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ABSTRACT

The classical Steiner Problem may be stated: Given n points
S ERAREAN in the Buclidean plane, to comstruct the shortest tree(s)
(i.e. undirected, connected, circuit free graph(s)) whose vertices
P

include ajseeed .

The problem is generalised by considering sets in a metric
space rather thanm points in E2 and also by minimising a more general
graph function than length, thus yielding a large class of network

minimisation problems which have a wide variety of practical applicationms.

The thesis is concerned with the following aspects of these

problems.
1. Existence and uniqueness or multiplicity of solutionms.

2. The structure of solutions and demonstration that
minimising trees of various problems share common

properties.

3. Solvability of problems by Euclidean comstructioms or by

other geometrical methods.
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I __INTRODUCTION

Our starting point is the well known elementary problem:

(83) Given 3 distinct points a;,8,,2 in E2 to find the point p which

3

minimises the sum of distances pa, + pa, + pa If triangle a,a,a, has

an angle > 1200, then p is its iertexf otheiwise p is the uniq§e3
point at which the sides of the triangle subtend angles of 120° and is
called the Steiner point of the triangle. (S3) may be generalised in
many ways. For example

(Pn) Given n distinct points  ERRRE AN in E2 to find the point p which

n
minimises the function I pa,.

(PB) and (SB) are identical.

Let bl”"’bN be any set of distimct points in the plane.
By a tree U on the vertices bl"”bN we mean any set consisting of
some of the (g ) closed straight segments bibj with the property that
any two vertices can be joined by a sequence of segments belonging to
U in one and only one way. A segment bibj in U is called a branch of
U, the length L(U) of U is the sum of the lengths of its branches and
{bi} is the set of all vertices sending branches to the vertex bi'
The valency of b,, written w(b ), is the number of vertices in {bi}‘
We can now formulate further generalisations of (83):
(Sn) Given n distinct points 8150e0r8 in the plane (n > 3), to construct
the shortest tree(s) whose vertices include 8yyeeera, and any set of k

additional plane points CPERREPLN (k > 0).

(s
napy
points O EERETL in the plane, to find an integer k and k additional

) Given three non-negative real numbers «,B,7 and n distinct

points BirecesBiy and to construct the tree(s) U on the vertices

al,...,an, sl,...,sk so as to minimise the sum

n k
T=L(U)+o X w(a ) + B 151 w(s,) + 7k,
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Ifa=8=7=20, (S
B=7=0, 5
a > 7 where 7 is sufficiently large. T will then be smallest when

) reduces to (Sn)° Suppose now that B = 0 and

each w(ai) has its minimum value 1 so that as few extra vertices as
possible are adjoined. However, since a tree is connected, v(ai) =1
for each i implies that k > 1. It follows, therefore, that when B =

and for suitable «,7, the minimising trees of (Snas7) will be precisely
the minimum length trees among those having w(ai) = 1 for each i and
k=1 1i.e. (8 ) reduces to (P ). A similar argument shows that if

nagy

max (B,7) >> 1 and a = 0, then (8 ) reduces to

nQpy
(Cn) To comnect n distinct given points in the plane by the shortest
trees(s) whose vertices are these n points.

(Cn) is not a generalisation of (33) gnd has the impertant property of
being discrete i.e. the length is to be minimised over a finite set of
treeg, while (Sn)’ (Pn) and (S

nQogy
co-ordinates of the extra vertices sl,...,sk are continuously varying

) are not discrete, since the

unknowns .

(s a$7) and its special cases may be extended still further by
replacing the n given points 8y5e0era with n disjoint plane, compact,
connected sets Al,...,An. The definition of a tree given above is still
valid with the following minor modifications. A vertex is a set and by
the "segment" B
Bi and Bj .
compactness argument.

iBj we mean a line of shortest distance joining the sets

Such extremals certainly exist by a standard continuity and

The final generalisation is to change the metric space in the
formulation. In the definition of a tree "segment" is replaced by
“geodesic". For example we may consider identical problems in Em; on
the surface of a sphere in E3 or in Minkowski metric spaces M. We

formulate our most general problem:

napy) Let M be a metric space with metric f) which has the following

properties:
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1. M is finitely compact.
2. There exists a geodesic in M joining each two points of M.
3. For all a, b € M, P (a,b) is equal to the length of a
geodesic joining a and b.
Given three non negative real numbers ,B,7 and n disjoint, compact,
connected sets Al,...,An in M, to find an integer k and k additiomal
points 8yseees8y € M, and to construct the tree U on the vertices

A ,.en 8,9¢04:38 80 { i
1’ ’An’ 1’ 28y as to minimise the sum

n k
T=LU)+C iEl W(Ai) + 8 151 w(si) + 7k.

