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ABSTRACT 

Let X be a square matrix of order k over a 
f i e l d F. The permanent of X i s given by 

per(X) . ^ U i o ( l ) x 2 o ( 2 ) - " x k a ( k ) ) 

a 

where a ranges over a l l the permutations of l,2,...,k. 
The o r i g i n a l o b j e c t of t h i s i n v e s t i g a t i o n was to 
c h a r a c t e r i z e those l i n e a r maps which leave the permanent 
u n a l t e r e d ; t h a t i s , per(X) = p e r ( T ( X ) ) , a l l X. 

Let M denote the v e c t o r space of a l l matrices m,n 
having m rows and n columns with e n t r i e s taken from F, 
F i x an i n t e g e r r , 2 < r < min(m,n). The r - t h permanental 
compound of X e M i s d e f i n e d i n an analogous way to the 

m,n 
r - t h compound of X, and i s denoted by P_(X) e M̂ m̂  (_;) • 

Subject to m i l d r e s t r i c t i o n s on F, the 
f o l l o w i n g theorem can be proved. Let T be a l i n e a r map on M i n t o i t s e l f , l e t S be a non-singular l i n e a r map on m, n * r 
M^m) (TL) onto i t s e l f . Suppose t h a t P r ( T ( X ) ) = S r ( P _ ( X ) ) f 

a l l X e M_ _« Then f o r max(m,n) > 2, we have T(X) = DPXQK 
when m j£ n ; when m = n , we have e i t h e r T(X) = DPXQK, a l l X , 
or T(X) ss DPX'QK, a l l X. Here P,Q are permutation matrices 
and D,K are di a g o n a l m a t r i c e s , of ap p r o p r i a t e orders. For 
the case r = m = n = 2 , there i s a c e r t a i n non—singular 
l i n e a r map B on 2 onto i t s e l f such t h a t BTB(X) = UXV, 
a l l X, or BTB(X) = ' u X « V , a l l X. Here U,V are non-singular* 

The o r i g i n a l problem a r i s e s i n the case r = m = n , 
with S =1, the u n i t of F. r 



hereby c e r t i f y that t h i s abstract i s satisfactory,. 
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INTRODUCTION 

Let X be an n—square matrix with elements 

i n a f i e l d F. The permanent of X i s defined by 

(1) per (X) = | x l a ( l ) x 2 a ( 2 ) ... x n a ( n ) 

where a runs over the symmetric group of permutations 

on the integers l,2,...,n. This function makes i t s 

appearance i n certain combinatorial applications [ l 3 ] , and 

i s involved i n a conjecture of van der Waerden [6], [9]. 

Certain formal properties of per (X) are known [ l ] , and an 

old paper of Polya [12] shows that for n > 2 one cannot 

multiply the elements of X by constants i n any uniform way 

so as to convert the permanent into the determinant. Indeed, 

i t can be shown that no l i n e a r operation on X ( for n > 2 ) 

w i l l transform the permanent into the determinant. 

The purpose of th i s thesis i s to characterize 

those l i n e a r operations on matrices which leave the 

permanent unaltered. This problem and i t s generalizations 

have been considered f o r the determinant function by 

Probenius [3] and Kantor [5], l a t e r by Schur [14], Morita [ l l ] , 

Dieudonne [ 2 ] p Marcus and Moyls [8], Marcus and Purves [ l O ] , 

Marcus and May [7]. In view of the res u l t of Polya [ l 2 ] f 

i t does not seem l i k e l y that many of the techniques used i n 

the above papers can be used to investigate the permanent 



(2) 

function. Most of these r e l y heavily on certain properties 

of the determinant function which are no longer v a l i d for 

the permanent function. For example, i t i s i n general 

f a l s e that per (AB) *= per (A) per (B). 



(3) 

DEFINITIONS AND NOTATION0 

Let M denote the vector space of a l l m x n m,n 
matrices over a f i e l d F 9 with the natural basis of unit 
matrices E. ., where E. . i s the matrix with 1 i n position 
( i , j ) and 0 elsewhere. In the sequel, r w i l l denote a 
fixed integer s a t i s f y i n g 2 < r < min(m,n). When dealing 
with index sets, the following notation w i l l be used, 
Q denotes the t o t a l i t y of s t r i c t l y increasing sequences n,r 
of integers s a t i s f y i n g 1 < < ± 2 < ,,, < i r < n. As usual, 
a = ( i 1 , , , , , i r ) precedes P = ( j 1 » » » » » 3 r . ) i n "the lexicographic 
ordering of Qn r, <x < P, i f there i s t such that i ^ < and 
i < i , a l l s < t . s — •'s ' 

