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ABSTRACT 

Families of three- and four-point corrector formulae are 

derived, which d i f fer from standard formulae i n that they express 

y n i n terms of more than one previously computed ordinate. It i s 

shown that the standard formulae are spec ia l cases of the more 

general formulae derived here. By theoretical argument and by 

numerical experiments i t i s shown that the standard formulae are 

often in fer ior to others which are developed i n this thes is . 

The three-point family, with i t s associated truncation error , 

i s given i n (7) and (9) of Chapter 2 on page 12. The four-point 

family i s given i n (41) on page 25. 

With the help of Rutishauser's method each family i s examined 

for s t a b i l i t y . In the four-point case a procedure i s described, 

whereby the magnitude of the coefficient i n the error term can be 

minimized subject to the restr ict ion that the formula sha l l remain 

stable e Also a theorem i s proved, which states that no stable 

four-point formula can have a truncation error of degree higher 

than f i f t h i n the step-size h„ 

I hereby cert i fy that th i s ahstract_is satisfactory. 



In p r e s e n t i n g t h i s t h e s i s i n p a r t i a l f u l f i l m e n t of 

the requirements f o r an advanced degree a t the U n i v e r s i t y 

of B r i t i s h Columbia, I agree t h a t the L i b r a r y s h a l l make 

i t f r e e l y a v a i l a b l e f o r r e f e r e n c e and study. I f u r t h e r 

agree t h a t p e r m i s s i o n f o r ext e n s i v e copying of t h i s 

t h e s i s f o r s c h o l a r l y purposes may be granted by the Head 

of my Department or by h i s r e p r e s e n t a t i v e . I t i s under­

stood that copying or p u b l i c a t i o n of t h i s t h e s i s f o r 

f i n a n c i a l g a i n s h a l l not be allowed without my w r i t t e n 

p e r m i s s i o n . 

Department of ^^A<^\^jJt^i 

The U n i v e r s i t y of B r i t i s h Columbia, 
Vancouver'^, Canada. 



i i i 

TABLE OF CONTENTS 

CHAPTER ONE. HISTORY OF NUMERICAL METHODS FOR SOLVING 

DIFFERENTIAL EQUATIONS 1 

CHAPTER WO. THREE- AND FOUR-POINT CORRECTOR FORMULAE . . . . . . . . 8 

1. A one-parameter family of three-point formulae 8 

2s Table of numerical results obtained by various 

three-point formulae 14 

3« A two-parameter family of four-point formulae.. . 15 

4» Theorem: No stable four-point corrector formula 

can have a truncation error of degree higher 

than f i f t h i n h 19 

5o Rules for minimizing the truncation error of four-

point formulae while preserving the s t a b i l i t y . . . . 24 

6. Graph indicating the results to be expected from 

various choices of parameter pairs 27 

7. Table of numerical results obtained by various 

four-point formulae. 29 

BIBLIOGRAPHY 32 



ACKNOWLEDGEMENTS 

The author wishes to acknowledge his indebtedness to 

Dr. T, E. Hull for encouragement and advice received throughout 

the investigation which forms the topic of this thesis. 

Thanks are also due to the Computing Centre of the 

University of British Columbia for the many hours of machine 

time, without which the practical verification of results would 

necessarily have been far more limited i n scope. 



- 1 -

CHAPTER ONE. History of Numerical Methods for Solving Dif ferent ia l 

Equations 

The earl iest numerical methods for solving ordinary d i f f erent ia l 

equations date back almost as far as the calculus i t s e l f . The f ie lds 

of astronomy and physics were among the f i r s t i n which the calculus 

found pract ica l application, and both these f ie lds gave r ise to 

ordinary d i f ferent ia l equations for which no analytic solutions could 

be found. Examples of such d i f ferent ia l equations are those aris ing 

from the computation of eccentric anomalies of planetary orbits , and 

those encountered in connection with simple and compound pendulums. 

The la t ter problems gained particular importance i n Newton's time, 

since maritime explorers and traders required accurate chronometers 

for astronavigation. 

The simplest and crudest method for solving f irs t -order i n i t i a l -

value problems i s Euler ' s . Using the standard notation as used, for 

example, i n [1], the problem i s th i s : 

Given a d i f ferent ia l equation, y» = f(x,y) and an i n i t i a l point 

( X Q , V Q ) , calculate y^r i . e . f ind the value of y when x = nh, 

where h i s a small quantity. 

Euler 's solution i s y^ = Jq +hf(xQ,yQ) 

where the bars denote approximations. Now suppose the d i f f erent ia l 

etc 
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equation possessed an analytic solution, y = F ( x ) , then i t would be 

possible to express y^ i n the form of a Taylor expansion thus: 

7 L = F C X Q • h) - F C X Q ) + h F ' ^ ) + i i - F"(z) 

2 ' 

where x^ ̂  z 4 x^, and since F ' ( X Q ) i s the derivative of the function 

at (xQ,y 0), we may write 

y ± - y 0 + hf(x 0,y 0) . + | ! F " ( z ) . 

