7 sy %*J
(1.5.13) [( = [a P gy S Rl
?)X)v:@) [do (I—bJ) + d. “][ﬁo (2 b]) +d ] [d(a)( 'l:})"'_{
Suppose now without loss of generality that the zeros are
ordered according to increasing moduli
. < . -
/62/ . /bJ'“/ (3 —0)‘)2) Coe . (Z'-I))
Since the series on the right of (1.5.8) has an infinite

radius of convergence, the first series involving x in
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‘(1.5.13) is uniformly convergent for all-bfinite x , and -
can be integrated termwise.. Now,, the function v, &) #;@&) can
be represented in the circle. C : O <[¥-kJ/<R; | where

Ry = e (- buel=v} (o33 Gp)
for an arbitrary small number + , by the product of the
Laurent Series given in the second term on the right of equation
(1.5.12). The product series represents either an analytic func-
tion in C , or a function with an isolated pole at by . Since
the expansion shows that the latter is not the case, it follows
that v, @) v @) is analytic in < .  Application of this rea-
‘soning for increasing 3 until all the points bJ have been
exhausted shows that vj#)%4@) 1is analytic for all finite =< ,
and representable by any of the uniformly convergent series
given in the second term on the right of (1.5.12),

From (l 5.10) we then have
l§@| s f [L (2,2) vi&@) [(dx]

[ e B A |

o zma +2p5 +1

(1.5.14) 1g@] < l[ﬁl?)%#,.&(alﬁﬁ_ﬂ—— ][4(’)@1’/ m%ﬂjl

4 2—”'J+2P34I+1
By the same type of argument used above, the two series in sguare

brackets on the right side represent functions ~ @) and < @)
which are analytic in the finite plane. Further, the series form-.
ed from ‘X@ by putting 4=o , dividing the first term by

2imtlp +1 , dividing all the terms by (z-4)* , and dropping

S s .
supercripts 1s
d

» (4
> 5 ¢ (2-8)
_ €=»o
with an infinite radius of convergence, where

(1.5.15) s* _ { 3,, 2=o0,

£ de/(2merpti+e), €21 .
Since the analyticity of ¢)and @) has been established, we
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shall hereafter use the series for jso , and drop superscripts.

Equation (1.5.14) then gives
4@l < l%!("l—' -ﬂwiip-ﬂ
< zedapsl (" L[4 -

a

)le-bli—l—v-« l%l 5 -1—”71,?;;1)12—51

£
120 I IS }
11 2

44—? 2m+2r+H’l

(1.5.16) Ig@] < *2ZF= A, le-ul?

is a bound on the series

where A4,
Y
(1.5.17) s - 5 S, SLE PESY Ry
P=0
with
' 4 _ f"‘,{, L=0,
Putting (1.5. 16) into (1.5.10), we get ]
4+
lg(*)l s ME‘F" A’ {ldl(_‘—- nfy+3) '4—“ + lﬁ l(u,.{.,p 2m+l|7+3+1)‘2 ‘Ll+ }
@w+ zE-l) ¥ o N lz-tt € 3
S Toar o Ml Sidl+- 1% Pearervery /
Cetzest)a, A 1Y
where A, is a bound on the series
s® - = S ta-u?,
£€=0
with ' _
S(‘L) - { _ldo‘) ' L=o 5
£ “-l%l/(t{-+e)(zm+1r+3+1)) £33

By induction,

]5“(3)1 <« @merip-n) CAA A |—2-Ll:m

Q@) --@n)
is a bound on the series

where A, )
) = ') _
(1.5.19) SV o= (Zso_ S, 12—t
with ' N
“) { P! ) L=o0
.2 S = |
(lo5 0) £ anl| %’/szu.,e) (2wm+ 2p+ Qu_(_{.g)) 22 1.

Since a comparison of (1.5.20) with (1.5.15) shows that

G *
5}) < |Is,| for all £ and wn ,

- it follows that the sequence of numbers § A4,} is bounded above

Hence,

"> " 2
< (Q,Vn:-lg D) A ‘ 2—L| "
2 [a )

by some number A .

(105.21) ‘ fn(’ﬂj


http://li.5-.10

(16)
so that the series on the right of (1.5.11) is dominated by

(1.5.22) 2zp { (2mt 2p~1) A Iz—b}i},
and the convérgence is established. By the same reasoning as
used in the Liouville-Neumarm:Theorem (8) f%tb w,(z)
satisfies (1.5.6)
To show the uniqueness of the bounded solution, sup-
pose that wé) is another bounded solution of (1.5.6),
(1.5.23) W) = AMe)+ M @) [ Lizx) werd -
Since w (2) is bounded, there exists a constant E such that
lu@-we| < EIv@l |
for all # . Frop (1.5.6) and (1.5.23),
(1.5.24) | «@?-wer| < plv@l [ IL(z0][wa)-wen]f dx]|

< pElva| f:’L(%.t)ll”t@‘)“c"“

< pEtvall g@I .
Putting this back into the integral on the right side of

(L.5.24), we obtain _
Jue) - w@l < v ELv@llf, @]
Continuing the process, we get at the n-th stage;

lue) - w@)| < U e lvi@|l g@l >0 as nws -
by (1.5.21), which proves the uniqueness.
We can‘also state the following
Corollary. The same result holds if the kernel has the form
K(Z“,X) = N(2,17 D(J’(_),
where D &) = DJ‘ (x‘*”a') 54
for '($;'=62)"‘ _ ),and(j;oll)z SRR ).

s/

1.6 The General Solution Of A Related Integral Equation.
In the footnote on page (2), it is observed that the

integral equation (1.1;15) can be written
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(1.6.1) UE) = \6) A pan@) + b [ & K (2,x) ua)ds
in terms of an indefinite integral. It is this form (1.6.1)
which will be used in Chapter 3, and hence it is of interest
to examine the convergence of its solution by successive
approximations of the type (1.5.1). Since both the second
solution 4,&) and the kernel K(2,x) may be unbounded at
a finite poinﬁ b, the general solution of (1.6.1) cannot
be expected to exist for all 2 . However, in the next theo-
rem we shall show that under certain conditions the solution

does exists for all 2 excluded from a small circle /[’ about & .

Theorem 2. Suppose that the function ~@)/§f(z-)" 4&)} is

analytic in the finite z-plane:L with zeros of order one at
by (5=48- §) , and with one zero of order w>l 4t 4=L ,
where .A&) 1is an entire function without zeros, and p is

a non-negative number. Further, let K(2x)= NGA) p @) , where
psK) = e_ (7-1,.)5 for positive integral S . Then the sequence
{ «4,@'} of successive approximations associated with (1.6.1)
converges for all 2 &/ to the unigue solution of (1l.6.1).

Proof. Successive approximations to the solution of (1l.6.1)

are

(1.6.2) U&) = U, G + Hh {dﬂ;é—?ahé} 4 ﬂ/zn@)}
where

(1.6.3)  g.8) = [T L) &) g, @0

and

(1.6.4) 2.6 = /5 KGx) &, 0l dr

and where we define

i

1 The finite z~-plane refers to all values of 2 far which

21 < (2] , where 2 1is fixed.
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(1.6.5) Uy@) = dm@) +AVa@);  90@)= 1, L,@)= 4E).

The proposed solution of (l.6.1) is then
(1.6.6) ue) = dU‘é)Z p{“%“@)_‘_ /3 Z p RE) .
Essentially the same procedure that was used in Theorem 1 gives
S " A-k le-—l,lz“(iw ‘Lp-—l)“ oo " E_"_[_g.:__l_,_li“
(u(%)l<ezlulé)|éu T <+/>“Z=ot4 LTS

for finite 2z excluded from ! , from which the convergence
follows for these vaiués of Z .

To show uniqueness of the general solution, suppose
that w@ is a second solution of (1.6.1) which is finite for
all finite 2 outside of ("

(1.6.7) WE) = Ave) + BALE6) + [%I((%,)() wa)Jx.
From,finiteness of v k&) , ~&) , a(z , and we) outside
[

, it follows that there exist . constants C, and C, so

that '
| u@) - we)| < <, l‘flé'” + G | 'U;.é')/ .