Let X e M „ We define the r-th permanental m,n 
compound of X, denoted by P r(X) e M/m̂  ^nj as follows : 
i f co = ( i j ^ . . . , ^ ) e Qm^r and 6 = ( j l f . . . , j r ) e Q n > r , then 
the (o),6) entry ( i n the doubly lexicographic ordering) of 
P r(X) i s X^g, where X^g i s the permanent of the matrix i n 
M whose (s,t) entry i s x. . , (s,t = l , , . , , r ) . We denote 

r ' r s 3 t 
the (<o,6) unit matrix i n M̂ m̂  ^n^ by E ^ 0 

Let x a = ( x a l , . . . ,x a n) , (a = 1, <, „ . ,r) , be any 
vectors over F, Then the permanental product of the vectors 
x a t (a = l , . . , , r ) , denoted by V x 2 V , , , V x r , i s 
defined to be the (?)-* vector whose 6 = (j-, , •. • ,j_) e Q„ ,. 

x r n $ r 
coordinate i s per( x„. ) » (a = l , , , . , r ; p = l , , . . , r ) , 
i n the lexicographic ordering,, 
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We denote the rank of X by Q(X), the transpose of 

X by X', the row of X by X(^)> "kne 3̂ ** column of X 

by X^^, and the determinant of X by det (X) 0 Let A be an 

s x t matrix. If j > 0, k > 0, we define 

A 0 
A + 0 s,k 

0. . 0. . 

where 0. , denotes the j x k zero matrix 0 I f j s k = 0, ve 
3 

l e t the matrix A + 0. , be A, If j = 0, k > 0, or j > 0, k = 0, 
3 » K 

© 

then we l e t A + 0. , be 
3 » K 

A s,k or A 
0. . 3»t 

respectively* 

If u = (u^,.,.,^) and v = ( v ^ . , . , ^ ) are n-vectors, 

the symbols u _j£ v and u//v w i l l indicate respectively that 

<E ^ VLjY± ^ ® a n < * ^kat u a n < * v a r e l i n e a r l y dependent. 
I f C e M and X c M , we define the Hadamard product 

:m,n m,n' 
of C and X to be the matrix X = C * X e M „ given by 

m, n 
y i j = C i 3 X i 3 * ^ ~ 1 » " , » m ' J = l f * f n ) » 

Next, l e t T be a l i n e a r map of M into i t s e l f , * r m,n 
If T i s non-singular, the inverse of T i s denoted by T"**„ 

Let P and Q be permutation matrices i n M and M. 
c m,m n,n 

respectively. In the sequel, we sh a l l have occasion to use maps 

H obtained from T as follows : 
H(X) = P T(X) Q , a l l X e M ^ . 
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We sh a l l say that such a map H i s the same as T to 

within permutation. 

In the case m = n = 2 we s h a l l need the special 

map B defined on M2 2
 a s follows : 

B(E..) = E.. i f i < j 
U ) B ( E 2 1 > - - E 2 1 

Clearly B i s non-singular, B = B***t and 

per (B(X)) m det (X) 

for a l l X c M 2 2 < > 
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RESULTS. 

Our main results are contained i n the 

THEOREM. Let T be a l i n e a r map of M into i t s e l f , and 
m,n ' 

l e t r be an integer s a t i s f y i n g 2 < r < min (m,n)0 Suppose 

that the ground f i e l d F contains at least r elements, and 

i s not of char a c t e r i s t i c 2 „ Assume that there exists a 

non—singular l i n e a r map S y of M̂ mj ^nj into i t s e l f such that 

( 3 ) P r(T(X)) . S r(P r(X)) 

for a l l X e M « m,n 
Then, for m + n > 4, there are permutation matrices 

P e M , Q e M and non-singular diagonal matrices B e M , m,mf n,n ° ° m,m* 
K e M such that i f m i n, n,n * 
(4) T(X) = D P X Q K 

for a l l X e M : i f m = n ( > 2 ) , T has the form (4) or m,n 
(5) T(X) = D P X» Q K 

for a l l X e Mm . 
m,n 

For m ss n = 2 , there are non-singular matrices 

U and V i n j such that 
( 6 ) [BTB] (X) = U X V 

for a l l X e M2 2» o r else 

( 7 ) [BTB] (X) = U X* V 

for a l l X c M 2 ^ 2 » 
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We note here that i n case r = m = n > 2 and 

S n = 1, then t h i s r e s u l t t e l l s us that the only l i n e a r 

operations which hold the permanent fixed, i . e . , 

(8) per (T(X)) = per (X) , a l l X e *! „ , 
n, n 

must be obtainable, to within taking the transpose, by 

pre- and post-multiplication of X by diagonal matrices whose 

product has permanent 1 together with pre- and post-multipli 

ation of X by permutation matrices© 

We s h a l l prove the theorem i n a sequence of lemmas, 

some of which may be of inter e s t i n themselves. 

