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ABSTRACT OF THESIS

The present thesis is based on a paper by Bencivenga . In
this paper the author develops a theory of function for ﬁhe
dual and bireal variables ., He constructs the "retto" end
"hyperbolic" plenes for the geometric representation of the
dual and bireal variables , respectively , and establishes a
type of conformal mapping ®f these planes into themselves by.
meahs of differentieble functions of the variable . Further ,
in each of these planes he proves the analogue for the Cauchy
integral theorem of the complex plane . Finally he shows that
functlions of the dual and bireal_variable which possess all
derivatives at a given point of the plane may be expanded in
a Taylor series about that point . In the first chapter we
give a summary_of_this paper .

Bencivenga's dual and bireal number systems , and also the
complex number system , are twofdimensipnal cages of fhe

n - dimensional.associative » commtative linear algebra .
with unit element_.'In chapter II we generalize Bencivenga's
f@nct;on theory to functions.ovér‘the above mentioned linear .
An important class of results from the theory of functions of a
complex variable ape not generalizable , since they depend on
the figld»properties peculiar to the complex algebra .

In chapter III we undertake a detalled study of the hyper-
-bolic plene with pérticuler»reference to the conformal prop-
erties of differentlable functions of the bireal variabke , as
g'gpecial case of conformal transformation of the hyperbolic

plane , we study the bilinear transformation ., We find that



the rectagular hyperbola 1s the geomsetirical form which is
invariant under this transformation of the hyperbolic plane .
Singulerities play a larger role in this theory than in the
case of the analgous transformstion theory of the complex

P lane .
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CHAPTER I
Introduction

In a paper entitled "Sulla Rappresentazione Geometrica
Delle Algebre Doppie Dotate Di Modulo" #* , TU. Bencivenga has
given é geometric representation and function theory for dual
and bireal numbers . It 1s the purpose of the present thesis
to investigate the function theory for a more general form of
hypercomplex variable , and to develop the theory of conformal
mapping in the plane of the bireal variable . We will give
first a summary of the results of Bencivenga's work which will

be required in later chapters .

I.I The Dual Number System .
~ The dual numbers are defined by Zz = x°+ ‘J w ’
where x,_anqbrﬁh_gre_rea}'and I, W are bhasis elements

”

which have the multiplication table :

| w

W w 0

% Atti. Accad. Sc¢i. Nepoli
Ser(3) V.2, No.7 (I946)
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These numbers form a commitative linear algebra over the real

numbers . Morsover , the algebra of dual numbers is isomorphic

with that of the Q2x2 matrices
» ﬁ*
zZ = x + 3&&’ G :
o 1S
The modulus of 2Z  1s defined by
pl
|zl = ¢ = |x].

v X
I.2 Representation of Dual Numbers in the "Retto" Plane .

The retto plane gpnsists of all points of the cartesian

plane with the distance  (°( K N4 between any two
points R (%,9) and B (%,1) defined by
PCRRD = [x-%l]

This metric 1s symmetric and satisfies the triangle inequality.
However , (°(%, )= 0  does not imply that =k .
In figure I , the vector .‘DI’ defines a rettilinear angke
whose magnitude is given by twice the area of triangle LOA ,
whose algebralc sign 1is positive , and which bears the sub-
-gcrlipt 2 . Magnitudes of gngles in other quadrants are deter-
gm;nédr;p the same manner , with algebralic signs and subscripts
according to figure I . Addition of rettilinear angles is de-

BCAS OV

where subscripts are taken modulo 2 . Rettilinear sine and

emea vy gt Y

cosine are defined by

A 4; = C")sff’ ) Lo df, = (")S p)
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and satlisfy the addition formulae :
am (4tth) = pund canl, + card amd,

e (d+dy) = Lard canly, .
The dual number zZ= 'x-/-g w is represented in the
retto plene by the point (> 4) , where X and 4 are
signed Euclidean distances from the 4- and >C-axes , |

respectively .

If 1z] = n R om(z)=¢ ; then
X = Nend , 4= Namr ¢,  and
2z = )(-Q-'a,u/ = n_(mfld{‘,-f- WM‘P‘>,

I,3 Elementary Operation Formulse .
_Bgnq;vengg establighegvthe following get of miltiplication,
division , and power formulae

Lo A (g rwasad ) Na( G + Wb o, )

= A0, [2on (440> + W (4+9)].

2. For an integer m z o :

[ A(caed, + wain ¢ ]M = A [enbre), pwaia(m), |

3. For rational %D 20

p
[n(w4+wmg)]r = n_% [“‘“({")x"wm({")x]a

Ps

From this equation for X , it follows that for numbers

where  FX mod 2 -
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lying in quadrants designated by the subscript I , even roots
do not exist within the dual system .
4, For irrational /4 >0

. Iz .
[(L(sz¢s.+ W awmn &, )]P = N [K-'ﬂ'l(/“ﬂ) + WM(’{-)]
hes a merely formal significance .
5. For n+ o

|
N (tondy + wanin 4, )

-+ [m(«w waw (-4) .

6., Formless 2 , 3, 4 , 5 may be incorporated in the general

formla
x 2t .
[n(w¢‘+wm¢)] = Q[W(“‘&)+WM(K¢})]
valid for all real 2 .

I.4 Functions of the Dual Variable .

Functions over the dual numbers are defined in the usual
manner : a function F(Z) 1is defined over a set of dual
numbers when a method is given for uniquely determining a
second dual number to correspond , as 1mage)to any given )
member of the set . The mapping 1s expressible

F)y = F(x4) + E(xyg) - w,
where F , E are real functions of > and 4 .
By definition , F(&) 1is differentiable at Z if there

exists ¢<Z) ¢(x %) + (X, ) w

such that
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9f
@_de+’s‘éﬁd3 - W('Si"l’"' %;al?) = (d,+ we Xox + wdy ),

assuming the existence and continuity of the first partials of
F and F  with respect to X and 4% . From this defini-

-tion Bencivenga derives the "Cauchy - Riemann" equations :

?_F‘- _ ‘oF | ( I.a1)
2% ’23,

?_E = o »

Y

which , with the existence and continuity of the partials ,

are necessary and sufficient conditions for the existence of
/ .

the derivative F(Z) of F@& at a point Z . The real

components of a differentisble function F (&) are of the form

F= FE¢oy £ = gheo + ¥@)

and the derivative 1is gilven :

F,' - ?__Fl' + QE , W - ( 1042 )
& = L eIl ‘
K
A power series Z AcZ will define a function of Z

- & . Lon of <
if theporresponding real ( component_) series both converge .
Writing A = a, + Low » We require the convergence
of '

S acx" ama 7 Lo .

That is , Z A.‘Z converges within some open region of thse



retto plamne : |%] < N , which 1s bounded by the

"modulus curves" (= , H=-N1 .
Bencivenga establishes the Taylbr expansion about a point

Z= 2,

oo ) ( I.43)
F(2.’+z) - Z F(K(,ZJ ZK | I1.43

Aeo K .

for functions possessing all derivatives at Z .

The expans-
-ion is valid for all points 2z within the region of converg-

-ence of the right member of ( I.43 ) .

. [ z . - .
- The line - integral L F@)dz  over a path ¢ in the
retto plane is defined in tlf‘é usual manner : Take a decompo-

~-gition of the curve segment : Z_’ 2, .- 2,02 ---- ZeZ,
» -

py ,"I) "

and & point §. on each segment Z, | Z. .

'3

Form the sum S- - Z F(S:) (?‘ - 2:._,) .

-
Refine the decomposition O by increasing m and allowing
Z, to approach Z., , in the Euclidean sense . Denoting tle
refinement : |oo| -» O , the integral is defined :

z .

g F@) dz = om < . ( I.44)
¢ o) 0 T

%

Bencivenge shows that if F(Z) is continuous on C the integrel
exists , and is given by the formula :

2z Z z 2
fFa)Jz :f[ﬁécwwfcx,ﬂ)](dwwdla): fﬁJ,HwL(ﬁAJ.,EJx),( I.45 )
¢ d z‘e Z

¢
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Bencivenga next proves the Cauchy integral theorem for this
case : If F@) , is differentiable on the closed contour and
at all points of the interior bounded by c , then

K(F'(z)alz = O, ( I.46)

(4

Consequently » Within any such region .(F(z) dz defines

a differentiable function I(z ~ which 1s 1ndependent of the
path J' , and has the derivative : I(-z) = F),

I.5 Conformal Representation . o _ ,

- The author proves that a differentiable function of a dual
ygriable maps the retto plane_;ntq itself so that“rettilinear
angles are preserved . The mapping will , in general , fail to
beﬂ¢9pf9rmg1“gtAtho§e points for which the differentiabllity of

thefunction fails .

1.6 The Bireal Number System .
The biresl numbers are defined = Z = X+ JU  ghere
i, ?(h are real and basis elements | , KL  have

multiplication table
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The bireel system is a commutetlive linear algebra over the

reals , isomorphic with the RAx 2 matrix algebra :

p4 =><+gu<———7 [’; 1]-

The modulus of Z 1s defined by

- - [

i

/ >~ 57| .

The suthor constructs a théory of the bireal variable and its
functions similar to that for the dual variasble ; the differ-
-enceés in the parallel theories are confined to detalls of

proof and formmlation .

I.7 Representation of Bireal Numbers in the Hyperbolic Plane .
The hyperbolic plane consists of all polnts of the cartesien
plane with the distance P(".,e } between any two points

P(x, 9) end P(x, '3.) defined by

P(r,RY = Jl6e-mY- @G-uT

For this metric P (R B ) =¢ does not imply P = [ ,
and , furthermore , the triangle inequality falls . All points
on the rectangular hyperboles 3" - 31. = *| are unit
distance from the origin .

‘Hyperbolic angles are defined in terms of the unit modulus
curve 7(7'_— 3" = *| . In order that an hyperbolic angle

shall define a unique vector originating at the origin , it is
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necessary to specify angles by magnitude , algebraic sign ,and
subscript : Quadrants of the hyperbolic plane ( figure 2 )
are signed according to the same scheme as for the retto plane.
Quadrants V,OV, , V.Olé’ ) l{lol{l and V,IOVz are
.distinguished by subscripts I , 2 , 3 , 4 respectively . In
figure 2 , OP' definesihype»rbolic_angled’, , where ¢ 1is
positive and equal in magnitude to twice'afea bounded by
%-axis , OP , and 7(‘—_'31 = | ; OQ gefines Y,
where - ¢ 1s equal to twice area bounded by 4-exis , OQ ,
and ¢ %m_g -| .+ Similarly every other vector origin-
-ating at the origin defines a unique hyperbolic angle .

