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Abstract

In Monte Carlo calculations performed on electronic com-
puters 1t 1s gdvantageous to use an arithmgticAschgmg to generate
sets of numbers with "approximately" the properties of a random
sequence. For many applicatlions the local characteristics of
the resulting sequence are of interest. ‘ _

In this thesis the concept of a pseudo-random sequence 1s
set out, and arithmetic methods for_thg;r“generatipn are dis-
cussed. A brief survey of some standard statistical tests of
randomness is offered, and the results of empirical tests for
local randomness performed on the ALWAC III-E computer at the
University of British Columbia are recorded, It is dempnstrated.
that many of the standard generating schemes do not yield
sequences with suitaeble local properties, and gqgldﬂﬁ?ﬁre?qre
be responsible for misleading‘resp}ts.in_soge“appliqations.'.

A method appropriate for the generation of short blocks of num-
bers with‘gpproximgtelywthg properties of a randomly selected

set 1s proposed and tested, with satisfactory results.
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Introduction

Solutions to many problems require random numbers. Simu-
lation techniques and Monte Carlo methods_often'depend in an
essential way on the fact that if F 1is a probabllity distri-
bution fﬁnction, with inverse- F'l,_.andv X 1is a random
variable uniformly distributed on [0, 1], then F™1(X) 1s a
rendom variable with distribution function F. (See, e.g.[5],
[7].) Applications in mathematical statistics often depend in
an essential way on theoretical bpgperties Qf random numbers.
(See, ©.8.,[8]) A concern basic to both applications, and of
importance in other problems of applied analysis, 1s that of
guaranteeing adequate supplies of numbgpslgppgreptlj indepen-
dently drawn from a population uniformly distributed on the
unit interval.‘ That 1s, the problem 1is to pfovide numbers X
drawn in such a way that

Prob; (x € a) = a for 0<£ ac¢l
independently of all preceding or succeeding numbers, The pur-
pose of this essay is to describe and examine some methods by
which numbers with "epproximately" this property may be supplied
in a practical way using electronic computers.,

Let us establish at the outset that a number is to be inter-
preted as a point on the real line, This understanding will
serve to distinguish the following study from work dealing with
random sampling digits, |

Random digits have long been of conCerﬁ to the statistician

interested in actual sampling procedures, or in the theoretical
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pﬁocedure known as distribution sampling. Discussion of the
problem of supplying sultable random sampling digits seems to
have begun with Kendall and Babington-Smith [24] [25], although
Tippett's tables were published earlier [36] and some theoretical
sampling“techniques had been used earlier yet.[}S] This work on
random digits is naturally very closely related to the problem
of rendom number generation; the two problems are not, however,
equivalent. Thus, although we shall refer to articles on random
sampling digits, and shell use modified forms of tests proposed
for random digits, we shall retaln the distinction, and phrase
our discussion entirely in terms of points on the real line.

In terms of points x; the theoretical requirements
imposed on a random set of numbers may be summarized in the

following standard definitions,

Defn. 1: The set of numbers xl, Xps ..,,‘xn will be

said to be random if 1t represents an observation on a vector

random varlable

ik (n) = CERLL g
X (Xl, XZ’ ecey Xn)

with a joint cumulative distribution function
1l

F! = Fn(xl, Xy eeey X ) = M 5l(x,)

where Fl is some univariate distribution function.'

Defn., 2: The set of numbers Xys Xops cees X will be

said to be perfectly random if the distribution function Fl

of Definition 1 is the distribution function

0if x < O
Fl(x) ={xif0<x<1

1if x 21



and xiC [O, 1] .

This definition sets out the properties required in analyti-
cal work; we must modify it somewhat for our purposes,

We must recognize initially that the numbers with which
we are concerned will be represented in a finite word length
computer by & finite number of digits. Thus only a finite num-
ber (depending on the computer) of distinct configurations is
possible; if the radix is denoted r, and the word length k,
then the number of distinct elements in the set S of distingui-
shable numbérs is just_.rk. We can deal only with discrete
approximations, uniform over the set S, to the distribution
functions mentioned in Definition 2.

It will be the deflinition in terms of these discrete
approximations which is meant when reference is made in the
following to properties of randomness,

But in any cése one has in general no prior knowledge of
the distribution function F -~ the only procedure which can
determine whether an observed set of numbers may be séid to
satlsfy Definitions 1 or 2 is a statistical testing procedure.
And any finlte testing procedure is Imperfect: sets of numbers
which actually satisfy Definition 2 may not satisfy standard
tests; sets of numbers passing any given class of tests may yet
not be random in the sense of the definition.

This difficulty will not concern us in the followingQ, Be-~
cause the requirements in application are for sets of ﬁumbers

with certain specified properties, our objective will be simply .
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to construct methods which pass tests for these properties.
Because applications are set up generally to mirror the condl-
tion of theoretical randomness, a set of numbers will be
suitable in application if specific properties it displays do
not deviate "too markedly" from those expected of a random

set. Therefore we may apply the machinery of statistical tests
of randomness to determine whether a particular set of numbers
will be suitable in a given application., These considerations

lead to the following definition of a pseudo~random sequence.

Defn.: A pseudo-random sequence is a set of numbers which

passes the tests in a class C of tests of randomness.

Our objective 1is to construct pseudo-random sequences,

The choice of a particular class ¢ of tests is a problem
to which satisfactory answers cannot be given in general. No
finite set of numbers can satisfy all plausible tests of random-
ness; on examination, every finite sequence will display some
peculiarities which would cause it to be rejected as a randomly
generated set. The choice of tests can be finally determined
only by the use to which the sequence is to be put, and the
properties which are essential in that use. An initial discus-
sion of this question, and of the way in which the tests will
be used, is given in Chapt. 2.

