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ABSTRACT

Let X be a square matrix of order k over a

field F, The permanent of X is given by

per(X) = % (xlc(l)x20(2)‘“xko(k))
[

wvhere o ranges over all the permutations of 1,2,...,k.
The original object of this investigation was to
characterize those linear maps which leave the permanent
unaltered ; that is, per(X) = per(T(X)), all X,
Let Mm,n denote the vector space of all matrices
having m rows and n columns with entries taken from F,
Fix an integer r, 2 < r < min(m,n). The r-th permanental
compound of X € Mm,n is defined in an analogous way to the
r~th compound of X, and is denoted by Pr(X) € M(g)’(g),
Subject to mild restrictions on F, the
following theorem can be proved, Let T be a linear map on
Mﬁ,n into itself, let Sr be a non~singular linear map on
M(¥),(§) onto itself, Suppose that Pr(T(X)) = Sr(Pr(X)),
all X ¢ Mm’n@ Then for max(m,n) > 2, we have T(X) = DPXQK
when m # n ; when m = n , we have either T(X) = DPXQK, allX,
or T(X) = DPX'QK, all X, Here P,Q are permutation matrices
and D,K are diagonal matrices, of appropriate orders. For
the case r = m =n = 2 , there is a certain non-singular
linear map B on M2,2 onto itself such that BTB(X) = UXV,
all X, or BTB(X) = UX'V, all X, Here U,V are non-singular,
The original problem arises in the case r = m = n

with Sr = 1, the unit of F,

?
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INTRODUCTION

Let X be an n~square matrix with elements

in a field F, The permanent of X is defined by

(1) per (X) =2 *10(1) *20(2) *** *no(n)

where o runs over the symmetric group of permutations

on the integers 1,2,...,n, This function makes its
appearance in certain combinatorial applications [13], and
is involved in a conjecture of van der Waerden [6], [9].
Certain formal properties of per (X) are known [1], and an
0old paper of Pdlya [12] shows that for n > 2 one cannot
multiply the elements of X by constants in any uniform way
so as to convert the permanent into the determinant. Indeed,
it can be shown that no linear operation on X ( for n > 2 )
will transform the permanent into the determinant,

The purpose of this thesis is to characterize
those linear operations on matrices which leave the
permanent unaltered., This problem and its generalizations
have been considered for the determinant function by
Frobenius [3] and Kantor [5], later by Schur [14], Morita [ll],
Dieudonne (2], Marcus and Moyls [8], Marcus and Purves [10],
Marcus and May [7]. In view of the result of Palya [12],
it does not seem likely that many of the techniques used in

the above papers can be used to investigate the permanent



(2)

function. Most of these rely heavily on certain properties
of the determinant function which are no longer wvalid for
the permanent function, For example, it is in general

false that per (AB) = per (A) per (B).
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DEFINITIONS AND NOTATION,

Let Mh,n denote the vector space of all m x n
matrices over a field F, with the natural basis of unit
matrices Ei" vhere Eij is the matrix with 1 in position
(i,j) and O elsewhere, In the sequel, r will denote a
fixed integer satisfying 2 < r < min(m,n), When dealing
with index sets, the following notation will be used,

Qn,r denotes the totality of strictly increasing sequences

of integers satisfying 1 < i1 < i2 < 00 < ir < n, As usual,

& = (il,,.,,ir) precedes B = (jl,...,jr) in the lexicographic
ordering of Qn,r’ a < B, if there is t such that it'< j_b and

ISSJS , all s < t,

Let X ¢ Mm n® We define the r-th permanental
14
compound of X, denoted by Pr(X) € M(g),(%) as follows 3

if o = (il'.‘.,ir) € Qm,r and 6 = (jlgooo,jr) € Qn’r ? then
the (©,8) entry (in the doubly lexicographic ordering) of
Pr(X) is X g, where X . is the permanent of the matrix in

M whose (s,t) entry is x;

r,r i ? (S,t = l,ooo,r)o We denote
?