Addition of hyperbolic angles 1s defined by the equatlon

43 1y, = (@ +q’)f_ and the matrix :
K 3 2 0]

3 4 ro2

2 ) 4 3

From § , A determine { as follows : | | )
Find § in column I, and M in row 4 ; find T at the inter
-gectlion of the row and column so determined . For example ,

if §=2 , N =3 then =4 .,

The sine and cosine functions for this plane are defined

as follows : rc.r.\ﬁuf‘_: M4’ s /luoﬂd’, = M¢;
where Ank¢ , MR ¢ are the ordinary hyperbolic sine and
cosine . Functions of angles in other quadrants are defined

according to scheme :
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Chb = aad anh ¢ - xah &
ol d, = - wak¢ abd, . - ank g (171
_ MQ¢“"=' —m«pl¢z M(P’_: _Méz
With definitions ( I.7I ) the addition formulae
:w.e,(d?sut’,‘) = anhd aoly + MQM%,
_ ( I.72)
ol (¢ +d,) = <ol b, col oy, + Ak wuhy,
are satisfled by every pailr q@ » Y, . Furthermore , if
izl =n am (2) = c& s then
X = Nk Y= n awk 3,

) ( I.73)
Z= N+yd = /L(M¢$+“M‘f.))

where Z= X+ ¢ 1s represented in the hyperbolic plane
by point Gc, t}) .. » % and 4 being the signed Euclidean
distances of the point from the 3— and X - axes , respectively.
1.8 Elementary Operations on the Bireal Numbers .

~ The formulae of section ( I.3 ) have exact analogues in the

bireal system :

I A (tohd +uanhd). n, (ahd, + uauk )
= Aoy [k (4p) + uah(449) ] .

2. For an integer m Z O

[n(eabgsunid )] = 7 [ak(ud) ¢ coid(nr),]
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p
%. For rational 71— Z O

P .
[A(M¢+uw¢)]“ o aF [eat(E)r waikff Q)]
where ""¢ (‘E s G‘(?)") = G'(fi :>>
¢(6$>= S+S + - - +s to P terms , the add-

-ition being carried out according to the above makrix rule far
subscripts

4, For irrational /4 >0

[a(eatt+aaidt) ]" = 2 [cak(pa) o waikpe) ]
has a merely formal significance

5. For A+ O

| = — [kal(-4)+ wand(-4)].
ﬂ(M‘g-&“Mf,) fl[ ( ) ]

6. Formulae 2 , 3, 4 , 5 may be incorporated in the general

formala

[ (Mcgwwcr,)]“ = A" [aoh (x84 uashfus)]

for all real A .
qu Some purposes it 1s convenient to replace the basis

| » L by the equivalent basis ¥ , 4

| = ¥

N

( I.74 )

=

wu = ¥ -

The ¥ , ¥  mltiplication table is
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Z A
Y Z 0
V| o Y

Y4
is expressed in the ( s 4 system

) ( I.75)
Z= x+qu = ey + (04 4
I.9 Functions of the Bireal Variable .
A power series in the biresl variable Z
(2 " et q
ZAZ = Z (a4 )(sh+t")
f20 A=o
&L o e K
= 2: axs B % + ‘Zf 4£(t "4
{=zo Axo o
defines a function of 2z if the real series Z a, c% ,
R ‘?
e )
Z 4&,{ both converge . If the radil of convergence of
H=o ‘
- L o
a‘rgq , 4Z ﬂ‘f are H , h;_ respec::.ively,
=0 .

then the region of convergence for the bireal series “Zﬁ.r z"

1s the interior of a rectangle in the hyperbolic plan;Zfiguresl.
Functions of a bireal varlable and differentiability of

such functions are defined in exactly the same manner as for

the dual variable (section I.4 ). The necessary and sufficient

conditions fpruqiffgrent}ab;1ity at a point_inAthis’case are

(I) the existence‘gnd continuity of the first partial deriv-

-atives with respect to X and 2 of the function at the
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point in question .

(2) that the Cauchy - Riemann equations

?-f=2§ ‘ /——a-':=?_'.: ( I.9I )
% 193, ) 793 Vx

be satisfled at the point , by the function
F@) = F(xy) + E(xy) u
The derivative , 1if 1t exists , 1s given by the formula

3 2F
FE) = 5« t 5% Sl ( I.92)

If we transform to the ¥ , ¥ galgebra , a differentiable
function takes the form ‘

fey = fo % + L&Y

( I.93 )
ﬁ~he}r-e Z = SV, + 1ty
The author establishes the'Taylzp)expansion
, o o)
FE+z) = Z f:{(z‘,_) z", ( 1.94)
. .. O =°A -l

valid for some rectangular region about a point 2, at which

all derivatives of F@&) exist .
. , 2 o S
The line - integral _( F&)dz of a function of a
' <
2

o

bireal variable 1is defined 1n_thé samé manner as for the dual
variable ( Section I . 4-)- . The author shows that if

is continuous on € , the integral may be decomposed
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fg' F@yedz = i( *E'“)(Jx+43-u)

z,
; 7 ( I.95 )
= gﬁdl’t-f F;Jz, + “ fcﬁd}+€J1’
(<4 z
z, ' °

The Cauchy integral theorem

fg Fé)d/z = O
3

14

if F@) is differentiable on € and at every point within
region p_ounded by ¢ . " 1is proved by the author for bireal
‘Finally , Bencivenga proves the conformal property of diff-
-erentiable bireal functions : " A differentiable function
of the bireal variable maps the hyperbolic plene into itself
with the preservation of hyperbolic angles ." Thé mapping
will, invgenergl ;.fgil to Dbe conformal at those points at

which the differentiability of the function fails .
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CHAPTER II
Function Theory of a Hypercomplex Variable .

In this chapter we will develop the function theory ,
analogous to that of Bencivenga , for any linear algebra over
| the real numbers which is assoqiative » commutative , and poss-
-esses a unit element . We ghall see that the generalizations
of.differentiability ’ Taylor development of functions , the -
Cauchy integral theorem , and conformal representation are
consequences of the fact that the algebra_forms»a commitative
ring>with unit element,on the other hand , we4§ha11 find that
“there is another class of results in the theory of functions
consequences of the field prppgrt;eg QfAthq algebra of comple;‘
numbers , and therefore pertain only to the theory of functinrs

of a complex variable .

2.1 Classification of Linear Algebras over the Real
“.Numpe;smﬁh;ch are Assgoclative , Commitative and Possesga

Unit Element .

Theorem 2,II The only independent binary assoclative comm
utative 1ineér_a1gebras.w1th unit element over the real numbers
are the complex ,4dua1 and bireal numbe r:: systems, any other
b;nary;form is expfessible in terms of one of these independernt
forms .

Proof : The general binary form is given by % = % + %€
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where X, , X, are real , and the basis [/, £  Thas the

miliiplication table

! £
{ { 14
¢l ¢ “+p €

£ , B being real numbers . From the multiplication table v

see that S ;L_s a root of a quadratic equation with reél cog-

-fficlents , namely

c"z-—- p& —x = 0O, - (2.,11)

which may be written

B2 B+ 4«
<5 - -2-) = o = > say.
Let (3" ’ “:u - -y &) denote the algebra with basis
tl s 2'2 3 v ’ z‘ s Where {: =I .
, . £- £
(1) 1f Y>>0 , 1let u = ,

Then (/ ,i') is equivalent to (/ s U ) » Wwhich 1s the
_ 2 _
bireal algebra since « = [.

R
(11 ) 1f Y=0' , 1le&t W= &- g

since W'z o0 , (I ,f) 1s equivalent to the dual
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algebra (/ , W) .

A
, . & 2
(111 ) If ¥<O , 1let ( =
/-7
[ 3
Then ¢ = -/ s and therefore (/, E) is equivalent
to the complex algebra (/, c.) .
Theorem 2.I2  Of the three binary algebras , the complex

algebra alone forms a field . The other two form merely rings
with unit element .

Proof : The binery algebra (/ , § ) forms a field if and

T
only if € - pg -x =20 ~ 1s irreducible in
the peal fleld & . This conditlon is satisfied if
3
and only if P+te4s <o ,

in which case the algebra (I,?.") is equivalent to the com-
-plex algebra (/, ¢ ) .

The.r;*_ 4(5') = a@).

In the cases ( i ) and ( i1 ) of thﬂe,}"theorem 2.II , where
(/ s i‘) is equivalent to (/,q)and (/, W) respectively,

1 ‘ ,
'3 "f)”" -X = O is reducible .

Hence A(i) » and therefore the equivalent A @) and AWw)

are not flelds .,

*py 4 (§,.....,&) we willméan the algebra obtained by ad-
~-joining the ejements & ,.... ,£t0 the real fisld. Thus ,for
example , A() will derioteé the complex number field since it
is obtained by adjoining the element ¢ to the real number
field .
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In fact , /J+& is a divisor of zero in the‘bireal alge~

-bra , and W 1is a divisor of zero in the dual algebrs ;

since
(+u)(1-w) = o,
2
and w = ©O
‘Theorem 2.I3 - The complex algebra 1s the only associative,

commtative linear algebra with unit element over the real ...~
numbers , vghich forms a field o. _ _ _
Proof : Suppose the algebra (ﬂ, s «ve 5 &) » where

£ =/ , over the real fleld A , forms the adjunct-
-ion field |

A(g, €y o n &) = A(:.§-..,8).

e 3

Any polynomial /’(5’) in E’z with real cosefficients in

A  is factorable in the complex field () . Therefove
. a(&) < al). | o
Any polynomial 2 (&) with coefficlents in A () is factor-

-able in A@) . Therefore 4 (l) &) < ak),

sothat  A(&,5) < Al).

Continuing the argument , we have finally ‘
A(fa;gs) """ ) £*> CA(‘)

Hence if (€, & ..., &) forms a field , it is a sub-
-fleld of the complex fileld or the complex field itself .,
But if ¥, § are real and not zero then a, <) and (¥, §+)
arg_equivalent bases over the resl numbers .

Hence AG-) < L\(?;,f,,----,?«),
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So that a(e G, ) = al) ’

Proving that any algebra (3', , & , Tt g, )
which forms a field over the real numbe.rs mst form the com-

plex fleld .

