ON CERTAIN RINGS OF E-VALUED CONTINUOUS FUNCTIONS

by

KIM-PEU CHEW

B.Sc. Nanyang University, Singapore 1964
M.A. University of British Columbia 1966

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

in the Department

of

MATHEMATICS

We accept this thesis as conforming to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA

April, 1969
In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission.

Department of Mathematics

The University of British Columbia
Vancouver 8, Canada

Date April 11, 1964
Let \(C(X,E) \) denote the set of all continuous functions from a topological space \(X \) into a topological space \(E \). R. Engelking and S. Mrówka [2] proved that for any \(E \)-completely regular space \(X \) [Definition 1.1], there exists a unique \(E \)-compactification \(v_E X \) [Definitions 2.1 and 3.1] with the property that every function \(f \) in \(C(X,E) \) has an extension \(\overline{f} \) in \(C(v_E X,E) \).

It is proved that if \(E \) is a \((*)\)-topological division ring [Definition 5.5] and \(X \) is an \(E \)-completely regular space, then \(v_E X \) is the same as the space of all \(E \)-homomorphisms [Definition 5.3] from \(C(X,E) \) into \(E \). Also, we establish that if \(E \) is an \(H \)-topological ring [Definition 6.1] and \(X, Y \) are \(E \)-compact spaces [Definition 2.1], then \(X \) and \(Y \) are homeomorphic if, and only if, the rings \(C(X,E) \) and \(C(Y,E) \) are \(E \)-isomorphic [Definition 5.3]. Moreover, if \(\tau \) is an \(E \)-isomorphism from \(C(X,E) \) onto \(C(Y,E) \) then \(\overline{\tau}(\tau) \) is the unique homeomorphisms from \(Y \) onto \(X \) with the property that \(\tau(f) = f \circ \overline{\tau}(\tau) \) for all \(f \) in \(C(X,E) \), where \(\tau \) is the identity mapping on \(X \) and \(\overline{\tau} \) is a certain mapping induced by \(\tau \). In particular, the development of the theory of \(C(X,E) \) gives a unified treatment for the cases when \(E \) is the space of all real numbers or the space of all integers.

Finally, for a topological ring \(E \), the bounded subring \(C^*(X,E) \) of \(C(X,E) \) is studied. A function \(f \) in \(C(X,E) \) belongs to \(C^*(X,E) \) if for any \(0 \)-neighborhood \(U \) in \(E \), there exists
a 0-neighborhood V in E such that $f[X] \cdot V \subset U$ and $V \cdot f[X] \subset U$.

The analogous results for $C^*(X, E)$ follow closely the theory of $C(X, E)$; namely, for any E^*-completely regular space X [Definition 9.5], there exists an E^*-compactification ν_E^*X of X such that every function f in $C^*(X, E)$ has an extension \overline{f} in $C^*(\nu_E^*X, E)$; when E is the space of all rationals, real numbers, complex numbers, or the real quaternions, ν_E^*X is just the space of all E-homomorphisms from $C^*(X, E)$ into E. This is also valid for a topological ring E which satisfies certain conditions. Also, two E^*-compact spaces [Definition 10.1] X and Y are homeomorphic if, and only if, the rings $C^*(X, E)$ and $C^*(Y, E)$ are E-isomorphic, where E is any H^*-topological ring [Definition 12.8].
TABLE OF CONTENTS

INTRODUCTION .. 1

CHAPTER 0
PRELIMINARIES .. 4

CHAPTER I
E-COMPLETELY REGULAR SPACES AND E-COMPACT SPACES 7

1. E-Completely Regular Spaces 7

2. E-Compact Spaces ... 16

3. The Existence of the Maximal E-Compactification ν_E^X of an E-Completely Regular Space X 21

4. Induced Mapping .. 26

CHAPTER II
RINGS OF E-VALUED CONTINUOUS FUNCTIONS 27

5. Some Models for ν_E^X .. 27

6. Representation Theorem of E-Homomorphisms and its Application ... 33

7. Construction of the Homeomorphism From Y Onto X Determined by an E-Isomorphism From $C(X,E)$ Onto $C(Y,E)$ 38

CHAPTER III
RINGS OF BOUNDED E-VALUED CONTINUOUS FUNCTIONS 42

8. Bounded Subsets of a Topological Ring 42

9. E^*-Completely Regular Spaces 45
10. E^*-Compact Spaces and E^*-Compactifications of an E^*-Completely Regular Space 52

11. Embedding $v_{E^*}X$ as a Subspace of $v_{E^*}X$ 61

12. Characterization of the Space X by its Function Ring $C^*(X,E)$ 63

BIBLIOGRAPHY .. 73
ACKNOWLEDGEMENTS

I wish to express my sincere thanks to my supervisor Dr. J. V. Whittaker for his generous and valuable assistance during the preparation of this thesis, and to Miss Doreen Mah for her excellent typing of the thesis.

The financial support of the Canada National Research Council and the University of British Columbia is gratefully acknowledged.
INTRODUCTION

Let \(C(X,E) \) denote some kind of algebraic system of all continuous functions from a topological space \(X \) into a topological space \(E \). During the past twenty years extensive work has been done on \(C(X,R) \), where \(R \) is the space of all real numbers. In 1960, Gillman and Jerison [3] gave a systematic study of the ring \(C(X,R) \) on an arbitrary topological space \(X \). They are concerned with the relations between the algebraic properties of \(C(X,R) \) and the topological properties of the space \(X \). The ring \(C(X,Z) \) (where \(Z \) is the space of all integers) of all integer-valued continuous functions on a topological space \(X \) has been studied by R. S. Pierce [13] and S. Mrówka [10]. Their works paralleled known results in the theory of real-valued continuous functions. Mrówka, for example, showed that [10, theorem 2 and theorem 3]

(a) Every non-zero (ring -) homomorphism \(\varphi \) from \(C(X,Z) \) into \(Z \) can be written in the form (*) \(\varphi(f) = f(p) \) for every \(f \) in \(C(X,Z) \), where \(p \) is a fixed point of \(X \), if and only if \(X \) is \(Z \)-compact.

(b) If \(X \) and \(Y \) are \(Z \)-compact spaces and the rings \(C(X,Z) \) and \(C(Y,Z) \) are isomorphic, then the spaces \(X \) and \(Y \) are homeomorphic.

The object of this thesis is to study the relations between the algebraic properties of the function ring \(C(X,E) \), where \(E \) is a topological ring, and the topological structures of the spaces \(X \) and \(E \). In particular, we give a uniform treatment for the cases when \(E = R, Z, \) the space of all rational numbers,
the space of all complex numbers and the space of all real quaternions.

In Chapter 0, we quote some well-known results which will often be used in the thesis. In Chapter I, we give a survey of the properties of the class of all E-completely regular spaces and the class of all E-compact spaces [2, 4 and 9].

In Chapter II, we deal with the ring \(C(X, E) \), where \(E \) is a topological ring. R. Engelking and S. Mrówka [2] proved that for any E-completely regular space \(X \), there exists a unique E-compactification \(\nu_E X \) of \(X \) such that every function \(f \) in \(C(X, E) \) has an extension \(\overline{f} \) in \(C(\nu_E X, E) \). It is proved that if \(E \) is a (*)-topological division ring [Definition 5.5] and \(X \) is an E-completely regular space, then \(\nu_E X \) is the same as the space of all E-homomorphisms [Definition 5.3] from \(C(X, E) \) into \(E \). Also, we establish that [Theorem 6.7], if \(E \) is an H-topological ring [Definition 6.1], and \(X, Y \) are E-compact spaces [Definition 2.1], then the rings \(C(X, E) \) and \(C(Y, E) \) are E-isomorphic [Definition 5.3], if, and only if \(X, Y \) are homeomorphic. This implies the well known result [3, Theorem 8.3]: Two real compact spaces \(X, Y \) are homeomorphic if and only if \(C(X, R) \) and \(C(Y, R) \) are isomorphic; and [10, Theorem 3]: Two \(Z \)-compact spaces \(X, Y \) are homeomorphic if and only if the rings \(C(X, Z) \) and \(C(Y, Z) \) are isomorphic. We also establish that [Theorem 7.2] if \(E \) is an H-topological ring, \(X, Y \) are E-compact spaces, and \(t \) is an E-isomorphism from \(C(X, E) \) onto \(C(Y, E) \), then \(\overline{t}(\tau) \) is the unique homeomorphism from \(Y \) onto \(X \) such that \(t(f) = f \circ \overline{t}(\tau) \).
for all f in $C(X,E)$, where τ is the identity mapping on X, and τ is a certain mapping induced by t. This generalizes the result of L. E. Pursell [14, Theorem 2.1].

In Chapter III, we consider the bounded subring $C^*(X,E)$ of $C(X,E)$, where E is a topological ring. We say that a function f in $C(X,E)$ belongs to $C^*(X,E)$ if for any zero-neighborhood U in E, there exists a zero-neighborhood V in E such that $f[X] \cdot V \subseteq U$ and $V \cdot f[X] \subseteq U$. We obtain analogous results for $C^*(X,E)$ which closely follow the theory of $C(X,E)$; namely, for any E^*-completely regular space X [Definition 9.5], there exists an E^*-compactification v^*_EX of X such that every function f in $C^*(X,E)$ has an extension τ in $C^*(v^*_EX,E)$; when E is the space of all rationals, real numbers, complex numbers or the real quaternions, v^*_EX is just the space of all E-homomorphism from $C^*(X,E)$ into E. This is also valid for a topological ring which satisfies certain conditions. Also, two E^*-compact spaces [Definition 10.1] X and Y are homeomorphic if, and only if the rings $C^*(X,E)$ and $C^*(Y,E)$ are E-isomorphic, where E is any H^*-topological ring [Definition 12.8].
CHAPTER 0

PRELIMINARIES

Unless explicitly stated, all topological spaces in consideration are assumed to be Hausdorff. Thus, the abbreviation "space" always means "Hausdorff topological space". Therefore, when we "construct" a space, we must check that it is a Hausdorff space. We assume also a basic knowledge of a general topology and abstract algebra.

In this chapter, we set forth some conventions in notation and terminology, and record some preliminary results. One should refer to [3] and [6] for those undefined terminologies.

$C(X,Y)$ will denote the set of all continuous functions from the space X into the space Y. For each y in Y, we shall denote by χ the constant function $\chi(x) = y$ for every x in X; and $Y = \{y : y \in Y\}$.

0.1 Definition. We say that a subset \mathcal{F} of $C(X,Y)$ determines the topology of X if $\{\phi^{-1}[G] : G$ is an open subset in Y and $\phi \in \mathcal{F}\}$ is a subbase for the topology of X.

0.2 Lemma. [3, p. 42]

(a) Let \mathcal{F} be a family of mappings from a space X into a space Y that determines the topology of X. A mapping σ from a space S into X is continuous if and only if the composite function $\phi \circ \sigma$ is continuous for every ϕ in \mathcal{F}.
(b) A mapping \(\sigma \) from a space into a product \(X = \prod_\alpha X_\alpha \) is continuous if and only if \(\pi_\alpha \circ \sigma \) is continuous for each projection \(\pi_\alpha \).

0.3 Definitions. Suppose that \(F \) is a family of functions such that each member \(f \) of \(F \) is on a topological space \(X \) into a space \(Y_f \). Then there is a natural mapping \(\sigma \) from \(X \) into the product \(\prod \{ Y_f : f \in F \} \) which is defined by mapping a point \(x \) of \(X \) into a member of the product whose \(f \)-coordinate is \(f(x) \), i.e. \(\sigma(x)_f = f(x) \) for each \(f \) in \(F \). We shall call \(\sigma \) the evaluation map.

We say that \(F \) distinguishes (or separates) points of \(X \) if for each pair of distinct points \(x \) and \(y \) of \(X \), there is \(f \) in \(F \) such that \(f(x) \neq f(y) \). The family \(F \) distinguishes (or separates) points and closed sets of \(X \) if for each closed set \(A \) of \(X \) and each point \(x \) of \(X \sim A \) there is \(f \) in \(F \) such that \(f(x) \notin \text{cl}f[A] \).

0.4 Remark. Since the space \(X \) is assumed to be Hausdorff, \(F \) separates points and closed sets of \(X \) implies \(F \) separates points of \(X \).

0.5 Lemma. [6, p. 116] Let \(F \) be a family of continuous functions, each member \(f \) being on a topological space \(X \) to a topological space \(Y_f \). Then:

(a) The evaluation map \(\sigma \) is a continuous function on \(X \) to the product space \(\prod \{ Y_f : f \in F \} \).
(b) The function \(\sigma \) is an open map of \(X \) onto \(\sigma[X] \) if \(\mathcal{F} \) distinguishes points and closed sets of \(X \).

(c) The function \(\sigma \) is one to one if and only if \(\mathcal{F} \) distinguishes points of \(X \).

By virtue of Lemma 0.5 and Remark 0.4, we have:

0.6 Corollary. Let \(\mathcal{F} \) be the family of functions given in Lemma 0.5. Then the evaluation map \(\sigma \) is a homeomorphism from \(X \) onto \(\sigma[X] \) if \(\mathcal{F} \) distinguishes points and closed sets of \(X \).

0.7 Lemma. [3, p. 92] If \(\varphi \) is a continuous function from a space \(S \) into a space \(Y \) whose restriction \(\varphi|_X \) to a dense subset \(X \) is a homeomorphism, then \(\varphi[S \sim X] \subset Y \sim \varphi[X] \).

0.8 Lemma. [3, p. 5] Let \(X \) be a dense subset of the Hausdorff spaces \(S \) and \(T \). If the identity mapping on \(X \) has continuous extensions \(\sigma \) from \(S \) into \(T \) and \(\tau \) from \(T \) into \(S \), then \(\sigma \) is a homeomorphism from \(S \) onto \(T \) and \(\sigma \leftarrow = \tau \).
CHAPTER I

E-COMPLETELY REGULAR SPACES AND E-COMPACT SPACES

§1. E-Completely Regular Spaces.

1.1 Definition. Let \(E \) be a space. A space \(X \) is \(E \)-completely regular if \(\bigcup_{n=1}^{\infty} C(X,E^n) \) separates points and closed sets of \(X \).

1.2 Proposition. Suppose \(X \) is \(E \)-completely regular. Then \(C(X,E) \) separates the points of \(X \).

Proof. Let \(x, y \) be two distinct points of \(X \). Since \(X \) is Hausdorff and \(E \)-completely regular, there is \(f \) in \(C(X,E^n) \) for some \(n \) such that \(f(x) \notin \text{cl}(f(y)) \). Hence \(f(x) \neq f(y) \). Thus for some \(1 \leq i \leq n \), \((\pi_i \cdot f)(x) \neq (\pi_i \cdot f)(y) \). But \(\pi_i \cdot f \in C(X,E) \). This implies that \(C(X,E) \) separates the points of \(X \).

1.3 Definition. Let \(E \) be a space and \(X \) be a subset of a space \(Y \). We say that \(X \) is \(C(Y,E) \)-embedded if every function in \(C(X,E) \) can be extended to a function in \(C(Y,E) \).

1.4 Theorem. The following statements are equivalent.

(a) \(X \) is \(E \)-completely regular.

(b) \(X \) is homeomorphic with a \(C(E^{C(X,E)},E) \)-embedded subspace of \(E^{C(X,E)} \) under the evaluation map.

(c) \(X \) is homeomorphic with a subset of \(E^\alpha \) for some cardinal number \(\alpha \).
(d) $C(X,E)$ determines the topology of X.

Proof. (a) \rightarrow (b). Let σ be the evaluation map from X into $E^{C(X,E)}$. We shall show that σ is a homeomorphism and $\sigma[X]$ is $C(E^C(X,E),E)$-embedded.

By hypothesis, X is E-completely regular, so $C(X,E)$ separates points of X by Proposition 1.2. By Lemma 0.5, σ is a one to one continuous map.