J

s*%

the (m,&) unit matrix in M(¥) (g) by Em8 °
?

Let x, = (xal"'°’xan) s (0 = 1,4,.,7) , be any

vectors over F., Then the permanental product of the vectors

xa * (a = l,ooo’r) ’ denoted by xl V x2 V e © o V xr ’ iS
defined to be the (%)~ vector whose & = (jl,...,jr) e Q-
coordinate is per( X ) o (@ =1,000yr 5 B = 1,00a,r) ,

in the lexicographic ordering,
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We denote the rank of X by 2(X), the transpose of
X by X', the i'® row of X by X(;)s the §°* column of X
by X(j), and the determinant of X by det (X) . Let A be an
s x t matrix, If j > 0, k > 0, we define

. A 0

s,k
A+ oj,k = ’ ’

wvhere Oj k‘denotes the j x k zero matrix, If j = k = 0, we
?

let the matrix A + Oj k be A, If j =0, k>0, or j >0, k = 0,
14

then we let A + O. be
Jsk

A
A 0 or
k 0.
l S1 ] ] Jat

If u = (ul,..,,un) and v = (vl,...,vn) are n~-vectors,

respectively.

the symbols u _/ v and u//v will indicate respectively that

2 i WY T 0 and that u and v are linearly dependent.

If Ce yh a

’
of C and X to be the matrix Y =C * X ¢ Mﬁ a given by

and X € Mh n? Ve define the Hadamard product
4

yij = cijxij’ (i = lyooo,m ; j = l,oooyn)o
Next, let T be a linear map of Mﬁ n into itself,
, .

If T is non-~singular, the inverse of T is denoted by T—]‘°

Let P and Q be permutation matrices in Mh m and Mn

’ B

respectively., In the sequel, we shall have occasion to use maps

H obtained from T as follows :

H(X) = P T(X) 9, all X € Mh’ne
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We shall say that such a map H is the same as T to
within permutation,
In the case m = n = 2 we shall need the special

map B defined on M as follows :

2,2
B(E,.) =E.. if 1 < j
(2) ig) = By 1S3
B(E,,) = -~ E
21 21

Clearly B is non-singular, B = B"l, and

per (B(X)) = det (X)

for all X ¢ M2,2°
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RESULTS.

Our main results are contained in the
THEOREM. Let T be a linear map of Mh,n into itself, and
let r be an integer satisfying 2 < r < min (m,n), Suppose
that the ground field F contains at least r elements, and
is not of characteristic 2, Assume that there exists a

non-singular linear map Sr of M(g)’(g) into itself such that
(3) P_(T(X)) = s (P_(X))

for all X ¢ Mﬁ,n°

Then, for m + n > 4, there are permutation matrices
P e Mﬁ,m’ Q€ Mﬁ,n

K ¢ Mﬁ,n such that if m # n,

(4) ™MX) =D PX QK

and non-singular diagonal matrices D € Mh n’
4

for all X ¢ M if m = n (>2), T has the form (4) or

9n;
(5) T(X) =DP X' QK

for all X ¢ Mm,n'

For m = n = 2 , there are non~singular matrices

Uand V in M such that

2,2
(6) [BTB] (X) =UXV

for all X ¢ M2
1

(7) [BTB] (X) = U XtV

o9 OT else

for all X ¢ M2,2°
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We note here that in case r = m = n > 2 and
Sn = 1, then this result tells us that the only linear

operations which hold the permanent fixed, i.e.,

(8) per (T(X)) = per (X) , all X ¢ Mh,n ,

must be obtainable, to within taking the transpose, by
pre— and post-multiplication of X'by diagonal matrices whose
produbt has permanent 1 together with pie- and post-multiplice—

ation of X by permutéfion matrices.