Conditions (2) and (3) give meaning to the idea of a minimum length
tree in the space M while (1) will be used to demonstrate the existence
of such a tree.

This class of problems offers a wide variety of practical
applications. The problems of joining geographical points, metropolitan
areas, a set of lakes or sets of electrical terminals by minimum length
systems of roads, railways, canals or connecting wire respectively are
all examples of (Sn) for points or sets in some surface in E3 or in E3
itself. The particular Minkowski metric space which has distance
fupction d(zl,zz) = le-le + 'yl—yzl ig called the Manhattan metric.
1f there are n stores in a network of city blocks to be supplied by
separate trips in rotation from a central supply depot, the optimal
position for the depot is a solution of (Pn) in this Manhattan metric
space. This has further application in some printed circuit designs
where terminals may be joined only by wires rumning in two perpendicular
directions. Finally suppose we wish to minimise the cost of a
communications network joining areas Al”"An in which there is a cost
per unit length and also costs per terminal depending on the number of
connections at the terminal, then the minimum cost networks will be

solutions of (S ) in some metric space and for some Q,B,7.

nagy
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The problem (S3) dates back to Fermat and the generalisation
(Sn) in E2 is called the Steiner problem, and appears in the collected
works of Steiner. 1In (1] there is a summary of the knowledge of (Sn)
in 1941 and some interesting solutions, found by stretching soap films
between pegs and glass plates, are exhibited. Recently due to the diverse
applications, there has been renewed interest in these problems.
Principally Z.A. Melzak [2] showed that (Sn) in E2 is solvable by a
finite number of Euclidean constructions (i.e. ruler-compass constructions
in the classical sense) and posed (SnaB7)' R.C. Prim [3] has given an
algorithm for solving [Cn]. Other results include a solution of (Sn)
for n points in Manhattan metric space by Hanan [4], and a uniqueness

theorem for (Pn) by Palermo [5]. Other minor references are [6] and [7].

The Thesis is concerned with the following aspects of these
problems:
(a) Multiplicity or uniqueness of solution (b) feasibility of
constructing all solutions by Eyclidean constructions or possibly by
wider geometrical algorithms, (c) the structure of minimising trees and
demonstration that minimising trees of various problems share common
structures. |

The first section proves the existence of all minimum points
and minimising trees mentioned in the thesis., We then comnsider the
problem (Sn) for n points in E2 giving another proof of the theorem that
it 1s solvable by a finite number of Euclidean constructions. The proof
clearly explains the algorithm involved and exhibits the structure of
minimiéing trees. The methods used here are then generalised to solve
(Sn) for n sets in Ez. We continue with a demonstration that solutions
of (Sn) in other spaces namely En, a general surface in E3 and Minkowski
metric spaces share common properties. The final section discusses the

problem (S ), showing that in Minkowski space it has a finite number

napy
of solutions and that in E2 it is not in general solvable by Euclidean

constrdctions.



I1 - EXISTENCE THEOREM

In this section we prove that minimising trees (points) exist
for all problems mentioned in the thesis. A preliminary result shows

that (snaB7) is equivalent to a finite number of minimum length problems.

Let A.,...,A be n disjoint, compact, connected sets in a metric
1 n ’

space M having the three properties listed in section 1.

Definition. U is a p-tree on A = {Al,...,An} if U is a tree whose

vertices are Al"'"’An and the points S1ser sy which satisfies:

(1) w(s) 23, 1i=1,...k

(i1) 0 < k < n-2.

Lemma. If a solution of (§ ) exists, it is a p-tree on A.

naBy

Proof. We shall call the extra vertices sl,...,s "g-pointsg'. w(si) > 2

k}

for each i, otherwise we could decrease T by deleting s Now suppose

w(si) = 2 for some i. Then the tree formed by replacin; §.%, 8.9, the two
branches joining 8,5 by the single branch xy, has a smaller value of T.
Hence (i). The number of branches of U leading to s-points is > 3k/2

from (i), the connectivity of U assures us that the number of branches from
the A-sets is > n/2 and a tree with n+k vertices has n+k-1 branches.

Therefore (n+3k)/2 < n+k-1.from which we deduce (ii).

Definition. By the association of a p-tree U on A, we mean the integer

k and the sets [Ai} and {sj} (1=1,...n, j=1,...,k).

