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Abstract 

If R i s a f i e l d on which a l l (nori-archimedean) valua­
tions are known, then a l l valuations on Rfx^J, where x- i s 
transcendental over R , are also known. Ostrowski described 
such valuations of R[xl by means of pseudo-convergent se­
quences i n the algebraic completion o f A of R . MacLane 
later showed that i f a l l valuations of R are discrete, then 
any valuation V of R [x"] can be represented by certain 
"key" polynomials in R [x}. The present paper exhibits the 
connection between these two treatments. This is achieved 
by f i r s t determining keys for the valuation which a pseudo-
convergent sequence defines xm ATx], and then relating 
these keys to those for V . 
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1. Introduction. A non-archimedean valuation V , hereafter 
simply called a valuation, of an integral domain R i s a 
single-valued mapping of the elements of R Into the real 
numbers and + 0 0 such that: 

1) Va i s a unique f i n i t e r e a l number for a / 0 , 
2) VO = + op ', 
3) V(ab) - Va + Vb for a l l a, b e R , 
4) V(a + b) > min fVa, Vb} for a l l a, b e R . 

An extremely Important property of these valuations is that, 
i f Va ̂  Vb , then Via +b) = min {Va, Vb}; hence, i f 
V(a +b) > Va, Va «« Vb . 

Ostrowski, and later MacLane, attacked the problem of 
finding a l l extensions of valuations on an integral domain R 
to the ring of polynomials R f x], where x i s transcendental 
over R • MacLane*s results are based on the assumption that 
a l l valuations of R are discrete; that i s , the real numbers 
used as values form an isolated point set. It i s the purpose 
of this paper to provide a connection between the valuations 
of Ostrowski and MacLane on R fx] , where R is a f i e l d with 
only discrete valuations. 

Definition 1 .1: Let R be a f i e l d with a valuation V . The 
sequence {a^J, where e R , is a pseudo-convergent sequence 
with respect to V i f V(a^ - a^^) < V ( a i + 1 - c^) for a l l 
i > N , so B E fixed positive integer. 

If {a.} i s a pseudo-convergent sequence with respect to 
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V , then the sequence /Vĉ } is eventually strictly monotone 
increasing or eventually attains a constant value; as long as 
0 is not a limit of {<i±\, fVaJ- converges to a finite limit. 
This is important, for i t is essentially this property that 
Ostrowski uses to extend V on R to W on RCxl, where W 
is a valuation of R[x]. He shows (t l ) , III, page 371) that 
i f f(x) e R[x], then {f[a±)} is also a pseudo-convergent 
sequence. This implies that {Vfia^)} is convergent to a 
finite limit except when {c^} converges to a root of f(x) . 
Hence, i f {a^} is a pseudo-convergent sequence possessing no 
limit in the algebraic completion A of R , the function W 
on, R[xl defined by .Wf(x) = lim Vf(a;i) is a valuation 

i-»oo 

( [ i i , section 65, page 374) of R[_l. Further, ([l], IX, page 
37$) every valuation of Rfx} maybe obtained by means of some 
pseudo-convergent sequence in A • The pseudo-convergent se­
quences in A are valued by an extension of V on R to A ; 
this extension always exists([1"], II, page 300) • This last 
reference implies that any valuation of R(x) may be extended 
to A(x) . Hence, i f a l l valuations of A fx] are found, a l l 
valuations of R£x} are automatically found. This result is 
of prime importance to the development of the theory in this 
paper. 

Definition 1.2: Let K be an integral domain with a valuation 
V . Two elements a, b e K are equivalent with respect to V , 
written a ~ b (V), i f V(a - b) > Va . 

Definition 1.3: For a, b e K, a.1 equivalence divides b in 
V i f there exists c e K such that b <~ ea (V) ; notation: 
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a|b (V) . 

If V is any valuation of R[x] which reduces to a 

discrete valuation V 0 of R , MacLane ([2]) represents V 

by the following inductive method: a value Vjx = Vx = (i^ 

is assigned to x • Then f o r any polynomial f(x) £ R[x], 

f (x) - a nx n + a ^ j x 1 1 " 1 + ... + a Q, a function Vi on R£x] i s 

defined by V-jf(x) » m i n f v ^ i + i ^ i j • This function may be 

shown to be a valuation of R fx} such that < V ; that i s , 
Vig(x) < vg(x) for a l l g(x) e R[x]. The value i s called 
a f i r s t stage value and i s symbolized by = £ v o , V]x - • 
Either V x V , that i s , V xg(x) » Vg(x) for a l l g(x) e R[x}, 
or there exists an f (x) e R[x] such that Vjf (x) < Vf (x) . 
If that latter i s the case, 92(x) e a [ x l i s chosen such that 92 

i s a monic polynomial of. the smallest degree satisfying 
V^92 < 2 • This polynomial satisfies, over 1^ , MacLane's con­
ditions for a key polynomial. 

Definition 1.4: I*et W be any valuation of Rfx] • A poly­
nomial 9 e Rfx] i s a key polynomial over .the value W i f : 

(i) 9 i s equivalence irreducible - 9|a(x)b(x) (W) 
implies either 9|a(x) (W) or 9|b(x) (W) , 

( i i ) 9 i s minimal - 9|a(x) (W) implies deg a(x) > deg 9 , 

( i i i ) 9 i s monic. 

It i s shown ([2], theorem 4.2) that i f a key polynomial 

9 over W i s assigned a value jx = W 9 > W9 , then the function 

W1 on R[xl defined by 

W»f(x) = min {wfi(x) + i u j , 
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.where f(x) = f n ( x ) 9 + f n _ i ( x ) 9 ~ + + f 0 ( x ) , d e S 
fi(x) < deg 9 , i s a valuation of R [x]. Further, W <W 
and Wf(x) < W*f(x) i f and only i f <p)f(x) (W); i n particular, 
Wf(x) = W»f(x) i f deg f(x) < deg 9 ( f2 j , theorem 5.1) . In 
the original valuation V , the polynomial q>2 chosen above 
w i l l define a valuation V2 on R[x] i f assigned the value 

^2 * V < p 2 > V l * 2 * T h e v a l u e v 2 satisfies V 2 V and 
and V 2f(x) « V xf(x) = Vf(x) for a l l f(x) e R[x} such that 
deg f (x) < deg 92 • The second-stage value V2. i s .symbolized 
by v*2 = f V 0 , V^x • H I , V 292 " ^2]* A s befbre, either V2 •» V 

or there exists a monic polynomial 93 of minimum degree satis­
fying V2s>3 < V 9 3 . Again, i f 93 exists it i s a key poly­
nomial over V2 and may be used to define a valuation V3 such 
that V3 < V and V 3f(x) = V 2f(x) = Vf(x) for a l l f(x) e R[xl 
with deg f (x) < deg 93 • The third-stage value V3 i s sym­
bolized by V3 • [V 0, Yix = [ i i , V292 = |A2» V393 • u.3]. MacLane 
shows ( [ 2 ] , theorem 8,1) that i f t h i s procedure i s continued, 
equality w i l l occur after either a f i n i t e or countable number 
of steps* In the f i r s t case V w i l l have a representation 

