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Abstract

If R is a field on which all (non-archimedean) valua-
tions are known, then all valuations on R(x], where x. is
transcendental over R , are also kmown. Ostrowski described
such valuations of R[x] by means of pseudo-convergent sé-ﬁ
éuences in the algebraic completion of A of R . Maclane
Tater showed that if all valuations of R are discrete, then
any valuation V of R [x] can be represénted by eefﬁain
Tkey" polynomials_ih R [x]. The present paper exhibits the
connection between these two treatments. This is achieved
by first determining keys for the ~valuation which a pseudo-
convergent sequence defines .om Al x], and then relating

'these keys to those for V .
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1. Introduction. A non-archimedean valugtion V , hereafter

simply called a valuation, of an integral domain R is a
single-valued mapping of the elements of R into the real
numbers and +° such that: |

1) Va is a unique finite real number for a # 0 ,

2) VO = +op,

3) V(ab) = Va + Vb for all a, be R,

k) V(a +b) 2 min{Va, Wb} for all a, be R .
An extremely important property of the se valuations is that,
if Va # Vb , then V(a +b) = min {Va, Vb}; hence, if
V(a +b) > Va, Va = Vb,

Ostrowski, and later MaclLane, attacked the problem of
finding all extensinris of valuations on an integral domain R
to the ring of polynomials R [x], where x is transcendental
over R , Maclane's results are based 'on.th__e assumption that
all valuations of R are discrete; that is, the real numbers
used a's values form an isolated point set. It is the purpose
of this paper to provide a conneetioﬁ betwee_n the valuations
of Ostrowski and MacLane on R [x], where R is a field with

only discrete valuations,

Definition 1.1: Let R be a field with a valuation V . The
sequence {ai}, where aj € R , is a pseudo-convergent sequence
with respect to V if V(ay - a3 3) < Vlag,; = a3) for all

i >N, som fixed positive integer.

If {a‘. } is a pseudo-convergent sequence with respect to



V , then the sequence {Va;} is eventually strictly monotone
increasing or eventually attains a constant value; as long as
0 is not a limit of {aj}, {Vaj} converges to a finite limit.
'l’*lgis“:ié'important , for it is essentially this property 'ﬁﬁat
Ostrowski uses to extend V on R to W en R[x]; where W
is g;vq;uation-of R[;J.: He shows ([1], III, page 371) that
if. f(x) € R[x], then {f(a;)} is also a.pseudo-comergent
sequence. This implies that {Vf(ai)} is odnvergen§ to a
finite limit exéept when {a;} converges to a root of .f(x) ,
ﬂen;e, if -{ai} is a pseudo-comvergent éEquence possessing no
;mufm the algebraic completion A of R , the function W
on.,fo] defined by Wf(x) = iig Vf(aj) is a valuation

({11, section 65, page 374) of R[x]. Further, ([1], IX, page
378) every valuation of R{[x] may be obtained by. means of some
ﬁ;eudo—convefgeht sequence in. A . The pseudo-convergenﬁnse-
quences in A are valued by an extensionof V on R to A j
 this edtension always exists([1], II, page 300) . This last
reference implies that any valuation of R(x) may be extended
to A{x) . Hence, if all valuations of A[x] are found, all
valuations of R[x] are automatically found. This result is
of prime importance to the development of the theory ih this

paper.

Definition 1.2: Let K be an integral domain with a valuation

V. Two elements a, b € K are equivalent with respect to V ,

written a~ b (V), if V(a = b) > Va .

Definition 1.3: For a, b & K, a equivalence divides b in

V if there exists ¢ € K such that b ~ecea (V) ; notation:



alp (V) .

. If V is any valuaﬁion of R[x] which reduces to a
diserete valuation V, of R, MacLane ([2]) represemts V
by the following inductive method: | a.value Vix = Vx = py
is assigned to X . Then for any polynomial £(x) e R[(x],
£lx) = agx® + a, lxn -l + .. + 8y, a function V; on R[x] 1s

_defined by Vlf(x) = min{Vea + wlf This function V, may be

shown to be a valuation of R .[x] such t;hat. Vi < V ; that is s |
Vig(x) < Vglx) for all g(x) € R[x]. The value Vl is called
a first stage value and-is symbolized by Vi =[V,, Vix = py].
Either Vj = V , that is, V;g(x) = Vg(x) for all g(x) e R(x],
or there ekists an f(x) € R[x] such that Vif(x) < velx) .
If that latter is the case, ¢(x) & R[x] is chosen such that ¢;
is a monic polynomial of the smallest degreé satisfying
V192 < ¥§, . This polynomial satisfies,over ¥; , MacLane's con-
ditions for a key polynomial; |
Definition 1.5': Let W be any valuation of R[x] . A poly-
nomial ¢ & R[x] is a key polynomial ever the value W oif:

(i) ¢ is equivalence irreducible - ¢|a(x)b(x) (W)

implies e1ther pjalx) (W) or 9|b(x) (W) ,
(1) ¢ is minimal - gjal(x) (W) dmplies deg alx) > deg ¢ ,

(iii) ¢ 4is monic.

It is shown ([2], theorem L4.2) that if a key polynomial |
¢ over W is assigned a value u = W'¢p > Wy , then the function
W' on R[x] defined by |
B wif(x) = 'min {we; (x) + iﬂ},



-1
el + fo(x), deg

where f(x) = fplx) 9 + fp-1(x) ¢
£i(x) < deg ¢ , is a valuation of R [x]. Further, W < W'
and Wf(x) < W'f(x) if and only if ¢|f(x) (W); in particﬁlar,
We(x) = W'f(x)l if deg f(x) < deg ¢ ([2], theorem 5.1) . In
the ori‘gix:xal valuation V , the polynomial 9, chosen above
will define a valuation V2 on R[x] if assigned the value
By = Vq>2 > V1q>2 . The value Vj, satisfies Vo, <V and
and V,f(x) = V1£(x) = Vf(x) for all f£(x) e R[x] such that
" deg f(x) < deg 92 . Thens-écond-st.age value V2. _is__syl;lbolized
' by Vo = [Vo, Vix = 1y, Vogs = ug]. As before, either Vpz =V
ér there exists a monic polynbmial ?3 of minimum degree satis-
fying Va3 <V p3. Again) if 93 exists it is a key poly-
nomial over V, and may be used to défine a valuation V3 such
that V3 <V and V3f(x) = Vof(x) = Vf(x) for all £(x) & R[x]
with deg f(x) < deg 93 . The third-stage value V; is sym-
bolized by Vj =[Vo, V1x = p31, Voop = u2, V393 = u3].' MacLane
shows ([2], theorem 8.1) that if this procedure is continued,
equality will occur after either a finite or coumtable number
of steps. In the first case V will have a representation
V= Vk = [VOt Vix = V92 = B2, eee , Vio) = p'l;]p '

and is called inductive value. In the latter case

V= o= [Vo, Vix = b, Voop = b2, oo 5 VieWk = b, ],
where Vf(x) = tﬂg ka(x),. and V is called a limit value.
Hence each valwation of R[x] may be repres'ente'd vby one of these.

two cases if every valuation of R is discrete.