Having in hand a procedure for determining whether an
observed sequence is pseudo-random, the problem is to construct
methods which yield sequences likely to satisfy the test

criteria,

The first suggestion may be to make use of mechanical



5

processes which are believed a priori to satisfy the conditions
of Definition 2 -- processes such as the drawing of cards from
a "properly shuffled deck" of numbered cards, the flipping of
"true" coins, the rolling'of "fair" dice. Tables of random
digits have been constructed By such means, and the mgthods
are still prOposed. (See the review by Tompkins [121] of
icosahedral dice.,) They are, however, both too slow and too
limited in scope to be of use in computer applications. In
the same spirit 1s the suggestion that tables could be constructed
from numbers appearing on census returns, waybills, etc. The
tables of Tippett [36], and Horton end Smith [104] used this
method, with a randomlzing transformation described in [ioh].
For more extensive tables, some methods utilize physical pro-
cesses which are expected, on the basis of physical theory, to
yleld completely random output. It was by this means that the
tables of Kendall and Babington-Smith [26] and the RAND Corpora-
tion [33] were constructed. , A
It might be expected that if electronic eépipment can be
constructed to produce random output, such equipment could easily
be wired into a computer, yilelding random numbers on demand.,
-Apart from the lmportant fact that such equipment would be expen-
sive, there are major disadvantages.
i) The equipment has a tendency to degenerate té a syste-
matic output; (see [3] on the RAND experience) and
would thereforé be expensive to masintain in the 'random!
condition.
1i) ‘A calculation could not be checked or re-run. The

output cannot be duplicated.,



iii) No attempt can be made in the calculation to avoid
the deviations from mean behaviour which inevitebly
occur in & random sequence. .That 1s, although the

sequence may be random, it need not be pseudo-random.

Not all random sequences would be suitable in applica=-

tion; the deviations mentlioned above may. be responsible

for misleading or anomalous results.

Rather than incorporating special equipment lnto the computér,

we might utilize exlisting tables to input random numbers as
required. This, even with the most efficient inputieqpipment,
1s too slow to be feasible., Alternatively, to attempt to store
tables in the computer memory would require a prohibitively
large amount of memory, and in many cases would still be unduly
slow. Both measures have the additional dlsadvantage that the
volume of numbers required for some calculations could well
exceed the size of the largest existing tables. Thus, neither
published tables nor external procedures are satisfactory for
standerd computer applications.

Recogniiing the disadvantages of the above proposals, it
has been suggested that suitable pseudo-random sequences could
be supplied by an arithmetic method of generation. Of course,
such methods do not satlsfy the conditions of a random method
of generation; they are, in fact, completely determined by one
or two previous elements of the sequence. As John von Neumann
~ says ([12l4) page 36) "any one who considers using arithmetical
methods of producing random digits 1s, of course, in a state
" of sin," But the point 1s that we are not concerned with the

conditions of randomess -- we require only a pseudo-random
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sequence, Which means that we look no'fartﬁer than the sequence
itself for our criteria of sultability; we care not how it was
produced.,

In Chapter 3 we outline several proposed methods for
generating arithmeﬁically a pseudo-random sequence, and relate
the results of statistical tests performed on these. In that
discussion it will be noted that the number sequences so gener-
ated are periodic; the problem of assuring a sufficiently long
period is succeasfully treated by methods of number theory, and
all the methods proposed are such as yleld a maximal period for
a given computer,

Applications arise, howewver, in which a shorter block of
random numbers appears as an 1integral part of the caleulations,
This situation suggested the present study; it appeared not at
all obvious that a sequence which suitably passed a c¢lass of
tests would yleld short subblocks which in themselves would
pass the same class of tests. In Chapter L we outline empirical
work which was undértaken to test whether a sequence with maxi-
mal period 1s most suitable for use in such a situation. Our
conclusion, based on this experimental work, is that it is not.
It seems rather that a sequence with shorter period displays
more sultable propertles over short blocks of numbers. This
result again points up the fact that the choice of a method for
generating a sequence must be made with the requirementa and
characteristics of the particular application in mind,

These then are the main themes of this thesis: that there
is in practice no definition of randomness for finite sets

apart from a class of specific tests; that this class of tests



mist be selected with reference to the intended application
of the random sequence; and that for some applications the
cholce of a suitable method of generation will lead to sequences
with less than maximal period;

In the next chapter we begin our discussion by determining

an adequate procedure for testing sequences.



Chapter 2, Tests of Randommess

Tests of randomness are unlimlited in number. ~Many are
extensively studied in the statistical literature, and references
to much of this work are included in our bibliography; ' The '
general problem is described by Levene [63] as follows:

"Let the vector random variable

x(0) = (X, Xp, wee, X))
have the joint cumulative distribution function

FO = Fn(xl, Kps sees xn). °
veso Let N1 be the class of all continuous F9, and let
@, be the class of all F% of the form FR ='—”11‘___1 Fl('xi)
where Fl is some continuous univariate distribution function.
By the hypothesis of randomness, HO, we mean the hypothesis
that FR, known to belong to fln, actually belongs to @,.
The statistical problem is to test Ho on the basis of one
observation x® on X®. .... The most usual procedure has
been for the statistician to devise some statistic whose dis-
tribution could be obtained without too much trouble. Then if
exXtreme values of this statistic were observed, the hypothesis
of randomness was rejected."

Likewise, to test the hypothesis that an observed set x(n)
1s perfectly random is to test the hypothesis that FP g @y,

where G’r'l 18 the class of all FR of the form FR ==7TF1(xi)

1 0 Xéo
and F4(x) =fx 04£x <1
1 x 21

i.e. ~=- where FL 13 the uniform distribution on [O, l].
A dgifficulty mentioned in the 1ntrodﬁction arises at this
point. As Levene [63] points out:
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" .. If we look long enough we will find something very
peculiar and non-random about any given sequence and can prove
that the probability of this pecullarity arising by chance 1is
very small. The difficulty is that randommess 1s not a property
of a sequence of numbers, but of the process that produced them,
that is, of F1 " : '

Consequently”there is no test with a high probsability of
‘rejecting H, whenever Fn.‘§a§r
"In fact, given any critical reglon of size &, there exlsts
FR t‘)n for which the probability of the critical set is zero."
[63] '

The theoretical alternative proposed 1s to restrict the

class F® to a class of alternatives especially feared, and
to choose statistics with good power against these., In prac-
- tice this means we must stipulate ahead of time specific proper-
ties essential in a given application, and test the sequence for
these pfoperties. Because we wish only to determine whether an
observed sequence is pseudo-random, we test the hypothesis of
randommess only against alternatives which would represent sets
unsuitable 1n application., That 1s, the class of alternatives
will contain only distributions which are non-random in such a
way as to render samples drawn from them unsatisfactory for the
intended application. In particular, the alternatives will not
include distributions associated with the type of arithmetic
dependence we describe later.