We shall prove the theorem in a sequence of lemmas,

some of which may be of interest in themselves,

Lemma 1, Let X ¢ M s let Q e M be a permutation matrix,
. m,n m,m

and let D € Mm be a diagonal matrix. Then

(a) P (X)) = P (Q) P (X)
(b) P (DX) =P (P) P (X)
(c) P (X') = Pr'(X)

where Pr'(X) denotes the transpose of P (X).
Proof : First note that if x = (xpl,...,xpn), (= 1,,..,r),
are any n-vectors, then

xl v o0 v xr = X}\(l) v o V X}‘(r)
for any permutation A on 1l,...,r. In particular, if
® = (ll,ooo,lr) € Qm’r then

apy Ve VX)) = Xa@ ) Ve VR aw))

for any permutation A on il,...,ir° This is an immediate
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consequence of the fact that the permanent of a matrix is
unaltered by a row (or column) permutation, Let o be the
permutation corresponding to Q. The rows of QX are
x(d(l)),...,x(o(m))e Let e, denote the unit vector (of
appropriate length) with 1 in position k, and O elsewhere,
Now row o of Pr(Q) is eo(il) Voeeo V ec(ir)° Let

iy seeesiy be the rearrangement of il,...,ir such that

1l 2 T
) is the unit (¥)=vector with 1 in

r
G(i“ ) < U(Ia ) K oeee < U(la )o Then ed(il) Veoeo V ea(i )

:ne( )vgoovea(a

position (o(i, ),,.,,0(1 )) € Q , and O elsevhere, Thus

row ® of the product P (Q) ) (X) is X( (1 )) coe V X(a(l ))

“r
= X(o(i )) Vo V X(a(i ))? which is clearly row o of

P_(0X), Thus (a) is established.

Let &6 = (31,,..,3 ) e Q n,r* Then row & of P (X’)
is X(jl) Veeo V X(Jr)o On the other hand, row & of P_ *(X)
is column & of PI(X) which is certainly X(Jl) V oeoo (Jr).
This proves (c¢).

Let dy be the diagonal element in row k of D,

Let @ = (il,...,ir) > Qm,r‘ Now Pr(D) is again a diagonal

matrix whose diagonal element in row o is d d ocodi °
1 12 r

Part (b) follows at once from the fact that the permanent
function is linear in each row (and column). In particular,

(A, eo0d: ) X/ vV geoe VX/. vy =d, Xp. y Veoo VA, Xo. 1y,
iy i (11) (1r) i (11) i, (1r)

which is row @ of Pr(DX). The lemma is proved.
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Corollary , Let X ¢ Mm,n’ let Q ¢ Mh n be a permutation

matrix, and let D = Mi be a diagonal matrix., Then

s

(at) P (XQ) = P (X) P (Q)

(p?') P (Xp) =P (X) P_ (D)
r r r

Proof : An identical computation proves both (a') and (b'),
We prove (a').

P (XQ) =P _*(Q'x") = (P_(@') P (X'))' = P_(X) P _(Q)

Lemma 2. T is non~singular,
Proof : Suppose that T(U) = O, Then for any X € Mm,n’
we have, using (3), A
sr(Pr(U + X)) =P _(T(U + X)) =P (T(0) + (X))
=P (1(0) = 5_(2,(X),

Since Sr is non-singular,

!

(9) P (U+X) =P_(X)

holds for all X ¢ Mh n® For any permutation matrices
?

P and Q of appropriate sizes, Lemma 1 and its corollary

tell us that

P_(PUQ + PXQ) = P_(P(U + X)Q)

P (P) P (U +X) P (Q) =P (P) P (X) P (Q)

Pr(PXQ).

