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Abstract

The testing of statistical hypotheses concerning two
populations consists in determining the relati onship be-
tween the cumulative distribution functio‘ns on the basis éf
random samples from each population. In the non-parametric
case the only assumption made regarding the populations is
that the two c.d.f's. are continuous. Thus the distribution
of any statistic proposed to test the two samples muist be
independent of the functional form of the c.d.f's. Qne
method of approach is based on the order relatiohs of the
sample values. A survey is made of such tests recently pro-
posedv and a new test 1s suggested based on sampling without
replacement from a population of the positive integers 1, 2,

3, oooNo
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Introductidn

The numbers which characterize the distribution of a
population or univérse are called populatidn parameters. In
most cases which arise in practice it is impossible to deter-
mine the values of these parameters. Thus they are predicted
or estimated by statistics which are furctions of the sample
values drawn from the populationg_ In the past fifty years a
general theory ofvestinating the se parameters and of testing

hypotheses conceming their values has be en developed [2].

- One“important“problem~which'has~received;much attention is
to'testHWhether~tw0“randdm'samples are drawn from-the same popu-
lation, Tests'of"thiS‘hypothesis‘are~basedton'the~ciaésical
Student's t- distributioﬁ'which-gives~a criterion'for‘testing
whethe; the'differenbe“betwéenf£WO.SAmple-means~is”significant
and on the F- distfibution Which tests whether the difference
between the variancesis significant;~‘Boﬂn“these’testsiand most
of the(otherS'in'common use ‘assume that the populationédiStrie
butiohé'a?e~hormal; ~Since %hi§~hypothesis~is~véry-restricti#e'
much effort'has~been'expendedaby;statisticianS'in;attempﬁingl;
to show that the'commonly~@sed>distributions are-at.igaSt asymp-
t@tically;pormal;_ However, not all distributions hg#éﬁphiS~P§Q-
pefty;andwfurther;‘ifAthe sample is small; the ndrmali§x<a§§ump-

tion will not hold even approximately.

‘An important statistical problem, then is to derive methods
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which can be used to test hypotheses assuming nothing about
the popﬁlétion distributions except that the cumulative dis-
tribution funetions are continuous. Such tests are termed
'nonaparametrié~or~distribution'free;rsTheseAtestSvﬁse“éuali-
.tative'ratﬁgrvﬁhah~quaﬂtitétivewaspects:of_the sampleifalues.
Forlexénple;.instgadfof’sé%ﬁing~up a criterion to test the
difﬁgrence;betwegn'the.means-and,variances offthewtwb.éamplés;
a test criterion isQegtablisheqNCOncerningvthe rank or order
relations. of the data. -

. It may bexafguedvthat.thenefficiencyvuf.a:testfigﬁreﬂuced”
by5néglecting_quantitativemrelgtionswsince”all;onthé,évéilable~
ipformatiop~hgs{not"been utilized.w,Thisliqss.in“efficien§y
 3houldmbe~judgedragainst:the.possibilitydof_makiﬁg an incorrect
_ assumption concerning the normality of the population distri-
bution.. Forf$his.reason,nonaparametriC%testsnhave;a“plgce‘ih

thé,theory“of testing.hypothgses.

" A good test. should have a high probability of Tejecting a
false hypothesis. ;Thé7pcwér:ofvastest;iswtherfobability of
rejebting.theAnuli”hypothesis.Wﬁen,actuallymit.is“ﬁalseﬁand;an
alternative hypothesishis.truew[2]. Thus the pcwérais}qiﬁunction;
df.the parameters‘of.the.distribution;involvedginithe;ﬁrueyaltera
n&tive~hypothgsis.; Therefore; in“noneparahetric;theory-a dif-
ficulty arises. However;“an,alténnative;meﬂmod of evaluating a
test has been pnaposed. A,teét is.called_éonsispeppfif‘the~pro-~
Qab@litj of rejecting a_false.nnllnhypotheéis.agaipgpucertain al-
gergatiﬁes approaches one as.the size of the saﬁg}e,incrgases in-

ggfinitely [7]. Thus a test may be consistent with respect to



one particular alternative hypothesis but not to others.

Many new non-parametric tests for comparing two samples
have been proposed recently. The object of this paper is to

present a survey of these tests and put forward another.



Classification of non-garametric.tests based

on order relations of the §amp1é values

By order relations of the sample values is meant the ordered
set of values ina randonlsample freﬁ leastvto greatest. Non-
parametric two sample tests using this property can be considered
as being one of three types: | o

i) those:based~6n’a comparision of the two population dis-

tfibutions-along~thé‘whole rea line,
ii) thoserbased‘pn-a comparison at a'finite~nambér of fixed
points such as the quantile points of the distributions,

iii) those based on the method of randomization.

