THE PERMANENT FUNCTION
by
FRANK COLIN MAY
B.A., University of British Columbia, 1959
A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THEREQUIREMENTS FOR THE DEGREE OF
Master of Arts
in the Department of
Mathematics
We accept this thesis as conforming to therequired standard

In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission.

Department of Mathemates

The University of British Columbia, Vancouver 8, Canada.
Date april 12, 1961.

ABSTRACT

Let X be a square matrix of order k over a field F. The permanent of X is given by

$$
\operatorname{per}(\mathrm{X})=\sum_{\sigma}\left(\mathrm{x}_{1 \sigma(1)^{x_{2 \sigma(2)}}} \ldots \mathrm{x}_{\mathrm{k} \sigma(k)}\right)
$$

where σ ranges over all the permutations of $1,2, \ldots, k$. The original object of this investigation was to characterize those linear maps which leave the permanent unaltered ; that is, $\operatorname{per}(X)=\operatorname{per}(T(X))$, all X.

Let $M_{m, n}$ denote the vector space of all matrices having m rows and n columns with entries taken from F_{o} Fix an integer $r, 2 \leq r \leq m i n(m, n)$. The $r-t h$ permanental compound of $X \varepsilon M_{m, n}$ is defined in an analogous way to the r-th compound of X, and is denoted by $\left.P_{r}(X) \varepsilon M_{(}^{m}\right),\left(\frac{n}{r}\right)$ 。

Subject to mild restrictions on F, the
following theorem can be proved. Let T be a linear map on $M_{m, n}$ into itself, let S_{r} be a non-singular linear map on $M_{\left(\frac{m}{r}\right),\left(\frac{n}{r}\right)}$ onto itself. Suppose that $P_{r}(T(X))=S_{r}\left(P_{r}(X)\right)$, all $X \varepsilon M_{m, n}$. Then for $\max (m, n)>2$, we have $T(X)=$ DPXQK when $m \neq n$; when $m=n$, we have either $T(X)=$ DPXQK, allX, or $T(X)=D P X^{\prime} Q K$, all X. Here P, Q are permutation matrices and D, K are diagonal matrices, of appropriate orders. For the case $r=m=n=2$, there is a certain non-singular linear map B on $M_{2,2}$ onto itself such that $B T B(X)=U X V$, all X, or $B T B(X)=U X^{i} V$, all X. Here U, V are non-singular。

The original problem arises in the case $r=m=n$, with $S_{r}=1$, the unit of F.

I hereby certify that this abstract is satisfactory.

TABLE OF CONTENTS

PAGE

INTRODUCTION I

DEFINITIONS AND NOTATION 3

RESULTS • 6

BIBLIOGRAPHY 25

ACKNOWLEDGEMENT

The author wishes to express his appreciation for the very generous assistance given him by Dr. Marvin Marcus in the preparation of this thesis. He is also pleased to acknowledge the financial support given him by the National Research Council of Canada.

INTRODUCTION

Let X be an n-square matrix with elements in a field F. The permanent of X is defined by (1) \quad per $(X)=\sum_{\sigma} x_{1 \sigma(1)} x_{2 \sigma(2)} \cdots x_{n \sigma(n)}$
where σ runs over the symmetric group of permutations on the integers 1,2,..., n. This function makes its appearance in certain combinatorial applications [13], and is involved in a conjecture of van der Waerden [6], [9]. Certain formal properties of per (X) are known [I], and an old paper of Pólya [12] shows that for $n>2$ one cannot multiply the elements of X by constants in any uniform way so as to convert the permanent into the determinant. Indeed, it can be shown that no linear operation on $X($ for $n>2)$ will transform the permanent into the determinant.

The purpose of this thesis is to characterize those linear operations on matrices which leave the permanent unaltered. This problem and its generalizations have been considered for the determinant function by Frobenius [3] and Kantor [5], later by Schur [14], Morita [11], Dieudonné [2], Marcus and Moyls [8], Marcus and Purves [10], Marcus and May [7]. In view of the result of Pólya [12], it does not seem likely that many of the techniques used in the above papers can be used to investigate the permanent
(2)
function. Most of these rely heavily on certain properties of the determinant function which are no longer valid for the permanent function. For example, it is in general
false that per $(A B)=p e r(A)$ per (B).

DEFINITIONS AND NOTATION。

Let $M_{m, n}$ denote the vector space of all $m x n$ matrices over a field F ，with the natural basis of unit matrices $E_{i j}$ ，where $E_{i j}$ is the matrix with 1 in position （ i, j ）and 0 elsewhere．In the sequel，r will denote a fixed integer satisfying $2 \leq r \leq \min (m, n)$ ．When dealing with index sets，the following notation will be used． $Q_{n, r}$ denotes the totality of strictly increasing sequences of integers satisfying $1 \leq i_{1}<i_{2}<\ldots<i_{r} \leq n$ ．As usual， $\alpha=\left(i_{1}, \ldots, i_{r}\right)$ precedes $\beta=\left(j_{1}, \ldots, j_{r}\right)$ in the lexicographic ordering of $Q_{n, r}, \alpha<\beta$ ，if there is t such that $i_{t}<j_{t}$ and $\mathbf{i}_{\mathrm{s}} \leq \mathrm{j}_{\mathrm{s}}$ ，all $\mathrm{s}<\mathrm{t}_{\text {。 }}$

Let $X \varepsilon M_{m, n}$ ．We define the $r-t h$ permanental compound of X ，denoted by $P_{r}(X) \varepsilon M_{(}\left(\frac{m}{r}\right),\left(\frac{n}{r}\right)$ as follows： if $\omega=\left(i_{1}, \ldots, i_{r}\right) \varepsilon Q_{m, r}$ and $\delta=\left(j_{1}, \ldots, j_{r}\right) \varepsilon Q_{n, r}$ ，then the（ ω, δ ）entry（in the doubly lexicographic ordering）of $P_{r}(X)$ is $X_{\omega \delta}$ ，where $X_{\omega \delta}$ is the permanent of the matrix in $M_{r, r}$ whose (s, t) entry is $x_{i_{s}} j_{t},(s, t=1, \ldots, r)$ ．We denote the (ω, δ) unit matrix in $\left.M_{(} \frac{m}{r}\right)$ ，（ $\frac{n}{r}$ ）by $E_{\omega \delta}$ 。

$$
\text { Let } x_{\alpha}=\left(x_{\alpha 1}, \ldots, x_{\alpha_{n}}\right),(\alpha=1, \ldots, r) \text {, be any }
$$

vectors over F ．Then the permanental product of the vectors $x_{\alpha},(\alpha=1, \ldots, r)$ ，denoted by $x_{1} V x_{2} V . . . V x_{r}$ ，is defined to be the $\left(\frac{n}{r}\right)_{\text {－}}$ vector whose $\delta=\left(j_{1}, \ldots, j_{r}\right) \varepsilon \ell_{n, r}$ coordinate is $\operatorname{per}\left(x_{\alpha_{j}}\right),(\alpha=1, \ldots, r ; \beta=1, \ldots, r)$ ， in the lexicographic ordering。

