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ABSTRACT

The solutions of the radial part of the Schrddinger
equation for the hydrogen atom, which may be written (in

atomic units) as

{_;_2_ d_f2§_+:!l£_ﬂ_)-.2.}\I[(r)=E\I/(r) |

r- dr dr r? r
are well known in the standard case when the boundary conditions
reqﬁire that the wave function should vanish for infinite r .
The eigenfﬁnctions in this case are expressible in terms of

Laguerre polynomials and the eigenvalues of the energy are

En‘_——.l_é (n=l,2..-)
n .

The problem of determining the eigenvalues when the boundary
‘conditions require that ' should vanish for a finite r , say
ry, is not as amenable to solution, and it is only recently that
several methods have been suggeéted for dealing with this case.

The method to be discussed here is due to Michels, de Boér, and
Bijl. De Boer, considering the ground state alome, succeeds through
the use of a perturbation method in finding the change in the eigen-
values for different‘ Yoo In so doing, he makes an approximation,
which a priori is noﬁ Justified. In the present thesis, it is
shown both qualitatively and quantitatively that the approximation
is justified for the values of r, used. The logical extension

of the mephod to states othér than the grdund state is made for

two particular cases, and from the results of these two investiga-
tions; conclusions are drawn regarding the general applicability

of de.Boer’s method.



INTRODUCTION

One of the most interesting facets of Quantum Nbehanics to
a mathematician is the set of methods developed therein for find-
ing approximate solutions to differential equations, the exact
solutions of which cannot be found. These "perturbation" methods
have had to be developed by the physicist since the number of pro-
biems for which the corresponding Schrddinger equetion is capable
of exact solution is relatively small. The standayd;problems in
the last mentioned class lead to a study of the Legendre, Hermite,
Laguerre, and Bessel functions -- and as these names indicate, the
required mathematics was developed long before the advent oijuan-
tum Mechanics. But for many other problems (for example, the pro-
blem of determining the interaction between an atom and a radia-
tion field) a new mthematicsl technique has to be developed. The
usual approach for many of these perturbed eigenvalue problems is

the lelowing'[}, pp. 149 et. squ_

The Schrodinger equation for the stationary state is HVYV = WV

where
2
= -4 ?
It is assumed that H may be written as the sum of two parts

for one of which, say H the solution of the Schrddinger equa-

0

tion is known. Let the other part, H' , be small enough to be

regarded as a perturbation on H, . Let the eigenfunctions and
(] ?



eigenvalues to Hy, be wu, and Ej, respectively. That is,

H=Ho + H' and Hgu, = Eju.. Y and W are then expanded

in power series in terms of a parameter A as follows:

WV TV5 + A\Vi + leyé + e

. < 2
W Wo + Awl + A w2 + e

Substituting these values into the wave equation,

(Hy + AED (W + AW + ooe) = (W« ap + o) (O + A + .
where H' has beenreplaced by xﬁ' ; where A will finally be
replaced by- 1 . Equating coefficiénts of equal powers of A on
each side of this equation leads to a sy stem of equations giving
successively higher orders of the perturbation.

HoWo = Wo Wo
HoWi + H' W, = WY1 + W1 W
HoWo + H' Wy = WoWo + Wi Wy + Wy ete.

From the first of these, it follows that "\f, is one of the

u,'s. Solving the second of this series of equations with

replaced by up, will give the first order solution. The solu-

m
tions to higher order in H' are found from the succeeding equa-

tions.

The above perturbation method has proved satisfactory es-
pecially since the perturbing terms (i.e., the interaction terms)
are, in practice, very small. Buﬁ there is another class of bro-
blems for which this direct method does not work. In this latter
type of problem, the perturbation due to a confinement of the quan-
tum mechanical system is to be found. The resulting changes in

the eigenvalues would appear as shifts in the spectral lines of
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atoms under pressure or in a crystal and the resulting changes
in the eigenfunctions might show up, for example, in the rate

of radioactivity of an atom under pressure.