Now as X runs over M so does PXQ. It suffices then to
?

show that (9) implies u;, = O,
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Choose X ¢ Mﬁ,n such that n
Xy1 = 0

Xk = 1 - U 0 2<k<r

Xj == Yy y i £jand 1<i,j<r

xij = 0 s otherwise ,

Then the (1,1) entry of P_(U + X) is wuy,t" 1. On the

11
other hand, the (1,1) entry of Pr(X) is a polynomial
in t of degree at most r-2 ., Since F contains at

least r elements, we conclude that Uy, = O,

Lemma 3, Let s be an integer satisfying 1 <s < min(m,n),
Then there is a basis for M/my (n, of the form P (X),
(s),(s) s

with X ¢ Mh,n'

Proof : Let o = (il,...,ls) € Qm,s and let & = (jl,...,as)
€ Qn,s“ If X ¢ Mﬁ,n is the matrix with xitjt
(t =1,¢0.,8), and Xj5 = 0 otherwise, then PS(X) =E ge

=1,

Lemma 4., There exists a non-singular linear map 82 of

M/m ny into itself such that

(10) P,(T(X)) = Sz(Pz(X))
for all X e M_ . That is, if (3) holds for r>2,

’
it holds for r =2 as well.

Proof : Let Y = T(X), Using (3) we can write

=2 o, B

(11) Y %8 0.6 xa’ﬂ

s
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for any o £ Q and 6 £ Q 3 here we sum over all
m,r n,r

«,B
« e Qm,r , B € Qn,r o« In (11) the scalars Sgr5 ore the

entries in the matrix representation of Sr with respect
to the natural basis in M(g)’(%), ordered doubly

lexicographically., Since T is non-singular, we may write

m n
’ P,q

Xst = 2 p=1l,q=1 gs,t ypq

vhere the scalars gg’% are the entries in the matrix
?
representation of T_1 with respect to the natural basis

in Mﬁ n® Now (11) may be regarded as a polynomial identity

in the iables- .
in variables yPq

We compute that

2 X
od a,p X B
pg B P08 ==
Pq
m n |
— ayB ’ 9 X 3 X
= éﬁa,ﬁ 50,8 u=l,v=l = uy 3 xaB
ypq uv
2 X
..2 e ( s“yB Pyq ) oB
= T a,B u=l,v=1l ®,8 gu,v I ’
9 x
uv

where we take p £ @ and q € & , Now sg:g gﬁzg , the

coefficient of I XGE in the last expression of this
2 X
uv
equation, is a scalar independent of X and Y .
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We conclude that any (r-l1)-order permanental
minor of ¥ = T(X) is expressible as a fixed linear
combination of the (r~l)-order permanental minors of X,
In other words, there is a linear map R0 of M rgl),(rgl)

into itself such that

for all X ¢ Mm,n’

Since T is non-singular, we see from (3) that
-1 -1
(13) P (171(x) = sTHR (X))

for all X ¢ Mm o If we apply the above reasoning to (13),

,n
we conclude that there is a linear map R® of M(rml) (r21)
=1),(r=

into itself such that for all X ¢ Mm n?
14

-1
P__,(T77(X)) = R?(P__, (X)) .

That is, for all X ¢ M , we have
m,n

(14) P__,(X) = R%(P__,(T(X))) .
Combining (12) and (14) we have
(15) P, (X) =R°R (P _,(X))

for all X ¢ M.m n® Lemma 3, with s = r-1 , tells us that
14
o . . . .
R R° is the identity map of M(rgl),(rgl) onto itself,
Consequently R0 is non-singular in (12), and we set

Sr-l = Ro . Then, using (12), we proceed to reduce r-1 to

r-2, etc., finally obtaining (10) .
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Let A ¢ Mm If A has at most one non-zero

sn*
row (column), we shall call A a row (column) matrix.
If A is a row (column) matrix, then the number of

non~zero entries in A is denoted by ¢(4),

Lemma 5, Let A € Mﬁ,n’ and suppose that PZ(A) = 0,
Then Q(A) = 0, 1, or 2, Moreover, if A has rank 1, then
A is a row (or column) matrix 3 1if A has rank 2, then
Y0 within permutation of the rows and columns of A,