We denote the rank of X by $\varrho(X)$ ，the transpose of X by X^{\prime} ，the $i^{\text {th }}$ row of X by $X_{(i)}$ ，the $j^{\text {th }}$ column of X by $X^{(j)}$ ，and the determinant of X by $\operatorname{det}(X)$ 。Let A be an s x matrix．If $j>0$ ，$k>0$ ，we define

$$
A+0_{j, k}=\left|\begin{array}{ll}
A & 0_{s, k} \\
0_{j, t} & 0_{j, k}
\end{array}\right|
$$

where $0_{j, k}$ denotes the $j x k$ zero matrix．If $j=k=0$ ，we let the matrix $A+0_{j, k}$ be A 。 If $j=0, k>0$ ，or $j>0, k=0$ ， then we let $A+0_{j, k}$ be

$$
\begin{aligned}
& \left|\begin{array}{ll}
A & 0_{s, k}
\end{array}\right| \text { or }\left|\begin{array}{l}
A \\
0_{j, t}
\end{array}\right| \text { respectively. } \\
& \text { If } u=\left(u_{1}, \ldots, u_{n}\right) \text { and } v=\left(v_{1}, \ldots, v_{n}\right) \text { are } n \text {-vectors, }
\end{aligned}
$$

the symbols $u \perp v$ and $u / / v$ will indicate respectively that $\sum_{i} u_{i} v_{i}=0$ and that u and v are linearly dependent． If $C \varepsilon M_{m, n}$ and $X \varepsilon M_{m, n}$ ，we define the Hadamard product of C and X to be the matrix $Y=C * X \varepsilon M_{m, n}$ given by $y_{i j}=c_{i j} x_{i j},(i=1, \ldots, m ; j=1, \ldots, n)$.
Next，let T be a linear map of $M_{m, n}$ into itself． If T is non－singular，the inverse of T is denoted by T^{-1} 。 Let P and Q be permutation matrices in $M_{m, m}$ and $M_{n, n}$ respectively．In the sequel，we shall have occasion to use maps H obtained from T as follows ：

$$
\mathrm{H}(\mathrm{X})=\mathrm{P} \mathrm{~T}(\mathrm{X}) Q, \text { all } \mathrm{X} \varepsilon \mathrm{M}_{\mathrm{m}, \mathrm{n}^{\circ}}
$$

We shall say that such a map H is the same as T to within permutation.

$$
\text { In the case } m=n=2 \text { we shall need the special }
$$

map B defined on $M_{2,2}$ as follows :
(2)

$$
\begin{aligned}
& B\left(E_{i j}\right)=E_{i j} \text { if } i \leq j \\
& B\left(E_{21}\right)=-E_{21}
\end{aligned}
$$

Clearly B is non-singular, $B=B^{-1}$, and

$$
\operatorname{per}(B(X))=\operatorname{det}(x)
$$

for all $X \in M_{2,2^{\circ}}$

RESULTS

Our main results are contained in the
THEOREM. Let T be a linear map of $M_{m, n}$ into itself, and let r be an integer satisfying $2 \leq r \leq m i n(m, n)$ 。Suppose that the ground field F contains at least r elements, and is not of characteristic 2。 Assume that there exists a non-singular linear map S_{r} of $M_{\left(\frac{m}{r}\right),\left(\frac{n}{r}\right)}$ into itself such that

$$
\begin{equation*}
P_{r}(T(X))=S_{r}\left(P_{r}(X)\right) \tag{3}
\end{equation*}
$$

for all $X \in M_{m, n}{ }^{\circ}$
Then, for $m+n>4$, there are permutation matrices
$P \varepsilon M_{m, m}, Q \varepsilon M_{n, n}$ and nonmsingular diagonal matrices $D \varepsilon M_{m, m}$, $K \varepsilon M_{n, n}$ such that if $m \neq n$,
(4) $\quad T(X)=D P X Q K$
for all $X \in M_{m, n}$; if $m=n(>2), T$ has the form (4) or
(5) $\quad T(X)=D P X^{\prime} Q K$
for all $X \in M_{m, n}$.

$$
\text { For } m=n=2 \text {, there are non-singular matrices }
$$

U and V in $M_{2,2}$ such that
(6) $\quad[\mathrm{BTB}](\mathrm{X})=\mathrm{UX} \mathrm{V}$
for all $X \in M_{2,2}$, or else
(7) $\quad[\mathrm{BTB}](\mathrm{X})=\mathrm{U} \mathrm{X}^{\mathrm{t}} \mathrm{V}$
for all $X \in M_{2,2}$

We note here that in case $r=m=n>2$ and $S_{n}=1$, then this result tells us that the only linear operations which hold the permanent fixed, i.e.,

$$
\begin{equation*}
\operatorname{per}(T(X))=\operatorname{per}(X), \text { all } X \varepsilon M_{n, n} \text {, } \tag{8}
\end{equation*}
$$

must be obtainable, to within taking the transpose, by pre- and post-multiplication of X by diagonal matrices whose product has permanent 1 together with pre- and post-multiplication of X by permutation matrices.

We shall prove the theorem in a sequence of lemmas, some of which may be of interest in themselves.

Lemma 1. Let $X \in M_{m, n}$, let $Q \varepsilon M_{m, m}$ be a permutation matrix, and let $D \in M_{m, m}$ be a diagonal matrix. Then
(a) $\quad P_{r}(Q X)=P_{r}$ ($\left.Q\right) P_{r}(X)$
(b) $\quad P_{r}(D X)=P_{r}$ (D) $P_{r}(X)$
(c) $\quad P_{r}\left(X^{\prime}\right)=P_{r}{ }^{\prime}(X)$
where $P_{r}{ }^{\prime}(X)$ denotes the transpose of $P_{r}(X)$.
Proof : First note that if $x_{\mu}=\left(x_{\mu 1}, \ldots, x_{\mu n}\right),(\mu=1, \ldots, r)$, are any n-vectors, then

$$
x_{1} \vee \ldots \vee x_{r}=x_{\lambda(1)} \vee \ldots \vee x_{\lambda(r)}
$$

for any permutation λ on $1, \ldots, r$. In particular, if
$\omega=\left(i_{1}, \ldots, i_{r}\right) \varepsilon Q_{m, r}$ then

$$
X_{\left(i_{1}\right)} v \ldots V X_{\left(i_{r}\right)}=X_{\left(\lambda\left(i_{1}\right)\right)} v \ldots V_{\left(\lambda\left(i_{r}\right)\right)}
$$