These considerations then suggest the correct interpreta-
tion to be assigned to certain extreme values of the test statis-
tics. In general an observed value Zo for a test statistic 2

is considered to give cause for the rejection of the null

hypothesis at a level of significance ¢o( if Z, falls in a
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critical region w where
Probability [w] = X
when the null hypothesis is true,.
In the tests which we will describe and use in the following,
Z 1is a "distance" statistic and the critical region w 1s of
the form ’
w ='{éo; 202 c} where ¢ 1is a constant and
Prob [Z > c] = X when the null hypothesis 1is _true.A
Following the lead of Kendall and Babington-Smith [2} ]
several writers have used a "two-tailed" test for testing pseudo=-
random sequences. - (See, e.g. [67] on the tests of the digits of -
o and' g, and the comment of Taussky and Todd [117] that the
digits of e are "apparently bad" (P. 26).)
But, by virtue of the way invwhiéh.we restrict the class
of alternatives to be considered, there 1s no alternative which
justifies the rejection of the null hypothesis on the basis of
extremely low values of the test statistics we shall ﬁse. For
the purpose of assessing a pseudo-random sequence, a "two-
tailed" test procedure is not appropriate. (On this question,
see also [ho] [51].) -
The tests outlined below fgll 1n the class known as non-
parametric or distribution free tests., We shall describe some
which have been extensively used, and offer references to several

others,

Uniformity -- The Chi-sguare Test

‘The basic requirement on pseudo-random sequences is that
they be "approximately" uniformly distributed -- i.e. -- that
| Probsbility [X< &) = a 0&astl .



The standard way to test whether this property can be said
to hold for an observed sequence is to subdivide the unit inter-
val into k disjoint intervals Ij of length L_ £ and calculate

J
the value of thekstatistic

= ZE: (r -nLj)Z/nL :

j:l j j
if the intervals are of equal length
ZE: (£ -n/k)2/(n/k) »

where fj denotes the. number of elements of the sequence falling
in interval j, and n Qenbtes the total number of elements.
Thé limiting distribution of this well-known statistic was devel-
oped bj Pearson [72],'and is tabulated as the 7(? statistic with
k-1 degrees of freedom. We.reject the hypothesis of randomness

at the level of significance o if

2> 2 S ].._
X2 2 ¢ where Prob.[iﬁc_g_ o) =

when the null hypothesis is true, and )Ltk i is the tabulated
X2 distribution with k-1 degrees of freedom.

Such 7(2 goodness of fit tests are used in many different
teats of randomness., The question of optimal choice of k has
been studied [83], but is frequently settled by considerations
of programming convenience. Further studies discuss the appli-
cability of )Lz tests in general, and disceuss possible modifi-
cations.. [hB] [57]

Other possible "distance" measures used as tests of goodness
of fit involve the evaluation of expressions like

s;p ‘ Fn(x) - G(x)l
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where F, 1s the empirical distribution to be tested, G the
hypothesized "true" distribution. Such expressions are extremely
awkward to program; and we therefore héve made no use of them
in this initial experimental work.

No application seems to have been made of such statistics

'in any published tests of pseudo-random sequences.

Independence ~- The Serial Matrix Test

Consider a set of n diglts 815 8ps eees an where each
ay is drawn from a set of t digits in a random manner. Then
it is to be expected that no digit would tend to be followed
more often by any one digit than by any other -~ i.e., =~ the
frequency of occurrence of each of the t2 possible 2-digit
configurations would be the same, and therefore equal to n/t2.
Kendall and Babington-Smith [2ly] proposed a test for this
property which they called the Serial ﬁest. If the frequency
of occurrence of the 2-diglt configuration aiaj 13 denoted
gij’ then the extent to which the observed set deviates from

expectation may be measured by
t
x2 = ZE: (gi -n/t2)2/(n/t2) .
1,j=1 1J |

Kendall and Babington-Smith asserted that this statistic had
asymptotically the')(2 distribution with (t2 - &) degrees of
freedom, and this fact was much used (by the RAND Corporation
among others) in tests of random digits.

A modification of this test for application to random num-
bers was used by Juncosa [107). In this modification, the unit

interval was partitioned into k (= 10) subintervals. For a
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set u{ui} of numbers, the number of occasions on which a
number X, falling in interval 1 was followed by a number
X,+1 1in intervel j was ta;Llied as the frequency fi‘j'
Again the extent of deviation from expected behaviour may be
measured by a 75{-2 statistic,

X2 =2 (£y: - n/k?)%/(n/?) .

2 {32
Juncosa then tested the significance of this measured value
by comparison with the values of x2 for k% -1 (99) degrees
of freedom.

Subsequently I. J. Good [52] [53] demonstrated that X3

2
did not have asymptotically a Xz distribution, but that, 1if

we set fy = Z j‘l —Z j'l 1 then

123: (2,4 - 0/K?)%/(n/A?) - Z (£, - n/k)2/(n/k) = x2 x

has asymptotically a )( distribution with k° - k degrees of

freedom, 1zimd also

> (g - n/k2)2/(n/k2) - 222:(f1 - n/k)z/(n/k)

1, 3=1 1=1-
L2 2
X5 - 2X]

has asymptotically a X° distribution with (k -‘_1)2_ degrees

of freedom. The latter of these measures was used by the authors
of the RAND table in a correction [121] to their earlier test;
we shall use the former in the experimental work of Chapter l,

in testing for the independence of successive digits.‘

Independence =- Serial Comrelation Test

Tests which are particularly useful in testing for random-

ness against the alternative of a trend or a cyclic fluctuation
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are the serial correlétion measures., The values of such

expressions as
N

1/N iZq XiXq4p o

j=¢]
i

o
Lo gl V)
[}

N
1=1
cC =1 - 3?/262

where @2 = 1/N2I'q'_f(xi - %)%
are used as meaizies of the serial correlation, and have been
widely studied. For the case in which h =1, it is found
*[3{][8&]'that for large N, R is approximately normal with
expectation

E(R) = (5 - §,)/(N-1)

and varlance

a2 e o) a2
62(R) = (55-8)) rmks + (sl-uslszmngaus -2sh)-E (®),
n—

(n-l)(n -2)

where Skz=4x¥ + xg t eee xg
and the sequence is assumed to be randomly drawn from a distri-
bution with low order moments.