A has the form

®

+ Oy 2,n-2

(16) x B
\ Aop

where op + BA =0 , and ap - BA #40.
Proof : Assume that A # O. Suppose first that Q(A) = 1,
We may write row t of A as some multiple of a fixed vector
z = (zl,...,zn), say ¢z, (t =1,...,m), Since PZ(A) = 0,
we see that thcsziz;i =0if t # s and i # j. Since F is
not of characteristic 2, we have ctcszizj =0 if t £ s
and 1 £ j. Since A # 0, some cy # 0, and some zg # 0,
If there is j # i, for which zjo£ 0, then ¢, = 0 °
vhenever s # e

Suppose next that @(A) > 1. By a suitable

permutation we may bring A to the form



« B ay &y ° ° . &ne2 )
A w by b . . . b2
¢ 94
c, 4
A=
® ]
H

* L] [.]

]
o ®

e cm~2 dm~2 : ‘k:

where H ¢ Mm—z,n—z s Op #0 , and ap - BAr £ 0 o We have

ab, + Aa, =0 4
t t } » (t = 1,...,1’1—2)
Bbt + pat =0

ads + Bcs =0
? (S = 1,000,“1"'2) ®
Ad .+ pe_ = 0]

s S

But ap - BA £ 0. Hence c, =4 =0, (s = 14000,m~2), and

a; = bt =0, (t+ =1,...,0~2), Therefore “hij = 0 for each

element hij of H, Since p # 0, we have H = 0, Also, we note
that apAp #£ O, This proves Lemma 5,

Corollary. Let Fij = T(Eij). Then Q(Fi.)

1l or 2.
J

Proof : From (10) we see that

PZ(Fij) = SZ(PZ(Eij)) = 82(0) = 0,
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Lemma 5, together with its corollary, enables us
to describe partially the structure of the images Fij of
the unit matrices Eij o We now make the additional

assumption that m + n > 5 , In this case we are able to

obtain the exact structure of the Fi' e

Lemma 6, Q(Fij) =1,

Proof : By Lemma 2, Fij £ 0, Suppose that Q(Fij) = 2, We lose
no generality in assuming that i = j = 1 and that F has the

11
form (16). Consider Fiy (2<t <n), From P2(E11 +‘a Elt) = 0,

all o ¢ F, we have using (10), P2(F11 + 0 Flt) =0, all o ¢ F,

Since aBAp # O in (16), we see at once that ¢(Flt) = 2 if
Q(Flt) = 1 ; moreover, Flt would be zero outside of positions
(1,1), (1,2), (2,1), and (2,2), If e(F,,) = 2, then by
letting o vary over F, we see again that Flt is zero outside
these same positions, A similar argument leads to the same
conclusions concerning F_,, (2<s<m).,

We next show that F (t =1,...,n) and F

1¢° sl?
(s =1,.e0.,m), all lie in the space spanned by the following
three matrices :

a B\
o of ¥ Op2,n2 >

Gl =
\0 Bl .

G2 =10 n N 0m-—-2,n-—2 , and
a O °

G3={x o]l * Ope2,n-2 .
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Observe that

0 0 o
G4 = JA P} + Om_.z’n-z = G2 + G'3 - Gl 9

and that

F.o =G

11 1 + G4 =G, + G, ,

2 3

First let us assume that Q(Flt) = 1l. We may
further assume without loss of generality that b11b21 £ 0
and by, =b,, = 0, vhere we have set

b b

F 11 12 ¥

1t = Op-2,n-2 °

b b

21 22
Now P2(F11 + Flt) = 0 implies that bllp + b216 = 0, and
hence F, is a multiple of G,. For (bll’b21) [ (u,B)
/ (a,d) , and so (bll,bzl)//(“,l)o
Next assume that Q(Flt) = 2, We have
byyb1aPorbe # 0
and P2(F11 + Flt) = 0 shows that
byp + by 4 b1214+ bZIB =0,
Now
G + BA = by by, + byyby; = 0 .
So there are non-zero constants ¢ and d such that

A=cax, p==cB, b,, = dby; , and b,, = -db;, .
Consequently we have .