V - V k - [V 0, V 1 X = M-1,V292 8 8 ^ 2 » ••• 1 vk<Pk = k̂]» 
and is called an inductive value* In the latt e r case 

V = Tfco - [ v o , V xx » ( t l f V292 = V2> ••• 1 vk«Pk = Pk> •••]» 
where Voof(x) .* lim V kf(x), and V is called a limit value* 

k-»°o 
Hence each valuation of Rfx] may be represented by one of these 
two cases i f every valuation of R is discrete* 

The key polynomials defining the above inductive and limit 

values satisfy: 
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#iv) ~ V±-l i s f a ^ 8 e £ o r a 1 1 

i > 2 ; 

(v) deg ̂  > deg 9 i _ i f o r a 1 1 i - 2 • 

Now since every valuation of R T x ] is either an inductive 
value or the limit of a sequence of inductive values i t i s 
necessary, only to consider key polynomials which also satisfy 
(iv) and (v) • For this reason i t w i l l be assumed i n this paper 
that a key polynomial is a polynomial satisfying ( i ) , ( i i ) , ( i i i ) , 
(iv) and (v) . 

The representation of a valuation on R [x] is not 
necessarily unique, but i f one additional restriction is placed 
on the key polynomials the representation becomes unique when 
V0 on R is discrete. Let Vk= [V 0, V-jx =• u^, ... , V k 9 k ' • J AJ 

be an inductive valuation of R £x]. The ? K value of 
f(x) e R [x] is found from the expansion 

f(x) - f n ( x ) 9 * + f n - l ( x ) ^k" 1 + U - + f o ( x ) > 

where deg f^(x) < deg 9 k . By expanding each f^(x) i n powers 

of <Pk-l a n c* the coefficients of this expansion again i n powers 

of ?k-2 continuing these expansions, f i n a l l y the expression 

f k ) . 2 Y % t 2 J .... & , 

where aj e R and each 

• i j < d e g '1*1 , 
deg 9 ± 

i s obtained. Furthermore, V kf(x) « min {^ja^x l j 9 2

2 j . . . 9 k
k j j } . 

Sow, the elements of R may be partitioned into classes of equi-



valent elements with respect to V Q and a representative may 

chosen from each class* In particular, the element 1' i s to 

be chosen as a representative. These: representatives are cal led 

the V 0-representatives. If i n the above expansion of f (x) 

each aj is a V 0-representative and a l l terms have the mini­

mum value V k f ( x ) , then f(x) i s called homogeneous i n V k • 

Every polynomial f (x) e Rfx] is equivalent i n \ to one and 

only one homogeneous polynomial h(x).e R[x] i{2]t lemma 16.2); 

h(x) i s cal led the homogeneous part of f (x) • An inductive 

or l imit value is called a homogeneous value i f each cp^, i £ 2 , 

i s homogeneous i n V±~± • MacLane has shown ([2], theorem 16,3 

and 16.4) that any inductive or l imit value constructed from a 

discrete V 0 may be represented by one and only one homogeneous 

inductive or l imi t value. 

The inductive and l imi t values of R[x] will'always be con­

sidered to be homogeneous values. 

2. The relat ion between the valuations of Ostrowski and MacLane 

w i l l f i r s t be established on A [x j , where A is an algebraically 

complete f i e l d . 

It w i l l be found convenient, i n this section and future sec­

t ions, to remove the condition that a MacLane value has f i r s t key 

x . . It is. necessary only that the f i r s t key be l inear and monic. 

The properties of MacLane values w i l l be preserved. 

Every valuation V of A[x] may be defined by some pseudo-

convergent sequence {a:i}, with respect to V Q on A , which does 



7* 

not possess a limit i n A ; Vf(x) is defined as 
Vf (x) « lim V 0 f (.ai) . i-»oo • 

These pseudo-convergent sequences may be divided into two types. 
To obtain the desired classification, a pseudo-limit i s defined. 

Definition 2.1: An element a e A i s pseudo-limit of the 
pseudo-convergent sequence {aj}, where aje A , with respect 
to the valuation V 0 i f V 0(a-ai) - 8JL, where $i < 1 

for i > some integer N . 

Note: "Pseudo-limit" as defined here is not the same as that 

defined by Ostrowski. 
Now V 0 ( a i - a±+i) = i * ^ , where )f± < ^±+± for i > some integer 
N'. Since Y'I • v o ^ a i " a i + l ) =

 vo[jai - a) + (a - a ^ i ) ] i t 
follows that, for i > N , - _ i . 

The pseudo-convergent sequences are now divided into two 

classes: 

, (1) fai} possesses a pseudo-limit i n A , 
(2) {OL±\ does not possess a pseudo-limit i n A , 

Theorem 2.2: If the pseudo-convergent sequence {o.±\ t with res­
pect to V 0, has a pseudo-limit a E A , then the Ostrowski 
valuation V of A [x} defined by is the same- as the f i r s t 

stage valuation V, defined by' V, =fv6 , V, (x - a) * ¥\ , 
where • lim • lim V0 (aj - aj + l ) . 

±-tOO i - K » 

Proof: It is sufficient to consider a monic linear polynomial 
x - /3 i n A[x}. Since - /3 » (a^ - a) f: {a -/* ) and 
V G(ai - a) - T±t either V Q (a ± - ( 3 ) * J*i or, V ^ . - /3 ) 
= \ (a - ), for i sufficiently large. 
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l i m I i i - . m a 

Hence 
V(x -f3) = lim V 0( a A - /3 ) « min { T, V 0(a - /* ) } « V^x -/?) i-*oo 

Theorem 2.3: Given a finite inductive value V « [Yo,V(x - a) = **] 
on A [xj , a pseudo-convergent sequence \a^\ with pseudo-limit 
a e A can be found such that 

r « lim Yi 

Proof: Let a / 0 i n A be chosen such that Va = d > 0 . 
Then there exists a real number o* such that cd = Jf* . A 
sequence of integers {n±\ can be found such that 

ni no tit 
-± < < ... < - i < ... 
10 10 2 10 1 

and 
i-*oo 1 G i 

Let ft be any one of the roots of x - a . Then 
d = Va - V/^i =10 Yft or V ft = 1/10 d . Hence, the se­
quence { v / ^ " 4 } i s a s t r i c t l y increasing sequence with 

lim V ft*= lim £ 1 d = crd - Y . 

Let ax be defined by • ft + a • Since 
V(a; - a i + l ) * V(/9i W i- ft?) - 1ft1, {04} 

i s a pseudo-convergent sequence and since V(<ij - a) = V ft , 
a i s a pseudo-limit of this sequence. By Theorem 2.2, the se­
quence {otjl can have no limit i n A , since the Ostrowski value 
defined by {<Xj} i s also defined by the f i n i t e value V . 

On combining Theorem 2.2 and Theorem 2.3 an equivalence i s 
obtained between valuations defined by pseudo-convergent sequences 

with pseudo-limits and the~inductive values of MacLane. 