Williams [87] and von Neumam([80] [81] have studied the
‘moments of bi, and Young [92] has proposed the related statis-
tiec C, which behaves like a conventional correlation coeffi- -
cient, The analogous expressions for h # 1 measure a serial
correlation with 1lag h, and provide a basis for further tests

of randomness against the alternative of trend or reguler fluc-

tuation.,
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Independence -~ Runs Teats

A study of the distribu£ion of runs ylelds several measures
which are used as tests of randomness, The article by A. M.
Mood [68) has an extensive bibliography of the initial papers
on the topic and of related studies to 1940, The analysis of
runs up and down-has perhaps been the most thoreughlyvstudiedg
the work of Wolfowitz and Levene [63][5&] has given the expected
values and the covariance matrix for statistics based on runs
up and down, and they have studied the properties of tests
based on these statistios. Their article [6&] incidentally
shows that the test procedure used by Kermack and McKendrick -
{61] is not correct. |

Letting rp' denote the number of runs up or down of length
p and ré . denote the number of runs up or down of length
greater than or equal to p , then the expected values of r_ -~

Y
and rs in a set of slize n, are given by

"

E(rp) 2n(p2+3p+1)/(p+3)! = 2(p3+3p2-p-L)/(p+3)}

E(r)) = 2n(p+1)/(p+2)! - 2(p2+p=1)/(p+2)

These results make possible a test of goodness of fit of
the observed to the expected number of runs up and down in the
observed sequence;

Similar statistics may be based on the observed number of
runs sbove and below the median [68], runs above and below the
mean [68], and the total number of runs [ 75]. The sign tests
[66) [69] end the U-test [130) are of & similar nature. A com-

prehensive discussion of this class of order statisties is found

in wilks [88].
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The con statistic of Kendall and Sherman [33][@3] and
the low order moments of the sample (empirical) distribution
provide further tests of randomness. '

The d% test of Gruenberger and Mark [S6] is designed
for the case in which the sequence tested is to be used 1n Monte
Carlo calculations =-- in particular those in which two succes-
sive numbers are used as the coordinates of a "random" point
in the unit square, The test 1s based on the probability that
the squared distance between two successive points will exceed
a value b(z. The theoretical probabilities are tabulated in
[56], on the basis of the relation

Prob [d2£ 9(2] = X2 - 8u3/3 +o<)+/2 for 0 £ 2 £ 1

prob (220 = 1/3 + (r-2)6@ + L-1)/2 + 8/3(x2-1)3/2

-O(LL/2 - ).w(2 sec™ix for 140@ 2 2.

-

Finally we note that a test of the randomness of a set of
numbers may be based on the empirical distribution of some test
statistic computed for each of several subsets of the set. The
observed distribution of these computed values may then be tested
for goodness of fit to the theoretical distribution of the test
statistic. Such a procedure is used by Taussky and Todd [117]
and by Dodd [hﬁ];ﬁit will be used also in our analysis of experi-
mental results in Chapter l.

On the basis of discussions in [18) [23] rSO] further tests
of randomess could be constructed. The foregoing, however,
déscribes or gives reference to‘all of the standard tests used

in evaluating the arithmetic methods described in the following

chapter.,
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Chapter Three. The Generation of Pseudo-Random Sequences

Having an elaborate background for the testing of pseudo-
random sequences, we need now to obtain some numbers., As indi-
cated in the introduction, we shall confine the discussion to
the generation of'sequenoes by an arithmetic relation. For the
seke of clarity we shall refer to a specific recursion.relation

Ecj*_l = R(xj’ xj-l’ eovey Xj-t; al’ 8.2, 8.3, es ey at)

with given parameter values as a pseudo-random generator, while

a class of such relations, of simlilar form but with unspecified
values for the parameters, will‘bé called a method, There are
three basic methods -- the mlid-square method, the multiplicative
congruential method, and the additive congruential method.

These each offer special cases which will be mentioned separately.
The discussion will generally be phrased in terms of relations

suitable for a binary computer;

The Mid-Sguare Method

(1) Generation. The mid-square method suggested by von

Neumann squares a 2r bit number uj, 0 L uj 4 1, extracts
the middle 2r bits from the result, and uses this number as
Uiige There 1s no convenient analytic expression to describe
this method, but for a 2r digit number uj, one can write

thelrelation

Ui = Zr[?g mod 2‘?] (1)

with the understanding that only the 2r most significant (i.e.
leftmost) bits of the result are used.

The calculation of each succeeding random number can there-
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fore be carried out in a binary computer with one miltiplication
"and one shift operation. The subsequent multiplication by 2T
is achieved by the scaling convention in which the binary point
is understood to be at the left-hand end of a register -- i.e.
before the most significant binary digit.

(1i) Period. It is apparently not possible to determine
analytically the number of numbers which may berbtained by any
particular choice of ﬁo. But, the number of distinct”iterates
is clearly finitev(in fact £22%) and the method will cycle if
at any time a value is repeated, Of further concern is the
possibility that the process will degenerate by accumlating
zeros at either end, and thus terminate in zero.

MetrOpolis (111) and Forsythe [99] have studied the lengths
and types of cycles produced by the method, and have concluded
that in many cases this 'zero mechanism' 1s dominant in the ter-
mination of the'sequenceAthrough cycliné. If this is assumed,
then a rough estimate of the length of the sequence may be made
by observing that the probability of r zeros accumulating in
either the leading or the trailing digits is 27T, and hence,
assuming the sequence to be random, the probability of the
sequence degenerating at any stage is 2 x 27T, Thus the
expected length of sequence is approximately 2r-l, or the
square \root of th‘ei}largest value represented by 2r bits.

(111) Prgperties; The method has been motivated on the

"basis of two observations.

a) If the variable x 1s uniformly distributed on (0, 1)
then the variable y =x2



20

has the density function
ply) =1/2 /2 for y 3 0.
b) If a random variable y, is formed from a random

variable y by the rule .
) = 20 [y mod 28] - : (2)

then the limiting distribution as n -»oo 1s uniform
on (0, 1),
A proof of (b) 1s found in Tocher [120), who also derives an
estimate of the biés implied by (a)., From this estimate or
directly from consideration of (a) it 1is expected that the
method will yield too many smali pumbers, and this expéctation
is confirmed in préetice.