0 =D

11% + b22a + blzl + bZIB

Thus either ¢ = 4 or abl2 = Bbll’ If ¢ = 4 wve see that

(C i d) (ablz- Bbll)o
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(b1,5,b55) L (2,&)_/ (B,u) and (by;,b,,) L (p,B)_L (x,1),
whence (blz,bzz)//(ﬁ,p) and (bll,b21)//(a,l). Therefore

if e=4, Flt is a linear combination of G2 and G3°

One shows similarly that in case “blz = Bbll ’ Flt is a
linear combination of G1 and G4° Thus the matrices

Flir (+ = 1,400,n), and, similarly, the matrices Fois

(s = 1,0e0,m), all lie in the space of dimension 3 spanned
by Gl’

Lemma 2. Hence Q(Fij) = 1,

Lemmas 5 and 6 tell us that each Fij is either

GZ' and G3. But m + n - 1 >3 . We have contradicted

a row or column matrix,

Lemma 7. ¢(Fij) = 1.

Proof : We lose no generality in assuming that i = j =1
and that Fll is a row matrix with its non-zero row in
row 1, By a suitable permutation of columns we may assume

that row 1 of Fl has the form

1l
(al,az,...,a‘p,o,...,o) '}

where we have set ¢ = q(Fll) for the sake of brevity.
Note that ay # 0, (4 = L,...,0). |

If ¢ > 3, then Lemma 5 tells us at once that
Fiyo (t =1,000yn), and Fois (s = 1,e0eym), would all be
row matrices each with its non-zero row in row 1, For
P2(F11 +\Flt) = P2(Fll + Fsl) =0, Sincem +n - 1>n ,

we have contradicted Lemma 2.
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Suppose then that ¢ = 2 . We have

o
Fip = |81 22| + O3 n>
with aja, # 0, We first show that F,, is a row matrix with
its non-zero row in row 1, If not, then by permuting the last

me~1 rows of F12, wve can take F12 in the form

-

0 o0 +

by by

(17) m=2,n-2 ?

where b;b, # 0 and a;b, + ayb; = 0 o We next remark that
2 2
(18) Pz(T (X)) = SZ(Pz(T(X))) = Sz(Pz(x))

for all X ¢ Mm n® Consequently all our results concerning the
’

nature of T apply equally well to T2. In particular, TZ(Ell)

is either a row matrix or a column matrix, But

2
T (Ell) = T(a.lE11 + 32E12) = a;F;; + a,F,
2
= + 0 ®
a,b a,b m-2,0~-2
271 272

However, ala.zblb2 # 0, This confradiction shows that F12
is a row matrix lying in row 1,

Consider Fy,, (% >2), If Fi4 is not a row matrix
lying in row 1, then we may assume tha,t.Flt has the form (17),.
Again, (al,az)_L (b29b1)° From P2(F12 + Flt) = 0 we see
immediately that Fl2 has the form

o
Flo= leg o]  * Opynn s
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with e,c, # 0. So (cl,cz)_L (b2,b1). But this implies that

Fl1 is a multiple of Fll and we contradict Lemma 2,

Now again by Lemma 2, le cannot lie entirely in

row 1., Since P2(Fll + F21) = 0, we may assume that F,, has

21
the form (17). By an argument exactly analogous to that

given above, we see that each of th, (t+t = 1,e04,n), is a row

matrix lying in row 2,

There are two cases to consider :
(1) m=2,n>3,
(ii) m>3,

In case (i) there is jo > 1 such that Fljo has a non~zero
entry in column 3, Now from P2(Fljo + F2jo) = 0, we see that
the non-zero entries of szo lie in precisely the same columns
as do those of Fljo' Moreover, we have ¢(Fljo) = Q(szo) =1,
or 2. Now P,(E;, + E, + aEljo - oEzjo) =0, all 0 ¢ F,
Consequently PZ(F‘l’1 + Fyy + oFljo - onjo) =0, all 0 ¢ F,