for any permutation λ on i_{1}, \ldots, i_{r} 。 This is an immediate
consequence of the fact that the permanent of a matrix is unaltered by a row（or column）permutation 。 Let σ be the permutation corresponding to Q ．The rows of $Q X$ are $X_{(\sigma(1))}, \ldots, X_{(\sigma(m))}$ 。 Let e_{k} denote the unit vector（of appropriate length）with 1 in position k ，and 0 elsewhere． Now row ω of $P_{r}(Q)$ is $e_{\sigma\left(i_{1}\right)} V \ldots V e_{\sigma\left(i_{r}\right)}$ 。 Let $i_{\alpha_{1}}, \ldots, i_{\alpha_{r}}$ be the rearrangement of i_{1}, \ldots, i_{r} such that $\sigma\left(i_{\alpha_{1}}\right)<\sigma\left(i_{\alpha_{2}}\right)<\ldots<\sigma\left(i_{\alpha_{r}}\right)$ 。 Then $e_{\sigma\left(i_{1}\right)} v \ldots V e_{\sigma\left(i_{r}\right)}$
 position $\left(\sigma\left(i_{\alpha_{1}}\right), \ldots, \sigma\left(i_{\alpha_{r}}\right)\right) \varepsilon \ell_{m, r}$ and 0 elsewhere．Thus row ω of the product $P_{r}(Q) P_{r}(X)$ is $X_{\left(\sigma\left(i_{\alpha_{1}}\right)\right)}{ }^{V} \ldots V X_{\left(\sigma\left(i_{\alpha_{r}}\right)\right)}$ $=X_{\left(\sigma\left(i_{1}\right)\right)} V \ldots V X_{\left(\sigma\left(i_{r}\right)\right)}$ ，which is clearly row ω of $P_{r}(Q X)$ 。 Thus（a）is established

Let $\delta=\left(j_{1}, \ldots, j_{r}\right) \varepsilon Q_{n, r^{\circ}}$ Then row δ of $P_{r}\left(X^{i}\right)$ is $X^{\left(j_{1}\right)} V \ldots V X^{\left(j_{r}\right)}$ 。 On the other hand，row δ of $P_{r}{ }^{g}(X)$ is column δ of $P_{r}(X)$ which is certainly $X^{\left(j_{1}\right)} V \ldots V X^{\left(j_{r}\right)}$ 。 This proves（c）．

Let d_{k} be the diagonal element in row k of D 。
Let $\omega=\left(i_{1}, \ldots, i_{r}\right) \varepsilon Q_{m, r^{*}}$ ．Now $P_{r}(D)$ is again a diagonal matrix whose diagonal element in row ω is $d_{i_{1}} d_{i_{2}}{ }^{\circ}{ }^{d_{i_{r}}}{ }^{\circ}$ Part（b）follows at once from the fact that the permanent function is linear in each row（and column）．In particular， $\left.\left.\left(d_{i_{1}} \ldots d_{i_{r}}\right) X_{\left(i_{1}\right)} V \ldots V X_{\left(i_{r}\right)}=d_{i_{1}} X_{\left(i_{1}\right)}\right) V \ldots V d_{i_{r}} X_{\left(i_{r}\right.}\right)$, which is row ω of $P_{r}(D X)$ ．The lemma is proved．

Corollary . Let $X \varepsilon M_{m, n}$, let Q $\varepsilon M_{n, n}$ be a permutation matrix, and let $D \varepsilon M_{n, n}$ be a diagonal matrix. Then $\left(a^{\prime}\right) \quad P_{r}(X Q)=P_{r}(X) P_{r}(Q)$
(b') $\quad P_{r}(X D)=P_{r}(X) P_{r}(D)$
Proof : An identical computation proves both (a^{\prime}) and (b^{\prime}).
We prove (a^{\prime}).

$$
P_{r}\left(X_{Q}\right)=P_{r}\left(Q^{\prime} X^{\prime}\right)=\left(P_{r}\left(Q^{\prime}\right) P_{r}\left(X^{\prime}\right)\right)^{\prime}=P_{r}(X) P_{r}(Q)
$$

Lemma 2. T is non-singular.
Proof : Suppose that $T(U)=0$. Then for any $X \in M_{m, n}$, we have, using (3),

$$
\begin{aligned}
& S_{\mathbf{r}}\left(P_{\mathbf{r}}(U+X)\right)=P_{\mathbf{r}}(T(U+X))=P_{r}(T(U)+T(X)) \\
= & P_{\mathbf{r}}(T(X))=S_{\mathbf{r}}\left(P_{\mathbf{r}}(X)\right) .
\end{aligned}
$$

Since S_{r} is non-singular,

$$
\begin{equation*}
P_{r}(U+X)=P_{r}(X) \tag{9}
\end{equation*}
$$

holds for all $X \in M_{m, n^{\circ}}$ For any permutation matrices P and Q of appropriate sizes, Lemma 1 and its corollary tell us that

$$
\begin{aligned}
& P_{\mathbf{r}}(P U Q+P X Q)=P_{\mathbf{r}}(P(U+X) Q) \\
= & P_{\mathbf{r}}(P) P_{\mathbf{r}}(U+X) P_{\mathbf{r}}(Q)=P_{\mathbf{r}}(P) P_{\mathbf{r}}(X) P_{\mathbf{r}}(Q) \\
= & P_{\mathbf{r}}(P X Q) .
\end{aligned}
$$

Now as X runs over $M_{m, n}$ so does PXQ. It suffices then to show that (9) implies $u_{11}=0$.

Choose $X \varepsilon M_{m, n}$ such that

$$
\begin{array}{ll}
x_{1 l}=0 & \\
x_{k k}=t-u_{k k k}, & 2 \leq k \leq r \\
x_{i j}=-u_{i j} & , i \neq j \text { and } 1 \leq i, j \leq r \\
x_{i j}=0 & , \text { otherwise. }
\end{array}
$$

Then the $(1,1)$ entry of $P_{r}(U+X)$ is $u_{11} t^{r-1}$. On the other hand, the $(1,1)$ entry of $P_{r}(X)$ is a polynomial in t of degree at most $r-2$. Since F contains at least r elements, we conclude that $u_{11}=0$.