In what'féllows-representative tests of these thfee'types

are considered.



The Wald-Wolfowitz Run Test

—

A test of ‘the first type is the Run test of A. Wald
and J, Wolfowitz [7]. Let Op be a sample of observations
X1, X2, «es Xy from a population with continuous cumulative
distribution furction, F(X) and let 0 be a sample
'fi:’fé, e Yy from a population with continuous“disti ibu-
%f%ﬁ function, - 6(X) . It is required to derive a test of -
the null hypothesis that-iF(X)_='G(X) . Let Om¢p  denote
the combined*sample;the Qbservations'being orderéd,f;om the
}gést to the greatest.
Omen ° Z1s Zoy eee Zpu,  Where 2Zj <fZi+1

" Wald and Wolfowitz proceed as follows: replace: Zy - in
Om+n' Dby zero or by one depending on whethej'izi;‘comes from .
the sample O, or from sample .0O,. Define a run to be a
Sequence of zeros uninterrupted by .ones or.a.sequéncéFof;ohes
uninterrupted by zer05~and.consider”the numbe:.eﬂ run§$inx<-
0 . The statistic pnoposed.in_this.testhis“U'ﬁ.the number

m+n
of runs,

Naturally before any sﬁatisticwggﬁzbe"used;asuamte5t¢c:iterion;
its distribution function'must.beudetermihed;:“Uﬁder the null
hypothesis that F(X) = G(X), the distributionsof! ‘U  will be
the probability of dbtainingﬂé particular:number;oﬂ runs under -
the assumption that all of-the arnagggmegﬁs;of:theg'm'*ﬁ%%uééQ

of the 0O, sample, and all of the arrangements. of the n values



of the O sample have equal probabilities. This probability
is the ratio of the number of the arrangements of the X*s ~and
the Y's with m + n, m, n and U held fixed to the total num-

ber of arrangements with m.+ n, m, n constant.

The denominator of this ratio is C(m + n, n) since this
is the number of arréngements of m+n elements, m of which

are alike and n of which are alike.

To determine the numerator of the ratio, two cases must be
considered according as U’ is odd or even, First, let U = 2k
Then there will be 'k runs of zeros and also k ‘rﬁns of ones
in any arrangement in which the exact number of runs equals U.
Now the problem of~déterminingwthe number'of'arrangémentg of K
runs with- - m x's - is the same~és-that_of finding the number of
ways of putting'*m~~zeros into 'k célls;-none-of-which‘is
empty. Consider the cells to be spaces between K +'1 bars.
Then since each arrangement-must start -and end with a bary,
there are k - 1 remaining bars to permute. Further, since the
cells arewnonpemptylthere~must“be~at:mostﬂéhe“bar”between any
tﬁo zerOs.j-Thus'there are m -1 spaceS"Between~the’ze503'and '
k = 1 places to put the bars, hence there are C(m -1, k - 1)
possible arrangements. Similarly, the number of ways of obtain-
ing exactly k runs with n y's isequal to C(n- 1, k - 1).
Now fbr‘every'given“arrangement of the X's; there are two ar-
rangements possible with the Y's depending on.whether the
combination Oﬁ;n begins withizero or one. Then the probabi-

lity that there are exactly U runs (U = 2k) equals



2 ¢{m-1, k=1) C(n-1,k-1)
¢(m+n, n)

For the case U = 2k + 1, there are either k + 1 runs
of the X's and k runs of the Y's or k runs of the X's
and k + l runs of the Y's . Then the probability of |
U= 2k + 1 runs equals
Clm-1, k) C(n-1, k-1) + C(m—-l k-1) C(n-l k)

C(m+n, n)

| '~_The'region of rejection for the null hypothesis consists

of the values of U such that U < Uy where Uy 7jthe pri-

tical value of U, depends on the level of ‘significance a

that 1s desired- by the- experimenter. 'Yy is pre determlned and

is such that Prob (U< Uy).=a .

