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Abstract of
A GENERALIZATION OF THE FIRST PLﬁCKER FORMULA

by G. W. Sparling,

The first Pllicker formula from algebraic geometry
gives the class of an algebraic curve in terms of the order
and the singularities of the curve, Here a study is made of
real,differentiable curves with a view to finding the corres-
ponding result for such curves, The classof a point P with
respect to a real,differentiable curve C is defined to be the
number of tengents of C which pass through P, First it is
shown how the class of P depends on its position relative to
C, then it is shown how the class of P depends on the nature,
numbers, and relative positions of the singularities of C,

In the last Chapter the results are applied to.
classify real, differentiable curves of class three, It is
found that a curve of class three must contain one of the
following three combinations of singularities:

(1) One cusp and one inflection point,
(2) One cusp and one double tangent,

(3) Three cusps,
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A GENERALIZATION OF THE FIRST PLUCKER FORMULA

 CHAPTER I

1.1 Introduction, The first Pllicker formula from algebraioc

geometry expresses the class of an algebraic curve in terms of
its order and its singularities, Ih this thesis an attemptv
-1s made to find the corresponding result for a real, differ-
entiable curve, In the first three chapters a method is dev-‘
eloped which may be used in studying the effects of singu- ‘
larities on the class of such a curve, In the last chapter
this method is used to classify differentiable, closed curves
of class 3,

1.2 The prqlective;plane. The space considered in this

thesis is the projective plane, The qhief properties of the
projective plane are:
(1) Every pair of lines in the projective plane has-
& point in common,
(ii) Lines in the projective plane are closed,
(1iii) The projective plane is locally affine, This
means that any finite region of the projective plane
has the properties of the affine plane,

1,3 Curves, A ourve is défined to be & §ingle-valued
continuous mapping of the projective line, Such a mapping
may be interpreted 1h two ways, In the first interpretation
the points of the projective'line are mapped into the points

of the curve, In the other interpretation the points of the
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pro jective line are mapped into the tangents of the curve;
Each of these curves is called the dual of the other,
1,4 Order, The order of & curve 1s the greatest number
of points dbmmon to the curve and any straight line..

1,5 Differentiability.Tangent., Let a secant a intersect

a curve C(s) in points C(sl)#_and C(s2), where s is ‘the curve
parameter, Let s2 approach sl, ' If as s2 approaches sl, a
approaches a limit which ié independent of the manner in
which s2 approaches sl, then C(s) is differentisable at C(sl).
Theﬁlimit approached by a is the tangent to C(s) at C(sl).

| Throughout this thesis it is assumed that curves
are of finite order and differentiable at every point,

1,6 The principle of duaelity. It can be proved that any

proposition concerning lines and pdints which has been proved
for differentiable curves, holds in the dual, That isj.
the proposition holds if the roles of lines and points are

interchanged,

1.7 Dual differentiebility. Scherk' has proved that if a
curve is differentiable its dual is differentiable,
The duel of the definition given in 1,5 is:
Let A be the point’ccmmon to two tangents t(sl) and

# Due to typing difficulties, subscripts are placed on the
seme lines as the letters to which they are affixed.
1 P, Scherk, Czechoslovakian Journel of Mathematics and

Physics, Prague, 1936,



t(s2) of the curve whose tangent is t(s), Let s2 approach sl,
If as s2 approaches sl, A approaches a limit which isiinde-
pendent of the manner in which s2 approaches sl, then. the
curve is differéntiable in the duel sense, The limit ap§
proached by A is the point of contact of t(sl). | |

If.a curve C is differentiable (by 1.5) then, by
the pfinoiplé of duality, the dual curve of C is differentiable
in the duel sense, But, by Scherk's rresult, the dual curve is
differentiable (by 1.5))30 its dual, the curve C, is differ-
entiable in the dual sense, In other Wofds, if a curve 1is
differentiable it is differentiable in both senses, -

1,8 Elementary Arc, An elemntary'aro is an open part of

a curve which has at most two points in common with a strei ght

line,

It hes been shown by HJelmslevz that a curve of
finite order is made up of & finite number of elementary arcé.

1.9 Lines of support andAlines of intersection, A line h

~which has a point P in common with a curve C is & line of
intersection of C at P if in eny neighborhood of P, however
small, there exist points of C on both sides of h. Otherwise
h is a 1line of support. | )

‘ Scherkl showed thai if one non-tangent of a curve C

at a point P is a line of intersection at P, then all non-

2, J, Hjelmslev, Om Grundlaget for lseren om simple Kurver,

Nyt Tidsk.f, Math,, 1907,
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tangents at}P ere lines of intersection and if one non;tangent
at P is a line of support at P, then ell non-tangents at P are
lines of support,

1,10 Characteristic, The characteristic of a point P is

given by a pair of numbers determined as follows:

(a) The first number is one or two according as

non~-tangents at P are lines of intersection or lines

of support.,

(v) ~The second number is one or two chosen so that:
(1) If the tangent at P is a line of intersection
then the sum of the numbers is odd. '
(ii) If the tangent at P is a line of support
then the sum of the numbers is even,

1,11 Claessification of curve points, The classification

of curve points is given in the first two columns of the
following table, It can be shown .that the dual character-

istics are those which are gi#en in the thirad column,

' DUAL ‘ DUAL
POINT CHARACTERISTIC CHARACTERISTIC POINT
ordinary point (1, 1) (1, 1) ordinary point
cusp (2, 1) (1, 2) inflection point
inflection point (1, 2) (2, 1) cusp

bill ocusp (2, 2) (2, 2) bill cusp
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It can also be shown that every interior point of
an elementary arc is an ordinary point of the curve of which

the arec is a part,
1,12 ©Nodes and double tangents, If in the mapping defined

in 1,3, two different points of the projective line are mapped
onto the same point of the curve then the point is called a
node, The dual of a node is a double tangent., A double
tangent occurs when two different points of the prqjective
line are mapped iﬁté the same tangent of the cur?e.

1,13 Singularities. Cusps, inflection points, bill cusps,

nodes, and double tangents will be referred to as singular-

ities,

1.14 Critical tangents, Tangents at inflection points

and bill cusps will be called critical tangents,

ljl5 The class of a point, The class of a point P with

respect to a curve C is the number of tangents to C which
pass through P,
The tangent to a curve C at a point P on C will

be counted as one tangent through P,
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Ordinary point (1,1) ; Cusp . (2,1)

Inflection point (1,2) Bill cusp (2,2)

N N

Node Double tangent



CHAPTER II

Given an algebraic curve Ca, the.olass with respect
to Ca of points in the plang:is constant, depending only on
the singularities of Ca, In other words the seme number of
tengents to Ca, real or 1méginary, pass through every point
in the plane, TFor & real, differentiable.curve C,however,
the class with respect to C offa point in the plane depends
‘not only on the singularities of C but also on the location
bf the point, In this chapter it will be shown that for a
‘@1ven curve C, the curve C and its eritical tangents divide
the plane into regions such that all points in a given region
have the seme class with respect to C,

2,1 Theorem, On any point on any interior tangent of an
- elementary arc there exist lines which contain two points
of the areo,

Proof, Let A.Be an interior point on an elementary arc E,
Let a be the tangent at A, Let B be any point on a, The
problem is to show that there exist lines through B which
contain two points of E,

If B=A the line through B and any other point of E
is a lineAthrough B whieh contaeins two points of E, Therefore
the theorem is true if B=A,

Suppose B#A, Since A is an ordinary point, a is a
line of support'and there exists & neighborhood N of A such



that all points of E in N lie on one side of a, Let a moving
point P trace E, E 1is continuous so as P approaches A, P
intersects all lines of the pencil on B which lie sufficiently
‘near a and on the same side of a as E, As P recedes from 4,

P remains on the same side of é and so intersects the same
lines of the pencil on B, Thus there exist lines through B
which dontain two points of E, This provesxthe theorem
completely, |

2,2 Theorem, An end;tangent to an elementary arc E cannot
contain an interior ppint-of E,

Proof. Suppose the tangent & at an end-point A of E contains
an interior point P of K, Since E is continuous and differ-
entiable there exists a tangent &' near a which contains a
point Pon E and in a neighborhood of P, Let N be & neighbor-
hood of the point of contact of a'which does not contain P',
By Theorem 2.1 there exists a line h on P'which contains two
points of the part of E which lies in N, Then h contains

three points of E, By the definition of an elémentary arc
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this is impossible, Therefore an end-tangent of E cannot
contain an interior point of E,

According to the definition (1,8) of en elementary
arc, ean end-tangent a of an elementary arc E may contain
both end-points of E, In the remainder of this thesis it
will be convenient to assume that an end-tangent to'an
elementary arc E does not contein both end-points of E,

2.3 Theorem, If P is any point on an elementary arc E
then the class of P with respect to E is one,

Proof, E is differentiable at P; therefore there exists
at least one tangent of K which passes through P, namely:
the tangent at P itself,

Suppose a second tangent a of E passes through P;
Let A be the point of contact of a, By Theorem 2.2, A is an
interior point df E, Let N be a neighborhood of A which does
not contain P, By Theorem &,1, there exists & line h through
P which contains two points of that part of ¥ which lies in N,
Then h contains three points of E, By the definition of an
elementary arc this is impossible, There fore exact;y one
tangent of E passes through P, Therefore the class of P
with respect to E is one,

2,4 Theorem; On any line through any interior point of an
elementary arc there exist points which contain fwo tangents
to the arc, o |