Mathematically, these problems . can be formulated in the
following way: find the eigenfunctions and eigenvalues of
HWY=EY where \ must vanish at the ends of an interval,
the interval being smaller than the usual range of the indepen-
dent variable. For example, for the problem discussed in the
body of the thesis, the solution of Laguerre's eqﬁétidn which

vanishes at O and r,, where r, <o | is required.

It is possible that thié 1atter,perturbation.problem can be
reduced to one of the first type mentioned but so far this idea
has not been completely worked out. Meanwhile, however, several
other attempts have been mde to solve bouﬁded eigenvalue pro-
blems. The best known of these, and the nbsf general, is the
graphical method of Sommerfield [4}, it is limited in its ac-
curaéy and moreover gives no information about the eigenfunctions.
A second methéd, which will be discussed below is due to Michels,
de Boer, and Bijl [2]. A third method, due to Auluck and Kothari

[l], makes use of asymptotic series.



1. THE GROUND- STATE

(=]

1.1. An Outline of the De Boer Method

The Schr8dirnger ecuation for a hydrogen atom, in terms of

spherical polar coordinates, is

12,29 4 a Ze*u = H
-2 £ M- == M = AL (1
e;u[apa YRR ] 7 )
~ - P) )
where N = sin6 o s © 6 + $in?0 Jo¢?

b is the reduced mass and H is the energy in ergs.
By a separation of variables, the radial part of the wave

equation for ]YXP)

2 -2 IZ
{/‘/)zd/, /0,/0 50+ *"’Zﬁ‘:/gf }\If({») =HWe (2

is obtained. This is the only equation that need by used here,

since the new boundarylcondition of this problem can involve a
change only in the radial part of the wave function. Equétion
(2) may be written in dimensionless form by introducing two di-
mensionless variables r and E with r = ap, E = H/Ho where
a = gﬁ;ﬁ , Hg = 2ia2
This substitution leads to the equation

1 d ,2d zwm 2 W =
{rw e A LA L )

The method of solutlon given by de Boer [2] will now be outlined.

To solve equation (3), Sommerfeld's polynomial method

is used. Let.

——

V=L e fon. , a=TE )



and then (3) gives the equation

{d%_;_i_!%ﬂg.ﬂ +2}fm=0 (5)

for determining the polynomial f£(r) . Writing f(r) = :Ecsrs
leads to the recursion formula

cs {sCs-0 - (o0} = ¢, {27 -2} (6)
The smallest value of s that occurs must therefore satisfy
s(s - 1) =f(P+1); i.e., either s =-f or s =,f + 1,
From the first bourdary condition, that % f{r) must be finite
at r =0, the value s =,£-+]. must be chosen. In the un-
bounded problem, the secbnd‘bbundary condition is that the wave
Function should vanish for infinite r and this is satisfied
if the power series terminates. It follows from (6) that if the
series is to terminate, then the highest power n of r that l

occurs must satisfy

g!_l... = 0
a
i.e. n=a (7)

Thus the eigenvalues of E , by (4), are

)
E=-1/n? (8)
However, the second boundary condition in the problem considered
here is that the wave function shall vanish at a finite r equal,
say, to ro. This condition is that
x

flry) = é%i bgr,® = 0 (9)

De Boer now proceeds to treat the ground state (.e= O, n=1)
only, by taking for the unperturbed case a =1, E = -1 ; and

for the perturbed case, letting



= - L - | ’
Loitp E = (1+p)? I+ep (10)

Substituting these values into (6) gives {

bs s(s-1) = bs-y 25;—5{;—L

which, neglecting I against 1 , leads to

_=2"p (11)
b, = ) bs = (-1 S!