Lemma 3. Let s be an integer satisfying $1 \leq s \leq \min (m, n)$. Then there is a basis for $M\left(\frac{m}{s}\right),\left(\frac{n}{s}\right)$ of the form $P_{s}(X)$, with $X \varepsilon M_{m, n}$.
Proof : Let $\omega=\left(i_{1}, \ldots, i_{s}\right) \varepsilon Q_{m, s}$ and let $\delta=\left(j_{1}, \ldots, j_{s}\right)$
$\varepsilon \ell_{n, s}$. If $X \varepsilon M_{m, n}$ is the matrix with $x_{i t} j_{t}=1$, $(t=1, \ldots, s)$, and $x_{i j}=0$ otherwise, then $P_{s}(X)=E_{\omega \delta^{\circ}}$

Lemma 4. There exists a non-singular linear map S_{2} of $\left.M_{(}^{m} \begin{array}{l}m\end{array}\right),\binom{n}{2}$ into itself such that
(10)

$$
P_{2}(T(X))=S_{2}\left(P_{2}(X)\right)
$$

for all $X \in M_{m, n}$. That is, if (3) holds for $r>2$, it holds for $r=2$ as well.
Proof : Let $Y=T(X)$. Using (3) we can write

$$
\begin{equation*}
Y_{\omega \delta}=\sum \alpha, \beta \quad s_{\omega, \delta}^{\alpha, \beta} X_{\alpha, \beta} \tag{11}
\end{equation*}
$$

for any $\omega \varepsilon Q_{m, r}$ and $\delta \varepsilon Q_{n, r}$; here we sum over all $\alpha \varepsilon Q_{m, r}, \beta \varepsilon Q_{n, r}$. In (11) the scalars $s_{\omega, \delta}^{\alpha, \beta}$ are the entries in the matrix representation of S_{r} with respect to the natural basis in $M\left(\frac{m}{r}\right),\left(\frac{n}{r}\right)$, ordered doubly lexicographically. Since T is non-singular, we may write

$$
x_{s t}=\sum_{p=1, q=1}^{m}, \mathbf{g}_{s, t}^{p, q} y_{p q}
$$

where the scalars $g_{s, t}^{p, q}$ are the entries in the matrix representation of T^{-1} with respect to the natural basis in $M_{m, n}$. Now (ll) may be regarded as a polynomial identity in the variables $y_{p q}$.

We compute that

$$
\begin{aligned}
& \frac{\partial Y_{\omega \delta}}{\partial Y_{p q}}=\left\{\alpha, \beta \quad s_{\omega, \delta}^{\alpha, \beta} \frac{\partial X_{\alpha \beta}}{\partial Y_{p q}}\right. \\
& \sum_{\alpha, \beta} \underset{\omega, \delta}{\alpha, \beta} \sum_{u=1, v=1}^{\mathrm{m}, \mathrm{n}} \frac{\partial \mathrm{x}_{u v}}{\partial \mathrm{y}_{\mathrm{pq}}} \frac{\partial \mathrm{X}_{\alpha \beta}}{\partial \mathrm{x}_{\mathrm{uv}}} \\
& =\sum_{\alpha, \beta} \sum_{u=1, v=1}^{m, n}\left(s_{\omega, \delta}^{\alpha, \beta} \quad g_{u, v}^{p, q}\right) \frac{\partial X_{\alpha \beta}}{\partial x_{u v}},
\end{aligned}
$$

where we take $p \varepsilon \omega$ and $q \varepsilon \delta$. Now $s_{\omega, \delta}^{\alpha, \beta} g_{u, v}^{p, q}$, the coefficient of $\frac{\partial X_{\alpha \beta}}{\partial X_{u v}}$ in the last expression of this equation, is a scalar independent of X and Y.

We conclude that any ($r-1$)-order permanental minor of $Y=T(X)$ is expressible as a fixed linear combination of the ($r-1$)-order permanental minors of X. In other words, there is a linear map R_{0} of $M_{(r-1)} m_{1}\left(r_{-1}\right)$ into itself such that

$$
\begin{equation*}
P_{r-1}(T(X))=R_{0}\left(P_{r-1}(X)\right) \tag{12}
\end{equation*}
$$

for all $X \in M_{m, n}$.
Since T is non-singular, we see from (3) that

$$
\begin{equation*}
P_{r}\left(T^{-1}(X)\right)=S_{r}^{-1}\left(P_{r}(X)\right) \tag{13}
\end{equation*}
$$

for all $X \in M_{m, n}$. If we apply the above reasoning to (13), we conclude that there is a linear map R^{o} of $\left.M_{(r-m}^{m_{1}}\right),\left(r_{1}\right)^{\prime}$ into itself such that for all $X \in M_{m, n}$,

$$
P_{r-1}\left(T^{-1}(X)\right)=R^{0}\left(P_{r-1}(X)\right)
$$

That is, for all $X \in M_{m, n}$, we have

$$
\begin{equation*}
P_{r-1}(X)=R^{0}\left(P_{r-1}(T(X))\right) \tag{14}
\end{equation*}
$$

Combining (12) and (14) we have

$$
\begin{equation*}
P_{r-1}(X)=R^{0} R_{0}\left(P_{r-1}(X)\right) \tag{15}
\end{equation*}
$$

for all $X \in M_{m, n}$. Lemma 3, with $s=r-1$, tells us that $R^{0} R_{0}$ is the identity map of $\left.M_{(r-m}^{m_{1}}\right),\left(r_{1}^{n}\right)$ onto itself. Consequently R_{0} is non-singular in (12), and we set $S_{r-1}=R_{0}$. Then, using (12), we proceed to reduce r-1 to r-2, etc., finally obtaining (10).

Let $A \in M_{m, n}$ ．If A has at most one non－zero row（column），we shall call A a row（column）matrix． If A is a row（column）matrix，then the number of non－zero entries in A is denoted by $\varphi(A)$ ．

Lemma 5．Let $A \in M_{m, n}$ ，and suppose that $P_{2}(A)=0$ 。 Then $Q(A)=0,1$ ，or 2 ．Moreover，if A has rank 1 ，then A is a row（or column）matrix ；if A has rank 2，then to within permutation of the rows and columns of A ， A has the form

$$
\left|\begin{array}{ll}
\alpha & \beta \tag{16}\\
\lambda & \mu
\end{array}\right| \stackrel{\circ}{+} 0_{m-2, n-2},
$$

where $\alpha_{\mu}+\beta \lambda=0$ ，and $\alpha_{\mu}-\beta \lambda \neq 0$ 。
Proof ：Assume that $A \neq 0$ ．Suppose first that $\varrho(A)=1$ 。 We may write row t of A as some multiple of a fixed vector $z=\left(z_{1}, \ldots, z_{n}\right)$ ，say $c_{t} z^{\prime},(t=1, \ldots, m)$ ．Since $P_{2}(A)=0$ ， we see that $2 c_{t} c_{s} z_{i} z_{j}=0$ if $t \neq s$ and $i \neq j$ ．Since F is not of characteristic 2 ，we have $c_{t} c_{s} z_{i} z_{j}=0$ if $t \neq s$ and $i \neq j$ ．Since $A \neq 0$ ，some $c_{t_{0}} \neq 0$ ，and some $z_{i_{0}} \neq 0$ ． If there is $j \neq i_{o}$ for which $z_{j} \neq 0$ ，then $c_{s}=0$ whenever s $\neq t_{0}$ 。

Suppose next that $\varrho(A)>1$ ．By a suitable permutation we may bring A to the form

where $H \in M_{m-2, \mathrm{n}-2}, \alpha_{\mu} \neq 0$, and $\alpha_{\mu}-\beta \lambda \neq 0$ oWe have

$$
\left.\begin{array}{l}
\alpha b_{t}+\lambda a_{t}=0 \\
\beta b_{t}+\mu a_{t}=0
\end{array}\right\}, \quad(t=1, \ldots, n-2)
$$

But $\alpha_{\mu}-\beta \lambda \neq 0$. Hence $c_{s}=d_{s}=0,(s=1, \ldots, m-2)$, and $a_{t}=b_{t}=0,(t=1, \ldots, n-2)$. Therefore $\mu_{i j}=0$ for each element $h_{i j}$ of H. Since $\mu \neq 0$, we have $H=0$. Also, we note that $\alpha \beta \lambda \mu \neq 0$. This proves Lemma 5.