The value of y^ obtained by Euler's method i s what one would 

obtain by truncating the Taylor series after the second term. It would 

be exact i f F(x) were linear, because the second and higher derivatives 

would then be zero. The error, therefore, of Euler's predictor formula 

i s 0(h )• Since h i s taken to be a small quantity, attempts were made 

to produce formulae with truncation errors of higher degree i n h, and i t 

was found that various existing numerical quadrature formulae could 

easily be adapted for the purpose. For example the trapezoidal quadr-

ture formula, 

^ f(x)dx - F C ^ ) - F ^ ) - f ^ ) + tixJJ , 

X 0 

where f(x) i s the derivative of F(x), became the trapezoidal corrector 

formula, 
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Thus, nothing more than a simple change of notation was necessary 

i n order to convert this quadrature formula into a formula for solving 

d i f f e r e n t i a l equations numerically. The above formula could be used 

it e r a t i v e l y to correct the values predicted by Euler's formula. This 

i s discussed i n [1, p«26J. The truncation error for this formula i s 

O(h^). In order to obtain corrector formulae with truncation errors 

of higher degree than third, some of the more elaborate Newton-Cotes 

quadrature formulae were adapted. The best known case i s that of 

Simpson's rule, v i z . 

The truncation error i s now OCtr), but this improvement was bought 

at a high price, because, before attempting to satisfy the above equation 

by iteration, i t i s necessary to know y^ and y» . Without this inform­

ation Simpson's rule cannot be used. Moreover, as w i l l be explained 

later, this formula i s conditionally unstable. 

After this stage was reached i n the middle of the eighteenth 

century, no further progress was made u n t i l 1883 when the Adams method 

was published. Adams* formulae are of interest h i s t o r i c a l l y for two 

reasons: f i r s t l y they are the earliest of the more elaborate formulae 

devised specifically for the solution of dif f e r e n t i a l equationsj earl i e r 

After changing the notation i t reads: 

y2 "* 70 = 5 ^y0 + 4 y l + y P " 



mathematicians had been content to adapt quadrature formulae for the 

purpose. The second point of interest about the Adams formulae i s that 

they are stable. In Adams' day i t i s doubtful whether even the concept 

of s t a b i l i t y of formulae existed; yet i n 1952 when Rutishauser published 

the f i r s t comprehensive theory on the subject, he showed that the Adams 

formulae were not only stable but they possessed optimum s t a b i l i t y 

properties. Although Adams clearly recognized the fact that a good 

quadrature formula does not necessarily make a good corrector formula, 

he did not completely sever the long-established bond between the two 

types of formula© His corrector formulae can easily be transformed 

into quadrature formulae by applying i n reverse the notational changes 

mentioned above. However, the quadrature formulae so derived might 

have l i t t l e application, since they would involve evaluation of the 

integrand at points outside the range of integration. 

It was not u n t i l 1895 that a complete break with quadrature 

formulae was made. In that year Runge published his celebrated method 

[4], and since then numerous variants on his method have also been 

published. The relative merits of the so-called Runge-Kutta procedures 

and the predictor-corrector methods have been widely discussed 

e.g. [2, pp„ 247,248]o With the advent of d i g i t a l computers the former 

methods have gained i n popularity at the expense of the l a t t e r . Never­

theless this thesis i s devoted to a study of predictor-corrector methods 

and to an investigation of means by which they may be made more 

competitive. The view taken i s t h i s : A highly accurate procedure must 

inevitably be complicated; complexity increases more rapidly with 

accuracy i n the case of Runge-Kutta methods than i n the case of 



predictor-corrector methods; the former class of methods w i l l reach 

'saturation point' before the latte r ; therefore the la t t e r should not be 

neglected i n favour of the former. 

The concept of s t a b i l i t y i s of fundamental importance to the study 

of numerical methods for solving d i f f e r e n t i a l equations. It may be 

defined verbally thus: A formula i s stable i f i t i s insensitive to small 

errors i n the data to which i t i s applied. Since frequent reference w i l l 

be made to Rutishauser's paper on the subject [3], the relevant parts of 

his argument are reproduced here for convenience, 

Rutishauser's s t a b i l i t y analysis. Let the dif f e r e n t i a l equation be 

y' = f(x,y), and l e t y,y' be approximations to the true values of y,y', 

so that y = y + s and y 1 = y' + s 1 . 

Now y' = f(x,y) = f(x,y + s) - f(x,y) + sf y(x,y) = y' + sf y ( x , y ) . 

(1) Hence s ' ~ sf (x,y) . 

If Simpson's rule i s used, then 

y k + l - y k - l + f C y k + 1 + 4 y k + yk-l ]> ° r 

y
k + i + s k + i = y k - i + s k - i + 1 C y

k + i + S U + 4 ( y i + s i ) +  

y i - i + s i - i ] • 

This yields the difference equation for s: 

s, _ [1 - § f 1 - 4£f , 8. - [1 + § f . _ ] s. . - 0. k+1 3 y,k+l 3 y,k k 3 y,k-l k-1 

If we make the simplifying assumption that f i s constant, vre obtain 
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the result s^ = p , where p i s the root of a quadratic equation whose 

roots are 

,22 kf 
P l - 1 + h f y + | - f y + ... - e 1 

It may be seen that p^ approximates to a solution of (1), for by 

writing kh = x and s^ = p^ we have 

£ s e °3 = e °i , therefore sk " P l 

s,' ~ f e X ^ l = f s, . k y y k 

The other root, p i s parasitic, and when f i s negative the 

magnitude of i s greater than one; hence i n this case i t causes an 

exponentially increasing osci l l a t i o n . Moreover this situation cannot 

be remedied by reducing the size of h« 

Next the Adams four-point corrector i s examined, 

y k + l - y k * feC9yk>l + 1 9 y k " H-l + yk-2 ] + 0 ( h 5 ) ' 