Theorem 2.4: If ^a^} i s a pseudo-convergent sequence with 

respect to V 0, with no pseudo-limit i n A , then the Ostrowski 

valuation V defined by {a^} is the same as the MacLane limit 

value V1 » f v 0 , V^x--!) » Xi , ... , V^x-a^) = X±t ...] , 

where X± » v©^ ai~ ai+l^ • Also, in a MacLane valuation V* the 

sequence {a-gj i s pseudo-convergent with no limit i n A and the 

Ostrowski value V defined by {o^| is equal to V* • 

Proof: I f necessary remove a f i n i t e number of terms from the 

beginning of the pseudo-convergent sequence {a$\ and renumber 

the a's, so that X± = V 0 ( a i - a i + l ) i s s t r i c t l y increasing. Since 
v o ^ a i * n " ^ i J B * * i f o r a 1 1 n * 1 » V(x-a_.) = lim ^ o ^ i + n ^ i ^ " ^i» 

rr*oo 
Let be defined-by V x = [ v o , V^x-ai) • , then ^ de­
fines a first-stage value of A [x] such that Vj_ < V . Now, from 
MacLane*s inductive argument used i n the introduction, i t follows 
immediately that V1 » [ v 0 , Vjtx-^) = ... , V ^ x - a ^ , . . . J 

i s a MacLane valuation and also satisfies V < V . If there 
exists x - Z 3 s A [x] such that V»(x - p ) < V(x - P ) 
= lim V 0(aj- p ) , then there exists a positive integer N such i-»oo 
that V'(x - P ) < V Q ( a i - p ) for a l l i > N . Therljfore, from 

V»(x- ft) = limfmin/ft, VQ(*± - P)}] it. follows that lim Xi 

< V a i - P ) for i > N . Hence, V 0 ( a i + 1 - p ) = V 0 [ ( a i + 1 - a i ) 
+ {a± - p )] « X± < lim X i , for i > N , "which is a contradic-

i-»oo 
tion. Thefefore V* - V . Suppose now that VT i s a Mac_ane 

valuation* From x - » (x - a^) + (a i - i t follows that 

V-,^ - a i + 1,)' > V±[x - a±) » X±, for otherwise 

Vi[(x - a i + 1 ) - (a ± HXjL+i) ] - V ±(x - a ±) - Y± > V 0 ( a ± - a i + 1 ) 

and so x - a i + i ~ - a i + i ( v i ) » which contradictsthe minimal 
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-condition ( i i ) of definition 1.4 for a key polynomial over V^. 

Therefore Y±(x - a i + 1 ) = Y± and since l±{x - a i + 1 ) < V i + 1 ( x - a i + 1 ) , 

&*i < *i+l f° r a l l i * 1 . Now 
V 0 ( a i - a i + 1 ) » V'[(x - a i + 1 ) - (x - c^)] - Y i ; 

hence fai} i s a pseudo-convergent sequence. If ' ft were a limit 
of {a±\, then lim VQia± - ft ) < » . Let k > i be chosen such 

i"*°° 
that V$(a k

: - ft ) > Y± , then 
V 0 ( a i - ft ) « V 0 [ ( a i - a k) + (a k - ft )] = 

Therefore 
V»(x - ft) = limlmin V (a± - ft )}1 = lim V 0(a. i -ft) = » ; 

but V» i s a f i n i t e value. Hence {a±} has no limit in A .and 
w i l l , therefore, define an Ostrowski valuation which, by f i r s t 
part of theorem 2.4*. must be the same as V* . 
NOTE; If {a^} has a pseudo-limit a e A , then V» may also 
be represented by 

L i-»oo 

The results of this section now provide a connection be­
tween the two methods of valuation A f x ] . 

In sections 4 and 5 i t w i l l be shown how a MacLane valua­
tion of A[x] reduces to a MacLane valuation of R Tx] , that i s , 
the key polynomials and their assigned values w i l l be found for 
the reduced valuation on R fx}, and conversely how to extend 
a value on R fxj to A fx] • The connection between an Ostrowski 
valuation of R Lx] and a MacLane valuation of R Cxi w i l l then 
be clear. 
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3 . The key polynomials defining the restriction of a valuation 
of A fx] to R [x] are intimately related to the key polynomials 
used by MacLane ( [3 ] ) to extend a valuation V 0 on R to a 
valuation W of R (a) , .a; separable extension of R • For 
this reason a description of the methods used by MacLane and the 
essential results w i l l now be given. 

As a particular example,consider the inductive value 
vk " [ vo» v l x Hl#2«P2 e ••• » Vk'Pk18 He] 

of R TxJ and reassign to q>k the value + 0 0 . This defines a 
new, generalized valuation 

V = [ V V1 X = V2*2 • »*2» » V l V l 8 8 hc-1* V < pk = °°] 
of R fx] • The generalized valuation V satisfies a l l the con­
ditions of a valuation except that elements other than 0 are 
assigned the value +«Q .. If a i s a root of (''<pk , the valua­
tion V w i l l define a valuation W on R (a) .\This i s im-
mediately seen upon noticing that 

R (a)»fB5l 

and defining W by Wf(a) = Vf(x) . If the yit for 2 < i < k , 
above are homogeneous in the preceding inductive value V^-^, MacLane 
has shown.; ( [ 3 ] , theorem 5 .3) that this extension W of V 0 i s 
the only extension of V 0 to R (a) • 

To facilitate-the discussion of the remainder of this sec­
tion and i n view of sections 4 and 5 , i t is convenient at this 
point to define the terms projection and effective degree. 
Definition 3.1: Let Vfc " £ v

0 , ̂ x » la^, ... , Vkq>k = \xA be an 

file:///This
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inductive value of R [x] , If 
n n—1 

G(x) » g n(x) 9k + g n - l ( x ) ?k~ + g© ( x) » 

where deg gj^x) < deg 9 k , i s a polynomial i n R [ x i , then the 
projection of VK with respect to G(x) i s a -/2 , written 
proj (V k) • e - /3, where a and ft are the maximum and mini­
mum values respectively of i such that 

VkG(x) « V k[gi(x) 9k ] • 

Definition 3.2: The effective degree of G,(;x) in Uj>ko i s 
a : written D<pG(x) • a • 

Let W be a valuation of R(a) , where W i s an extension 
of V 0 on R and a has minimal polynomial G(x) e R[x]. By the 

i 
isomorphism R(a)c? R[x]/(G(x)) i t i s clear that a generalized 
valuation Vr en Rfx_ may be defined by Vf|x) » Wf(a) . The 
valuation V assigns the value + 0 0 only to the members of the 
ideal (G(x)) • It would seem natural to construct V as MacLane 
does for f i n i t e valuations; that i s , for valuations which assign 
the value +°Q only to 0 . As before, a first-stage value 
V*l - [vo* v l x 8 8 ^lj» wbe1*6 V-l e V x f °° t i s defined; again 
Vi < V . It i s worth noting that proj (Vi) > 0 . For i f 
proj (V^) • 0 then would be only one term i n 

G(x) - anX11 .+ a ^ i x 1 1 " 1 + ... + a 0 

with minimum value, and VG(x) = V^Gix) £ 0 0 • To define a secon-
stage value a monic polynomial f (x) of minimal degree satisfying 
Vf(x) > Vjf(x) is chosen. If f (x) i s not homogeneous in Vj, 
then i t s homogeneous part i s to be chosen. Denote this homogeneous 
part by 9 2 • As was mentioned i n the introduction, 9 2 i s a key 
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^polynomial over • The second stage value V 2 is then defined 

by V 2 • £ V q , V-^ = u^, ^2^2 8 8 ̂ 2]* where p Vq>2 • Now* i f 

G(x) i s a homogeneous key over , then 93 i s chosen as G(x) 

and | i 2
 b 0 ° . That G(x) i s a monic polynomial of minimal degree 

satisfying VG(x) > V ^ x ) w i l l follow from lemmas 3«3 and! 3.4. 