Lemma 1. Let X c M , l e t Q e M be a permutation matrix, 
m,n* m,m 

and l e t D c M be a diagonal matrix. Then m,m 
(a) P r (QX) = P r (Q) P r (X) 

(b) P r (DX) = P r (D) P r (X) 

(c) P r (X«) = P r'(X) 
where P *(X) denotes the transpose of P„ (X). r r 
Proof : F i r s t note that i f x^ « (x^^» • • • »X|in^» (p- ~ 1»»»«»*) 

are any n-vectors, then 

x x V ... V x r = x x ( l ) V ... V x x ( r ) 

f o r any permutation X on l , . . . , r . In p a r t i c u l a r , i f 

o> = ( i 1 , . . . , i r ) c Q then 

x ( i x ) v — v x U r ) = x ( x ( i 1 ) ) v • • • v x ( x ( i r ) ) 
for any permutation X on i^»...,i r < s This i s an immediate 
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consequence of the fact that the permanent of a matrix i s 

unaltered by a row (or column) permutation^ Let a be the 

permutation corresponding to Q. The rows of QX are 

X(o-(l))'* , , , X(o(m))° e k ^ e n o ^ e ^ e ^ i i * vector (of 
appropriate length) with 1 i n position k, and 0 elsewhere. 
Now row co of P r(Q) i s e 0 ^ j V V e ^ ^ )© Let 

i / r > « » » » i / v
 D e the rearrangement of i , , . . . , i such that 

X r 
* ( i ) < fl(i ) < . . . < o ( i 0 ). Then . t f ( } V ... V e o ( . } 

w e / . \ V . . # V e / . \ i s the unit (r)-vector with 1 i n o(xa ) o U a ) 
1 r 

position (a(i„ ),..»,a(i„ )) e Q „ and 0 elsewhere. Thus 
row co of the product P r(Q) P r(X) i s x ( a ( £ ) ) V ••• v X ( o ( i 

a l a 

& X ^ o ^ V ... Y X ( c ( ^ ))» which i s c l e a r l y row co of 
1 r 

P (QX) 0 Thus (a) i s established,, r 
Let 6 = ( j l f . . . , 3 r ) e Q Q > r . Then row 6 of P r ( X » ) 

i s X ^ l ^ V ... V X^r^„ On the other hand, row 6 of P 8(X) 
r 

i s column & of P (X) which i s ce r t a i n l y X ^ l ^ V V X ^ r * 
r 

This proves ( c ) . 

Let d-̂  be the diagonal element i n row k of D 0 

Let co ss ( i , , . . . , i ) e Q . Now P ( D ) i s again a diagonal 
i. T m,r r 

matrix whose diagonal element i n row co i s d. d. «..d. • 
xl x2 r 

Part (b) follows at once from the fact that the permanent 

function i s li n e a r i n each row (and column). In p a r t i c u l a r , 

which i s row co of P r(DX). The lemma i s proved. 
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Corollary . Let X e M , l e t Q e M be a permutation J m,n' n,n 
matrix, and l e t D e M be a diagonal matrix. Then * n,n 
(a»)' P r UQ) = P r U) P r (Q) 
(b«) P • (XD) = P (X) P^ (D) r r r 
Proof : An i d e n t i c a l computation proves both (a 1) and (b*). 

We prove ( a 1 ) . 
P r(XQ) = P r«(Q*X») = (P r(Q«) P r(X'))» = P r(X) P r(Q) 

Lemma 2. T i s non-singular. 

Proof : Suppose that T(U) = 0. Then for any X e M , 

ve have, using (3), 
S (P (U + X)) = P (T(U + X)) = P (T(U) + T(X)) r r r r 

= P r(T(X)) = S r ( P r ( X ) ) . 

Since S i s non-singular, 

(9) P r(U + X) = P r(X) 

holds for a l l X e M » For any permutation matrices 
m,n 

P and Q of appropriate sizes, Lemma 1 and i t s cor o l l a r y 

t e l l us that 

Pr(PUQ + PXQ) = P r(P(U + X)Q) 

= P r(P) P r(U + X) P r(Q) = P r(P) P r(X) P r(Q) 

=P r(PXQ). 

Now as X runs over M so does PXQ. It suffi c e s then to 
m,n 

show that (9) implies u,, =0. 
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Choose X e M such that m,n 
x u = 0 

xkk = t ~ u k k ' 2 ^ k ^ r  

x i j = ~ u i j » 1 ^ 0 a n d 1 < i»0 < r 

x. . s 0 , otherwise . 