The wave function can then be written as
R oo
Ve = e ™F [1-p Sk} (12)
. 2
with by = -ﬁbé_ .
Then from (9) the value of B can be obtained as
|

e
S b
where bé is independent of /g o

A set of valuesof A E ~2{3 are given:

P K. AR xi10® AEimev]|
sag | 5 345 .0927
baq 6 727 .0196 .
7a, 7 .1383 .00375
8a, 8 .0257 . 00069
,ﬁ2
= ;;52 is the radius of the first Bohr orbit.

This completes the resume of [2].

1.2 Uniform Convergence of the Series

Upon study of this paper, the question arises whether the
approximtion used in arriving at the expression (11) for the
coefficients bs is valid. This approximation tacitly assumes
that for s large, the contrif;ﬁtion of the sth term is so small



that the error introduced by replacing (1 + ﬁ )S-l by 1 is
negligible. This assumption will now be justified, firstly,
by a qualitative approach which will lead ﬁo the conclusion
that for /9 "small enough“ the approximation can indeed be
made; secondly, by a more quantitative approach whereby an ac-
tual range for the true value of ﬁ will be obtained and an
upper bound for the error introduced by the approximation cal-

culated.

Let the exact series corresponding to the approximte series
Sy

appearing in (12) be denoted by Z P. rs! where &
_ o e @G3-@ - - @)
Ps - SU(s=01 Gy g)s!
Then

= (s-2-p)(5=3-R) - - = ~(AXa) 20 \°
:E‘P s :EE s!(::)' (i+ﬁ-)

.2 Ci- ﬁ (z-p)U~- R) 2r )
ﬂ‘}'/' H-/; LIETF: (|+/3 ) TEY TV A

To indicate the dependence of the series inside the bracket

on ﬂ , call it S(/g) . The corresponding approximate series is
2‘ _
So) = + T (E’r) + a7 (Zr) +__

If it can now be shown that S(f) converges uniformly with res-
pect to B , then the qualitative conclusion will follow, since
S(g) being uniformly convergent means that

\S,,(f?)—SN(ﬁ)l Z € for all n > fixed N(e),
where N is independent of @ . Thus N can be chosen so
that the remainder of the S(#) series is as small as is desired
for all FC and may therefore be neglected in the calcula-

tions. This leaves a finite number of terms in the S(8) series,



¢ach of which approaches the corresponding term in S$(0) as
2 > O . Therefore, for [ small enough, the sum: of the
first N terms of S(B) will be élose'enough to the sum of
the first N terms of 5(0) to justify using S(0) in the

computations.

S Qﬁ) converges uniformly by the Weierstrass M test,

since if 2r <M and 0 < A4 <1, then

(s-2-p)5-3-4)-- (l-,@)( 2r )H< M
s!(s-n! I+ (s-n s

pe-L
The series whose sth term is -———/—
(s-1)s!

of positive terms; hence SQﬁ) converges uniformly. This

is a convergent serie

completes the qual itative argument.

1.3 An'Uppgr Bound for the Error due to de Boer's Approximtio

S

n

In order to obtain the range in which the true value of
F lies and an upper bound to the error involved in using the
approximtion for the different values of r , consider first

of all bounds for the expression

' S (s-2-p)(5-3-g)---- (1-p)-8) ,s-t s
r+ s§~2 SiGs-0!+p)*! 2 r (14)

which is the exact expression for f(r) corresponding to

de Boer's value ‘obtainable from (11).

Now
< o5l rt S 27'F°

M2 r+ 22 = - 2505 (15)
5=2 S.‘ (5 ') =2

Note that the right hand side of (15) is de Boer's f(r).