Theorem 1. The problem(s is reducible to a finite number of minimum

nQaBY:
length problems.

Proof. The relation '"has the same association as' on the set of all p-trees
on A is an equivalence relation. We show that the number of equivalence
classes is finite. Suppose there are k additional vertices. Then we have
n+k vertices on which to construct a tree. i.e. nt+k-1 pairs of vertices

to be joined, must be selected from the possible ( n;k) pairs.
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Thus the number of associations with k extra vertices is not greater than

n+k
2
g(n,k) =

n+k-1

n-2
and the total number of associations is not greater than %L g(n,k)

and hence is finite.

Let the equivalence classes be Cl""’CN and let C be any one
of these classes. The tree(s) which minimise T in C are precisely the
tree(s) of minimum length of C (if one exists), since the association
common to all the tree(s) of C fixes the other three terms of T

i.e. for all U € C

n k
a I A) + L .
12 w( 1) B 351 w(sj) + 7k is constant
The minimising trees of (Snap7) are a subset of the trees belonging to
cl”"’CN by the Lemma. Therefore, each minimising tree of (snaB7) is a

solution to one of the following N minimum length problems:

(1) For i = 1,...,N to construct the tree(s) U € Ci which minimise L(U).

Theorem 2. Let C € [Cl,...,CN]. There exists a tree of minimum length
in C.

Proof. The association of trees in C stipulates which of the pairs
siAj 5 sisj s AiAj will be joined by geodesics as branches of trees in C.

We exclude the case k = 0 for which the theorem is obvious. Let

[Ail, Aiz,...,Ani] ={A_ :A €AandsA isabranch of trees in ¢}

and let Rl’RZ’ sets of unordered pairs of integers be defined as follows:
R, = {¢(i,j) : s.,s, is a branch of trees in C}.

i]
R, = {(1,)) : a,a, is a branch of trees in C}.
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Then the length of a tree in C is

kM
f£(8,5+0.,8 = 5 z 8.,A, . + % S.,8,

+ L (A ,A) .

(1, er, 717

Suppose L is the length of the shortest tree with vertices Al""’An
only. Let

Z={z:z¢€Mand min F(Z,A')SLI.
i i

Then every s-point of a tree of shortest length in C (if one exists)
is in Z, for otherwise the length of the tree would necessarily be

greater than L. Thus if {s ..,sk} is a set of s-points of a minimum

5.
length tree in C, then {sl,%..,sk] is an element of the cartesian

product Zk. Now sinceZ is closed and bounded and M is finitely compact,
Z is compact implyiné by the Tychonoff Theorem that Zk is compact. But
f(sl,...,sk) is continuous on Zk and 80 has a minimum value on Zk.

Hence the theorem.

Corollary. There exist minimising trees of (S

naay) in M, For (S )

is equivalent to the finite set (1) of minimum length problems

napy

(Theorem 1.) each of which by the theorem has a solutionm.
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III - AN EFFECTIVE ALGORITHM FOR (S ) 1IN Ez.
il

We begin by stating elementary constructions of the solution of
(83) which was given in the introduction. These constructions are of
fundamental importance in the development of the algorithm for (Sn) both
for points in the plane and for n sets in the plane which will be discussed

in the next chapter,

Let a,,a,,a be the vertices of a plane triangle T with no

3
o
angle > 120 and 81589485
triangles built outward on the sides of T (with obvious notation). Then p,

be the three third vertices of the equilateral

the minimum point of (S3), lies at the unique point of intersection inside
T of the circumscribing circles of the equilateral triangles. Again, if p'

is the intersection of the line with the circle through a

#12%3 1%2%12’
each side of T subtends 120° at p' which therefore coincides with p.

It follows that each of the lines 21,35 5 85487 5 a3132 passes through p

giving a third method of construction.

Fig. 1.



Using the notation as in fig. 1. by the sine law

L &gP o %19P
sina ~ sin(60-a) =~ sin(60+x) °

sin 0 + sin (60-Q) } a..p
12Y °

©e 3P ap = ane {‘ sin (60+Q)
The addition of asp to each side gives

alza3 = alp + azp + a3p .

Thus each of the three lengths a equals the minimum

12%37 #31%2 » ®23%1
value of the function ax + a,x + azx . We remark that if T has an angle
2.120o none of the above constructions will produce a point inside T.
Suppose A = {al,...,an} is a set of n distinct points in the plane and
that U, a minimising tree of (Sn) for the set A, has extra vertices

Blsevrs8y- Then

Pl. U is non-self intersecting. 1i.e. two branches of U do
not intersect except at an end point.