‘Proof, This is the dual of Theorem 2,1 and is therefore

true by the principle of duality,
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2,5A - Lemma;., Suppose a secant s contains fwo points Sl
end S2 of a ourve C. Let S3 be an ordinary point of C. If
.S1 and S2 both approach S3.along C then s approaches the
tengent at S3,

Proof, Let E be a finite elementary arc of which S3 is an
interior point, Let N be a neighborhood of S3 which does noé
‘contain the end-points of E., As Sl and S2 approach S3 along
that part of E within N they will be the end-points of an
elementary arc BE'which is contained in E, Since s contains
only the end points of E', E'wiil be entirely on one side of s,
The remaining part of E in N will lie on the side of s opposite
to E', As Sl.and S2 approach S3, E' vanishes and the part of
E in N lies entirely on one side of s, Hence s approaches
the tangent at S3, |

The dual.of this ‘lemma: is:

Suppose S is the point common to two tangents sl
"and 82 of a curve C, Let 83 be'the tangent at an ordinary
point of C. If sl emd s2 both approach s3 along C then S
apprdaches the point of contact of s3,

2.5 Theorem, Let C bé a curve and let h be a line which
intersects é in an ordinary point A. Let a rolling tangent t
roll along C, As t rolls through A the intersection}of t
with h reverses, ' |

.Proof. Let E be any elementary arc of C of which A is an
interior poiﬂt. Let P be a point on h which has class 2 with

respect to E, Let t(sl) and t(s2), where s is the curve
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paremeter, be the two tangents to E which meet in P;
E may be chosen arbitrarily~small so it may be assumed thet;
some points on h have class zero with respect to E, Then as
t rolls along E, t does not intersect all points of h yet
t intersects P twice, Therefore there exists & value
s3 (sl<s3<s2) for which the intersection of t(s) with h
reverses, |

Let P approach the reversal point, Then sl,ap;
_proaches s3 and s2 approaches s3 and both t(skL) and t(s2)
approach t(éB). Bﬁt from the dual of Lemma 2,5A, as t(sl)
and t(s2) approech a common tangent their intersection
approaches a curve‘point. Therefore the point of feversal
of the intersection of t with h is a curve point, namely: A.
This proves the theorem.' '

2.6 Theorenm, Let A be an ordinary or an inflection point
of a curve C, Let h be any line on A other than the tangent
at A, end let B be any point on h other t han A, Then, for a
sufficiently smail neighborhoad N of A, any line h' of the
‘pencil on B which is sufficiently close to h intersects the
'bart of C contained in N exactly once,

‘Proof, Let a point P trace C, Since h is a line of inter-
‘section at A, P will'oréss lines on both sides of h, If N is
sufficiently smell, h has no point other than A in common
‘with the part of C contained in N; hence, P will oross, oﬁce,

lines of the pencil on B which are sufficiently close to h,
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2.7 Theorem. Let A be a cusp or a bill cusp on & curve C,
Let Na be the part of C in & sufficiently small neighborhood
of A, Let h be any line on A other than the tangent at A end
let B be sny point on h other than A, Then & line Hh' of the
pencil on B, which is sufficiently close to h, intersects Na
twice or not at all depending: on thé side of h on which h'
lies,

Proof, Let a point P trace Na., Since h is & line of
support at A, Na lies entirely on one side of h so as P
tfaces Nsa, P will not cross h, As P approéohes A, since C
is continuous, P will cross, once, all lines of the pencil on
B which sare sﬁfficiently close to H and on one sidé of h, As
P recedes from A, P will cross, once more, the seme lines of
the pencil on B, This proves the theorem,

2,8 Theorem, Let a be tangent to a curfe C at an ordinary
point or a cusp, Let Na be the part of C in a sufficiently
small neighborhood of the point of céntact of a; Let H be
any point on & other than its point of contact and let b be
any line on H other than a, Then any point H' on b which is
sufficiently close to H has class one with reépect to Na,

Proof, This is the dual statement of Theorem 2.6 and is
therefore true by the principle of duality,

2,9 Theorem, Let a be & critical tangent to. a curve C;
Let Na be the part of C in a sufficiently small neighborhood

of the point of contact of a, Let H be any point on a other
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than its point of contact and let b bé any line on H other
then &, Then a point H' on b, whichlis sufficiently close‘to
'ELhas class two or zero with respect to Na depending on the

side of H on which H' lies,

Proof, This is the dual statement of 2.% and is therefore

true by the principle of duality,

DIAGRAMS ILLUSTRATING THEOREMS 2,8 AND 2.9
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In the following corollaries a is a tangent to a
curve C, H is any point oh a other than_its point of contact,
end Na is the part of C in a suitably chosen neighborhoocd
of the point of cantact of‘a. |
| 2,10 Corollary. If a is a non-critical tangent there
exists a neighborhood of H in which every point has class one
with respect to Na;

This followé from 2.8.