But this contradicts Lemma 5., In case (ii), note that
P2(E11 + By + 0E31) = 0, all o, and so we must have

P2(F11 + Fyy + aFBl) = 0, all o, By Lemma 5, this implies that

2ll the non-~zero entries of F31 are in its first two rows.
This contradicts Lemma 2 once again, Thus ¢ = 1,
Lemma 7 tells us that for m + n 2 5, we can write

T(Eij) = ¢ By Lemma 2, ¢ 5 # 0, and moreover,

i3titye e
(i,j) # (s,t) implies that (i',j') # (s',1'). Ve set
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it = o(i,j) and j' = e(i,j)
so that T(Ei:]) = cijEO(i,j)m(i,j)"
Lemma 8., (Let m + n > 54 If m £ n , then there are

permutation matrices P ¢ Mm,m and Q € Mn,n , and a matrix

C = (cij) e M with each ¢5; # 0 , such that for all X ¢ M

(19) T(X) = C * (PXQ)
If m =n (>2) , then T has the form (19) or else
(20) T(X) = C * (PX*Q)

forallXeano

Proof : We may assume without loss of generality that m <n ,
Now by a suitable permutation of the rows and columns, we may
take 0(1,1) = ©(1,1) = 1. Then P2( E, +E,, ) # 0 shows

that 1>2( Fi, + F22) # 0, and so 0(2,2) >1, w(2,2) >1,

By a suitable permutation of the last m = 1 rows and the
last n - 1 columns we may take o(2,2) = 0(2,2) =2 , In a
similar way, the conditions P2( Ell + E33 ) # 0 and

P,( E,, + Eyq ) £ 0 show that o0(3,3) > 2 and w(3,3) > 2.

Proceeding in this way, it is clear that we may assume that
o(k,k) = o(k,k) =k ,(k = 1,e00,m),

Pix a<m , B<m, so that « £ B ., Now from
P2( E, *+ EaB) = 0 we see that o(a,B) = a« or w(a,B) = a .

Also PZ(EBB + Eas) = 0 implies o(a,B) = B or w(x,B) =B »

Therefore we must have either
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(21) o(x,B)
(22) o(ax,B) = B and w(x,B) = « ,

« and o(x,B) =B , or

for the non ~ singularity of T shows that we cannot have
U(“,B) = @(“,B) ®

Suppose first that (21) holds. Let 6§ <n , 6 £ a ,
8§ # B o From Pz(EaB + E“G) = 0 we have o(a,8) = a or

o(a,8) = B o From PZ(E + Ea&) = 0 we have o(x,8) = « or

ax
w(06,8) = a o It follows that o(x,8) = « , If in addition we
have § < m , then Pz(Eaa + Eﬁé) = 0 shows that o(x,8) = &
or (0(“’6) = 6 ° Hence a)(a,S) = 6 Iy

Let k # « and consider Byg o From P2(Ea,ﬂ + EkB) =0
we conclude that o(k,B) = « or w(k,B) = B . But o(k,B) # «
because o(a,t) =« , (t+ = 1,000yn);and T is non ~ singular,
Hence o(k,B) = B o Also P2(Ekk + EkB) = 0 shows that
o(k,B) = k or w(k,B) = k , Hence o(k,B) =k , o(k,B) =B »

If we repeat this argument now with k replacing « in (21)
we conclude that

(23) O(i,:j) = i ’ w(i,j) = j ) (i = 1,ooo,m;j = l,ooc,m)o

Moreover, if j > m , the non - singularity of T ensures that
o(i,j) > m . Now we already know that o(i,j) = i for such j .
Furthermore, PZ(Esj + Etj) = 0 shows that w(s,j) = o(t,j)

Thus if (21) holds, T may be reduced to the form (19) by a
suitable permutation:of the last n - m columns of X .