P2. w(si) =3, 1i=1,...,k.
P30 W(aj) S 3 ) j = 1,.-‘,1&.
P40 O S_ ks n-2.

P5. Each s, is the Steiner point of the triangle formed by [si}.

These properties are given in [1]. We indicate the proofs for completeness.

Suppose that two branches x s ¥,x, of U intersect at x. Then one of

X

the angles at x (sayZ&,xlxx;)zis 1233 than 120° and U may be shortened

by replacing the segments X1X, XX by X,Ps X3P, XP where p is the solution
of (83) for the triangle X X X, Hence Pl, An identical argument proves
that w(x) < 3 for all vertices x of U. Therefore U has the property P3
and w(si) < 3 for each i. However w(si) > 3 for otherwise there is no

g Thus P2 is established

and from this P5 is immediate. P4 is proved as in the Lemma on Page O:

gain in introducing the additional vertex s
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Definitions. A tree with vertices {al,...,an} and {sl,...,sk} (from this
point these will be termed a-points and s-points respectively) has the
property P4 if k = n-2.

V is a subtree of a tree U if and only if (i) V is a tree and (ii)

the set of geodesics of V is contained in the set of geodesics of U.

A tree U is an S-tree on A if it has properties P1l, P2, P3, P4, P5.

A tree U is an S-tree on A if it has properties P1l, P2, P3, fﬁ, P5.

A tree U is an S*-tree on A if it has properties P2, P3, Fﬁ, P5.

The finite set [Al,A ,...,At,R], (t > 0) is a Division of the set A

2
if and only if

1. EachAigA,RgA.

2. RNA =0, 1i=1...5t.

3. HNo aj can be an element of more than 3 of the sets Ai'
4., Each Ai has 3 or more elements.

5. A1UA2U’°’UAtUR=A.

Lemma 1, If U is any S-tree on A then for some division (3(: {AI,AZ,...,At,R]

of A there exist S-subtrees of U on Ai for i = 1,...,t.

Proof. 1If U contains no s-point, the required division is {A]. If S, the
set of s-points of U is non-empty, we define the relation "o" on § as
follows.

8, © sj iff the sequence of segments of U jgining s; to sj contains no
a-point of U. The relation is an equivalence relation and therefore
partitions S into mutually‘exclusive and exhaustive sets Sl""’st(t >0).

Define A, = {aj Py € [sk] for some &,

t
R=A -iglAi. The set [Al,Az,...,At,R} 18 a division of A. It remains

€Si] » i=1,o¢.’t and

to show that there is an S-subtree of U on each Ai' Let Ui be the
subtree of U whose vertex set is Ai U Si’ i=1,..., t. (This is
certainly a subtree of U by construction).ui has the properties P1,P2,P3
and P5. We prove P4. Let Ai contain p points, Si q points and further
suppose that Si contains nl,nz,n3 s-points which directly join 1,2 and 3

other e-points respectively. Then
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(2) n, + n, + n,=gq .

The number of branches of Ui connecting s-points is (n1 + 2n2 + 3n3)/2.
But by the defining property of Si this number is q-1. Hence

3) ny + 2n2 + 3n3 = 2(q-1).

The number of branches of Ui connecting an a-point to an s-point is
an + n, since the valency of each s-point is 3. Hence

(4) 2n, +n, =p .

From equations (2) (3) and (4) we deduce q = p-2. Therefore Ui satisfies

P4 and is an S-subtree of U. Hence the Lemma.

Incidentally one can also prove Dy - By = 2 from (2) (3) and (4)

which implies that n, > 2. We note that the non-selfintersection property

1
is not involved in the establishment of these equations and state that an
*

S -tree on a set A has at least two s-points which directly join exactly
one other s-point and two a-points. This fact will be used in the next

Lemma.

We call the subtrees Ui (i=1,...,t) the Components of U and
suggest that the components of a minimising tree U may be considered as
stability sets for U in the following sense, If one a-point aq is
perturbed by a sufficiently small amount, there is a minimising tree U'
fér the new set of n a-points which is identical to U except for a small
perturbation of the components to which a belongs. If p,q are points
in the plane we shall denote by (pq) and (qp) the third vertices of the
equilateral triangle on pq as base, (pq) being the point to the left of
p looking from p along pq.

The construction we now describe, a direct consequence of the
solution of (83), is crucial to the proof. Let U be an S-tree on
A= {al,...,tn} with s~-points BiresesBy then there exists (see note

following Lemma 1.) an s-point say s, which is directly connected

1
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to two a-points say al and a2 and a third vertex x. In fact a portion of

U appears as in fig. 2,

Fig. 2.