The key polynomials defining the above inductive and limit

values satisfy:



€4v) 9y ~9;  (V; 1) is false for all
iz2,
(v) deg 95 2 deg ¢j.7 for all i2 2,

Now since everj valuation of R [x] is either an inductive
value or the limit of a sequence of inductive values it is
necessary, only to consider key polynomials which also satisfy
(iv) and (v) . For this reason it will be assumed in this paper
that a key pe'lynomial is a polynomial satisfying (i), (ii), (iii-)",f\
(iv) amd (v) .

The representation of a valuation on R[x] is mot
hecessarily umique, but if ome additional restriction is placed
on the key polynomiéls the representation becomes unique when
V, on R .is discrete. Let V= [\lo; ViX = By, eee 5 ViOp = “k]
be an inductive valuation of R [x]. The 7V, value of
f(x) € R [x] is found from the expansion'

£lx) = £(x) of + £, 1(x) of ™l + s + £ (x)

where deg £(x) <deg ¢y . .By expanding each f;(x) in powers
of o1 .and the coefficienté of this expansion again in powers

~of ¢p.p and continuing these expansions, finally the expression

W33, I My -
£x) = Za lcpzz'] e A

¢ R and each
mj j < deg q’i"l-l
deg o4

where a3

- . . m s m m
is obtained, Furthermore, kf(x) = mlnf\{cg L3y 23 coe q>kk3]}.

How, the elements of R may be partitioned into classes of equi-



vglent elements with respect to V, and a representat;:_'ive may
chosen froin' each class. In particular, the element 1 'is to

be chosen as a representative. Thése representatives are ca.ll.ed |
the Ve-representatiyes. If in the above expansion of f(x)
.each aj 1is a Vp-representative and all térms have the mini=-
mum value Vif(x), then f£(x) is called homogeneous in Vi . |
Every polynomial f(x) ¢ R{x] 1is equivalent in. V¢ to one and
only one homogeneous polynomial h(x) e R[x] ([2], lemma 16.2);
h(x)- is called the homogeneous part of f(x) . An inductive

or limit value is called a homogeneous value if each ?i, 12 2,
is homogeneous in Vj.3; . Maclane has shown ([2], theorem 16,3
and 16.4) that any inductive or limit value coﬁstmcted from a
discrete Vo, may be represex}ted by one and only one homogeneous

induetive or limit value. -

The inductive and limit values of R[x] will‘alwdys be con-

sidered to be homogeneous values.

2. The relation between the valuations of Ostrowski and MacLane
will first be established on A [x], where A is an al gebraically -
complete field.

It will be found convenient, in this section and future sec-
tions, to Temove the condition that a MacLane value has first key
X.. It is necessary only that the first key be linear and monic.

The properties of MacLane wmalues will be preserved.

Every valuation V of A[x] may be defined by some pseudo-

convergent sequence {a:i} ', with respect to V0 on A , which does



not possess a limit in A ; Vf(x) is defined as
Vi(x) = lim Vof(zi) .

ie0-
These pseudo=-convergent sequences may be divided into two types.

To obtain the desired classificatio n, a pseudo-limit is defined.

Definition 2.1: An element @ € A is pseudo-limit of the

pseudo-convergent sequence {a;}, where aje A , with respect

to the valuation Vo if Vo(a-aji) = Sj;', where O8i < Oj+1 -

for 1i>some integer N . '

N_q_te_: "Pseudo-1limit" as defined here is not the same as tl'\xat
defined by Ostrowskl.

Now Vglaj = @j41) = ¥ 3, where ¥y < ¥y, for i>some integer

N'. Since ¥'j = Vo(ai - a341) = Vo[f“i -a) + {a - ai.,.l)]

follows that, for 1 > N, ¥ =8 .

The pseudo-convergent sequences are now divided into two
classes: |
(1) {ay} possesses a pseudo-limit in 4 ,
(2) {aj} does not possess a pseudo-limit in 4 ,

Theorem 2,2: If the pseudo -convergent Sequence {ai}_; with res-

pect to Vo, has a-pseudd-limit._ a € A, then the Ostrowski
valuation V of A [x] defined by {a;} is the - same as the first-
stage valuation V, defined by V, =[V,, V, (x - a) = ¥]

vhere Y = 1im ¥ = 1in V, (@ - a4,,) .

1200 4000 |
Proof: It is sufficient to consider a monic linear pelynomial
x -/ in A[x], Since al-ﬁ=(a1-a)+(a-/-’)and
Volag - @) = ¥y, either Volay = 3) =0 or Vylaj.- )
=V, (a-), for i sufficiemly large.



Hence ‘

V(x =3) = lin Vol oy - ) = min { ¥, Vola = #) }= Vylx -/3) .
jooo =

Theorem 2.3: Given a finte inductive value V = [Vo,V(x - o) = b‘]
on A [x) , a pseudo-convergent Seéz_u-ence {aj} with pseud’o-limiﬁ
@ € A can be found such that

¥ = lim ¥

e
Proof: Let a# 0 in A be chosen such that Va=d > 0 .
Then there exists a real number ¢ such that od =¥ . A
sequence of imtegers {nj} car be found such that |
MoPo,<Me.,
10 1072 10d

and .
iw 30
' b
Let /3 be any one of the roots of x'° - a . Then

10 y : 1

d=Va=V/A =10VA or V/A =1/10 d . Hence, the se-
n

guénce {V i i} is a strictly incfeasing sequence with .

h .
im VA =limMd=o0a=V ,
0 j»o0 101

hi
Let a; be defined by a; = /3 +a . Since
Vie; - aj,, ) = v(pinj' /31'“:::") = V-ﬁ;j’ {ai}
is a pseudo-convergent sequence and since V(ai - a) = V/Ji”i, :
@ 1is a pseudo-limit of this sequence. By Theorem 2,2, lthe se-
quence {ai} can have no limit in A , since the Ostrowski value

defined by {a.i} is also defined by the finite value V .