(1iv) Tests. Tests on sequences produced by the mid-square
method have been performed by Forsythe [98], who tested l-digit
mid-square sequences, by Votaw and Rafferty [125] and by Hammer
[102], but in each case these tests were performed on the indi-
vidual digits rather than thé numbers, The results reported by
Forsythe were negative, but Hammer, using lb-digit decimal num-
bers, and Votaw and Rafferty, using 8-digit decimal numbers,
reported satisfactory results, Cashwell and Everett [7] report
that their mid-square method using a 38 bit number yields a
satlisfactory sequenée of length about 750,000.

(v) Assessment. The major disadvantage of the mid-square

method is the danger of undetected short cycles in the sequence.
Coupled with the facts that the method is not fast, and possesses
a blas toward small values, this has generally led to the aban-

donment of the mid-square procedure in favour of other methods,
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A mid-product method, and an off=-center mid-product method
(which Tocher shows to be less biased than a mid-squarevmethod)
are tested also by Forsythe [99], but apparently are not satis-

factory, and are not recommended,

The Multiplicative Congruential Methods

The least positive residues of the relation

Xj+l s (kij + ¢) mod M ‘3)
form a periodic sequence, and Lehmer [108] suggested that the

relation

uy = '(l/M)XJ

may be suitable for generating a sequence of gséudo-random
numbers. Several special cases of (3) are used sufficiently
often to justify distinguishingvtheﬁ by name. The relation

(for binary computers)

Kt P -
Xjpp 25Xy mod 2F 31

(L)

Uy 2"PXj

13 known as Lehmer's method, and is a special case of the

relation

el
[N
+
[

[ 1]

= kX, mod M = kJ'+1x0 mod M
{5)

X j’/M >
which 1s called the power residue method. We shall use this
term only in case M = oF |

To avold the multiplication required by (L) or (5),
Greenberger [101] proposed that the relation (5) employ
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k =2% + 3 30 that
(28 + 3)xj mod 2P (6)

P
[ 2N
Iy
H
Tt

and the multiplication could be accomplished by & shift and
add procedurs,
For the same reason Rotenberg [116] proposed to use a

method which is a special case of (3), setting

a : ' P
41 S (2 +1)Xj + ¢ mod 2 _
-p (7)

X

We shall describe the properties of the power residue method

in some detall, and quote corresponding results for the other

cases,

(i) Generation. The sequence {ui} of numbers 1is defined

by the relations

X E'ka mod 2P = kj+1X° mod 2F (8)

J+l
= -P )

uy = 277Xy | (9)

and can therefore be generated by a single multiplication, pro-

vided P 1is less than or equal to the word length of the com-

puter used.

(1i) Period. Clearly the sequence (8) is simply periodic,
with the period given by the least solution of the congruence

relation L
Xj4p 2 Xy mod 2F
But XJ = Kﬁ%omod oP
= jin P
Xitn = kJTHX  mod 2F .

If k odd, (k, 2¥) =1, and we have X,

G

j I Xy mod oP

20 mod 2F

w
=
)
[
"~
[
]
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If also X, odd, then X, 1s odd for all J, and (xj, oP) =1

Hence

k* =120 mod 2F

(10)

K 1 mod 2F

Number theory methods show that the least solution of this rela-
tion is greatest when k 1s of the form'

k=3 mod 8 (11)
That 1s, a‘necessary and sufficient condition‘that the relation
(8) generate a sequence with maximal period is that

¥ 3 mod 8

k
(12)
Xo E l mOd 2 - ioeo indad Xo Oddo
For such choice of k and X,, the period of the sequence 1is
2P=2 numbers.
Multipliers of the form 520-1 gatisfy (11), for

52n-1 = (14}4)2n-1 = 12n-1 4 (2p-2)PR-2)} + }2[...

1291 4 gp-) + u2[...

-3 mod 8

Consequently the relations studied by Juncosa [10]], by
Davis and Rabinowitz [11], and at the National Bureau of Stan-
dards [117], have maximal period. '

(1i1) Properties. If k and X, are both odd, then Xj

1s odd for all j. Since there are 2P-2  pumbers in the maxi-
mal sequence (8), and 2P-1 distinct odd numbers in 'S,

exactly one half of all the odd numbers occur in the sequence.
Further, it may be shown, as Juncosa does for the case k = 513,

that if
k = -3 mod 8

and the number r occurs in the sequence (8), then r + 2 cannot,
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If k2 + 3 mod 8, and r occurs in (8), then r + L cannot.
Consequently the numbers of ﬁhe sequeﬁcé -{ui} are uniformly
distributed over the set S of distingulishable numbers,

If XJ is to be always odd, 1its least significant digit
mist be constantly 1. The next digit position, by the above
argument, 1s likewise constanﬁ, but may be either zero or one.
The periodicity of digilt positions then increases to the left,
only the most significapt digit finally having period 2P-2
For this reason, in any application requiring random digits,
only the most significant digits of each number generated may
be used. .

(iv) Tests. Taussky and Todd, [117], Juncosa [107],
Moshman [113], and others have tested extensively power residue
methods using k #‘Sr where r‘vis odd. Satisfactory results
were obtained in tests of unifcfmity, low order moments, runs;

and correlation as determined by the serial matrix test.

(v) Assessment. The multiplicative congruential method
is faster than the mid-square method, and'produces a sequence
which over a full period is uniformly distributed. A predict-
abie'and maximal length of perliod may be obtained by suitable
choice of multipllers, and SuChvgenerators yield sequences

which pass all the customary tests of randomness,

Lehmer's method uses the relation (4); the generator
originally proposed by Lehmer (the first bublished account of
23
108 +1 .,

a multiplicative congruential method) used k
M
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For binary schemes, the reduction moduloe 2F +1 \may be
accomplished by observing that if we represent a number greater
than 2F 1in a computer with P<bit word length as
a +be2P =a - b +Dp(2F + 1)

then (a - b) 1s the least residue mod 2P,+ 1.