Since 8 is the Steiner point of {sl}, the line xs, produced passes

through (a al) and the trée U' on A' = {(a al), Ggrceesd } with s-points
ByreeesBy formed from U by replacing the branches 2,8 , a8, , 8.X by

the single branch (azal)x is an S -tree on A' (the non-selfintersection

property may have been contradicted). Further a8 + a,8; + 8, = (azal)x

therefore U,U' have equal lengths. The important point is that (azal) is

constructed from the original a-points only. We call the above the

"Equilateral construction."

We next define the term "Associlation' of an S-tree on a set A,
From U, we form a tree U' and set A' as above., The construction is
repeated forming a new tree U" and set A", U"' and A"' etc. until the
set A(r) contains only two points. (Actually r = the number of
s-points in the original trée U). The two points of A(r) can be expressed
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in terms of the original a-points of U and the equilateral triangle
bracketing notation defined above. This representation of A(r) we
call an "Association'" of the tree U and the line joining the two points
of A(r) we call an "axis" of U. We give a simple example below. We
note the following:

(}) The process is always possible since at every stage

*
the tree U(k)is an S ~tree on A(k) and hence has an
s-point which directly joins two a-points, (in fact

at least 2 such s-points by the note following Lemma 1),

(il) 1t follows from (i) that every S-tree on A has an

. association and an axis (certainly not a unique association.)

(iii) At each stage length is preserved. i.e. The length
L(U) = length of an axis of U.

(iv) No two S-trees on A have a common association.

Example. 1In Fig. 3,U is an S-tree on A = {1,2,3,4,5] with s-points

§178p785"

(Uyz)('B))

Fig. 3.
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We "pair'" the points 1 and 3 giving

AI

{(13), 2, 4, 5} and U' with branches(13)33,s35,szs3,252,4s2.
Next we pair 4 and 2

A“

{(13),(42),5},U" has branches (42)s3,(13)s3,335.
Finally we pair (13) and (42)

A"t = (((42)(13)) , 5},U"' has branch ((42)(13))5.

The underlined portion i.e. A"' without the set parentheses is an association

of U. The length of U is the length of the branch of U"'.

Lemma 2. If it is known that U, an S-tree on A has a certain association Q,

we can construct U by a finite number of Euclidean constructions.

Proof The Lemma is true for m = 3. Assume it is true for n = N and let
Ayt = {al,...,an+1] be any plane set of N+l points on which U is an
§-tree with association O. Suppose the labelling of points in AN+1 is

such that a.,a. in this order in & have no brackets or comma separating

b

them. We niw ionsider the set Al = {(alaz),a3,...,an+l]. From the
equilateral construction there exists U', an S-tree on AN which has
association @ except that (alaz) is now regarded as a single point.

By the inductive hypothesis we can comstruct U' by a finite number of
Euclidean constructions. Let (alaz)x, the branch of U' connecting (alaz),

be replaced by the branches a;s, a,s, sx where s is the point of intersection
of the circle through (alaz), a, a, with the line (alaz)x. The resulting
tree U, by the equilateral comstruction, is the (unique by note (iv) Page 13)

S-tree on AN+1 with association Q. Hence the Lemma by inductionm.

Lemma 3. The set of all minimum length S-trees on A = {al,...,an) is

finite and may be constructed by a finite number of Euclidean constructions.

Proof. Any two points formed by combining the elements of A by the above
equilateral point bracketing notation we call an association of A, Then

the set of all assocations of all S-trees on A is a subset of the finite
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set @ of all associations of A (in fact a proper subset for n > 3).
If for each b € é£5 we perform the finite number of Euclidean constructions
(Lemma 2) that constructs the S-tree on A with association b (if such a

tree exists) we will construct all the S-trees on A. Hence the Lemma.

For the main theorem of this chapter we shall need to refer

to Prim's efficient algorithm for

(Cn) : Given n compact, connected, disjoint sets Wl,...,wn,to connect
them together by the shortest tree(s) whose vertices are exactly these
sets.
The method is as follows:
(1) Join Wl to its nearest neighbor, say WZ,
{2) Replace Wl and Wz by their union.
(3) Repeat the same procedure for the new class of (n-1) sets and keep

on repeating until only one set remains.
Actually, Prim's algorithm was originally intended for the case of points;
however, it works equally well for sets. Moreover if the nearest neighbor
of some Wi can be connected to it by several segments of the same minimal
length, or if Wi has several nearest neighbors, we perform the connection
in all possible ways and get then the set of all connecting trees of the
same minimal length.