Then the ( l , l ) entry of P r(U + X) i s u^^t*"" 1. On the 

other hand, the ( l , l ) entry of P r(X) i s a polynomial 

i n t of degree at most r-2 e Since P contains at 

least r elements, we conclude that u-^ = 0, 

Lemma 3. Let s be an integer s a t i s f y i n g 1 < s < min(m 

Then there i s a basis for M̂ m̂  ^nj of the form P g(X), 

with X e M . 
m,n 

Proof : Let co = ( i . , . . . , i ) e Q and l e t S = (j-i»***>j 
x s ni y s x 

e Q o If X e M i s the matrix with x. . =1, *n,s° m,n 1 t 3 i , 
(t = l , . . . , s ) , and x.. = 0 otherwise, then P (X) = E 

' I J s coo 

Lemma 4. There exists a non-singular linear map S 2 of 

M̂ m̂  ^n^ into i t s e l f such that 

(10) P 2(T(X)) = S 2(P 2(X)) 

for a l l X e M . That i s , i f (3) holds for r > 2 , m,n 
i t holds for r = 2 as well. 

Proof : Let I = T(X), Using (3) we can write 

Yto6 = ̂  <x,p X a , p 
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for any co e Q and 6 e Q ; here we sum over a l l m, r n, r ' 
oc 8 « e Q t P e Q • In ( l l ) the scalars s are the Km,r ' *n,r x to,o 

entries i n the matrix representation of S^ with respect 

to the natural basis i n M^raj ^ , ordered doubly 

lexicographically. Since T i s non-singular, we may write 
, m , n 

X m ^ ff1^ V 
st p=l,q=l 6 s , t "'pq 

where the scalars g^'+ are the entries i n the matrix 

representation of T"̂ " with respect to the natural basis 

i n M . Now ( l l ) may be regarded as a polynomial i d e n t i t y in f xk 
i n the variables y_ . 

pq. 
¥e compute that 

3 y
P q a ' p ^ T S T pq 

< a,0 < m » n > x U „ f l 

a, 8 co,6 u=l,v=l — - — — r X-* r ' f 9 y 9 x 17 pq uv 

- ^ a,6 u=l,v=l v sco,6 gu,v ' » 
* xuv 

where we take p e co and q e & » Now s a ' f g?':!: , the 
^ co,o u,v 

3 X 
co e f f i c i e n t of aB i n the l a s t expression of th i s 

h x 
uv 

equation, i s a scalar independent of X and Y . 
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We conclude that any (r-l)-order permanental 

minor of X = T(X) i s expressible as a fixed l i n e a r 

combination of the (r-l)-order permanental minors of X. 

In other words, there i s a l i n e a r map RQ of M^m-jj ( r ^ l ) 

into i t s e l f such that 

(12) P r ^ 1 ( T ( X ) ) = E O ( P R _ 1 ( X ) ) 

for a l l X e M . 
m,n 

Since T i s non-singular, we see from (3) that 

(13) P J . (T- 1 (X)) = s; 1(P r (x)) 

for a l l X c M « If we apply the above reasoning to (13), m,n 
we conclude that there i s a l i n e a r map B° of ^ ( r 2 i ) ( r - l ) 
into i t s e l f such that for a l l X e M , 

m,n' 
p^er ^ x ) ) = R ^ P ^ U ) ) . 

That i s , for a l l X c M , we have ' m,n 

(14) P R _ X ( X ) = R 0 ( P r _ _ 1 ( T ( X ) ) ) . 

Combining (12) and (14) we have 

(15) P
r _ l ( X ) = E ° V P r - l ( X ) ) 

for a l l X e M . Lemma 3, with s = r - l , t e l l s us that m,n 
R°R Q i s the i d e n t i t y map of M^rn^j ( r 2 i ) on^° i t s e l f . 

Consequently R Q i s non-singular i n (12), and we set 

S = R , Then, using (12), we proceed to reduce r - l to 

r-2, etc., f i n a l l y obtaining (10) . 
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Let A e M • If A has at most one non-zero m,n 
row (column), we s h a l l c a l l A a row (column) matrix* 

If A i s a row (column) matrix, then the number of 

non-zero entries i n A i s denoted by <p(A)e 

Lemma 5« Let A e M , and suppose that P~(A) *= 0« 

Then 6(A) =0, 1, or 2 # Moreover, i f A has rank 1, then 

A i s a row (or column) matrix j i f A has rank 2, then 

to within permutation of the rows and columns of A, 

A has the form 

+ °m-2,n-2 » 
(16) \ a p 

X jx 

where oca. + p* = 0 t and <Xp » pX £ 0. 