2.11 Corollery, If a is a critical tangept, then in any
neighborhood of H, however small, there exist points with
class zero With respect to Na and points with class two with
respect to Na,

This follows fram 2,9,

2.12 Cbrollarz‘ If a moving pdint P crosses a at H then
if a is =& non;oritical tangent the class of P with respect to
Na does not change but if a is a critical tangent thevq;gss
of P with respect to Na chenges by two,

This follows from 2,8 and‘2;9.

2,13 Theorem, If a fixed line h intersects & curve C in
ordinery points only; then as a tangent t rolls aldng C, its
intersection with h reverses if and only if:

(i} t rolls through an inflection point,
or (ii) ¢t rolls through a bill ocusp.
or (iii) t rolls through & point common to C and h,
Proof, This theorem follows immediately from 2,5 and 2,12,
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vSuppose A is an interior peint of an elementary arc
E., Let h be any line through A other than the tangent at A,
Let a tangent t roll over E end let I be the intersection_ofAt
with h; As t rolls over E, I moves along h to A, reverses at
A, eand moves back along h, I does not reverse agein, by
theorem 2,13, and since A is e point on E the class of A with
respect to E is one, so I does not return to A, Thus no point
on h is covered by I more than twice, It is also seen that ‘
there exists a neighborhood N of A such thet peints of h which
lie in N and on one side of E are covered twice whilepoints
of h on the other side of E are not covered-by I, This dis-
cussion leads to the two following theorems:

2.14 Theorem, If E is an elementary arc and if P is any
point in the plane then the class of P with respect to E is
not greater than two,

Proof, 1If P<liee on E then, by Theorem 2.3, the class of P
with respect to E is one, |

Suppose P does not lie on E, ‘Let h be the line
common to P and ah interior point of E, Fram the foregoing
discussion; no point on h has class greater than two with‘
respect to E, Therefore the class of P with respect to E 1is
not greater than two,

2,15 Theorem, If & moving point P crosses an elementary
arc E at an interior point then the class of P with respect
to E changes by two,

—

Proof, Assume that as P crosses B it moves aelong a line h,
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From the discussion preceeding 2;14, points of h near E ad on
one side of & have class two With.respect to 1 while points of
h near E and on the other side of E have class zero with res;
pect to B, Therefore as P moves along h across E its class
with respect to E changes by two,

2;16 Theorem, If a moving point P crosses an end-tangent b
of an elementary arc E at‘any point'bther than the point of
-contact of b or the point common to b and the other end-tengent
of E, than the class of P with respect fo E changes by one,

Proof, Let H be any point on b which is not on E or the
other end-tangent of E, Let h be any line through H other
than b, Let a tangent t start at b and roll over E and let
I be the point of intersection of t with h, 4As t rolls over
E, I moves off from H covering points of h near H and on one
side of b.' I meay or may hot return to H; |

If I does not return to H, then points of h neer b
and on one sidevof b have ci&ss one with respect to E, while
points of h near b and on the other side of b have class zero
with respect to E:

Suppose I does return once to H; I will not stop at
H since H is not @ point on the other end-tengent of E and, by
Theorem 2,13, I will not reverse at H, Therefore I will move
through H covering once all points of h neer b and on both
sides of b, So if I returns once to H, points of h near b and
on one side of b have class two with respect to E, while points

of h near b and on the other side of b have class one,
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I cannot return to H a second time since the class
of H with respect to E cannot exceed two, | |
| It is séen that points of h near b and on one side
of b have class one greater than points of h on the other side
of b, Therefore if a point P moves acrbss b its class with
respect to E changes by one,
2,17 Theorem, Let B be an elementary arc, Let P be a point
which %s not contained in E or in either of the end-tangent s
of E, If the ckass of P with respect to & is ¢ (c=0, 1, or 2)
then in any neighborhood of P, which.contéins no points of E
or of the end-tangents of E, all points have class ¢ with
respect to B, |
Proof, Let N be a-neighborhood of P which contains no points
of ¥ or of the end-tangents of‘ﬂ. Let h be any line conté&ning
P, Let a tangent t roll over-E and let I be the intersection
of t and h, N contains no points of the end;tangents of E, so
the end-points of I are not contained in N, I contains no
point of E, so the reversal points‘qf I, if ahy exist, 1lie
outside of N. Therefore every time I‘covers a point of h in
N it must cover all points of h in N, Therefore since P has
cléss ¢ wifh raespect to B thén all points of h in N have class
¢ with respect to E; It follows that all points in N have
class ¢ with réspect to B,
2,18 Corollary., A moving point P ohangeé its'class with
respect to am elementary arc E if and only if it crosses E or'

an - .end-tangent of E, -



2,19 Theorem, A oﬁrve ¢ 'and the critiqal tengents to C
divide the plane into regions of uniform class with respect
to Q.