Corollary. Let $F_{i j}=T\left(E_{i j}\right)$. Then $\varrho\left(F_{i j}\right)=1$ or 2. Proof : From (10) we see that

$$
P_{2}\left(F_{i j}\right)=S_{2}\left(P_{2}\left(E_{i j}\right)\right)=S_{2}(0)=0
$$

Lemma 5，together with its corollary，enables us to describe partially the structure of the images $F_{i j}$ of the unit matrices $E_{i j}$ ．We now make the additional assumption that $m+n \geq 5$ ．In this case we are able to obtain the exact structure of the $F_{i j}$ 。

Lemma 6．$Q\left(F_{i j}\right)=1$ 。
Proof ：By Lemma 2， $\mathrm{F}_{\mathrm{ij}} \neq 0$ ．Suppose that $\varrho\left(\mathrm{F}_{\mathrm{ij}}\right)=2$ ．We lose no generality in assuming that $i=j=1$ and that F_{11} has the form（16）．Consider $\mathrm{F}_{1 t}$ ，$(2 \leq \mathrm{t} \leq \mathrm{n})$ ．From $\mathrm{P}_{2}\left(\mathrm{E}_{11}+\sigma \mathrm{E}_{1 \mathrm{t}}\right)=0$ ， all $\sigma \in \mathrm{F}$ ，we have using $(10), \mathrm{P}_{2}\left(\mathrm{~F}_{11}+\sigma \mathrm{F}_{1 \mathrm{t}}\right)=0$ ，all $\sigma \varepsilon \mathrm{F}_{\mathrm{o}}$ Since $\alpha \beta \lambda \mu \neq 0$ in（16），we see at once that $\varphi\left(\mathrm{F}_{1 \mathrm{t}}\right)=2$ if $\varrho\left(F_{1 t}\right)=1$ ；moreover，$F_{1 t}$ would be zero outside of positions $(1,1),(1,2),(2,1)$ ，and $(2,2)$ ．If $\varrho\left(F_{1 t}\right)=2$ ，then by letting σ vary over F ，we see again that $F_{1 t}$ is zero outside these same positions．A similar argument leads to the same conclusions concerning $\mathrm{F}_{\mathrm{sl}},(2 \leq \mathrm{s} \leq \mathrm{m})$ 。

$$
\text { We next show that } F_{1 t},(t=1, \ldots, n) \text { and } F_{s l}
$$

（ $s=1, \ldots, m$ ），all lie in the space spanned by the following three matrices ：

$$
\begin{aligned}
& G_{1}=\left|\begin{array}{ll}
\alpha & \beta \\
0 & 0
\end{array}\right| \quad q \quad 0_{m-2, n-2}, \\
& G_{2}=\left|\begin{array}{ll}
0 & \beta \\
0 & \mu
\end{array}\right|+0_{m-2, n-2}, \text { and } \\
& G_{3}=\left|\begin{array}{ll}
\alpha & 0 \\
\lambda & 0
\end{array}\right|+0_{m-2, n-2} \quad
\end{aligned}
$$

Observe that

$$
G_{4}=\left|\begin{array}{ll}
0 & 0 \\
\lambda & \mu
\end{array}\right|+0_{m-2, n-2}=G_{2}+G_{3}-G_{1},
$$

and that

$$
F_{11}=G_{1}+G_{4}=G_{2}+G_{3} .
$$

First let us assume that $Q\left(F_{1 t}\right)=1$. We may further assume without loss of generality that $b_{11} b_{21} \neq 0$ and $b_{12}=b_{22}=0$, where we have set

$$
F_{1 t}=\left|\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right|+o_{m-2, n-2}
$$

Now $P_{2}\left(F_{11}+F_{1 t}\right)=0$ implies that $b_{11} \mu+b_{21} \beta=0$, and hence $F_{1 t}$ is a multiple of G_{3}. For $\left(b_{11}, b_{21}\right) \perp(\mu, \beta)$ $\perp(\alpha, \lambda)$, and so $\left(b_{11}, b_{21}\right) / /(\alpha, \lambda)$.

Next assume that $\varrho\left(F_{1 t}\right)=2$. We have

$$
\mathrm{b}_{11} \mathrm{~b}_{12} \mathrm{~b}_{21} \mathrm{~b}_{22} \neq 0
$$

and $P_{2}\left(F_{11}+F_{1 t}\right)=0$ shows that

$$
b_{11} \mu+b_{22}^{\alpha}+b_{12} \lambda+b_{21} \beta=0 .
$$

Now

$$
\alpha_{\mu}+\beta \lambda=b_{11} b_{22}+b_{12} b_{21}=0 .
$$

So there are non-zero constants c and d such that $\lambda=c \alpha, \mu=-c \beta, b_{21}=d_{11}$, and $b_{22}=-\mathrm{db}_{12}$ 。
Consequently we have

$$
0=b_{11} \mu+b_{22} \alpha+b_{12} \lambda+b_{21} \beta=(c-d)\left(\alpha b_{12}-\beta b_{11}\right) .
$$

Thus either $c=d$ or $\alpha b_{12}=\beta b_{11}$. If $c=d$ we see that
$\left(b_{12}, b_{22}\right) \perp(\lambda, \alpha) \perp(\beta, \mu)$ and $\left(b_{11}, b_{21}\right) \perp(\mu, \beta) \perp(\alpha, \lambda)$, whence $\left(b_{12}, b_{22}\right) / /(\beta, \mu)$ and $\left(b_{11}, b_{21}\right) / /(\alpha, \lambda)$. Therefore if $c=d, F_{1 t}$ is a linear combination of G_{2} and G_{3} 。 One shows similarly that in case $\alpha_{b_{12}}=\beta b_{11}, F_{1 t}$ is a linear combination of G_{1} and G_{4}. Thus the matrices $F_{l t},(t=1, \ldots, n)$, and, similarly, the matrices $F_{\text {sl }}$, ($s=1, \ldots, m$), all lie in the space of dimension 3 spanned by G_{1}, G_{2}, and G_{3}. But $m+n-1>3$. We have contradicted Lemma 2. Hence $\varrho\left(F_{i j}\right)=1$.