Hence we méy generate the sequence (lj) simply by forming
Ti417" kX;ydropping the most significént bits of Iy beyond
the pth, and subtracting the dropped portion from the remaindqr;

The scheme has the advantage that 1t removes the perlodicity -

of the low order digits in (8), but this of course is at the
cost of extra instructions, and consequently extra time.

A special case of (5) which has the advantage of greater

speed 1s the method proposed as Greenberger's Method. In this

3

case the mnltiplication operation is replacéd by the faster
shift and add procedure; the generator used took the values
k=218 +3, =35, o | .
Alternative procedures utilize (3) rather than (5), and
thereby need not be restricted to the odd numbers of the set
S. Thus they may possess a period greater than the seqﬁenqes
produced by the power residue method. A modification proposed

by Thompson (119 uses the relation

- P
XJ.+1 = (uk+1)xj +k mod 2
= P
or Xj+l s (uk+1)xj + 3k mod 2
= o=P

where k must be odd, and for this relation the sequence has
the full périod 2P.’.The same is true for the method proposed
by Rotenberg [116] using a shift and add technique as indicated
by relation (7), provided ¢ 1is odd.
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With these results, there 1is little to belgained_in fur-
ther development of multiplicative congruential metheds. The
alternative 1s to attempt further improvements in the speed of
generation, by studying methods using addition rather than multi-

plication;

Additive Congruential Methods,

(1) Generatlion., The general relation, given t initial

values {X;} 041 <%
]

X. ZE: a.X, mod 2P | (14)
il jot+1 1 i

has been suggested as a pseudo-random generator, apparently
by van Wi jngaarden [lQé], and mentlioned briefly by Tocher [l2d];

The speclal case

]
O

Xjep 5 X, 4 X mod 28 X

J-1 o)

(15)

uy = 2-Fx Xy ='1

J
is known &s the reduced Fibonaccl serles, and has been studied
in some detail. It may be generated with a single addition
instruction, and is therefore the fastest relation yet studied.
The slightly more general case |

X

X + X, d 2F
j+1 3 j-n mo

uy = 2-ij
also requires a single addition with, however, the necessity
of some indexing technique.

(11) Period. A full analysis of the period of the reduced
Fibonacel series (15) and of the series with arbitrary initial

values has been given by Wall [120]. In his paper 1t is shown
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that the period of the sequence 1s 3-2P'1 and independent
of the starting values,

(111) Properties., The reduced Fibonacci series method

is closely related to the power residue method. If the relation

(15) is solved as a difference eqguation, then, approximately,

x, = [B6E) - BWB-UIL o op

Since Jg;l{{ l, as j— oo
2

1 i1

that is, {uj} approximatesy & power residue method with
k = 3(/5 + 1)
X, = INF .

(1v) Tests. The sequences generated by (15) have been
tested by Taussky and Todd.[il?] It is found that, though the
tests of uniformity and of moments yield satisfactoery results,
the runs tests indlicate serious deviations from the expected
behaviour of a random sequence., Satisfactory results may ap-
parently be obtained by discarding alternate numbers, but with
this modification the method offers no advantage over the power
residue methods.

The more general relation (16) has been studied by Green
et al [lOQ] and found to be satisfactory only if either alter-
nate numbers were discarded, or n was taken greater than or
equal to 16. Either measure in&olves some programming incon-
venience, and detfacts significantly from the advantages of an

additive method.,
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Multiple Method

l

A proposal of theoretical interest 1is based on a theorem

of Kronecker and Sierpinski [}7; page 383] which states

Theorem: If t 1s lrrational, then the points {nﬁ} mod 1

are uniformly distributed on [O, 1].

The generating process thus consists of forming the sequence

w, *.nt . mod 1 or, in terms of the finite computer representa-
tion of t, may be formulated in terms of Integers, so that
un.= na mod 2P where a 1s odd, and less than 2P,  The method

13 not, however, used in practice, and we shall not go into a

discussion of 1£.
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Chapter L. Empirical Results

Pseudo-random sequences find application in problems with
widely varying characteristies. Two applications programmed
for the ALWAC IIT-E computer at the University of British Colum-
bia display in common a feature which is characteristic of a
wide class of problems, and 1s of importance in determining a
pseudo-random generator suitable for them: they both employ .
falrly large qnantifies of random numbers in small, essentially
isolated blocks. Between blocks, parameters of the calculation
are varied over a preassigned range and the output of the pro-
gram 1s studied as a function of these parameter values, Clearly
it is essential that the individual blocks of numbers display
no significant deviation from the mean behaviour expected of a
random sequence -- otherwise the observed results may be found
to depend in a‘significant way on the blocks of pseudo~-random
numbers, and will not accurately reflect the influence of vérying
parameter values.

It seemed not at all obvious that the standard methods dis-.
cussed in Chapter 3 would be suitable under these circumstances.
The problém of determining a generating procedure sulted to such
applications was therefore undertaken as an empirical study
- using the facilities of the University of British Columbia Com=
puting Centre, with the hope that empirical results might also
sﬁggest an analytic solution to the problém.

The question of local randommess has been mentioned briefly
in several papers,[2u][ilé][ilé} but has apparently not been

studled to any extent., In this literature, a sequence has
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conventionally been called 'locally random' to emphasize the
fact that not only were thevconditions of ;andomness sgtisfied,
but that also the block of numbers in itself passed a class of
tests of réndomness. We have used the term pseudo-random to
denote the fact that a block of numbers under consideration
passes a class of tests of randomness; for the problem at hand
we wished to study the possibility that successive sub-blocks
of length N in a pseudo-random sequence be found to yield in
themselves statistically non-significant results on all of a
class C of tests of randomness.> If this condition holds, we

say the sequence 1s lodallz pseudo-random for domains of order

N.