σ is an open mapping from X onto $\sigma[X]$. For let G be a non-empty open subset of X. For each point p in G there is h in $C(X,E^n)$ for some integer n such that $h(p) \notin \text{cl} h[X \sim G]$. Let h_i ($i = 1, 2, \ldots, n$) be the i-th coordinate function of h; i.e. $h_i = \pi_i \circ h$. Then $h_i \in C(X,E)$ ($i = 1, 2, \ldots, n$). Let $\pi(h_1, h_2, \ldots, h_n)$ be the projection from $E^{C(X,E)}$ into $E \{h_1, h_2, \ldots, h_n\} = E^n$. Then $N = \sigma[X] \cap \pi(h_1, \ldots, h_n)^{-1}[E^n \sim \text{cl} h[X \sim G]]$ is an open set in $\sigma[X]$ containing the point $\sigma(p)$, since $\pi(h_1, \ldots, h_n)(\sigma(p)) = (h_1(p), h_2(p), \ldots, h_n(p)) = h(p) \notin \text{cl} h[X \sim G]$. Furthermore, if $q \in N$ then $q = \sigma(x)$ for some x in X and $\pi(h_1, \ldots, h_n)(q) = \pi(h_1, \ldots, h_n)(\sigma(x)) = (h_1(x), \ldots, h_n(x)) = h(x) \notin \text{cl} h[X \sim G]$.

Hence $x \in G$ and $\sigma(x) = q \in \sigma[G]$. Therefore $\sigma(p) \in N \subset \sigma[G]$, and $\sigma[G]$ is open in $\sigma[X]$. This completes the proof that
\(\sigma \) is a homeomorphism.

Next, for each \(g \) in \(C(\sigma[X],E) \), \(g \cdot \sigma \) is in \(C(X,E) \). Thus \(\pi_{g \cdot \sigma} \in C(E^C(X,E),E) \) and \(\pi_{g \cdot \sigma}|_{\sigma[X]} = g \). Therefore, \(\sigma[X] \) is a \(C(E^C(X,E),E) \)-embedded subset of \(E^C(X,E) \).

(b) \(\rightarrow \) (c). The proof is trivial. (Let \(\alpha \) be the cardinal of \(C(X,E) \)).

(c) \(\rightarrow \) (d). Since \(X \) is homeomorphic with a subset of \(E^\alpha \) for some \(\alpha \), we may regard \(X \) as a subset of \(E^\alpha \). Then the topology of \(X \) is determined by the set \(\mathcal{P} \) of all projections from \(X \) into \(E \). But \(\mathcal{P} \subset C(X,E) \), hence the topology determined by \(\mathcal{P} \) is contained in the topology induced by \(C(X,E) \), and the latter is the smallest topology for \(X \) in which every member of \(C(X,E) \) is continuous. Thus the topology of \(X \) is determined by \(C(X,E) \).

(d) \(\rightarrow \) (a). Let \(F \) be a closed subset of \(X \) and \(p \in X \setminus F \). Since \(C(X,E) \) determines the topology of \(X \), there is a subbasic open set \(U = \bigcap_{i=1}^{n} f_i^{-1}[G_i] \), where \(f_i \in C(X,E) \) and \(G_i \) are open subsets of \(E \), such that \(p \in U \) and \(U \cap F = \emptyset \).

Let \(f \) be the evaluation map from \(X \) into \(E^{\{f_1, \ldots, f_n\}} = E^n \).

Then \(f \in C(X,E^n) \) by Lemma 0.5. \(V = \bigcap_{i=1}^{n} \pi_{f_i}^{-1}[G_i] \) is an open set in \(E^n \) and \(f(p) \in V \). Moreover, \(V \cap f[F] = \emptyset \), for if there exists \(x \in F \) such that \(f(x) \in V \), then \(x \in U \), and...
this contradicts $U \cap F = \emptyset$. Thus $f(p) \notin \text{cl}f[F]$ and $f \in C(X, E^n)$. Therefore, X is E-completely regular.

The following two corollaries are immediate consequences of Theorem 1.4.

1.5 Corollary. Any subspace of an E-completely regular space is E-completely regular.

1.6 Corollary. An arbitrary product of E-completely regular spaces is E-completely regular.

1.7 Definition. A space X is O-dimensional if it has a base consisting of open and closed sets.

1.8 Corollary. A space X is O-dimensional if and only if X is E-completely regular for any O-dimensional space E with $\text{card } E \geq 2$.

Proof. Suppose that X is O-dimensional and let E be a space consisting of more than one point. Suppose F is closed in X and $p \in X \sim F$. Since X is O-dimensional, there exists an open and closed subset U of X such that $p \in U$ and $U \cap F = \emptyset$. Define $f: X \to E$ by $f[U] = \{a\}$ and $f[X \sim U] = \{b\}$ where a, b are fixed distinct points of E. Then $f \in C(X, E)$ and $f(p) \notin \text{cl}f[F]$. Thus X is E-completely regular.

Conversely, let E be a O-dimensional space and X be an E-completely regular space. By Theorem 1.4, $C(X, E)$ determines the topology of X. Let \mathcal{A} be a base of E
consisting of open and closed sets. Then

\[\mathfrak{B} = \{ f^{-1}[A] : A \in \mathfrak{A}, f \in C(X,E) \} \]

is a base for \(X \) and each element in \(\mathfrak{B} \) is open and closed. Thus \(X \) is 0-dimensional.

1.9 Remarks. Urysohn [16] showed that there exists a countable Hausdorff space \(E \) such that the only real-valued continuous functions are constant functions. Such a space \(E \) is evidently not completely regular. But it is clearly an \(E \)-completely regular space, for the identity mapping on \(E \) is in \(C(E,E) \) and it separates points and closed sets of \(E \).

Suppose \(E_1 \) is \(E_2 \)-completely regular. Then every \(E_1 \)-completely regular space \(X \) is \(E_2 \)-completely regular. For let \(F \) be a closed subset of \(X \) and \(p \in X \setminus F \). Since \(X \) is \(E_1 \)-completely regular, there exists \(f \) in \(C(X,E_1^n) \) for some finite integer \(n \) such that \(f(p) \notin \text{cl}f[F] \). By Corollary 1.6, \(E_1^n \) is \(E_2 \)-completely regular, so there exists \(h \) in \(C(E_1^n,E_2^m) \) for some finite integer \(m \) such that \(h(f(p)) \notin \text{cl}h [\text{cl}f[F]] \supset \text{cl}(h \cdot f)[F] \). But \(h \cdot f \in C(X,E_2^m) \).

Hence \(X \) is \(E_2 \)-completely regular. Thus, we have:

(a) If \(E_1 \) is \(E_2 \)-completely regular then every \(E_1 \)-completely regular space is \(E_2 \)-completely regular.

There are spaces \(E_1 \) and \(E_2 \) such that \(E_1 \) is \(E_2 \)-completely regular but not conversely. For instance, take
12.

Let $E_1 = \{a, b\}$ with discrete topology and $E_2 = [0, 1]$ with usual topology. Then E_1 is E_2-completely regular but E_2 is not E_1-completely regular since $C(E_2, E_1)$ consists only of constant functions.

Suppose E is completely regular. Similar to the proof of (a), every E-completely regular space is completely regular. But, the class of all E-completely regular spaces may be properly contained in the class of all completely regular spaces. For instance, take $E = \{a, b\}$ with discrete topology. Then $\{a, b\}$ is completely regular. The interval $[0,1]$ is completely regular, but it is not E-completely regular. For the case $E = \mathbb{R}$ (the space of all real numbers), a space X is \mathbb{R}-completely regular if and only if it is completely regular, since \mathbb{R} is completely regular and evidently, every completely regular space is \mathbb{R}-completely regular.

J. de Groot showed that there exists a subset E of the Euclidean plane which contains more than one point and has the property that each continuous function of E into itself is either the identity or a constant mapping [2, p. 435].

Consider this set E and let $x_1, x_2 \in E$ and $x_1 \neq x_2$. Let $p = (x_1, x_2)$ in E^2 and $F = \{(x_1, x_1), (x_2, x_2)\} \subseteq E^2$. Then F is closed in E^2 and $p \notin F$. Suppose there exists a continuous mapping f of E^2 into E such that $f(p) \notin \text{cl}_E[F]$. Then the mapping f restricted to the set $A = \{(x, x_2)\} \subseteq E$ is non-constant, otherwise $f(p) = f(x_2, x_2)$,
and this contradicts \(f(p) \notin \text{cl} f[F] \). The function \(f|_A \) can be regarded as a function in \(C(E,E) \), and since it is non-constant, it is the identity, i.e. \(f(x,x_2) = x \) for every \(x \) in \(E \). In particular, \(f(p) = f(x_1,x_2) = x_1 \). Similarly, \(f|_B \) where \(B = \{(x_1,x): x \in E\} \) is non-constant and \(f|_B \in C(E,E) \), thus \(f(x_1,x) = x \) for every \(x \) in \(E \), and in particular, \(f(p) = f(x_1,x_2) = x_2 \). This leads to a contradiction. Therefore, \(C(E^2,E) \) does not separate points and closed sets of \(E^2 \) although \(E^2 \) is \(E \)-completely regular.

Thus, in general, the fact that \(\bigcup_{n=1}^{\infty} C(X,E^n) \) separates points and closed sets of a space \(X \) does not imply that \(C(X,E) \) separates points and closed sets of \(X \).

1.10 Definition. We say that an operation \(\Theta \) on \(C(X,E) \) is defined pointwisely provided that there exists an operation \(\Theta \) on \(E \) such that \((f \Theta g)(p) = f(p) \Theta g(p)\) for every \(f, g \) in \(C(X,E) \) and every point \(p \) in \(E \).

We can extend the above definition for pointwisely defined operations to operations which have more than two arguments as follows.

1.11 Definitions. An algebraic structure \(E \) is a couple \([E; \{0_0,0_1,\ldots,0_\xi,\ldots\}^\xi<\alpha] \) where the \(0_\xi \) (\(\xi<\alpha \)) are operations on the set \(E \). The type of \(E \) is the set \(\{n_\xi: \xi<\alpha\} \) where \(n_\xi \) denotes the number of arguments of the operation \(0_\xi \).
An algebraic structure E will be called a topological algebraic structure provided that a Hausdorff topology for E is given such that all operations on E are continuous.

Given a space X and a topological algebraic structure E, $C(X,E)$ becomes an algebraic structure of the same type as E if the operations on $C(X,E)$ are defined pointwisely. Suppose A_1 and A_2 are two algebraic structures of the same type. Then a homomorphism from A_1 into A_2 is a mapping from A_1 into A_2 which preserves all the operations on A_1. A one-to-one homomorphism from A_1 into A_2 is called an isomorphism.

1.12 Theorem. Let E be a space. For any topological space X there exists an E-completely regular space Y and a continuous map τ from X onto Y such that the induced mapping $\tau': g \mapsto g \circ \tau$ is a one-to-one map from $C(Y,E)$ onto $C(X,E)$. Moreover, if E is a topological algebraic structure, then τ' preserves all pointwisely defined operations, i.e., τ' is an isomorphism from $C(Y,E)$ onto $C(X,E)$.

Proof. Define $x \equiv x'$ in X to mean that $f(x) = f(x')$ for every $f \in C(X,E)$. Then \equiv is an equivalence relation on X. Let Y be the set of all equivalence classes of X under \equiv. Define a mapping τ from X onto Y as follows: $\tau(x)$ is the equivalence class that contains x for each x in X.

With each f in $C(X,E)$, associate a function g in E^Y as follows: $g(y)$ is the common value of $f(x)$ at every point x of y. Thus $f = g \cdot \tau$. Let C' denote the family of all such functions g; i.e. $g \in C'$ if and only if $g \cdot \tau \in C(X,E)$. Now, endow Y with the weak topology induced by C'. Then $C' \subset C(Y,E)$. The continuity of τ follows from Lemma 0.2. Therefore, for any g in $C(Y,E)$, $g \cdot \tau$ is in $C(X,E)$ and hence $g \in C'$. Thus $C(Y,E) = C'$ and so the topology of Y is determined by $C(Y,E)$. It follows from Theorem 1.4 that Y is E-completely regular and it remains to check that Y is Hausdorff.

Given y, y' in Y and $y \neq y'$, there exists $x, x' \in X$ and $x \in y, x' \in y'$. Therefore $x \neq x'$, this means there is an f in $C(X,E)$ such that $f(x) \neq f(x')$. Let g be the function in C' associated with f. Then $g(y) = f(x) \neq f(x') = g(y')$. Since E is Hausdorff, let U, V be disjoint open sets in E containing $g(y)$ and $g(y')$ respectively. Then $g^{-1}[U]$ and $g^{-1}[V]$ are disjoint open sets in Y containing y and y' respectively.

The induced mapping τ' is an onto map: for each f in $C(X,E)$, let g be the function in C' associated with f, then $\tau'(g) = g \cdot \tau = f$.

τ' is one-to-one: let $g_1, g_2 \in C(Y,E)$ and $\tau'(g_1) = \tau'(g_2)$ i.e. $g_1 \cdot \tau = g_2 \cdot \tau$ on X. Since $\tau[X] = Y$, $g_1 = g_2$.
Suppose E is a topological algebraic structure. Then $C(X,E)$ and $C(Y,E)$ are algebraic structures of the same type if the operations on them are defined pointwisely. It can easily be checked that τ' is an isomorphism from $C(Y,E)$ onto $C(X,E)$.

1.13 Remark. Let E be a topological algebraic structure. As a consequence of the foregoing theorem, algebraic properties that hold for all $C(X,E)$ with X E-completely regular, hold just as well for all $C(X,E)$, with X arbitrary. Perhaps, this is a reason for studying E-completely regular spaces, for we are interested in the connections between the algebraic structure of $C(X,E)$ and the topological properties of X.

§2. E-Compact Spaces.

2.1 Definition. Let E be a given space. A space X is E-compact if X is E-completely regular and there does not exist any space Y which contains X as a proper dense $C(Y,E)$-embedded subset of Y.

2.2 Remark. It is easy to see that E-compactness is a topological invariant.

2.3 Lemma. An arbitrary closed subset F of E^α where α is any cardinal number, is E-compact.

Proof. Suppose that F is a closed subset of E^α. Then F is E-completely regular by Corollary 1.5. If F is not E-compact then there exists a space T which contains F as
17.

a proper dense $C(T,E)$-embedded subset. Each projection π_i from F into E has an extension π_i^* in $C(T,E)$. Define a mapping $h : p \to (\pi_i^*(p))_i$ from T into E^α. Then $h \in C(T,E^\alpha)$ and $h|_F$ is the identity on F. Therefore, $h[T] = h[cl_T F] \subset clh[F] = cl F = F$. Thus h is in $C(T,F)$. By Lemma 0.7, $h[T \sim F] \subset F \sim h[F] = F \sim F = \emptyset$. Hence $T = F$. This contradicts that F is a proper subset of T.

2.4 Corollary. Given a space E, then E^α is E-compact for any cardinal number α.

Proof. Since E^α is closed in itself, by Lemma 2.3, E^α is E-compact.

2.5 Theorem. Given any space X, there exists an E-compact space W and a continuous mapping θ from X into a dense $C(W,E)$-embedded subset of W such that the induced mapping $\theta' : h \to h \circ \theta$ is one-one from $C(W,E)$ onto $C(X,E)$. Furthermore, if E is a topological algebraic structure then θ' is an isomorphism from $C(W,E)$ onto $C(X,E)$ with respect to all pointwisely defined operations.

Proof. In virtue of Theorem 1.12, there exists an E-completely regular space Y and a continuous mapping τ from X onto Y such that the induced mapping $\tau' = g \to g \circ \tau$ is one-one from $C(Y,E)$ onto $C(X,E)$. Since Y is E-completely regular, by Theorem 1.4 (b), $\sigma[Y]$ is a $C(E^{C(Y,E),E})$-embedded
subset of $E^C(Y,E)$ where σ is the evaluation map from Y into $E^C(Y,E)$.

For each h in $C(\sigma[Y],E)$, $g = h \circ \sigma \in C(Y,E)$ and $\pi_g \circ \sigma = g = h \circ \sigma$. Thus $h = \pi_g|_{\sigma[Y]}$. Therefore, $C(\sigma[Y],E)$ consists precisely of the restrictions to $\sigma[Y]$ of all the projections π_g ($g \in C(Y,E)$). Now a function in $C(\sigma[Y],E)$ may have many continuous extensions to all of $E^C(Y,E)$, but all of these extensions must agree on $\sigma[Y]$ and hence also on its closure $\text{cl}\sigma[Y]$ since E is Hausdorff. Thus the process of extension provided a one-one mapping, namely, $h \rightarrow \pi_h \circ |_{\text{cl}\sigma[Y]}$ from $C(\sigma[Y],E)$ onto $C(\text{cl}\sigma[Y],E)$. Since $\text{cl}\sigma[Y]$ is a closed subset of the product space $E^C(Y,E)$, it is E-compact by Lemma 2.3.