Proceeding as before, the difference equation for s i s obtained: 

^ ' f f y , k + l ] s k + l + I ? * , k ] sk + t f y , k - l s k - l " 

24 f7,k-2 sk-2 = °* 

On writing s^ = pk a s before, and taking f as constant, we 

obtain a cubic equation i n p with two parasitic roots. This case 



differs from the three-point case just discussed, i n that the parasitic 

roots tend to zero with h. When h = 0 the cubic equation i n p reduces 

to p^ - p^ = o, and therefore the parasitic roots vanish with h. Hence 

Rutishauser concludes that the Adams method i s stable for sufficiently 

small h. 

In the following chapter a study of three- and four-point corrector 

formulae i s made. In each case a new family of formulae has been 

developed, and experimental results are given to aid assessment of the 

relative merits of the new formulae and the established ones. The 

restriction to corrector formulae i s justi f i e d by the fact that i n 

practice i t i s these formulae rather than the predictors which determine 

the value of a method. In the theoretical part, attention i s focussed 

upon single first-order i n i t i a l value problems. In practice the extension 

to simultaneous and higher-order differential equations i s quite simple, 

though the s t a b i l i t y analysis i s harder. No assumptions concerning 

linearity of the equations are made, but i t i s assumed that the solution 

function has continuous derivatives of fourth and f i f t h order i n the 

three- and four-point cases respectively. 
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CHAPTER TWO. Three- and Four-Point Corrector Formulae 

A study of predictor-corrector procedures for solving ordinary 

dif f e r e n t i a l equations reveals the fact that a l l the formulae i n common 

use give an expression for the value of a new ordinate i n terms of one 

previously computed ordinate and a linear combination of previously 

computed derivatives. A collection of such formulae may be found i n 

[1, pp. 48,49]« This fact suggests the following questions: 

( i ) Is i t possible to derive a generalized n-point corrector formula 

of which a l l known n-point corrector formulae are special cases, and i f 

so what would be the procedure for derivation? 

( i i ) Given such a generalized formula could we carry out a s t a b i l i t y -

and error analysis on i t i n such a way that this analysis would also 

apply to the special cases and enable us to assess their various merits? 

( i i i ) Why i s i t that the established formulae only make use of one 

known ordinate? Would It not be possible, by using a l l the available 

ordinates, to produce formulae which are superior to those i n common 

use? 

The above questions w i l l be investigated for the cases n = 3 and 

n = 4 . Attention i s concentrated on corrector formulae only, because i t 

i s upon the corrector formula that the st a b i l i t y and accuracy of a given 

procedure depend. 

We w i l l start with the derivation of a generalized three-point 

corrector formula. Let the equation to be solved be y' = f(x,y), and 
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let. i t s solution- be y = :F(x). The f i r s t two rows, 

*6 yo y6 
* i ?! y{, 

are given. The entries for the third row have been estimated by means 

of a predictor formula i n conjunction with the given d i f f e r e n t i a l 

equation. Denote these values by y 2 , f'2 . The generalized three-

point corrector formula i s required to give a corrected value for y^ 

(denoted by y 2 c ) ± n terms of y Q, y^, y£ and y£ . 

Since the f i n a l formula may involve three ordinates, i t i s no longer 

adequate to adapt a quadrature formula. Instead we shall use a method of 

undetermined coefficients, and the formulae so derived w i l l include as 

special cases the results obtained by standard procedures. Let the 

required formula be of the form 

( 1 ) y2c = a0 y0 + a l y l + h C V 6 + V i + V P ' 

where the a's and b's are coefficients to be determined i n such a way 

that when y^, y^ are substituted for y^ a n d 7^, "*"n ^ e resulting 

formula shall have the highest order of accuracy that i s consistent 

with s t a b i l i t y . The 'order' of accuracy i s defined i n the usual way 

thus: If (1) i s exact when y = F(x) i s any polynomial of degree ^ n, 

but not when F(x) i s some polynomial of degree n+1, then the accuracy 

of (1) i s of n t h order. 

In order to determine the a's and b's we express (l) i n terms of 

the shift operator E and the dif f e r e n t i a l operator D, so that 
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E F ( X Q ) - F(x Q + h) - FCx^ = y1 etc. (See [2], Chap, V). We obtain 

(2) E2y 0 = Ca Q + a ]_E + hD(bQ + b^E + b ^ 2 ) ] y Q . 

Now E => e ^ [2, p.134]. Write hD = u, E = e u, and substitute into (2). 

On cancelling the and proceeding formally, we obtain 

(3) e 2 1 1 = a Q + a 1 e u + u(b Q + b^ + b^) . 

Now expand each side of (3) as a power series i n u, and equate corres­

ponding powers of u. We obtain an i n f i n i t e set of simultaneous linear 

equations i n the a's and b's. 

+ a 1 a 1 

*1 + b
0
 + b l + b2 = 2 

2 2 

(4) 21 - + b l + 2 b2 = 21 

b l 2 2 b 2 2 3 

31 21 21 31 
+ — + 

a. _1 + V £ ^ 2 - ^ 
41 31 31 = 41 

etc. 