2.2 Hypercomplex Algebra
Let & € , e e , with £ =1 ,» be the
) - . - :
basis of an assoclative , commtattve linear algebra over the

reals . Then an element of the algebra may be written in the

Mn
form x = = €,
=y

where the 7, are real numbers . The hypercomplex algebra so
defined possesses the unit element & =/ ., Moreover ,let

the miltiplication table for the basis elements be given by

"
£
Z“- 2:( = E" i.‘.. = 2 CLK zl' ‘
; _ , - S PEY A
‘This teble is therefore defined by the m(M41)  pea1
'his tabl L
constants K .
Cu\' = C.. -

Since multiplication is associative , we have ({,'( fL){r,= E (£ €,)

wao (2 ole)e = a(Eaw)

]

n . : N .
?'c‘ C.} g Z C‘-P C, . z’;
"3”

4,1:' .2
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The necessary and sufficient conditions for associative

miltiplication are therefore

~n . . » . -
7 o ¢ Z < |
= c C .,
Z Cll’L Cg.,; . - Lp L {4 ( 2.21 )
¢ =l €=
MB(M‘#I)
The equations ( 2.2I ) impose —_— conditions on the

o (met) 2
'-—Ez——~ constants . As examples of algebras of more

than two dimensions satisfying these conditions , we note the

following
( 1 ) The algebra

T, £ &
2 R S
g, T, F; i;
{3 t] i; o

( 11 ) The class of linear algebras for which the basis
(E' s ... 5 ) forms an abelian group .
LY a2 Iy ) >

( 111 ) Teke an irreducible polynomial fkﬁ) ‘of degree 71 ,
with coefficlents in the real field A . B ring adjunc-

-tion , adjoin the M roots 6,6, -.... y 8,, to form
the linear elgebra A [ & S -.... ’ e-.‘] with basis
l) 6‘ )‘ 61. ----- ) 6M
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2.3 Matrix Representation of a Hypercomplex Number ..
. ””n
The hypercomplex number - = g
v P ”® = :Z % % w111 define
L)
“ .
a unique M X M matrix MG whose n row vector is

formed from the real coefficients of

fliad s
{; 14 = ;2:. <;1u % &
v, S=/
Thus
Bdad '
MG = Z C,,% |- ( 2.3I )
Je{

It is well known that there exists an isomorphism under addi-
-tion and multiplication defined by

> MG

The modulus function of > 1is the determinant

- 2C <

l M 60 ' of M G , the actual modulus

/[ \meol |

This represéntation will enable us to study the hypercomplex

being given by

|7<|

variable through the properties of the corresponding system
of matrices----- a fact which will be exploited in the theory

of conformael mapping .



2;4 Functions, Continuity, Differentiablility and ConVergence;
In the following development of the thaory of a funétion:of

a hypercomplex variéble s two properties of the hypercomplex

numbers are of fundam?ntal importance

(1) The hyperéomplex numbers form a commutative ring with

unlt element .

( 11 ) The baée field of the hypercomplex system is ﬂhe field

of real numbers .,

A function ‘Pé() of the hypercomplex variable

N
0= Z ¢ is defined to be a
= o .
single valued mapping of the space ("C, > Tt 2. ) 1into

itself . It can be expressed in the form

5
R
.’/

il
\h
/\
X
,X
/

)

where the 1(; (% - , %) are real functions of the

variables‘ ' X, , : , X,

£60) s | - | o = @
said to be continuous at 2 = Z x, ¢,
=t
if each of the real functions ‘E, ( LN .. ) is
)
continuous in the real variables o, ,---- , X, al

If each component {: of -F(x) possesses all first par-
. (')
-tial derivatives at 9¢ °  then -F6‘) possesses &

differential at ‘)(M and we can write
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o
Z_&/f:,f:, | for x = %

' & Y

o f&r

1r f6o possesses.a differential at ’(n) R and there exists

a differential coefficient ¢ 6t)

such that o foo = &6 dxn ( 2.4I )
@) s |
gt W= K , then &) 1s sald to be differentiable
Q)
at pld Y

A power series

K=o v=|

= . A
Z A.f)( Z (} ' ""A“x' i xn- )ZL

defines a hypercomplex number ~f G) at 2 1f each of the

component real series converges at 2C .

. w p .
In this case we say that pd Ax X converges at 2 .
A=o

Z AK )(“ -converges over a reglon if it converges at

‘(20 . . A
every point of the region ; and converges uniformly over the

region if each componelfit real series converges unifoérmly over
the same region . Within 1ts region of uniform convergence,

the se'ries i

" A=ze
of p,¢ .

defines a continuous function



If limit _E(x,,....,x,.) = L,
’f‘\-n
x,
wmn
and L = pd L, ZJ then we shall say
. V=1
that .
/éw‘ ‘F(") - L s
»-» O

2..5 Generalized Cauchy - Riemann Equations . _

We shall now generalize the Cauchy-Riemann equations of .. -
complex varlable function theory . We prove the following
theorem :

Theorem 2,51 The necessary and sufficient conditions that

. a) '
{60 ve aifferentiable at x= %  are

(1) that the first partial derivatives of the -(::, with res-

-pect ’1_;0 the variables % . ¢ exist and be con-

L ) -
)

=t inuous at H o= W,

(11) that the "Cauchy-Riemann" equations

R A

Q‘)‘t V=1 ’ L = I, e, M
(1)
be satisfied at W = X R
. 0

Proof : {Gt)1s differentiable at 7( = 2  1if there exists a
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function (p 6") such that

d’_r = &6 sy at ="

Writing this equation in expanded form

%J% (Z 4 f)(za/xs) c;/, oy, €.

V=i y)/t,c =/

_ " S
Equating the o components

Equating coefficients of the independent _0171,_ 5

| - |
Car > ¢" ¢ (
am—— : R 2.52 )
= «
Since & =/ , & = §& = é_ c. &>
=y
" " "
So that e = C = §  the Kronecker delta.
TR Ly L )

Setting L= in ( 2.52 ) and applying this result

S =78 = (e

9)( el J~

-

Combining ( 2.52 ) and ( 2.53 ) we have the Cauchy-Riemann
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equations ( 2.51 )
Corollary (1) If '{%i) is differentiable at > , then

( by equation (2.53) ) the derivative of f6¢) 1s given by

the formmla :

94

N
/ —
feo = 2 —= ( 2.54 )
B V=1 19*;
Corollary (ii) 1f §f6¢) 1is aifferentiable at ?C ,and
all second partials of the 4: with respect to >, ,----,

exist at > , then the second derivative of -fék) with

respect to exists at I( , and is given by the formula :

a o~ PP
- - —v &, .
‘F D) VZ:( P v

To prove this it 1s only necessary to show that , under the

/ —_— @f
x) = -3
fO Z’ Sx, v

hypothesis ,

satisfies the Cauchy#Rlemann: equations (2.5I) , and then to
' ’
apply equation ( 2.54 ) to f (x) . We must show that

2(2%) -7 eca(x)

which is equivalent to

2 (%) - 2 2 F

RN



27
which is merely the result of partial differentiation with

respect to %, of the Cauchy-Riemann equations for -féf) .

This result is immediastely generalizable to

Corollary (i1i) If 4£(6o) 1s differentiable at > , and all
th
partials of the -F: up to the mMm order exist at > ,
th
then the o  derivative of (%) with respect to ¢

exists at >( and is given

(w) <
'FG() — Z M f:) ' ( 2055)
V=) 0
Corollary ( iv ) Assuming the existence of the higher

partial derivatives involved , all higher derivatives of the

L]

-q, with respect to LA » 2% s

of a differentiable function §G¢) , are expressible in ' -
terms of partlal derivatives of the sameé order with respect

to x, .

For , differentiating

I
]
N
(@Y
|

with respect to ‘>C,, , we obtain

2 2 £ < 28
?_f; = Z ’ax) = Z % C;a LA
%p?*l. /=l

]
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Differentiating this with respect to

s
3 ~ 1
?‘(:{ Z C'.( 'C‘J 2 (?___) )
Ix. 0 - v P> gxr 2 l’
%, 9% 9%, | .

3
o~
S xc/ e’ 9‘; -
- Z oy P2 S‘r 71”

14
and continuing in this way , any ~»t order partlal deriva-

+h
-tive of -ﬂ‘ is expressible in terms of the m order
derivetives of the {, with respect to %, .

2,6 Analytic Functilons

: ' )
We will say that ‘pfit) is ana]_ztic at W = N if
‘ C ’ . "
all derivatives : '?6‘) , f£6) P> .o
a)
exlst at W = i .

Theorem 2.61 The necessary and sufficient conditions for

-C((‘) to be analytic at 3¢ are :
( 1) that +6¢) be differentiable at ¢ ,

( 11 ) that each component ‘F: A(X, s st ’(M) possesses

all partial derivatives with respect to 7, PN () at > .,

Proof : By theorem 2,5I , corollary ( iii ) the conditions
£

of the theorem guarantee the existence of all m order

derivatives with respect to 2C :
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(m) e

oo = i S

<

x

veal i

The condltlons are therefore.sufficient .

m)
If (Gt) exists , then , by the last mentiomed equation,
9 £
v
each = exists for V= /, ----c S, .
2 x,
th

Then by theorem 2.5I , corollery ( iv ) all m order
partials wif_.h respect to bhe variables X, _._... , %,  must

exist . Hence the conditions of the theorem are necessary .

Theorem 2.62 If {¢) 1s differentisble at > , then

s_c.;;s 3¢ -Féc) .

Proof : Let F6) = s £6e)-

Then o F

i

Gerax) £ (xtax) — 2 f6e)

- (xuu) [féc) + f(’iomc + 7 (hax) AXY
- 72C -ffu) 5
where ./é—wf. ’7(:«,41) .;0_,»

Ax >0

Since , by hypothesis , L£(G) 1s differentiable at ¢

LF = f?‘f,(x>+f6c)]mc + 7 6oax) ax |
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where /d""- -’%@)AI() —_ O

ax-o

Therefore F'6)y = ¢ £60) + £6) .

Corollary ( 1 ) Every polynomial in > 1is analytic .

<
For , °»( 1itself is analytic , so by the theorem >,

2 K -
i & > S are analytic . Any hyper-

J ) )
complex constant Q 1s analytic , so by the theorem ax"
is analytic.. Since a finlite sum satisfies the Cauchy-Riemann
equations if each component function does , any polynomial in
b14 is differentiable . Since the derivative of a polynom-
-ial is agaln a polynomial , all derivatives of a polynomial

exist , so that every polynomial is analytic .

Corollary ( 11 ) Within its region of uniform convergence,

the series w "
7 Agx

Hzo

is an analytic function .

For , each term of the series satisfies the Cauchy-Riemann
equations , hence the series itself _satisfi_es these equations .
Since the real series converge uniformly , all thelr partials

with respect to 2 | ....., exist .

~
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2.7 On the Relation of Differentiable to Analytic Functions .

Every differentiable function of & complex variable is ana-
-lytic at the point in question , Thils résult of the theory
of functions of a complex variable 1s a consequence of the
Cauchy integral formula , which in turn rests on the field
properties of complex algebra . If the hypercomplex variable
is other than the complex varliable , then a function may be
differentiable at a point and yet faill to beanalytic at the
same point . We give the following example of $his situation

where the varliable 1s birseal :

U
ret -péc) = ’4‘[(".“5)24-(7(.47(1)101] , Mt £

-

and 460 ~j[<"'+*a-:{)+("-+"ré)“] EEATE

Now define F-ét) = _F'(“)

) 4% % |

36‘) ) 7(,1'7(‘2 Z/’

satisfles the

Fey = F(u,x)+ E(%) u

Cauchy - Riemann equations



Q)
-,
V)
wh

\

9

X

¥
RN

N
i
|

at every point &f the hyperbolic plane . Since all the first
partials of F and F, with respect to % and 7% exist
and ere continuous at every point of the plane , F (x) 1is
differentiable at @very point of the plane , by theorem (2.5I)
The derivative of F (<) 1s by theorem ( 2.5I ) ,corollary(i),

F,(X) - _5'[(7(.+12)+(".+§)“] J Mot 2,

e

‘ 4
But the second derivative F'Gx) fails to exist on the line

W+, = .
Hence on this line , F() 1is differentiable but not analytis
The identity of differentiable and analytic functions does
not negessarily hold for an algebra other than the complex
algebra ., In the theory of functions of a complex varlable ,
this ldentity belongs to the class of results which are deriv-
-ed from the field properties of the algebra . ‘
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2.8 Taylor Series . _
Theorem ’2.81 If -?6() is enalytic at the point x = )( s

then the expansion
(m)

s £060 -
fe = Z 0 oo

is valid for some .region about X .