Let $W = \text{cl}\sigma[Y]$ and $\Theta = \sigma \circ \tau$. Then $\Theta[X] = (\sigma \circ \tau)[X] = \sigma[Y]$ which is dense and $C(W,E)$-embedded in W. Also the mapping $\Theta^\prime: h \rightarrow h \circ \Theta$ is one-one from $C(W,E)$ onto $C(X,E)$.

If E is a topological algebraic structure then it is easy to check that Θ^\prime is an isomorphism from $C(W,E)$ onto $C(X,E)$.

2.6 Theorem. Given a space E. The following statements are equivalent.
(a) X is E-compact.
(b) X is homeomorphic with a $C(\mu^C(X,E),E)$-embedded subset of $E^C(X,E)$ under the evaluation map σ, and $\sigma[X]$
is closed in \(E^C(X, E) \).

(c) \(X \) is homeomorphic to a closed subset of \(E^\alpha \) for some cardinal number \(\alpha \).

Proof. (a) \(\rightarrow \) (b). Suppose \(X \) is \(E \)-compact. Then \(X \) is \(E \)-completely regular, by Theorem 1.4 (b), the evaluation map \(\sigma: X \rightarrow E^C(X, E) \) is a homeomorphism, and \(\sigma[X] \) is \(C(E^C(X, E), E) \)-embedded in \(E^C(X, E) \). If \(\text{cl}\sigma[X] \neq \sigma[X] \) then \(\text{cl}\sigma[X] \) contains \(\sigma[X] \) as a proper dense \(C(\text{cl}\sigma[X], E) \)-embedded subset. This means that \(\sigma[X] \) is not \(E \)-compact. But \(\sigma[X] \) as a homeomorphic image of an \(E \)-compact space \(X' \) is \(E \)-compact. Thus \(\text{cl}\sigma[X] = \sigma[X] \).

(b) \(\rightarrow \) (c). The proof is trivial.

(c) \(\rightarrow \) (a). We know that \(E \)-compactness is a topological invariant and by Lemma 2.3, closed subsets in \(E^\alpha \) are \(E \)-compact, therefore \(X \) is \(E \)-compact if it is homeomorphic with some closed subset in \(E^\alpha \) for some \(\alpha \).

The following two corollaries are immediate consequences of the above theorem.

2.7 Corollary. Closed subsets of an \(E \)-compact space are \(E \)-compact.

2.8 Corollary. Arbitrary products of \(E \)-compact spaces are again \(E \)-compact.

2.9 Remark. Let \(I = [0, 1] \) and \(R \) be the space of all real numbers. Then
(a) The following are equivalent.

(i) X is completely regular.
(ii) X is I-completely regular.
(iii) X is R-completely regular.

(b) [3, p. 160]. A space is (Hewitt) real-compact if and only if it is homeomorphic with a closed subspace of a product of real lines.

(c) [6, p. 118]. A space is compact if and only if it is homeomorphic with a closed subspace of \(I^\alpha \) for some \(\alpha \).

Proof. (a) (i) \(\rightarrow \) (ii). Suppose X is completely regular. Then \(C(X,I) \) separates points and closed sets of X, hence X is I-completely regular.

(ii) \(\rightarrow \) (iii). Since \(C(X,I^n) \subseteq C(X,R^n) \) \((n = 1,2,\ldots) \), I-complete regularity of X implies R-complete regularity of X.

(iii) \(\rightarrow \) (i). The proof is given in Remark 1.9.

In view of the above remark and Theorem 2.6, we have:

2.10 Proposition. (a) A space X is compact if and only if it is I-compact.

(b) A space X is (Hewitt) real-compact if and only if it is R-compact.
§3. The Existence of the Maximal E-Compactification \(v_E X \) of an E-Completely Regular Space \(X \).

3.1 Definition. By an E-compactification of \(X \) we mean an E-compact space \(Y \) which contains \(X \) as a dense subset.

3.2 Lemma. Let \(X \) be a dense subset of a space \(T \). Then (a) is equivalent to (b).

(a) \(X \) is \(C(T,E) \)-embedded.

(b) \(X \) is \(C(T,Y) \)-embedded for any E-compact space \(Y \).

Proof. (a) \(\rightarrow \) (b). Suppose \(Y \) is E-compact. In view of Theorem 2.6 we may regard \(Y \) as a closed subset of some \(E^\alpha \). For each \(g \) in \(C(X,Y) \), let \(g_i \) be the i-th coordinate function of \(g \), i.e. \(g_i = \tau_i \cdot g \) (\(i \leq \alpha \)) where \(\tau_i \) are projections. Then \(g_i \in C(X,E) \). By hypothesis, it has an extension \(g_i^* \) in \(C(T,E) \). Let \(g^* \) be a function from \(T \) into \(E^\alpha \) whose i-th coordinate function is \(g_i^* \). Then \(g^* \in C(T,E^\alpha) \) and \(g^* \) is an extension of \(g \). In fact \(g^* \in C(T,Y) \), for \(g^*[T] = g^*[clX] \subseteq clg^*[X] = clg[X] \subseteq clY = Y \). Therefore \(g^* \in C(T,Y) \) is the extension of \(g \) for \(g \) in \(C(X,Y) \).

(b) \(\rightarrow \) (a). By Lemma 2.4, \(E \) itself is E-compact. Thus (a) is a special case of (b).

3.3 Theorem. Every E-completely regular space \(X \) has an E-compactification \(v_E X \) such that \((*) \): \(X \) is \(C(v_E X,Y) \)-embedded for any E-compact space \(Y \). Furthermore, the space
v^X is uniquely determined by X in the sense that if an E-compactification T of X has property (*) then there exists a homeomorphism of v^X onto T that leaves X pointwise fixed.

Proof. Suppose X is E-completely regular. By Theorem 1.4 (b), the evaluation map σ from X into $E^C(X,E)$ is a homeomorphism and $\sigma[X]$ is $C(E^C(X,E),E)$-embedded. Identify X and $\sigma[X]$, then X is a $C(E^C(X,E),Y)$-embedded subset of $E^C(X,E)$ for any E-compact space Y (by Lemma 3.2). Therefore X is $C(\text{cl}X,Y)$-embedded for any E-compact space Y. $\text{cl}X$ being a closed subset of the E-compact space $E^C(X,E)$ is E-compact (by Corollary 2.7). Take $v^X = \text{cl}X$. Then v^X is an E-compactification of X with property (*).

Suppose T is any E-compactification of X with property (*). The identity mapping on X has continuous extensions θ from v^X into T and τ from T into v^X. By Lemma 0.8, θ is a homeomorphism from v^X onto T and clearly $\theta(p) = p$ for every p in X.

3.4 Remark. For any E-completely regular space X, let $\mathcal{F}(X,E)$ be the collection of all E-compactifications of X. Define an order \leq on $\mathcal{F}(X,E)$ as follows: let $Y, T \in \mathcal{F}(X,E)$. Then $Y \leq T$ means that there exists a continuous function f from T into Y such that $f|_X$ is the identity on X.
It is easy to check that \((\mathcal{F}(X,E), \leq)\) is a partially ordered set. Furthermore, \(T \leq \nu_X\) for all \(T\) in \(\mathcal{F}(X,E)\), since the identity map on \(X\) has a continuous extension from \(\nu_X\) into \(T\). We shall therefore call \(\nu_X\) the maximal \(E\)-compactification of \(X\).

3.5 Remark. The space \(\nu_X\) is characterized as an \(E\)-compactification of \(X\) in which \(X\) is \(C(\nu_X,E)\)-embedded. Evidently, the mapping \(f \rightarrow f^*\) (where \(f^*\) is the extension of \(f\)) of \(C(X,E)\) onto \(C(\nu_X,E)\) preserves all pointwisely defined operations.

3.6 Corollary. Let \(X\) be an \(E\)-completely regular space. Then \(\text{cl}_E[X]\) is a "model" of \(\nu_X\) where \(\sigma\) is the evaluation map from \(X\) into \(E^C(X,E)\).

Proof. This can be seen in the proof of Theorem 3.3.

3.7 Corollary. Let \(S \subseteq X\) where \(X\) is \(E\)-completely regular. If \(S\) is \(C(X,E)\)-embedded then \(\text{cl}_{\nu_X}S = \nu_ES\).

Proof. Since \(\text{cl}_{\nu_X}S\) is an \(E\)-compactification of \(S\) in which \(S\) is \(C(\text{cl}_{\nu_X}S,E)\)-embedded, \(\text{cl}_{\nu_X}S = \nu_ES\).

3.8 Theorem. An arbitrary intersection of \(E\)-compact subsets of an \(E\)-completely regular space is \(E\)-compact.
24.

Proof. Let Y_α be a family of E-compact subsets of an E-completely regular space Y and let $X = \cap_\alpha Y_\alpha$. For each α, the identity mapping τ from X into Y_α has a continuous extension from $\nu E X$ into the E-compact space Y_α. As τ can have only one continuous extension from $\nu E X$ into Y, these extensions all coincide; hence this common extension τ^* carries $\nu E X$ into $\cap_\alpha Y_\alpha$ i.e. into X. By Lemma 0.7, $\tau^*[\nu E X \sim X] \subset X \sim \tau^*[X] = X \sim X = \emptyset$. Hence $X = \nu E X$. This proves that X is E-compact.

3.9 Theorem. Let τ be a continuous mapping from an E-compact space X into an E-completely regular space Y. Then the total preimage of each E-compact subset of Y is again E-compact.

Proof. Let F be an E-compact subset of Y, and let $S = \tau^{-1}[F]$. Because X is E-compact, the identity map σ on S has a continuous extension to a mapping $\sigma^*: \nu E S \rightarrow X$. Also, $\tau|_S$ has a continuous extension $(\tau|_S)^*: \nu E S \rightarrow F$.

Since S is dense in $\nu E S$, both these extensions are determined by their values on S. Now, $\tau|_S = \tau \cdot \sigma$, and therefore, $(\tau|_S)^* = (\tau \cdot \sigma)^* = \tau \cdot \sigma^*$. But by Lemma 0.7, $\sigma^*[\nu E S \sim S] \subset X \sim S$ so that $(\tau \cdot \sigma^*)[\nu E S \sim S] \subset Y \sim \tau[S] = Y \sim F$, whereas $(\tau|_S)^*[\nu E S \sim S] \subset F$. Therefore, $\nu E S \sim S = \emptyset$ or $S = \nu E S$, so S is E-compact.
3.10 Problem: Let X be an E-completely regular but not an E-compact space. Find some conditions on X or E so that the smallest element in $(\mathcal{F}(X,E), \leq)$ exists.

3.11 Theorem. Suppose E_1, E_2 are two topological spaces such that E_1 is E_2-compact and E_2 is E_1-completely regular. Then $\nu_{E_1}X \supset \nu_{E_2}X$ for every E_1-completely regular space X.

Proof. Since E_1 is E_2-completely regular, E_1-complete regularity of a space X implies E_2-complete regularity of X. Thus, given any E_1-completely regular space X, $\nu_{E_2}X$ exists, and since E_1 is E_2-compact, every function f in $C(X, E_1)$ has a unique extension f^* in $C(\nu_{E_2}X, E_1)$.

Since E_2 is E_1-completely regular, the E_2-compact space $\nu_{E_2}X$ is E_1-completely regular, so $\nu_{E_1}(\nu_{E_2}X)$ exists, and it is an E_1-compactification of X such that every function g in $C(\nu_{E_2}X, E_1)$ has an extension in $C(\nu_{E_1}(\nu_{E_2}X), E_1)$. But, for any function $f \in C(X, E_1)$, $f = g|_X$ for some g in $C(\nu_{E_2}X, E_1)$, so f has an extension in $C(\nu_{E_1}(\nu_{E_2}X), E_1)$.

Hence $\nu_{E_1}(\nu_{E_2}X) = \nu_{E_1}X$. Therefore, $\nu_{E_2}X \subset \nu_{E_1}X$.

If R is the real numbers and C is the complex numbers then R being a closed subset of C is C-compact, and C is R-compact since $C = R^2$. The class of all
completely regular spaces are precisely those spaces that are R-completely regular or C-completely regular. By Theorem 3.11, for any completely regular space X, $\nu_R X = \nu_C X$.

§4. Induced Mapping

Let E be a topological space and X, Y be E-completely regular spaces. Suppose τ is a continuous function from X into Y. The mapping τ' from $C(Y,E)$ into $C(X,E)$ defined by $\tau'(g) = g \cdot \tau$ ($g \in C(Y,E)$) is called the induced mapping of τ. The following proposition can be proved easily [3, p. 141].

4.1 Proposition. (a) $\tau'(e) = e$ for every $e \in E$.

(b) τ' determines the mapping τ uniquely.

(c) τ' is onto if and only if τ is a homeomorphism whose image is $C(Y,E)$-embedded in Y.

(d) Suppose E is O-dimensional. Then τ' is one-one (into) if and only if $\tau[X]$ is dense in Y.

As a consequence of (c), (d) of Proposition 4.1, we have:

4.2 Corollary. Let E be a O-dimensional space, X an E-compact space and Y an E-completely regular space. Let $\tau: X \to Y$ be continuous and $\tau': C(Y,E) \to C(X,E)$ be its induced mapping. Then τ' is a one-one, onto map if and only if τ is a homeomorphism of X onto Y.
Let E be a topological ring and X be an E-completely regular space. Then the maximal E-compactification ν^*_EX exists. The main problem in this section is to find some models of ν^*_EX. We are able to show that under certain conditions given on the topological ring E, ν^*_EX is just the set of all "E-homomorphisms" from $C(X,E)$ into E.

5.1 Definition. A Hausdorff topological space E is said to be a topological ring if E itself is a ring and both addition and multiplication are continuous functions from E^2 into E.

5.2 Remark. A topological ring E is a topological algebraic structure. The type of E is $\{2,2\}$.

5.3 Definition. Suppose that E is a subring of each of the rings E_1 and E_2. A ring homomorphism from E_1 into E_2 is said to be an E-homomorphism if its restriction to E is the identity mapping on E. A one-one E-homomorphism is called an E-isomorphism.

Suppose E is a topological ring and X an E-completely regular space. Then X is homeomorphic with
σ[X] where σ is the evaluation map from X into $P = E^{C(X,E)}$ (Theorem 1.4 (b)) and $ν_{EX} = cl_pσ[X]$ (Corollary 3.6). For each point x in X, σx is the mapping $(σx)(f) = f(x)$ from $C(X,E)$ into E. Moreover, σx is an E-homomorphism, since $(σx)(e) = e(x) = e, \forall e \in E$ and $(σx)(f+g) = (f+g)(x) = f(x) + g(x) = (σx)(f) + (σx)(g), (σx)(fg) = (fg)(x) = f(x)g(x) = (σx)(f) \cdot (σx)(g), (f,g \in C(X,E))$. Denote the set of all E-homomorphisms from $C(X,E)$ into E by $H(X,E)$. Then $σ[X] \subset H(X,E)$ and since the elements in $H(X,E)$ are mappings from $C(X,E)$ into E, $H(X,E) \subset E^{C(X,E)} = P$. If $cl_pσ[X] = H(X,E)$ then $H(X,E)$ is a model of $ν_{EX}$. This raises the question: under what conditions does $H(X,E) = cl_pσ[X]$? To answer this, first of all, we show the following lemma.

5.4 Lemma. For any topological space X and any topological ring E, $H(X,E)$ is a closed subset of $E^{C(X,E)}$.

Proof. For any f, g in $C(X,E)$, let

$$A(f,g) = \{p \in E^{C(X,E)} : p(f+g) = p(f) + p(g)\},$$

where $p(f)$ is the image of f under the map p. $A(f,g) \neq \emptyset$ because $A(f,g) \supset σ[X]$. We shall show that $A(f,g)$ is closed in $E^{C(X,E)}$. For any $q \in E^{C(X,E)} \sim A(f,g), q(f+g) \neq q(f) + q(g)$. Since E is Hausdorff, there exist disjoint open sets U, V in E such that $q(f+g) \in U$ and $q(f)+q(g) \in V$. Since the operation + is a continuous function from $E \times E$
into E, there exist neighborhoods V_1, V_2 of $q(f), q(g)$, respectively, such that $V_1 + V_2 \subseteq V$. The set

$W = \pi_{f+g}[U] \cap \pi_f[V_1] \cap \pi_g[V_2]$ is a neighborhood of q in $E^C(X, E)$, and for each $p \in W$, we have $p(f+g) \neq p(f) + p(g)$ since $p(f+g) \in U$, $p(f) + p(g) \in V_1 + V_2 \subseteq V$ and $U \cap V = \emptyset$. Therefore $W \cap A(f, g) = \emptyset$. Hence $A(f, g)$ is a closed subset of $E^C(X, E)$.