Proof : Assume that A j£ 0. Suppose f i r s t that 6(A) = 1<> 

We may write row t of A as some multiple of a fixed vector 

z r= ( z l t . . . , z n ) , say c^z, (t = l,...,m). Since P 2(A) = °» 

we see that 2c,c z. z . = 0 i f t ^ s and i j£ j . Since P i s x s x 3 
not of cha r a c t e r i s t i c 2, we have c.c z.z. = 0 i f t j£ s 

x s 1 J 
and i £ j . Since A j£ 0, some c^ £ 0, and some z^ ^ 0, 

o o 
If there i s j ^ i for which z. j£ 0, then c = 0 

0 3 s 
whenever S jc X © o 

Suppose next that 6(A) > 1. By a suitable 

permutation we may bring A to the form 
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A 

0 . 

d, 

b l b2 

Cm-2 dm-2 

H 

"n-2 

n~2 

where H e M 0 „ » au ?= 0 , and au - 0X j£ 0 0 ¥e have 

0 b , 

+ Xa, = 0~\ 

+ ua^ = 0 J 
(t = l,...,n-2) 

ad + B e SB 0 s s 
Xd s + ̂ c g . 0 

t ( s = l y . . . ,m—2) 

But au - 8X a= 0. Hence c ss d = 0, (s s= l,...,m~2)» and 
s s 

a. =s b . = 0, (t = l,...,n-2). Therefore nn. . = 0 for each 

element h. . of H, Since u £ 0 t we have H = 0. Also, we note 
X J 

that aBXu £ 0* This proves Lemma 5. 
Corollary. Let P., = T(E. ). Then 6(F.,) = 1 or 2. 

X J X J X J 

Proof : From (10) we see that 
P2<V =S2<P2<V> = S 2 < ° > " • • 
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Lemma 5, together with i t s c o r o l l a r y , enables us 
to describe p a r t i a l l y the structure of the images F ^ of 
the unit matrices E.. . We now make the additional 

3 
assumption that m + n > 5 • In this case we are able to 
obtain the exact structure of the F ^ . 
Lemma 6. Q(F..) = 1 » 

Proof : By Lemma 2, F ^ £ 0. Suppose that S ( F
i ; j ) = 2. We lose 

no generality i n assuming that i = j = 1 and that F ^ has the 
form (16). Consider F l t , (2 < t < n). From I ^ ^ l l + ° E l t ^ = 

a l l a e F, we have using (10), I ^ ^ l l + ° F l t ^ = °* a 1 1 0 E F 

Since cxBAu ^ 0 i n (16), we see at once that <p(F^^) = 2 i f 
e(F2^.) = 1 > moreover, F̂ .̂ would be zero outside of positions 
(1,1), (1,2), (2,1), and (2,2). If 6 ( F l t ) = 2, then by 
l e t t i n g o vary over F, we see again that F ^ i s zero outside 
these same positions, A similar argument leads to the same 
conclusions concerning (2 < s < m) . 

We next show that (t = l,...,n) and P g^» 

(s = l,...,m), a l l l i e i n the space spanned by the following 
three matrices : 

G l " 
a B 

0 0 4- 0 m-2,n-2 * 

G2 " 
0 B 

0 u 

a 0 

+ 0 m—2,n~2 , and 

+ 0 m—2,n-2 
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Observe that 

G„ s 

and that 

11 

0 0 
X u 

G l + G4 

m~2,n-2 

G2 + G 3 * 

G2 + G3 "* °1 ' 

F i r s t l e t us assume that 6 ( F ^ ) = 1, We may 

further assume without loss of generality that b ^ j ^ l ̂  ® 

sa 0, where we have set and 8 8 b
2 2 

I t 
b l l b12 
b21 b22 

m-2,n-2 * 

Now P 2^ F11 + P l t ^ ~ 0 i m P l i e s t h a t b n a + b 2 i ^ = °* a n d 

hence F ^ i s a multiple of G^. For ( D n » b
2 l ^ _J_ (p»P) 

J _ (a,A) , and so ( b l l t b 2 1 ) / / ( * , X ) . 

Next assume that 6(F^^.) = 2» We have 

b l l b 1 2 b 2 1 b 2 2 * 0 

and P 2^ P11 + F l t ^ = 0 s h o w s t h a t 

b l l ^ + b 2 2 a + b 1 2 X + b 2 1 P " 0 • 
Now 

au + pX = b n b 2 2 + b 1 2 b 2 1 = 0 . 