Theorem 3. For every n, there exists a finite number of Euclidean
constructions yielding all the minimising trees of the problem (Sn)'

The minimising trees of (Sn) are precisely the minimum length S-trees on
A, each of which has minimum length components (Lemma 1) on some division
of A. The following method, therefore yields all solutions of (Sn).

1. From the finite set O’L = (O’tl,..., OZN] of all divisions
of A.

2. For each (3ti = {Ail’ AiZ""’Ait 3 Ri], we construct by
i

a finite sequence of Euclidean constructions, the finite

set C1J of all minimum length S-trees on A1j (= 1"'°’ti)'
(Lemma 3.) _

3. 1If Cij = ¢ for any j = 1,..., t;, (there may not exist an
S-tree on an arbitrary set of peints), we reject the

division C}Zi. If each Cij * ¢, we call C)Zi "admissible'.
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4. For each admissible division Cﬂi we now form the finite

set

Mi= {(Uﬂ,uiz,...,uiti) P Uy € cij} .

5. For each element of F’i we connect the Uij to each other
and the residual set Ri in optimal way(s) so that the
resulting tree(s) on A have minimum length. (§-trees on

non~-disjoint sets Aip’Aiq are automatically joined).

Prim's algorithm may be used to effect the joining. We note
that the application of this algorithm must not contradict any of the
properties P1-P5 on the resulting tree could not have minimum length
e.g. every comnection must be a segment joining two a-points. The
number of optimal joinings is certainly finite. We thus obtain a finite
set of trees on A from which we select the set V, with minimum length.

i

(v, = ¢ if C%i is not admissible). Then the solutions of (8 ) are

precisely the minimum length trees of the set U V which has been

constructed by a finite sequence of Euclidean constructions This

completes the proof of the theorem.

We conclude this chapter with a diagram of an S-tree on
A= {al,...,all} which has two component S-trees Ul,U2 on sets
Al = [81’82’83’84] and A, = {az,as,a6,a7,a8,a9} respectively. The
residual set R is {alo,all] and the corresponding division of A is

O(a = {A1’A2)R] °
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Fig. 4.
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IV - (8 ) for sets in E2.

1T

We now discuss the extension of the techniques of Chapter III to
the problem (Sn) for n compact, connected, disjoint sets Al”"’An in the
plane. Let U be a minimising tree of (Sn) which has additional vertices
SERREFLAE An end point of a branch of U is either a point in B(Ai) or
a vertex s,. The following properties of U are simply deducible by the
same methods as their counterparts in Chapter III.

Ql. Two branches may not intersect except at am end point.

Q2. 1If two branches share an end point, they subtend there an

an angle > 120°.

Q3. For each 85 (i=1,...,k), w(si) = 3.

Q4. Each s, is the Steiner point of {si}, where {si] is the

set of three end points of branches joining S+

Q5. 0< k< n-2.

Definition. Let A,B be compact, connected sets in E2 and let (ab) be
defined as in Chapter I1I.We define the equilateral sum (AB) of A and B
by

(AB) = {(ab) : a € A , b € BJ.

(AB) is compact and connected. (AB) + (BA). 1If A is a point, (AB) and

B are congruent under a rotatiom of 60° about A. If c is a boundary point
of (AB) then c = (ab) where a,b are boundary points of A,B respectively.
Distributive laws hold. If A = CU D then

(AB) = (CB) U (DB)

and similarly for B = E U F. The following properties hold for (AB)
whenever A and B have them: convexity, arcwise-connectedness, being the
smooth boundary of a region, being a simple polygon. Let d(X,Y) denote

the distance between two compact, disjoint sets X,Y.

Lemma. (Generalised equilateral comstruction).

Let Al,Az,A be three compact, connected, disjoint sets in Ez. Suppose

3
that a minimum length tree U connecting these sets consists of three
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straight segments a1V, 8,V, azv, (ai € B(Ai))’ meeting at an additional
vertex v and let the rotation a,>a,>a;—>a; be counter-clockwise about v.
Then (i) al(a2a3) s az(a3a1) s a3(ala2) intersect in v,

(i1) 31(3283) = d(Al) (A2A3))

= az(aBal) d(Az, (A3A1))

= a3(a1a2) = d(A3, (AlAz)) = L(U).

i.e. ay,a,,ay are selected in Al’AZ’AB so that al(aza3) is a shortest

segment connecting A, and (A2A3) etc,

1

Proof. v is the Steiner point of a;,a and therefore by the equilateral

233
triangle solution of (83) in Chapter III, al(azaB), az(a3a1), a3(a1a2)
intersect at v and the length of each of these segments is equal to L(U).
Hence U is a minimising tree if and only if a1(32a3) ( or similarly
az(a3a1), a3(a1a2)) attains its minimum value i.e. al(a2a3) = d(Al,(A2A3))

as required.