Similarly, for any f, g in $C(X, E)$, the set

$M(f, g) = \{p \in E^C(X, E): p(fg) = p(f)p(g)\}$ is closed in $E^C(X, E)$.

Also, for each e in E, $\{p \in E^C(X, E): p(e) = e\}$ is a closed subset of $E^C(X, E)$. We observe that

$H(X, E) = (\bigcap_{f, g \in C(X, E)} A(f, g) \cap M(f, g)) \cap (\bigcap_{e \in E} \{p \in E^C(X, E): p(e) = e\})$.

Therefore $H(X, E)$ is a closed subset of $E^C(X, E)$.

5.5 Definition. A topological division ring E with unity 1 is said to be a (*)-topological division ring if:

(a) there is a continuous function $x \to x^*$ from E into itself such that $xx^* + yy^* = 0$ implies $x = y = 0$, where 0 is the zero element in E.

(b) the function $x \to x^{-1}$ is continuous for $x \neq 0$ in E.

$(x^{-1}$ denote the multiplicative inverse of x in $E)$.

5.6 Examples of (*)-Topological Division Rings.
(1) The ring \mathbb{R} of all real numbers with the usual topology.
(2) The ring \mathbb{Q} of all rational numbers with the relative topology induced by \mathbb{R}.
(3) The complex numbers with the usual topology.
(4) The real quaternion ring \mathbb{H} with topology so that it is homeomorphic with the product \mathbb{R}^4. To be precise, we shall usually identify \mathbb{H} with \mathbb{R}^4, the elements 1, i, j, k of the basis of \mathbb{H} being identified respectively with $(1,0,0,0)$, $(0,1,0,0)$, $(0,0,1,0)$ and $(0,0,0,1)$ of the basis of \mathbb{R}^4.

In (1) and (2), $x^* = x$. In (3) and (4), x^* is the conjugate of x.

Suppose E is a (*)-topological division ring.

For each f in $C(X,E)$, define a function f^* by $f^*(x) = [f(x)]^*$ for every x in X. Then $f^* \in C(X,E)$ since $x \rightarrow x^*$ is continuous on E.

If $f \in C(X,E)$ and $0 \not\in f[X]$ then the function f^{-1} defined by $f^{-1}(x) = [f(x)]^{-1}$ for every x in X is well-defined and since $x \rightarrow x^{-1}$ is continuous for $x \neq 0$ in E, $f^{-1} \in C(X,E)$.

For any f in $C(X,E)$, denote $Z(f) = \{x \in X : f(x) = 0\}$.

5.7 Lemma. Suppose X is any topological space, and E is a (*)-topological division ring with unity 1. Then (1) For any f_1, f_2, \ldots, f_n in $C(X,E)$ ($n = 1, 2, \ldots$), there
exist functions \(g_1, g_2, \ldots, g_n \) in \(C(X, E) \) such that
\[
Z(f_1g_1 + \ldots + f_ng_n) = \bigcap_{i=1}^{n} Z(f_i).
\]

(2) Suppose \(p \) is a non-zero homomorphism from \(C(X, E) \) into \(E \). Then for \(h \) in \(C(X, E) \), \(p(h) = 0 \) implies \(Z(h) \neq \emptyset \).

Proof. (1) We prove (1) by induction.

For \(n = 1 \), take \(g_1 \) to be the constant function 1.

Let \(n = k \). By the induction hypothesis, we may assume that there are functions \(h_1, \ldots, h_{k-1} \) in \(C(X, E) \) such that
\[
Z(f_1h_1 + \ldots + f_{k-1}h_{k-1}) = \bigcap_{i=1}^{k-1} Z(f_i).
\]
Let \(h = f_1h_1 + \ldots + f_{k-1}h_{k-1} \). Since \(E \) is a \((\ast)\)-topological division ring, \(h(x)h^*(x) + f_n(x)f_n^*(x) = 0 \) if and only if \(h(x) = f_n(x) = 0 \). Thus \(Z(hh^* + f_n f_n^*) = Z(h) \cap Z(f_n) \). Consequently, \(Z(f_1g_1 + \ldots + f_ng_n) = \bigcap_{i=1}^{n} Z(f_i) \) where

\[
\begin{align*}
g_1 &= h_1 h^*, \\
g_2 &= h_2 h^*, \\
&\vdots \\
g_{n-1} &= h_{n-1} h^* \\
g_n &= f_n
\end{align*}
\]

(2) Suppose \(h \in C(X, E) \) and \(Z(h) = \emptyset \). Then \(h^{-1} \in C(X, E) \) and \(hh^{-1} = 1 \). Hence \(h \) cannot belong to any proper ideal of \(C(X, E) \). If \(p \) is a non-zero homomorphism from \(C(X, E) \) into \(E \) then \(\text{Ker} \ p = \{ f \in C(X, E) : p(f) = 0 \} \) is a proper ideal of \(C(X, E) \). Thus \(h \notin \text{Ker} \ p \) or \(p(h) \neq 0 \).

We shall now answer the question: When does \(H(X, E) = \text{cl}_p \sigma[X] \)?
Theorem. Suppose E is a (*)-topological division ring, and X is any topological space. Then $H(X, E) = \text{cl}_P \sigma[X]$ where $P = E^C(X, E)$, and σ is the evaluation map from E into $E^C(X, E)$.

Proof. We have seen that $\sigma[X] \subset H(X, E)$ and $H(X, E)$ is a closed subset of P (Lemma 5.4) for any space X and any topological ring E.

An arbitrary basic neighborhood of a point p of $H(X, E)$ is a set

$$\bigcap_{k=1}^{n} \{q \in H(X, E) : q(f_k) \in N_k\}$$

where N_k is a neighborhood of $p(f_k)$ in E, $(k = 1, 2, \ldots, n)$.

By Lemma 5.7 (1), there exist g_1, \ldots, g_n in $C(X, E)$ such that

$$Z(\sum_{k=1}^{n} (f_k - p(f_k))g_k) = \bigcap_{k=1}^{n} Z(f_k - p(f_k)).$$

Let $h = \sum_{k=1}^{n} (f_k - p(f_k))g_k$. Since p is an E-homomorphism, $p(h) = 0$. By (2) of Lemma 5.7, $Z(h) \neq \emptyset$.

Let $x \in Z(h) = \bigcap_{k=1}^{n} Z(f_k - p(f_k))$. Then $f_k(x) = p(f_k)$ $(k = 1, 2, \ldots, n)$. But $(\sigma x)(f_k) = f_k(x)$, hence

$$\sigma x(f_k) = p(f_k) \quad (k = 1, 2, \ldots, n).$$

Therefore, σx is in the
neighborhood of \(p \). Thus \(\mathcal{H}(X, E) = \text{cl}_P \sigma[X] \).

5.9 Theorem. Suppose \(E \) is a \((*)\)-topological division ring with unity, and \(X \) is an \(E \)-completely regular space. Then the set \(\mathcal{H}(X, E) \) of all \(E \)-homomorphisms from \(C(X, E) \) into \(E \) is a model of \(\nu_E X \).

Proof. This is a consequence of Corollary 3.6 and Theorem 5.8.

5.10 Remark. Theorem 5.8 holds for any topological ring \(E \) such that (1), (2) of Lemma 5.7 are valid.

For \(E = \mathbb{Z} \), the ring of all integers, (1) of Lemma 5.7 holds, for given \(f_i \in C(X, \mathbb{Z}) \) \((i = 1, \ldots, n) \), take \(g_i = f_i \) \((i = 1, 2, \ldots, n) \). Then \(\mathcal{Z}(\sum_{i=1}^{n} f_i^2) = \bigcap_{i=1}^{n} \mathcal{Z}(f_i) \). By [10, §5,(v)], (2) of Lemma 5.7 holds. Therefore, in view of Remark 5.10, we have:

5.11 Corollary. For any \(\mathbb{Z} \)-completely regular space \(X \), the set \(\mathcal{H}(X, \mathbb{Z}) \) of all \(\mathbb{Z} \)-homomorphisms from \(C(X, \mathbb{Z}) \) into \(\mathbb{Z} \) is a model of \(\nu_\mathbb{Z} X \).

§6. Representation Theorem of \(E \)-Homomorphisms and its Applications.

6.1 Definition. A topological ring \(E \) is said to be an \(\mathcal{H} \)-topological ring if \(\mathcal{H}(X, E) = \nu_E X \) for any \(E \)-completely regular space \(X \), i.e. \(\mathcal{H}(X, E) = \text{cl}_P \sigma[X] \) where \(P = E^{C(X, E)} \) and \(\sigma \) is the evaluation map from \(X \) into \(P \).
We have seen in Section 5 that the ring \(\mathbb{Z} \) and any \((*)\)-topological division rings are H-topological rings.

In this section, we shall assume that \(E \) is always an H-topological ring.

6.2 Theorem. Suppose \(X \) is an \(E \)-completely regular space. Then \(X \) is \(E \)-compact if and only if every \(E \)-homomorphism \(\theta \) from \(C(X,E) \) into \(E \) is fixed in \(X \), i.e., there exists a unique point \(x \) in \(X \) such that \(\theta(f) = f(x) \) for every \(f \) in \(C(X,E) \).

Proof. By Theorem 2.6, the \(E \)-completely regular space \(X \) is \(E \)-compact if and only if \(X \) is homeomorphic with
\[\sigma[X] \subset \mathbb{P} = E^{C(X,E)} \] under the evaluation map \(\sigma \), and \(\sigma[X] \) is closed in \(\mathbb{P} \). And since \(E \) is an H-topological ring, \(X \) is \(E \)-compact if, and only if, \(\sigma[X] = H(X,E) \). But \(\sigma[X] = H(X,E) \) means that, given any \(\theta \) in \(H(X,E) \), there exists a point \(x \) in \(X \) such that \(\sigma(x) = \theta \). The point \(x \) in \(X \) is uniquely determined by \(\theta \), since \(\sigma \) is a homeomorphism. Thus, \(\theta(f) = \sigma(x)(f) = f(x) \) for every \(f \) in \(C(X,E) \).

When \(E = \mathbb{Z}, \mathbb{Q} \) or \(\mathbb{R} \), it can be easily checked that every non-zero homomorphism from \(C(X,E) \) into \(E \) is an \(E \)-homomorphism. Therefore, as special cases of Theorem 6.2, we have the following corollary.

6.3 Corollary. (1) [10, Theorem 2]. Every non-zero homomorphism \(\varphi: C(X,\mathbb{Z}) \) into \(\mathbb{Z} \) can be written in the form \(\varphi(f) = f(p_{\varphi}) \) for every \(f \) in \(C(X,\mathbb{Z}) \) where \(p_{\varphi} \) is a fixed point in \(X \),
if and only if X is N-compact. (Observe that the space $N = \{1, 2, \ldots, n, \ldots\}$ is homeomorphic with Z, hence N-compact is equivalent to Z-compact.)

(2) [1, theorem 1]. Every non-zero homomorphism $\varphi: C(X, Q) \to Q$ can be written in the form $\varphi(f) = f(p_Q)$ for all f in $C(X, Q)$ where p_Q is a fixed point in X, if and only if X is Q-compact. (Observe that the space N is closed in Q, therefore it is Q-compact. This implies every N-compact space is Q-compact).

(3) [3, p. 142]. A space X is real-compact if and only if, to each non-zero homomorphism φ from $C(X, R)$ into R, there corresponds a point x in X such that $\varphi(f) = f(x)$ for all f in $C(X, R)$.

6.4 Corollary. Suppose that X is an E-completely regular space. Then for each θ in $H(X, E)$ there exists a unique point x in ν_EX such that $\theta(f) = \overline{f}(x)$ for all f in $C(X, E)$, where \overline{f} is the extension of f in $C(\nu_EX, E)$.

Proof. Given θ in $H(X, E)$, we can define a mapping $\overline{\theta}$ from $C(\nu_EX, E)$ into E by $\overline{\theta}(\overline{f}) = \theta(f)$ for every \overline{f} in $C(\nu_EX, E)$. Clearly $\overline{\theta}$ belongs to $H(\nu_EX, E)$. Since ν_EX is E-compact, by Theorem 6.2 there exists a unique point x in ν_EX such that $\overline{\theta}(\overline{f}) = \overline{f}(x)$ for all \overline{f} in $C(\nu_EX, E)$. Thus, $\theta(f) = \overline{f}(x)$ for all f in $C(X, E)$.
As an application, we shall examine the problem of determining when a given E-homomorphism from $C(Y,E)$ into $C(X,E)$ is induced by some continuous mapping from X into Y.

6.5 Theorem. Let t be an E-homomorphism from $C(Y,E)$ into $C(X,E)$. If Y is E-completely regular, then there exists a unique continuous mapping τ from X into $\nu_{v^E}Y$ such that $t(g) = \overline{g} \circ \tau$ for every g in $C(Y,E)$, where \overline{g} is the extension of g in $C(\nu_{v^E}Y,E)$.

Proof. For each x in X, the mapping $g \mapsto (tg)(x)$ is an E-homomorphism from $C(Y,E)$ into E. By Corollary 6.4, there exists a unique point τx in $\nu_{v^E}Y$ such that $(tg)(x) = \overline{g}(\tau x)$ for all g in $C(Y,E)$. The mapping τ from X into $\nu_{v^E}Y$ thus defined, evidently satisfies $tg = \overline{g} \circ \tau$ for all g in $C(Y,E)$. Since tg is continuous and $C(\nu_{v^E}Y,E)$ determines the topology of $\nu_{v^E}Y$, by Lemma 0.2 τ is continuous. The uniqueness of τ follows from Proposition 4.1 (b).

6.6 Remark. In Theorem 6.5, if Y is E-compact then $Y = \nu_{v^E}Y$. Therefore τ is a continuous mapping, from X into Y such that $tg = g \circ \tau$ for all g in $C(Y,E)$.

6.7 Theorem. Suppose that X and Y are E-compact spaces. Then the ring $C(X,E)$ is E-isomorphic with the ring $C(Y,E)$ (i.e., $C(X,E)$ and $C(Y,E)$ are isomorphic under an E-isomorphism) if and only if X and Y are homeomorphic.
Proof. Suppose \(t \) is an E-isomorphism from \(C(Y,E) \) onto \(C(X,E) \). Then there exists continuous functions \(\tau \) from \(X \) into \(Y \) and \(\sigma \) from \(Y \) into \(X \) such that
\[
(tg)(x) = g(\tau x)
\]
for every \(x \) in \(X \) and \(g \) in \(C(Y,E) \) and
\[
(t^{-1}f)(y) = f(\sigma y)
\]
for \(y \) in \(Y \) and \(f \) in \(C(X,E) \). Then for each \(y \) in \(Y \), we have:
\[
g(y) = (t^{-1}(tg))(y) = (tg)(\sigma y) = g(\tau(\sigma y))
\]
for every \(g \) in \(C(Y,E) \). Since \(C(Y,E) \) separates points of \(Y \), \((\tau \circ \sigma)(y) = y \) for all \(y \) in \(Y \). Similarly, \((\sigma \circ \tau)(x) = x \) for all \(x \) in \(X \).

\(\tau \) is one-one: for if \(\tau x_1 = \tau x_2 \) for \(x_1, x_2 \) in \(X \) then
\[
x_1 = \sigma(\tau x_1) = \sigma(\tau x_2) = x_2.
\]

\(\tau \) is onto: given \(y \) in \(Y \) then \(\sigma(y) \) is in \(X \) and \(\tau(\sigma y) = y \).

\(\tau \) has a continuous inverse, namely, the mapping \(\sigma \). Hence \(\tau \) is a homeomorphism from \(X \) onto \(Y \).

Conversely, if \(\tau \) is a homeomorphism from \(X \) onto \(Y \), then the induced mapping \(\tau' : g \to g \circ \tau \) is evidently an E-isomorphism from \(C(Y,E) \) onto \(C(X,E) \).