Proof, Suppose & point P moves about the plane, From 2,18,
the only way in.which P can change its class with respect to
an elementary arc is by orossing either the arc itself or one
of its end-tangents,

Since C is composed of a finite number of elementary
' arés the class of P with respect to C is the sum of its classes
‘with respect to the component arcs of C; Hence the only ways
in which the class of P with respect to C can change are:
(a) P may cross C itéelf, thereby changing its oclass
with respect to the elementary arc in the neighborhood
of the crossing point,
(b) P may cposs a tangent %0 C, thus changing its class
‘with respect to the two elementary arcs in the neigh-
borhobd of thé point of contect. of the tangent, It
follows from 2,12 that the class of P with respect to
C changes only if the tangent crossed is a oriti@al
tangent,
Therefore the curve C and its critical tangents div;

ide the plane into regiohs of equal class with respect . C.
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CHAPTER III

At the_outset of Chepter II it was stated thet for
a differentiable curve C, the class of P varies with the loc-
etion of P reletive to ¢, In Chapter II we established regions‘
such that in a given region the class of P is constant and
such that as P crosses from one region into an adjoining
region its class increases or decreases by two, In this part
we wish to obtain a method for fiﬁding the class of points in
each region;

3.1 Theorem, Let & be an elementary arc with an end-point
A, Let a be the tengent at A, Let h be esmy line through A
other than a, Let N be a neighborhood of A which contains no
point of the other end-tangent of E, If h contains a point B
of E other than A choose N small enough to exclude B, Then a
and h divide N into four parts as follows:

(a) Two parts, those on the opposite side of a from E,
in which &ll points have class one with resbeot to E,
(b) One part, on the same side of a as E but on the
opposite side of h,in which all points’have class zero.
with respect to E,

(c) One part, on the same side of a as E and on the
same side of h as E,in which points not on E have class
zero or two with respect to E depending on the side of

E on which they lie,
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Proof, If & point P moves about within N the only'way in
whidh it can change 1ts class with respect to E is by cross-
ing either E or sa, _ ' ‘ v

Suppose P moves within the half of N which lies on
the seme side of a as E, As P moves across E its olass with
respect to E changesvby twa, Therefore, except when P is on
E itself, the class of P with respect to & can never be one,
Therefore E divides this half of N 1nfo two parts, one in
which all points have class two with respect to E and one in
which all points have class zero with respect.to E; To prove
(b) end (c¢) it will be sufficient to show that h sub-divides
the part in which all points have classzﬁrolwith respect to E;
, Let a tangent t stert at & and roll ovér}the part of
E which is contained in N, The point of intersectién Ioft
with h starts at A end moves along h, T will not-reverse, and
it will not return to A since A has cless one with raspect to

E. Therefore no point on h is covered twice by I. Therefore
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'h contains no points of class two with respect to E and so the
points of h which lie in N and on the same side of a as E have
class zero with respect to E; This proves (b) and (c).

Suppose P moves across & into the half of N which
lies on the side of a opposite to E, By 2.16, the class of P
will chenge by one, But before crossing a the class of P was
either zero or two, Then, since the class of P cannot exceed
two, the class of P after crossing a must be one, This proves
(a). _ |

Given a curve C, we wish to 6btain a method for
finding the class of points in each of the regions defined in
Chepter II. Suppose we know the class of same point‘S; Then
"we can find the class of any other point A if we let a moving
point P move fran S to A and nofe the changes in the class of
P as it crosses ¢ and the oritical tangents of C: The moblem
is to find the class of a point S; _

The method will be to choose an ordinary_point S on
C, let a moving point P start at S, trace C, and return to S,
At any point ih the tracing we will let k denote the class of
P wi th respect to the part of C traced up to that point.
If we can kesep cdunt of k throughout the tracing then as P
arrives back at S, k will give us the class of S with respect
" to the complete curve C,

It will be convenient to think of P as continually

moving out of one elementary arc of C into the adjoining

elementary are, Changes in k will be considered in three parts,
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(a) the point being traced, (b) the elementary arc E just

traced, and (c¢) thet portion of C which preceeds E,

(a) The point being traced., We will think of P as
continually "picking up" a tangent, nemely: the
tangent at the point being traoed;

(b) The elementary arc E just traced., Let 4 denote
the end-point of E,

(1) Suppose P traces an ordinary point, Since
en ordinery point has characteristic (i;l) then
as P traces an ordinary point, P does not cross
the tangent at A but P does cross any other line
h through A so,'by 3.1 (b), P "loses" a tangent
to E; But P ”pioks_up""the taﬁgent at the point
being traced, The net result is that k does not

change,
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- (11) Suppose P traces a cusp (2,1),or an 1n;
flection point (1,2), In this case P crosées'the
tangent at A thﬁs, by 3.1 (a), P "retains" one
tangent to E, But P‘“pioks upﬁfthe tahgent at
the point being traced, The net result is that

k increases by one,

S

(1.2)