To prove this , write

LGo = fx+) = Z £(x+x, '."';X«*”“) &5 (g.ee )
’ V=
o ‘éw) m
S (X) am - > A |
R@)=Z_7x 'g"?"(" ) ( 2.85 )

Qf&) will be an analytic function over a certaln region
about JX(= O , within which the series ( 2.83 ) is uniform-
-1y convergent . The proof will consist in the identification
of L69 with R®&) over this region .

Since :
Q(") is ‘analytic at X= 0O , we have by ( 2.83 )

RW)(o) - -F@)(X) ‘ ( 2.84 )

Since L(x) is enalytic at > =0O , we apply theorem(2.5I ),
corollary (1ii) to ( 2.82 )
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L(m@)' = g ??;“ L5, x)e " )
Since L&) = 2’ ,(:(x,”,, o X)) €
13 analytic at > =0
1(’68() = i ;?;{.(X.,---,XM)C. ( 2.86)
_ g X

From the equations ( 2.84 ), ( 2 .85 ) , ( 2.86), therefore :

L(“)(O) - R(M%o) . ( 2.87 )

Differentiating (2.82 ) and ( 2.83 ) by rule of theorem
( 2.5I ) , corollary (iii) ,we have

(e x PF
2¢ - £’ >
L ¢ "Z:' Sx v
() = 9«‘&



and so by ( 2.87 ) we have

A A
T e
——:v - , Vel o m ( 2.88 )
wm
X I,
Hzo LI Y,

By theorem (2.5I ) , corollary (iv) » 8ll partials, of all

orders , of the .C are expresslble in terms of partials of

the -P

v
~-tial deriwiatives s of 8ll orders , of the .[‘: and /;’ are
: 14

with respect to X, 3 hence by ( 2.88 ) all par-

equal, at X =0 .

Also L) = R@) implies that {:: ﬁjr at X =o .
Hence by the theory of pthal functions :

_‘ﬁ(.x‘)--..)x,“) =~_l?,(".,~---,7(——)

within the region of uniform convergence of .f:, ﬁ/ .

)
Therefore

LG) = RG) ( 2.89 )

over the intersectlion of all the regions of convergence of the

. Q and 6 . That is , ( 2.8I ) holds over some region
about )( .
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2,9 Line Integrals .
The line integral of a function -,C'(ﬁ) over a curve
>

in space (7(, , s 2, ) | is defined in usual manner :

Let curve (C Dbe defined by the parametric equations :

X = % (t) V=1, --- 2 .

v

e i R
Let X , X be initial and terminal points of C .
Make a decomposition of € by subdivisions at points

° ) (Am) :
X, e X = X and take inter-

' B 0 = o

-meédiate poimts €‘ = Z E: é;
. V=1
(-0 ") () -0 o) )
< < > .

such that )cy < éu < Cy or )(u = = ¢

The line-integral 1is defined :

fosh = Z PEVCEAT) . (oany

M =y (A

b4 W -
all yex >0
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Since

= 7 C {fdx &

assuming that -p@:) is continuous on (€ , we may write :

X
_ &/, ) o (2.02)
c-rma’»t £ (f .“,, 4

¥

Theorem 2,91 Generalized Cauchy Integral Theorem

Let
'Cé‘) be analytic within the region
() < (g.)
7“/ = 7(/ é XV ) d=ll s, N .

Let C be a simple closed curve within this region . Then

ff@f)ﬂlx_-—-O- ( 2,93 )
e

To prove this , we decompose the integral into its real com-

ponents

By ( 2.92 ) we must prove

f: ZZ. (:KL 4; 0111 = O ) =

]
~
"
o
N
* B
©
(€3]
g
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Since , by hypothesis , all partial derivatives with respect
to W, ey of the ﬁ; exist and are continuous
over the region in which C is embedded , the necessary and

sufficient conditions for ( 2.93 ) are :

V.25
?7‘0( q{Z'I C.‘L € Coh «=1 ‘(f)
) o o DL _ 21 (_-'°. b (2,94 )
«Se - =
ZZ’ q;L PX¢ a= o oA,

» Iy
?_f( = ? C’( ?-E
I, < wp 9%
to ( 2.94 ) , we obtain
. n
Z w L c’.{p N, Kl Lp 79, - ?’94 )
a,p=i aB=1 :
But equations ( 2.94 ) hold if
[ = ¢ e
Z ©, Cen =«Z Cox Sup - (2.95)

o

o

But equations ( 2.95 ) are merely the assoclativity conditions

( 2.2I ) . This proves equations ( 2.93 ) as a consequence of
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the Cauchy - Riemann conditions and the associlatlvity of the

'algebra , and hence equation ( 2.93 ) of the theorem .

2.I0 Conformal Mapping
In this sectlion we seek a generalization of the notion of
conformal mapping which has been established for‘different-
-iable functions of complex , dual and bireal variables .
The angle betwsen line-elements  dx , &x in the

complex plane is defined by its cosine function as follows

J'X.‘ d‘l(z

-§%,  §x

.12.(dw1>‘f?t) =

»ls

d". 0(1,. gxl §x

.JXQ JX. -~ ‘xa gxg

et Y= Y5 ). be a differentiable function of the complex

vaplable X , and

&“a: 3'6:) o >« N
S'z : 1,&)3’)(.

Theﬁ the law of conformal mapping for a function of a complex

variable states that o
N (dy, €4) = _a(dx sx)

at every point 2(, for which 36() is differentiable and



|y + o-

For the bireal variable , the hyperbolic angle between the
line - elements a{x, £x 1in the hyperbolic plane 1s de-

-fined by the hyperbolic cosine function

d‘x, Jra

Jl(dx) S"() — :7(3 5'7‘- ,

d, dr, §x Sxi | 2

dx, dx| | Sz, $x,

and the law of conformality , proved by Benclvenga , may be
expressed as follows

At every point 7( for which 3-_-. '36() is different-

-iable and '3'@) ’ -74_- o 5

a(dysq) = 2(dx %),

Finally , the right-cosine fanction for elements

in the retto plane 1is given
dx, olx,

o $x%

N

..n.(dx, S’x)

»pi-

dn, dy| |$% S,

fo) du‘ o S'l, V

and the law of conformal mapping states that at every point
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3 for which Y= yG)  1is differentiable and '13&)[,&0

n(dy, f’.g) = _(dx, g’x) .

Let Mél-) denote the matrix ( 2.31 ) corresponding to the
hypercomp}lex number ¥ s and let lM(u)l be its

$x

determinant . Let ( )
MU ds/ be the matrix obtained from M (dx)

by replacing the first row vector of M(/") by the first row
vector of M (§%) . with this notation , the angle
function in the above three - cases 1is expressible by the

single formula

[mG) | |
( Im@x) | -1 m(so| l?

yN (6{7(, &’x) =

and the law of conformal mapping reads :

At every point ( for which 3:- 36() is different-

-isble end (13'(#)‘ #+ O

» We have

_ﬂ(da, S’z) = _Q(d',g")'

In the above cases the function _{)_(dx) 3’1) is
symmetric , 1i.e. '

N (dn 8x) = 2(8x,dlx).
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We now seek a formula for Lo (d’(, gx) where the
- , ‘
variable x = Z % & is the general hyperbomplex
VY

variable . The required expression must reduce to the above
forms for the cases that >C 1s the complex , bireal or dual
variable . It 1s also desirable that it remain symmetric .

As above , let M (>¢) be the matrix ( £.3I :) correspond-

"
-ing to’ -3 x ¢ §xn
W = %' Y  and let Méu be the matrix

obtained from ' » _
M(Jl> by replacing its first row by that of

M @"‘) . A funcpion fulfilling the red,uired conditions is :

AL (dﬂ, §x> =

2 {mG I
|

I.M@”‘)"IM@"‘),P ( 2.101 )

Theorem 2.I0I General Law of Conformel Mapping :

If the funection v = '36‘) of the variable
< 1s different-&.able at = %7’
X = i 7(‘, Ed : = x
V=1

and lj’(xm) , =+ 0,

o 0 (dySy) s A E)  ec en

( 2.102 )
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We prove this by reducing the expression for I).(O/g, 8'3)

to that for 12 (d%, §x) , using the hypothesis that
o)
‘ahas a derivative whose modulus does not vanish at the point
o’ = )C(') .
)

Sincs tgé'c) is differentiable at =% » We may write
ol '60y d

= ‘6 Gt) A at this point . It follows
from the isomorphism , '

that

(]

Mé“é) = M(‘g'(*‘)alx) = In(%'ét)) M@’Q. ( 2.108 )

Multiplicatlon is commtative for the algebra and therefore ,

by the lsomorphism , for the matrices . Therefore
M@:O = MG")M(‘;'é))' - ( 2,104)«
Also it follows that

M) = mG) n(©) o

since both members of_( 2.105 ) are obtained fromthe correspomni
-ing members of ( 2.I04 ) by an equivalent replacement of the

first row vector .
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We have . ol
gag eqy. SR G
l [MEp]- Imep] | -
3 {3+ e [
hmﬁﬁlhw@nhlméﬁlmaa\z
Since | "»3'(,7(’”)‘ * (¢) ’ by hypothesis ,

then 'L ( ‘3'@’) ) -_-_# O

' g
Hence the above equation reduces at W = % )

T ey L ALMEL E
b | mao [ Imeo ™

=  Q(dn gx> |

which is the equation ( 2.102 ) , required by the theorem..
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The theorems which have been generalized in this chapter
require as hypothesls merely the commutative ring properties
of the algebra and the existence of a unit element . In sec-
-tion ( 2.7 ) we have encountered one property which is not
generalizable , namely the identity of differentiable and ana-
-lytic functions . All results of complex variable functlon
theory requiring field properties as hypothesis will not be
generalizable to ring algebras . To this class belong the
"residue theorems" and the whole theory of point singularities

in the theory of functions of a complex variable .,



CHAPTER III

Confofmal Representation in the Hyperbolic Plane .

Bencivenga has shown that a function of a bireal variable
maps the hyperbolic plane into itself in such a manner , that
at those points for which the derivative of the funcjion exists
and its modulus does not vanish , hyperbolic angles are pre-
served in the mapping . In this section we study'the conformal
mapping of the hyperbolic plane in more detail , and , in par-
-ticular , we attempt a systematic treatment of the bilinear

transformation of the hyperbolic plane .