6.8 Remark. If \(X \) is an E-completely regular space but not an E-compact space, then \(X \) and \(v_E X \) are not homeomorphic. But \(C(X,E) \) is E-isomorphic with \(C(v_E X,E) \) under the mapping
\[
f \to \overline{f}
\]
where \(f \in C(X,E) \) and \(\overline{f} \) is the extension of \(f \) in \(C(v_E X,E) \). Therefore, the class of all E-compact spaces is a maximal class of spaces for which Theorem 6.7 holds.
6.9 Remark. In view of Theorem 6.5 and Theorem 6.7, for any E-compact space X, every E-isomorphism from the ring $C(X,E)$ onto itself is the induced mapping of a unique homeomorphism from X onto itself. The correspondence establishes an anti-isomorphism from the group of all E-automorphisms on $C(X,E)$ onto the group of all homeomorphisms on X. To see this, suppose t_i $(i = 1, 2)$ are E-automorphisms on $C(X,E)$ and τ_i $(i = 1, 2)$ are homeomorphisms on X, such that $t_i(g) = g \cdot \tau_i$ $(g \in C(X,E), i = 1, 2)$. Then $(t_1 \circ t_2)(g) = t_1(t_2g) = t_1(g \cdot \tau_2) = (g \cdot \tau_2) \cdot \tau_1 = g \cdot (\tau_2 \cdot \tau_1)$, $(g \in C(X,E))$. Hence the E-automorphism $t_1 \circ t_2$ corresponds with the homeomorphism $\tau_2 \cdot \tau_1$.

§7. Construction of the Homeomorphism From Y onto X Determined by an E-Isomorphism From $C(X,E)$ Onto $C(Y,E)$.

Let E be an H-topological ring and X, Y be E-compact spaces. Then according to Theorem 6.5 and Theorem 6.7, for any E-isomorphism t from $C(X,E)$ onto $C(Y,E)$ there is a unique homeomorphism τ from Y onto X such that $t(f) = f \circ \tau$ for f in $C(X,E)$. In this section, we shall show that τ is the image of the identity mapping on X under a certain isomorphism induced by t.

Let α be any cardinal number. For each g in $C(X,E^\alpha)$, define $\overline{t}(g)$ in $C(Y,E^\alpha)$ such that the i-th coordinate function of $\overline{t}(g)$ is $t(\tau_i \cdot g)$ where τ_i is
the projection from E^α into the i-th coordinate space E.

Hence $\pi_i \cdot \bar{t}(g) = t(\pi_i \cdot g) = (\pi_i \cdot g) \cdot \tau = \pi_i \cdot (g \cdot \tau)$

$(i \leq \alpha)$. Therefore

7.1 $\bar{t}(g) = g \cdot \tau$

and it is easy to see that \bar{t} is an E^α-isomorphism from $C(X,E^\alpha)$ onto $C(Y,E^\alpha)$, and $(\bar{t}g)[Y] = g[X]$.

Since X and Y are E-completely regular spaces, we can regard them as subspaces of some product E^α. Let π be the identity mapping on X, hence $\pi_i \cdot \pi = \pi_i|_X$ $(i \leq \alpha)$.

By (7.1),

$\bar{t}(\pi) = \pi \cdot \tau = \tau$

Hence:

7.2 Theorem. Suppose E is an H-topological ring and X, Y are E-compact spaces. If t is an E-isomorphism from $C(X,E)$ onto $C(Y,E)$, then $\bar{t}(\pi)$ is the unique homeomorphism from Y onto X such that $t(f) = f \cdot \bar{t}(\pi)$ for all f in $C(X,E)$.

To end this section, we shall examine when every homomorphism is an E-homomorphism and give some consequences of Theorem 6.7 and Theorem 7.2.

7.3 Lemma. Suppose E is a topological ring with a unity 1 and that the zero homomorphism and the identity mapping are the only homomorphisms from E to E. Then every homomorphism t from $C(X,E)$ into $C(Y,E)$ is an E-homomorphism.

Proof. For each y in Y, the correspondence $e \rightarrow (te)(y)$
is a homomorphism from E into E. By hypothesis, it is either the zero homomorphism or the identity mapping on E. But since 1 is the multiplicative unity in C(X,E), and t is onto, \(t(1) \) is the multiplicative unity in C(Y,E), i.e., \(t(1) = 1 \). Therefore, \(1 - (t(1))(y) = 1 \). Hence \(e - (te)(y) \) is not the zero homomorphism, so it is the identity mapping on E. We have: \((te)(y) = e \) for all \(e \) in E. For \(e \) fixed, we have \((te)(y) = e \) for all \(y \) in Y. Thus \(te = e \) for all \(e \) in E, and \(t \) is an \(E \)-homomorphism.

7.4 Lemma. (a) [3, Theorem 0.22]. The only non-zero homomorphism of R into itself is the identity.

(b) The only non-zero homomorphism of Z (the integers) into itself is the identity.

(c) The only non-zero homomorphism of Q (the rationals) into itself is the identity.

Proof. Similar to the proof of Theorem 0.22 in [3].

The following two theorems are consequences of Theorem 6.7, Lemma 7.3 and Lemma 7.4.

7.5 Theorem. [3, Theorem 8.3]. Two real compact spaces \(X \) and \(Y \) are homeomorphic if and only if \(C(X,R) \) and \(C(Y,R) \) are isomorphic.

7.6 Theorem. [10, Theorem 2]. Two \(Z \)-compact spaces \(X \) and \(Y \) are homeomorphic if and only if \(C(X,Z) \) and \(C(Y,Z) \) are isomorphic.
7.7 Theorem. Two Q-compact spaces X and Y are homeomorphic if and only if \(C(X, Q) \) and \(C(Y, Q) \) are isomorphism.

7.8 Lemma [6, Problem J, p. 103]. Any two open convex subsets of the n-Euclidean space \(\mathbb{R}^n \) are homeomorphic.

Since \(\mathbb{R}^n \) itself is an open convex set, and \(\mathbb{R}^n \) is an R-compact space (Corollary 2.4), any open convex subset of \(\mathbb{R}^n \) is an R-compact space. By Theorem 7.2 and Lemmas 7.3, 7.4, we have:

7.9 Theorem [14, Theorem 2.1]. If X and Y are open convex subsets of \(\mathbb{R}^n \) (n finite) and \(t \) is an isomorphism from \(C(X, \mathbb{R}) \) onto \(C(Y, \mathbb{R}) \) then \(\overline{t}(\pi) \) is the unique homeomorphism from Y onto X with \(t(f) = f(\overline{t}(\pi)) \) for all \(f \) in \(C(X, \mathbb{R}) \), where \(\pi \) is the identity mapping on X and \(\overline{t} \) is the isomorphism from \(C(X, \mathbb{R}^n) \) onto \(C(Y, \mathbb{R}^n) \) defined by \(\pi_i \cdot \overline{t}(g) = t(\pi_i \cdot g) \) (1 \(\leq i \leq n \)) for all \(g \) in \(C(X, \mathbb{R}^n) \).

8.1 Definition. A subset S of a topological ring E is right bounded if for any neighborhood U of 0, there exists a neighborhood V of 0 such that $V \cdot S \subseteq U$ where $V \cdot S$ is the set $\{v \cdot s : v \in V, s \in S\}$. Left-boundedness is similarly defined, and a subset of E is bounded if it is both left and right bounded.

8.2 Proposition. Any discrete topological ring E is bounded in itself.

Proof. Since $\{0\}$ is a 0-neighborhood and $\{0\} \cdot E = E \cdot \{0\} = \{0\}$, which is contained in any 0-neighborhood, E is bounded in itself.

8.3 Proposition. (a) Any subset of a bounded set in a topological ring E is bounded.

(b) The union of a finite number of bounded subsets of a topological ring E is bounded.

Proof. The proof is trivial.

8.4 Proposition. If S and T are bounded subsets of a topological ring, so are $S+T$ and $S \cdot T$.

Proof. Suppose U is any 0-neighborhood. Since $(x, y) = x + y$
is continuous on E^2, in particular at the point $(0,0)$, there exists a O-neighborhood W such that $W + W \subset U$. Since S and T are bounded, there exists a O-neighborhood V such that $V \cdot S$, $V \cdot T$, $S \cdot V$ and $T \cdot V$ are contained in W. Therefore, $V \cdot (S + T) \subset V \cdot S + V \cdot T \subset W + W \subset U$ and $(S + T) \cdot V \subset S \cdot V + T \cdot V \subset W + W \subset U$. Hence $S + T$ is bounded in E.

To see that $S \cdot T$ is right-bounded, let U be any O-neighborhood, and V be a O-neighborhood such that $V \cdot T \subset U$. Since S is bounded, there exists a O-neighborhood W such that $W \cdot S \subset V$. Then, $W \cdot (S \cdot T) = (W \cdot S) \cdot T \subset V \cdot T \subset U$. Hence $S \cdot T$ is right-bounded. Left-boundedness of $S \cdot T$ can be proved similarly.

8.5 Proposition. The closure clS of a bounded subset S in a topological ring E is bounded in E.

Proof. Given any O-neighborhood U, let V be a O-neighborhood such that $V - V \subset U$. Since S is bounded and $(x,y) \rightarrow xy$ is continuous at $(0,0)$, there exists a O-neighborhood W such that $W \cdot S \subset V$ and $W \cdot W \subset V$. For any y in clS, $y + W$ is a neighborhood of y, hence $(y + W) \cap S \neq \emptyset$ i.e., there exists $w \in W$ and $s \in S$ such that $y + w = s$. For any $p \in W$, $py = ps - pw \in W \cdot S - W \cdot W \subset V - V \subset U$. Hence $W \cdot clS \subset U$. This proves that clS is right-bounded. Left-boundedness of clS can be proved similarly.
8.6 Proposition. Any compact subset \(K \) of a topological ring \(E \) is bounded in \(E \).

Proof. Given any 0-neighborhood \(U \) in \(E \) and any point \(x \) in the compact set \(K \), since \((x,y) \to xy \) is continuous from \(E \times E \) into \(E \), we can find neighborhoods \(V(x) \) and \(W(x) \) of \(x \) and 0 respectively such that \(V(x) \cdot W(x) \subset U \). A finite number of the \(V \)'s cover \(K \). Let \(N \) be the intersection of the corresponding \(W \)'s. We have \(K \cdot N \subset U \). Hence \(K \) is left-bounded. Similarly, we can show that \(K \) is right-bounded.

Suppose \(E \) is a topological ring. Then \(E^\alpha \) becomes a topological ring provided the operations on \(E^\alpha \) are defined pointwisely. Therefore, a bounded subset of \(E^\alpha \) can be defined as in Definition 8.1.

8.7 Proposition. Suppose \(E \) is a topological ring. A subset \(W \) of \(E^\alpha \) is bounded in \(E^\alpha \) if and only if \(\pi_i[W] \) is a bounded subset of \(E \) for every projection \(\pi_i \) (\(i \leq \alpha \)).

Proof. Suppose that \(W \) is a bounded subset of \(E^\alpha \). Given any 0-neighborhood \(U \) in \(E \), for any fixed projection \(\pi_k \) (\(k \leq \alpha \)), \(\pi_k[U] \) is a 0-neighborhood in \(E^\alpha \). We know that there exists a 0-neighborhood \(V \subset E^\alpha \) such that \(W \cdot V \subset \pi_k[U] \). Hence

\[
\pi_k[W] \cdot \pi_k[V] = \pi_k[W \cdot V] \subset \pi_k[\pi_k[U]] = U.
\]
But $\pi_k[V]$ is a 0-neighborhood in E, so $\pi_k[W]$ is left-bounded. Right-boundedness of $\pi_k[W]$ can be proved similarly.

Suppose W is a subset of E^α such that $\pi_i[W]$ is bounded in E for each $i \leq \alpha$. Given any basic 0-neighborhood $\cap_{k=1}^n \pi_{j_k}^k [N_{j_k}]$ in E^α where N_{j_k} are 0-neighborhoods in E. Let $N = \cap_{k=1}^n N_{j_k}$, then N is a 0-neighborhood in E. Since $\pi_{j_k}^k [W]$ (for $k \leq n$) are bounded in E, there exists a 0-neighborhood V in E such that $\pi_{j_k}^k[W] \cdot V \subset N$ for $k = 1, 2, \ldots, n$. Then $W \cdot \cap_{k=1}^n \pi_{j_k}^k[V] \subset \cap_{k=1}^n \pi_{j_k}^k[N] \subset \cap_{k=1}^n \pi_{j_k}^k[N_{j_k}]$.

Therefore, W is left-bounded in E^α. Right-boundedness of W can be shown similarly.

§9. E^*-Completely Regular Spaces.

9.1 Definition. Let X be any topological space and E a topological ring. A function f in $C(X, E)$ is said to be bounded if $f[X]$ is bounded in E.

In view of Proposition 8.4, the set $C^*(X, E)$ of all bounded functions in $C(X, E)$ is a subring of $C(X, E)$.

9.2 Definition. Let E be a topological ring. A space X is said to be E-pseudocompact if $C(X, E) = C^*(X, E)$.
Since (Proposition 8.6) any compact subset of a topological ring E is bounded in E, and a continuous image of a compact set is compact, we have:

9.3 Proposition. A compact space is E-pseudocompact for any topological ring E.

9.4 Remark. It is clear that if a topological ring E is bounded in itself then any space X is E-pseudocompact. In particular, by Proposition 8.2 the space Z of all integers is a bounded ring. Thus every space X is Z-pseudocompact. Thus, our definition of Z-pseudocompactness is different from the "Z-pseudocompactness" defined in [13]. This is because boundedness with respect to the norm in a normed ring implies the boundedness as we have defined it, but not conversely. For instance, the space Z is not bounded with respect to the usual norm, but by Proposition 8.2, it is bounded in itself. However, for the space R of real numbers the two notions coincide. Therefore R-pseudocompactness coincides with the pseudocompactness as defined in [3]. In fact, to be a bounded continuous function from a space X into R is equivalent to being a bounded continuous function from X into R in the usual sense.

9.5 Definition. Let E be a topological ring. A space X is said to be E^*-completely regular if $\bigcup_{n=1}^{\infty} C^*(X, E^n)$ separates points and closed sets in X.
9.6 Lemma. Let E be a topological ring. Then

(a) $f \in C^*(X,E^a)$ if and only if $\pi_i \cdot f \in C^*(X,E)$ for every $i \leq a$.

(b) Suppose X is E^*-completely regular, then $C^*(X,E)$ separates the points of X.

Proof. (a) This is a consequence of Proposition 8.7.

(b) Given $x \neq y$ in X. Since X is Hausdorff, $\{y\}$ is closed. Thus, there is f in $C^*(X,E^n)$ such that $f(x) \neq f(y)$, and hence there exists some i ($1 \leq i \leq n$) with $\left(\pi_i \cdot f\right)(x) \neq \left(\pi_i \cdot f\right)(y)$. By (a) $\pi_i \cdot f \in C^*(X,E)$. Therefore $C^*(X,E)$ separates the points of X.

9.7 Definition. Let E be a topological ring and X a subset of a space Y. We say that X is $C^*(Y,E)$-embedded if every function f in $C^*(X,E)$ has an extension to a function in $C^*(Y,E)$.

9.8 Lemma. Suppose E is a topological ring and X an E^*-completely regular space. Let $P^* = E^0(X,E)$ and $\sigma^*: X \to P^*$ be the evaluation map which is defined by $(\sigma^*(x))_f = f(x)$. Then

(a) σ^* is a homeomorphism from X onto $\sigma^*[X]$.

(b) $\sigma^*[X]$ is bounded in P^*.

(c) $\text{cl}_P^*\sigma^*[X]$ is bounded in P^*, and $\sigma^*[X]$ is $C^*(\text{cl}_P^*\sigma^*[X],E)$-embedded in $\text{cl}_P^*\sigma^*[X]$.
Proof. (a) By Lemma 0.5 (c), \(\sigma^* \) is one-one since (Lemma 9.6 (b)) \(C^*(X,E) \) separates the points of \(X \).

By Lemma 0.5 (a), \(\sigma^* \) is continuous.

To see that \(\sigma^* \) is an open mapping, let \(G \) be a non-empty open subset of \(X \). For each point \(p \) in \(G \), by \(E^* \)-complete regularity of \(X \), there exists some \(h \) in \(C^*(X,E^n) \) such that \(h(p) \in clh[X \sim G] \). By Lemma 9.6 (a) \(\tau_i \cdot h = f_i \in C^*(X,E) \) for \(i = 1, 2, \ldots, n \). Let \(\pi(f_1, \ldots, f_n) \)

be the projection from \(E^* \) into \(E \) \(= E^n \).