Then the conjJecture studied first was that the standard
generators described in Chapter 3 need not be locally pseudo=-
random for domains of order N, where N 1s small relative

to the modulus of the generator. In particuleaer, we studied

the case where N was 28, 29, or 210 -- i.e. 256, 512, or
102&,_and the modulus was 232, On statistical grounds such

a conjecture 1s plausible, The fact that the standard genera-
tors have been found to satisfy tests of randormess over long
cycles suggests immediately that if the sequence were partitioned
into blocks, about 5% of these blocks would show deviations from
expected behaviour significant at the 5% level. If not, doubt
would be cast on the randommess of the,sequence.' Since this
would be true of each of several lndependent tests, it seemed
possible that a substantial number of sub-blocks generated by
standard methods would in themselves be unsatisfactory for use

as random numbers,
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In investigating this question empirically, two tests were
considered to constitute a minimal c¢lass C of tests of ran-
domness: a chi-square test for the uniformity of distribution
in 8 equal intervals of [O, I], and a chi-square test on the

uniformity of an 8 x 8 serial matrix f,, described in Chapter 2.

i]

A 5% level of significance was employed.
Thus, in testing blocks of 256 nunbers, the distribution

over the unit interval was consldered to deviate significantly

from uniformity éf, employing the notation of Chapter 2,
x2 = Z (£,-32)2/32 2 14.1
1 i=1 i

where 1li.1 is the 95% value of the tabulated chi-square distri-
butions for 7 degrees of freedom.

Using the fact that 8

8
X2 - x2= o (¢ -)2s-'z(f-32)22
2 "1 4= 157/ 1= 1 /

is asymptotically distributed as chi-square with 56 degrees
of freedom, and using the normal approximation to the chi-square
distribution, the distribution of pairs within the matrix was
sald to deviate significantly from uniformity if
12X - 251 2 1.6

1.e. if ®2 > 7,18
where 1.6l is the 95% value of the unit normal curve, and r,
the number of degrees of freedom, is 56, For blocks of 512
and 1024 numbers, a similar measure was used, with the same
critical values,

Table I summarizes the results of tests for 100 blocks of
256 numbers each, generated by each of the standard methods

discussed in Chapter 3, and for blocks of 512 and 102} numbers
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N TABLE I |
Number of "Unsatisfactory" Blocks in 100 Blocks

Generated by Standard Methéds wilth Meximum Modulus

Me thod Generator Block Ngmber of Blocks Rejected Total

Size Xy Test Xg Test Both Rejected

Rotenberg's Xj+ 5(27+1)X;+1 256 6 5 3 8
Method mod 23 ‘

Lehmer!'s X3 41723%, 256 3 15 3 15
Method mod 23241

Fibonacel  Xq43=X4+X3.1 - 256 L 11 Iy 11
Series mod 232

Power - .  X;,7=62,973%; 256 5 7 0 12
Residue mod 232

Power X4,1=62,973X; 512 6 L 1 9
Residue mod 232

Power X 41762,973%X; 102k n 6 0 10
Residue - =~ pog 232
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each generated by the power residue method, From the Table
it will be seen that approximately the expected number (10%)
of sub-blocks in each case falils to pass these rather weak
requireménts, and that serious disadvantages therefore accom-
pany the use of these generators in applications of the type
we describe,

It was therefore proposed to test the conjecture that a
power residue method with modulus and multiplier chosen to
yield a maximal period equal to the number of elements neces-
sary in 6he sub-blocks would be suitable. Again there 1s a
theoretical consideration to support the proposal, namely the
theorem quoted in Chapter 3 which states that over a full period
the elements of a sequence generated by a power residue method
are uniformly distributed on the set S of distinguishsable
numbers,

This conjecture also was tested and verified empirically.
In Chapter 3 it was mentioned that the maximal period for the
power residue method with modulus 2P is 2P‘2, and that this
period is attained if the multiplier k satisfiles

"k =13 mdas8 .
Therefore modull 210, 211, 212 were employed to generate
sequences with maximal period 28, 29, 210, respectively. All
possible multipliers of the form |
k=2 %3 mod8
were employed to generate blocks of length equal, in each case,
to the perliod of the generator.

These blocks were & priori uniformly distributed; 1t was

found, with certain striking exceptions, ‘that they also displayed
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no significant deviation from uniformity over the serial matrix.
The blocks displaying significant deviations from expected be-
haviour wers consistently assoclated with multipliers falling
in particular residue classes. This information 1s summarized
in Table II, and on the basis of this Table it is possible to
specify a method which guarantees that each sub-block of length
N (N = 256, 512, 102}) in a long sequence of pseudo-random
numbers will pass the two specified tests. That is, by restrict-
ing the multipliers k 8o as not to lie in any one of the
residue classes 3, 5, 43, 51, 85, 125, 131, 171, 205, 213, 251,
or 253 (mod 256), one can construct a sequence of length greater
than 50,000 numbers which is locally pseudo-random for domains
of order 256; by restricting k so as not to lie in any one
of the residue classes 3, 5, 51, 85, 171, 205, 251, or 253
(mod 256) one can construct a sequence of length greater than
220,000 numbers which 1s locally pseudo-random for domains of
order 512; by restricting k so as not to lie in any one of
the residue classes 3, 5, 11, 13, 51, 59, 85, 93, 163, 171,
197, 205, 24,5, 251, or 253 (mod 256), one can construct a se-
quence of length greater than 800,000 which is leocally pseudo-
random for domains of order 102l.

For our problem this 1s an important result. It gives
empirical corroberation of the idea that arithmetic methods
may be selected which eliminate significant loecal fluctuations
in a pseudo-random sequence designed for uses in which local
randommess 1s essential., Further, the fact that multipliers
assoclated with "unsatisfactory" blocks were observed to be

confined to a relatively small number of residue classes
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TABLE II

Residue Classes Containing Multipliers
Yielding "Unsatisfactory" Blocks in Power Residue Generators
With Maximal Period Egqual to
the Length of Block

Block Size (28)256 (29)512 (210)102)
Modulus 210 211 212
Number of
mithire o a0
k< modulus

Residue ' ' 3 3 3
. Classes 5 5 5
(mod 256) 51 51 51
Lonteaeining 85 85 85
"Unsatisfactory" 171 171 171
Multipliers 205 205 205
251 251 251
253 25 253

.h3. - L ] * L] .li »
125 13
131 59
213 93
163
167
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supports the belief that a number theoretic criterlon may be
found to characterize those multipliers which yield blocks
with statistically non-significant properties under a given
class of tests. Since the empirical classification of multi-
pliers was to some éxtent consistent through the three moduli
tested, 1t seems likely that any number~-theoretic criterion
would hold for a wider range of Blook sizes,