/ (2,1)
(111) Suppose P traces a bill cusp (2,2), 1In

this case P does not éross ei ther the tengent at
A or any other line h through A, Therefore5 by
3.1 (o), P either "picks up" one tangent to E or
"loses" one tangen% to E, But P "picks up" the
tangent at_the point being traced; The net result
is that either k increases by two or k does not

change,

(2.2)
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(c) That;portion.of ¢ which preceed E, Here Theofems

2.16 and 2,19 apply, That is, if P crosses a part of
the curve which has been traced, or a critical tangent
" %o that part of the curve, them by 2,19, k increases
or decreeases by two; If P crosses the tangent at the
starting point S, then the class of P with respect to
the elementary arc of which S is an end point igcreases
or decreases by one, depending on the positién of cross-
ing and the direction of croséing. This follows from
2.16.'
3.2 Summary. If a pointvP starts at an ardinary point S
eand traces a curve C angd if, at any point in the tracing, k
is the class 6f P with_respect to the part of C tracea up to
that point,thén k changes according to the following:
(1) If P traces a cusp or en inflection point, k
increases by one,
(2) If P traces a bill cusp, k elther does not change
or inereases by two, |
(3) If P orosses the part of ¢ which has been traced,
k‘inoreases by two or deoreases'by two. '
(4) If P crosses a critical tengent of that part of C
which has been traced, k increases or deoréases by two,
(5) If P crosses the tangent at the startimg;point,' :

k increases or decreases by one,
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CHAPTER IV

4,1 The class of a curve, The class of a curve C is gliven

by the greatest number of teangents to C which contain e common
point, N | . |
: In thié chepter closed, differentiable curyves of
class three are cahsidered;'_The methods of Chapters II and III
-are used to ciassify_such curves,

Throughout this dhapter c=C(s) (gupo,<wsw§;§§1)
denotes a closed differentiable cﬁfﬁe of claésvthree._ t=t(s)
Jdenotes the tengent to C(s). Ns denotes the part of C in eny
suiiablyichosep;g neighborhood of the pbint C(s).

4,2 Theorem, A critical tangent to?c contains no ordinary
points of C., |

Proof, Suppose t(sl) is a critical tangent to C and suppose
t(sl) contains an ordinary point C(s2) of C. ByﬂThebrem 2.4,
there exists a point P on t(sl) such that the class of P with
respect to Ns2 1sAtwo. By Theorem 2,17, there exists a
neighbrohood M of P whefein ali points have class two with
respect to Ns2, By 2,11, there exists a point P' in M,Such
that the class of P' with respect to Nsl is two, Then the
class of P' with respect to § is at least four, This is im-
possible since C is a curve of class three, Therefore a

critical tangent to C contains no ordinary point of C,
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4,3 Theorem, The class of en ordinery point on C cannot
exceed two, | _

Proof.l Suppose en ordinary point C(sl) has class at least
three with respect to C, Let the three tangenfs containing
 C(sl) be t(sl), t(s2), and t(s3). By 4.2, these are non;
critical teangents. By 2,10 there exists & neighborhood M of
C(sl) in whiech all points have oclass one with respect ta each
of st and Ns3, But, by Theorem 2, 15 M contains a point P
whose class with respect to Nsl is two, Then P has class at
lesst four'with respect to C, This is impossible since C is
a curve of class 3. Therefore the class of an ordinary point
on C cennot exceed two., ;

4,4 Theorem, Suppose a moving.point P traces the curve C,
Let C(0) be the starting point and let k(sl) denote the class
of the point C(sl) with respect to that part of C(s) for which
O=<s=sl, As P traceé C, k is al'weys et least one since there
is a:tangent at the point P itself and, from 4,3, k cennot
exceed two, Therefore k is always either one or two and k
cannot change by more than one,

4,5 Corollarz, It follows from 4.4 and 3.2 that the only
ways in which k can change are:

(1) If P traces an inflection.point k increases by one,
(i1) If P treces & cusp k increeses by one, |
(ii1) If P crosses t(0) either k increases by one or

k decreases by one,
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4,6 Corollary, If C(sl) is a cusp or an inflection point
then -
for s< sl and |s;slh:6, k(s)=1
and for s>sl and [s-sll<eg, k(s)=2
since as P traces C(sl) k inoreaées by one,,

4,7 Theoéem. If C(sl) is &n inflection point or a cusp and
C(s83) is an inflection point or a cusp, then for some value s2 -
where sl< s2 <83, C(~sz) lies on t(0).

Proof, By 4.6, k(s)=2 for s>sl and |s-sl|<€. Also by 4,6,
k(s)=1l for s< 83 and |s-s3|<¢, Hence there exists some point
C(s2) (slx:sé‘<sa) where k decreases by one, By 4.5 the point.
C(s2) must lie on t(O); |

4,8 A_gg. A curve of order two on a projéqtive one-gpaoce,
which 1s denoted by the symbol KR, is defined to be asinglemiuei
continuous mepping of the projective line onto thé pro jective
1ine where no point is covered more than twice,

A wellenown property of auK2 is that 1t has at most
two reversels,

4,9 Theorem, ILet C(sl) be an ordinary point on C with
tengent t(sl) where t(sl) contains no singularities of C.