Then \(N = \sigma^*[X] \cap \pi(f_1, \ldots, f_n)[E^n \sim clh[X \sim G]] \) is an open set in \(\sigma^*[X] \) containing the point \(\sigma^*(p) \), since

\[
\pi(f_1, \ldots, f_n)(\sigma^*(p)) = (f_1(p), \ldots, f_n(p)) = h(p) \notin clh[X \sim G].
\]

Furthermore, if \(q \in N \) then \(q = \sigma^*(x) \) for some \(x \) in \(X \), and

\[
\pi(f_1, \ldots, f_n)(q) = \pi(f_1, \ldots, f_n)(\sigma^*(x)) = (f_1(x), \ldots, f_n(x)) = h(x) \notin clh[X \sim G].
\]

Thus \(x \in G \), and hence \(\sigma^*(x) = q \in \sigma^*[G] \). Therefore, \(\sigma^*(p) \in N \subseteq \sigma^*[G] \), so \(\sigma^*[G] \) is open in \(\sigma^*[X] \).

This proves that \(\sigma^* \) is an open mapping. Consequently, \(\sigma^* \) is a homeomorphism.

(b) Since \(\tau_f \cdot \sigma^*[X] = f[X] \) for every \(f \) in \(C^*(X,E) \) and \(f[X] \) is bounded in \(E \), by Proposition 8.7, \(\sigma^*[X] \) is bounded in \(P^* \).

(c) Since \(\sigma^*[X] \) is bounded in \(P^* \), its closure \(cl\sigma^*[X] \) is also bounded in \(P^* \) by Proposition 8.5.
For each g in $C^*(\sigma^*[X], E)$, $g \circ \sigma^* \in C^*(X, E)$. Thus $\pi_{g \circ \sigma^*} \in C^*(P^*, E)$ and $\pi_{g \circ \sigma^*}|_{\sigma^*[X]} = g$. Let $h = \pi_{g \circ \sigma^*}|_{\text{cl}\sigma^*[X]}$. Then h is the continuous extension of g from $\sigma^*[X]$ to its closure $\text{cl}\sigma^*[X]$, and $h[\text{cl}\sigma^*[X]] \subset \text{cl}h[\sigma^*[X]] = \text{cl}g[\sigma^*[X]]$ which being the closure of the bounded set $g[\sigma^*[X]]$ in E is bounded. Thus $h \in C^*(\text{cl}\sigma^*[X], E)$. This proves (c).

9.9 Theorem. Let E be a topological ring and X a topological space. Then the following statements are equivalent.

(a) X is E^*-completely regular.
(b) X is homeomorphic to a bounded subset of E^α for some cardinal number α.
(c) $C^*(X, E)$ determines the topology of X.

Proof. (a) \rightarrow (b). This is a consequence of Lemma 9.8 by taking $\alpha = \text{card} \; C^*(X, E)$.

(b) \rightarrow (c). By the hypothesis of (b), we may regard X as a bounded subset of E^α for some α. Hence the topology of X is induced by all the projections $\pi_i \; (i \leq \alpha)$ on X. Since X is bounded in E^α, by Proposition 8.7, $\pi_i|_X \in C^*(X, E)$ for all $i \leq \alpha$. Hence the topology for X determined by $\{\pi_i|_X: i \leq \alpha\}$ is contained in the topology induced by $C^*(X, E)$, and the latter is the smallest topology for X in which every member of $C^*(X, E)$ is continuous. Thus the topology of X is determined by $C^*(X, E)$.

(c) - (a). Suppose A is a closed subset of X and $y \in X \sim A$. Since $C^*(X,E)$ determines the topology of X, there are functions f_1, f_2, \ldots, f_n in $C^*(X,E)$ such that

$$y \in \bigcap_{i=1}^n f_i^{-1}[U_i] \quad \text{and} \quad \bigcap_{i=1}^n f_i^{-1}[U_i] \cap A = \emptyset$$

for some open sets $U_i (1 \leq i \leq n)$ in E. Let f be the evaluation map from X into $E^{f_1, f_2, \ldots, f_n} = E^n$. Since $f_i \in C^*(X,F) \quad (i \leq n)$, by Lemma 9.6 (a), $f \in C^*(X,E^n)$. Since $\pi_{f_i} \circ f(y) = f_i(y) \in U_i$ for $i \leq n$, $f(y) \in \bigcap_{i=1}^n \pi_{f_i}^{-1}[U_i]$. But $\bigcap_{i=1}^n \pi_{f_i}^{-1}[U_i] \cap f[A] = \emptyset$, otherwise there exists $a \in A$ such that $f_i(a) \in U_i$ for $i \leq n$. Hence $a \in \bigcap_{i=1}^n f_i^{-1}[U_i]$. This contradicts $\bigcap_{i=1}^n f_i^{-1}[U_i] \cap A = \emptyset$. Therefore $f(y) \notin \text{cl}f[A]$. This proves that X is E^*-completely regular.

The following two corollaries are consequences of Propositions 8.3 (a), 8.7 and Theorem 9.9.

9.10 Corollary. Any subspace of an E^*-completely regular space is E^*-completely regular.

We have seen that in the study of the ring of continuous functions from a space X into a topological ring E, there is no need to deal with spaces that are not
E-completely regular. In the same way, the following theorem says that to study the ring of bounded continuous functions from a space X into a topological ring, we need only to deal with spaces that are E^*-completely regular.

9.12 Theorem. Let E be a topological ring. Given any topological space X, there exists an E^*-completely regular space Y and a continuous function τ from X onto Y such that the induced mapping $\tau': g \mapsto g \circ \tau$ is an isomorphism from the ring $C^*(Y,E)$ onto the ring $C^*(X,E)$.

Proof. We write $x \equiv x'$ for x, x' in X whenever $f(x) = f(x')$ for all f in $C^*(X,E)$. It is easy to see that \equiv is an equivalence relation. Let Y be the set of all equivalence classes. We define a mapping τ from X onto Y as follows: τx is the equivalence class that contains x.

With each f in $C^*(X,E)$, associate a function g in E^Y as follows: $g(y)$ is the common value of $f(x)$ at every point $x \in y$. Thus, $f = g \circ \tau$. Let C' denote the family of all such functions g, i.e., $g \in C'$ if and only if $g \circ \tau \in C^*(X,E)$. Now endow Y with the weak topology induced by C'. By definition, every function in C' is continuous on Y, i.e., $C' \subseteq C(Y,E)$. The continuity of τ now follows from Lemma 0.2 (a).

For any $g \in C'$, $g \circ \tau \in C^*(X,E)$. Hence $g[Y] = (g \circ \tau)[X]$ is bounded in E, so $C' \subseteq C^*(Y,E)$. For any h in $C^*(Y,E)$, since τ is continuous, $h \circ \tau \in C^*(X,E)$. But
this says that $h \in C'$. Therefore, $C' = C^*(Y,E)$, and it is clear that the mapping $g \rightarrow g \circ \tau$ is an isomorphism from $C^*(Y,E)$ onto $C^*(X,E)$.

It is evident that if y and y' are distinct points of Y, then there exists $g \in C'$ such that $g(y) \neq g'(y)$. Since E is a Hausdorff space, this implies that Y is a Hausdorff space. Hence Y is E^*-completely regular, by Theorem 9.9 (c).

§10. E^*-Compact Spaces and E^*-Compactifications of an E^*-Completely Regular Space.

10.1 Definition. Let E be a topological ring. By an E^*-compact space, we mean an E^*-completely regular space X such that there does not exist any other space Y which contains X as a proper dense $C^*(Y,E)$-embedded subset.

10.2 Remark. (1) E^*-compactness is a topological invariant.

(2) Any compact, E^*-completely regular space is E^*-compact.

10.3 Lemma. An arbitrary closed and bounded subset F of E^α where E is a topological ring, is E^*-compact.

Proof. By Theorem 9.9, F is E^*-completely regular. Suppose F is not E^*-compact, and let \hat{F} be a space which contains F as a dense subset such that each f in $C^*(F,E)$ has an extension \hat{F} in $C^*(\hat{F},E)$. Since F is bounded in E^α, $\pi_1[F]$ is bounded in E for every projection π_1. Thus,
\[\pi_i \in C^*(F,E) \ (i \leq \alpha). \] Therefore \(\pi_i \) has an extension \(\overline{\pi}_i \in C^*(\overline{F},E) \ (i \leq \alpha). \) Define a mapping \(h: x \to (\overline{\pi}_i(x))_{i \leq \alpha} \) from \(\overline{F} \) into \(E^\alpha. \) Then \(h \) is the identity mapping on \(F \) and \(h[\overline{F}] = h[\text{cl}_F[F]] \subseteq \text{cl}_E h[F] = \text{cl}_E \alpha F = F. \) Hence \(h \in C(\overline{F}, F) \) and by Lemma 0.7, \(h[F \sim F] \subset F \sim h[F] = \emptyset. \) Thus \(\overline{F} = F. \) This proves that \(F \) is \(E^* \)-compact.

10.4 Theorem. Let \(X \) be an \(E^* \)-completely regular space. Then the following statements are equivalent.

(a) \(X \) is \(E^* \)-compact.

(b) The evaluation map \(\sigma^* \) from \(X \) into \(E^C(X,E) \) is a homeomorphism, and \(\sigma^*[X] \) is a closed and bounded subset of \(E^C(X,E). \)

(c) \(X \) is homeomorphic with a closed and bounded subset of \(E^\alpha \) for some cardinal number \(\alpha. \)

Proof. (a) \(\to \) (b). Suppose that \(X \) is \(E^* \)-compact. By definition, it is \(E^* \)-completely regular. It follows from Lemma 9.8 that \(X \) is homeomorphic to the bounded subset \(\sigma^*[X] \) of \(P^* = E^C(X,E) \) under the evaluation map \(\sigma^* \) from \(X \) into \(P^*. \) Identify \(X \) with \(\sigma^*[X]. \) Suppose \(\sigma^*[X] \) is not closed in \(P^*. \) Again by Lemma 9.8, \(\text{cl}_{P^*} \sigma^*[X] \) contains \(\sigma^*[X] \) as a proper dense \(C^*(\text{cl}_{P^*} \sigma^*[X],E) \)-embedded subset. This contradicts that \(X \) is \(E^* \)-compact. Thus \(\sigma^*[X] \) is closed and bounded in \(P^*. \)
(b) \to (c). Take \(\alpha = \text{card } C^*(X,E) \).

(c) \to (a). Suppose \(X \) is homeomorphic to some closed and bounded subset \(F \) of \(E^\alpha \) for some \(\alpha \). By Lemma 10.3, \(F \) is \(E^\ast \)-compact. Therefore \(X \) is \(E^\ast \)-compact.

Proposition 8.3, 8.7 together with Theorem 10.4 yield the following corollary.

10.5 Corollary. (a) Any closed subset of an \(E^\ast \)-compact space is \(E^\ast \)-compact.

(b) The union of a finite number of \(E^\ast \)-compact subsets of an \(E^\ast \)-completely regular space is \(E^\ast \)-compact.

(c) An arbitrary product of \(E^\ast \)-compact spaces is \(E^\ast \)-compact.

10.6 Definition. Suppose \(E \) is a topological ring. By an \(E^\ast \)-compactification of a space \(X \), we mean an \(E^\ast \)-compact space \(Y \) which contains \(X \) as a dense subset.

10.7 Lemma. Suppose \(X \) is dense in \(T \) and \(E \) is a topological ring. Then (a) and (b) are equivalent:

(a) \(X \) is \(C^*(T,E) \)-embedded.

(b) \(X \) is \(C(T,Y) \)-embedded for any \(E^\ast \)-compact space \(Y \).

Proof. (a) \(\to \) (b). Suppose \(Y \) is an \(E^\ast \)-compact space. Because of Theorem 10.4, we can regard \(Y \) as a closed and bounded subset of \(E^\alpha \) for some \(\alpha \). For each \(g \) in \(C(X,Y) \), let \(g_i \) be the \(i \)-th coordinate function of \(g \), i.e.,

\(g_i = \pi_i \circ g \) (\(i \leq \alpha \)) where \(\pi_i \) is the projection from \(E^\alpha \).
into the i-th coordinate space \(E \). Since \(g[X] \subseteq Y \) and
\(Y \) is bounded in \(E^\alpha \), \(g_i \in C^*(X, E) \) by Lemma 9.6 (a). By
hypothesis, \(g_i \) has an extension \(\overline{g}_i \) in \(C^*(T, E) \). Let \(\overline{g} \)
be the function from \(T \) into \(E^\alpha \) whose i-th coordinate
function is \(\overline{g}_i \). Again by Lemma 9.6 (a), \(\overline{g} \in C^*(T, E^\alpha) \), and
\(\overline{g}[T] = \overline{g}[clX] \subseteq cl\overline{g}[X] = clg[X] \subseteq clY = Y \). Thus, \(\overline{g} \in C(T, Y) \),
and clearly \(\overline{g} \) is the extension of \(g \).

(b) \rightarrow (a). For any \(g \) in \(C^*(X, E) \), \(g[X] \) is a
bounded subset in \(E \). By Proposition 8.5, \(clg[X] \) is closed
and bounded in \(E \) and hence \(clg[X] \) is \(E^* \)-compact by
Lemma 10.3. Since \(g \in C(X, clg[X]) \), by hypothesis, it has
an extension \(\overline{g} \) in \(C(T, clg[X]) \). Therefore \(\overline{g} \in C(T, E) \) is
an extension of \(g \).

10.8 Theorem. Suppose \(E \) is a topological ring. Then every
\(E^* \)-completely regular space \(X \) has an \(E^* \)-compactification
\(v^*_EX \) with the following property (*) : if \(Y \) is any \(E^* \)
compact space then each function \(f \) in \(C(X, Y) \) admits an
extension \(\overline{f} \) in \(C(v^*_EX, Y) \). Furthermore, the space \(v^*_EX \) is
quently determined by \(X \) in the sense that if an \(E^* \)
compactification \(T \) of \(X \) satisfies (*), then there exists
a homeomorphism from \(v^*_EX \) onto \(T \) which leaves \(X \) pointwise
fixed.

Proof. Suppose \(X \) is \(E^* \)-completely regular. Then take
\(v^*_EX = cl_{P^*} \sigma^*[X] \) where \(P^* = E^*C(X, E) \) and \(\sigma^* \) is the
evaluation map from X into P^*. By Lemma 9.8 and Lemma 10.3, we can identify X with $\sigma^*[X]$. Then $\nu^*_E X$ is an E^*-compactification of X, and X is $C^*(\nu^*_E X, E)$-embedded in $\nu^*_E X$. By Lemma 10.7, $\nu^*_E X$ has property (\ast).

Suppose that T is an E^*-compactification of X with property (\ast). Then the identity mapping on X has continuous extensions τ from $\nu^*_E X$ into T and σ from T into $\nu^*_E X$. By Lemma 0.8, τ is a homeomorphism from $\nu^*_E X$ onto T. Clearly $\tau|_X$ is the identity map on X.

10.9 Remark. For any E^*-completely regular space X, the space $\nu^*_E X$ is characterized as an E^*-compactification of X in which X is $C^*(\nu^*_E X, E)$-embedded.

10.10 Theorem. Let $S \subset X$, where X is E^*-completely regular. If S is $C^*(X, E)$-embedded then $\text{cl}_{\nu^*_E X} S = \nu^*_E S$.

Proof. The set $\text{cl}_{\nu^*_E X} S$ being a closed subset of the E^*-compact space $\nu^*_E X$ is E^*-compact. Therefore, $\text{cl}_{\nu^*_E X} S$ is an E^*-compactification of S in which S is $C^*(\text{cl}_{\nu^*_E X} S, E)$-embedded. Thus, $\text{cl}_{\nu^*_E X} S = \nu^*_E S$.

10.11 Theorem. An arbitrary intersection of E^*-compact subspaces of a given E^*-completely regular space is E^*-compact.
Proof. Let \(\{ Y_\alpha \}_\alpha \) be a family of \(E^* \)-compact subspaces of an \(E^* \)-completely regular space \(Y \), and let \(X = \cap Y_\alpha \). For each \(\alpha \), the identity mapping \(\tau \) from \(X \) into \(Y \) has a continuous extension from \(\nu_{E^*}X \) into the \(E^* \)-compact space \(Y_\alpha \) (Theorem 10.8). As \(\tau \) can have only one continuous extension from \(\nu_{E^*}X \) into \(Y \), these extensions all coincide; hence this common extension \(\overline{\tau} \) carries \(\nu_{E^*}X \) into \(\cap Y_\alpha \), i.e., into \(X \). By Lemma 0.7, \(\overline{\tau}[\nu_{E^*}X \sim X] \subset X \sim \overline{\tau}[X] = \emptyset \).