Lemmas 5 and 6 tell us that each $F_{i j}$ is either a row or column matrix.

Lemma 7. $\varphi\left(\mathrm{F}_{\mathrm{ij}}\right)=1$.
Proof : We lose no generality in assuming that $\mathbf{i}=\mathbf{j}=1$ and that F_{11} is a row matrix with its non-zero row in row 1. By a suitable permutation of columns we may assume that row 1 of F_{11} has the form

$$
\left(a_{1}, a_{2}, \ldots, a_{\varphi}, 0, \ldots, 0\right)
$$

where we have set $\varphi=\varphi\left(F_{11}\right)$ for the sake of brevity. Note that $a_{t} \neq 0,(t=1, \ldots, \varphi)$ 。

If $\varphi \geq 3$, then Lemma 5 tells us at once that $F_{1 t},(t=1, \ldots, n)$, and $F_{s I},(s=1, \ldots, m)$, would all be row matrices each with its non-zero row in row l. For $P_{2}\left(F_{11}+F_{1 t}\right)=P_{2}\left(F_{11}+F_{s l}\right)=0$. Since $m+n-1>n$, we have contradicted Lemma 2.

Suppose then that $\varphi=2$ 。We have

$$
F_{11}=\left\lvert\, \begin{array}{ll}
a_{1} & a_{2} \mid+0_{m-1, n-2}
\end{array}\right.
$$

with $a_{1} a_{2} \neq 0$ ．We first show that F_{12} is a row matrix with its non－zero row in row 1．If not，then by permuting the last $m-1$ rows of F_{12} ，we can take F_{12} in the form

$$
\left|\begin{array}{ll}
0 & 0 \tag{17}\\
b_{1} & b_{2}
\end{array}\right| \quad+\quad 0_{m-2, n-2}
$$

where $b_{1} b_{2} \neq 0$ and $a_{1} b_{2}+a_{2} b_{1}=0$ ．We next remark that

$$
\begin{equation*}
P_{2}\left(T^{2}(X)\right)=S_{2}\left(P_{2}(T(X))\right)=S_{2}^{2}\left(P_{2}(X)\right) \tag{18}
\end{equation*}
$$

for all $X \in M_{m, n}$ ．Consequently all our results concerning the nature of T apply equally well to T^{2} ．In particular，$T^{2}\left(E_{11}\right)$ is either a row matrix or a column matrix．But

$$
\begin{aligned}
& T^{2}\left(E_{11}\right)=T\left(a_{1} E_{11}+a_{2} E_{12}\right)=a_{1} F_{11}+a_{2} F_{12} \\
& =\left|\begin{array}{ll}
a_{1}^{2} & a_{1} a_{2} \mid+ \\
a_{2} b_{1} & a_{2} b_{2}
\end{array}\right|+0_{m-2, n-2}
\end{aligned}
$$

However，$a_{1} a_{2} b_{1} b_{2} \neq 0$ ．This contradiction shows that F_{12} is a row matrix lying in row 1 。

$$
\text { Consider } F_{1 t},(t>2) \text {. If } F_{1 t} \text { is not a row matrix }
$$

lying in row 1 ，then we may assume that $F_{1 t}$ has the form（1－7）。 Again，$\left(a_{1}, a_{2}\right) \perp\left(b_{2}, b_{1}\right)$ ．From $P_{2}\left(F_{12}+F_{1 t}\right)=0$ we see immediately that F_{12} has the form

$$
F_{12}=\left|c_{1} \quad c_{2}\right| \quad \stackrel{\circ}{+} 0_{m-1, n-2}
$$

with $c_{1} c_{2} \neq 0$. So $\left(c_{1}, c_{2}\right) \perp\left(b_{2}, b_{1}\right)$. But this implies that F_{12} is a multiple of F_{11} and we contradict Lemma 2。

Now again by Lemma 2, F_{21} cannot lie entirely in row 1. Since $P_{2}\left(F_{11}+F_{21}\right)=0$, we may assume that F_{21} has the form (17). By an argument exactly analogous to that given above, we see that each of $F_{2 t},(t=1, \ldots, n)$, is a row matrix lying in row 2.

There are two cases to consider :

$$
\begin{equation*}
\mathrm{m}=2, \mathrm{n} \geq 3, \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
m \geq 3 . \tag{ii}
\end{equation*}
$$

In case (i) there is $j_{0}>1$ such that $F_{l_{j}}$ has a non-zero entry in column 3. Now from $P_{2}\left(F_{1 j_{0}}+F_{2 j_{0}}\right)=0$, we see that the non-zero entries of $\mathrm{F}_{2 j_{0}}$ lie in precisely the same columns as do those of $\mathrm{F}_{1 \mathrm{j}_{0}}$. Moreover, we have $\varphi\left(\mathrm{F}_{1 j_{0}}\right)=\varphi\left(\mathrm{F}_{2 \mathrm{j}_{0}}\right)=1$, or 2. Now $P_{2}\left(E_{11}+E_{21}+\sigma E_{1 j_{0}}-\sigma E_{2 j_{0}}\right)=0$, all $\sigma \varepsilon \mathrm{F}_{\text {。 }}$ Consequently $P_{2}\left(F_{i l}+F_{2 l}+\sigma F_{l_{j}}-\sigma F_{2 j_{0}}\right)=0$, all $\sigma \varepsilon F_{\text {. }}$ But this contradicts Lemma 5. In case (ii), note that $P_{2}\left(E_{11}+E_{21}+\sigma E_{31}\right)=0$, all σ, and so we must have $P_{2}\left(F_{11}+F_{21}+\sigma F_{31}\right)=0$, all σ_{0} By Lemma 5 , this implies that all the non-zero entries of F_{31} are in its first two rows. This contradicts Lemma 2 once again. Thus $\varphi=1$.