Thus small values of U -are jndged“significant'implying ﬁhat
when.there-are'too"few~runs}*there*iS‘poor~mix1ng'of'the~data”of.‘
the two samples. The worst case would-occur-when U =2, This
Wpuld mean that all the observations of the ohe sampleigre'greater

: §hap.those of the other, -

‘Tables giving values of U, for m, n'< 20 at the .005,
.01, .025 ;sighificance levels have been~pfepared by'F,ASwed and
C. Eisenhart [6]'. Values of ‘U, for m, n> 20 have not been
computed. However, éince-the‘diStfibution of U has been proved
fééjﬁbﬁépically normal with mean |

2mn 4 1
m+n :

and Variance
| ~ 2mn (2mn - m - n)
(m+n) (m+n—1)
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the critical walues can be computed appm;dmltely for large
Samples [ 7]. |

The Run test has been shown to be consistent with respect
- to alternétive hypotheses with minor restrictions [7]. Let m,
n increase without limit such that the ratio, m/n =\, a
constant. The expected value of U is pproximtely 2mfL + A)
when the null hypothesis, F(X) = G(X) is true. The statistic,
U/m comverges stochastically to its expected val-ue'; 2/1 + A)
under the null hypqthesis. This means that the probability of
the expected value of U/m differing from 2/ + N by less
- than ‘any given amount approaches one as m--increases inde-
finitely. Then it is shdwn:thatTunder;truefaltérnative hypo~
theses, . U/m -converges-to-its expected value which is less
than 21 + M) . Thus

Prob (U/m<2/(1 +A) )+1"

if the null hypothesis is false.

The following exainple 11lustrates the use:of the Rﬁun;test,."- -
Given the two samples »(5.8','-‘ 2.9, 7.2, 3.1, 2.5, 6.1) and (4.9,
3.3, 5.7, bol, 4.6, 5.'6)", test the hypothesis that these are
random samples drawn from the_lsame population about which nothing
is assumed except that it is continuous. C‘onibine the date and
' érdér the values from the least to the greatest. Then assigning
the values and 1 to the observations according as they'
come from the first or second sample, we_ obtain 000111111000.

The observed value of U is 3 . From tables[ 6] the critical
value U o5 =3 for mmn=6. Thus U = 3 1is significant and
the null hypothesis is reje?:ted on the basis of this particular

example.



The thﬁisénfTest

The following test proposed by H.C. Mathisen [4] is an
example of the second type of arder relations tests. Two
methods of comparing the samples are'considered;:one ihvolving SR

the median and the other, the quartiles.

Let 0Oppe) be a sample composed of 2n + 1 elements drawn
from a continuous population. The sample values Xy, X2, e Xonel
are ordered so that X; < Xj,7 . The median:of the 2n + 1 ob-
servations is Xp,3. Let Opp be a sample consisting of elements

Yl; Y5; oo+ Yo, drawn from another comtinuous.population.

As before; it is r;quired to test the hypothesis that these
two samples came from the same.population. iLet_.mi equal the
number of values of sample Opy which are less. than. Xp,;, the
median of sample Opp4 o Let mp = 2m - m equal the number

of observations greater than Xp.j.

The statistie proposed by Mathisen féf:testing the null-
hypothesis is the vél@e of m. in order.to‘detérminewthe cri-
tical values of ml; its distribuﬁion is obtained. Let the pro-

bability that X < Xp41 be '
| v Xn+1 ‘
p = //1’ £(X) ax ..
- .
Then o
Prob (X, <X) =1-p .
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Since X ., 1is the median of 0, ., , there will be n values
less than X,y and n values greater than it. By the multi-
nomial distribution the probability element for Xp,; will be

(2n+1)! pP(1 - p)P dp .

n! 1! n! ‘
Also using the multinomial di stribution, the conditional probabi- |
lity of m for a given Xp,) will be

(2m)! pml (1 - p)zm“ml
my! (2m-my)!

Then the probability of obtaining particular values for mj and
Xn+1 . iS ‘

) 1 n+ +211-

(2n+l)§ (2m)! pn,ml (1 - p)n m=-m} dp .
n! n!-m! (2m-my)?! .

To obtain the probability of a given value for 'm , integrate

the above expression in the interval 0 < p <1 : Then the dis-

tribution of m is

(20+1)! (2m)! (n+m)?! (n+2m-m)?

n! n! m! (2m-m)! (2n+2m+l)!