Hence \(\nu_{E^*}X = X \), so \(X \) is \(E^* \)-compact.

10.12 Theorem. Let \(\tau \) be a continuous function from an \(E^* \)-compact space \(X \) into an \(E^* \)-completely regular space \(Y \). Then the total preimage of each \(E^* \)-compact subset of \(Y \) is \(E^* \)-compact.

Proof. Let \(F \) be an \(E^* \)-compact subset of \(Y \), and let \(S = \tau^{-1}[F] \). Because \(X \) is \(E^* \)-compact, the identity map \(\sigma \) on \(S \) has a continuous extension to a mapping \(\sigma^*: \nu_{E^*}S \rightarrow X \) (Theorem 10.8). Also, \(\tau|_S \) has a continuous extension \((\tau|_S)^*: \nu_{E^*}S \rightarrow F \). Since \(S \) is dense in \(\nu_{E^*}S \), both these extensions are determined by their values on \(S \). Now, \(\tau|_S = \tau \circ \sigma \), and therefore \((\tau|_S)^* = (\tau \circ \sigma)^* = \tau \circ \sigma^* \).

By Lemma 0.7, \(\sigma^*[\nu_{E^*}S \sim S] \subset X \sim S \), so that \((\tau \circ \sigma^*)[\nu_{E^*}S \sim S] \subset Y \sim \tau[S] = Y \sim F \), whereas \((\tau|_S)^*[\nu_{E^*}S \sim S] \subset F \). Therefore, \(\nu_{E^*}S \sim S = \emptyset \), or \(\nu_{E^*}S = S \). Hence \(S = \tau^{-1}[F] \) is \(E^* \)-compact.
10.13 Theorem. Suppose that E is a topological ring. Then given any space X, there exists an E^*-compact space W, which contains a continuous image of X as a dense, $C^*(W,E)$-embedded subset. Moreover, $C^*(W,E)$ is isomorphic with $C^*(X,E)$.

Proof. By Theorem 9.12, there exists an E^*-completely regular space Y and a continuous function τ from X onto Y such that $\tau^*: g \to g \circ \tau$ is an isomorphism from $C^*(Y,E)$ onto $C^*(X,E)$. Let $W = \overline{\nu Y}$. Then Y is a dense $C^*(W,E)$-embedded subset of W, and $h \to h|_Y$ is an isomorphism from $C^*(W,E)$ onto $C^*(Y,E)$. Therefore, $h \to h \circ \tau$ is an isomorphism from $C^*(W,E)$ onto $C^*(X,E)$.

We shall now consider the case where E is the space R of all real numbers.

10.14 Lemma. A space X is compact if, and only if it is R^*-compact where R is the topological ring of all real numbers.

Proof. Suppose X is a compact (Hausdorff) space. Then X is normal, and hence it is R^*-completely regular. Since a compact subset of a Hausdorff space is always closed, X cannot be a proper dense subset of any other space. Therefore, X is R^*-compact.

Conversely, suppose X is R^*-compact. By Theorem 10.4, we can regard X as a closed and bounded subset of R^α for some cardinal number α. Therefore by Proposition 8.7,
\[\pi_i[X] \] is bounded in \(R \) for all the projections \(\pi_i \) \((i \leq \alpha) \).

But boundedness of a subset in the topological ring \(R \) is equivalent to the boundedness of the subset with respect to the usual metric on \(R \). Hence, for each \(i \) \((i \leq \alpha) \), choose a closed interval \(I_i \) in \(R \) such that \(\pi_i[X] \subseteq I_i \) \((i \leq \alpha) \). By Tychonoff's product theorem, \(\prod_{i \leq \alpha} I_i \) is compact, and we see that \(X \) is a closed subset of the compact space \(\prod_{i \leq \alpha} I_i \). Therefore, \(X \) is compact.

By Theorem 10.4 and Lemma 10.14, we have:

10.15 Theorem. A subset of \(R^\alpha \) where \(\alpha \) is any cardinal number is compact if and only if it is closed and bounded. (Bounded in the topological ring \(R^\alpha \) in the sense of Definition 8.1).

10.16 Remark. Since every metric space satisfies the first axiom of countability, by [6, p. 92] \(R^\alpha \) is not metrizable for any uncountable cardinal \(\alpha \). Thus, the concept of boundedness with respect to a metric cannot apply to \(R^\alpha \) for uncountable cardinal \(\alpha \). But for the space \(R^n \) where \(n \) is a finite positive integer, we know that being a bounded subset of the topological ring \(R^n \) is equivalent to being a bounded subset with respect to the usual metric on the Euclidean \(n \)-space \(R^n \). Therefore, we have as a special case the classical theorem of Heine-Borel-Lebesgue [6, p. 114]: A subset of Euclidean \(n \)-space is compact if and only if it is closed and bounded.
10.17 Remark. In view of Lemma 10.14, being a compactification of a completely regular space X is equivalent to being an R^*-compactification of X, and the bounded continuous functions from X into R coincide with the usual bounded continuous real-valued functions. Thus \mathbb{R}^*X is just the Stone-Cech compactification βX of the completely regular space X. Therefore, Theorem 10.8 is a generalization of the Stone-Cech compactification theorem.

10.18 Corollary. Suppose E is any topological ring. Then any E^*-compact space is E-compact. The converse is not true.

Proof. It is an immediate consequence of Theorem 2.6 (c) and Theorem 10.4. The converse is not true. For instance, take $X = E = R$. Then X is R-compact but not R^*-compact i.e., R is (Hewitt) real-compact but not compact.

10.19 Proposition. Suppose E is a topological ring. If X is E-compact as well as E-pseudocompact then X is E^*-compact.

Proof. Since X is E-pseudocompact, $C(X,E) = C^*(X,E)$.
Since X is E-compact, there does not exist any space Y which contains X as a proper dense subset such that every f in $C(X,E) = C^*(X,E)$ has an extension in $C(Y,E)$. Thus X is E^*-compact.

10.20 Problem. Is the converse of Proposition 10.19 true? i.e., Is it true that: X is E^*-compact implies X is E-pseudocompact?
§11. Embedding v_E^*X as a Subspace of $v_E^{*}X$.

Suppose E is a topological ring and X is an E^*-completely regular space. Evidently, X is also an E-completely regular space. Therefore both of the spaces v_E^X and $v_E^{*}X$ exists. But the constructions of v_E^X and $v_E^{*}X$ fail to emphasize one essential property of these spaces, namely, that v_E^X can be embedded in $v_E^{*}X$. To derive this result, we observe that for any f in $C(X,E)$, $\text{cl}_E[f[X]]$ is an E-compact space (Lemma 2.3) and since $f \in C(X,v_E^*)$, f has an extension \overline{f} in $C(v_E^*,v_E^*)$. By Corollary 10.18 $v_E^{*}X$ is E-compact. Thus $\overline{f}[\text{cl}_E[f[X]]]$ is an E-compact subspace of $v_E^{*}X$ by Theorem 3.9. By Theorem 3.8, $B = \bigcap_{f \in C(X,E)} \overline{f}[\text{cl}_E[f[X]]]$ is an E-compact space. Moreover it is an E-compactification of X in which X is $C(B,E)$-embedded. Thus, we have the following theorem:

11.1 Theorem. $v_E^X = \bigcap_{f \in C(X,E)} \overline{f}[\text{cl}_E[f[X]]] \subset v_E^{*}X$, where $\overline{f} \in C(v_E^*,v_E^*)$ is the extension of f.

Since v_E^X is a subspace of the E^*-completely regular space $v_E^{*}X$, v_E^X is E^*-completely regular. Therefore, $v_E^{*}(v_E^X) = D$ exists and it is an E^*-compactification of X in which X is $C^*(D,E)$-embedded. Hence $v_E^{*}(v_E^X) = v_E^{*}X$.

Additional insight of the embedding is provided by the-
11.2 Lemma. Suppose X, Y are E^*-completely regular spaces and θ is a continuous function from X into Y. Let θ' be the mapping: $g \rightarrow g \circ \theta$ from $C^*(Y,E)$ into $C^*(X,E)$. Then θ' is onto implies θ is a homeomorphism (into).

Proof. Suppose $\theta(x_1) = \theta(x_2)$ for some x_1, x_2 in X. Then $(\theta'g)(x_1) = g(\theta x_1) = g(\theta x_2) = (\theta'g)(x_2)$ for all g in $C^*(Y,E)$. But θ' is onto, so $f(x_1) = f(x_2)$ for all $f \in C^*(X,E)$. Since X is E^*-completely regular, $C^*(X,E)$ separates points of X. Thus $x_1 = x_2$. Hence θ is one-one.

To see that $\theta\leftarrow: \theta[X] \rightarrow X$ is continuous, we observe that the basic closed sets of Y are of the form $g^{-}[F]$, where F is closed in E and $g \in C^*(Y,E)$, since $C^*(Y,E)$ determines the topology of Y. Let $f = g \circ \theta$. Then $f \in C^*(X,E)$ and $f^{-}[F] = \theta^{-}[g^{-}[F] \cap \theta[X]]$, which is closed in X. Hence $\theta\leftarrow$ is continuous. Thus, θ is a homeomorphism.

By Corollary 3.6, $\nu^*_E X = \text{c}l_{P'}\sigma[X]$ where σ is the evaluation map from X into $P = E^C(X,E)$. By Theorem 10.8, $\nu^*_E X = \text{c}l_{P^*}\sigma^*[X]$ where σ^* is the evaluation map from X into $P^* = E^{C^*}(X,E)$. Let τ denote the restriction to $\sigma[X]$ of the projection from P onto P^*. Clearly, τ is a continuous mapping from $\sigma[X]$ onto $\sigma^*[X]$ and $\tau \circ \sigma = \sigma^*$. The latter says that $\tau = \sigma^* \circ \sigma\leftarrow$. Since $\sigma\leftarrow$, σ^* are...
homeomorphisms, so is τ. Since \(\text{cl}_{p*}\sigma^*[X] \) is \(E^* \)-compact it is \(E \)-compact by Corollary 10.18. By Theorem 1.4 (b) and Lemma 3.2, \(\tau \) has a continuous extension \(\overline{\tau} \) from \(\text{cl}_{p}\sigma[X] \) into \(\text{cl}_{p*}\sigma^*[X] \).

11.3 Theorem. \(\overline{\tau} \) is a homeomorphism from \(\text{cl}_{p}\sigma[X] \) into \(\text{cl}_{p*}\sigma^*[X] \).

Proof. Given \(f \) in \(C^*(\text{cl}_{p}\sigma[X],E) \), we are going to find \(g \) in \(C^*(\text{cl}_{p*}\sigma^*[X],E) \) such that \(\overline{\tau}'(g) = g \circ \overline{\tau} = f \). Since \(\tau \) maps \(\sigma[X] \) homeomorphically onto \(\sigma^*[X] \), we can define a function \(h: \sigma^*[X] \to E \) by \(h(\tau y) = f(y) \), \(y \in \sigma[X] \). Then \(h = f \circ \tau \) is in \(C^*(\sigma^*[X],E) \), since \(\tau \) is continuous and \(f \) is a bounded continuous function. Since \(\sigma^*[X] \) is \(C^*(\text{cl}_{p}\sigma[X],E) \)-embedded, \(h \) has an extension \(g \) in \(C^*(\text{cl}_{p*}\sigma^*[X],E) \). But \(h \circ \tau \in C^*(\sigma[X],E) \), and \(\sigma[X] \) is \(C^*(\text{cl}_{p}\sigma[X],E) \)-embedded, so \(h \circ \tau \) has an extension \((h \circ \tau)^{-} \) in \(C^*(\text{cl}_{p}\sigma[X],E) \). Since \(h \circ \tau = f|_{\sigma[X]} \), \((h \circ \tau)^{-} = f \). Since \((g \circ \overline{\tau})|_{\sigma[X]} = h \circ \tau, g \circ \overline{\tau} = (h \circ \tau)^{-} \). Hence \(\overline{\tau}'(g) = g \circ \overline{\tau} = f \), i.e., \(\overline{\tau}' \) is a mapping from \(C^*(\text{cl}_{p*}\sigma^*[X],E) \) onto \(C^*(\text{cl}_{p}\sigma[X],E) \). By Lemma 11.2, \(\overline{\tau} \) is a homeomorphism.

§12. Characterization of the Space \(X \) by its Function Ring \(C^*(X,E) \).

Suppose \(E \) is a topological ring and \(X \) an \(E^* \)-completely regular space. Then \(\nu^*_E X = \text{cl}_{p*}\sigma^*[X] \), where
σ* is the evaluation map from X into P* = E^*(X,E).

Clearly, for each x ∈ X, σ*(x) is an E-homomorphism from C^*(X,E) into E. Denote by H*(X,E) the set of all E-homomorphisms from C^*(X,E) into E. Then σ*[X] ⊂ H*(X,E) ⊂ P*.

12.1 Lemma. H*(X,E) is closed in P*.

Proof. For any fixed f and g in C^*(X,E), let

\[A(f,g) = \{ p ∈ P^* : p(f) + p(g) = p(f+g) \} \]

A(f,g) ≠ ∅ because A(f,g) ⊃ σ*[X]. We shall show that A(f,g) is closed in P*.

Suppose q ∉ A(f,g). Then q(f) + q(g) ≠ q(f+g). Since E is Hausdorff, there exist disjoint neighborhoods K and W of q(f) + q(g) and q(f+g) respectively. Since \((x,y) \mapsto x+y \) is a continuous mapping from EXE into E, there exist neighborhoods U of q(f) and V of q(g) such that U + V ⊂ K. Let \(π_i \) be the projection from P* into the i-th coordinate space E. Then the set \(π_f^{-1}[U] \cap π_g^{-1}[V] \cap π_{f+g}^{-1}[W] \) is a neighborhood of q, and it is disjoint from A(f,g). Indeed, for any p in \(π_f^{-1}[U] \cap π_g^{-1}[V] \cap π_{f+g}^{-1}[W] \), \(p(f) + p(g) ∈ U + V ⊂ K \) and \(p(f+g) ∈ W \). But \(K \cap W = ∅ \), so \(p(f) + p(g) ≠ p(f+g) \) i.e., \(p ∉ A(f,g) \). Therefore, A(f,g) is a closed subset of P*.

Similarly, we can prove that the set \(M(f,g) = \{ p ∈ P^* : p(f)p(g) = p(fg) \} \) is closed in P*. Also, for each e ∈ E, the set \(π_e^{-1}(e) = \{ p ∈ P^* : p(e) = e \} \) is closed.
We observe that
\[H^*(X,E) = (\cap \{A(f,g) \cap M(f,g) \colon f,g \in C^*(X,E)\}) \cap \{ \cap \pi_{\leq e} \}. \]

Therefore, \(H^*(X,E) \) being an intersection of closed sets is closed.

As a sequel, \(\text{cl}_p \sigma[X] \subset H^*(X,E) \). It is natural to ask: when does \(\text{cl}_p \sigma[X] = H^*(X,E) \)?

First, we shall consider some special cases; namely, when \(E \) is the space \(R \) of all real numbers, the space \(Q \) of all rationals, the space \(C \) of all complex numbers or the space of all real quaternions. In the first two cases, for each \(x \) in \(E \), let \(x^* = x \). In the last two cases, for each \(x \) in \(E \), let \(x^* \) denote the conjugate of \(x \) in \(E \); and \(\|x\| = (xx^*)^{1/2} \) is the usual norm on \(E \). Then \(x - x^* \) is a homeomorphism from \(E \) into itself. Furthermore, it carries a bounded subset of \(E \) into a bounded set. To see this, let \(B \) be a bounded subset in \(E \) and \(U \) be any \(0 \)-neighborhood in \(E \). Then the set \(U^* = \{u^* : u \in U\} \) is a \(0 \)-neighborhood. There exists a \(0 \)-neighborhood \(V \) in \(E \) such that \(B \cdot V \subset U^* \) and \(V \cdot B \subset U^* \). Then, we have \(B^* \cdot V^* \cup V^* \cdot B^* \subset (U^*)^* = U \). Hence \(B^* = \{b^* : b \in B\} \) is bounded, since \(V^* \) is a \(0 \)-neighborhood. Therefore, we have the following lemma.