Lemma 3.3: Let V k be a k-th stage inductive value of R T x ] 

satisfying: 

(1) V k f ( x ) < Vf ( x ) for a l l f ( x ) e R [ x l , 

(2) deg f(x) < deg 9 k implies V k f ( x ) - Vf (x) , 

(3) \<?i - V<?± = n i for 1 < i < k . 
If I i s a monic polynomial of minimal degree satisfying 

V k t < V t y , then: V k f (x) < Vf (x) implies ^|f(x) (V k) . 

Proof: Let f(x) have the quotient remainder expression f(x) 

= q^xty + r(x) , where deg r(x) < deg • Then 

V k [ f - qt]*- V [f - #] > minjvf, V[qfl}> min{v kf, \ l q $ \ 

because of (2), the choice of and the assumption (1) for 

q(x) . Hence ty|f(x) (V k) . ' 

Lemma 3.4: Let V k be an inductive value of R[x] • Any poly­

nomial G(x) £ R[x] has an equivalence decomposition 

G(x) ̂  e(x) 9 k ° t j 1 * 2 2 . . . flr (V k) , 

where each ty^ is a homogeneous key over V k , t Q > 0 and 

t£ > G for 1 < i < r , and e(x) is an equivalence unit, 

that i s , D^etx) = 0 ifl V k . This decomposition i s unique ex­

cept for equivalence units. 

Proof: Cf. [3J, theorem 4.2. 
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Now suppose q>2 * s a homogeneous monic polynomial of mini­

ma}, degree satisfying Vi<p2

 < v ?2 w h e n ' Gfx) is a homogeneous 

key over ^ . Since VxG(x) < VG , G(x) ~ h(x) <p2 ̂ v l ^ 

lemma 3.3. But G(x) ̂  G(x) (V!) , and therefore by lemma 3.4 

G(x) - cp2 • Hence i n this case the value V i s given by 

V o [ v 0 , V xx - | i l f VG(x) » «>]. 

If G (x) i s not a homogeneous key over V^, then the second-

stage i s given by 
v 2 8 8 [Vo» v l x B 1̂» v 2?2 " 

where V 2 < V . It is noticed again that proj (V 2) > 0 for 
otherwise VG(x) ^ °° . Also 9 2 |G(X) ^ v l ^ ^ lemma MacLane's 
inductive process is repeated until G(x) does become a homo­
geneous key over some V k or, i f this does not occur, i t i s re­
peated a countable number of steps. In the former case 

v a [vo» v l x e 1*1 • ••• • V k ° »*k» V G ( x > - °°] 

by the preceding argument. Also 9JL|G(X) ( V ^ _ I ) for a l l i 

such that 2 < i < k , and proj > 0 for 1 < i < k . If 

a countable number of steps are required, then 

V = V« - [ v Q , V xx « j i l f ... , V k 9 k = Hk, ...] • 

Certainly, \< V and 9 kJG(x) (v" k - 1) for a l l k £ 2 . Since 

eaeh 9 k i s minimal over , deg 9 k < deg G(X) .. So from 

some point on a l l the keys w i l l have the same degree. In this 

case i t can be shown {[2], lemma 6.3) that the value group of Y f 

i s discrete i f the value group;; of & is discrete; that i s , the 

real numbers used as values for V form an isolated point set. 

If V f (x) < Vf (x) for some f (x) e E M , then V k f (x) < Vf (x) 

for a l l k > 0 by the monotone increasing character of the i n -
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ductive values and so <P k + 1|f(x) (V k) . Therefore V f cf(x) < \ + 1 f ( 
for a l l k > 0 (Cf. the introduction). But sinee the value 
group of V1 i s discrete, 

Vf (x) > lim V k f (x) = oo . 
k-*» 

Therefore only polynomials i n (G(x)) could satisfy 
V<f(x) < Vf(x) but since V(f (x). = » = Vf (x) for ?(x)e (G(x)), 
V m V . 

It i s seen that every discrete V 0 of H may be extended 
to a f i n i t e separable extension R(a) of E by MacLane's induc­
tive process, where the homogeneous keys can be further restricted 
to satisfy the conditions proj (V^) > 0 for i > 0 and 
<P.JJG(X) (V^^) for i 2i 2 , where G(x) is the minimal poly-
of a . In faet, i t i s not d i f f i c u l t to see that these r e s t r i c ­
tions are necessary. 

From the preceding arguments i t follows almost immediately 
that every such sequence of values constructed by these restricted 
keys w i l l give a valuation of R(a) • 

The construction of such a sequence of values' may be accom­
plished i n a systematic manner. Let V^ - £ v o , V^x = a^J be a 
first-stage value such that proj (V 1) > G for G(x) . If V 1_ 1 

has been defined, the next key <f>̂  i s chosen as any one of the 
tyj occurring i n the unique equivalence decomposition of lemma 
3.4. The corresponding value i s chosen so that proj (V i) > 0 

and u-i > Vj[_i«pi • In the sequence of valuations so defined, 
each Vi i s called an i-th approximant to G(x) . MacLane not 

only shows that every such "sequence of values defines a valuation 
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W on R(a) which i s an extension of V Q | but that : 
(1) i f G(x) eventually becomes a homogeneous key over 

unique for 2 < i < k and also, the value jx̂  i s 
unique (f3] , theorem 5.3) . This implies that V 0 

may be extended to R(a) i n only one way ([3l , 
theorem 10.1 ) , 

(2) i f a countable sequence of keys are required, then 
there i s at most a f i n i t e number of different sequences 
that can be constructed. Hence, V 0 on R may be ex­
tended to R(a) i n at most a f i n i t e number of ways 
([3l , theorem 10.1) . 

4* The reduction, or re s t r i c t i o n , of an inductive value W of 
A[xl to Rtx] w i l l f i r s t be found; following theorem 4.7 the 
reduction of a limit value w i l l be found. These results w i l l be 
established by mathematical induction. 
Theorem 4.1: If W •• [*W0, W(x - a) =)f] i s any inductive value 
of Afxl with W0a > Y , then W - W» - [w0, Wfx - Y]. . 

Proof: Let x - ft e A[xl . I f W0(a - Z 3 ) < t, then 
W0(a - ft ) - We ft ; and 

the inductive value V k, then the i-th approximant i s 
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Theorem 4*3: Let W • [W q > W(x - a) - X\ be an inductive 

value of A f x ] with Y > WQa , then V X = [vo> V-jx = W0a] , 

where V Q • WQ on R , is the first-stage of the reduction of 

¥ to R[x] • There exist polynomials f(x) e R fx] such that 

V x f ( x ) < Wf(x) . 