On ecombining Theorem 2.2 and Theorem 2.3 an equivaleénce is

obtained between valuations defined by pseudo-convergent sequences

with pseudo-limits and the inductive values of NJacI;ane.
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Theorem 2.4: If {ai} is a pseudo-convergent sequence with

respect to V,, with no pseudo-limit in- A , then the Ostrowski
‘valuation V defined by {a;} is the same as the MacLane limit
value V! = [V, Vilx-a3) =¥y , ..., Vilx-aj) =¥, ..'.] ,
where )’ii - Vglas~aj,1) » Also, in a MacLane valuation V' .the
sequence {ai} is pseudo=~convergent with no limit in A and -the
Ostrowski value V defined by faj} is equal to V' .
Proof: If necessary remove a finite number of terms from the
beginning of the pseudo-convergent_seqaence {ai} and rehumber_
the a's, so th#t- Yi = Volaj~ajs)) is strictly increasing. Sime
Vo(aig;n-i;z’i) = b‘i for all n21 , Vix-a;) = }1—2 ¥olagp=ay) = Yi'
Let V) be defined'by Vy = [V, Vylx=aj) = ¥;], then V;~ de-
fines a first-stage value of A [x] such that V; <V . Now, from
MacLane's inductive argument used in the introduction, it follows
.immediat;ely that V! a[ Vg, Vplx-aq) =3‘1, cor s Vilx-aj) =¥ , ...]
is a thLane valuation and al & satisfies V' < V If there
exists x- P e A [x] such that V'(x-— /3) <Vix=-/2)
= %}crg Volaz=~) , then there exists a positive integer N such
that V'(x - ) <V {a; - B) for all i > N. Theréfore, from
Vi(x.- ) = liml;nln{rl, Vylay - /3)}] it follows that lim ¥}
<V (ay-/3) for >N . Hence, ¥ olagay - ) = v, [(@ge-0s)
+ {ag - /3)_] ¥; < 11m Y 5, for i >N, ‘which is a contradic-
tion, Thefefore V! ==,V - Suppose now that V' is a Mackane
valuation. From x - @;,q = (x=-a4) * (a; - ai+1) "t follows that
Volay = @5,7) 2 Vilx = a5) =¥;, for otherwise .

Vil - 031) - fag o) )= Vilx - ag) = Wy > Volay - ag,y)
and 0 X - @33~ @4 - a4,1(V;) , which contradictsthe minimal
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--condition (ii) of definition l.4 for a key polynomial over Vj.
Therefore V;j(x - a4,7) =¥ and since Vs (x - “i+1)' < Vi47 (x-a541) ,
Vi< %41 for all 121 . Now

 Volay - aysy) = V'[(x - e34) - (x - as)] =¥y ;
heﬁce {ai} is a pseu-'w.n&ergent,sequ;eQCe. “If | ﬁ were a limit
| of' {ai}, then i_:::: Volay - 2 ) =, Let k> i be chosen such |
that Vglay - 2 )>V¥) , then | _
Volag - B) = Vo[laz - ax) + (ax - 2)] = V4.
Therefore '

‘.?"(x - p) - iim[min {xi: vo(d.'il - ﬁ)}] = lim vo(d;'i 'p) g.oo.;

but V' is a finite value. Hence {ai} has no limit in A ,and
will, therefore, define an Ostrowski valuation which, by first
part of theorem 2.4., mist be the same as V' .
NOTE; If {ai} has a pseudo-limit « & A , then V' may also
be represented by
V" = [Vo', V(x - a) = lim )Ai,] .
{00
The results of this section now provide a connection be-

tween the two methods of valuation A [x].

In sections 4 and 5 it will be shown 'how a MacLane valua-
tion of A[x] reduces to a MacLane valuation of R [x] , that is,
the key polynomials and their assigned values will be found for
the reduced valuation en R [x], and conversely how to extend
a value on R [x] to A [x] . The connection between “an Ostrowski
valuation of R [x] and a MacLane valuation of R [x] will then '

be clear.
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3 The ,key_ polynomials defining the restriction of a valuation
of A[X] to R [x] are intimately related to the key polynomials
used by MacLane ([3]) to extend a valuation V, om R to a
valuation W of R (a) , s separable extension of R . For
‘this reason a description of the methods used by MacLane and the

essentiai results will now be given.

As a particilar example,consider the inductive value
Vi = [Vo, V1X = 202 = B2, eee 5 Viok= uk]

of R[x] and reassign to ¢, the value + > , This defines a
new, gener?-lized valuation

Vo= [Vor Vix = by, Vpop = gy eee s Vi@ = by Vo = =]
of R [§c/] o« The generalizéd valuation V satisfies all the con- .
ditiéns of a valuation except that elements other than 0 are
assigned the value +Q , If a is a root of f"épk ,.th_e valua-
‘tion V will define a valuation W on R (a)\.\{his is im-

mediately seen upon noticing that

R (a) o 2Ix1
(?k)_

and @éfining W by Wf(a) = Vf(x) . If the ¢;, for 2 i<k,
above are. homogeneous in the preceding inductive value Vi—l; Maci.ane
has .shown; ([3], theorem 5.3) that this extension W of V, is

the only extension of Vo to R (a) &

To facilitate.the -discussion of the remainder of this sec-
tion and in view of sections 4 and 5 , it is coenvenient at this

point to define the terms pro jection amd effective degree.

Qg.flmtl.on 3._]_._: Let Vk =[VO, le = Byy osee chpk = p.k] be an
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inductive value of R [x] . If .
| 6(x) = g (x) op + gp1 (%) Qﬂ-l& ee + golx)
where deg g;(x) < deg ¢, , isa piolyndmial in R [x], then the
projection of Vi with respect to G(x) is a --/3, written
proj (Vy) =a - B, vhere ¢ and /3 are the maximum and mini-
mum values respectively of i such that
VG(x) = Vicfei(x) o |-

Definition .2.2': The effective degree of Gfx) in ’\.‘(,flg;}_ is-
@ : written DgG(x) = a . ' |

Let W be a valuation of R(a) , vhere W is an extension

‘of Voon R and .@ has minimal polynomial G(x) € R[x1. .By the

isomorphism R(a)% R[x]/(-G(x)l) it is clear that a generalized
valuation V- on R[x] may be defined by Vf¥x) = Wfla) . The
valuation V assigns the value +% only to .the membefs of the |
ideal (G(x)) . It would seem natural to construct V as MacLane
does for finite valuations; that is, for valuations which assign
the value +o@ only to O . As before, a first-stage value

vy = [Vo, Vix = p]_], where uj = Vx # % , is defined; again

Vi <V. It is worth noting that proj (Vi) > 0 . For if

proj (V3) = 0 then would be only one term in

' | G(x) = apx® # ap_1x™"1 + .. + &,

with minimum value, and VG(x) = V1G(x) f oo , To define a secon-
stage value a monic polynomial f£(x) of minimal degree satisfying
VE(x) > V;f(x) 4s chosen, If f(x) is not homogeneous in YV,
then its homogeneous part is to be chosen. Denote this homogeneous

part by Po o As was mentioned in the intr_odﬁction', P2 is a key
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_polynomial over Vl « The second stage value V, is then defined
by ¥y = [Vo, Tix = by, Voup = up], where uy » Vo, o Now, if
G(x) is a homogeneous key. over V, , then ¢, is chosen as a(x)
and p, =, That 6&(x) is a monic polynomial of minimal degree
éatisfying' V&(x) > V;G(x) will follow from lemmas 3.3 and 3.4.
Lemma 3.3: Let Vi be a k-th stage inductive value of R[Jid
satisfying: , '
(1) 'ka(x)'s Ve(x) for all f(x) e R[x],