12.2 Lemma. For each \(f \) in \(C^*(X,E) \), the function \(f^* \) defined by \(f^*(x) = f(x)^* \) is in \(C^*(X,E) \).
We shall call \(f^* \) the conjugate function of \(f \).

12.3 Lemma. Let \(U \) be any \(0 \)-neighborhood. Then \((E \sim U)^{-1} = \{ b^{-1} \in E \colon b \not\in U \}\) is bounded in \(E \).

Proof. Let \(\{ x \in E \colon \|x\| < \varepsilon \} \subseteq U \). For any \(b \not\in U \), \(\|b\| > \varepsilon \).

Hence \(\|b^{-1}\| = \frac{1}{\|b\|} \leq \frac{1}{\varepsilon} \). We observe that a set which is bounded with respect to the norm implies it is bounded in the topological ring. Therefore, \((E \sim U)^{-1}\) is bounded.

12.4 Theorem. Let \(E \) be any one of the following spaces: \(Q, R, C \) or the real quaternions. For any \(E^* \)-completely regular space \(X \), \(\text{cl}_{P^*E^*}[X] = H^*(X,E) \).

Proof. The basic neighborhood of a point \(p \) in \(H^*(X,E) \) is of the form

\[
\bigcap_{k=1}^{n} \{ q \in H^*(X,E) : \|q(f_k) - p(f_k)\| < \varepsilon \},
\]

where \(\varepsilon > 0 \) and \(f_k \in C^*(X,E) \).

Since \(f_k - p(f_k) \in C^*(X,E) \), its conjugate function \((f_k - p(f_k))^* \in C^*(X,E) \). Let \(h = \sum_{k=1}^{n} (f_k - p(f_k))(f_k - p(f_k))^* \).

Clearly, \(h \in C^*(X,E) \). Since \(p \) is an \(E \)-homomorphism, \(p(h) = 0 \). Thus \(h \in \text{Ker} \ p \). But \(p \) is not a zero-homomorphism, so \(\text{Ker} \ p \) is a proper ideal of \(C^*(X,E) \). We claim that \(h[X] \cap U \neq \emptyset \), where \(U = \{ b \in E : \|b\| < \varepsilon^2 \} \). For otherwise, \(h[X] \subseteq E \sim U \), and since \(b \sim b^{-1} (b \neq 0) \) is continuous on
E, the function \(h^{-1} \) defined by \(h^{-1}(x) = (h(x))^{-1} \), \((x \in X)\) is continuous. By Lemma 12.3, \(h^{-1} \in C^*(X,E) \). Then \(h^{-1} \cdot h \in \text{Ker } p \) and \(h^{-1} \cdot h = \frac{1}{h^2} \), which contradicts that \(\text{Ker } p \subseteq C^*(X,E) \). Hence \(h[X] \cap U \neq \emptyset \). There exists \(x \in X \) such that \(h(x) \in U \), i.e.,

\[
\|h(x)\| = \left\| \sum_{k=1}^{n} (f_k(x) - p(f_k))(f_k(x) - p(f_k))^* \right\|
\]

\[
= \sum_{k=1}^{n} \|f_k(x) - p(f_k)\|^2 < \epsilon^2
\]

Thus, \(\|f_k(x) - p(f_k)\|^2 < \epsilon^2 \), or \(\|f_k(x) - p(f_k)\| < \epsilon \) for \(k = 1, 2, \ldots, n \). But \(\sigma^*(x)(f_k) = f_k(x) \), so \(\|\sigma^*(x)(f_k) - p(f_k)\| < \epsilon \) for \(k = 1, 2, \ldots, n \). Therefore, \(\sigma^*(x) \) is in the given basic neighborhood of \(p \) in \(H^*(X,E) \). Hence \(\text{cl}_{p*\sigma^*}[X] = H^*(X,E) \).

12.5 Definition. \(E \) is a normed ring if

(1) \(E \) is a ring.
(2) \(E \) is a normed space.

12.6 Theorem. Suppose that \(E \) is a normed division ring with unity \(1 \) and \(E \) has the following properties:

(a) \(b - b^{-1} \) is continuous for \(b \neq 0 \) in \(E \).
(b) \(\|a \cdot b\| = \|a\| \cdot \|b\| \), \((a, b \in E)\). (observe that \(b \rightarrow \|1\| = 1 \))
(c) \(\| \sum_{i=1}^{n} b_i \|^2 \geq \|b_j^2\| \) \(j = 1, 2, \ldots, n \). \((b_i \in E)\).

Then \(\text{cl}_{p*\sigma^*}[X] = H^*(X,E) \) for any \(E^* \)-completely regular
Proof. The basic neighborhood of a point \(p \) in \(H^*(X,\mathcal{E}) \) is of the form,

\[
\bigcap_{k=1}^{n} \{ q \in H^*(X,\mathcal{E}) : \| q(f_k) - p(f_k) \| < \varepsilon \},
\]

where \(\varepsilon > 0 \) and \(f_k \in C^*(X,\mathcal{E}) \). Denote \(h = \sum_{k=1}^{n} (f_k - p(f_k))^2 \).

Clearly \(h \in C^*(X,\mathcal{E}) \). As \(p \) is an \(\mathcal{E} \)-homomorphism, \(p(h) = 0 \), so \(h \in \text{Ker } p \). But \(p \) is not a \(\mathcal{C} \)-homomorphism, so \(\text{Ker } p \subsetneq C^*(X,\mathcal{E}) \).

We claim that \(h[X] \cap U \neq \emptyset \), where

\[
U = \{ b \in \mathcal{E} : \| b \| < \varepsilon^2 \}.
\]

For otherwise, \(h[X] \subset \mathcal{E} \sim U \). We show that \((\mathcal{E} \sim U)^{-1} = \{ b^{-1} : b \not\in U \} \) is bounded. Given any \(b \not\in U \), \(\| b \| > \varepsilon^2 \), and \(1 = \| 1 \| = \| b b^{-1} \| = \| b \| \| b^{-1} \| \), so \(\| b^{-1} \| = \frac{1}{\| b \|} \leq \frac{1}{\varepsilon^2} \). Therefore \((\mathcal{E} \sim U)^{-1} \) is bounded with respect to the norm, and hence it is bounded. Define a function \(h^{-1} \) as follows: \(h^{-1}(x) = h(x)^{-1} \), \(x \in X \). Then \(h^{-1} \in C^*(X,\mathcal{E}) \), and \(h \cdot h^{-1} = 1 \in \text{Ker } p \), which contradicts that \(\text{Ker } p \subsetneq C^*(X,\mathcal{E}) \). Hence \(h[X] \cap U \neq \emptyset \). There exists \(x \in X \) such that \(h(x) \in U \), i.e., \(\| h(x) \| = \| \sum_{k=1}^{n} (f_k(x) - p(f_k))^2 \| < \varepsilon^2 \).

By (b) and (c) \(\| f_k(x) - p(f_k) \|^2 = \| (f_k(x) - p(f_k))^2 \| < \varepsilon^2 \). Hence \(\| f_k(x) - p(f_k) \| < \varepsilon \), \(k = 1, 2, \ldots, n \). But...
\[\sigma^*(x)(f_k) = f_k(x), \text{ so } \| \sigma^*(x)(f_k) - p(f_k) \| < \varepsilon \text{ for } k = 1, 2, \ldots, n. \] Therefore, \(\sigma^*(x) \) belongs to the basic neighborhood of \(p \) in \(H^*(X, E) \). Hence, \(\text{cl}_{p^*}\sigma^*[X] = H^*(X, E) \).

12.7 Remark. If the condition (b) is replaced by (b'): \(\|a^n\| = \|a\|^n \) for all integers \(n, (a \in E) \), then Theorem 12.6 still holds. Because (b') implies \(\|b^{-1}\| = \frac{1}{\|b\|} \) for \(b \neq 0 \), so \((E \sim U)^{-1} \) is bounded, where \(U = \{ b \in E : \|b\| < \varepsilon^2 \} \). (b') also implies \(\|a^2\| = \|a\|^2 \) for all \(a \) in \(E \). Therefore, the proof given in 12.6 is applicable.

12.8 Definition. A topological ring \(E \) is said to be an \(H^* \)-topological ring if \(H^*(X, E) = \text{cl}_{p^*}\sigma^*[X] \) for any \(E^* \)-completely regular space \(X \).

In the rest of this section, \(E \) will denote an \(H^* \)-topological ring.

12.9 Theorem. Suppose \(X \) is an \(E^* \)-completely regular space. Then \(X \) is \(E^* \)-compact if, and only if, every \(E \)-homomorphism \(\Phi \) from \(C^*(X, E) \) into \(E \) can be written in the form \(\Phi(f) = f(x) \) for every \(f \) in \(C^*(X, E) \), where \(x \) is a unique fixed point in \(X \).

Proof. By Theorem 10.4, the space \(X \) is \(E^* \)-compact if, and only if, \(X \) is homeomorphic with \(\sigma^*[X] \subset P^* = E^*(X, E) \) under the evaluation map \(\sigma^* \), and \(\sigma^*[X] \) is closed and
bounded in P^*. And since E is an H^*-topological ring, X is E^*-compact if, and only if, $\sigma^*[X] = H^*(X,E)$. But $\sigma^*[X] = H^*(X,E)$ means that, given any θ in $H^*(X,E)$, there exists a point x in X, such that $\sigma^*(x) = \theta$. The point x is uniquely determined by θ, since σ^* is a homeomorphism. Thus, $\theta(f) = (\sigma^*x)(f) = f(x)$ for every f in $C^*(X,E)$.

12.10 Corollary. Suppose that X is an E^*-completely regular space. Then, for each θ in $H^*(X,E)$, there exists a unique point x in ν^*_EX such that $\theta(f) = \overline{f}(x)$ for all f in $C^*(X,E)$, where \overline{f} is the extension of f in $C^*(\nu^*_EX,E)$.

Proof. Given θ in $H^*(X,E)$, we can define a mapping $\overline{\theta}$ from $C^*(\nu^*_EX,E)$ into E by $\overline{\theta} (\overline{f}) = \theta(f)$ for every \overline{f} in $C^*(\nu^*_EX,E)$. Clearly, $\overline{\theta}$ belongs to $H^*(\nu^*_EX,E)$. Since ν^*_EX is E^*-compact, by Theorem 12.9, there exists a unique point x in ν^*_EX such that $\overline{\theta} (\overline{f}) = \overline{f}(x)$ for all \overline{f} in $C^*(\nu^*_EX,E)$. Thus, $\theta(f) = \overline{f}(x)$ for all f in $C^*(X,E)$.

12.11 Theorem. Let t be an E-homomorphism from $C^*(Y,E)$ into $C^*(X,E)$. If Y is E^*-completely regular, then there exists a unique continuous mapping τ from X into ν^*_EY such that $t(g) = \overline{g} \circ \tau$ for every g in $C^*(Y,E)$, where \overline{g} is the extension of g in $C^*(\nu^*_EY,E)$.

Proof. For each x in X, the mapping $g \mapsto (tg)(x)$ is an E-homomorphism from $C^*(Y,E)$ into E. By Corollary 12.10, there exists a unique point τx in ν^*_EY such that
(tg)(x) = \overline{g}(\tau x) \text{ for all } g \text{ in } C^*(Y,E). \text{ The mapping } \tau \text{ from } X \text{ into } v_E^Y \text{ thus defined, evidently satisfies} \\
tg = \overline{g} \circ \tau \text{ for all } g \text{ in } C^*(Y,E). \text{ Since } tg \text{ is continuous,} \\
and C^*(v_E^Y,E) \text{ determines the topology of } v_E^Y, \text{ by Lemma 0.2,} \\
\tau \text{ is continuous. The uniqueness of } \tau \text{ follows from the} \\
fact that } C^*(Y,E) \text{ separates the points of } Y. \\

12.12 \text{ Remark. In Theorem 12.11, if } Y \text{ is } E^*-\text{compact, then} \\
v_E^*Y = Y. \text{ Therefore, } \tau \text{ is a continuous mapping from } X \text{ into} \\
Y \text{ such that } tg = g \circ \tau \text{ for all } g \text{ in } C^*(Y,E). \\

12.13 \text{ Theorem. Suppose that } X \text{ and } Y \text{ are } E^*-\text{compact spaces.} \\
\text{Then the ring } C^*(X,E) \text{ is } E^*\text{-isomorphic with the ring } C^*(Y,E) \\
(\text{i.e., } C^*(X,E) \text{ and } C^*(Y,E) \text{ are isomorphic under an } E^*\text{-isomorphism}) \text{ if, and only if,} \\
X \text{ and } Y \text{ are homeomorphic.} \\

\text{Proof. Suppose } \tau \text{ is an } E^*\text{-isomorphism from } C^*(Y,E) \text{ onto} \\
C^*(X,E). \text{ Then, there exist continuous functions } \tau \text{ from } X \text{ into } Y, \text{ and } \sigma \text{ from } Y \text{ into } X \text{ such that:} \\
(tg)(x) = g(\tau x) \text{ for each } x \text{ in } X \text{ and } g \text{ in } C^*(Y,E); \text{ and} \\
(t \leftarrow f)(y) = f(\sigma y), \text{ for each } y \text{ in } Y \text{ and } f \text{ in } C^*(X,E). \text{ We have:} \\
g(y) = (t \leftarrow (tg))(y) = (tg)(\sigma y) = g(\tau(\sigma y)) \text{ for every } g \text{ in } C^*(Y,E) \text{ and every } y \text{ in } Y. \text{ Since } C^*(Y,E) \\
\text{separates the points of } Y, (\tau \circ \sigma)(y) = y \text{ for all } y \text{ in } Y. \text{ Similarly,} \\
(\sigma \circ \tau)(x) = x \text{ for all } x \text{ in } X. \\
\tau \text{ is one-one: for if } \tau x_1 = \tau x_2 \text{ for } x_1, x_2 \text{ in} \\
X, \text{ then } x = \sigma(\tau x_1) = \sigma(\tau x_2) = x_2.
\(\tau \text{ is onto: given } y \text{ in } Y, \text{ then } \sigma(y) \text{ is in } X \text{ and } \tau(\sigma y) = y. \)

\(\tau \) has a continuous inverse, namely, the mapping \(\sigma \). Hence \(\tau \) is a homeomorphism from \(X \) onto \(Y \).

Conversely, if \(\tau \) is a homeomorphism from \(X \) onto \(Y \), then the induced mapping \(\tau^*: g \to g \circ \tau \) is evidently an E-isomorphism from \(C^*(Y,E) \) onto \(C^*(X,E) \).

12.14 Remark. If \(X \) is an \(E^* \)-completely regular space, but not an \(E^* \)-compact space, then \(X \) and \(\nu^*X \) are not homeomorphic. But \(C^*(X,E) \) is \(E \)-isomorphic with \(C^*(\nu^*X,E) \) under the mapping: \(f \to \overline{\tilde{f}} \), where \(f \in C^*(X,E) \) and \(\overline{\tilde{f}} \) is the extension of \(f \) in \(C^*(\nu^*X,E) \). Therefore, the class of all \(E^* \)-compact spaces is a maximal class of spaces for which Theorem 12.13 holds.

12.15 Remark. Suppose \(X \) is \(E^* \)-compact. Then every \(E \)-isomorphism from the ring \(C^*(X,E) \) onto itself is the induced mapping of a unique homeomorphism from \(X \) onto itself. The correspondence establishes an anti-isomorphism from the group of all \(E \)-automorphism on \(C^*(X,E) \), onto the group of all homeomorphisms on \(X \). To see this, suppose \(t_i \) (\(i = 1, 2 \)) are \(E \)-automorphisms on \(C^*(X,E) \), and \(\tau_i \) (\(i = 1, 2 \)) are homeomorphisms on \(X \), such that \(t_i(g) = g \circ \tau_i \) (\(g \in C^*(X,E) \)). Then, \((t_1 \cdot t_2)(g) = t_1(t_2g) = t_1(g \circ \tau_2) = (g \circ \tau_2) \cdot \tau_1 = g \circ (\tau_2 \cdot \tau_1) \). Hence \(t_1 \cdot t_2 \) corresponds with \(\tau_2 \cdot \tau_1 \).
BIBLIOGRAPHY