Since we only have five degrees of freedom, the five coefficients a^, a^, 

b0* b l * b2* W e c a n n o t bope to satisfy more than five equations of (4). The 

n t n equation of (4) i s derived by equating coefficients of u n ~ l i n (3)» If 

this equation i s not satisfied, therefore, we shall have an error term 
involving un**^ i . e . hn~-*,Dn""̂  . In general we want the error term to have 
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a high degree i n h, so i f we decide to satisfy p of the equations (4) 

we shall always choose the f i r s t p of the equations. It w i l l be shown 

that i f the coefficients are chosen so as to satisfy the f i r s t five 

equations of (4), then the corrector formula so derived turns out to be 

Simpson's rule. However Rutishauser [3] points out that Simpson's rule 

i s unstable under certain conditions, and therefore i t may be asked 

whether i t i s possible, by sacrificing the f i f t h equation, to derive a 

stable corrector formula from the f i r s t four equations of (4). Since 

we now have only four constraints, but s t i l l have five degrees of 

freedom, an i n f i n i t e number of solutions i s possible, and these can be 

expressed parametrically. 

Using the second, third and fourth of the equations (4), we can obtain 

a l l the b's i n terms of a^ . The f i r s t equation of (4) then determines 

a.Q i n terms of a^ . Hence a^ may be regarded as a parameter which, once 

a value i s assigned to i t , determines the values of a , b , b and b . 
0* 0* 1 2 

The solutions of these equations are 

% = 1 - ^ , 

b0 = 1 2 ^ ~ 5 a l ) » 

b l = 12 ( 2 * a l ) » 

b 2 = i ( 4 + a i } • 

On substituting these values into ( l ) we obtain 

(6) y 2 = (1 - a 1 ) y Q + + ^ 7 ^ ( 4 - 5^) + 8y^(2 - s^) + y^U+a^], 

(5) 
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or 

(7) 72 - ( l - a 1 ) y 0 + + i L r ^ + l 6 y.. + ^ . a1(5y(J+8y|-yp] . 

Equation (7) represents, i n terms of a single parameter a ^ a l l 

possible three-point corrector formulae with truncation error of fourth 

or higher degree i n h. In particular, when a^ = 0, (7) reduces to 

Simpson's rule, and when a^ = 1 we have Adams' three-point formula. For 

other values of a^ we have a family of new formulae whose properties are 

to be investigated. Before preceding to an empirical investigation of 

these properties, two questions must be raised. F i r s t : What i s the 

truncation error associated with (7) i n terms of a^? Second: For 

what range of values of a^ i s formula (7) stable? 

Truncation Error, In deriving formula (7) we ensured that the f i r s t 

four equations of (4) were satisfied identically. We must therefore 

examine the f i f t h equation i n order to obtain the truncation error. 

Let the truncation error be R, and add R to the R.H.S, of (7). The 

f i f t h equation of (4), when written out i n f u l l becomes 

(S) ajtA b ^ 2%^ 2V+ 

4 
•'• R a | j [ 2 4 - ^ - 4bx - 4«2 3b 2] . 

On substituting for b^, b^ from (5) we obtain 

(9) R = - M 4 -a jh^DMz) 
4J = 41 

I f we choose a^ = 0, then the fourth order error i s zero. This 

4J 41 v*6™ x

0< z ^ x

2 * 
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i s to be expected, since (7) has now become Simpson's rule, and the 

truncation error for this formula i s known to be of f i f t h degree i n h. 

St a b i l i t y . Rutishauser's criterion for s t a b i l i t y , when applied to (7) 

requires that the parasitic root of the equation p 2 - a^p - (1 - a^) =0 

should be less than one i n absolute value. The parasitic root i s 1 - a^. 

We therefore require 

(10) 0 < a 1< 2. 

When a^ = 1, as i s the case with Adams' method, the parasitic root i s 

zero, thus we have optimum s t a b i l i t y conditions. From (9) and (10) i t 

w i l l be seen that by taking a^ such that 0 < a^<£ 1, i t i s possible to 

produce stable formulae with less truncation error than that associated 

with Adams' method. 

Several tests were carried out i n order to establish the properties 

of various members of the three-point family. As might be expected, the 

results confirm that Simpson's rule, when i t i s stable, i s the best 

formula of the family. However, when Simpson's rule i s not stable, i t 

may be far inferior to the other formulae. This i s well exemplified by 

the equation y' « -2xy2, y ( l ) = | , whose solution i s y = - ~ - . 
* x +2 

This equation was solved on the Alwac III-E computer at the University 

of British Columbia by each of the six three-point formulae corresponding 

to six equally spaced values of between 0 and 1 inclusive. At 

regularly spaced points on the abscissa the errors were computed and 

output. A step-size h = ~ was taken] 31 binary digits after the point 
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were carried, and X Q was taken at 1^ . From the results shown i n Table 1 

the i n s t a b i l i t y of Simpson's rule i s at once apparent. The errors arising 

from computation by this method were i n fact alternating i n sign, but this 

does not show i n the table, because the spacing of the outputs shown i s an 

even multiple of the step-size. 

x a. 10 9E 

3.8125 

15.4375 

27.0625 

3^.6875 

50.3125 

1. 7 
.8 -12 
.6 -20 

. 4 -24 

.2 - 2 4 
0 . -66 

1. -13 
+S - 7 
.6 -7 

. 4 -5 

.2 -3 
0 . -238 

1. - 4 
. 8 - 4 
.6 - 2 

. 4 - 4 

.2 - 3 
0 . -500 

1. -1 
.8 0 
.6 0 

. 4 0 

.2 -3 
0 . -815 

1.. 6 
. 8 6 
.6 5 
. 4 5 
.2 5 

0 . -1131 

Table 1 showing the errors corresponding to each of six values of a^, 

at five equally spaced points on the abscissa. The equation i s y' = -2X3T2. 