(2) deg £(x) < deg ¢ implies ka(x) = Vf(x) ,

(3) Vi9; = Vo; = p; for 1<ic<k.
If ¥ is a monic polynomial of minimal degree satisfying
V¥ <Vy , then' V,£lx) < Vf(x) implies v|f(x) (V) .
Proof: Let f(x) have the quotient remainder expression f(x)
= q("x)\]r + r(x) , where deg r(x) < ae‘g'ﬂl . Then
vk[f - qq'f] o V.[f - qw] 2 migi{Vf, v[qﬂ}min{ka, Vk[q\]f]}_,
because of (2), the choice of ¥ and the assumption (1) for
q(x) . Hence \]flf'(x.) (V) o . |
Lemma 3.4: Let Vy, be an inductive value of R[xj . Any poly-

nomial G(x) € fo] has an equivalence decomposition

t

. t t t
G(2) ~ e(x) cpko \lfll ﬂrzz coe ¥

k) ’

where each V; is a homogeneous key over V) , tozé and

t; > 0 for 1<i<r,and e(x) is an equivalence unit,
that is, Dq’e(x) =0 1in Vk This decomposition is um‘.qu;'ex-
cept for equivalence units.

Proof: Cf. [3], theorem 4.2.
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., Now suppose ¢, 1is a homogeneous monic polynomial éf mini--
pal degree satisfying Vjop < V 9o when G(x) dis a homogeneous
key over Vy . Since VyG(x) < VG , G(x)~ h(x)_wz (V1) by
lemma 3.3. But G(x)~ G(x) (V;) , and therefore by lemma 3.}
G(x) = 9, . Hence in this case the value V. is given by
V= [V, Yz = wy, Velx) =]
If G (x) is not a homogeneous key over Vi, then the second-
stage is given by '
V2 = [Vo: Vix = py, Va92 = F*z]
vhere Vo, <V . It is noticed again that proa (V2) >0 for
otherwise VG(x) # o , Also wzlG(x) (Vl) by lemma 3.3, MacLane's
inductive profess is repeated until G(x) does become a homo-
geneous key over some V) or, if this dées not occur, it is re-
peated a countable number of steps. In the former case
V= [Vo’ Vix = p.l, ces chpk = p.k, VGa(x) = °°]
by the preceding argument. Also ¢;[G(x) (V;_;) for all 4
such that 2 <i <k, and proj (V{) > 0 for 1<i<k. If
a countable'ﬁﬁmber of steps are required, then
VeV s Vo, Vyxs by, eee s Vit = by eee] -

Certainly, ¥ < V and q)le(x) f(vk,_l) for all k 22, Since
each ¢ is minimal over Vi1 , deg ¢ < deg Gtx).. So from

' some point'on all the keys will have the same degree. . In this
case it can be shown ([2], lemma 6.3) that the valué_gfoup of V!
is discrete if the value group: of R is diserete; that is, the
real numbers used as valueé.fbr V! form an isolaped point set.
If V'f(x) <Vf(x) for some £(x) e RIx], thén | Vit lx) < VElx)

for all k >0 by the monotone incfeasing character of the in-
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_ductive values and seo cpk+l|f(x) (V) « Therefore V f(x) <V ,f(x)
for all k > 0 (Cf. the introduction). But since the value
group of V' is discrete,

Vflx) 2 lim Vi f(x) =,
) Jevoo

Therefore only polynomials in (G(x)) could satisfy
Vif(x) < Vf(x) but since V/flx) == Vf(x) for #(x) e (G(x)),

4

V=V'.

It is seen that every discrete V, of R may be extended
to a finite separable extension R(e) of R by MacLane's induc-
tive pmcéss, where the homogeneous keys can be further x;est.ricted
to satisfy the conditions proj (V3) > 0 for i >0 and
cpiIG(x) (Vi3) for i 22, where G(x) is the minimal poly-
of @ . 1In fact, it is mot difficult to see that these restric-

tions are necessary.

From the preceding arguments it follows almost immediately
that every such sequence of values constructed by these restricted

keys will give a valuation of R{a) .

The construction of such a seqﬁe’_nee of values’ may be accom-
Plished in a systematic manner. Let. Vy =-[V°, Vix = p.]] be a
first-stage value such that prej (V;) >0 far G(x) . If V;
has been defined, the next key ¢; is chosen as any one of the
Ilrj oceurring in the unique equivalence decomposition of lemma
3.1;. The corresponding value p; is chosen so that proj (Vi) 20
and py > Vi_19i . In the sequence of valuations so defined,

each -Vi is called an i-th approximant te G&(x) . Maclane not

only shows that e\'rery such Tséquence of values defines a valluation
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W on R(a) which is an extenéio_n of V,, but that :

(1) if G(x) eventually becomes a homogeneous key over
the inductive value V., then the i-th approximant is
unique for 2 <i <k and alsw, the value p; is
unique ([3], theorem 5.3) . This implies that Vj
may be extended to R(a) in only ome way ([31,
theorem 10.1 ) , | , |

(2) if a countable sequence of keys are required, then
there is at most a finite number of different sequences
that can be constructed. Hence, V, on R may be ex-
tended to R(a) in at most a finite number of ways

([3], theorem 10.1) .

L. The reduction, or restriction, of an inductive value W of
Alx1 to R[x] will first be found; following theorem k.7 the
reduction of a limit value will be found, These results will be
established by mathematical induction.

Theorem 4.1: If W= [Wo; Wix .-.a.) =Y] is any inductive value
of A[x] with Wz 2 ¥, then W= W' = [Wy, W'x =¥]. .