Proof: The value of x i s Wx • min { Yt W 0 a } « WQa . There­

fore Wi = [wQ, Wjx * W0a] i s a first-stage value to ¥ ; 

< W . Hence V - ^ - £ V Q , V-jX - WQa] i s the first-stage of the 

reduction to Rfx] . Let G(x) * fx - a) (x - Z )̂ ... (x - ftt) 

be the minimal polynomial of a i n Rfx} • Since 

W1(x - a) < W(x - a) and \ix < W(x - ±) , 

V 3 G U ) = Ŵ Gfec) < mix) .. 

Theorem 4.3 :shows that for Y > WQa at least one more key 

is necessary to obtain the correct reduction of W to Rfxl . 

Lemma 4.4: Let W = fwp, W(x - a) =Y] be any inductive value 

of A fx] • A polynomial f(x) £ A f x l i s equivalence divisible 

by x - a i n W i f and only i f WQf(a) > Wf (x) . 

Proof: Let f(x) - f n ( x - a ) n + f n _ i ( x - a ) 1 1 " 1 + ... + f 0 

be the expansion of f (x) in powers of x - a ; f^ e A • Since 

Wf (x) « min |wQf± + 1?}, W Qf 0 > Wf(x) ; and because f Q = f(a) , 

the :re_ation WGf(a) > Wf(x) always holds. Suppose 

W0f(a) > Wf(x). Then W [ f (x) - {f_(x - a ) n + ... + f x ( x - a)}] 

- W0f(a) > Wf(x) and, therefore, f(x) ~ f n ( x - a ) n + ... + f^x-a) 

in W ; that i s , x - a|f(x) i n W • Suppose, now, 

f (x) y q(x)(x - a) in W. Then fix) = q(x) (x - a) +.h(x) , 

where Wh(x) > Wf(x) • But, since h 0, the last term in the ex­

pansion of h(x), i s f i t follows that 
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W 0f Q = W oh 0> Wh(x) > Wf(x) ; that i s , WQf(a) > Wf(x) . 

In the results to follow the polynomials... <p̂  and the r e a l 
numbers w i l l he the homogeneous key polynomials and their 

values which are used by MacLane to extend a value V 0 on R 
to a value WQ on R(a) ( £ 3 ) . Since the value W0 on A f 

and therefore on Rfa) , i s given, V 0 w i l l be the r e s t r i c t i o n 
of W0 to R • However, there exist q>i and \i± defining the 
extension of this V 0 to the given W0 on R(a) . 
Theorem 4.5-s Let the polynomials <pj and the numbers u^ be 
the keys and values which define the extension of V0 on R to 
W0 on R(d') . The k&th stage of the reduction of 
W =[wo, W(x - a) to Rfr] is given by 

Vk " [ Vo' V l x " V 2 * 2 " h>> V k = ^ 

provided that x - aL. i n W ± s false for a l l i i n the 
, • 1 

internal 1 <; i < k . 
Proof: By Theorem 4.3 and lemma 4 . 4 this theorem is true 
for k « 1 • Suppose the result i s true up to k - 1 , then 
v k - l = [ Vo» v l x 8 8 KL> ••• > Vl'Pk-l = ^k-l] i s (k-Dst 
stage of the reduced value and V̂ ., f (x) < Wf(x) for a l l 
f(x) e R f x ] . Let f(x) e R,fx_ be any polynomial such that 
deg f(x) < deg <pk . Then V k - 1 f ( x ) = WQf(a) , because i n ex­
tending V;0 on R to W0 on R(a) the value W0f (a) i s 
defined to be Vk_i£(x) when deg f(x) < deg <pk • But, since 
Wf(x) ^ \_jf(x) » WQf(a) > Wf(x) by lemma 4 . 4 , i t i s concluded 
that Wf(x) * V k_if(x) for a l l f(x) e R Tx] such that 
deg f (x) < deg i. Iswever, W9 k = W-^Oa) • p,k > V k _ i 9 i - t 
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since x - a|cpk in W i s false, and <pk may then be chosen the 

next key over V k - 1 with value Vk<pk = | i k (Gf. introduction) . 

Also, the value 
Vk = [ Vo» V l x 8 8 H> ••• » 7 k - l V l - **k-l» Vk B ^k] 

satisfies the relation V kf(x) < Wf(x) for a l l f (x) e R[xl and 
i s , therefore, a k-th stage of the restriction of W to RTx]. 
Lemma 4.6; If are the keys used to extend V 0 on R to 
W0 on R(a) , then there exists an i such that x - &)<Pi 
in W » [w0, W(x - a) =y] . 
Proof: There are two cases to consider: 

(a) W0 is found by an inductive value - then the last 
key is G(x) ., the minimal polynomial for a i n 
Rfx], which i s divisible by x - a and, therefore 
equivalence divisible by x - a in W , 

(b) W is found by a limit value - i f there exists no 
o 

i such that x - ajcp^ in W , then by theorem 4*5 
every 9j_, with value ^ , occurs in the reduction 
of W to R[x] . But this implies the value of 
G(x) i s + op ; while WG(x) < + « J . 

Lemma 4.6 implies the existence of a f i r s t key Vk+1 which 
is equivalence divisible by x - a i n W . By theorem 4.5, 

Vk = [V V l x 5 3 1*11 ••• » Vk " ̂ k] 
i s the k-th stage of the reduction of W to R [x]. There are two 
possibilities for the k-th stage value of <pk+i , either 

Vk+1 < %k + l o r Vk+1 5 8 w^k+l • 
Theorem 4.7: Let W = fwoi W(x-a) = H , with ¥ > WQa , be 
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given on A[x] . Let {Vj.} be the sequence of approximants to 
G(x) , the minimal polynomial of a , defining the extension of 
V 0 on R to ¥ 0 on Ria) . If 9 k + i is the f i r s t key in 
these approximants such that x - a|?k+l(W) , then the reduction 
of W to R[x] i s given by: 

(1) V = [vo, V 1 X » ui , ... , V k9 k = |xk, V9 k + 1 » W9k+1] 
when V k 9 k + 1 < ¥ 9 k + 1' , 

(2) V k « [v0, VjX •» p l f ... , V k9 k = u k] when 

V k + l 88 w¥k+l • 
Proof: As in theorem 4.5, V kf (x) - W0f(a) = Wf<x) for a l l 
f (x) e Rfx] such that deg f(x) < deg 9^^ . Since i n 
(1) Vk9k+-L < w 9 k + ^ , 9 k + i , may be chosen as the next key with 
value W9k+1 ; this gives V < W on R£xl . If V, i n (1) and 
Sfgd i n (2) are both denoted by V 1 , the two results may be given 
by one proof. Suppose the existence of 

zi n 1 
fix) = f n ( x ) 9k+l + f n - l t x ) <Pk+l * ••• + fo* x) 