3.1 Geometry of the Hyperbolic Plane .

The point (3,4 )of the hyperbolic plane represents the bi-
-real number Z = X+ g« . Many of the
Euclidean theorems of the complex plane have analogues in the

hyperbolic plane . In this correspondence , Euclidean distance

JG -2 ¢ G- oy will be replaced by hyper-

-bolic distance
JICx

* 2
=) - |
circular angles by hyperbolic angles , and the circle
é(- X.)‘L + (‘J- 'Jo )1 =a by the rectangular hyperbola

z

é(_ ¥°)1'(%' ,105"?__ + &
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3.2 Iength of a Hyperbolié Line Segment .
The length of a hyperbolic line segment of a curve C may
be defined as follows :

Let the parametric equations of a curve C be

x = w@) ’ d= 4>
and let the parameter ¢ increase monotonely from ¢ tol .
Then . Z = ) = x€)+ 4@ -«
will also be an equation of C o Now make a decomposition

0~ of the curve by letting ¢ take the set of values

t:‘é.‘é‘ """(ém-;‘é"_’z‘)
and let |o~| denote the /Max(z‘;_ z,‘”_,)

Form the C© -= sum

S -2— | =z&) - 2@.)| - ( 3.21 )

o
Ve |

Then the hyperbolic length of the line segment 1s defined to

S = A ¢

so T ( 3.22)

be

if this exists independently of the decomposition o .
Theorem 3.21 The hyperbolic length of the segment of the

curve

(= &) | 3=g(t) for T <tsC,

is given by
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[|xe - 565 -4t

£,
provided ( 1 ) )C@) and g(t) possess continuous first der-_
,2 ;% .
xX'@¢) -g9ge¢) +0°
ts ¢,

~-ivatives and ( 1i )

. for Z‘
]

L] N
UA

Proof : A point for which 'XG) - ?6‘) =0 is

called gvsin_igula_tr point . Suppose that conditions ( 1 ) and
( 11 ) are satisfied . Then

2@ - 26N = |(®-=C8) Y- (5t~ 46.) |

ahd » 8pplying the law of the mean , this is equal to

|Gy - 4% (t‘u-f,..)z

where - -
tu-ngtué z‘:/ é‘léé‘/‘

7

11N

. 2
Now write A (‘t) - X'@') - g@) ,

Then lz(t') ..7((”#),7-___ , A(a)f- i"( ¢, - (u..)z'>
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where €  tends to zerouniformly over the closed interval

[t; , t' as | Z: - tu-: —> 0 , and lilence
S = Zj]A(ﬂ)«r & &-¢.)
_ i IAC), |,|+ ;ﬁ-——mz $oee l@f“v-«)( 3. 23)

‘since A(t‘) does not vanish in the imtervel , and since 1t
is continuous , it is bounded away from zero . Now § tends
uniformly to zero , and so we have , by ( 3.21 ) , ( 3.22 )

eand ( 3.23 ) ,

§ = A ijM(I‘,)I &-¢.)

I€)=>0 o

.
[ Jram| At
¢

. °t | < T
= f /""@)- q'ey| - At
g

as stated by the theorem ,

Corollary As neighbouring points approach coincidence in a

non-singular region of the curve , the ratlio of arc-length to

chord-length ( both in hyperbolic metric ) tends to unity .
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Proof : The hyperbolic length of the chord is

¢ = [|(0-=a>) - (10- 3|

= j‘x’(z:) - g’?i-),
4 =¢

where t g; Z';g f )

r

(] N

¢ = [Ip@®)+ el (E-¢)

Thus

where § tends uniformly to zero as ‘- &
The hyperbolic arc length is

)
< ( A®)| ot

- ‘“A(f‘)l -

t

Wlu
A

where tt <

tends

s by the law of the

integrals . : -
2., JA@+ el
()1

Therefore g £_ _
. t-ts0o S ¢-t,~>o Jl/—\

to zero .

mean for



Figure 1
Chapter III
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3.3 Rectangular Hyperbola .
The curve @(-7(,)1'_@- «(o)" = a’ » together with
its conjugate .

(7" o )1-':(3' Zo)1—= ~at play in the hyper-
bolic plane the role which the circle pleys in the complex
plane . We refer to (7%,4.) 8s the centre and to a  as
the radius of the hyperbola . The radius 1s the constant hyper-
-bolic distence of any point on the hyperbols from the centre .
Since all hyperbola's entering into this subject are rectang-

-ular , with axes parsllel to the coordinate axes , we refer to

a goctangular hyperbola of this type simply as an"hyperbola" .

Theorem 3,31 An hyperbolic arc of hyperbolic length .y

subtends an hyperbolic angle of magnitude

$ = £
n _
at the centre of the hyperbola of radius L .

Proof : Let the point PP(%g4) on the hyperbola ( fig. 1 )
determine the radius vector O P making an angle ¢

with the % - exis , end 1ét the neighbouring point

/ . '
P ("*M‘, '3+A'3> on the hyperbola determiner the radius
vector O P’/ making an angle P+ L ¢ with the x-axis,
Since

Lah (d+a0) = ";_“" » Anh(dead) = L2,

and , since we are working in quadrant | » then
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anhag = M[@mﬂ-cp] |
= Anh ($+06) el ¢ — Aaﬂ(cPfA‘P)M‘P

ey Lox o xrex 3
n n n n
xay — §ax ( 3.31 )
— |

By the corollary to theorem ( 3.21 ) , the hyperbolic length

’
A¢ of the hyperbolic element of arc PP is

/
asymptotically equivelent to the chord length of PP ( in

the hyperbolic metric ) as A‘P tends to zero :

s 2 [leo-esy|
Therefore ( 3.31 ) becomes
A b¢ ) ' Nay — Yan
ag V@~ @y

(3.32)

Differentiating the equation of the hyperbola
T T+ *
W = ‘3 = N
with N constant we get

4N — GAaK = o

and hence
WAY AL )(("i‘ix)- q ax
an—— — Yi

7 =

Jleo- av] - flews e



( 3.32 ) then becomes A ad ~ |
ag = n
But B¢, @y
kg = a¢ + -t T
! <!

and 8o b o ~ A o~ a{¢

Moreover , since AS :“-’.. 43 >
' ol g
we have 0‘4’ = p)
. n
s,
and therefore 4} -g‘ de  $-¢ <
— — - [~ 3
n " n
LY

where < is the arc length subtending ¢ at the centre .

-Theorem 3.52 Sine law for triangles .

Let sides &, @ a, of a triangle have hyperbolic lengths

). )
@ '(’l (‘; respectively , and let the interior angle defined
) b

vy A
a. @. Dbe denoted by (.,/ .
d S,

¢
‘3
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Then :

land Y, | ekl ede|
¢ . ;

This law 1is proved by first developing the formula for the
- area of the trlangle .
Let OF ( fig. 2 ) be of length  -and define angle cg ,

and'16t O T be of length (, end define angle a .
The engle measured from OF to O 1is \{{L‘-_-

Then

700 ek | = zep ,Mewm ~ cabe, b |
= 71Gacke,Rankd, - G eate Rachg]

== %% - %y| = A,

where M 1s area of the triengle oP E .

From the area formula .
A= iﬁ@lM%, , the

sine law follows immediately , on equating the three express-

-lons for area :

PR A L A S S XY PR T TY PP

>
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Therefore

A B LT S P v )
C

3

3.4 Hyperbolic Orthogonality .
We must give three definitions .
Vectors : To each number X+4u = N (CW&‘E + MM‘&)

corresponds a vector originating at the origin of the hyper-

-bolic plane , and defined completely by the modulus (2 and
angle 4; « Further , each vector originating at the origin
determines a unique angle 4% .

Diagonai Lines : The asymptotes of any rectangular hyper-

-bola : 2 - o - -
, é"_7‘°) - <'3 ) = @ will be said to

‘constitute a palir of dlagonal lines in the hyperbolic plane .
Thus to every distinct point of the plane corresponds one pair
of diagonal lines .

Hyperbolic Orthogonality : Two vectors in the hyperbolilc

plane are mutually orthogonal. if the hyperbolic tangent of the
angle between them is infinlte .

Theorem 3.4l Two vectors , corresponding to engles q?
. o - 2

é% regpectively , are mutually orthogonel.if and

only if Lk ¢ lanh 6, = |,
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Proof : The condition fM ((R_ at) = oo

Auhd, - Tuh o,

may be written = Oo ( 3.41 )

| - Lk ¢ tads,

If the numerator is finite and not zero , the last equation is

equivalent to : 1—0”'[\ ¢s . IM o = ,

If the numerator is infinite then at least one of the compon-
-ents of this sum is infinite . Suppose fa«jc d_:.: cCo -
Then, if j-a“lt e #+ O , the denominator is elso infi-
-nite so that the quotient is not infinite , as required .
Hence 1t is necessary that y W) 6, =O , and we may assign
the velue | to the indeterminate form

rl

IMCP: . f(»&ét = co. 0O = l

If the m;uner;atc-)r is 0)£hen ZLM(@ = tub o
let X, +qu = (e + wuande)
X b = N, (b g + uauh o)

2, = n."'@g\‘& %"Q'M‘t‘

2 = 0, Gl Yo = Maehe

b & = & dah & = x,

S x«, 1
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Equation ( 3.41 ) could be sstisfied only if Mﬁg qu:L

and then , only if we assign the-value Oeo to the indeter-

-minant form ~9“.
O

The equations 1'04.44} = M@t
and ,12u4¢ﬁ..12w4 e& —

of this special case , give

I

2 s
i
&<

[} xz_
I
%€, 1%
Eith
er ~§‘ _ :3: _ |
X, Y
or *3. _ :31 - "'
2, %

Hence both vectors lie on yhe same diagonal line through the

origin , and have the saeme sense .

By a unit vector associated with a given vector we mean the
vector of unit hyperbolic length defined by the same hyper -
-bolic angle . |

Theorem ( 3.42 ) : Two vectors are mutually orthogonal if and

only if thelr unit vectors are mutually reflections of one

another &tn one or other of the diagonal lines through the



58
origin .

For if we write )('41.u=n(6‘“¢+“4“¢)
' s iy

the condition /C.J\d’; Lo, = |
gives Y 4% _ |

or ‘3‘

2
X

which expresses the symmetry with respect to one of the disa-

-gonal lines through the origin , as stated in the theorem .

Theorem 3,43 : Cosline law for triangles :

Define a "length function" of line segment joining ("«,‘J-)

and @‘;,'1..) to be EJT’- = (X,-x,,)t - (4.- 'p}"

then 1f sides 9, q, , d, of a trlangle have lengths

e (’, (-; respectively , and length functions
> ) :

) e‘z > Q’ ) P: respectively ,
and % is angle included by - @, a,

— )
2
(;

P+ P - 200wk~
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Proof : For the triangle of fig. 2

200 caky, = 200 (take, k¢ - Awhe, auh ¢ )

Then since

and since

we have

Corollary :

For

Ak

ol y,

. AUy "’(; _:.‘_‘:- %l
-ae (g ¢ - ¢ 7

2 ( WA, = ‘3' J ) '

ﬁ’- = 7(,1'- ‘33' , (): = ?‘z’ S

Eﬂ- - (7(1-7(,)1’ - 6"° 3')22

R Y= 4y == 90) +Qg e )-2 (o se)

e _  p* -(Z';- - 2().?9.‘6"1&%'
(’3 - ()l +

If sides a4 Ad

gt =-(;.;+.P_;‘

a

Since the triangle 1s defined by three points in the finite

plene ,  fuwh Y, cennot be infinite because of the sine
law ( theorem 3.32 ) . Hence b ¢, = o



\
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By the angle between two curves lntersecting at a polnt we
mean the hyperboiic angle between the respective tangents to

the curves at the point of intersection .