So there are non-zero constants c and d such that 

X s= c<x t u ss —cp t b 2 ^ = db^j , and b 2 2 = — d b ^ © 

Consequently we have 

0 = b l l ( i + b22<x + b l nX + b^,p m (c - d ) ( a b 1 0 - pb., 1) 

Thus either c = d or ab 12 

"12 
= Pb 11' 

21 r ~ v" ' x 12 ^"11 
If c = d we see that 
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( b 1 2 , b 2 2 ) ^ {X,*)J_ and 0> n,l> 2 1).jl ( u . B ) ^ (a,A), 

whence (b 1 2,b 2 2)//(8,a) and ( b 1 1 , b 2 1 ) / / ( a , X ) . Therefore 

i f c SE d , F̂ .̂ i s a lin e a r combination of G 2 and 

One shows s i m i l a r l y that i n case a b ^ 2 = Pt>̂ ^ » i s a 

linea r combination of G^ and G^0 Thus the matrices 
F 1 V ^ =

 x f » * n ) t and, s i m i l a r l y , the matrices 

(s = l,...,m), a l l l i e i n the space of dimension 3 spanned 

by G^f G 2, and G^, But m + n — 1 > 3 . We have contradicted 

Lemma 2, Hence Q(F..) = 1. 
«i 

Lemmas 5 and 6 t e l l us that each F. . i s either 

a row or column matrix. 

Lemma 7. cp(F. .) = 1. 

Proof : We lose no generality i n assuming that i = j = 1 

and that F ^ i s a row matrix with i t s non-zero row i n 

row 1. By a suitable permutation of columns we may assume 

that row 1 of F-^ has the form 

(a^,a2,••.,a^,0,•..,0) , 

where we have set 9 = <p(F1]L) for the sake of brevity. 

Note that a ^ a s O , (t = l,...,q>). 

If <p > 3, then Lemma 5 t e l l s us at once that 

F l t , (t = l , . . . , n ) , and F g l > (s = l,...,m), would a l l be 

row matrices each with i t s non-zero row i n row 1. For 
P2* F11 + *W = P2* F11 + F s l * = G # S i n c e m + n - 1 > n , 
we have contradicted Lemma 2. 
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Suppose then that q> = 2 0 We have 

*11 | a l a 2 | + °m-l,n~2 

with a^a 2 j£ 0» We f i r s t show that F^ 2
 x s a r o v matrix with 

i t s non-zero row i n row 1. If not, then by permuting the l a s t 

m — 1 rows of F ^ 2 9 we can take F^ 2 i n the form 

(17) 
1 b2 

+ 0 m~2,n-2 * 

where b^b 2 s£ 0 and a^b 2 + &2b^ 

(18) 

We next remark that 

P 2(T 2(X)) = S 2(P 2(T(X))) « S 2(P 2(X)) 

for a l l X e M « Consequently a l l our results concerning the m, n 
2 2 nature of T apply equally well to T # In p a r t i c u l a r , T (E-Q) 

i s either a row matrix or a column matrix. But 

T 2(E 1 ; L) = T ( a 1 E 1 1 + a 0 E 1 0 ) « a ^ . , + a 0F 

a 2 b 1 

"1"11 
a l a 2 
a2 b2 

+ 

k2"12 

G 

Til 2^12 

m— 2,n—-2 

However, a^a 2b^b 2 jc* 0. This contradiction shows that F^ 2 

i s a row matrix l y i n g i n row 1«, 

Consider F ^ , (t > 2). If F ^ i s not a row matrix 

lying i n row 1, then we may assume that F ^ has the form (17)«, 

Again, ( a l f a 2 ) _ / ( b ^ b ^ ) . From F 2^ F12 + P l t ^ = 0 w e s e e 

immediately that F^ 2 has the form 

0 F -*12 "" 
© 
+ m«l,n-2 ' 
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with £ 0. So ( c - ^ , C 2 ) _ ^ (b2»b^), ^ 0 i X S implies that 

^ s a multiple of and we contradict Lemma 2. 

Now again by Lemma 2, F2^ cannot l i e e n t i r e l y i n 

row 1. Since ^ ^ l l + F21^ 1 5 ^* W e m a ^ a s s u m e "t n a"t ^21 b a s 

the form (17). By an argument exactly analogous to that 
given above, we see that each of F ^ , (t = l , . . . , n ) , i s a row 
matrix lying i n row 2. 

There are two cases to consider : 

(i) m ss 2 , n > 3 , 
( i i ) m > 3 . 