The results shown i n Table 1 strongly suggest that most values of the 

parameter a-̂  y i e l d better results than those obtained by Simpson's 

rule (a^ = 0). The question now arises: Which value of a^ should be 

chosen i n a particular case? Both theoretical investigations and some 

preliminary experimental results suggest that values of a^ close to 

zero are best, i . e . one should choose the smallest value of a^ which 

yields a stable formula. A joint paper by T. E. Hull and the author i s 

planned, i n which this subject i s treated i n more d e t a i l . 

The four-point case. The procedure adopted for finding the general 

expression (7) for a l l possible three-point corrector formulae, i n 

terms of a single parameter a^, may be extended to the four-point case. 

However, for reasons to be explained, i t i s now desirable to use two 

parameters. 

Let the four-point corrector be of the form 

(11) y 3 c - • a l 7 l + a ^ • h C b ^ t a ^ * V ' ^ y j ] . 

On rewriting (11) i n terms of the operators E and D we obtain 

(12) E2y 0 a (aD+a1E+a2E 2)y 0 + hDCbg+b^+b^+b^lr . 

Now write hD = u, E=e h D = e u i n (12), and drop the y^ . We. obtain 

(13) e3u = a Q + a-Leu + a ^ 2 * + uCbg+bjeU+bge^+b^e^] . 

After expressing each side of (13) as an i n f i n i t e power series i n u, 

and equating the coefficients of successive powers of u on the L.H.S. and 

R.H.S., we again have an i n f i n i t e set of simultaneous equations i n the 
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a's and b's: 

(14) 

a 0 + a l + a 2 

a + 2 a + b + b + b + b 
1 2 0 1 2 3 

a l 2 a 2 
2i + TT + \ + 2b 2 + 3b 3 

1 

3 

f 
21 

h 2\ 3 3b 3 

31 31 + 21 + 21 + 2 i 

etc. 

3i 

The Nth row, for N> 3 i s 

\ 2^\ b x 2 ^ % 3 N- 2b 3 3 N - 1 

(N-l ) i + (N-l ) i + (M-2)i + (N-2)J + (N-2)i " (N-l)J 

The f i r s t five equations of (14) enable us to express a-̂  and the b's i n 

terms of two parameters a^ and a.^ thus: 

(15) 

a l = ! l - a 0 - a 2 ' 

b 0 = S ^ 9 a 0 + a 2^ > - rj^B + 19*0 - 13a2] , 

b 2 " " 5 a 0 " 1 3 a 2 ] • b 3 = 2 4 C 8 + a 0 + a 2 ] * 

When a^ and the b's are so chosen, the f i r s t five of equations (14) are 

identically satisfied, regardless of how a^ and a^ are chosen. The 

•question may now be raised: Is i t possible to choose a^, a^ i n such a 

way that 

(a) The f i r s t six equations of (14) are satisfied, and 

(b) The resulting corrector formula i s stable? 
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The sixth equation of (14) i s 

5 (16) a. 2 5 a b 2^b 3 4b 3 
— + £ + — + + 2. - — 
51 51 4i 4i 4i 5 1 

On simplifying and writing a^ and the b's i n terms of a.Q, a 2 with the 

help of (15)> this reduces to 

(17) 19a Q + l l a 2 + 8 = 0 

To test for s t a b i l i t y we have to determine the upper and lower bounds 

of the parasitic roots of the equation 

(18) p3 - a 2 p 2 - a xp - - 0 . 

If we divide (18) by p - 1 , the remainder i s l-a^-a^a^, which by (15) i s 

zero. On removing the factor (p-l), from.- (I8)rwe~are l e f t with a quadratic 

equation whose roots are the parasitic roots of (18). This quadratic i s 

(19) p 2 + ( 1 - a 2)p + a Q = 0 . 

Eliminating a 2 between (17) and ( 1 9 ) we have 

( 2 0 ) p 2 + ^ ( 1 + ao)p + aQ = 0 , 

( 2 1 ) .\ p = ^ [ ^ 1 9 ( 1 + 3 Q ) + / L 9 2 ( l + a Q ) 2 - 4 X l l 2 a Q 

The expression under the root sign i s positive, therefore we have real 

roots. Denote these by p^, p 2 . 

From ( 2 0 ) p + p 2 = ^ ( l + â ,) and p ^ = a Q , 

.'. p 2 + p 2 = 32?(l + a^) 2 - 2 a Q . 
1 2 21 u u 
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2 2 
The equation Whose roots are p^, p^ i s 

+ aj = 0. 

The equation whose roots are pj - 1, p 2 - 1 i s 

(22) 

(x + 1) - (x + 1) 

i . e . x + x 

- 2 

^ 2 C1
 + a f / " 2 a C 

2 + 2 a

0 - ^ ^ 1 + a o ) ] + 1 + a o + 2a r t -

19^ ? 
^ 5 ( l + a 0 ) 2 = 0. 