From (1.6.1) and (1.6.7)
4
(1.6.8) Ju® - w@| s HJ |Kzol|u@)- we|ld
2
- pimelq [CiLev@lldd +uc, fIKGE)ralldxl
(1-6-9? lu@) ~ wer| < wivi@IC, | g.@] + uC, | L&) -
The substitution of (1.6.9) into the right side of (1.6.8)
gives R | -
lu@-w@| ¢ [ IKGOIWGEICH§ 6] + 1 C, I 4 6|14
=Wiv@ic ige| + e | 4e|
Repetition of the process gives at the n~th stage
(ug)-we)l < r IM@)| C 13.8)] + 1 ¢, R, &
> 0 as n = oo ,
The following generalization can be proved by similar

reasoning :
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Theorem 3. Suppose that the function Mé)/{(e—b)'j.é?} is
analytic in the finite z-plane with zeros of order wy at

2= bJ‘ , where 4e¢) is entire without zfrqs, and(ﬁ is
non-negative. Further, let k(zx)/ A(ax) = ,Z;, D, (x-k) (3=9/,7;---
Then the sequence.. of successive approximations of (1.6.1)
converges for all values of =2 (in the finite plane) ex-
cluded from small cii‘cles /_'3' about b,] to 'p'h.ev |
unique solution of (1l.6.1).
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CHAPTER TWO
APPLICATION TO INITIAL VALUE PROBLEMS
2.1 Introduction.

This chapter contains applications of the results of
Chapter 1 to the type of initial value problem in which the
differential equation to be solved differs from a known equa-
tion by terms containing small parameters. In particular, the
integral equation (1.1.5) is used to obtain solutions as power
series expansions in one or two of these parameters. Also, as
a general result, the formulation of the general Cauchy prob-
lem as an integral equation, obtained in section 1.3, is used
to give multiple power series expansions of higher order dif-
ferential equations in several parameters. In the +type of prob-
lem considered; the m-th successive appfoximation to the solution
of the integral equation yields all the terms of the multiple
power series having the sum of the powers of the various para-
meters less than or equal to m, Since the differential equa-
tions under consideration will be assumed to have no singu=-
lar points; so that the kernel ﬁf‘%x? and the second solution
are bounded, the Liouville-Neumann Theorem guarantees the
convergence of the general solution of the integral equation

by successive approximations.

2.2 A Problem With A Perturbation In The First Derivative Term.
Suppose that the solution of.thé differenﬁial equatibn
(2.2.1) @)+ asFa) ) + Q@) ua)=o

having the initial values d¢) and «’¢) is required, when
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~if) and #, () are known to be solutions of

(2.2.2) v'a) + Q&a)vea) =0 -

Equation (2.2.1) differs from (2.2.2) by a term containing a

small parameter S . From (1.2.14),(1.1.26), and (1.4.8),
Nz = & [#e14,0) - v6) vall,
K(2,x)= as|[ %("‘5"7
= s [ (z2,x)
where [ (%,21) is independent of s .

(2.2.3)

Fe) + Nizx) Fa ]

From (1.1.15) and (1.2.7),
2 o

Ug)= «v, @)+ BAGE) Sjb L[%,x) ucx)Jx)

where « and g are linear in s . With

~
the first approximation to (2.2.3) is

A ' z ~A
ue = Aa)+ L els+ s ) L[ L a)+l e s]ix

o =t

- L, @)+ AG)s + boe)s.
The m-th approximation then has the form

(2.3

ume—)z lz %@)S—Z +’£”Vm+/é—)sw+/

>
giving the complete power series up to the term in sT .

As a simple illustration, consider the problem, whose

solution is easily obtained by other methods, in which F@&)=/,

Q& =« (for realn ), are put into (2.2.1). In this case,

vy é’) = Cant ALE) = St nz M/(z—]:c::/;
K (2,4) =— 25 cosu(x-2) .

If the initial conditions are w(/ =/, «(6) =0 then (1.2.7)
yields X = , /3= 27 , and the integral equation is |

, ) 2

U@)= canr + 25 siant - 25 f cosn( x~2) ué’)c/«x/
First o

withA'gpproximation

(2.2.4)

. z .
Chf?') = cosntr + -sv—"{’{.fm My — n3gcos ne} - Q—:{ nd Sin n2
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This checks with the first two terms in the power series

expansion of the known solution

(2.2.5) uB)= coswz + = s we,
where W = (at- S»L)‘zf.

2.3 Another Single Term Perturbation Problem.

Consider the problem of finding the solution of the
equation |
(2.3.1) u"@)+ P&l + [ Ta)+ s Gar] ua)=o
with the perturbation SG @) in the «@) term, having the
initial values «(/) and u« %) , where vi&) and v, &) satisfy
(R.3.2) wa) + Pa) via) + TE&IvE)=o0 -

Again, use of (1.1.14), (1.1.15), and (1.1. 16) shows that the
integral equation for ‘the problen is

(2.3.3) U@)= oL 16) + B,6) + sf L(zx) u&)dc,

where, from (1.2.7), &« and /2 as well as L(2,x) are indepen-
dent of the parametﬁer S .+ The m-th approximation to the so-

lution of (2.3.3) then has the form

(2.3.4)  d,(3) = J»(t) st
:  For example, suppose that the solutlon of
(2.3.5) w" @ 4 § (<ttax) 4+ n"} «u@ =o0

with initial conditions

(2.3.‘6) up) = 1; uG)=o

is reqﬁired‘,' where @« and wn are real constants. In this

case, the kernel is -
K(z,x) = [—f; Sin n(x--z}][ :/Z+4x]

whence the integral equation is

2
(2.3.7) U@ = o cos nz + fBsinnt +7‘J .Smn(:t--}){xl_{_q;(} u@dx .
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From (1.2.7)',: the initial conditions (2.3.6) give
- I of _ . [ 1] =
d’}%/du/— I/ ﬂ:ﬁ/oolao’
and hence the first approximation to (2.3.7) is
z 1 asrE ) A
U @)= canz 4+ £ [ “sinnlx-2) xlcanx dx + 2L [ simn(x—2)x cosnocdc
(4 . (]

= K el+ L&) s,

where
L) = cume
L@l = '—’,,_%’Lagna-- 4 zcgmr — L st — L 2 ne — J‘,%ﬁnn‘t-{-i? Sianz -
Lt 4v on 4n L 7
2.4 Multiple Perturbation Problems.
Consider the differential equation
(2.4.1) uea) + 2sFa)u@)+ [ Qa) +t ca)] u@) =0,
containing two independent perturbing parameters s and T .
Suppose the solution of
(2.4.2) v &) £+ Qr)wE)=0
ére known to be 4/,(:() and 00 "I‘hen; from (1.1.15) and
(1.1.16), «u @) satisfies the Volterra Integral Equation
(2.4.3) U@l = x vl s +5) L0 uarde é[Z{—i;x)aa)JxJ
where the functions
L (20 = 2 {N(2x) FaO '},
L(gx) = - N(+,4) Ga) |
are independent of S and ¢, If the initial values for «&/
are «b) and u/b) |, it follows from (1.2.7) that the constants

« and /4 are given by

cu@) )| _
«= £ wirirs ) az;/w/ = At
L v u(b) ‘
= itrseub) | = B 5S

The first approximation to (2.4.3) then has the form

U&= Ko@)+ L, @) st Ko @IC £ R,,6)sE+L G)s*
4 0 J
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which gives all the linear terms in the solution u@ﬁ o« Like ="
wise, at the m-th stage of approximation,
v o .-

U, @) = % ‘%:I Lo @) s td _,L'WZ:'_H 2}«"}‘(:&}561‘6
giving all the contributions to terms in u«@) having the sum of
powers of s and ¢ less than or equal to = |

As an example, consider the differential equation
(Relo5) u @) + s 1+ax) u/é’) 1/- [V.L_.Lz“o(] w)=0,
_6f the type considered by Coveyou and Mulliken (1). In this
case, the kernel is | |

Klax) = sina(x~3)

tx — 9_% { S;q"!(:'-?) S(l"ﬂ?()}
(x— v
B = .23%_27 {?fx;—as} ~ Scosulx-2){ I+ ax] .
For the initial conditions- w@e) =1/, ufsl=0 , equations (2.4.4)
give '

/ " .