The problem (Sn) for a class A of n sets {Al,...,An] can now be
solved from the properties Ql-Q5 and the generalised equilateral construction
by exactly the same sequence of steps which solved <Sn) for points using
P1-P5 and the equilateral construction. We form the finite set of all
divisions of the class A. A division of A has the form {al,az,...,a6 r)
where each @, and r is a subclass of A. We find the minimum length S-trees

i
on each @, of each division and join together these components optimally

using Pri;'s method. The components are constructed using the association

and axis technique as before. The higher equilateral sums e.g. ((AzAl)(AGAS))’
are unambiguously defined, and by an axis e.g. [((AZAl)(A6A5)), (A4A3)] we
understand the straight segment joining points in X = ((AZAI) (A6A5)) and

in Y= (A4A3) for which the minimum d(X,Y) is attained. We note the

following:

Theorem 4. Let A = [Al,...,An] be a class of n simple polygons. Then
minimum length trees on A can be found using a finite sequence of Euclidean

congtructions.
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To prove this it suffices to observe that:
(a) the equilateral sum of two polygons is a polygon and hence constructible
by Euclidean means.,

(b) the closest distance between two polygons can be found by Euclidean means.

Fig. 5. shows that there may be an infinite number of minimum length
trees connecting a family of polygons. A = [Al,Az,A3} where AI’AZ are

equilateral triangles and A, is a single point. It is easily verified,

3
using the generalised equilateral comstruction, that if a,»a, are any pair

of points of X Yl, X,Y, which are symmetrically placed with respect to A3

1 272
then the network U has minimum length.

() "% et U, As

S G
XZ' (7
Yz
Fig. 5

Theorem 4 leads immediately to
Theorem 5. Let A = {Al,...,An] be n sets and suppose that each Ai is
arbitrarily well approximable by simple polygons. Then minimum length trees

on A can be found by a finite sequence of Euclidean constructions to within

arbitrary accuracy.

For if Al and A2

(AlAZ) is approximated by (Ple).

are approximated by the polygons P1 and PZ’ then



- 21 -

V.- (Su) IN OTHER METRIC SPACES

1. Euclidean m-Space.

Theorem 6. The minimising trees of (Sn) for n points in " (m > 3) have
the properties P1-P5 listed in Chapter III.

Proof. We show that each vertex of a minimising tree U which has a-points
S PEERFL N and s-points Byreees8y has valency < 3. For suppose U has a vertex
x and branches xx, along the dlrectlons of the unit vectors uy , (i=1,...,4).
Then one of the angles at x (say Z&_x 2) is less than 120° since

'u < - l for all i $ j implies that

4 4 9 1
Z U = Z ui + 2 i ui'u, <4 + 2»60(' -2-) = "2)
i=1 i j ]

which is impossible. It follows that XX, ,XX, is not the minimum length

2 contrary to assumption. The rest of the proof is
identical to that glven for the properties P1l-P5 in E2.

network connecting xx 1X

2, A Surface in E3.

Let D be a surface in E3 free from singularities of any kind. It will be
shown that minimising trees of (Sn) in D have properties identical to those
for E". We first prove two results which show that the 120° property of

additional vertices holds in D.

Suppose A, B, C are distinct points in D and P ¢ {A,B,C} minimises
the sum P (P,A) + E(P ;B) + F(P ;C), we prove that the angles at P between
the geodesics PA, PB, PC are each 120°. Let ‘D(P,A) = a, F (P,B) = b and
F (P,C) = c¢. Consider the geodesic ellipse E (= the locus of points Z such
that P (z,A) + E(Z,B) = a + b) and the geodesic circle fD(Z,C) = c¢. These
closed curves touch at P, for otherwise there would be a point Y interior
to both curves such that {o (Y,A) + [J (Y,B) < a+b and (3 (Y,C) < ¢
contradicting the minimum property of P. Since geodesic PC meets f)(z,c) =
orthogonally, geodesic PC meets E orthogonally. By a result of classical
Differential Geometry [8] page 120, E bisects the angle between the geodesic
parallels f)(Z,A) = a and (z,B) = b and therefore, since the geodesics
AP, BP meet these circles orthogonally, the angles & and B of Fig. 6. are equal.
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Fig. 6.

e (5) 4APC= 43?0‘

Similarly by considering the geodesic ellipse f>(Z,A)-+ P(Z,C) =a+c
we prove X APB = 2 BPC and this together with (5) proves the result.