« f 0 ( x ) - g(x) 9 k + 1, 

where deg f ^ x ) < deg 9 k + 1 and f (x) e R[xl, a monic polynomial 
of minimum degree such that V»f (x) < Wf (x) . Then Vff 0(x) * V f (x) 
If V = V k, this is immediate from the definition of Vf (x) . If 
V» • Vk, then 9k+l i s a key polynomial over Vk since i t defines 
an approximant Vk+i« Suppose V k f Q ( x ) < V kf(x) , then 
V k [ f Q ( x ) - g(x) 9 k + 1] - V kf(x) > V k f D ( x ) and f Q(x)/vg(x) 9 k + 1(V K) 
which contradicts the minimal condition of the key <Pk+i • Now, 
V'gix) » W§(x) because deg g(x) < deg fix) ; therefore 
V»[f(x) s f Q ( x ) ] = VU-gix)) + V'9 k + 1 » Wi-g(x)) + W9k+1 = w [ f i x ) - f 0 l 

That ¥\fe (x) = V'fix) may be seen by assuming V?ftf (x) >.V»f(x) ; 

for then 
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-V'f(x) = V»[f(x) - f0U)] « w[f(x) - f 0(x)] > min{wf(x), WfQ(x)} 

>V«f(x) . 

Now w[f 0(x) - g(x) 9k+l] = Wflx) > V'f(x) » V f f 0 ( x ) » Wf0(x) ; 

hence f 0(x) ~ g(x)<pk+1(W) . Since x - a|q>k+1(W), 
x - a|f0(x-)- (W) . But, since deg f Q ( x ) < deg <pk+1 this con­
tradicts WQf (a) • WfQ(x) ; therefore V 1 - W on R[x] in either 
(1) or (2) . 

On combining theorems 4.2 and 4*7 and lemma 4*4 a picturesque 

description of the reduction can be given i n terms of the size 

of J* . For t h i s purpose consider W * £ w o , W(x - a) = Y~\ 

on Alx] with Y < Wca and examine the reduction to R t x l as 

Y continuously increases. For Y < WQa the reduction i s 

V £ « [ v o , V£x = Y~\ . As Y increases to W_a • the reduc­

tion increases to | \ o l V-jx = Hi] . When Y i s just larger 

than W0a , the key 92 °? the second appro xi mant to G^x) , the 

minimal polynomial of a , is needed. The reduction i s 
V2 B [Vo» V l x B ^1* ̂ 2̂ 2 s **] • A s ^ increases again the value 

V£<p 2 • |A increases to W<p2 • W Q ^ 0 ^ ~ 2̂ a n d ^ e reduction in­

creases to V 2 • [*V0, V^x = J J - I , V292 = M-2^ • this process i s 

continued i t i s seen that as. Y increases the reduction sweeps 

through the approximants to G^x) which describe the extension 

of V 0 to W0 on R(a) . The only difference between the re­

duction and the corresponding approximant defined by the same keys 

is that the value assigned to the last key in the reduction may be 

less than i t s value in the approximant. But as Y i s increased 

this value w i l l increase to the corresponding approximant value 

i f the last key i s not G(x) • For then J* would have to increase to» 
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It w i l l now be shown what this reduction is when W i s a 
limit value. In the remainder of this section ¥ i s defined by 

S 

W = [ w Q , W x ( x - aj) = Yl9 ... , ¥ i(x - a ± ) m Y±, , 
where the pseudo-convergent seauence |af| has no pseudo-limit i n 
A . It should be noticed that 

Wi » [ w 0 > w i ( x - ca) - *Y, . . . , w ± ( x - ai) = ̂ i ] 

can also be represented by ¥^ = [w0, W ^ ( x - a^) » ^ i ] . For, to 
find W ^ f (x) , f (x) i s expanded i n powers of x - and the 
coefficients are valued with W ^ ^ . But the coefficients are in 
A and are therefore actually valued by W Q . 

Lemma The value W ± - ¥ { + 1 - [ w 0 , Ŵ +j-tx -
on A[x] . 

Proof: Let x - ft e A _xl . I f ¥ 0 (ai - ft ) < Y± then 
V a _ + i - ft) w o [ ( a i + i - a i ) + (*i -ft)] - w o ( a i - ft 

¥£ + 1(x - P) = min/^ , W 0 ( a i + 1 m i n f ^ , - f t )} 

= ¥i(x-/?) . If ¥ 0(ai - ft ) > ^ , then 
w 6 ^ a i + l - Z 3 ) > min f ^ , ¥ 0 ( a i - ft )} - ^ and 
w i + l ( x - ft ) W±(x - ft ) . 

Lemma 4.9: For each x - ft e Atxl there exists a positive i n ­
teger N - such that ¥(x - ft) = W^ (x - ft ) for a l l I > N . 
Proof: If no such N exists, then ¥(x - ft ) > yj±(x - ft ) for 
a l l i > 0 since ¥ A < ¥ i + 1 . Now ¥ 0 ( a i + 1 - ft ) > W ^ f x - ft) 

for otherwise from x - ft = (x - ai+i) + (ai+i - /* ) i t follows 
that y i

i - ¥ i(x - a i + 1 ) > w
0 ( a i + 1 - ft ) ; and therefore 

i+1 > w o ( a i + l - Z3 ) • Hence, ¥(x - ft ) - ¥ 0 ( a i + 1 - /3 ) 

= ¥ i + 1 ( x ) , which contradicts ¥(x - ft ) > ¥ i(x - ft ) for 

a l l i > 0 . Since ¥ 0(a i + 1-/S)>¥ i(x-/3)»¥ i(x-a i+ 1) = Y±i therefore 
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^ W Q(a i + 1 - /3 ). W 0[(a i + 1 - a 1 + 2 ) + ( a i + 2 - / * ) ] = ^ i + i 
for a l l i > 0 . But this implies ft i s a psreudo-limit of 

M. 
Theorem 4.10: The k(i) keys occurring i n the reduction 
of Wj • [w#f'W|(x - ) on A[x] to R [ x l are the 
f i r s t k(i) keys i n the reduction of 

W = [w0, Wx(x - a x) - ̂  , ... , Wi(x - c ^ ) • - • ] 

on ATxl to R [x3 Also, the values u w , for 1 < v < k ( i ) , 
i n the reduction of are the f i r s t k(i) - 1 values, for 
the keys i n the reduction of W • 
Proof: By lemma 4.9, -for any given f(x) e R [x] there exists 
an N . such that Wf (x) - Wjf (x) f o r a l l i > N . If V k ( i ) i s 
the reduction of Wj, then V k f i ) f(x) = Wf(x) for a l l i i i , 
Hence, the sequence of values fV^)} o n R txl gives every poly­
nomial i n R£x] the correct W value. It is. only necessary then 
to show that the k(i) keys in the reduction of are the f i r s t 
k(i) keys i n the reduction of Ŵ +, and that the values, with 
the possible exception of. Pk(i) » are the same. By lemma 4.3, Wj_ 
and W i + 1=[W G, W i + 1(x- a i + 1 ) » define the same valuation 
of A [ x j • Hence, they w i l l have the same reduction on R [x*] 
and, because the keys i n the reductions are homogeneous, each 
reduction w i l l be identical with respect to keys and values ([2], 
theorem 16.4) . As the value of x - <*i+i i s increased from 
to the valuet l* k(i) might increase and the keys, i f any, 
appearing i n Vjj.^^) but not i n V^d). are used to augment 
v k ( i ) t 0 vk(i+l) * These are the only changes that can happen; 
and at least one of these changes must happen. The truth of 

this follows from the discussion immediately after theorem 4.7 
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and the fact that the minimal polynomial of 0^+1 definitely 
increases as the value of x - ai+i increases. 
Theorem 4.11: The reduction of a limit value W on Arx7 to 
R[x], as described i n theorem 4*10, is a limit value. 
Proof: Suppose the reduction is an inductive value 
V k * [ y o , V^x = Hi, ... , Vkq>k • |j,k] . By lemma 4 . 9 there exists 
a smallest i such that Ŵ q>k «= W<pk = n k • The reduction of 
Wj_ to R[x3 must be V k since, this is the f i r s t stage i n which 
cpk assumes the value nk and < W . But for G(x) , the 
minimal polynomial of i n RDcl, VkG(x) » W^tx) < W i + iG(x) 