Hence, the integral equation for the problem is

(2.446) UG = cang 4 Ssimnt +[ " rin wx-2) TEZL, @hdx — 5 [cornx 2) S £ axfug)dx .
s £ .
With Lueoz'cﬁw%—+é?ﬂnnt- , the first approximation to the

solution of (2.L.6) is

(2.1}-7) (4,(2') =v£",o@') ‘('/260(2') S+,£ql(?]f+25/é)jz_+,éo(z—)sz) .

where
/ﬁo,o @) = cas e

. T
/K,)o @) = :“L— Sinnr 'f‘ﬁ?%.fmn'r—-w (_f 4—.“72'.) ro.m%)

A = & . - L SR N gy
LY} C?') = 4’ Sianz pram 2 Coshn¥T ) X S

The first approximation (2.4.7) gives all the linear terms in the
solution (2.4.6). H
Consider now a general perturbation problem; in which

the solution of the n~th order linear differential equation
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(2.4.8) ua) + é[ @)+ s Fa)l S =0

having the initial val‘ues u? (L)'r "_. (Z—o,/Jz/ (k) ) is
required. Equation (2.4.8) is changed by terms containing

small parameters S, ., from the equation

(2.4.9) e S R a) v Tl)=0 |
Whose eolutions v, (i:) ;, (V:Cz,"" “ ) are supposed ﬁo be :

known. From (1.3.18), the integral equation for this problem is
v\‘ “u &
(2.4.10) w@)= 2 Y v,¢)+ 2 { L (x) u@)dx,

where, from (1.3.19)

n-r-tl (“' ")

L. Ga=e) 2m, {Na) F @} (e1g-0n)

Here, . NC%, x) is given in terms of ?U;(x) (v, - ) by
(1.3.12). The constants ¥, , given by (1.3.23), will in
general have the form A

) b 4.

| ' 4.,
Xr = Z ”73 ‘1 Sb S, - .- 5-
3;—00!‘1 ¢, 0! n ] bt
where the exponent on each of the parameters S, 1is either one
or zero, and the coeff;}cmetsl 04700/ d'} S 6'.--: depend upon

the initial values « ) , v ((,} , and F‘ (1,/ , (/:O//Iv"(h‘// )

The m-th approximdtion of (2.4.,10) is

(2.he 11) @) - 7 st > @
) /.—Zo P2 ’Zaaa, J”/;]S +.2. %,‘,I,(.,J”/'js ,

2 3= =l l=
Lod ‘5:‘3" o

Thls gives all the terms of «@which have the sum of the

exponents of the various parameters 3. less than or equal
to m . The second summation on the right of (2.4.11) gives
incomplete contributions to terms of «@) havihg the sum of

exponents of 5/ equal to ¢l .
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2.5 Another Treatment Of The Problem In Section 2.2

Consider the problem of finding the solution of

the second order differential equation

(2.5.1) L"E) + as FORE) + w* h&)=0 ; (FO)=c)

of the type (2.2.1) with @€)=n , for a real constant =« ,
which satisfies the initial conditions

(2.5.2)  ALe) =1 ; L@ =o.

Actually, the conditions (2.5.2) can be replaced by completely
arbitrary ones without essentiaily changing the res‘ult. If the

first derivative term is removed from (2.5.1) by the trans-

formations &

(2.5.3) AE) = e~S/‘ Ff)ﬁbué’),‘ F=x,
obtained by following the procedure of sec£io-n l.L,; the result
is

(2.5.) '@+ {-sFE) 4 & Fay 4wt} ua)=o,
where 4@/ must satisfy the initial conditions

(2.5.5) u@) = I ; 4 0) = sc

When (2.5.L4) is compared with

(2.5.6) v @) ¢ at va&) =0,

with solutions

v, @) = s nx ALR@) = Sranx
the resulting integral equation is

< 2 z
(2.5.7)  u@)= cosnz + SFsmnz ~ [ sun(x-2) [ 5 Fap+ £ 5 Juardx .
With «,@)= casnt+35 cinng , the first approximation to the

solution of (2.5.7) is
U @)= cosne +5§ fz(” n(2x-2) F&ldx }
(2.5.8) + 51{ a'mua- o* Fe)dx - —1-/ simn(2x~3) F@)Jx + _[,—,"n(zz-*)p@()dx}

+ 57{2»: / Casn(2x-2) F?’) dx ~ 2_%-1 Can [ Fartdx } -
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The sequence of successive approximapions associated
with (2.5.7) actually does converge to the unique continuous
solution of (2.5.7) provided that the function F&) together .
with its first derivative are bounded for all values of the

argument. - The m-th approximatioqis of the form

n
_ e o~
U@) = 2 k@) s" 4+ 5 £ @)s’t
= Lemtl
where the powers of S higher than sT , represented

by the second summation, will in general receive contributions
from later approximations.
As an example, suppose that F&)=1=cC in (@.5.1);

then (2.5.8) gives for the approximation ,

. 2 3
(20509) ue = ‘of”%"'—f,“""" +2"§'1. axSin ”‘2""“‘.3 {%Carvﬁ'—-.ﬂ-n w%—} .
247

- In this particular example, the first approximation
(2.5.9) gives all terms up to those containing s? , and
likewise the m-th approximation gives all terms up to those
containing SLM+’ ; since there is no overlapping of terms
at the successive stages of approximation. The result
(2.5.9) checks with the expansion of the known solution

(2.2.5) up to the s’ term.
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CHAPTER THREE
APPLICATION TO SPECIAL FUNCTIONS

3.1 Introduction.

The object in this chapter is to use the result of
Section 1.1 to obtain expansions of special functions in series
of better known functions. Ikeda (4) first used this method to
expand J,¢@x and Y,@x) in terms of J,&) and Y,& res-
pectively, where J.&) and Y.&) are the Bessel Functions
of first and second kinds of order w . In addition to rederi-
ving Tkeda's farmal results, we have examined the convergence of
the series;.in particular, we have found that the J @x) series
converges for all x and all & , but that a restriction must
be imposed upon « in order that the Y. (x) series converge,
(for all ¥ ‘excluded from a neighbourhood of the origin.) For
details, see M.A. Thesis of D.A. Trumpler (16).

‘More recently, F. Tricomi (15) has obtained expansions
of the Confluent Hypergeometric Function in series of Bessel
Functions. Using Laplace Transform methods, he arrived at an
éxpansion for the ﬁell—behéved solution of the Confluent Hyper-
geometric Equation, and gave a four=-term recurrence for the
coefficients in the series. Also, by setting up an integral
equation similar to that which we have derived in Section 1.1,
he obtained asymptotic formulae, but no generaliexpansions. In
this chapter, we use the result of Section 1.1 to obtain the
general solution of the Confluent Hypergeometric Equation as
series in J () and Y.&) , and as a special case, the

well-behaved solution of this equation as a series in T.(x) o
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Further, we afrive at a similar series of Bessel Functions for
the solution of a generalized Confluent Hypergeometric Equation.
Theoretically, the procedure could be generalized to obtain
expansions of various other functions in terms of known functions
except for the computational difficulties in evaluating certain

integrals involving the latter.

3.2 The Expansion Of The Solution Of The Confluent Hypergeo-
metric Equation In Series Of Bessel Functions.
The object is to express the solution W(a,c;<¢) of

the Confluent Hypergeometric Equation

(3.2.1) tw'e) + (c-¢) w'€)— aW@) = o

in terms of the solutions 7 &) and VY,&) of Bessel's
Equation |
(3.2.2) tL"E) + RE)+ (- L) aE)=0

We now proceed to set up an integral equation linking the solu-
tions of (3.2.1) and (3.2.2). In order to obtain the simple
expressién (1.4.1) for the kernel, we use (l.4.6) to get the

transformation

(3.2.3) 2@) = £ TF va), t= =,
which changes (3.2.2) into |
(3.2.4) v a) + [igl?’ +¢ Jva)=0 -

Likewise, we can remove the first derivative term from (3.2.1)
by the change of variable
% -
(3.2.5) WE) = ez & = /&)
which changes (3.2.1) into
V4 .
(3.2.6) Vgl {4 + 4 - L)} @)= o



(30)

where
. . |
(3.2.7) A=5-1;, yu==£-a
The further transfdrmation
z e
020 = _—' N = x *
Geze) & =20 ve)- Z ue)
changes (3.2.6) into
-t ]
G.2.9)  ala)+ 2 - 4 Jua)- o,
where
(3.2.10) ¢ = Z‘;}L n= 2,0—;(-1= c—| A=4H -
) J
We now use the result of Section 1.1 to write the solutions
of (3.2.9) in terms of the known solutions =% J.&) and
%+ Y.@) of (3.2.4) by a Volterra Integral Equation.