<

| & (s-2-3)(s-3-4) --- (- LIA) 5 s
Also r +§ st(s-NYa+p)*! r

p (- 800~ <55) @)
=r- H—p - +§ st(s-nQ+p)s"! e

= o5 (1-p)" % (-p8) s
<v +s§=a st(s-nN(+p) " r

25" (-p)-p)-p)
ST (s-0(+a)°" r

+
M

=r-p é 5,';;_‘) {2 ";/’ }"4'

(16)
Combining (15) and (16):
-1 's
“FE St (s- 0)
< (s-2- £I(s-3- [s‘)"-‘("-[s)(—[z) s
S £ "si(s- o)'(np)
pS s-1
é -—
fg S.'(S I)L '*/3} (17)
From ert 1 +rt + h;’) + +.. it follows that '
rt
hinaid t S e _"t -1
- =1 r =~
f 52 3 f? t?
(18)
and then “ ts"rs_ vIt et _ ru -1 ]
-P 2 st =), VL v (19)

It is easily verified that the ' integral is convergent at the

lower limit. Putting j € ;:U = dU = F(t) s
(>



and noting that

N
J’\T
e

'2 (l—[é‘)(l—p +/32__-_)

:2(1—2p+2p ~-) >2(l 2/3)

so Flef ) >F (2-4p)
(17) may then be writtenb‘ ,
~p F@) < Exact Series < —pF@i75) <- g Fle-up)  (20)

Rewriting,

Y
[ﬂ
"'(3[ e dU < Exacf Series ﬁj—;rudu (21)

Therefore, the maximum percentage error that can arise will be
2

| ru
e -ru -1
- du

v _Li = X100 (22)
j Uzu dU

(o]

Thus, if an upper bound can be found for this expressio‘n', it
will certainly also be an upper bound for the actual percentage
error that occurs. To this end, it will be necessary to get ap-

proximtions to the area umder the curve

e ry-i
y= NE

It will be shown first that this curve is always concave upwards

for w20,



is always positive since the

dy vi{rert—r¥-{e"™-ru-i2u
du TR
e {ru-2}+ru+2
= =
dy _ e'{r2v®-4ru+6}-2ru-6
dv® Tk
oo 2 -~ _
____2 N 'ac"n + 6 pryn
n=H n
. 2—§n+6
and, for n > 4 , ol
two roots of n? - 5n + 6 occur at n =

fore, the second derivative being always positive for

2 and n

3

tive, y(u) will be concave upwards.
:ew_"‘u_‘ N 22}

J A u? T() Y

{

/1

)

\l

of N

| |

_ |B‘ '

AN\

AN \}

| NN

"\

A | N
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An upper bound for (22) can now be obtained in the following
manner. The denominator of (22) which is the area under y(u)
from u =0 to u=2 may be decreased by taking instead the
shaded area shown in Figure 1. By elementary analytic geometry,

the equations of the lires through SA,'AB, and BT are

y=fv+s (24)

y = fer(r-2)+r +2Ju + e"(3-r) -2r -3 (25)
2 (p - 2 (3-2r) - t4r-

7:9 (r‘+|)+r+|u+e (3 L*r') r-3 (26)

respectively, The u coordinate of A , the point of inter-

section of (24) and (25) is

2
_e'(3-r)-2r-3-%

Ua = _(:_’_ {er(r-2)+r+2} (27)

The v coordimate of B

(26) is

, the point of intersection of (25) and

e“lzr—3)+l+eﬁé—r)~4r—9
e (r-1) -Met(r-2) -3r-1 (28)

Ug =
Thus the shaded area of Figure 1 can be written

Lu,\{?rau+%’}du +Lu°{[e'(r*2)+"+2]“ + e"(3—r)—2r—3}du

2 ar _ 2y _ _ B
+J {e (r-D+r +1 U 4+ (3-2r)-4r 3}4\; (29)

s D m

, which is the area urmder y(u) from

The numerator of (22)
u=2 - hﬁ to u = 2 may be increased by taking instead the
area of_theht%apezoid whose vertices are R, T, (2, 0), and
(2 - ks, O). This area is
ezr—Zr ~ er(z—u(s)_ F(2- ) - |
2 T 5
e-4p)

(30)



10.

[

Thus the value of gg x 100 % will be an upper bound for

the error. A table of these values is given.