Theorem 3J.44 : The radius vector of an hyperbola inter-

sects the hyperbola orthogonally .

Note that if dg. 18 angle determined by the vector from origin
to point (¢, 9) then :

fah ¢ = A

2¢C

Hence the hyperbolic tangent of the angle 4; of a vector is
merely its "slope" as understood in Euclidean plane geometry.

The slope of tangent at (Jf, ‘a) on the hyperbola

'7(,1" g.,_ = n‘!—

is given by :
d ®
elx !
where 6£ is angle made by the tangent and the positive

2 -axis . But the slope of the radlius vector to ﬁr) ta) on

the hyperbola 1is : j—‘“‘g\ & = )
s

2¢

Heﬁce Md’ . Mét |

s S , which proves the orthogonalilty

stated in the theorem .

In the following theérem we distinguish a positive senée

T:L from a negative sense L I  along a line in the

plane ( Fig. 3 ) . We assign a positive sign to senge EL
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when we assign an angle ¢ to EL » and thus regard it as a

S
vector .

Theorem 3.45 : Let a pencil of lines through any point I

of plane , whose vectors lie in one quadrant ( bounded by dia-
-gonal lines ) , cut an hyperbola in points ? i E . Then
the product Tz ?‘ . 'E]: 18 constent over the members
of the pencil . The transition from one quadraﬁt to an ad-

~-jacent quadrant results in a mere sign chance in the product .

Proof : Let ?(%«3) be & point on ?.L . Let PL
define engle & and let @ Dbe directed hyperbolic distence
of P from 'E .
Then
W= % 4+ Cak 4;
: (3-42)
4 = ¢+t Padg

. _— s
Substituting the expressions ( 3.42 ) in W - 3 = N

1+ 2 ;
we obtaln : <M&¢s_ 1 GC&)()1'+2(7(,M&¢S"J°MQZ)€+ 7‘:—3}-/21:0

But ALl ¢

of df; ' ‘ |

So that if the roots are (, [, then
. J

O = 2(%-%-)

- Al ‘fs = i" depending on the quadrant

which is constant over a pencil of lines PL lying in one
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guadrant . Since l: g""4; - A a"¢s l '—E."

‘ | . .
and product (’. (i depends on sign of Aol ¢ - Aunh

%

J

the value of e.ii changes sign on transition from one

quadrant to an adjacent quadrant .,

3.5 Analytic Belations of Bireal Variables .

Theorem 3,51 Euler Theorem : A blreal variable 1is ex-

-pressible exponentially in terms of its modulus and amplitude:

%

A+qu = n(@ap uMd}): ne”

, “t |
where the fector _Q d obeys the rules of an': @xponential

function .

) 3 7<'+_§?+ 2£3+,...
Setting K= U¢ In L= 1+* 0t 5
2 s
T g .9 ...
2“4’=,+_¢f_+1 $oo *“("*3!*??* )
‘ al gy |

- Aok ¢ + w and ¢ ( 3.51 )

ud
Writing A A g= M@ + uM Ce_ ( by definition )
¢ = ¢

and applying relatlions
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A&nﬂ<¢ = _.KU;a ﬁ

Md; = Anh ¢

Anh &, = — <=hd

Ak ¢, - - and

Kb &, = - enhg

anh & = . - Ak
We obtain : l““} 16 £“¢ ( 3.52 )
were AWM =1, A@=4 , AB=-1 | A= -«

The relations

(cahd+ uanh &) ( k) + qM%) = Aal (4 )+ U gwh (414,

I - AM{.-“M"} =m(—¢§.)+aM(‘¢)
W?’}* uM{.

imply the exponential rules :

ud u¥, . “(1%’*41)
2 . ox = £
1“* «(t-%) ( 3.53 )
: » - JZ :

£
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From ( 3.51 Jand ( 3.52 )

| . o
-0-‘ £ = 3! A6) L

. . .
dd T dg = AuLl = »uz ( 3.54 )

CONVERGENCE OF POWER SERIES .
By convergence of an hyperbollc series we mean convergence
of both real series .

A series of hyperbolic terms :

2 < ¢4£: e v = . v
ZZ =204 = ZNalkd + «u Z 0 add
Vzo Vo V=o S Vo 4
S
is not dominated by the absolute series 2Z /2, as 1in the

LY

analogous case of a complex series , because

’

| ek 4 |

v

For the same reason , for the Taylor expansion
pRC))

L o) _m=

fe = Z z

M:a. M ,

W

P, e 2

of a bireasl veriable = Z = 2+ J« » there exists no
redius of convergence , As Bencivenga shows , the region of

convergence is bounded not by an hyperbola , but by a rectan-

"gle 3
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Theorem 3.52 : For a region of the plane defined by

lam@ | = a

- . . . )
the Taylor e 1 { = Ly 2
aylor ansion = _—
> y Xp @) Z poy
M=o *
has a radius of convergence a (-fL) .
We prove this geometrically : The series converges within

some rectangular region A MB C P> with sides parallel to

- diagonal lines through the origin O which is at the inter-
-section of diagonals AC and B D ( Fig. 4 ) , as
Bencivenga shows . In figufe 4 1let the unshaded parts of the

plane represent & region l@m (z) ‘ < _N .

0f the twé polints P. , T: at the 1ntersectipn of boundary
lines of region |Gm (2)| = L with restengle of con-
-vergence , let one of them , say E be closest to O 4,
in the hyperbolic metric . Then 'e - determines a unique
hyperbola - '31' = a,:_' which passes through E and

[

I, 1s either on the hyperbola or lies to the side

such that

remote from the origin . Simllarly determine the hyperbolas of

q
-rents . Any point Z  of the region |jam &) | = 2

radii @, , % , @, respectively in the other three quad-

and such that |z | < M (o, ,“z ,“; 24 ) 5. lies inside the
rectangle of convergence . The required radius of convergence

corresponding to L is

a(-fL) - Mm (d’ ’d& ,d‘ -’d‘. )



66
We now prove that an analytic fuliction of a birsal variable
maps the hyperbolic plane 1lnto itself conformally , by apply-
-ing the Taylor expansion and the Euler theorem . We employ

the following notation :

«t
Let Z = x4+ Yu = Ne
L 12| = 0 means n —= o
/e'“;‘ a’“(z)=0 means ¢ > o

/04;12 =0 means X => 9 angdg g—>0

Theorem 3,53 : The function W = £ (&) of the birealvar-

-ieble 2Z maps the Z -plane conformally into the <) -plane

at every point Z at which -P(z) is analytic and
¢ @ | ‘
Q &l #0 . At all such points the mapping 1ié

biunique and the magnification and mapping angle are

I‘F'(z) | ) a,m( .("(z) ) respectively

Proof : Expanding f&) in Taylor series about Z, we

*+ 3 ]
have W-w, = A(2z-2)+B(z-z2) + c(z-2.) +--

. S “% u¥r éf
Writing 2Z-2,= 1% A=al , w-w,= (g

-
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) u(@ptd; ) 2ud, 3 3ud
Th:.Ls becomes P£t= ong + Bn?-Q :4 cnk :_.
Since, by hypothesis , & = |A| = H?'@o)' 0 |,

A u( -() u(.?{.‘--(
% an;(’{”'%‘)[ufu e Cie T ]

Pe = r e #eo

We now impose the condition. that

|wm(z-2.), = |4 = a ( 3.55 )

With the restriction (3.55 ) the series

u(%-p) 2 u(2g-«p)

B c
has a radius of convergence c (.f).) . Then , since the

terms of the series have a common factor n ’
u e

) u(d+@)
Pe = arn’ ’ ['+ q’(ﬂ,ﬂ] ( 8.56 )

where /ZM‘ L}/(ﬂ)4’) = O

n->0
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That is , ‘V approaches zero uniformly with respect to

( 3.56 ) implies

( 3.57 )

P an(1+ p(n4))
66 = o(‘,+4"'. +‘/[”J¢)

where the real functlons /‘ (7, ¢) ) J(a, ¢) each tend

to zero , uniformly with respect to 4’ »&s f1 approaches
z6r0 »
At =0 we have

P= an

¢ ( 3.58 )
66 = 4",'* I
/

So that the magnification is a = ,‘p(‘la)l and the
angle of the mapping is XF = om (-F z.) ) .
write €0 = f&) in the form :

W, + Wi = f(vr,g)-r 4;(703)-%

Equations w

v= Leg) s £ 0ug)

are uniquely soluble for J(, P ir
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cIICY;
Z3" ’9‘3

' (6]
e gl T
CCECE!

Applying the Cauchy - Riemann equations, this condition reads

RN ,

% on || _ ‘f’(z) ' + 0
°L  2f

¢ L

Hence the mepping is biunique at points ~Z for which f(z)

13 differentiable and [f'&)| + o

It remains to remove the restriction ( 3.55 ) :
Since L may be chosen as large as we please , we can chosse

it to exceed any given finits I am (z-z,) l

Therefore the theorem is proved for any finite value of

IG/M (2-2,) , » and it remeins to yreat the case |

IM (2"703, - 00- . Since I_f'(z,) ‘ + O the
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mapping is biunique and hence tothe mapping

Z —> w, ’ ZzZ —> w there corresponds
the unique inverse mappings W, —=> Z, y W =7 Z .
In this case |am (7"7.)l= 0 implies ldm(w-'*’.,)l =co ,

for if IaaM Cw- w-)l were finite then ,M(z-z,)l

in
would also be finite . Therefore,this case also , the mapping
is conformal , so that restriction ( 3.55 ) has been removed ,

to complste the proof .

Point at infinity

Let Zz = v 14 +‘3u.
By 2 =>o0 or ,&nz =0 we mean 20 —20 and 9 - ©°
By 2Z2-=>¢ or /Qu«z=0° we mean 7 ->0eor (and)3—7oo

We regard ©© as a single point added to the finite hyperbolic

plane ; any varilable Z= Nt gA approaches this point

at infinity as either °2( or 9 ( or both together ) tend

to infinity on the real line .