From (1.1.14, (1.1.16), and (3.2.3), we obtain
N(zx) = =t2* {A(xuzé) R) b a1}
x {R@Ra) - R a  bie}

= xt et T 70y ¢)- TV },
upon tdklng 1(1)*7@ i) = Y @) s and using the

identity (See Watson (17) )
(3.2.11) T & Ve - LY@ = 2/mx

(3.2.12) K(zx) = I xtat {LeoYe - Te Y.a) 3{-

The integral eqguation (1.1.15) is thenl

(3.2.13) u@)=«z T@) +s2iVe+ zeﬂfj[mm -Tew]x ugrdx
To obtain the solution of (3.2.13), we shall need the following
special results:

(3.2.14) Ga@® = ()T, @ - T, ., &)

(3.2.15) Yoa = 2 (wt) Y., @) = Yoer @D
(3.2.16) L =4Zf [ T60v0 —Jf,{zaY“(x)](§)"x:r @dx =L (f}"J" @ + C,mJ' (e)+C?}Y(z);

Arl

i

(3.2.17) 5 = f[J—(x)Yé) yé,y(,,](z)x)”(zux Y@ + Mg Ye),

ntatl

=Y

1 See the footnote on page 2.
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where A is a positive integer, and C(‘?‘} (4,23 4) are
constants of integration. The recurrence relations (3.2.14)
and (3.2.15) are well-known (16), and the results (3.2.16)
and (3.2.17) will be established in Section 3.6.

If we take &)= x* § J@) +4Y,@} and calculate
the first few approximations of (3.2.13), it becomes apparent

that the solution of (3.2.13) will have the form

(3.2.18) ue) = =2t ; [A,@)YL@H 8,'(%)'YW&)]

upon rearrangement of the terms in the series. We then substi- .
tute (3.2.18) into (3.2.13) and determine the necessary recur-
rence formulae for the coefficients A, and B, so that

(3.2.13) is satisfied. The result of the substitution is

z [ A8Te+8@ @] = <T@ +rYe

I
+ (7\) f JmY @)-Te Y «)] = (’—‘) Z [,q (2‘) W+8E) Y@)qu
Applying (3.2.14) and (3.2.15) to the Bessel Functions in the
summation under the integral sign, and then using (3.2,16) and

(3.2.17) , we obtain in turn

o v v x z
Z[AE)Ie1+80) ), @)= <T@+ sle+EHI[[Tene-TeN ]

2 AL 7@ Q8 fewa@ Y0 - @)Y 0 Hes

nevil
' ( V+J eri/2 r+3
- nere "
) J'I'@ +4,Ye) + (7‘ Z A { vl (i) n+r+z B V+3 {ﬁé}-‘—ﬁ{ v (1-/ YL:) V+3(’7/!+€4{J}
where &, and A are constants dependlng upon

A, and C (?}

(¢=123 4+ ; A=42 -:- ). Replacing ~
by r+1 in the first and third terms under the summation on

the right side, we may rewrite this in the form



%[A@’Tf‘ws@ o] °'T<%>+M@H(A[MAUT@+“‘HK@ @]

nirt2 A Z nivez V42

@ > m{ S5 AL AN T + s - 80, @

Equating separately the coefficients of (% v43 @9 and
M+Y¢3

r+3

&) Y @ on both sides, we obtain the recurrence rela-
nir +3 ‘

tions

G290 A= @54 + 2580 ), 8, -3l g cmney

vi3
where v/

Ao =, B,=p ; A=B8=0;
R R 5246 %

Putting A _=d,a, , and B =73 b, , We can rewrite

(3.2.18) in the form
.2.20)  4@= F[4Z e @Io+sZ 5@ L]

where now

2 .
s = G {T5 A + UE A}
2
- (3.2,21) b =6 =1 / v 4’:6120)' 9= zz(%)—v%"'/
ar = b, (r=34 - - - . )

Since the conditions of Theorem 2 of Section 1.6. are satisfied,
the sequence of successive approximations to the solution of
(3.2.13) converges for all finite 2 excluded from a small
neighbourhood of the origin. However, the series (3.2.20) has

been obtained by rearrangement of terms, sé that the convergence

of this series does not follow immediately. This question is
treated in more detail in the M.A. Thesis of D.A. Trumpler (16).

To obtain the solution which is finite at the origin, we set

B, =0 in (3.2.20). The constant «, is determined from

the appropriate normalization. It can be shown (16) that the

second solution of (3.2.9) is obtained by taking § speeial
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special valuesfor 4, and /3, .
~ The solution bV(a)c; t) of (3.2.1) is obtained
from (3.2.20) by changing back to the original variables,
using (3.2.5) and (3.2.8)
(3.2.22) W(a ¢, ¢) = € £ et

£
z

4 4
q(z—[‘%"‘qu’tz)) J
where the constant A in the recurrence (3.2.21) is given by

(3.2.23) A = 2c-4a

3.3 A Generalization Of The Problem.

Consider a generalization of the Confluent Hypergeo-
metric Equation
(3.3.1) V'@ + {—4 ¥ ¢+ B~ e ] ye) = o,
which is different from (3.2.6) in that the term —47£ in
(3.2.6) is replaced by ~%i3} +F7, where X% is a constant,
(p=1y -~ ). As in (3.2.6), p  and A are constants of
" the problem. The case discussed earlier (p=1) is related to
the quantum mechanical problem for an harmonic oscillater in
space. The more general form here (aﬁd the generalization
considered in Section 3.4) could therefore be interpreted as
an anhgrmonig oscillator in space. The change of variable
(3.2.8) transforms (3.3.1) into

(3.3.2)  u'e@)+ {E% - ZT 41} ua) =0,

where now

P
(3.3.3) 2 = ﬂxﬂé—
P

As in Section 3.2, we use the results of Section 1.1 to com-
pare (3.3.2) with (3.2.4), and obtain the integral equation

J __ 4 =
(3.3.4) ue)= 42 T@) 44 2@ + LT [TalerTeNm)x i

-In order to obtain the solution of (3.3.2) which is finite at
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the origin, we take Bs=o ; a simple modification would give
the general solution, (as in Section 3.2). Following the
method of Section 3.2, we look for the solution of (3.3.4)
in the form
(3.3.5) U@ = x 21 Z a, @ I, &
and determine the necessary recurrence formulae for the coef=-
ficients 4,  in lorder that (3.3.4) be satisfied. Putting
(3.3.5) into (3.3.4), we get
(3.3.6) 2 a7 )= Tert Tf[féo‘/(a—f@‘/cv]m ’Zd,(JJ’ cda

In the evaluation of the integral, we need the result

(3.3.7) T @ - Z@)" @) () [(rereterr— (rorip] 7 Lvipsd™,

where P is a positive integer. This will be proved in
Section 3.6. Substituting (3.3.7) into (3.3.6) and using

(3 2.15), we get, upon interchanging summation and integration,

v(%) J..e) =3@

r—o
. oo P +o¢!
(
+ 6.) VZO ;‘, q" &) @ G’/h—(’ffﬂ [(”H’-f—ﬂ-{-l/- (”fr*(‘y]wr-ff-fstf)/ .
The change of dummy . —V—F“'f leads to
(g a, %7 j—r@) J—&} + 5 )Z Z sﬂ;.(@’)%z} ((/S%IEH-.YF{’H) ("hff-?,ljy
+—%7’- é (e)Sc-PH P/:ﬂﬁl [(u+s+l) = (w+ ﬂ-f)] "+S+P+l&)
(3.3.8)
- ﬁ) Z @ @’ﬂ’ (I s+{’«-z [("*'54'2) ’ C“{'S"F)Jj:"'“'f’*zé')
A + (ﬂ) e“)r ‘q (g_-) st (pq) s+2p [ ("'+ s+ f)_] Tots+ zp @).
After the dummy of summation s in the right member has

w4y

been replaced by r ‘, equating the coefficients of (f} I &)
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gives the recurrence formula

2 F
(3.3..9) a7’+2p+1 = (%F) S Cﬁﬂ’_((—z)(g/ [(H+r+ff~l)~—(n+ V+z[7—-!)].

7=0 V+ZF-H
This gives ar—{—z[u—l in terms of q, dyy - - - Artp . In
order to apply the recursidn, however, we need the explicit |
forms of 4, 4, --- d.p .+ From (3.3.8)

(3.3.10) d, =1 ; a, =a, = - - = ap =o -

Now; in (3.3.8), the only term on the right which contributes |

to I‘-pﬂ&) is the s-o term in the first single summation.