- Let the tangent t roll once over C, Then the intersection of
t with t(sl) has at most two reverséls.

Proof, Consider the following mapping:
let I(s) be the interseotion of t(s) with t(sl) for sfsl,
let I(sl)=C(sl).

I(s) defines ms&xﬂe:vaiumimapping of the points of C onto the
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line t(sl), I(s) is continuous for s#sl because of the dif-
ferentiability of C and I(s) is also continuous for s=sl since,
by the dual differentiability of C, %ggil(s)=c(sl). Further,
no pBin},on t(sl) is covefed more then twice since three coin-
cident values of I, Say.I(sz), I(s3) end I(s4),would imply four
Ebncurrent tangents namely: t(sl), t(sz); t(s3), and t(s4).
Thus I(s) generates a curve on t(sl) which satisfies the con-
dition for a K2, Therefore I(s) has at most two reversel s,
This proves the theorem,

4,10 Theorem, The only singularities theat can ooéur in C
are cusps, inflection points and double tangents,

Proof, It follows from 4,4 that C can contain no nodes or
bill cusps since in the trecing of either of these points k
would change by two, The only singularities that remain are
cusps, inflection points, and doubie tangents,

4,11 Theorem. C has at least one cusp and, in any case C
has an odd number of cusps,

Proof, Consider the dual‘problem.

. Let T(s) be the tangent to a closed curve C(s) of
order three, Let C(0) be an ordinary point, Let I(s) be the
intersection of T with a fixed line h which does not pass
through eny singulérities of C. Since C is closed and con-
tinuous, and t is continuous, then I generates on h s contin;
uous closed curve which has an evenlnumber of reversals, If
a point I(sl) is a reversal point on h then, by 2,13, either
I(sl)=C(sl) or C(sl) is an inflection point. (By the dual of

4,10 C conteins no bill cusps).



Let the number of reversals of I be U(even:), Since C is closed
‘end of odd order, the number ofvpoints comon to C and h is odd
‘and et least one, Let the number of points common to C and h
be V(odd), Let W be the number of inflection points on-E.
Then from the foregoing . |

W + V(odd and at least one) = U(even),
whence W is Qdd and at least one, Therefore C hés at least
one inflection point and in any case an 0dd number of inflect-
ion points, This, dualized, gives the statement which was to
be proved,

4,12 Theorem, If A is a cusp or en inflection péint of a
curve C, then in any neighborhood N of A there exist points
which have class three with respect'to that part of C which
lies in N,

Proof, Let El end E2 be simple arcs in N which are joined
at A, Wevknpw from 3.2 that there exists é curve poiht'P on El
which contains & tengent t of E2, By 2,15, a point P' on t
which lies-sufficientlylnear P will haye class two with respect
to El, 'Then P' has class three with respect to that pért of C-
which lies in N, | |

The ‘dual of this theorem is:

If a is the tangent at aﬁ inflection point or & cusp
of a ourve C, then there exist lines in a neighborhood,N of a
whighvinpé}sect, three times, that part of C which lies in N,

4,13 Theorem, C cannot have one dusp alone without any
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other singularity,
Proof, Consider the dual problem,

Suppose C is a closed curve of order three with one
inflection poiht and no other singularity, Let the inflection
point be 6(0) and, with this point as starting point, let a
point P trace C. channot.cross T(0) because if P crossed ?(O)
" in a point G(sL) then, by the dual of 4l2, a line in the
" neighborhood of ¥(0) would cut C four times, three times in
the neighborhood of C(0) end once in the neighborhood of C(sl),

_ Consider k (the class of P with respect to the part
traced)‘as P aﬁproaches C(0)., sSince P has traced no sing-
ularities and has not orossed %(0), then k=1 as P approaches
6(09. But from 3.8, k must be at leaét two, Therefore C
cannot have one infleotion point alone without any other
singularities,

The dual of the result is:

A closed curve C of class three cannot have one ousp
alone without any other singularity.

4,14 Theorem, C cennot have:
(a) An inflection point and more than one cusp.
or (b) More than one inflection point,
or (¢c) More than three cusps.
Proof, Let h be the tangent at an ordinary point of C
which contains no éingularities of C, Let a tangent t roll Oov-
efr C, Suppose C contains a total of n cusps and,infiectmun

points, Take the point of contact of h as the starting point



end let P trace C. Then, by 4.7, C will cross h n;l times,

By 2,13 (iii), each of the n-l crossing points ceuses a re-
versal of the intersection of t with h, By 2,13 (i), each
inflection point ceuses an additional reversal so, if m is

- the number of inflection points on C, the number of reversals
may be expressed (n-l)4m, By 4.9, this must not exceed tﬁo.
Thet is we must have (n-1)4+m€2, By checking each of (a), (b),
and (¢) with this formuls it is seen that the theorem is true. -

4,15 Theorem. C has at most one double tangent because fhe
point of intersection of two double tangents would have class
four with feSpect to C. .