 Theorem 3.54 : Assuming that as a variable <Z = 2t g

tends to zero or infinity , it does so along a curve , the



71
slope of whose tangent tends to a 1imit ( finite or infinite )s

then

) [ . f |

L (§)=°° ﬁ””w (‘;)=o

Z >0 PR i :
l%d»l.#=il

Proof :

| ¢ '
= = ,7 - 4 ( 3.59 )
z < - 31. 7C'-'g1-

By hypothesis — tends to a limit ( finite or infinite ):

,@g - L

or W = j(L"‘E) , where e —> O

Substituting in (°3.59 ) :

| _ _|. L+ € o ] L
z p) ((uz)"-l (L+zf'—l ]

kN
e Lt R I
b g [E
( 3.510 )

If ) , but not Y , tends to infinity then L 1is infinite ;
if Y tends to infinity then both components of right member

%,

{
. I L
# By R L we mean - I, 4 ]
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of (3.510) tend to zero . Hence "zL tends/ho zero as Z tends
to infinity . As 3 tends to zero at least the second compon-
-ent of right member of ( 3.510 ) tends to infinity .'This

. 2
proves the theorem for L # |
2+ € {
If L=2t]| 2 = - = u]
2 z g z.q.zg € 22¢

—

v : )
| —_ (7

as % - O both components of right member of ( 3.511 )

tend to infinity . This completes the proof , since statement
2

of theoremrules out case 2> %  ghen L =

3.6 Bilinear Transformation .
As a speclal case of the conformal transformation of the
hyperbolic plahe we shall discuss in detall the bilinear tran-

-sformation

W = «Z+ P ' where &, B, T, ¢

ryz+ €

are bireal constants subject to the condition
ld :

4 ¢ 7&0 | \ ( 3.61 )
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Theorem 3,61 : If the single point at infinity is added

to the finlite hyperbolic plane to give the complete hyperbolic

plane , then the bilinear transformation

QD= {2+ 3
Yz + §

maps the complete hyperbolic 2Z -plane , with polnts for

which l‘b’z-o- g,-_-.a, , Y2+ 8§ %O

excluded , biuniquely on the complete ¢J -plane ,with points

for which
|xw-ac|-.-o ) -rw-g;bo excluded .
- BV
Proof : 1If ?_/_‘_" = « ﬁ exists
the | a(w | b diti ( 3.61)
n | e— bo) y con on . .
g2 | F |
‘_(_‘.‘.0 fails to exist if l)’z+ § I — O ; that

adz

iis if l‘(?. +¢< ‘2.= ,@n;u)(xwaa) + 6’,+ faa.} lz

=GO 4 2 (g K ) 4 2(Hg- T L Yy 962D
| + (61" g;m) = O.



74

Now a conic - Ax*+ [303" + A€ +aFg + Cc =0 is
‘degenerate 1if
A () E
o (2 = O
€ F ¢
Therefore, since
-{'1-{2‘- o | '6/.:,-1;?2
. . .
0 - (-5 v5-78 = o
*
7(,8’._‘;;& Y5 -75% f.z' 5,

( 3.62 ) is the equation of a pair of diagonal lines inter-

-secting at the point ( Y, 8-S, L§-% 8 )
.(‘1,- 131. J -(.1_ ,{a‘l.
2 T
provided that ¥l = |7,7- % | #0©
. § ¥
¥z + S' = O & z = r L v

__ G- ge) _  xs-gs 1 (CENaug) U
AR A
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provided that |~r|" + O

That is , Y2 4§ =0 at the intersection of lines
( 3.62 ) , in the case that [ % ©

' «
The lnverse of w = z+ P s 1f it exists , 1is
' YZ+§
given by
-§w + P
Z = ( 3.63 )
Fw - «

Case IY[ + O :

/&;ﬂ 12+ P _ 4

i.e. W tends to oo

25-L Yz+ S
1
Lo =89+ P £
@ =y oo Yw - « ¥
Hence the one to one correspondence :
s < S -
Z= - — < > W= oo
v
and similarly :
W X < > Z = oo
1
Case '“o" =0 : By condition ( 3.61 )

K| + o ana  [§] # ©
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The pair of excluded lines ( 3.62 ) then reduce to a single

straight line as follows :

' - 4 €,
Set {3:'{'4:0 in ( 3.62 ) : :c+‘3+ S;t(' = O
Th < —3 S:':* -
en 2+ 8 = (, A ) ._.# o . ]
Sdt {a=-~(l in (3.(2_) . ')(_ca + %{1— =0
Then -
¥z +§ = g.'__——as‘(l—u)#0>
where we have assumed Y 7&() .
For ¥ =0 » since ([a| 0  end ’g‘ -4-.- O by (3.61 )

the mepping is defined over the finite =2 -plane , and over

the finilte W -plane , for every polint .

Hence for \{‘ = 0 we may assign the correspondence

2= 0 &£Z¥7>D> W =00

We vall the pair of diagonal lines for which [)’z ffl — o

PR

the singular lines of the Z -plane , and similarly
l—{w - ,(‘ - 0 defines the singular lines of the

W  -plane . All points of the singular lines , except their
intersection ( in the finite plane , or at infinity , if the
sinfular lines reduce to a single lins ) , are excluded from
the mepping . In the case that VY=o , there 18 no singular
line in either of the finite 2 or finite « -planes .
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We may then think of the singular llnes as reducing to the
single ptint at infinity .

3.7 Bilinear Transformation of the Rectangular Hyperbola .
Let A, 3,C Dbe bireal constants and
A=A+ % w K= % -Gu

) 9

a bireal variable and its conjugate . Then

(A'H-\)?cv? + Bt BX + ete =O. ( 3.71)

is the equation of a true or degenerate rectangular hyperbola
with axes parallel to (- and «3- axes , or of a single |

straight line ( which will be classed as an hyperbola ) .

For , writing A= A+ A u etc., ( 3.71 ) may be
written : -
2 7
(}(. + E > — ( 7(‘ - E_) - '3 - Ba ‘L"A; C'
= b
aA, aA, l+/<].7'
if A #o0 » OF B.'X,-(.R’)(z{-d" =0,
if A‘ =0 -
Theorem 3.71 : The bilinear transformation of the hyper-
-bolic plane : o
W = l: r

744 ¢
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transforms an hyperbola 11_1 the' X -pléne into an hyperbola
in the ¢ -plene and conversely , wherse "hyperbola" denotes a
rectangular hyperbola with axes parallsl to coordinate axes or

a straight line ,
To prove this we apply the bilinear transformation to ( 3,71 ):

Since for any two bireal numbers & and £

ai'/e = atz , a_,z = &'f
——— 'a N =
G -5 o T
£ £
Then - -
x = %P implies %= XItBE.
Ty + € ¥4+&

Substituting these expressions for » and % in ( 3.71 ) tie

result is
[o(«‘((“ﬁ) +«¥B + J¥RB +xF(C+€)]«35'
+[,<fg (A+R) + «£€n +fsn§+7§(c+a)J3
L [TB (AR) +35R 1pE +$5(rD]T

v [PR (n+d) + pE8 + B +S5(E] =g

which is of same form as ( 3.71 ) . ( 3,72 )
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Theorem 3.72 : A bilinear transformation , which maps a
finiﬁe point of an hyperbola into the point at infinity ,
transforms the hyperbola into a straight line .

Proof : . Let j, ; ‘j-; , ‘31 , "8-, be images of ¥, x,’x, ”,

? b4

-respectively . Then the cross - ratio

6‘8!"’&0( 43- 4a) G- 21 ) (g - >0, )
GgorC By Gt 0 )

is'invariant under the transformation . Thus the bilinear t rars-

-formation is determined by making ‘J, Y 13 correspond to
[ )

”, G , % respectively : then the image 2, , of any

fourth point ¢ is given by

@"‘3>(‘j;°‘j-) _ é(,-ac)()r,- )
G- 104 9) 0 =26 (962 3¢)

Now let ‘:]3 —> co ( in the sense of theorem (3.54) )

i;e; for ’33 = &0

1: "‘3 - 6"' 7L>(7(’- 7(.._)
1% 6(.-7(,_)(7(,-9()
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94+ €
where « = oy ( x - X )

B o= 9% (6G-%) - %0 (x-2%)

¥ o= X, =

<

3 (G-%) - 9. (- x,)

From these we see that

dq = G ¥Y |, «T=YY | }’(7{': X TY o

( B3.73 )

The txiénsform of. (/'H/_-\)’”Z-* R+ RX +ec+C =0
is a straight 11ﬁe if and‘only if ( by ( 2;72 ) ) :
o(.o-(.<ﬁ+7‘])‘+ ATR + A7TR + ¥¥ (C+E ) =0,
which , on apélication of ( 5.'75 ) , reduces to
\,(;7‘(-3(,\'“'7\3*7(3[3 +}‘7(3F5+<{-E:O)

which is merely the statement that 3 lies on the original

hyperbola ,

Corollary ( 1 ) Given a pencil of hyperbolas each member of

which passes through distinct points P and @ > then a
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bilinear transformation mepping @ 1into the point at infin-
-ity maps the pencil into a pencil of straight lines all pass-
i°

/
-ing through |° , the image of . ( the points PP end

@ will be refered to as the poles of the pencil. )

Corollary ( 2 ) Given a pencil of hyperbolas each member of

which touches at T’ s then a bilinear transformation , mapp-
-ing P into the point at infinity , maps the pencil into a

pencil of parallel straight lines .

Corollary ( 3 ) Every pencil H of hyperbolas through two

points P , @ ( distinct or coincident , one or both
of whiich may be at infinity ) determines a unique pencil ¥
orthogonal to 1t‘. Pencils H , K are orthogonal conjugates
in the sense that either pencil determines the other uniquely .
Any two members of elither pencll determines the system H) s

‘uniquely .

Proof: }A'bilinear trensformation T  mapping € into the
point at infinity transforms H 1intd a pencil of liﬁes inter-
-secting in  Q’ , the image of § .  There exists a . .
unique system K ~of hyperbolas concentric at ¢’ . The
inverse transqumgtion T maps W' 1into the pencil
which is orthogonal tQI_H ( By theorem ( 3.44 ) and conform-
-ality ) .  Finelly , any two members of a straight line
pencil throﬁgh &' determine the line-pencil , and hence the

equivalent hyperbolic pencil .



3.8 Bilinear Equivalence .

Any two systems , each of which is the image of the other
under some bilinear transformatién and its 1nverse , will be
sald to be bilinearly equivalent .

. This relation is reflexive, symmetric and transitive and

thus a proper equivalence relation .

Theorem 3,81 : Any two hyperbolic pencils ( one or both of

which may be a line-pencil through a point in the finite plane)

each having two distinct poles , are bilinearly equivalent .

P and 0 .

There exists a transformation —l: ‘mapping & into infinity

Proof : ILet pencil H have distinct poles

and P into P' » the iIntersection point of line pencil
H’ . ( theorem (3.72) , corollary ( 1 )) Let second pencil
K have distinct poles R ,» S . There exists _l;
mapping R 1into infinity end § 4nto 2 . The product

-l - . - . '
T.;—‘; maps H into 41 .