The test criterion is the value of my . Eitherqlarge
or small values of m are julged significant. Critical values
df‘the statistic can be computed'from'fhe distribution function
for any desired significance level, a . A small table of the
.01, .05 critical values for a few pairs of values of m, n has

beep'included in‘the description:of the test [h] R

Matliig8en has proposed an extension of~the~netﬁbd“just'dés-"

cribed. Instead of dividing the one sample into tﬁo’ﬁarts,it is

—



suggested to make four divisions. This is done by considering
the guartile points of the sample O,,,7 . For convenience let
the second sample be 0, imstead of Oy . Let the number of
values of ohm falling in each of the fbuf.intervals of the
quartiles of Oy, be my, my, my, m, respectively.
Then
p my = 4m
i=1
The statistic progosed faor this test is
s (m;-m)?
i=1

T =
L om®

where 9m2 is a normalizing, factor to ensure that

It should be noted that there is an error in the expression T

. | 2
since the maximum value of the numerator is 12m .

Agéin,runusually large'br sma1l values of “m; will indicate
'éipoor comparison of the two samples. Thus such values are judged -
significant. The distribution furnction of the statistic T, is
deterﬁiqed in much the same manner as was employed in the finéﬁ_
‘method. Critical values of .Th ‘can be computed for various
values_of- @ . The computation of the critical valgesﬁgfﬂthe
statistic for both the median and the quartile nethoéqbecome
pather'laborious for large m and n . However, ip boﬁh cases
the distribution functions of the statistics can be approximted -
by other well known distributions for which tables are availsble.
For the median method, the q;stribution of m has.been found

td}be a$Ymptotically normal. Let E[ﬁq] demote the mean'df my
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~and Dz[ml] the variance of "m. As m, n+ ™ such"-’that“"‘
m/n = A, a constant, the limiting form of the moment generating
funetion for the ratio
| m - E[my]
D[m]_]

is shown to be identical with the moment generating fumction of

the standard normal distribution with zero mean-and unit-vari- -
ance. Also the distribution of the statistic T, used in the -
quartile method can be approximted by the distribution-defi ned-
by a Pearson type I curve. It is. co.n:j*ectured-t;hatwsince'\-;TL‘ is
the sum of squares'its distribution_v coul_d be. approqdmat.ed__by the

chi-squarec distribution,

Another non-parametric test, pro,pb/sed by W.J. Dixon [3_] ‘can
be shown to be an extension of the:method :of :uéifg-vzﬁh_ér-mediarr‘,"or"
quartile poihts as in the Mathisen test. Let _ Om, 0, be the two-
sémples. Consider the n + 1 intervals o.h the real. line created
by the n ordered observétions of Op ,

-°°<'X1<X2<... <XI1<m

Let the number of values of Op in these intervals be - mjy where
where i=1,2, ... , n+1 . The test criterion suggested by
Dixon is
2 n+l 1 mj \ o
D = —— e — .
5_}._;1_( n+l m )
Extending the quartile method. .of..Mat.hisen so thait. the n -quan=-

tile points of 0, are considered, the statistic would be

n+1( n 2'
T - iglml-m) .
n+l n 2

I < S ¢
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Essentially the two statistics are the same since

T n+d | pf

22 e
n+l n

2 . L -
The distribution of n D has been shown by Dixon to be ap-
-proximtely the chi—squéred distribution with v degrees of
freedom where

vy = mn{n+m+l)(n+3) (n+h)

2(m-1)(m+n+2) (n+1)?

Thus.~&n2/(n+l))Tn+, will have the same distribution.

Under certain conditions the Dixon test critermag, D2 ,

and the'run,test statistic, U , have been shown to give the |
samé-information.' In his paper [3];1Dixon~5hows thatlthe cor=
relation between the:two~criteria“approache3‘on§ for large n

compared to m . Inthis case the Dixon test can be considered
| as a test pf'type-pne'since:the»two-population~distributions
will be compared-at an infinite number of points along the real
line. Such should also be true of the extensidn of the Mathisen

test using Tn+l’

| A.H. Bowker [I]‘”has-shown;that the median test suggested:
by Mathisen is not consistent for all alternative hypotheses
regarding the two population“distribution‘functions- F(X), G(X).
‘This‘implies-that'the-probabiiity of the fal'se null hypothesis
being.rejected; when the size of the samples increases indefinitely,
does hot approach one. In particular, if the mnull hypothesis is-
tested against the alternative hypothesis that F(X) and G(X) are
-different except in the region of their medians; the test will not
consistently reject the ﬁhllmhypothesis. As before let Oy,



and O, be the two samples. The proof is based on the fact

that the sequences m,/2n and m./2n each converge to one-=

 half where m,, m. are the upper and lower critical values of

m; such that under the null hypothesis,
Prob (mu<ml)=a' and Prob (ml<m€)=e<1-a.

Then, even though the alternative hypothesis is true, the pro-
bability of rejecting the null hypothesis approaches a + € as

n increases indefinitely.