4;16 Theorem. C cannot have_a triple tangent since a point
of contact of a triple tangent would be a oufve point with
class three with respect to ¢. This is impossible by 4,3,

4,17 Theorem, If C has a double tangent then C has at most
one cusp, '

Proof;' Suppose ¢ hes a double tengent and more than one
cusp, Teking one of the points of contact of the double tangent
as C{0), let P trace C, Then by 4.7, P must cross t(0) at
some poinf say C(sl).,- Then C(sl) has élass three with respect
to C, This is impossible by 4,3, Therefore the theorem is
true,

4,18 Theorem. C cannot have a double tangent and an ine-
flectionipoint.

Proof, Suppose C has a double tangent end an inflection

point., By Theorem 4.2, the inflection tangent cannot coincide
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with the double tangent. Let A be the point common to the
dpuble tangent and the inflection tangentf Let & point P
move along the double tangent.\ The class of P will be at. -
least two, Thefefore es P passes through A, by corollary 2,12,
the class of P changes either from two to four or from four to
two, Both changes are impossible since C is‘a‘curve of class
three, Therefore the theorem is true.?

From the foregoing we conclude that any curve of
class threé_must contain one of the following three combina-
tions of singularities:

(a) One cusp and one inflection point,
(b) One cusp andvone double tangent,
(¢) Three cusps,

It remains to show the existence of curves of cless
three for each of the types (a), (b) and (c¢)., This will be
done by examples,

The method will be to consider curves which, from
algebraic.geometry, are know to be of order three; Then by
using-the duality principle we will confirm the above ¢lassi-
fication of curves of class three, |

(a) One cusp end one infledtion point, Consider the third

order curve

Xgl(s:‘ XJS_; ' ( l)
In the neighborhood of (0,0,1), (1) becomes
yo= x°, (2)

The curve (2) passes through (0,0) where it has slope zero,



Then the tangent to (2) at (0,0) is

| y=0.
Inspection of (2) shows that (2) lies entirely on the right
of x=0 and since x=0 is not tangent to (2) at (0,0), then
non-tengents to (2) at (0,0) are lines of éuppdrt.

It 1s also seen that (2) is symmetrical with respect
to the tangent y=0 so the tengent at (0,0) is a line of inter-
section, Then the characteristic of (0,0) is (2,1) and (0,0)
is a cusp. By 4.11, (1) also has an inflection point; sé (1)
is a curve of order three with one inflection point apd one
cusp, Its dual is & curve of class three with one cusp and
one inflection point,

(b) One cusp and one double tangent, Consider the third

~order curve )
'x§;5= x?—%x?xs. (3)
In the neighborhood of (0,0;l) this curve becomes
| y2=x®(x41), : (4)
Differentiating, .

v=_¥sx+2) . (5)
av/ x4 1- '

Inspection of (4) end (5) shows that (4) passes through the
origin and, at the origin, the curve has two distinct tengents,
The point (0,0) then, is a node,

The curve.(ﬁ) is & curve of order three with one
.inflection point and'one node, Its dual is =a eurve of class

three with one cusp and ohe double tangent,
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(¢c) Three cusps. Consider the third order curve

x§x3=xl(x§4-xg). (6)
In the neighborhood of (0,0,1) the curve becomes
ye=x(x%+1), (7)
Differentiating, | |
- y'= Ext 1) (8)
2/x (x5 1) |
By inspection we see that (7) is symmetrical with
respect to the x-axis, that (7) has no points on the left of
the y;axis, and that'(7) cuts the x;axis at the point (0,0)
only, From this it follows that, at the pointv(O,QL the x:axis
is a line of intersection and the y-axis is a line of support,
Equatien (8) shows that the y;axis is the tangent to (7) at
(0,0), therefore the charaecteristic of the point (0,0) is. (1,1)
so (0,0) is an ordinary pbint,.
We have seen that & curve of class three must contain
one of the three combinations of singularities (a), (b), and (c)
given on Page 32, By duality, a curve of order three must
contain one inflection point and one cusp, or one inflection
point_and one node, or three inflection points;
The ourte (6) must nave et least two singularities,
Therefore (7) must‘have at least one singularity since it
contains all the points of (6) except the point at infinity.
The point (0,0) is not a singularity. Therefore by symme try
any singularities in (7) must occur in pairs, Bnt_the only

singularity that cen occur twice in a curve of order three
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is an inflection point, Therefore (7) has three inflection
points end its dual curve will be a curve of class three

with thfee cusps.