Hence,
q/}(—l = 4, (P}F‘H [.(“‘f") T ("1'/7),]/
Ap+ = }ﬁT [("H) o (wep/]

Similarly, we obtain

(3.3.11) @y = (-/)'f"(f_/} sz [(net)(nst ) - - (nep)]

for €=/ 2) R . In summar&, (3.3.10) and
(3.3.11) give the coefficients d,-} a, - Ap , and
(3.3.9) then gives all subsequent q, (r= 2pl, Tpez, o ) e

2.4 A Further Generalization.
Consider a further generalization of the Confluent

Hypergeometric Equation

(3.4.1) V"e) + {~JZ +Jg_'— ~- ebr) ] vE)=0
where the 3/3, are constants ( 4L, - P s pPELY ),
and p and £  are again constants. As in Section 3.3, the

change of variable (3.2.8) transforms (3.4.1) into

P
(3eh4.2) ula) + [ = -7!‘1522‘ c3x15+ 1 Jued=o,

where
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(3.4.3) =44 céz(lw)%“/x},
Using the results of Section 1.1 to compare (3.4.2) with .
(3;2-/4—)', we get, for B =0

-~

% ) .
(3.4.4) U(*)-’dz'{x,é?ﬂ(-“;‘%i'{{/ [):ﬁ)x'(%]—]:é)‘/“a)]ng CZ’ uéf)Jz .

Substitution of the proposed solution (3.3.5) into (3.4. h)

1]
-~

and use of (3.3.7) and (3.2.15) gives

s a, (%) J.& = T&

(3.4.5){
20 P ¥ 1
+Y=Z° %’Z‘“CZ_ 5) Q(—I) (;} @7'431‘!4-/ [(u-(»m—!-ﬂ) (u+r+3)]
X J-Mf"'l’t-b?‘('l @ .
The successive changes of dummy s=r—p+d , and
T= S-2p+24 transform (3.4.5) into

>a @F7I,.e= Ta)+ Gﬂ@.—7+Hu(f)
(3-h-6) e P

< 2

I
o ,2' 5()' )%4-1{(—%71(f gj{'—lﬂfﬁ kn{-t-‘—lf"}f) (‘14—?,‘-4-1{‘—9}] 4_t4.1f+,

where

{H@ 256536 Baglomr oy, Ko e,

and X[Cess) - Grseg )3 @) oo aepd (@ gﬁf}i‘z& ) T @)
Z& Pl

n-l-ﬂ-gﬂ
293¢

u(i’)- q @ 2 Z {:4-1—(7(-0 (L)t:;; [(M-‘t-{-z) (n+2"+2,—()] j' 2 @
2 205 2

+ ¢ (A} Z Z agn 5‘) é_) 45 [(%t+3) o+ t"“’”] Tn+t+s(2')

B

L - "'} %: Z L pp-t-¢ (")l(ﬁt/ H_?H [@"‘ te)- ("“‘*2:‘"2 ‘e).]Twﬂ'z(?:)-c :
f

Equatlng the coefficients of by co2p @) n (3.4.6) gives

the recurrence relat ion

(3.4.7) a.t“‘_fﬂ _ 5% é &(if'/(l) é&}t—ﬁf»l [(w—f-l-Z(rZ*/) (u{-t‘{'?fff) tpg-ty

where 4, ¢ = --- 4, are obtained from (3.4.6) in any

given example. However, the complicated nature of the functions
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OWE, and H.,(7 makes it inconvenient to get general
expressions for these coefficients.

For finite numbers P , Theorem 3 of Section 1.6
shows that the sequence of successive approximations asso-
siated with the integral equation (3.4.4) actually converges
‘to the unique continuous solution of (3.4.4). As in Section
3.2, however, we have rearranged terms in obtaining (3.3.5),
so that further attention is required in order to establish the

convergence.

3.5 Solutions of Related Differential Equations Expanded
In Terms Of Bessel Functions,

In this section, it will be shown that the solutions
of a number of important differential equations are related
to the Confluent Hypergeometric Function through various
changes of variable. Hence, the results of Section 3.2 can
be used to express these solutions as series of Bessel
Functions. Numerical values for these solutions could then
be computed accurately by making use of the extensive tabu-
lation of the Bessel Function (17), and in fact, far A <<2
only a few terms of the rapidly convergent series (3.2.19)
would be needed to guarantee accurate results (9).

(a) The Whittaker Function (18).

Putting m=2-+¢ into (3.2.6) gives
(3.5.1) V'E+ {—4+E+ 2] ve)=o0,
which, by (3.2.5), has as its solution the Whittaker‘Func-
tion _t

(3.5.2) Mf‘,m&) = e t” W(sc; ¢),
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= —d = £ -
Vh—%,L N 2 z —4

Since (3.2.7) gives
equation (3.5.2) can be written
: ~ X "
(3.5.3) My, @)= e 2 £ 2 W (medb, 2ws; <€),
which is now in a form to which (3.2.21) can be applied.
(b) The Laguerre Function Density; |
_ By the substitutions
- 2r
(3.5.4) t = = V&)= LG,
equation (3.2.6) becomes |
(3.5.5) L'm+4 [$ -4 LTG0,
with solution
3:56) Ly @ = M @ = My gy (45
(c) The "Associated Hermite Equation".

The so-called Associated Hermite Equation

(3.5.7) T '@)+ [~(eH)Ceri) L m]TE) =0,

39
obtained from (3.2.6) by the substitutions
ut i)t
(3.5.8) t= & . ve)= B)TTH),

has the solution

(3.5.9) TY) = (%}~{M;4} £+ GJ;)
r
’ T@G) = (:3)'{ e—%i %y IH\A/[/H-M) 2042, %Z)
(d) Hermite's Equation (18)

Hermite's Equation (or Weber's Equation) is
(3.5.10)  Di@+ [(5+) - 5] o,G)=0,
which is related to (3.2.9) by the transformations
(3.5.11) ~ A= 254l ; =x= @)iz—; | u[:()=Dd'(%) R
Hence; the solution of (3.5.10) may be written

Di@)= u(fp+Hlte),

where in the expansion (3.2.19) for « , and in the
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recurrence relation (3.2.20),
(e) The Equation For The Harmonic Oscillator In Space

This equation is

(3.5.12)  H."01+ L[=5" 4 S o] Hh)=0,
which is related to (3.2.9) by the transforhation
(3.5.13) = by, @)= H.©).

The solution of (3.5.12) is then

(355314) Hig)= u( B7y)

3.6 Appendix To Chapter Three.
(a) Proof Of (3.2.16) and (3.2.17).

Consider the integral

2 ~ 4]
(3.6.1) S @ Tyn,, @1 2™ dx = [T 1 J[XT T o) dx
Since
' + e / nAt
(3.6.2) x™rne= &[Tl AT 9]-2"Ty
HI'MI
a partial integration of (3.6.1) gives
" AtT
SER® Ty pa@) ™ = [T, 7 e X M] +/ Joea xdx
npz
[— 4 m—?\H 7(7“'7-] +“j TT”‘ WHJX-{-] J‘: c’(x)
using the relation (17)
(3.6.3) x T, @) = » Lar+=T, @)
A partial integration of the last integral on the right gives
fafj;(-?n-( 7\"'2(13(_ £_):-l I't-Ml ] +n f n+7\ MIJX
(3.6.4)

el
b LT 2™ ] LT, %™ e = () LT
Upon use of the identity (17)

| xTh © = en T0 60 ~x Tcan @,
(3.6.4) becomes 2 A2

[T Ten x“dh (TT,% =T T

LY we -t rtl A+l

+(n - h—l)f X dx +fj:j:fmx'\f72x ~(»‘+h)j bj: Taax dx
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Upon transposing terms in this equation, we get finally

ALz

(3.6.5) [ T@rT @)x dx = - [Z0T @< ~Tw ], @

nen 2(AH) hWEAH
Since the functions }:@7 satisfy the same recurrence rela-
tions as J.@) |, the foilowing result is obtained in the
same way as (3.6.5)

(3.6.6) YT, . de = L [y T D% —Y X, Treny COX z]?_“

Upon use of (3 6.5) and (3.6.6), we get

L= "* (+) ensl @ Y., é)f@7~T@7Ye9}+C .T(%p.c y@.
Now, from (3.6.3) and (3.2.11),

(3.6.7) Y., & J&) — Tn @ v.@) = 2/mTz
and the result (3.2.16) follows.

| Again, following the same procedure with Toe atqg ()
replaced byY;+)f? , we get; instead bf (3.6.5) and (3.6.6)

Zz A+ / NT A2qT
.(3'6’8) f Toa a@) x* dx= 2ne) [z@)z‘_h()r)x _v?—‘c@,):/l-Nl(w))( ])

(® oy 1) ©
(3.6.9) f Y. Y, 00 x" dx = )E‘/(rﬂn(x)x Y(iﬂwﬁi’?’( j)
from whi¢h the result (3.2.17) follows.