In case ( i ) there i s j > 1 such that F.. has a non—zero 
° 3o 

entry i n column 3. Now from P 9(F,. + F_. ) = 0, we see that 
3o 3o 

the non-zero entries of F-. l i e i n precisely the same columns 
^ Jo 

as do those of F, . • Moreover, we have <p(F. . ) = <p(F_ . ) m 1, 
A J o 3o ^ 3o 

or 2. Now P 2( E11 + E21 + ° Elj ° E2j ^ = 0 , a 1 1 ° e F * 
Consequently P 2^ F11 + F21 + " P l j * o F 2 j ) = °» a 1 1 0 e F « 
But this contradicts Lemma 5. In case ( i i ) , note that 

F2^ E11 + E21 + ° E31^ = °' a l i °' 8 , 1 1 ( 1 s 0 w e m u s " t n a v e  

F2^ F11 + F21 + ° F31^ = ^' a 1 1 0 0 ^ ^ e m m a 5» this implies that 
a l l the non-zero entries of F ^ are i n i t s f i r s t two rows. 
This contradicts Lemma 2 once again. Thus q> = 1. 

Lemma 7 t e l l s us that for m + n ̂  5, we can write 

T(E..) s= c..E... t o By Lemma 2, c. . »= 0, and moreover, 

( i , j ) (s,t) implies that ( i S j 1 ) £ ( s ' , t ' ) . We set 
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i * = 0(1,3) and j 1 m w(i,j) 

so that T(E..) s c .E /. .\ 1. . \© 

Lemma 8. (Let m + n > 5.) If m n , then there are 

permutation matrices P e M and Q e M , and a matrix r m,m n,n 
C = (c..) e M with each c.. / 0 . such that for a l l X e M 

xo m,n m » n 

(19) T(X) * C * (PXQ) . 

I f m = n (>2) , then T has the form (19) or else 

(20) T(X) = C * (PX'Q) 

for a l l X E Mm . 
m,n 

Proof : ¥e may assume without loss of generality that m < n 0 

Now by a suitable permutation of the rows and columns, we may 
take o ( l , l ) = c o(l,l) = 1 . Then P 2( E n + E 2 2 ) ^ 0 shows 
that P 2( F 1 ; L + P 2 2) j£ 0 , and so o(2,2) > 1 , to(2,2) > 1 «, 

By a suitable permutation of the l a s t m - 1 rows and the 
l a s t n — 1 columns we may take o(2,2) =co(2,2) *=2 « In a 
similar way, the conditions P 2( E.^ + E ^ ) £ 0 and 

P 2( E 2 2 + E 3 3 ) £ 0 show that o(3,3) > 2 and to(3,3) > 2. 

Proceeding i n this way, i t i s clear that we may assume that 
o(k,k) = to(k,k) s= k , (k = l,..,,m) 0 

Fix a < m , B < m , so that a ^ p . Now from 
P 2( E a a + E ap) 8 0 we see that o(a,B) = a or co(a,6) = a . 

Also P 2(Epp + E ap) m 0 implies cr(a,B) = p or ©(a,8) «, 8 0 

Therefore we must have either 
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(21) a(a , p ) = a and co(<x,p) = P , or 

(22) a(a,3) = P and co(a,p) = a , 

f o r the non - s i n g u l a r i t y of T shows that we cannot have 
o ( a , p ) = co(a,p) , 

Suppose f i r s t that (21) holds* Let 6 < n , 6 a = a , 

6 as B e From P 2 ( E a p + Ea6^ = 0 we have o(oc,&) = a or 

co(a,6) m B o From P 2 ( E a a
 + Ea&^ 0 w e h a v e °^ a» 6^ m a o r 

co(a,S) ss a . I t follows that a(a,6) ss a . If i n addition we 
have 6 < m , then ? 2^ EaS + Ed&^ * 0 s h l 0 W S "fcb-at °( a» s) = °* 
or co(a,6) = 6 „ Hence o>(a,6) = & s 

Let k ss a and consider , From ? 2 ^ E a p + ^P^ = 0 

we conclude that o(k,P) «= a or co(k,P) ss B . But a(k,P) as a 

because c (a,t) = a , (t = 1,.. 0,n) fand T i s non - singular. 
Hence co (k,P) = p . Also ^ ( E j ^ + Ej^p) m 0 shows that 

o(k , p ) n k or co(k,p) = k 0 Hence o(k , p ) = k 9 co(k,P) m p » 
If we repeat t h i s argument now with k replacing a i n (2l) 
we conclude that 

(23) c ( i , j ) s= i , co(i,j) = j , ( i = l,...,mjj = l,...,m) e 

Moreover, i f j > m , the non - s i n g u l a r i t y of T ensures that 
co(i,j) > m o Now we already know that c ( i , j ) ss i for such j „ 
Furthermore, P 0 ( E . + E. .) =0 shows that co(s,j) = co(t,j) . 