< WG(x) • Since by assumption V k = W , this contradiction es­
tablishes the theorem. 

5. In section 4 the connection between a value W of A£x] and 
i t s reduction to R£x] was established. The converse problem 
w i l l now be solved; that i s , given a value V of Rcxl , to find 
an extension of V to Atx3. First, however, i t w i l l be shown 
that a value W on A Cxi may be written in a standard form. 

In the following theorem the. notation 
V a[ Vo» v l x 8 8 »*_'• ••• » V k " ] 

i s to mean that a least the keys up to q>k occur in the rep­
resentation of V ; however, V may be an inductive value with 
keys past <pk , or 7 may even be a limit value. This notation 
w i l l also be used for 

w = [w0, wxx * u i , ...̂ ,-wk(x , ak\ =.jrk, » 
Lemma 5.1; If a value W» of ATxl reduces to 

V_« | V 0 , Vix = | i l t ... , V k 9 k = u- k, ] 

on R£x], then V may be extended to 
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W = [w0, W-jx - [ i l t W2(x - a2) 8 8 Y2, ••• i w k ^ x " ak^ * *k» j 
on A [x] where: 

(1) <Pi (a±) = 0 for i = 1, 2t ... , k , 

(2) Y± = W'(x - ai) for i * 1, 2, ... , k , 

(3) Wg/3 = ¥'/3 for a l l ft e A , 

(4) Wf(x) > Wf(x) for a l l f(x) e A[x] . 

Further, the reduction of W± • [wOJ W^(x - a^) • ^i~\ 

i s Vi - f v 0 , Vix • (i i , ... , Vi<pi = for i = 1, 2, ... , k . 

Proof: Let W0 on A be defined by W0 ft - W» ft for 

/3 e A and W]_ defined by Wĵ  • £w0, Wj_x = u^] . The reduc­
tion of W, i s certainly = |Tvo, V-jx • u-jj • Let 

f(x) = ZTa^ 1 , f(x) e A[xl, 
i 

then W'f(x) > min {w^ + iW'x}* Wxf(x) . The value Wx 

satisfies (2), (3), (4) and also (1) since 9 1 • x and ct̂  = 0 . 

Assume theorem true up to W k-2.* Then Wk_i reduces to V k _ i 

and W f 9 k > V k _ ^ 9 k = W k - 1 9 k . For a key to augment Wk-1 l e t 

a factor x - a k of 9 k be chosen so that W1 (x-a k) > W k_i(x-a k) 

(Gf. introduction) and W(x - a k) £ W» (x - ft) for any factor 

x - ft of 9 k such that W' (x - ft ) > W^U - ft ) . Now define 

Wk by Wk » [wk-1, Wk(x - a k) = Y k = W1 (x - a k ) ] . For x -ft , 
any factor of 9 k , 

Wk(x - ft) - min{Yk, W 0(a k - ft )) , and 

W'(x - ft) > min{y k, W 0(a k - ft )} . 

The inequality cannot hold; for, then, 

W(x - ft ) > Yk - Wk(x - a k) > Wk(x - ft ) > \ ^ ( x - ft ) , 
which contradicts the choice of x - a k . Therefore 

W» (x - /3) m wk(x - ft) for a l l factors of ^ ; so 

l T 9 k = W k 9 k . Since 9k(<*k) • 0 , certainly x - a k | 9 k i n Wk . 
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Jhis means the redaction w i l l use only keys y± for i < k . 

But Wk9k = Wfcpk = pk > Wk-l9k ,hence the reduction of 

must be . 

Theorem 5.2: If a value W» = [ w o , W» (x - ft) = s] on ACxl 
reduces to V k • £ v o , V^x • M-I» ••• » vk^k ** ̂ k"] o n R C x l , 
then there exists an a , such that <pfc(a) - 0 , and a Y so 
that W* = W - [ w 0 , W(x - a) «Y] . Also Y = 8 . 
Proof: Let V k be extended to W on A[xV as in theorem 5*1} 
where a » a k , then W < Wf . If there exists an x - © e A[x] 
such that W(x - 9) < W»(x - Q) , then for G(x) e R[x] , where 
G (©) = 0, i t follows that 

VkG(x) = WG(x) < ¥»G(x) = VkG(x)=; hence, W = W . 

Also, since Y • W(x -<x)=W f(x-a)<8 and 

5 = W»(x - ft ) - W(x - ft) <Y, 
then Y " 8 . 

Theorem 5.3: Let W« = [ w o , W^x - ft\) = S i , ... , W*(x-/^-Sj,. 
be a value on A £x] which reduces to 

v s [vo» v l x a ^1* ••• » V k 8 8 ̂ k> •••) o n R t x l > 
then W* may be represented by 

W = £Wq, Wjx = W2(x - a 2) « Y 2 , ... , Wk(x - a k) • Yk .. 
where: 

(1) 9 k(a k) = 0 f or a l l k > 1 , 

(2) reduction of Wk to R fx] is Vfc , 

Proof: The proof i s similar to that for theorem 5.2. 

From theroems 5.2 and 5.3 i t i s seen that every valuation of 

A fx} may be put into a form such that each a k i s a root of the 
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-corresponding key cp̂  appearing i n the reduction of the valua­
tion to R [ x ] • This information indicates how a valuation 
V of Rtx] may be extended to some valuation of A fx] . It 
wi l l now be shown how this extension can be accomplished. 
Lemma 5.4: Let a be a root of some polynomial 9 e Atx] , 
then a valuation W • Jw o , W(x - a) • If] can be defined on 
A[x_ such that 9 has a prescribed value M> • The value J* 
i s uniquely determined* 

n n—1 Proof: Let 9 = ft n ( x - a) + ft - a) + ... + ft^ix - a) , 

where ft± B k t then W9 = min | W0 ft ±+ i^}« Let the numbers Y± 

be defined by WQfti + lY^ • jx for i = 1 , 2 , . . . . t m and 
defined by Y - max JTi . For this value of Jf, 

i 
WQ / ?

i + i J* > jx for i • 1 , 2 , ... , n and the equality holds 
for at least one value of i • Suppose there were two values Y 

and T , with Y > J*' > with the desired property. Since 
9(a) = G , there exists an i ^ 0 such that 

I* - Wo ^ 1 + i y > WoA + 1 **' • 
So W defined by Y 1 would give 9 a value W9 < \i . There­
fore the value W(x - a) i s unique. 