(b) Proof Of (3.3.7)
We need the following
Lemma. For /=/z -.- p , the following relation holds

(3.6.10) a,)(/’ﬂ‘f? + ) crpren) = (PF ) =tpt) -

We now prove the result (3.3.7) by finite induction upon P .
For p=I , (3.3.7) gives

(3.6.11) L ®= %))~ L@@ ~ () 7@
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where for convenience, we put <= v+r  (v=0,/42 -~ " ))
which is correct by (3.2.14). Assuming the result (3.3.7) is
true for pP=% ;. obtain, with the help of (3.2.14),

? .
3.612) L@ =7+ 2 I+ T+ TR,

where S e, 5 ‘

7;‘ ce) & (B ) [0 eep][ -7, . o @1

0 3¢ ‘
7;’3 =en® @ C?’j[ (“let) - - - (et g /][(,%}(4;41#) Z+3+/+(f7
(/ez ()'/)Z) s Z—)
Hence,
-4
T+ T, (3‘ =) 2@%]5 [(etber). - Co4g)] [[E)~t2) +¢Wé+5+l+11{55;{,

g-e¢l
et @ L (<t0e).- (~g)] [ (5;7 (wegei)] j‘;w‘&‘lfl)
upon applicatioen of the Lemma. Putting this into (3.6.12),

we get

-0+ :
T, e = ? en’ (_Ia)% CgJ[ee) - Cotge) [ T aer,

which completes the proof by inducﬁion.
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CHAPTER FOUR
PHYSICAL APPLICATIONS
4.1l Introduction.

Although the method of Section 1.1 was: .originally
designed for initial valuerroblems, it can be adapted to
solve boundary value problems. In this chapter, we shall
"discuss a type of boundary value problem which arises in
" Quantum Mechanics., Now, in the usual problems treated in
Quantum Mechanics, it is required to find the solutions of
the Schrodinger Wave Equation which satisfies a set of
"natural boundary conditions", for which the position of
the mass particle is unrestricted. The probability inter-
pretation of the wave function then leads to the boundary
conditiohs of finiteness at the singular points of the wave
equation. If, however, the system under consideration is en-
closed, then these conditions are replaced by the "artificial
boundary conditions™ that the wave function vanish at certain
- ordinary points of the differential equatien. In fact, for
these so-called bounded Quantum Mechanical problems, the
boundary conditions reéuire that the wave function vanish -
on some surface in finite three-space, such as a sphere or a
cone. The corresponding physical condition is that there be
an infinitely high and infinitely steep potential wall on

this surface.

L.2 The Integral Equation For The Bounded Quantum Mechanical
Problem.

Let generalized curvilinear coordinates % , x, , and x,
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in three dimensional Euclidean space be chosen so that the
surface on which the wave function / vanishes is = =C
where C 1is a constant, We assume that the surface is of
sufficiently simple nature that the Schrodinger Wave Equation
is séparable (12) in the chosen coordinates % , ¥, 5 .
The space dependent wave:n".:?:onfor a pai'*ticle of

mass H ,
(4.2.1) 'ﬁlvz‘/’ = (e-v)¥¢,
where & is Planck's constant divided by 2@ , E is the
energy constant, A is the potential energy, and v is the
Laplacian operator in thé coordinate system X, sy A2 5 G o
The substitution

Yin, 2 2) = X (3) X.(n) X, (%)

permits the separation of (4.2.1) into three ordinary differen-
tial equations for the functions X(x). The equations for
X_(x,) and ¥,(x) have the same solutions as in the unbounded
problem, ahd the latter are supposed known. The Xl (x ) equa-

tion has the form

(wz.2) F [ @) ] + [ ga)+ apen] X4)=0

where _¢ 1is the guantum number arising from the XL/%,)
equation. From Section l.4, (4.2.2) can be transformed into

(4.2.3) u'@) + [ FFa)+2]u@)=0,

. . A
which we suppose has the two singular points b

and 4

with no other singular points bvetween them. In the bounded

problem, u&) must be continuous for all X satisfying
L <ix] s Iz) <D

and must vanish at =z . Hence, the boundary conditions to
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be satisfied are
(4.2.4) ul) Finte ;  w(A%)=0 .

Following Section 1.1, we compare (4.2.3) with the

ecuation
(4.2.5) @) + [ F@)+ AJwva)=o,
where V(¥ satisfies the boundary conditions

(4.2.6) ) Fiate ; L) = o

We suppose that a solution of (4.2.5) which is analytic in
the finite plane is known ﬁo be

(4.2.7) i@ = RE@,

and that the eigenvalue A(%W is known. From Section 1.4,
the second solution of (4.2.5) and the Wronskian of the

two solutions are given by

- 2, [ 4T
(4.2.8) V@) = < Ria) [ Feel
and
(4.2.9) - Wwa) = <

Hence, from (1.1.14), (1.1.15), and (1.1.16), the integral

equation connecting the solutions of (4.2.3) and (4.2.5) is

()+-2.10) = £ _ ' £ z £ %i‘!_/_(_ -
__ UE) = < R @) +31v38) + (P, 7\}@“@)[@“@“@)![4‘{@]1:'

The convergence of the solution of (4.2.10) by successive
approximations is established by Theorem 1 of Section 1.5,
since it has been assumed that -R!&) is analytic in the
finite plane. The first of conditions (4.2.4) requires
that =0 , If we take U @) =< ﬂfé], the first approxi-

mations to the solution of (4.2.10) is
—x 2 - 2rhe 7%, (T 4T d]
(h.2.01)  w@==Rl@[1-(-2) [ [Riw] o<, [“gzep?/|

By applying the second of (4.2.4) to (4.2.11), we get far the
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first approximations to the eigenvalue ]

(') zo 3 zo J[' -
(h222) A @)= A+ y _dC__ ]

{nCﬂ) e L/ [ ,@“ é()] t’/( £ EH’S‘({')]Z
The problem is then reduced to evaluating integrals of the
type appearing on the right of (4.2.12). However, we are now

prevented from continuing the general discussion because of

our inability to obtain expressions for these integrals.

4.3  The Bounded Hydrogen Atom Problem.

The Dutch Physicists Michels, de Boer, and Bijl
(10) were interested in the behaviour of gaseous matter
under pressure, and in particular they wished to determine
the effect of pressure upon the spectral lines of Hydrogen
gas. In order that the mathematical problem be solved, it is
assumed that the effect of pressure can be replaced by an
infinitely high and infinitely steep potential wall on the
surface of a sphere of finite radius Zo . Although physical
objections to such an assumption have been pointed out, (de
Groot and ten Seldam (2),) it is nevertheless useful to solve
the quantum mechanical problem of finding the eigenfunctions
and the eigenvalues for the Hydrogen atom wave equation,
under the condition-that the atom be enclosed in a sphere
of radius 2

The ® and #@ parts of the wave equatioh
clearly have solutions which are identical with the solutions
'corresponding to the natural boundary condition lﬁ (597:'0
It remains to solve the radial part of the Hydrogen atom

wave equation
(4.3.1) u'e+ [ E- {;;—’11’7_,. 2] ue = o,
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under the artificial boundary conditions
(4e3.2) u@E) Fhite  ;  u(lz)=o,
instead of the natural boundary conditions
(4.3.3) up) Fite UEe)= o
The conditions'(h.3.3) give solutions of (4.3.1) easily
by the Frobenius method; the eigenvalues are A (v)= :ﬁg ’
for positive integers " , and the eigenfunctions are the
Laguerre Function Densities.