~—

Ty Zerror <
5 7.8

6 2.36
7 7

8 .136

It may be concluded that for r, larger than 6 , de Boer's
method gives-quite accurate results for the change in the eigen-

values. Note that in expression (30), which is used in calcula-

ting an upper bound for the error in ﬁ , F itself appéars.‘
That this fact does not seriously prejudicé the calculations
will be brought out more clearly in the following discussion,

wherein a range for the true value of g will be found.

1.4 Determination of the Range for 2B .
) T

Solving

< (5-2—/9)(5-3*/3)—“‘.(l‘ﬂ)(‘fs‘) s=1_ s :
5*2_2 Tsis-0V G+ T ¢ k=0 (31)

which is the exact f(r) set equal to O for r =r,, for s
would give the true value of A That is, one would like

to solve

r? qn(é-e-ﬂx%-?—ﬁWQ- -3 s s :
/3{1+F + Z st(s-ol (v@*" 2k }= s (32)

Let the term inside the brackets in (32) be denoted by > .

s-1

) : ~> ';S
Now, what de Boer does is to replace :E by ZE-%ngjy'
$=2

which is = > " (see (15) ). Therefore, the value fa



41.

that he arrives at for ﬂ is actually smaller than the
true one., De Boer S ﬁq will be used as the lower limit of
the range for' ﬁ .

To obtain a value of g3 larger than the true one, replace

> by
s-1

Z =§; s!:ss-n) {2 ::—'7! } | (33)

which is < > (from(16) ) . But in solving for @ from

g = r, /3 , de Boer's fa has to be inserted in 2 and it
might be that although 3 (f) <= , 2(fl) is mot <>
since Fq is amaller than the true value. It will next be

shown that this difficulty can be avoided.
ojo
(s-2-p)(5-3-p)--- (4-8) _s5-i ;}
ﬁE [3{1+[s + SZ | 's!(s-c)!(wf;)‘-' SN C

s [ ap u--g)z tu-A-82'gs

2.3 _"" 3 L 4 2 L] 5
-3 {|+ﬂ«r2+2t:,+(l @)2'5+(I‘/9¢)2 to +_}

>P (l"'ﬁ)z ,I—rﬁ‘ Q 32 q,—3 ('+ﬂ) 51 q (l+f;°')z
. ‘_ .%- {- fFa .
since i > |+'/9¢ for s » 4 if F

is small,

/32 > ﬂ (I+(3)2
where @ is the series involving ﬁq in the brackets above.

Now, from (3-“—%)—5 0C =t , it can be seen that the value

of p obtained is actually too large, since @ is smaller

than the corresponding exact series and g is the dominant
'—

_ (t+p)2 -
to the range of {3 , the smaller of the 2 values obtainable

term in the expansion of /3 Thus for an upper limit

from the guadratic



P‘_(‘_E‘e' =

l+p)
i.e. _G-2r—{*8rs (34)
' P - 2(0+ )

will be used.

Now r=fit g2 g

"and from (18), (19), and (20) ..

y |
2@ =F(HR) > Fe-up = f & Seo——dv  (35)

But ,_ .
¢ qeﬂ:o rz rv ‘ 2
-ry-I e -ru-| —rU—ld ,
U2 dU - UZ dU - -
° o - g
so a lower limit for r
,Z'qﬁa.
eV -ru-i
UZ : dU
J

(]
can:be obtained by taking the lower bound found .in (29) for.
. .
rv
e’ -ru-i
I UZ dU

(]

and subtracting from it the upper bound of
o .

eV - ru -\
J U? CJU

, 2-4fa
found in (30). Then the value of E used as am upper limit

to the range of i is calculated here by solving (34) with

2
¢' <06 in place of 6‘, where ¢' 1is %ii#i—} times the

' = e
YU -
- F _ .
é lJzU ! du mentioned above..

lower bound of -[

[]

The range of F for the different I, 's 1is tabulated

below.