The following example illustrates the use of the Mathisen
and Dixon tests. Given the two samples (.651, .602, .584, .601,
639, .572, 604, .625, .573, .586) and (.575, .605, .550, .579,
2563, .552, 591, .576, .567, .588), test the hypothesis that
these are random samples drawn from the same population. Since
n=m= 10, the median of either s.ampie mist-be. estimated by
averaging the two middle numbers, The median of the first sample
is .6015. The observed value of m =9 . Usi‘ng tables. [h] we -
find this value of ml is significamt at. the @ = .05 level.
However, using the median of the second sample we obtaln a dif-
ferent result. The estimated median is..5755. The observed

value of m] = 2 which is not significant at the a = .05 level.

Using the Dixon test the first sample divides the second
sample into the following groups: 4, O, 3, 0, 2, 0, 0, 1, O, O,

0._ Then
2 1 b2 2 (1 _ 2,2
b = (T:'L' 1%—) (ﬁ' ‘31'6) (ﬁ TE)
__ _'__ 2, pdy2

Using the table [3] we find this result is not significant at

the a = .05 level.
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The Pitman Randomization Test

A test baéed on the method of randomization has been
-proposed by E.J.G. Pitman [5]. As before, let 0, O, be two
samples with elements Xj, Xp, oo Xp and Yy, Tp, ... Y, res-
pectively. Combine and order the data of the two samples so that
Op+n consists of the values Zy, Z3, ... Zpen where Zj < Z547.
Again it is required to test the null hypothesis F(X) = »G(X)» .

Define a separation of‘ Op+n to be a division of the m + n
obsefvations into two parts; ore containing m values and the
other, n wvalues. The total ‘number ‘of possi blfe separations
will be C(m+n, m) . One such separation will be that determined
by the two samples Op, O,. Call this particular separation R .
The spread of this separation R is defined gs l'}'( - Y|  where

‘X and ¥ are the mean values of Op, Op respectively.

Let M = the number of separations of Om+ln with a spread
equal to or greater-than that of R . Let M, be.a fixed integer
such that ¥, < C(m+n, m) . The value of 1}, depends on the
amount of“'probability', a desired in the rej'e’ct.{on region urnder
the null hypothesis. If M < M , then the spread of R is
judged significant and'the"nu‘ll hypothesis is rejected. Thus the
test criterion is the number of separ'ations of 0m+ﬁ with spread
greater or equal to that of R . If this number M is compara-
tively small then |'X' - Yl is considered too great for the null

hypothesis to be true. -
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For values of 'm, n . as large as 10 there would be con--
siderable computation to determine all the separations with a
- spread greater or ecqual to I‘X - Y' . For this reason a statis-
tic is suggested by Pitman which is related to the previous one
with the added property that its distrlbut:.on functioncan be

approximted by the beta distrlbutlona

Define
(3-1)%
W=anﬁn :
S1+5p+I0(X-T)%
where
S = 2_ (% - X)” and S = ;: (Y3 - T)° ~-
i=1 ‘ i=1

The first three moments of the distribution of 'W are shown to
be approximtely equal to those of the, beta distr_vibution;

<

/j(i o+ R gy
2 2

Since large values of W will be judged significant, the
region of rejection for this test is. W>,Wa_ where W, is the
critical value of W for a particular vdlue of a . W, is
is determined by

1 1.1 méin_ g
T A
Id -1

As an illustration of the Pstman test apply the statistic
"X - Y| to test the hypothesis that (0, 11, 12, 20) and
(16, 19, 22, 24) are two random samples from the same- populations

'There are C(8, 4) = 70 possible .separatiéns..._Ma =M 55n = L .



Since there are M = 6 separations with a spread equal to
or greater than |-X - Y', the result is not significant and we
conclude there is mo evidence against the null hypothesis on

the basis of these samples.

17.
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A New Test: "The Integer Test"

The following new test which will be called the Integer
test is based on the principle of randomization, and thus is

related to the Pitman test.

As beforg, suppose Op and O, are two samples drawn
from-populations with continous distribution functions, F(X)
and G(X) . The null hypothesis is F(X) = G(X) 3 Let Opsp
be the ordered combination of the two samples 5

Omin ° 21y Zoy eee Zﬁ+n where 235 < Zj4] o«
Replace the sample values Z; of Op,, Dby their corresponding
subscript, i , where i =1, 2, ... m+tn , so that to each

element of the two samples O_, O  there is assigned a positive

m?’ °n
‘integer which indicates the rank er-orderyofAthé_element‘ixxthe
combined sample Opipn « If 25 = Z341= Z542= see = Zj4p, replace

each of these equal sample values by the number, i + r/2 .