Now Rutishauser showed that a sufficient condition for s t a b i l i t y was 

p^, p 2 < 1, and a necessary condition was p^, p^ ^ 1. He also showed 

that i n some cases the condition p^, p^ < 1 was necessary as well as 

sufficient. Since we do not know the nature of the equations on which 

our formulae may be used, we shall regard the condition p^, < 1 as 

being necessary and sufficient for s t a b i l i t y . It i s therefore necessary 

that p 2 - 1 and p 2 - 1 shall both be negative, hence the constant term 

of (22) must be positive. Now this constant term i s ( l - s u ) 2 ( l - ^^)» 

11 

Clearly this expression cannot be positive, therefore our question i s 

answered: It i s not possible to derive a stable four-point corrector 

formula satisfying the f i r s t six of equations ( 1 4 ) . Now the sixth 

equation of (14) was obtained by equating the coefficients of u 5 i n (13) . 

Since we have shown that this equation cannot be satisfied by a stable 

formula, and since u = hD, i t follows that a stable four-point formula 

must have a truncation error of degree five or less i n h. This result 
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may be expressed as a 

THEOREM. A stable four-point corrector formula cannot have a truncation 

error of degree higher than f i f t h i n h. 

It can now be seen why we chose to satisfy only five equations of (14) 

and to use two parameters, for i f we had satisfied six equations and used 

only one parameter, then this single parameter could only have generated 

unstable formulae. 

Next we wish to determine whether i t i s possible to derive a stable four-

point formula with less truncation error than the Adams four-point formula, 

(in view of the above theorem we cannot hope to obtain a truncation error 

of higher degree i n h, but we may be able to reduce the numerical 

coefficient of h ). For this purpose we require an expression for the 

error term i n terms of aQ, a^. Let the error term R be added to the L.H.S. 

of (16), and rewrite the whole equation i n terms of a^, a 2, using (15)• 

Then 

(23) R - .19a0 + 13*2 + 8 u5 

In order to investigate s t a b i l i t y we must return to (19) and consider 

separately the cases of real and complex roots. It w i l l be helpful to 

plot a graph on which each point represents a parameter-pair. We shall 

then be able to determine which areas on the graph contain points which 

generate stable formulae. The graph i s given on page 27. 

Case I. p 1 and p 2 are real. From (19) the condition for real roots i s 

(24) (1 - a 2 ) 2 > 4 a Q .. 
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2 2 
The equation whose roots are p£ - 1, p 2 - 1 i s 

x 2 + x [2 + 2a Q - (1 - a 2 ) 2 ] + ( l + a Q ) 2 - ( l - a p 2 = 0. 

For s t a b i l i t y we require both roots of this equation to be negative, and 

for this i t i s necessary and sufficient that 

(25) (1 + a Q ) 2 > (1 - a 2 ) 2 and 

(26) 2(1 + a Q) > (1 - a 2 ) 2 . 

Any parameter-pair satisfying the inequalities (24) to (26) w i l l generate 

a stable formula. For the purpose of graph-plotting i t i s convenient to 

make the transformation: 

(27) x = l + aQ, y = l - a 2 . 

The above three inequalities then become 

(28) y 2 > 4 ( x - l ) , 

(29) x 2 > y 2 , 

(30) 2x > y 2 . 

By substituting equality for inequality signs we can find the boundary of 

the area which contains points satisfying the three inequalities. From 

the graph i t i s seen that the required area i s enclosed by the l i n e -

pair (29) and the parabola (28). 
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Case II . and p 2 are complex conjugate. For s t a b i l i t y we require 

that the modulus shall be less than one. From (19) this condition reduces 

to 0 < aQ < 1, or after the transformation (27), 

(31) 1 < x < 2. 

From the graph i t i s seen that the required area i s enclosed by the 

line x = 2 and the parabola (28). 

By applying the transformation (27) to equation (23) we can find the locus 

of points which generate formulae with zero f i f t h degree error, thus 

19aQ + + ® = ®> or> ^Ster transformation, 

(32) 19x - l l y = 0 . 

Since i t i s seen that this line does not pass through any area which 

contains, stable points, we have a graphical verification of the theorem. 

We can also plot the locus of points which generate formulae with the same 

error term as the Adams four-point formula. Adams chose a 2 = 1, = 0, 

therefore from (23) the error term for his formula i s ~g2. . The 

equation of this locus w i l l be 

19aQ + l l a 2 + 8 = 19, or, after transformation, 

(33) 19x - l l y - 19 - 0 . 

Adams' choice of parameters i s represented on the graph by the point 

A(l,0). It can be seen from (19) that this choice makes both parasitic 

roots zero, therefore his formula has optimum st a b i l i t y properties. 
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One more question relating to four-point corrector formulae may be 

raised: Given that the modulus of the larger parasitic root equals 

c, where 0 < c < 1 , what i s the smallest possible error term subject 

to this restriction? 

Applying transformation (27) to (19) and ( 2 3 ) , we have 

(34) p 2
+ y p + x - l = 0 , p ^ j / y 2 - ^ - ! ) _ 

(35) R = - 1 9 x
6 T ^ u5 . 