Suppose next that (22) holds. We shall show that
actually m = n and that

(24) o(i,j) =3 , 0(i,j) =i, (i = lyeeesmjj = 1yeeo,m)s
From PZ(EaB + Eak) = 0 we have o(x,k) = B or

w(x,k) = « , Also P2(E + Eak) = 0 shows that o(a,k) = @ or

ax
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o(a,k) = « , It follows that w(a,k) = a , (k = 1,...,0) ,
because « £ B , Thus m = n , for T maps the n - dimensional
space spanned by Eat , (t =1,...,n) , into the space spanned

by E_, » (s =1,04eom) , an m - dimensional space, and m < n o
We conclude also, from P2(Eak + Ekk) =0 , that

o(a,k) = k or w(x,k) = k o Since w(x,k) = « , it follows that
o(a,k) =k , (k = 1,04.om) , which establishes (24)., So T
has the form (20).

Lemma 9, e(C) =1,
Proof : Let 1 <i<s<m,1<j<t<n, If (19) holds,

choose X so that PXQ = Eij + Eit - Esj + Est ; if (20) holds,

choose X so that PX'Q has this same form. We can certainly
do this because T is non -~ singular. In either case, PZ(X)

= PZ(PXQ) = 0, by Lemma 1 together with its corollary,

Therefore 0 = PZ(T(X)) = Pz(c. E;; + c; B, - E

13815 sj * CstBst)?
and so cijcst - citcjs = 0 o Thus each second order

csj

subdeterminant of C vanishes, We recall that each cij £0 .

U81?g Lemma 9 we can write cij = dikj ’
(i = l,ooo,m;j = 1,000’n)° We set D = dia.g(dl,,..,dm) 2 Mm,m ®
and K = diag(kl,...,kn) € Mﬁ,n » Using Lemma 8 we can write

(4) for m # n and (4) or (5) for m = n (>2) . The proof of
the theorem is complete for the case m + n>5 .

Suppose that m = n = 2 , Then (3) reduces to the
equation

(25) per(T(X)) = a, per(X)
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for all X ¢ M2 5 where & is some nonzero element of F,
?

Using (2) together with (25) we see that

det[BTB(X)] = per[B2TB(X)] = per[TB(X)]

= a.per[B(X)] = a.det[X]

for all X ¢ M Thus BTB preserves the rank of each matrix

1

2,2 °

in M, , o Moreover, (BTB)"'l = BT" "B exists and has the same
14

pfoperty. Consequently we may appeal to a theorem of
- Jacob [4] to conclude that BTB has the desired form,
The proof of the theorem is complete,

We observe that if m # n , we have

Pr(T(X)) = Pr(DPXQK) = Pr(D)Pr(P)Pr(X)Pr(Q)Pr(K)
= S, (P (X))

for all X ¢ Mh n It follows from Lemma 3 that

4
Sr(Y) = Pr(D)Pr(P)YPr(Q)Pr(K) = D P YQ K
for all Y ¢ M(¥)’(§) , and so Sr has the same form as T .

Similarly, if m = n > 2 , and T has the form (4), then
Sr has the above form, Also, if m = n > 2 , and T has the
form (5), then

— 1
s.(Y) =D P Y'QK_

for all Y ¢ M(%) (%) .
H

In conclusion, we present an example to show that
neither (4) nor (5) need hold if r = m = n = 2, We put
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T(E E,, + E

12 22 21

T(E),) = Byy + Epy

T(E = E,, + E

21) 12 22

T(EZZ) = - E12

Then for any X ¢ M22 we have

X X

11 *12 (xy) + %) (%)) + x5 + x5y = x,5)

T
X

X2 (= x15) (x5; + x5)

22
and an easy computation shows that per(T(X)) = per(X).
Observe that T(Ell) has rank 2. It is obvious that T(X)

cannot be put into either of the forms (4) or (5). However,
we can write BTB(X) = UX'V where

1 1 1 1
U =

and V =

1 0
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