Proof: Let x -/ ¢ Ax] . If Wo(c; -B)< Y, then
Wole =3) =W, /3 ; and :
Wix - 2) = win {¥, Wola - A)} = win {¥, WA} = wilx -/ .
If Wia-B)2 ¥ ,then W,/ 2 minfiyla - B), Wa}2 ¥,
and Wix-B8)=¥=wW(x-723).
An immediate conseciuerice of theorem L.l is:
Theorem 4,2: If W= [We', W(x - a) =r] is any inductive value
of A[x] with Wya2 ¥ , then V= [V, Vix =¥] is the re-

duction of W to R [x] providing V =W, on R .

g



' 17,

Theorem 4.3: Let W= [Wo, Wix -a) = X] be an inductive
value of A [x] with Y > Wa , then Vy = [V;), Vix = Vgad] R
vwhere V = W, on R, is the first-stage of the reduction of

W 'to R[x] . There exist polynomials f(:;) e R [x] such that
Vi1£(x) < WE(x) . | L
Proof: The value of x is Wx = min {)‘, Woa.} ='.:-W°e. . There-
fore Wi = [Wo,- Wix = Woa] is a first-stage value to W ;
W, £ W . Hence V]' = [Vo-, Vix = Woa] is the first-stage of the
reduction to R[x] . Let G(x) =(x - a)(x "-pl) ees (x - ﬂt)
i)e the minimal'polynemi'al of @ in R[x] . Since
Qvl(x -a) <Wix-a) and Wi(x -ﬂi) < Wix - ﬁi) ,
V1G(x) = WG(x) < Wa(x) . |

Theorem k.3 :shows that for ¥ > W,a at least one more key
i'é- necessary to obtain 't._he correct reductionof W to R[x] .
Lemma kod: Let W= [WQ', Wix - a) =Y] ~ be any inductive value
of AIx]. A pol}'rnomial fix) e A [x] is equivalence divisible
by .x=-0a in W if and only if Wyf(a) > Wf(x) .
Prodf: Let f(x) = fy(x - a)® + £, 9(x - a)n'l_+ cee + £
be the expansion of f(x) in powers of x - a ; f; € A . Simce
WE(x) = min {Wofi + 13‘}, W;fo 2 We(x) ; and because f, = fla) ,
the relation Wyf(a) 2 Wf(x) always holds. - Suppose |
W fl) > welx). Then W [f(x) - {fn'(x “a)?+ si. + £plx - a)}]
= Wofla) > We(x) and, therefore, £(x)~ fy(x-a)® + .00 + £(x=a)
in W ; that is, x - alf(x) in W . Suppose, now,
f(x) ~ q(x)(x - a) in W . Then flx) = qlx)(x - @) + h(x) ,
where Wh(x) > Wf(x) . But, since h,, the last term in the ex-

pansion of hi(x), is f_ it follows that
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Wof, = Wohy 2 Wh(x) > Wi(x) ; that is, W fla) > Welx) .

In the results to follow the polynomials. ¢; and the real
numbers pi will be the homogeneous key polynomials and their
values which are used by MacLane to extend a value V, '-on R
to a value W, on R(a) (§3) . Since the value W, on A ,
and therefore on Ria) , is gifen, Vo will be the restriction
of Wy to R . However, the;'e exist ¢3 and pi defining the

extension of this Vg, to the given Wy on .R(a) .

Theorem 4.5: Let the polynomials ¢; and the numbers p; be
the key$s and values which define the ex’c,enéion of V, en R to
Wo on R(a) . The keth stage of the reduction of
W =[W,', Wix - a) =3‘] to R[x] is given by

v = [Vo’ Vix = b1y V92 = Bpy eee Ty = “J’
provided .that. X - alq:i in W is false for all i in the
interval 1 <i<k.
Proof: B& Theorem 4.3 and lemma 4.4 this theorem is true
for k=1 . Suppose the result is true up to k - 1 , then
Vg = [vo, Vix = by, eee ) VeelOkel = Bie1] s the (k-l)st
stage of the reduced value and V-1 f(x) < wf(x) for all
f(x) ¢ R[x]. Let f(x) e R [x] be any polynomial such that
deg f(x) < deg ¢, . Then V,_;f(x) = W;f(a) , because in ex-
tending Vo, on R to Wy, on R(c:z) the value Wyf(a) is
defined to be V,_;f(x) when deg f(x) <deg ¢ . But, since
wilx) 2 v, ,f(x) = W f(a) 2 Wf(x) by lemma 4.4, it is concluded
that We(x) = Vi_1£(x) for all £(x) & R [x] such that

deg flx) < deg Py » However, Wo, = Wotpkc’a) = g > Vi 19k,
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since x =~ a|cpk in W is false, and Py may t,hen be chosen the
next key over V,_; with value qu’k = py (Cf. introduction) .
Also, the value |
Vg = [Vo’ Vix = by, eee s V@) * Beels VB = “k]
satisfies the relation Vif(x) < Wf(x) for all f(x) ¢ R[x] and
is, therefore, a k-th st.agé of the restriction of W to RIxl.
Lemma 4.,6: If ¢; are the keys used to extend V, on R to
| W, on R(a) , then there exists an i such that x = a‘q;i
in We[W, Wx - a) -v].
Proof: There are two cases to consider:
(a) Wy is found by an indu‘ct.ive value - then the last
key is G(x) , the minimal polynomial for a in
R[x], vhich is divisible by x - a and, therefore
equivalence divisible by x~-a in W, |
(b) W is found by a limit value - if there exists no
i such that x = alcpl in W, then by theofem he5
every cpl, with value Bi eccurs in the reduction
of W to RIx] . _But this implies the value of
G(x) is + oo ; while welx) < + o0,
Lemma 4.6 implies the existence of a first key 941 vwhich
is equivalence divisible by x - a in W . By theorem L5,
Vi = [Vo, ViX = Py, oo 5 V)@ = p,k]
i1s the k-th stage of the reguction of W to R [x]. There are two
possibilities for the k-th stage value of ¢p,; , either

ViPel < Wopiy or Vidp,y = Wopyy .