Now consider as a population the integers 1,2,3, «ou
m+n=N, Suppose samples of n integers are drawn from this
pépulation so that none of the integers are selected ﬁore'than
once for each sample. These samples will be random in the sense
that each has equal prdbébiiit&i In practice, the,qbsérvations
of aﬁsample are actually drawn without replacement fnpmﬁa popula-
tion but since the size of the population is often very much
greater than the size of the samfle it can be asgqmeéwthat the
sample data are independent, However, in the Inteéef ﬁeét the

Sample data must be considered as dependent since n and N are.



,0f the same order. That is, the sampling is done without re-
placement from a finite population; Now consider all possible
divisiens of the. N integers into two sets of n and m
values respectively, The number of such combinations is

C(N, n) . One of these divisions will represent the samples
Ops Op

The t est criteria will be the two means of the sets of m
'and n . integers for the particular division determined by Cm
and O, ., Since the two means are dependent a study of one of
them will be sufficient. For convenience, let the lérger of the
two, U be the statistic pfoposed in this test. If Vv denotes

the other mean, note that’

nt + (N - n); = Eigill

where Eigill is the sum of the integers 1,2,3, «oo N,

Values of U greéter than (N + 1)/2 are judged significant,
and for a given level of significance a the region of rejection

consists of those values of U such that ﬁa < U, vhere U,
is the critical value of U for a givén pfobability @ . As is
suggested in the Pitman test all the means of the C(N, n) com-
binations greater than ﬁa can be computed. Then ﬁd is a
particular value bf the mean such that a proportion, a of the

means is greater than To, »

“Unfortunately;\while the computation is simpler for this test
than for the Pitman test, this method of determining the critical

values for N greater than ten is not practical. It is advisable

therefore to obtain the distribution fumction of U and thus
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determine the critical values U, . For indepéndent variables
the means of samples are normally distributed, exactly if the
population is normal and approxinately if the samples are large.
However, since U 1is the mean of a sample of dependent integers,
the well known central limit theorem can not be aprlied in this
case. Fortunately, A, Wald and J. Wolfowitz [8] have proved a
general theorem for the limiting distribution of linear forms
where the population consists of all divisions of m #n ob-
servations. - NOW'thé distribution of U will be the same as the
distribution of the linear fbrm,

n
Y. Uy

i=1

The'Wald—Wblfowitz theorem states that as N » oo, the
Prob. (3, Uy = E[ZU3] <t-D[LU3] )
i=1 :

is approximately
- ili.~)r ’ exp (-x%/2) dx
R '
where t 1is a real number and

E[ZUi] and D? [Z Ui]

are the mean and vériahce.of 2. Ui respectively. 'Before this
theorem may be applied a certain condition must be satisfied.
Let p, be the fih mément about the mean of the integers
1, 2,3, .. N ; the condition is that

Hr

_(Fig)r:”z

must be of the order of one., Since By is of the order of N*
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2 4
-and po is of the order of N  for a population of N integers,
the theorem holds for this case. Thus the limiting distributioen

of the statistic U is normal. .

The expected value of U , E[U] equals
Zi—
N
" where (N + 1)/2 is the population mean of N integers.
: P 4
The variance of U, D,[U] is

Yo

i=1 n< 1-1 j=1i+1

ns1l n
Pi39i%y

'.3!—'

where o3 = 035 =0 and Pij denotes the correlation between two

integers drawn in succession. Now Pi j equals

By definition, (A) is equal to
| N-l1 N

(3) L | (0 --N+L)(uy - Mol
4 72 c(N,2) R AJZ%+1 Tz >

Since

the expression (B) equals

_ Ll g2
@ N-1

Then

- | 2] o2
DZ[U] = %?[?62 - 2c(n 2 N_l] = %— %f? -
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Thus the statistic U is asymptotically normally distributed
with mean (N + 1)/2 and variance

g2 N-n
n N-1

where o° , the population variance equals (N2 -1)/12 .
In order to use the tables of the standard h:rmal di s~
tribution the test criterion will be
T N+1

n N-=-1

ct
[}
Q
lz
RIS
o]

The region of rejection becomes t, <t where ty is the
critical value of t corresponding to the probability a of
rejecting the null hypothesis when it is actually true.