Lemma 5.5: In an inductive value 
Vk = [ Vo» V l x 1 3 "1> ••• » V l ^ k - l " *k-tfk*k - »k\ o f R W 

the for 1 < i < k are the complete, and only, set of ap­
proximant s to 9 k • 

Proof: This follows immediately from [3] , theorem 5.3 (Cf • end 
of §3 ) i f V is defined by 

V 88 fVo» V l x s — » v k - l * k - l = h c - l ^ k s 



.Theorem 5.6: Let WQ on A be an extension of V Q on R , 
then V k * [v0, V^x = Hi, • •• » Vfc9k * o n R C x l may be 

extended to W * £w0, W(x - a) on A[ X] , where 9k(<*) = 0* 
Proof: By lemma 5.4 the value W(x - a) = Y i s uniquely deter­
mined from Wcpk = Hk • Now, W defined by this reduces to 

y/ = f vo» v i x - ^i» » s *tr-i» * v ] > 
where J < k , by theorem 4.7 since 9 k(a). ? 0 • But lAtyk = Hk 
and, so, V̂ 1 9 k = M„ 88 ^k^k • This implies yf • k and v » Hk • 
That i s , the reduction of W is \ar W i s the extension of Vk • 

Since theorem 5.2 elaims every valuation W may be defined 
by some a where 9k (a) • 0 , i t i s seen that for a given W0 

the maximum number of extensions of V k on R Tx] to W on A Cxi 
i s the degree of <pk 5 and, every extension may be found by the 
method of theorem 5.6 • 

Theorem 5.7: Let WQ on A be an extension of V Q on R and 
let V •"£-V0, Vpc * H I , ... , Vk9k 88 H-k» •••] be a limit value 
of Rrx] . The value V may be extended to the MacLane value 

W = ptf0, Wjx = HI, ¥ 2(x - a 2) = Y2> ••• » w k ^ x " ak^ = *̂k» ••• 
on ACx] where: 

(1) ^(c^) = 0 for i = 1, 2, ... , 
(2) i s uniquely determined by the factor x - a i 

and the value Hi of 9i , 
(3) P^(x - a±) =» 1 in x - a u l for a l l i > 1 

(Cf. definition 3.2) , 
(4) Wi reduces to Vi on R[x] for i - 1, 2, ... . 

Proof: It w i l l be possible to formally construct the sequence of 
values {Wi} i f i t can be. shown that there always exists a factor 
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of 9̂  satisfying (3) . The construction of with this 
factor maybe accomplished by the method of theorem 5.6. How-
ever, i t w i l l be necessary to show1 that W defined by this 
sequence of values is actually a MacLane value. In order to prove 
that property (3) may be satisfied i t w i l l be shown that, given a 
value WK which satisfies (1), (2), and (4) a value W k + i can 
be defined over WK also satisfying ( l ) , (2) and (4) and such 
that Dq,(x - a k + i ) =1 i n x - a k • Then, since satisfies 
(1), (2) and (4) i t follows by induction that property (3) can 

• be satisfied for a l l i > 1 . L e t WK satisfy (1), (2) and (4) 
and let W£ be defined by WFC = [W Q , WJ(x - a k) - tf] with 
Y < yk but such that Vk-1<pk < W q̂>k * y, < n k . Then as 
y "* » M- "* l̂ k • Therefore, i f <pk+i i s expanded i n powers 
of <pk , as ¥-*- &*k the value of 9 k + i must continuously i n ­
crease, since proj V k > 0 with respect to <Pk+l* So, i f 9k+l 
i s expanded i n powers of x - a k , the value of <pk+i must also con­
tinuously increase as Y "*Tk • This could only happen i f 
l ^ k + l 2: 1 i n x - a k . Hence, there exists a factor x - a k + 1 

°^ 9k+l s u c n *hat D^(x - a k + ^ ) • 1 i n x - a k . Now W k + i 
may be defined by W K + 1 = [ w k > W k + i ( x - <*k+1) * ^k+l] where W K +^ 

satisfies O D , (2), (3) and (4) . It only remains to show that 
W defined by this sequence of values is a MacLane value. Since 
D 9(x - a k + 1 ) =1 i n x - a k , Y k - ¥ k(x - a k) = W k(x - a k + 1 ) 

< W 0 ( a k - a k +^) ; 

that i s , J* k < W Q(a k " ak+l^ • ^et wk+l D e defined by 
wk+l - [ wo» w k f l ( x - a k + 1 ) = yk] , 

then WK = W K + 1 ; for, let x - ft e ACx] , then 
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W k( x - ft ) = min { Ykf W 0[a k - ft)] and 
w k + l > " ft > - m i n { Y k , W 0(a k + 1 - ) } but 

V< ak +1 " ft ) ̂  min { w 0 ( a k + 1 - a k ) , W Q(a k - /3 )} > min { f k , W0(ak-/3)] 

Therefore Ŵ  and w
k + ^ have the same reduction on Rrx] • 

Hence, > i n order that W k +i reduce to V k +^ . Let 
Let <pk have the expansion 

<pk * f
n ^ x " a k ^ n + f n - l ^ x ~ ak^ n"" 1 + ••• + f^(x - a k) ,then 

W ' m * n o { V i + 1 *\} a n d  

w k + i * k * j V i + i W k + i ( x - a k } l • 

Let i , which cannot be zero, be chosen such that a minimum term 
i s actually obtained in the second inequality; then 

Wf + i i * > W © • W <D > W f +iW (Y . a ) -0*1 1 'k - V k k+l 9k ~ o 1! 1 k + l v x °V * 
Therefore, since 1 ^ 0 , fk > Wk+1<x;:- a k) . Now, 

w o ( a k " ak+l J - B i n / w k + l ( x " ak+l>> w k + l ( x - ak>} » b u t 

W k + 1(x - a k + 1 ) = y k+l > **k £ w k + l ( x ~ ak>> a n d> s o » 
w o K - ak+l> • w k + l ( x " ak> ̂  **k • 

But i t i s known from above that W0(ak - otk+i) £ ^ . Therefore 
W Q(a k - a k + i ) • Y k and since $k+i > Yk for a l l k t 1 the 
sequence {ai} i s pseudo-convergent. The sequence has no pseudo-
limit since W reduces to a limit value; otherwise V would be 
an inductive value ({2} , theorem 16.4) • There can be no limit 
for the sequence {aj.} i n A since V is a f i n i t e value; alter­
natively, every limit of pseudo-convergent sequence i s a pseudo-
li m i t . Therefore, W i s a MacLane valuation of A [x] satisfying 
properties (1), (2), (3) and 



Because of theorem 5»3 and since for every limit value 
W of Afx], D<p(x - a-k+i) = 1 i n x - a k , every extension 
of a limit value V of R[xl to A Cxi may be found as i n 
Theorem 5.7. 
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