Theorem 4.7: Let W = [Wo, W(x-a) -)"] , with Y> Wea , be
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given on ALx] . Let {Vi} be the sequence of approxlmants to
a(x) , the minimal polynomial of a , defining the extension of
Vo on R to Wy on Rla) . If ¢ k41 is the first key in
these approximants such that x - a|¢k+1(W) , then the reduction
- of W te R[x] 1is given by: | .
1) v= [Vo: Vix = B3, eeo ., Vk9k = By Volsl = W‘Pk-c—l]
when Viop,1 < VWop,y ,
(2) W= [Vo, Vix = b1, eor , Viwy = pi| when

ViPr+l = Wy -
Proof: As in theoren 4. 5, Viflx) = be(a) = Wf(x) for all
fix) e R[x] such that deg f(x) < deg P41 - Sirce in
(1) Vi®Pp4y < Wopy1 , Piq1 . Mmay be ¢hosen as the next key with
value Wg, ., ; this gives V< W on RIXx1 . If Vk in (1) and
¥jpd in (2) are both denoted by V' , the two re sult s may be given
by one proof. Suppose the existenée of

£flx) = £5(x) ¢k+1 + £_1(x) ¢£+i # ove + £olx)

= £o(x) ~ g(x) op.1,

where deg f;(x) < deg ¢4,y and f(x) e R{x], a monic polynom1a1
of minimum degree such that V'f(x) < We(x) . Then Vif, (x) vir(x) |
If V' = V,, this is immediate from the definition of Vf(x) . If
V' = Vk; then ok+1 is a kéy polynomial over Vk since it defines
an approximant Vk+i° Suppose Vi f,(x) < Vi £(x) , then
Vie[folx) = 8lx) o] = Wiflx) > V£ (x) and £4(x) ~ glx) oy, (V)
whlch contradicts the minimal condition of the key ¢k+l . New,
Vig(x) = Wg(x) because deg glx) < deg £(x) ; therefore ,
V'[f(x) £,(x)] = Vi(-glx)) + V! oy = Wl-glx)) + gy, = wle(x)-z, (x:
That V'f, (x) = V'f{x) may be seen by assuming VIf, (x) >.V'f(x) ;

for then
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‘V'f(x) = V! [f(x) - f (x)] = W[f(x) - fo(x)] min{Wf(x) We (x)}
>Vrelx) o
Now W[fo(x) - g(:x) cpk+1] = Wf(.x) > Virlx) = Vigylx) = WEy(x)

hence fy(x)~ glx)op,;(W) . Sime x - a] oy, (W),

X - alfo(xf)- (W) . But, since deg f,(x) < deg ¢,; this con-
tradicts Wyf(a) = Wf (x) ; therefore V' = W omn R[x] in either
(1) or (2) . |

On combining theorems 4.2 and 4.7 and lemma L.4 a picturesque
description of the reduction can be given in terms of the size
of ¥ . For this purpése consider W = [WO', Wix - a) = b*]
on A[x] with ¥ < Wed and examine the reduction to RIx] as
Y . continuously increases. For ¥' < W,a the reduction is

[V : 1x -)‘] . As Y inmcreases. to W = p, the reduc-
tion increases to V3 = [Vo, Vix = p]_] . When ¥ is just larger
than Woa ,, the key 92 of the second approximant to alx) , the
minimal polynomial of a , is needed. The reduction is

[Vo, Vix = py, V2cp2 = u] As ¥' increases again the value
Vé?z = b increases to Wy, = Wopola) = pp and the rediction in-
creases to Vp = [Vo, Vix = u3, Vogp = pz] . If this process is
continued it is seen that as. ¥ ~increases the reduction sweeps
through the appreximants to G{x) which describe the extension
of Vo to W, on Rlax) . The on;Ly difference between the re-
duction and f.he corresponding approximant defined by the same keys
is that the value assigned to the last key in the reduction may be
less than its value in the spproximant., But as 3‘. is increased -

this value will increase to the corresponding approximant value

if the last key is mt G(x) . For then ¥ would have to increase too
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- It will now be shown what this reduction is when W is a

limit value. In the remainder of this section ;W is defined by
s Wy, W(x-aq) =¥y, con, Wylx-ay) =y, o0,

wﬁere the pseudo-convergent sequence {ai-} has no pseudo-limit in

A . It should be noticed that |

W= [Wo, Wilx - @) =¥y, oo, Wilx - al) = ¥, ]

can also be represented by W;j = [WO, Wilx - aj) = i]’ For, to

find Wif(x) , £(x) is expanded in powers of x - aj and the

coefficients are valued with W;_,. But the c'oeffici_ents are in

A and are therefore actually valued by Wo.

Lemma L.8: ° " The value Wy = W:'L+l = [ os i.,m(x - aj41) = Yi]

on A[x] . N

Proof: Lgt x-fR¢eAfx]., If W,{ay - 3) <Yi then

Wolesay - A) = Wo[(agey - ag) + (a5 - B)] = Wlag - A2);

Waglx=-72) = min{b‘l, Wolasyy "/3')}= min{Yl, Wolay - /3 )}

=Wilx=-/3). If Wyley -/, )2 ¥ , then

Wolagey - 2 ) 2 min ¥y, Wolag - A )} = ¥, and

Wiq(x - ﬂ)= i=Wi(x- A .

Lemma 4.9: For each x - /3 ¢ Afx] there exists a positive in-
teger N- such that Wlx - /3) = Wj(x - (3 ) for all 120N,
Proof: If no such N exists, then W(x -'3) > Wi(x - ) for
all 1> 0 since Wy < Wiy Now Wylay,; =B ) > Wilx - /3)
for otherwise from x - B = (x-0a341) + (@43 =3 ) it follaws
that )" g = Wilx=-ag,9)2VWla;,; -~ /2); and therefore
¥y > Wolagyy - AB) o Hence, Wix -B) = VWylaj,3 -/A23)

= Wy,1(x-/2) , which comtradicts W(x - 8)> W;(x - /) for

all i> 0 . Since Wo(ai-él':/’)>Wi(x-ﬁ)=Wi(3‘_;?i-o:ll) = ¥3, therefore
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. Wolagy - B)= We[(“i#l = ag4p) + (@540 - /2 )]= ¥in
for all i > 0 . But this implies /3 is a pseudo-limit of
{ai}. | |
Theorem 4,10: The k(i) keys occurring in the reduction
of W = [W,, W(x=-a;)=)] on A[x] to R [x] are the
first k(i) keys in the reduction of

W= [Wo, Wylx=-a)) =¥ , eos, Wix-0ay) =¥%,-- ]
on- A[x] to R [x] .+ Also, the values p, , for 1 <v < k(i),
in the reduction of W; are the first ic(i) - 1 values for
the keys in the reduction of W .
Proof: By lemma 4.9, for a"ny given f(x) e R [x] thére exists
an N such that Wflx) = Wjf(x) for all i2 N, If Vl;(i) is
the reduction of Wj, then Vi, f(x) = welx)  for all 1 2 N, |
Hence, the sequence of values {vkli)} on R [x]1 gives every poly-
 nomial 'in R[x] the correct W value, It is only necessary then
to show that the k(i) keys in the reduction of W; are the first
k(i) keys in the reduction of Wj,, and that the values, with
the possible exception of pg(i) , are the same. By lemma 4.8, Wj
and Wj , = [We,' Walx-a5,4)= ri] define the same valuation
of A[x). Hence, they will have the same reduction on R [x]
and, because the keys in the reductions are homogeneous, each
reduction will be identical with respect to keys and values ([?],
- theorem 16.4) . As the value of x - @j,; is increased from ¥
to ¥ 4,1 the value: Be(y) might increase and the keys, if any,
appearing in Vk(i+1) but. not in Vk(i‘)- are used to augment
Vk(i). to vk(i+l) . These are the only changes that can happen;
and at least one of these changes must happen. The truth of

this follows _frbx_n the c_ifécus‘sion immediately after theorem 4.7
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and the fact that the minimal polynomial of aj,; definitely
increases as the value of x - a1+1 increases. '

Theorem 4.ll: The reduction of a limit value W on Al‘x] to

R(x1, as described in theorem 4.10, is .a limit value.