T _ < True ﬁ <

‘ 5| 3.45 x1072 2.7 x1073
6 .727 x 1073 1.27 x 1073
7| 1.38 x107% 1.8, x 107%|
8 | =2.57 x107 9.5 x 1072

In finding each bound, two main approximations have been
made. In éach case, the first approximation was to replace
the exaét series by a simpler one; it would appear.that this
step cannot be avoided. The simpler series were then replaced
by equivalent integrals, and the second approximations oc-
curred in the numerical evaluation of these integrals, To be
suré the last approximtions were not too crude a check was
made; for example, when an upper limit was required, a lower
limit was also calculateﬁ and the difference between the two

limits was compared to the range

2s-|r°s _
Si¢s-1 :i.

2

wn

)

In each case the difference was only.a small fraction of this
range and thus the error introduced by the second approximation,

over which there is some control, was correspondingly small.
This completes the discussion of the ground state.

It is natural to inquire further and see if the method
is applicable for states other than the ground state. First
~an s state with n different from 1 , and then a typical
p state, will be irvestigated. General conclusions conéerning
the applicability of the -method will be drawn from the results

of these investigations.



2. OTHER STATES
2.1 The s~-State ‘

Consider, then, the s state with n =2 ., For the un-
perturbed atom, a = 2 and E = ;1/22; therefore de Boer
would take for the perturbed atom a = 2 + 2 and

-t U
£ = (2+fs)2m %+_L€ '
Substituting these values into (6) gives for the recurrence

relation in this case

S -1

bs(s-1 = b R5F -2}

S-3 -
= 2 by —2—+,?ﬁ— (36)
which, neglecting I with respect to 2 , leads to
- £
b,':l bz:__é- -g bs:= st (s-1N(s-2) (37)
(s>3)

The corresponding wave function is

. Y ) H ‘ _
Vor=e o (i-(+&r+pSbe] 00
with bg=pb
For this to vanish at r = rg, /3 must be
16 -

= "o, _
P Ess'asl—_ge

(39)

-

Two values of P are given below
T, &

5 59
10 .072

1L



It may be remarked immediately that the value .59 for
ro = 5 is certainly not small compared to 2 ; and thus one
would expect a large error to arise from making the approxima-
tion that gives (37) . For rgy = 10, however, the [? 1is more
reasonsgble.

2.2 An Upper Bound for the Error

An approximation to the upper .bound for the error involved
in this case will now be obtained il a manner analagous to that
used previously. The exact expression this time for f(r) is

E 2% ' (s-3-B8)--- (- ﬁ)(—ﬁ)(—lf) '
r(x+g)re+ @+ st (s- 00 » (40)

' 2 25 (s-3-p8)--- (2-R)(1-p*)p ¥®
= (‘5 )Y +§ (+p) %" st (s-0! ' ‘

X 25" (s-3)s5-4)--- W) p
Now (40) < Y—(lz+€)r2+§3 B £

oo r§ ‘
- r-(é‘f‘é)i’z + [”Z St (s-1(s-2) . (41)

This would be de Boer's f(r) .

. & 25 (s-3-p)---(1- Bl r®
Also r-{'5+§)\’ +§3‘ @+ si(s-n!

&= ) --- (1-p) pli+p) ¥ *
(2+p)°" 'sl (s-1)(s-2)

s-)
(1+3) 2 (-
SRS o R

Ao s i (' /3) ﬂ(""ﬂ) VS
2t - ( )Y +§ (2+[=‘)"S'(s N(s-2)

s-1

: (- £)*
zr- ("2‘ )Y + E (22+/3>‘ l's'/g(s (s~ 2>

‘(La+€)."2+ﬁ§3 5! (:—;)(s—z) {2 lz:«%} _ (42)
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Cdmbining (41) and (42):

= rs -2 !
! ﬁ}a SI(s-n(5-2) {2 ;‘4/3}
O 25 (5-3-p) - - - CN1-p) ¢S
$§ (+p)°7" st (s-n!