Lemma 7 tells us that for $m+n \geqq 5$, we can write $T\left(E_{i j}\right)=c_{i j} E_{i{ }^{\ell}{ }_{j}}$. By Lemma 2, $c_{i j} \neq 0$, and moreover, $(i, j) \neq(s, t)$ implies that $\left(i^{\prime}, j^{\prime}\right) \neq\left(s^{\prime}, t^{\prime}\right)$. We set

$$
i^{\prime}=\sigma(i, j) \quad \text { and } \quad j^{\prime}=\omega(i, j)
$$

so that $T\left(E_{i j}\right)=c_{i j} E_{\sigma(i, j) \omega(i, j)}{ }^{\circ}$
Lemma 8．（Let $m+n \geq 5$ ．）If $m \neq n$ ，then there are permutation matrices $P \varepsilon M_{m, m}$ and $Q \varepsilon M_{n, n}$ ，and a matrix $C=\left(c_{i j}\right) \varepsilon M_{m, n}$ with each $c_{i j} \neq 0$ ，such that for all $X \varepsilon M_{m, n}$

$$
\begin{equation*}
T(X)=C *(P X Q) \tag{19}
\end{equation*}
$$

If $m=n(>2)$ ，then T has the form（19）or else

$$
\begin{equation*}
T(X)=C *\left(P X^{*} Q\right) \tag{20}
\end{equation*}
$$

for all $X \in M_{m, n}$ 。
Proof ：We may assume without loss of generality that $m \leq n$ 。 Now by a suitable permutation of the rows and columns，we may take $\sigma(1,1)=\omega(1,1)=1$ ．Then $P_{2}\left(E_{11}+E_{22}\right) \neq 0$ shows that $P_{2}\left(F_{11}+F_{22}\right) \neq 0$ ，and so $\sigma(2,2)>1, \omega(2,2)>1$ 。 By a suitable permutation of the last $m-1$ rows and the last $n-1$ columns we may take $\sigma(2,2)=\omega(2,2)=2$ 。 In a similar way，the conditions $P_{2}\left(E_{11}+E_{33}\right) \neq 0$ and $P_{2}\left(E_{22}+E_{33}\right) \neq 0$ show that $\sigma(3,3)>2$ and $\omega(3,3)>2$ ． Proceeding in this way，it is clear that we may assume that $\sigma(k, k)=\omega(k, k)=k,(k=1, \ldots, m)$ 。

Pix $\alpha \leq m, \beta \leq m$ ，so that $\alpha \neq \beta$ ．Now from $P_{2}\left(E_{\alpha \alpha}+E_{\alpha \beta}\right)=0$ we see that $\sigma(\alpha, \beta)=\alpha$ or $\omega(\alpha, \beta)=\alpha$ ． Also $P_{2}\left(E_{\beta \beta}+E_{\alpha \beta}\right)=0$ implies $\sigma(\alpha, \beta)=\beta$ or $\omega(\alpha, \beta)=\beta$ 。
Therefore we must have either

$$
\begin{equation*}
\sigma(\alpha, \beta)=\alpha \text { and } \omega(\alpha, \beta)=\beta, \quad \text { or } \tag{21}
\end{equation*}
$$

$$
\begin{equation*}
\sigma(\alpha, \beta)=\beta \text { and } \omega(\alpha, \beta)=\alpha, \tag{22}
\end{equation*}
$$

for the non－singularity of T shows that we cannot have $\sigma(\alpha, \beta)=\omega(\alpha, \beta)$ 。

Suppose first that（21）holds．Let $\delta \leq n, \delta \neq \alpha$ ， $\delta \neq \beta$ ．From $P_{2}\left(E_{\alpha \beta}+E_{\alpha \delta}\right)=0$ we have $\sigma(\alpha, \delta)=\alpha$ or $\omega(\alpha, \delta)=\beta$ ．From $P_{2}\left(E_{\alpha \alpha}+E_{\alpha \delta}\right)=0$ we have $\sigma(\alpha, \delta)=\alpha$ or $\omega(\alpha, \delta)=\alpha$ 。 It follows that $\sigma(\alpha, \delta)=\alpha$ ．If in addition we have $\delta \leq m$ ，then $P_{2}\left(E_{\alpha \delta}+E_{\delta \delta}\right)=0$ shows that $\sigma(\alpha, \delta)=\delta$ or $\omega(\alpha, \delta)=\delta$ ．Hence $\omega(\alpha, \delta)=\delta$ 。

Let $k \neq \alpha$ and consider $E_{k \beta}$ ．From $P_{2}\left(E_{\alpha, \beta}+E_{k \beta}\right)=0$ we conclude that $\sigma(k, \beta)=\alpha$ or $\omega(k, \beta)=\beta$ ．But $\sigma(k, \beta) \neq \alpha$ because $\sigma(\alpha, t)=\alpha,(t=1, \ldots, n)$ ，and T is non－singular． Hence $\omega(k, \beta)=\beta$ ．Also $P_{2}\left(E_{k k}+E_{k \beta}\right)=0$ shows that $\sigma(k, \beta)=k$ or $\omega(k, \beta)=k$ ．Hence $\sigma(k, \beta)=k \quad \omega(k, \beta)=\beta$ 。 If we repeat this argument now with k replacing α in（21） we conclude that

$$
\begin{equation*}
\sigma(i, j)=i, \omega(i, j)=j, \quad(i=1, \ldots, m ; j=1, \ldots, m) . \tag{23}
\end{equation*}
$$

Moreover，if $j>m$ ，the non－singularity of T ensures that $\omega(i, j)>m$ ．Now we already know that $\sigma(i, j)=i$ for such j 。 Furthermore，$P_{2}\left(E_{s j}+E_{t j}\right)=0$ shows that $\omega(s, j)=\omega(t, j)$ 。 Thus if（21）holds， T may be reduced to the form（19）by a suitable permutation of the last $n-m$ columns of X ．

Suppose next that（22）holds．We shall show that actually $m=n$ and that

$$
\begin{equation*}
\sigma(i, j)=j, \omega(i, j)=i, \quad(i=1, \ldots, m ; j=1, \ldots, m) \tag{24}
\end{equation*}
$$

From $P_{2}\left(E_{\alpha \beta}+E_{\alpha k}\right)=0$ we have $\sigma(\alpha, k)=\beta$ or
$\omega(\alpha, k)=\alpha$ ．Also $P_{2}\left(E_{\alpha \alpha}+E_{\alpha k}\right)=0$ shows that $\sigma(\alpha, k)=\alpha$ or
$\omega(\alpha, k)=\alpha$ ．It follows that $\omega(\alpha, k)=\alpha,(k=1, \ldots, n)$ ， because $\alpha \neq \beta$ ．Thus $m=n$ ，for T maps the $n-d i m e n s i o n a l$ space spanned by $E_{\alpha t},(t=1, \ldots, n)$ ，into the space spanned by $E_{s \alpha},(s=1, \ldots, m)$ ，an m－dimensional space，and $m \leq n$ 。 We conclude also，from $P_{2}\left(E_{\alpha k}+E_{k k}\right)=0$ ，that
$\sigma(\alpha, k)=k$ or $\omega(\alpha, k)=k$ 。Since $\omega(\alpha, k)=\alpha$ ，it follows that $\sigma(\alpha, k)=k,(k=1, \ldots, m)$ ，which establishes（24）．So T has the form（20）．