Proof: Suppose the reduction.is an inductive value

Vi = [Vo, Vix = g, eoo , V¥ = p,k] » By lemma 4.9 there exists
a smallest i such that Wipy = Wop = pp « The reduction of |
Wiy to R[x] must be Vi since this is the first stage in which
9 assumes the value py and Wy <W. But for G(x) , the
minimal polynomial of ej.,,, in Rex], VkG(x)' =‘WiG(_.x)_< Wy ,.1G(x)
< We{x) + Since by assumption Vi =W , tﬁ_is contradiction es-
tablishes the theorem,

5. In section 4 the connection between a value W ‘of A[x] and
its reduction to Rix] was established. The comverse problem ‘
will now be solved; that is, given a value V of R[xl , to find
an extension of V te' Atxl. First, howevez_",_ it will be shown

that a value W on A [x] may be written in a standard farm.

In the following theorem the. notation
Ve[V, Vyx = 4, e s Viedle b ]
is te mean that a least the keys up to ¢ oceur in the rep-
resentation of V ; however, V may be an inductive value w1th_
keys past ok , or V may even be a limit value., This motation
will also be used for -
W= [W , Wx = pq, 'o':.;;'T,*-wk&g;.-' ap) =40, ]4. -
| Lemma 5.1: If a value W" of A[x] reduces t.'o. |
V.= [Vo: Vix .= ul, cor Vicok = b, ]
on R([x], then V may be extended to
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on A [x] where:
(1) ¢; (@3) =0 for 4=1, 2; oos , k,
(2) Y5 =W(x-aj) for 1i=1,2, oo , k,
(3) W/ =W'p forall [Pe4,
(k) W'£(x) 2 WE(x) for all £lx) e Alx] .
Further, the reduction of Wj = [Wo, Wi(x - a3) = Xl]
is Vi = [Vo, Vix = Hly eoe Vigj = p.j_] for 1=1,2, «¢0 , k.
Proof: Let W, on A be defined by Wo/3 = W'/ for
B A and W defined by Wy = [W, Wix = p1] . The reduc-
tion of W, is certainly Vy = [V, Vix = py] . Let
£(x) = Z.'a-xi . £(x) e Ax1,

then W'f(x) 2 min {Wya; + 1W'x} = Wlf(x) The value W)
sat1sfies (2), (3), (4) and also (1) since ¢ = x and a; =0,
Assume theorem true up to W k-1 Then Wy_; reduces to Vy_;
and W' > Vi 19, = Wy _19 « For a key to augment Wy _; let
a factc;;r x - ax of ¢, be chosen so that W'(x-ay) > Wi.j (x-ay)
(cf. intreduction) and W'(x - ap) 2 W'(x - ﬁ) for any factor
x-/3 of ¢ such that W'(x -B) > Wye1(x - /3‘) . Now define
W by Wg = [Wk-l, Wi(x = ak) = ¥ = W'(x - ak)] For x =-/3,
any factor of ¢ j,- '

Welx = 3) = min{¥y, Wolay - /3 )}

Wix -/2) > min{¥y, Wolax - #)} .
The inequalif;y cannot hold; for, then, |

W(x-/3) > Ykswk(x-ak) Welx- ) 2W_1(x=-742) ,
which contradlcts the choice of x - a g« Therefore
Wix - ) = We(x - /) for all factors.of ¢k ; so
W'cpk = Wipx . Since q»k(ak) = 0 , certainly x - “k"?k in W .



' This means the reduction will use only keys ¢; for i<k .
But Wkox = W'ok = pg > Wk-lgpk yhence the reduction of Wk-
must be vk . |

Pheorem 5.2: If a value W! = [Wou,. W' (x - f3) = 5.] on A[x]

feduces to Vi .='[V°',' Vyx = B1, eee s Vi = P'k] on R[xl,

then there exists an a , such that %(a)? 0, and a ¥ so

that W' = W = [Wo', Wix - a) =Y] . Also Y= 3 .

Proof: -Le_.{-, Vy be extended to W on A[x) as in theorem 5.1,

where @ =a) , then. WS W' , If there exists an x - & e Alx]

such that W(x - 8) < W! ('.x - @) , then for G(x) € R{x] , where

G (8) = 0, it follows that | | | -
VG (x) = Welx) < W'G(x) = Vv, G(x)5 hence, W= W,

Also, since ¥ = W(x-a) =W'(x=-a) <3 and

_ 8=W'(x-ﬁ)=W(x-p)sr,

then ¥ =3 . | |

Theorem 5 3' Let W' =, [ o’ Wl(x -Fl) = 81_’ cee Wi-(x- ﬁi)=8i!ooo]
be a value on A [x] whlch reduces to

| V= [Vo, ViX = 4], see 5 VkPk = P'k’ ...] on RIxl,
then W' may be represented by |
W= [ , Wx = ug, Wz(x-az)‘arz y eee sy Welx - ap) =¥ ]
where: | |
(1) o¢play) =0 for all k 21,
(2) reduction of W, to R([x]is V.,
Proof: The proof is s:.milar to that for theerem 5.2.
From theroems 5.2 and 5,3 it is seen that every valuation of

A[x] may be put into a form such that each ajp 1is a root of the
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.correspond ing key Py appearing in the reduction of the valua-
tion to R [x)] . This information indicates how a valuation

V of Rix] maj be extended to some valuation of Afx] . It
will now be shown how this ektension can be accomplishéd.

Lemma 5.4: Let o be a root of some polynomial ¢ € Atx]' y

then a valuation W = [Wo, Wix -a) = r] can be defined on

Ar,'x]A _sutch that ¢ has a prescribed value u o+ The value Y

is uniquely determined. |

Proof: Let ¢ = /3 (x - a)” o+ n1lx - a)n.l taeo v P(x-0a),
where /35 € A , then Wy = m%n{wo i+ :‘LY} . Let the numbers ¥j
be defined by Wo/3; +1 ¥y =y for i=1,2, «o. ,n and ¥
defined by { = mix ¥i . For this value of ¥,

¥ Fi + 1Y 2 p for i=1,2, ... , n and the equality holds
for at least ene'value of i . Suppose there were two values '
and ' , with Y >y , with the desired .property. Since
ela) = 0 , there exists an i ¥ 0 such that

p=W, By +i¥>u B 1V
So W defined by ¥' would give ¢ a value Wg < u ., There-

fore the value W(x - a) is unique.