3

oA rS
4(»‘2 S1(s-N(5-2) (43)

From the exponential series,

o s-3 ‘s
p>tat =

3

t

v ‘l._-—‘i.— -1 ’
therefore, FEW deJ' € - dq  (44)

2,2
. tote - - rq- .
Setting fduf q° dq =Gw and noting that
(o] Q ' :

5 -'Z:f/j- = -p+4£)
= (-p(-2+5-)

i

-3p G-
>St1-3p
so 6(2 2+ﬁ) > G ("z/’)

(43) may then be written

/36(2'——’&) < Exact Series< <pGW  (}5)

FG(""‘ 2+ﬂ'

Rewriting ,

12

1-3p ria? U r
Idz I —‘—gj"’q , dq sEQact Series £ ﬂ]duf q—q:g A lAq (L6)

Thus, the maximum percentage error that can arise will be

'@j

138 9

9 :
g X100 / (47)
a0 fE=—54g




To find an upper bound for this, which will bé an upper
bound for the error due to de Boer's approximation, it will
be necessary to obtain an upper bound for the numerator of
(47) and a lover bound for the denominator; so here again,
approximate values of the integrals appearing are requifed.'

These can be obtained in the following way.

2.2
e’ - - rq-i

g) = »
4 . 9’ pG,e" -5 -r-1
I
|
[
c
!
} l
l
I |
v € | {
R E L i .
=38 9
v
P(u):Lqu 8
1, R)
;

Fie 2.

Consider first the finding of an upper bound for the numera-
tor of (47). The ordinate at any point in the lower diagram is

the area up to that point in the-top'diagram} The area of the

-
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trapézoid formed by A, B, (1, 0), and (1 - %‘P, 0) which
one would like to use for the upper bound, will be ircreased
- by taking 1nstead of the ordinate at A , the value obtained
vby taking the area of the trape201d 0, E, ¢, and (1 -'2P, 0)
in the top diagram, and instead of the ordlnate at B, the

sum of 2 such areas from the top diagram. This leads to the

expression
3 e, 3263"' r3 i9re_ 147 283 r3
TFF[§+77— +g5-38 =zre" - 36 tZ (' ){’+
e TEA 2P (- 2p) -
¥ e (18)

for an upper bound for thé numerator;

Next, to get a lower bound for the denominator, one can
obtain an ordinate smaller than that of B by taking the area
under the lines 1 and 2 1in the top diagram,

This area is

9a : Vo .
J fa+5)dq +f {[(r—3)e"+-§a+2r+3]q—(r-H)er—rz—B’r—lf}dq
5 A | | |

where q = _(r- v e” +r +3r+‘*+3a
AT(r-3Ne'+ L +2r+3-4

Letting this area equal R , and using the area under the lines
3 and L4 -in the diagram, one obtains as a lower bound for the

denominator the expression
Uc

. ! .
3 2 .
f%udu +[{[€r——£—2—l’—i]u+R-er+—5-+l’+!}du (49)
o]
where u =:e:—%z—r'—|— R
€' -% -r-1 - L

3

Evaluating (48) and (49) for r_ =5 andr_ =10 gives
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ds upper bounds for (47) the values 110 percent, 50 percent
respectively. These values are not very impressive, but then
the approximations made in obtaining bounds for the integrals

n (47) were very crude. It would require a great deal of com-
putation to make them more accurate, but at least, the way in
which this can be done has been made clear by the above discussion.

2.3 The p State

Finally, consider the application of de Boer's method to

a p state, for example the state with n = 2.

Here de Boer would take for the perturbed atom a = 2 +f3
and E~«l/4 + 1/4 # , just as in the previous case. From

(6), the recurrence relation this time is

bs{S(S"')—a} = bs, {2 2:/3' “2}

s-3-
= 2 by, A (50)
which,'neglecting P with respect to 2 leads to
' -p(s-3)!
b, =1 b [s(s-:) 2)l(s-n(s-2)- 2J-~—[3(2) -2] (51)

The correspanding wave function is

\I/m=e""‘77’{r—[sd§: b'sr"'} (52)
with be=-ph

The value of f is obtained as before, by demanding that this

vanish for v = ry e

(53)
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The values for r_. =5 and 10 are given.

o)
rq &
5 39
10 .Oql

As in the previous case, the value of e for ry=5 1is
not small compared to 2 ; and therefore, de Boer's approxima-
tion is again relatively crude.