If two samples are symmetric about the same mean the statis-
tic U will be eqﬁal to (N + 1)/2 since the imtegral representa-

tives of the values of the SampiES'will also be symmetric. Now

suppose the alternative hypothesis is that the ﬁopulation distri-

butions F(X) and G(X) have the same means but different vari-

‘ances. It would be possible that the Integer test would mot

detect the falsehood of the null hypothesis as some pairs of
samples would have means which differed by very little. For
this reason when the value of the observed t 1is close to zero
it is suggested that the sample variances of thé twg sets of in-

tegers be; compared with the population variance of N integers.

Since n
2 N-n 2 N .2
Y, Ui"+ ¥ ovi o= 3 i
i=1 if1 &
the two samplé variances are dependent and thus only one of

them, say the larger, need be considered as the test criterion.
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As before, the distribution of this statistic must be deter-

mined to obtain its critical values. It will be shown that the
2

distribution of this sample variance S can be approximated

by the chi-squared distribution.

To determine the particular chi-square distribution the
first two moments of S(2 are obtained [2]. By definition the

expected value of 82' isy

[a‘_lgl T 3)2]

Previously it was shown that

where o2, is the variance of the integers 1, 2,3, «.o N,

By definition
Tn 5
E Z (Ui - M = no‘2
i=1 2

Then using the identity

o _ n
n i=]1 n i=1
we obtain .
E[S] =_2_-_U_2_...n-j-l_o'2 = h=1 _N 02
n n N-1 n N-1

It can be shown that the variance of S? equals

3

N(N—n)(n-l) ol o2 - 6(ne1) (Ne1) + (n NoNenel)(NeD)A
(N-1)°(N-2) (N-3) n’ [ : M 2]

where }\2 is the coefficient of excess d'efined' as

By

o
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2
Let. 2 Nn S
Q=
Then 21 _ N(n-1) N N(n-1) [ 1 ]
E = = 1+ 0(=)
{32] (N-n)QN-l) - N-n MRS
and ) D2 2 :
=] W
- 2N (n-1) N ,2N(n-1) (n-1) 22 W2

(N-n) (N—l)z(N~2)(N+3) (Nen) 2n (N-2)(N-3)

2N(n-1) N2-3(n+Ll
N-n (N-2)(N-3) n

where (n N-N-n-l) is approximately equal to (n-1)(N-1) .
Then '

Dz[ﬂg] = 28(n-1) [1 + 0L p 4 O(ﬂl-f)] .
o Nen 2n ‘ N

Thus for large N and A, equal to zero, the mean of ¢°/0?

is N(n—l)/(N-n) and the variance is ZN(n-l)/(N-n)>. Hence the
distribution of g2/ ¢° can be approxmated by a chi-square dis-

tribution with N(n-1)/(N-n) degrees of freedom.

The statistic proposed for a comparison of the variances in

the It eger test is

2 _ Nn §°

X -(N-n)az

e
The region of rejection will be the values of X such that
2 2z '
Xa < X
"As ‘an illustration of the Irteger test consider the two
samples used in the application of the Wald-Wolfowitz Run Test.

~ On prdering the values of the two samples and assigning the ap- .
propriate integers the samples become (1, 2, 3, 10, 11, 12) and

-
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and (4, 5, 6, 7, 8,9) . Then U=6.5,V =6.5and
(N+1)/2 = 6.5 |

o2 = (N%-1)/12 = 11.9

2
2_9 N _ . s
G =n N1 =108 .
Then -U—.N:_l . » ¢
L u

t-‘- ——602"605 =O

i} 1.04

' This value of t is certainly not significant. Now if we are
testing against the alternative hypothesis that G(X) is a
translation of F(X) the statistic t would be valid. Hawever,
if‘the alternative hypothesis is such that the two populations
differ in other respects besides their means, the statistic

q2/c 2 should also be used. For the above example,

2
¢ = =k _ 5.9
18

Note that this formmula for S° hold only if n= N/2 and N

is divisible by 4 . Then

2 N Q2
7(2 _ QE _ Nn S 5 (12)(20.9)_ 21.1 .

The number of degrees of freedom,

Voo Mee1) | (12)05) 0 .
'N=n 6

From tables for the chi-square¢ distribution

- Prob. (X*¥21.161) =.02
Thus the observed value of 7(_2 = 21.1 is significant at the
a = 505 igvel and the null hypothesis is rejected.