However, (4.3.2) require that A satisfy the
equation ulz,; 2) =0 , where «(2; ) denotes the
Laguerre Function Density (corresponding to the eigenvalue A ,)
which is related to the Confluent Hypergeometric Function
w(a,c; ¢) (cf. equation (3.5.6)). Michels et al (10) have found
approximations for the eigenvalues of the ground level, and
de Groot and ten Seldam (2) have extended their method to the
2s and the 2p levels; giving graphs and tables for the shift
in M . Soon afterward, Sommerfeld and Welker (14) applied
the formulae of Michels et al for values of Z» equal to three
and four times the Bohr radius. Also, Sommerfeld and Welker
stressed the importance of a general investigation of the be-
haviour of the Confluent Hypergeometric Function mear 2=«

Sommerfeld and Welker (14) have also discussed a
graphical method for'obtaining the eigenvalues, which gives
accurately the curve A=A(2) for small values of Z, . By
this method, the known standard solutionéli(%) —~L,) are plotted
for various positive integral w , and the first zeros
of these solutions are located. These functions are then solu-
tions of the problem for the particular values Zf7 of 2, .

A graph of 2’ against » is drawn, and by interpolation,
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the valué of n(z,) corresponding to a given value Z, is
takeﬁ from the graph. Then the ground level eigenvalue is
Al2) =-1/n(2)" . The eigenvalues for higher levels are
obtained by a similar procedure.

The preceeding gives an pistoric sketch of work done
on the problem up to the resent. We now proceed to give our
own treatment, using the method of Section 4.2. The mathema-
tical préblem amounts to solving equation (4.3.1) under the
boundary conditions (4.3.2), when we know that the solutions
of the equation
(4.3.4) '@ + [£ - ~—%§‘-} + 7\9] @ = 0,

satisfying the boundary conditions

(4.3.5) ve) Eimte . wee) =
are |
(L.3.6) 4@ = RL@ , With X (W)= =1/

Since the problem thus presented is of the same type consi-
dered in Section 4.2, the Volterra Integral Equation cor-
responding to equation (4.3.1) is (4.2.10), with first approxi-
mation (4.2.11). For the grouhd level,

£=o0, n= | Ay, =—1,

’ﬁﬂ@=-@r&h=2{i
and (4.2.11) gives
Z
(1.3.7) @<= sz [1-(340) [ e o f <Xar |

]
(3 8
N

& L2¢
with U = [ e—fg’f ,

a partial integration gives

Iz"/i‘c'”&x’ e L {[ ERS +-l)/ z‘] /(L+_+_L Jx}
)

and dV = x’—e 'lxdr ’
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or
£ . 2
o : e*, & e J‘L‘+ Ly L L dx]
I =Ll ( *2 +"'é ¢* ![z 2 4at .
Now, =
Z‘é <> n-{
e dT _ =L =" ¢™ ]
6] —& - [t t2hrtae + 2 o
Hence

n-/

-T= f;l-é[e‘“(fﬂf +;/_l)(=ZL+2L.e+zé+ Z (n ,)L_

¢ 2 ee-ze - B el e (8 to £ 0ot

z.,g,é' )
and (h.3,7) gives

(4.3.8) u:é‘)="‘c~2_[ z - g Z (V'!)L_. ]

Application of the first of the conditions (4.3.2) gives

(5:3.9) 2, @) = I +¢,4?’%' .
: v% Qn N

The second approximation to the integral equation is ob-

tained by putting (4.3.8) back into (4.2.11):

z _ _ 2 2t £ dx
we)= u@)+ Lo § Qe *[xe b b [ eite

4
&0 2 4

Again integrating by parts and letting'aév49<1” , Wwe get

-z + 3 " @2)
(4.3.10) w@ = L et [z- A’I‘Z @z) (7\+|) Z = Z (~'7L-]

“=3("-' )i r=ntl

. . . 1 ¢) L
Upon making the approximation (ﬁ+l) = (N4 1) , Where
a)

A is given by (4.3.9), and applying (4.3.2), we get for
the second approximation to the eigenvalue,

faid & @a)r
2 n )
‘l'ab Z n-2 ;+. r-1)

n=y

@ Gl
(4.3.11) A @)= A @) +

. The result (4.3.9) is in essential agreement with that ob-

tained by de Groot and ten Seldam (2), and in fact the cal-
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culated eigenvalues fit the curve of Sommerfeld and Welker
(cf. the bottom of page 46) better than the results of
de Groot and ten Seldam. The values of 2?) are within one
percent of the correct value when 2z, is at least five times
the Bohr radius.

Sums of the type appearing in (4.3.9) and (4.3.11)
are most easily handled by using a method of de.Groot and
ten Seldam, which depends upon the properties of the
exponential inﬁegral

Fe @) = l["’c'xz

which is tabulated (6).

[4g]
dx

Lol The Bounded Rigid Rotator.

For the general rotator problem in three-space,
a mass particle M 1is restricted to rotate at a constant
distance @ from the origin, and for the bounded problem,

M is not allowed to enter a cone defined by an azimu-
thal angle. In other words, there is an infinitely high and
infinitely steep potential wall on the surface of the cone;
and in solving the quantum mechanical problem, it is required
that the wave function vanish there. This rotator problem
has been considered graphically by Sommerfeld and Hartmann
(13), who used the "one-sided boundary conditions" that M
be restricted from entering only the lower nappe of the cone;
that is, they applied the boundary condition that the wave
function vanish only for 6= 8, , where 6, is an angle
near T . They obtained the eigenvalues graphically by

constucting nodal curves analogous to the curves used by
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Sommerfeld and Welker in the hydrogen atom problem, (cf.
section 4.3) and also arrived at an analytic result for the
ground level in the limiting case that . is near 17 .
They gave references to the origin of the problem leading

back to a paper by Pauling (11) in 1926.

In spherical polar coordinates ¥ , @ , and
p , the Schrodinger wave equation for the rigid rotator is
1
- A (S'IHD ~Y/4 ._L_ 9 ‘, = £ ;V
2;4@ .s'mo .ﬂno

where the fact that r has the constant value a has

been used. The usual separation of the variables is

Vige) = O6)e (m=o,21 2. -- - )
where @ (®) satisfies the equation

Jod e 40 | 2
(hobod) sin® de (SMO de ) + [7‘ —n::‘e ] Ole) =
with A = 2pua’ E _ 2T E

H* ' e
y (1.4.6), the change of variable
(holho2) ua) = gsu.{e @ ®) ; x = O
transforms (4.4.1) into
: ' L —

(hobi3) u' @)+ [—*s’:f; + A+ g]ua)=o0

The boundary conditions to be satisfied by the solutions

of (L.L4.3) are

(hobohy) uP) Finte ; ulr,) =o0,
where ’,i': < x, s T

Now, it is known that solutions of the equation

(ht5)  av) + [ a4 L] wer=o0

kY] z
satisfying the conditions
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(Lob6) . (o) Fiite ; Vvr) =0
are
(Loko7) v ) = Q;(:r) = sin®x P? (cmz)
where I’;(;} are the associated Legendre Functions, and that
the corresponding eigénvalues are ’)\o(j)= 3'(3'4-1) for 2’=q52)--~ .
Hence, reference to (4.2.10) shows us that w@) satisfies

the integral equation

Tt dx
m‘f[f ( -{)]1

in which g= 0 by the first of conditions (4.%#.4). The

(ho1.8) U(2)=ddsin'e PTo2) +(% N P (c,,,g/s.-, Tew)ut)

existence of the solution of this eguation is guaranteed

by Theorem 1 of Section l.5.