Thus i f (21) holds, T may be reduced to the form (19) by a 
suitable permutations of the l a s t n - m columns of X . 

Suppose next that (22) holds. We s h a l l show that 
actually m s= n and that 

(24) a ( i , j ) ss j , co(i,j) = i , ( i = l,...,m;j = l,...,m). 

From F 2 ( E a p + E a k ) = 0 we have o(a,k) = p or 

co(a,k) ss a 9 Also P~(E + E , ) ss 0 shows that a(a,k) = a or 
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co(<x,k) = a . I t follows that co(a,k) = a , (k = l,...,n) , 
because a j£ 0 „ Thus m «= n , for T maps the n - dimensional 
space spanned by E a ^ , (t = l,...,n) , into the space spanned 
by E , (s = l,...,m) , an m - dimensional space, and m < n « 

s 

¥e conclude also, from P 2^ Eak + **kk̂  ~ 0 ' "that 
o(a,k) = k or co(a,k) = k » Since co(a,k) = a , i t follows that 
a(a,k) ts k , (k = l,...,m) , which establishes (24). So T 
has the form (20). 

Lemma 9« Q(C) = 1 0 

Proof : Let 1 < i < s < m , l < j < t < n . If (19) holds, 
choose X so that PXQ = E.. + E.. - E . + E . ; i f (20) holds. 

13 i t S 3 sX ' 
choose X so that PXrQ has thi s same form. We can ce r t a i n l y 
do t h i s because T i s non — singular. In either case, P 2(X) 
xs P 2(PXQ) = 0, by Lemma 1 together with i t s c o r o l l a r y . 

Therefore 0 . P 2(T(X)) - V ^ E . . + c . ^ ~ c s . E s j + c ^ ) , 
and so c.-c . — c..c. = 0 „ Thus each second order 

X 3 st i t 3s 
subdeterminant of C vanishes. We r e c a l l that each c.. j£ 0 a 

Using Lemma 9 we can write c.. = d.k. , 

( i = l,...,m;3 = l , . . . , n ) . We set D = diag(d l f•..,d f f l) e M
m t m *> 

and K = diag(k,,...,k ) e M . Using Lemma 8 we can write 
X Zx H y u 

(4) for m £ n and (4) or (5) for m = n (>2) . The proof of 
the theorem i s complete for the case m + n > 5 • 

Suppose that m = n = 2 . Then (3) reduces to the 
equation 

(25) per(T(X)) = a. per(X) 
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for a l l X e M_ _ , where a i s some nonzero element of F. 
<LteL 

Using (2) together with (25) we see that 

det[BTB(X)] = per[B 2TB(X)] = per[TB(X)] 

= a.per [B(X)] = a.det[x] 

for a l l X e M2 2 • Thus BTB preserves the rank of each matrix 

i n M2 2 • Moreover, (BTB)*~* = BT~^B exists and has the same 

property. Consequently we may appeal to a theorem of 
Jacob [4] to conclude that BTB has the desired form. 
The proof of the theorem i s complete. 

We observe that i f m / n , we have 

P r(T(X)) = Pr(DPXQK) = P r(D)P r(P)P r(X)P r(Q)P r(K) 

= S (P (X)) r r 

for a l l X e M . I t follows from Lemma 3 that m,n 

S (X) = P (D)P (P)YP (Q)P (K) = D P YQ K r r r r r o o o o 

for a l l Y e M / H K ,n\ , and so S has the same form as T . \T) T\T) r 
Simila r l y , i f m = n > 2 , and T has the form ( 4 ) , then 
S r has the above form. Also, i f m = n > 2 , and T has the 
form (5), then 

S (Y) = D P Y'Q K r x 0 0 * 0 0 

for a l l Y e M/m\ /n\ . 

In conclusion, we present an example to show that 
neither (4) nor (5) need hold i f r = m = n = 2. We put 
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T ( E n ) « E X 1 + E12 + E22 ~ E21 

T ( E 1 2 ) = E11 + E12 

T ( E n ) = E12 + E22 

T ( E 2 2 ) = - E 1 2 

any X e M 2 2 we have 

X l l X12 
X21 X22 

( x i x + x 1 2 ) ( x i ; L + x 1 2 + x 2 1 - x 

(-* X - Q ) ( x l l + X21> 

and an easy computation shows that per(T(X)) = per(X) a 

Observe that T(E.j^) has rank 2. I t i s obvious that T(X) 

cannot be put into either of the forms (4) or (5). However 
we can write BTB(X) = UX'V where 

U 
1 1 

1 0 
and V = 

1 1 

0 -1 
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