Consider the case of complex roots f i r s t . The modulus of the roots i s 

•fx. - 1, .*. x - 1 = (cp . This gives a straight line parallel to the 

y axis, and the condition for complex roots requires that we consider 

only that segment of the straight line which l i e s within the concave 

portion of the parabola (28). The question now reduces to the following: 

What point on the line segment l i e s closest to the line (32)? It can be 

seen from the graph that the required point would have to be indefinitely 

close to the point where the line segment intersects the parabola (28) 

and where y i s non-negative. Having thus located the point,., at least for 

practical purposes, the minimum error can be determined from (35). 

Now consider the case of real roots. From (34) we have 

max J ijTy + i / y 2 - 4(x - l ) 

(3.6) ly| + / y 2 - 4(x - 1) = 2c . 

= c, or equivalently 
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On rationalizing (36)'we obtain 

y 2 - 4(x - 1) » 4 c 2 - 4c|yJ + y 2 , 

( 3 7 ) /. y - ± 

Equation ( 3 6 ) imposes the restriction y 4 2 c , so ( 3 7 ) , subject to the 

restriction ( 3 6 ) , represents a pair of line segments intersecting at 
2 1 ( l - c , 0 ) and with gradients + — . In order to minimize the error c 

corresponding to the given c, we have to determine the point on the line 

segments which i s closest to the line ( 3 2 ) . In order to determine this 

point we need to know what are the extremities of the line segments. 

Firs t take the negative sign i n ( 3 7 ) , .'. -(x - 1) = c 2 + yc . 

Substituting for -(x - l ) i n ( 3 6 ) we obtain 

+ 4 c 2 + 4 y c = 2 c . 

On rationalizing, this reduces to 

y 2 + 4 c 2 + 4 y c = 4 c 2 - 4 c|yl + y 2 , 

i . e . y = -|y| , so y must be non-positive, and one extremity of this line 

segment must be the point ( l - c , 0 ) . Since the vectorial angle of this 

line i s negative acute, i t can be seen graphically that the line i s 

directed away from ( 3 2 ) . It therefore contains no points closer to (32) 

than the point ( l - c , 0 ) . 

We have shown that the negative sign i n ( 3 7 ) i s associated with non-

positive y-values. In the same way i t can be shown that the positive 
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sign i n (37) i s associated with non-negative y-values. In this case 

the vectorial angle i s positive acute and the gradient i s — -.' The 
c 

gradient of (32) i s i£ # ^ e m u s t now distinguish between the two cases 

In case (a), i f we start from the point ( l - c , 0) and proceed along 

the line segment, then we are moving away from the line (32)j therefore 

i n this case the point on the line segment closest to (32) i s the point 

(1 - c 2, 0). 

In case (b), as we move along the line segment we are approaching the 

line (32), therefore i n this case we should proceed as far as 

restriction (36) permits. The largest permissible y-value from (36) 

i s y = 2c, and for this i t i s necessary that y 2 - 4(x - 1) = 0 . 

Hence the coordinates of the point on the line segment nearest to (32) 

are given by 

(38) y - 2c, x = c 2 + 1 . 

It i s now possible with the help of (35) to determine the minimum error 

coefficient i n terms of c where 1 > c ̂  0 thus: 

(39) R = - (1 - c 2 ) u 5 , c ^ g (Case a ) 

R = - £JT C 19(c 2 + 1) - 22c ]u 5 , c « | i (Case b ). 

The values of ag and a 2 which give minimum error for a given c are: 

(40) f Case (a), c ^ i i , a Q = - c 2 , a 2 = 1 , 

11 2 Case (b), c j§ , a.Q = c- , a 2 = 1 - 2c . 
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If c = ^ , then aQ and. a 2 may be determined by either of the 

equations (40)> since for this value of c the two expressions for R 

i n (39) are equal* 

The f i n a l form of the four-point corrector formula i n terms of two 

parameters i s : 

(41) y 3 c = a 0 ( y 0 - y i ) + y± + a 2 ( y 2 - y ^ + 

2^ C8y{ + 32y 2 + 8y£ + agC^+lfrj-Sy^+yj) + a2(y0-13y.'-13y2^y3
,):i-

£J- [19a Q + l l a 2 + 8] h 5 F ( V ) ( Z ) . 



The quadrilateral OBCD contains a l l the points from which one may derive stable corrector 

formulae with less error than the Adams formula. 

(28) Parabola. Points on the convex side generate real values of parasit ic roots. 

(29) l ine pa i r . Points must be on the arrowed side i n order that the formula shal l be stable, 

(30) Parabola. For s tab i l i ty i t i s necessary that points be chosen on the concave side. 

However this condition i s dominated by ( 2 9 ) . 

(31) Straight l ine . For s tab i l i ty i t i s necessary that points be chosen to the left of this 

l i n e . This condition together with (29) forms a necessary and sufficient condition for 

s t a b i l i t y , provided h i s suff ic iently small. 

(32) Locus of points giving zero f i f t h degree error. 

(33) Locus of points giving the same error as the Adams formula. 



i i 1 1 - -r -1 - — 

_ i 
... 

- 4 
I 

-
--- — - ... 

i 
... 

- 4 
I 

-
---

- -- .... ... ... - -
- --... ... - — 1 - -- .... ... ... - -

•i - - --... ... - — 1 

- - - • - - - • - D 
X 

-
V 

-

-

-
V 

-

--
-

-
V 

-
j 

t 
--

-

-
V 

-
\ t 

o Y 
1 1 

--
-

-
V 

t 
- - 7 o Y 

-

- -

i 1/ 
/ / 

/ 
\ 

—rf- i / J ! 