Lemma 9．$\quad \varrho(C)=1$ 。
Proof ：Let $1 \leq i<s \leq m, 1 \leq j<t \leq n$ ．If（19）holds， choose X so that $P X Q=E_{i j}+E_{i t}-E_{s j}+E_{s t}$ ；if（20）holds， choose X so that $P^{\prime} Q$ has this same form．We can certainly do this because T is non－singular．In either case，$P_{2}(X)$ $=P_{2}(P X Q)=0$ ，by Lemma 1 together with its corollary． Therefore $0=P_{2}(T(X))=P_{2}\left(c_{i j} E_{i j}+c_{i t} E_{i t}-c_{s j} E_{s j}+c_{s t} E_{s t}\right)$ ， and so $c_{i j} c_{s t}-c_{i t} c_{j s}=0$ ．Thus each second order subdeterminant of C vanishes．We recall that each $c_{i j} \neq 0$ 。

Using Lemma 9 we can write $c_{i j}=d_{i} k_{j}$ ， $(i=1, \ldots, m ; j=1, \ldots, n)$ ．We set $D=\operatorname{diag}\left(d_{1}, \ldots, d_{m}\right) \varepsilon M_{m, m}$ and $K=\operatorname{diag}\left(k_{1}, \ldots, k_{n}\right) \varepsilon M_{n, n}$ ．Using Lemma 8 we can write （4）for $m \neq n$ and（4）or（5）for $m=n(>2)$ ．The proof of the theorem is complete for the case $m+n \geq 5$ ．

Suppose that $m=n=2$ ．Then（3）reduces to the equation

$$
\begin{equation*}
\operatorname{per}(T(X))=\alpha_{0} \operatorname{per}(X) \tag{25}
\end{equation*}
$$

for all $X \in M_{2,2}$, where α is some nonzero element of F. Using (2) together with (25) we see that

$$
\begin{aligned}
& \operatorname{det}[\mathrm{BTB}(X)]=\operatorname{per}\left[\mathrm{B}^{2} \mathrm{~TB}(X)\right]=\operatorname{per}[\mathrm{TB}(X)] \\
& =\alpha \cdot \operatorname{per}[\mathrm{B}(\mathrm{X})]=\alpha \cdot \operatorname{det}[\mathrm{X}]
\end{aligned}
$$

for all $X \in M_{2,2}$. Thus BTB preserves the rank of each matrix in $M_{2,2}$. Moreover, $(B T B)^{-1}=B^{-1} B$ exists and has the same property. Consequently we may appeal to a theorem of Jacob [4] to conclude that BTB has the desired form. The proof of the theorem is complete.

We observe that if $m \neq n$, we have
$P_{r}(T(X))=P_{r}(D P X Q K)=P_{r}(D) P_{r}(P) P_{r}(X) P_{r}(Q) P_{r}(K)$
$=S_{r}\left(P_{r}(X)\right)$
for all $X \in M_{m, n}$. It follows from Lemma 3 that
$S_{r}(Y)=P_{r}(D) P_{r}(P) Y P_{r}(Q) P_{r}(K)=D_{0} P_{0} Y_{Q_{0}} K$
 Similarly, if $m=n>2$, and T has the form (4), then S_{r} has the above form. Also, if $m=n>2$, and T has the form (5), then

$$
S_{r}(Y)=D_{0} P_{0} Y^{\prime} Q_{0} K_{0}
$$

for all $Y \in M_{\left(\frac{m}{r}\right),\left(\frac{n}{r}\right)}$.
In conclusion, we present an example to show that neither (4) nor (5) need hold if $r=m=n=2$. We put

$$
\begin{aligned}
& T\left(E_{11}\right)=E_{11}+E_{12}+E_{22}-E_{21} \\
& T\left(E_{12}\right)=E_{11}+E_{12} \\
& T\left(E_{21}\right)=E_{12}+E_{22} \\
& T\left(E_{22}\right)=-E_{12}
\end{aligned}
$$

Then for any $X \in M_{22}$ we have

$$
T\left(\left\lvert\, \begin{array}{ll}
x_{11} & x_{12} \\
x_{21} & x_{22}
\end{array}\right.\right)=\left|\begin{array}{ll}
\left(x_{11}+x_{12}\right)\left(x_{11}+x_{12}+x_{21}-x_{22}\right) \\
\left(-x_{11}\right) & \left(x_{11}+x_{21}\right)
\end{array}\right|
$$

and an easy computation shows that $\operatorname{per}(T(X))=\operatorname{per}(X)$. Observe that $T\left(E_{11}\right)$ has rank 2. It is obvious that $T(X)$ cannot be put into either of the forms (4) or (5). However, we can write $\operatorname{BTB}(X)=U X I V$ where

$$
U=\left|\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right| \quad \text { and } \quad V=\left|\begin{array}{cc}
1 & 1 \\
0 & -1
\end{array}\right| \quad .
$$

BIBLIOGRAPHY

1．A．C．Aitken，Determinants and Matrices，（5th edition）， Edinburgh，Oliver and Boyd，（1948）。

2．J．Dieudonné，Sur une généralisation du groupe orthogonal à quatre variables，Archiv der Math．， 1 ， （1948），282－287．

3．G．Frobenius，Uber die Darstellung der endlichen Gruppen durch linearer Substitutionen，Sitzungber．der Berliner Akademie， 994 －1015，（7）。

4．H．G．Jacob，Coherence invariant mappings on Kronecker products，Amer．J．Math．，Vol．77，（1955），177－189。

5．S．Kantor，Theorie der Aquivalenz von linearen $\infty^{\lambda_{-S c h a r e n ~}}$ bilinearer Formen，Sitzungber．der Munchener Akademie，（1897），367－381，（2）．

6．D．König，Theorie der Graphen，New York，Chelsea， （1950），238。

7．MoMarcus and F．May，On a theorem of I．Schur concerning matrix transformations，accepted for publication， Archiv der Math．
8.

M．Marcus and B．N．Moyls，Linear transformations on algebras of matrices，Can．J．Matho，Vol．ll，（1959）， 61－66．

9．MoMarcus and M_{\bullet} Newman，Permanents of doubly stochastic matrices，Proco of Symposia of Applied Math。，Vol．10，Amer．Math．Soco，（1960），169－174。

10．M．Marcus and R_{0} Purves，Linear transformations on algebras of matrices；the invariance of the elementary symmetric functions，Can。J．Math。， Vol．11，（1959），383－396．

11．K．Morita，Schwarz＇s lemma in a homogeneous space of higher dimensions，Japanese Jo Math．，Vol．19， （1944），45－56．

12．G．Pólya，Aufgabe 424，Archiv der Math．und Physo， Vol．20（3），271．

13．H．J．Ryser，Compound and induced matrices in combinatorial analysis，Proc．of Symposia of Applied Math．，Vol．10，Amer．Math．Soc．，（1960）， 166.

14．I．Schur，Einige Bemerkungen zur Determinantentheorie， Sitzungber．der Preussischen Akademie der Wissemschaften zu Berlin，Vol．25，（1925），454－463．