We note that since the Intéger test conSists of two parts
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the total probasbility in the rejection region will be ai+:(l-a)e
2
where " Prob (t, <t) =a and Prob (¥ <X.2) =g

A Bood test shoud hawe a high probability of rejecting the
null hypothesis when it is actually false. As stated previously
this probability, called the power of a test, cannot be determined
for distribution free tests. An alternative criterion for the non-
parametric case is that a géod test is consistent With respect to

all couples of continuous F(X), &(x) . S QJ

- "It is conjectured that the Integer test is consistent with
respect to the alternative hypothesis that G(X ) = F(X +d) , a
translation of F(X) wvwhere d is a constant., To prove this it
should be shown that the statistic ~T/N convergesnstochastiéally
to 'its expected values when either hypothesis is true. It can
be shown that if the null hypothesis is true, U/N converges
stochastically to (N + 1)/2N, Let & be an arbitrarily small

positive number. Using Tchebychefﬁ!s inequality, .
| ) S 2 v
Prob. { < g} > 1.-‘.2[5

Thus for N sufficiently large, U%/N approaches zeroiand hence

.E- N+1

N | 2N

E

— N+l
2N

U
E_NJ
converges in probabilityﬂto Zero.

A difficulty arises in connection with any attempt to show
that U/N converges to its expected value when the élternative
hypothesis is true,since the distributionof thé statistic is not
"known! .Thus the expressions for the expected valﬁg 'and variance

df ﬁ/N' cannot be stated explicitly although it isvsurmiséd'that



the expected value depends on the constant d and is greater
than (N + 1)/2N and that the variéncé approaches zero for

large N

Similar difficulties arise in the consideration of the con-
sistency of the Inmteger test with respect to other alternative

hypotheses regarding F(X) and G(X) .
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Conclusion

In the example used to illustrate Mathisen's and Dixon's
tests,conflicting results were obtained. Mathisen's median test
rejected the null hypothesis,whereas, Dixon's test indicated there

was no evidence against it.

Applying the Wald-Wolfowitz Run test to.thé same_example,
the observed value of U is 8.¢ From the tables in [6] the
probability (U = 8) = ,1276 for n = m = 10 . There is no
evidence against the null hypothesis on the basis of these two

samples.,

Now apply the Integer test to this example. The divisién
of integers is (5, 6, 10, 11, 14, 15, 16, 18, 19, 20) and
(1,2, 3, &4, 7, 8, 9, 12 13, 17) . U =13.4 , (N+1)/2 = 10.5
and d% = 1,755 . The observed t is 2.20. From tables;for
the normal distribution the probsbility (2.20 <t) = .0139 . Thus

the null hypothesis is rejected for a = .05 .

In two of the non-parametric tests the N@thlsen and the
iﬁteger tests, a signlflcant result is obtained while" 1n the other
two ‘tHe Dixon and the Run tests the observed value of the statls-
tic is mot significant, .If the Matliisen and Integer tests are at
fault, it means the pnababilities in the rejection region for these

tests are too small and conversely for thi€ case the other two give

incorrect results.,

It is interesting to note what happens if we assume that the
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, populationsfrom which .these samples were drawn are normally
distributed. In this case we can apply the test statistics

- based on the Student's t and F distributions. The observed
value of F is Z.AL for vy =vy, =9 degrees of freedom.
'This value is not significant for a = .05 . Thus we may assume

.that the two normal populations have a common variance and thus
can apply o the Student's t test. The observed value of t
is 2.86 with v equai to 18 . This value is almost sig-

nificant for a = .01 , and we therefore reject the null hypothesis

In defense of the Run and Dixon tests which give opposite ré-
sults to that of Studemt's t it must be emphasized that we were
considering just one pafticﬁlar example. On the other hénd ex~
amples can be found in which the Run test has smal ler probabilities

in the rejection region than the Student's t test.

Sﬁggested applicationsmof the se tesis-are as follows:

If the population distributions are normal or such that they may
be approximated by normal distributions; then Student’'s t test
should be useds For other cases the choice of a tesﬁ dépends on
the alternative hypotheses and the demands of the experimenter.
If the experiment is such that a comparison of the meaéures of
central tendency is desired the Mathisen, Pitman and Integer
tests can be used. If we Wish to compare the first two moments
of the distributions the Integer test is applicable. For all

other non~-parametric cases the Run test. should be used.

In evaluating‘noﬁpparametric tests and comparing them with

the classical tests consideration should be made of the fact

—



that the latter are limited in their application due to the
restrictive assumption that the population distributions are
normal.‘ Thus while it is apparent that'honéparanwtric tests

do not use as much of the available information as the classical
tests they are good substitutes in the cases where the popula-

tions are unknown.,

30.
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