Theorem 3,82 : Evepy‘jayperboli_c pencil with two distinct

poles 1s bilinearly equivalent to a concentric system of hyper

bolas .
Proof The given pencil H with two distinect poles P

and Q determines a unique .orthogonal hyperbolic pencil
K ( theorem (3.72) corollary (3) ). Since the poles of
H are distinct , do are the poles of K , for otherwise the
pencil and conjugate could be mapped into a system of parallel

straight lines with a second system of lines ( hyperbolically )
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orthogonal to it , which could theﬁ be mapped into two tangen-
-tial pencils , each having common point of tangency at soms
poimt T ( theorem (3.72) , corollary (2) ). Then > and
Q would both map into T by .the product transformation ,
contrary to the properties of the bilinear transformation .
Therefore K may be mapped into a line pencil passing

through a point R , the centre of the concentric system
/

H .

Corollary : If the hyperbolic pencil H has two poles so
also has its orthogonal conjugate . '

Theorem 3,83 ; Let the bilinear transformation T map

an hyperbolic pencil with distinct poles P, & in tle
3 -plane into a concentric system in the 7('-p1ane .‘

Then P y & 1ie on the singulaer lines of the »C -plane

with respect to T . |

For if P , &  hed images P’ , &  1in the o ’-plans,

. :
1", @' would have to be common to all mewbers of the con-

-centric pencil . But members of a concentric pencil have no

common points , hence |2 and & must be points which

have no images under T .

/
W+ U
Example : W = transforms the concentric system
* * < oo
N - N = A& ) -0 < a

into pencil

(K"l- ’7(,’1)(0-0.) - 27(,_' -/ =0



whose poles : -l ( ‘
- - U A
2 2 ) 2 "z«
‘ ~ o
lie on the dingular lines X - N =0
Theorem 3.84 : Every hyperbolic pencil , the members of

which are all tangent at a point T , 1is bilinearly equiv-
-alent to a pencil of parallel straight lines ., Hence every tw
tangential pencils ( i.e. pencils for which the poles coincide)

are bilinearly equivalent .

_ The first statement is merely corollary (2) of theorem(3.72),
The second statement follows as in theorem (3,81 ) ,8ince a
given tangentlal pencil may be mapped into a given pencil of
'parallel lines by determlning the transformation such that fhe
point of tangency maps into infinity and any two other points
on same hyperbola map into two points on the same line of the

given parellel line-pencil .

Theorem 3.85 :  Every bilinear transformation maps diagonsl

lines into diagonal 1lines.
vIt'is obviousrfrom_the cqnformal.property that this must be

true under the mapping of any differentieble function .
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3¢9 Interlocked Systems .
Two hyperbolas whose axes are mutually orthogonal are ¢on-.-
~centric or they intersect . ~ However , two hyperbolas whose
axes are parallel may be so situated that they are neither
concentric , nor do they intersect . Consider the two hyper-

‘~bolas wlth parallel axes -

Ge-«)- Gy = 7

7(1—' - g‘L = a“’
Solving for '} : '3 = 24N + 2 , Wwhere .n.=£3a"‘+ P‘L-a(l'
Py »
2
Eliminating ‘3 : 4({51:-(1’) )(_1'. ol L2 - _rz"-q.a“p =0 .

- ks o 2, L
The discriminant venishes for ) + ¢ (B -« )a =0
, . o
write PB*-4"= 6 , then N = L-d+86 , and
' < 1.2
last equation reduces to © + 2(a*+4*)éE + @-4£ )= 0,

T | T
of which roots are : Q. = = (a-ﬁ) 5 6, = - (a-p@) .



Figure 5
Chapter III
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Hence the discriminant vanishes for :

0(1; (31 = @-,(?)t o+ a("—rst= Caff)i

In each case the left member is the square of the distance
between centres (assuming o 2 /‘5 ) end the right member
1s the square of the difference or square of the sum of the
radil . From the geometry , the hyperbolas intersect ( i.s.
discriminant > O ) for large values of -(13- /’57' . It
follows that theAdiscr:Lminant is < 0 ', that is the hyper-

bolas have no point in common for
2z
2 2 2z
(@-£Y < «=p" < @+4)

One of the hypg¥bolas then has position with respect to the
other as illustrated in Fig. 5 . The centre O of /3
mﬁst lie within the shaded area . Two such hyperbolas will be
said to be "interlocked" .

Theorem 3,91 : A bilinear transformation maps an Inter-

locked system Into an interlocked system .

l?roof : Let a bilinear transformation ‘be app:!.ie‘d to a system
of two interlocked hyperbolas A and (3 . Let the asymp-
-totes be a ,. /?: respectively, and denote the corresponding
image flgures by the corresponding primed letters . If A', R’
intersect at P/ , then also A’ intersects a’ anda R’
intersects A at [’ ( since intersection can occur only on
singular lines ) This means thet one diagonal of a’ coin-
-cides with one diagonal of A ’ ( dlagonal lines &, £  map
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into diagonal lines @', f’ by theorem (3.85) ). This means
that one diagonal from A& and a parallel diegonal from £
are both excluded from the one to one mapping , contrary to
" the properties of the bilinear trensformation . Hence 4’ , R’

do not intersect .

" Theorem 3,92 : The orthogonal trajectories of an interloclk

-ed system form an interlocked system .

For suppose a palr of trejectories intersectéd at distinct
points P and . Apply a transformation mapping P'into
infinlty , then the original system will be transformed to a
system concentric at 6?'A . The concentric system will in & =
turn mep into a pencil with two distindt pdles (theorem (3,82))
which is contrery to theorem (3.91 ) .

Suppose a palr of trajectorles tangent at T ., Thesge traject-
ofiea will map into parellel iines » hence the original system
will map»intoAa_pgncil of parallel lines | This latter system
will mep,in turn , into a tangential pencil,.contrary to
theorem ( 3.91 ) . |
SUMMARY OF HYPERBOLIC PENCILS : There are three systems of hy-
-perbolic pencils . ' _

(1) Concentric system , with bilinearly equivalent forms :
pencil with distinct poles , line pencil through a finite point

(11) Tengentlal system , with pencil of parsllel lines , bi-
-linearly equivalent to it .
(111) Interlocked system .

Each is a closed system under the bilinear transformation ,
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Orthogonal trajectorlies of each system belong to the same

‘system .

3.168 Inverse Pointa .

Let a transversal from any point CL

of the plane cut an

hyperbola in points @, , ¢

T

. Denoténg the hyperboiic

distence between &  and &, by \Q @ |
. ] !

( always a positive real number ) we have shown that
IQO Q||' I@leI

1s the same for all transversals from GL ( theorem 3.45 ).

In the 'special case that &, , & coincide at T ,

kS

&, T 1is tangent to the hyperbola at T, and product

. | 2 _ | v
is \GZ'T'| . For all transversals from @,
Q, @ z
o % | (2 01' = |@7T| : ( 3.101 )
Theorem 3,101 : For every point TD of the hyperbolic :.

plane there exists an inverse point with respect to a given
hyperbole . | _TD and 1té inverse TD( lie‘on the same radiws
vector such that the product of their hyperbolic distances
from the»centrefis the square of the radius of the hyperbola .
If 13,15 the inverse of P , then P 1s the inverse of P
A bilinear transformation maps a pair of inverse points into

a palr of 1nverse points .



Figure 6

Chapter III
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Proof : Consider an hyperbola A of raedius & , (fig. 6 ),
and place the origin O at the centre of A . Let I? ve
any point of quadrant occupied by a branch of A « Through

P' draw an hyperbola B, orthogonal to /) cutting

PI

O T, ( produced if necessary )  at :

T . Since O, 1is teangent to 3, at T,

lO'i?\ IOP"I — lOTI = a .

Thus P, determines P,' , end conversely , independently

of any particulear orthogona-l trajectory B : & second hyper-

()
-bola B"' » through P, and orthogonal to A , will
inte'r-sect. B| at the same point P.' .

Under any bilinear transformation , the transform of an hy-
-perbola and two orthogonal transversals is again an hyperbola
and two Qrthogonal transversals . That 1s , the 1mage points
of P. ’ 'l?' will agein be related to one another ss inverse
points relative to the transform of A .

~Now consider .'?1 » 1lying in a quadrant not occupled by a
branch of fj . Through E drew hyperf:ola Ba » ortho-
-gonal to A cutting O'iz at E ‘end A at A .
‘From the geometry of the situation , the two branches of B,
lie on ppposite sides of the a.xis.of A . > 8o that. OE ’

o]'i’ are oppositively directed . Again from theorem (3.45 ),

1o 1. |9®'| = T = a*,
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BB
2, V2
since one determines the other independently of the orthogonal

So that are inverse points with respect to A ,
hyperbola ﬁ% . The argument of previous parasgraph shows

that the images of 13 , Ti' under any bilinear transform-
-ation are again related as inverse points with respect to

transform of A .

Corollary : Since the centre and the point at infinity form

a pair of inverse points with respect to an hyperbole , a biéﬁ.
-linear transformation maps the centre of any hyperbola into
the centre of its transform if and only 1f 1t maps the point
‘at infinity into itself . ' |

3.11 Example of an Interlocked Pencill .

We epply the theérj of inverse pointsto the provlem of
determining an interlocked hyperbolic pencil and its orthogonsl
cohjugate from two given members of the pencil :

The pair :
o ( 3.111 )

2" - '3" + 9

I
Q

s S _
=G =24 +5 ( 3.112 )

‘have no point in common , that is they are interlocked . Let
. A
‘ CE) 0) be any point , not the origin , on the ( -axis .

| ' _
Then P (- ? ) 0) is the inverse of -P with respect
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to hyperbola ( 3.111 ) . Therefore every hyperbola through
17’ end 'I? is orthogonal to ( 3.111 ) .

C¢ s+ E
1? L.s‘ / ] - ei )

is the inverse of |? with respect to ( 3.112 ) , assuming
2 .

Lels

Y
] b) '

The three polnts 2

define an hyperbole :

7("'—13“' + an +,e} + < =0
which is orthogonal to both ( 3.111 ) and ( 3.112 ) .

. Evaluating a, , €  in terms of the coordinates of
? Y 7 the orthogonal trajectory is |
) L S 3
-g*

Hence the pencil orthogonal to ( 3.111 ) and ( 3.112 ) is
T _ . - : :
WYt 4y - G =0 (3,113)

in parsmeter « .

The differentiel equation of family ( 3,113 ) 1is
W y* | y!
ey +9 —ﬂx(zm)g = 0O (3.114 )

The differential equation of the family of orthogonal traject-
' ] - dy 1 elx

-orlies 1ls obtalned by replacing "= 51 H~
3 dx 4J}

in ( 3,114 ) :
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T >
AT 4y 9 - ax (Ye2) A =0 >

4

or t * where \ =
4+ +S “27(‘/;¢'=0 ? = '3"'2-.1

which , on integration , gives

\/ 1-_ 2 -5 o+ ,& ‘\/ = O
i.e. ‘3”-78’ +@f-+»£> )«a + 2B-) =0 -
Finaily , set j = M-y ;

T )
x 3-”“31'? -dmM = O ( 3.115 )

( 3.115 ) 1s the interlocked pencil defined by ( 3.11l1 ) and |

( 3.112 ) which correspond to sy = ¢g 5 m = Q2 respectively .