/ > / j 

^ - V -^ - 1 V - >> 

1 i -h -

- - --L - ) - - w i --L t - ) 
i 

1 / -1/ - I 
•Jt— I 

-
... 

-
-

% 

— ... -

% I Ay -
-- — ... - - -

-
-

( 
-- — ... - n y - -

-

• -

V, . i -i 5 — X i 
I 
! 

] \ \ -• -• ; 
1 

•-• 
I 

1 •-• 
- i 

— 
-

— 
- -- I 

! 

- -- -
- - 1 - -

..... ... ... - - \ - - 1 ..... ... ... - - \ - -

i 
- — 

-
— 

-

-
— -— 

• -
- - — -

— -

- -

— 

• - - j-
i 

{ -
-

-
- 4. 

- — -
- -f-- i -

— 

• - - j-
i 

{ -
-

-
- 4. - -f-i j i ^ i i 

-
-

-
i I 



- 28 -

To i l l u s t r a t e the properties of the various members of the family of 

four-point corrector formulae, three second-order equations were chosen 

with respective solutions 

(a) y = sin x 

(b) y = sin | 

(c) y = sin 2x . 

In a l l three cases the modulus of the maximum truncation error i s bounded. 

In (a) the upper bound of the f i f t h derivative i s one, i n case (b) i t i s 

2"^ and i n case (c) 2^. It may therefore be expected that the truncation 

error i s greatest i n case (c) and least i n case (b). 

The examples were computed on the Alwac III-E d i g i t a l computer at the 

University of British Columbia. A step-size h = ̂  was used i n each 

computation. In each case the values of a^ and were automatically 

computed from the given c by use of formulae ( 4 0 ) . An extract of the 

results i s given i n Table 2, followed by an explanation of the table 

and some conclusions suggested by these results. 
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( r a d i a n s ^ c lO^E 
y" = -y y" - - J y» = -4y 

y = sin x y = sin | y = sin 2x 

0, -44 419 5636 
•25 -24 463 2725 

5 .5 -13 486 1607 
.75 -8 502 1204 

s 1. -1947 

0. 332 -557 -6335 
.25 164 -657 -2842 

10 .5 86 -70S -1597 
.75 60 -738 -1174 

s 1. -8481 
f 0. 421 361 -1074 

.25 214 535 -1056 
15 .5 113 617 -809 15 

.75 80 659 -660 
1. -11628 

s 0. -349 86 15114 
.2$ -169 -148 8065 

20 .5 -85 -252 5011 
.75 -58 -298 3830 

1. -13507 
y 

0 . -951 -557 -29928 
«25 -478 -327 -15152 

25 .5- -250 -230 -9166 
.75 -172 -193 -6932 

1. -9981 
S 0. -123 792 37599 

.25 -72 667 18419 
30 .5 -44 618 10937 

.75 -32 606 • 8217 
1. -3688 

Table 2. 
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Explanation of Table 2. The three right-hand columns each indicate 

true-minus-computed errors which arise when solving the diff e r e n t i a l 

equation at the head of the column. These errors are multiplied by 10 . 

The column headed c indicates the largest parasitic root permitted i n 

the formula used. The column headed x gives the values of x i n 

intervals of five radians. Since each problem was worked by four or 

five different formulae corresponding to different values of c there 

are four or five entries i n each error column corresponding to each 

value of x. For example i n the f i r s t error column the f i r s t figure 

corresponding to x = 10 i s 332. The column i s headed y" = -y, and 

the corresponding entry i n the c column i s 0 . This means that when 

solving the equation y" = -y by a formula which permitted a maximum 

parasitic root of zero ( i . e . by Adams' formula), the true-minus-computed 

error was 10" X 332 at the point where x = 10 radians. 

Conclusions drawn from Table 2. Consider f i r s t the second error column 

of Table 2, giving the errors arising from computation of the equation 

y»» = - ̂  y. This was the only equation on which an unstable formula was 

tr i e d . The errors arising from use of the unstable formula corresponding 

to c = 1 were such that a repetition of the experiment did not seem to 

be jus t i f i e d . .It may further be noted that this equation i s the only one 

of the three i n which the Adams method, corresponding to c = 0 , compares 

favourably with the other methods. Even here the superiority of the 

Adams method i s not consistent, though i t lasts for 20 radians. An 

explanation of the success of the Adams method applied to this equation i s 

not hard to find. The f i f t h derivative of the solution i s less than 2~5 , 

therefore the truncation error i s bound to be small. In these circumstances 
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i t i s clearly better to use a formula with optimum s t a b i l i t y properties, 

rather than one .which i s designed, at some sacrifice of st a b i l i t y , to 

reduce the already small truncation error. 

The results of the other two series of experiments display the Adams 

method as being consistently inferior to a l l other methods of the family, 

therefore i t i s hard to escape the conclusion that the Adams method can 

generally be bettered. 

The foregoing investigations may only be regarded as a f i r s t step towards 

the improvement of corrector formulae. Of the questions which remain 

unanswered the most important would appear to be: What choice of para­

meters w i l l give the 'best' four-point formula for application to a given 

differential equation? This question and analogous questions relating to. 

f i v e - and six-point formulae would form a good f i e l d for further 

investigation. 
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