L.5 The Ground Level Of The Bounded Rigid Rotator.
For the ground level,
M=y = NGl= o, Py (emx)=
so that (4.4.8) becomes
(Le5.1) U@R) = oL Sin 1z - 7\.rm=’{'—z~ [aim{x U()’)L%;.‘:‘(l—'

The first approximation to the solution of (4.5.1) is

2z
(4.5.2) ‘4,(2')= o(Sméi' [l— A;’.n{z-[f.»;x{lgh | —Car? /e“l»Cw }&]

Sint SinX

or, upon making the subsitutions
d = -tV [ 1+ 2 -
1 (1-w?) [ j [ﬂn H—:,]Jj

- 19— +
or oL (1= [ 14 A o 1EW “’]

-4
(L.5.4) Y, (2) = Asin*z [/—{. A b, ';"——c;—?—?]
Application of the second of conditions (4.5.4) gives for the

first approximation to the ground level eigenvalue,
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where
(L.5.6) M = I+ cosE, .
The second approximation to the solution of (4.5.1)
is obtainedvby putting (4.5.4) back into the right side of
(L.5.1) :
U, B) =@ - « lzsm{ i‘l‘;"x [ﬂn (1+ ‘051)"‘2"2]12:12' da

Again making the substitution (4.5.3), we obtain

az(z.) = uz)+ A~ 9_“%?1 [&(’*ﬁ)%d[ﬂ"% b %]Jj /

or

| b w
(he5e7) thy = 4 #e(1-0%) G { f 2utia)[ 0 52 = 20 20 by - [ )22 ]}

1+w H-:j
In order to evaluate the expression

W W w
(4.5.8) I = Luf=% [ 0, (ieydy— [ La(1e9) 8n (1-9)dy + [£."(149)dy

on the right side of (4.5.7), we need the following results:

(4:5.9) [ Bliry)dy = (+410) Bal1ew) ~(it) = 282 + 2;

(4.5.10) ,ﬁw‘(‘ﬂ)c‘y = (:-«-zo)e-.‘(u—w}-2(:+w).a..(n+w]+z(.+u9-zﬁ..zz+4L.z-4,’

(42521 {0 (1) u(1=9) dy = (1410 ) Lo ( 1410) B (1-1e) 4( 10 ~28,2) Lo(229)
- (+w) An(i+ w) 4+ (1tw)
+2Z,(55%)"+ 1242-2 .

n=l

Putting these into (4.5.8) and simplifying, we obtain
(4e5.12) L= -260(14w) +w ~+ 262 -]
-2 gz (52)" 4+ 28,2 ( £ulitw) - 2u2) -

Since «w is close to -l , the summation on the right side
of (4.5.12) is close to -2 £ t@&) -1 } , where §() 1is the
Riemann Zeta-Function. Putting (4.5.12) into (4.5.7), and us-
ing the value ¥(2) = ™™ /¢ , we get

U=ty +d ((~w?) % %L [- 2 Bn(tw)+w 262 ~] - ?_(—167-1—!)]
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or

. , .
(l"‘5‘13) u"z.é') = d;S'.lﬁ z {l+ A_a.., ,—-':L;-S——g— 7. l L“ 't%“_-_?.,‘_l_,#s-_‘_%_“]}'
By applying the second of conditions (4.4.4) to equations
. . .
(4.5.13) and using the approximation [70\0]= [7&3)] , Where
)(I) ’ ’
50

mation to the eigenvalue

is given by (4.5.5), we obtain for the second approxi-

) “ O 2 - At Leys
(he5.24) A, (@) = A, &)+ 7 = E >
where M is given by (4.5.6).

Again, the third approximation to the eigenvalue is

found to be
(3 (z) (3)
(he5.15) A, @) = P, G0+ AR, (I,
where
@) 0.290 £, 2 -2.290
() o Ze:
> AAD'O(‘?) > 2 (Jm’;‘_')‘f
In the limit 20 | equation (4.5.1L) reduces to
A CS.H : - :
(4e5.16) A 0‘0-—) @) = J?.EL -"(_E___‘:n_i‘_-)s >

which is the result obtained by Sommerfeld and Hartmann (13)
by a different method. The follow-ing table gives, for small
values of m , a comparison of the eigenvalues obtained
from (4.5.16) and those from the first three approximations

(4e5.5), (4.5.14) and (4.5.15).

TABLE I
-z, | o~ | 22 |22 | A | AL
o°4g | 107% | 0.1010 |0.1095 | 0.109] | 0. 112
2234’ | 1072 |o0.4315 [0.1450 | 04443 | o0.1488
86 107 |0.1888 |0.2126 | 0.2102 | 0.2243
1227’ | 2vo0” | o217 |o2475 | 02436 | 02643
182117 | 5¥07* |oa7ll Jo.3122 | 0.3032 | 03446
25°51” | 107 |0.3338 |0.3900 | 0.3640 | 0.4449
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L.6 Higher Energy Levels Of The Bounded Rigid Rotator.
‘For the 1-1 level,
m=2-=lj 7‘02"2} P;’ (cosx) = sinx .
Putting these values into (4.4.8), and following the same
prqcedwe that was used in Section 4.5, we get for the

first and secomd approximations to the eigenvalue

(4.6.1)

()
A e)= 2- 52

P
bty
AL

. ﬂ .
7\(1)(2)~ ?\(:)' ,.,‘_;';-é-;?L f’_’,,;—«t-#,en;_"l-m“
el = A @)+ [ 2.2 —L + £ ]3
or for small values of - = , B,
(2) (,) A L +._qu_”_1_
(4,.6,2) 7\” @) = 7\"(%0) PRI ;

The rapid convergence of the successive approximations

for small values of is illustrated in the following

table: ( A ,\(:')’ = %(:'l) - 2)
TABLE 2
Moz | o | Ay | AG 4%
2°%347 | 1672 | 20029 | 20029 | 00029
g2 ¢’ | 107 | 20285 |2029] |0.029]
° 27" | axio™ | 20549 |2.0s¢5 |005¢5
1g°0" | sxio™ | 2266 21343 |0.1343
25°5/(’ o™ 2230 |2.253 |0.253
3¢°50" | 2x107 | 2.401 |=2465 |0-465
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The following graph compares the results of TABLES 1 and 2:

GRAPH OF EIGENVALUES FOR THE (0,0) and (1,1) ENERGY LEVELS

11

A?\(z)( z)

“1 0.3

i 1 | : 4
L ZO ( dcsr‘g‘) 20 15 10 5 o

The graphs illustrate that, as » o , the increments
in the eigenvalues of the bounded rotator approach those
of the free rotator for the (0,0) and (1,1) energy levels.
Further, there are vertical ard horizontal tangents res-
pectively to the (0,0) and (1,1) curves at the origin. For
higher enérgy levels,' we have calculated only. the first

approximation to the eigenvalues. The results are tabulated

below.
TABLE 3
Lewl(mp| PT (cs0) | AG 4%
(22) | sin™x 6 |-3/(e3-%%)
(33) | sin’x 12 |=T/(n % - 7 Fs)
(he) | sin" 20 [-9/(4.2- s #=)
(re sin"x Flrii) |-Covei)/(Bn 2 - srorramm ok
o) | ws= T2 La/(enz-3n +1)
02 | 2-3sux | 6 |-5/(L.2~F35)
(1,2) Sin X CoSX 6 _,5/(£" '% — ;‘L)
(23 Sin'x cosX L2 -7/(& ;:n _ :o—LE :-’l_'-")
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In TABLE 3, the extreme right hand column involves only the

highest power of ™M which appears in the exact formu-
lae for _7\2)2- . Also, for the (r,r) level, Kr  is a
)

constant which can be determined for each particular value
of r ; for example., K= 1; K=, Ky=2; Ky=6 -

The eigenvalues obtained from the formulae in the
extreme right hand column again approach those of the free
rotator as " 20 . The tangents to the curves are vertical
for the (r,0) curves, (r=o,2 - " ), and horizontal for the
other curves. The qualitétive results are in agreement with
those obtained graphically by Sommerfeld and Hartmann (13).

In conclusion, the last chapter gives a systematic
procedure for reformulating a given quéntum méchanical prob-
lem as a Volterra Integral Equation. Reference to Chapter 1
has shown that, under quite general conditions, the seguence
. of successive approximations associated with such an eguation
converges to the unigue continuous solution of the equation.
Although computational difficulty in evaluating certain defi-
nite integrals has prevénted us from obtaining general results,
we have nevertheless demonstrated the use of the method in

evaluating eigenvalues for the Hydrogen atom problem and

the bounded rigid rotator problem.
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