These results demonstrate that a generator of the power
residue type with small modulus can be suitable when small
blocks of random numbers are required and the two tests we des-
cribed are sufficiently searching. Such a generator may be
programmed precisely as in the case with maximum modulus; the
only change is & rescaling of the initial value Xo as stored
in the computer. On the other hand, the selection of suitable
multipliers will not always be a convenient procedure to pro-
gram in computer sapplications. It would be desirable to have
a generating scheme which required only a single multiplier.
For this reason an extension of the study was attempted, and
aéhieved limited success, In Tables III and IV are diSpiayed
the results of tests performed on sets of 100 blocks of 256
numbqrs;each, obtained using generators with modulus ranging
from 211 4o 217. Since the length of the component blocks
no longer .is equal to the full period of the generators, it
1s no longer to be expected that the numbers in a block will
be uniformly distributed. Table III sets out for each modulus
the empirical distribution of the observed deviations from uni-
formity measured by the Xi g?atistic. Since this statistiec

is expected under the null hypothesis to have asymptotically
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. . . . mABLE III . .
Distribution for Selected Moduli of 100 Values of X%

Tabglated R B
~ 57 10% 20% 307 SOA 70% 80% 90% 95%
Percentile . .
Tabglated S s I R
2. 17 2 83 3 82 h 67 6 35 8 38 9 80 12 0 lh 1 Larger
) Value ,
g:;iggtgg No. of Observed Valueé Falling in Indicated Intervals
1x256° 100 R
2x256 22 14 20 12 16 8 L
L} x256 16 16 20 20 12 12 Iy
8x256 11 1 11 n 21 2l 1l 0 1%
16x256 n n ly 1l 36 1L 10 . 8
32x256 7 L 10 13 23 12 12 12 7
6Lix256 ﬁ 7 12 7 30 22 9 7 2 1
128x256 3 10 8 27 22 7 9 9 1
222x256 8 3 5 13 1 5

6 13 20 26
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TABLE IV

Distribution for Selected Moduli of 100 Values of X3

Tebulated =

.G 5% 10% 20% 30% uo% 50% 60% 701, 807 90% 95%
Percentile . : . .
Tabglated’ T T T T
. 39. 6 h2 9 h? 1 50 2 53 0 55, 5 58 2 61 2 6u 8 69 9 7h.2 Larger
Value
Periodof,,:::i;‘:::,.. HEPEEC S A
Generator Number of Observed Values Falling in Indicated Intervals
1x256 100
2x256 76 L 12 2 N 2
L4x256 76 L 16 N
8x256 11 11 18 1k 2l 5 6 3 1 2
16x256 L 10 20 11 7 9 8 8 1 I
32x256 Z 16 10 12 22 12 N 6 5 Ly 2
6L1x256 6 5 12 1L 8 12 13 8 10 6 1
128x256 8 5 7 13 20 11 5 8 7 8 6 2
222x25 3 3 10 11 9 10 16 8 13 7 3 7
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the chi-square distribution with 7 degrees of freedom, the

Table shows the number from 100 observed values of X% which
fall in each interval defined by tabulated jL? values;r Like-
wise, Table IV shows for each modulus the empirical distribution
of observed values of the statistic X% 3 the intervals are
defined by the normal approximation to the chi-square distribu-
tion with 56 degrees of freedom.

These Tables show that 1t 1s possible, using a single mul-
tiplier, to generate sequenceé of length up to 8192 numbers
which are locally pseudo-random for domains of order 256, A
method has so far not been found whieh will yield longer locally
pseudo-random sequences using only a single multiplier. Never-
theless, as Table IV shows, a substantial improvement over the
'standgrd generators has been achisved, Using modull of 216,
217, sequences of length up to 32,000 have been generated 1in
which no more than 2% in total of the sub-blocks of lengﬁh 256
display significant results on elther of the two tests used.

We note also that as in all the above cases, the length of
the sequence may be doubled merély by taking a new 1nitial value
X, from among the +2P=2 544 P-bit numbers not in the sequence
of 2P-2 npunbers produced by the generator with modulus 2P
and & éiven initial value. By the theorem gquoted in Chapter.B,
if r 1s in the set of numbers produced by a generator with
initial value X_,, and k £ -3 mod 8, then r + 2 will not
be in the set, and hence X, + 2 1s a suitable initial value
to generate another sequence (disjoint from the first) of 2P-2
numbers; if k £ 3 mod 8, then r + ), is a suitable new initial’

value.,
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These results indicate that even for applications requiring
falrly large numbers of pseudo~-random numbers, it 1s possible
to find a generating scheme involving only one multiplier which
yields a sequence in which fewer than 2 or 3% of the sub-blocks
of length 256 need to be rejected as deviating significantly
from properties of randomness,

For many applications, thereforse, our procedure 1s a declded
improvement over standard generators. When 1t i1s convenient to
allow, in a computer program, for the selection of multipliers,
the use of generators with small modulus can guarantee local
pseudo-randomnéss. Even when the use of more than one multiplier
is not convenient, a substantial improvement in the "quality"
of small blocks of numbers may still be effected by the use of

a generator with the I'east modulus in excess of the total number

of numbers required.
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Chapter 5. Summary and Conclusions

Randommess is en elusive concept, and the pursuit of ran-
domhess a rather uncertain task., Behind this thesis is the
idea that a major advantage in the generation of pseudo-random
numbers by arithmetic methods 1s the experimenter's control
over his medium. As Juncosa points out [107}; it 1is possible,
with deterministic methods, to aveoid the significant deviations
from mean behaviour which inevitably occur in a truly random
situation, and which may give rise to seriously misleadlng re-
sults. We may avold, if we wish, the possibility of significant
local non-rendommess. If, therefore, we take our chances on a
pseudo~random sequence of long period in situations‘in which
local randomness is critical, we are not utilizing the advean-
tages offered by arithmetic procedures,

This thesis hes not settled the question of generating locally
pseudo-random sequences. Nor 13 it pretended that the empirical
study here described is any substitute for an analytical treat-
ment of the problem if such be possible., On the other haﬁd,
the study has demonstrated that in some quite plausible circum-~
stances the standard generators are not suitable. It has demon-
strated that better procedures can be devised, and that there is
hope at least for an empirical classification of locally pseudo-
random generators. There 1s no doubt in the writer's mind that

the problem is worth further study.
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