The exact f(r) in this case is

& 2°2(5-3-8)(S-4-0) -- - (-p) ¥S
2
F+ Z, @+p)* 2 {s(s-0-2}{6-N(s-2)~-2}--- {3(2)> -2} (54)

It is not as straightforward a matter this time to obtain good
bounds for (54) as in the previous cases, but a set of bounds
very similar to the ones found in (43) can be obtained by doing

the following.

& 2%2(s-3)s-H)--- - (B }°S |
G4) > r* +§3 277 (sG-0-21{6-nG-2)-2] - {3G)- %} < (55)

The right hand side of (55) would be de Boer's f(r). But

(55) in turn is equal to

, = - 2(s-3(-@r*
ST e T B

hich i 2 < 2¢pr®
which 18 2 r +§3 S!'(s-nN(s-2)

= 2%'ys
= rz—ﬁz si(s-1(s-2) - (56)




s-2
C(5-3-R)(S-H-B)--(-p)rS
Also (54) € F ‘+§ (2+/3)’2 S!(S—v)f!s, =

2 ) ¥ 2572 0-5)0- 555) - re
—‘r +——¢L———-1—§§ -

31 (24 3) (2+/3)525; (s-1)(s-2)

2 s~2 (|_ﬁ)$"2(.ﬁ_.) rs
(2 +/3)"2 S (s-)(s-2)

< r +2>

S

>0 r 4 V- s-2
=r*-p 23 St (s-n(s-2) {2 ?+f°’}

£yr ‘["2 su(s N(s-2) { 2+/§ (57)

Combining (55); (56) and (57),

S-l

_PE S'(s |)(S 2) Je Boer Serles < Exnc'f' _certts —FE S'(S-l)(S 2){ 24./, 58)

and using G(t) as defined before, this leads to
- ' ; - -3
p G(2) < Bxact Series < - pG(1 -<p) (59)

Rewriting

I TR I 4. LA

A e ] rq -t
'FL‘JUL 9’ I

ExacT Series -

36 v 'ﬁ—él—r -)
—ﬁfdujo E 1= dq (60)

Thus the maximum percentage error that can arise will be

2q?

?d Uer%—"’??—'l‘ﬁ-ld-r ) .
l-?l:ﬁo 93 q X‘OOO/ (61)
2 U"Q_"')z_ - [

e rq-|
(o [ema 1)

The numerator of (61) is at least half as large as the de-

nominator, so nmot very good results will be obtained by using

_21.
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this, and for this reason no values have been calculated.
'The.reason that this expression for the maximum percéntage
error is less satisfactory than those found previously, is
that, in this case, the de Boer series does not lead immediately
to an integral. In fact, it is of such an awkward form that a
further approximation has to be made before a series express-
ible as an integral can beiobtainedg However;, (56) is not the
best possible next approximation to the de Boer.series. Only
computational hazards lie in the way of getting a better app-
roximation to the maximum percentage error_with which to re-

place (61).
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CONCLUSION

In conclusion, it may be said that de Boer's method leads
to reasonable values for the change in the eigenvalues for quite
small r when the ground state is considered. But the above
staﬁement is not true for other states. For it was seen in the
last two cases investigated‘that»for r = 5 , the value of g
found did not justify using de Boer's method for a first approxi-
mation to the change in the énergy.. But when a larger value of
r was taken (here, r = lO) a value of g Was obtained thgt ac-
tually was small comparéd to 2 . It may be inférred, from the
discussion of the last two cases, that, in general, increasirg
either § or n will lead to increasing the lower bound to
the range of values of r for which reasonable results are

obtained.
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