. Lemma 5.5: In an inductive value _

Vi = [Vor Vax = wyy eee s Ve19k1 = PVt = ”k] of R[x]
the V3 for 1 <i<k are the complete, and only, set of ap-
i préxir_nants to ¢ . |
';Pr_o_qi_‘_: This follows immediately from [3], theorem 5.3 (Cf. end
of §£3 ) if -V is defined by

V= [ Vor V1X = By, woe 5 Vo1 ®o1 = He-1"%k = °°]°
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Theorem 5.6:. Let W, on A be anextension of V, on R'

then Vi = [Vo, Vix = p1, oo , Vgog = “k] on R{x] may be
extended to W = [W6, Wix - a) ='¥] on A[x] , where ¢p(a) = 0.
Proof: By lemma 5.4 the value W(x - a) = ¥ ' is uniquely deter-
mined from Woy = p.k « Now, W defined by this Y reduces to

= [V = Ly ees ; Y!-l?!-l il ) Y?¢ = V] ’
where _1‘5 k, by theorem 4.7 since ola) = 0., But Wop = py
and, s0, V' ¢k = b = Vkox . This implies A=k and v =y .
That is, the reduction of W is %o W is the extension of Vj .

Since theorem 5.2 claims every valuation W may be defined
by some a where ¢gla) = 0 , it is seen that for a given W,
the maximum number of extensions of Vy on R[x] to W on AIX]
is the degree of ¢y ; and', every extension may be found by the
method of theorem 5.6 . | :
Theorem"";j‘7 Let W, on A be an extension of V, on R and

let V = [Vo, Vix = U, eee 4 Vk‘Pk = Uk, ...] be a limit value
of R[‘x] The value V. may be extended to the MacLane value
W= [We,j Wix = py, Waolx = a3) = ¥o, oee We(x - ay) = Yi, ...]
| on A[x] where: |
(1) o;(a;) =0 for i=1,2, ...,
(2) r;._ is uniquely determined by the factor X - aj
and the value pj of ¢j ,
(3) Dﬁ)(x-a)a-l in x - a;_ 1 foralli)l
(Cf. definition 3.2) , .
(4) Wiy reduces to Vy on R[x] for i =1, 2, ces o
Proof: It will be possible to formally construct the sequence of
values {Wl}lf it can be.shown that there always exists a factor
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of ¢; satisfying (3) . The comstruction of Wy with this
factor may be accomplished by the method of theorem 5.6, How-
ever, it will be necessary to shw(’that ‘W defined by this
sequence of values is actually a MacLane value. In order to prove
that property (3) may be satisfied it will be shown that, given a
value Wy which satisfies (1), (2), and (4) a value Wy} can
be defined over Wy also satisfying (1), (2) and (4) and such
that Dyp(x - ax43) =1 in x -ayx . Then, since Wy satisfies
(), (2) and (4) it follows by induction that properfy (3) can
be satisfied for all i >1 . Let W, satisfy (1), (2) and (%)
and let W} be defined by W = [wo', Wf('(x - ay) =b‘] with
Y <Yy, but such that V,_jo < Wo, = b < iy . Then as
¥+ ¥ , »>uk . Therefore, if .q>k...i is expanded in powers
of ¢, , as ¥~ ¥ the value of ¢p,; mst continuously in-
crease, since proj Vg > O with respect to ¢y,3. So, if op4]
is expanded in powers of x - aj , the value of ¢, mst also con-
tinuously increase as ' ->,Yk' . This could only happen if
DpP+1 2 1 in X - @, . Hence, there exists a factor x - ap .
of ¢4+ such that Dy(x - apyy ) =1 in x=ap . Now Wiy
may be defined by Wy, = [Wk, Wieep (x = apqy) = X‘kﬂ] where Wy,
satisfies (1), (2), (3) and (4) . It orly remains to show that
W defined by this sequence of values is a MacLane value. Since
Dy (x = ak.,,i) =1 in x - ay , ¥ = Welx = a) = Wlx = ap,)

< Wplay = agay)
that is, ¥y < Woloy - ags3d « Let Wi,y De defined by

Weel = [Wo, Wker(x = apey) = xk] )

~then W = W[,y ; for, let x - /2 & A[x] , then

N
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. W (x - p) = min {Xk: Wolay -/ﬂ} and
Wl'(+1(x - ﬁ) = min {rk’ w (a‘k'i'l ﬁ )} but
Wolaysy = /3) 2 min {W (aps1 = ag)y Wolay =B )} mln{xk, W (“k‘/‘”}

Therefore Wk and Wk 1 have the same reduction Vk

Hence, xkﬁ> Vk_ in order that Wy, reduce to Vi,; « Let

on R[x] .

Let ¢, have the expension

P = f (X - ak)n + fn l(x - Gk)n-l

W, -min{Wf +1X‘k} and

+ eee + fl(x had ak) ,then

k Pk
Wies1 9% 2 min {W £+ W 4 (x - ak)]‘

Let i , which cannot be zero, be chosen such that a minimum term

is actually obtained in the second inequality; then

+1h‘ 2 W9, = klcpk_Wf W (x~a) .

Therefore ,osince 140, ¥ 2 W (%~ ay) . Now,

Wylay - ap,y) 2 min {Wk+1(x = Qpe1)y Wepplx - ak)} but

Weag (% = apqq) = ¥y > ¥ 2 W (x - ay), and, so,

Woloy = @pag) = Wegg(x = a0 ) < ¥y - | |
But it is known from above thaﬁ Wolag = apsy) 2 b‘K . Therefore
Wolay = apyq) = ¥y and since ¥y, > ¥ for all k21 the
sequence {ai} is pseudo-convergent. The sequence lmss no pseudo-
Dimit since W reduces to a limit value; otherwise V would be
-an inductive value ([2], theorem 16.4) . There can be mo limit
for the sequence {'ai} in A since V is a finite value; alter-
natively, every limit of pseudo~convergent sequence is a. pseudo~-
limit, Theref_o,;‘e, W is a Maclane valuation of A [x]) _satisfying
properties (1),,(é), (3) and (49
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- Because of theorem 5.3 and since for every limit value
W of A[x], Dylx - ag+1) =1 in x - ap , every extension
of a limit value V of R[x) to A [x] may be found as in

Theorem 5.7.
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