Secondly we show that if ABC is a geodesic triangle on D with the

angle at A less than 1200, then A does not minimise the sum

FJ(Z,A) + (>(Z,B) + fD(Z,C). Let V be an €-neighborhood of A sufficiently
small so that for all r, s € V there is only one geodesic joining them.
Let B(V) intersect the geodesics AB, AC in X and Y. Consider the following
1-1 mapping of the geodesic triangle AXY onto the tangent plane at A.
For Q in the geodesic triangle AXY with P(A,Q) = q, the corresponding
point Q' is the point on the tangent line to the geodesic AQ at A such
that AQ' = q. Since the angle A of the plane triangle AX'Y' is less than
120°, there exists P' in the tangent plane such that
AP' + X'P' 4+ Y'P'< AX' + AY' and furthermore the difference is proportional

to € i.e. AX' + AY' - (AP' + X'P' + Y'P') = Ekl for some kl'
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If € is sufficiently small, for all Q,,Q, € V, lQi Qy - f’(Ql’Qz)'( L e’

where L 1is constant., Hence if P € V corresponds to P' in the tangent plane,

(A" + X'B'+ X'BY) - [p(AE) + p(XE) + pLB| < kzez for some k,.

{f(A,m + (’(A’Y)} - (f(A,P) + p(x,P) + (’(Y’P”
= (AX' +AY') - (AP' + X'P' + Y'P')

+ (AP' + X'P' + Y'P') - {(J(A,P) + (:(x,P) + (J(Y,P)]

> ke - k2€2 > 0 if € is sufficiently small.

.. (A(A,X) + (D(A,Y) > (;(A,P) + (3(X,P) + (O(Y,P).

1f we now add (X,B) + F (X,C) to each side and apply the triangle inequality
on the right we obtain

(:(A,B) + f(A’C) > (l(A,P‘) + (3(B,P) + (’(C,P)
showing that A does not minimise F(Z’A) + C(Z,B) + F(Z,C) as required.
Using these 120° properties and proofs identical to those for
P1-P5 (Chapter I1II), we deduce that U, a minimising tree of Sn in D with
extra vertices CSERREFL AW has the properties P1,P2,P3,P4 and the following

analog of P5: P'5: For each L = 1,...k if [si] contains points p ,q,,T,
then each of the angles at si'between the geodesics P;859;8;sT:8; is 120°.

3. Plane Minkowski Metric Space.

Let & be a centrally symmetric convex surface in E™ with centre 0. The
m-dimensional Minkowski metric space M? associated with L is obtained by
defining the distance f>(x,y) for x,y € E" as follows. If x =y, P (x,y) = 0.
If x 4 y let the ray with initial point O which is parallel to xy meet L at P.
Then f>(x,y) = xy/OP, where xy and OP are usual Euclidean distances. M° s

a metric space satisfying the three conditions of the introduction and

having the following properties ([9] page 21),x and y are considered as

m-dimensional vectors. For all x,y € M
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(1) fD(x,y) = f)(o,x-y) and more generally, any translation is an isometry.

(i1) The triangle inequality is strict provided that I is strictly convex

and the three points involved are mom-collinear.
(iii) For L strictly convex
P (0, xty) < ()(O’X) + F(O:Y)

and this inequality is strict unless 0,x,y are collinear with X,y

lying on the same side of O.

Small results in the necessary preliminary theory of this section
will be termed propositions and the principal regults are Theorems 7 and 8.
For the rest of the section M? will mean a plane Minkowski metric space, the

defining curve of which is strictly convex.

Proposition 1. Given n distinct non-collinear points O ERRRFL in MZ.

There exists a unique point z minimising the function
f£(z) %
zZ) =
( &1 f:(z,ai).

Proof. The existence of a minimum point was proved in Chapter II. Suppose,

contrary to the proposition, that £(z) has minima A at zy and z,. Then

. <z1 + 22)
2

n z1 + z2 )

n zq + z, )
s p(nt.
1=1(> 2 v

n 1 1
= 121 /O <E(zl-ai) + -2—(zz-ai), 0)

(6)

IN

21,2, and some a, are non-collinear since we are given that not all the a
collinear. Hence the inequality (6) is strict proving that

i

1 1 N
2 i-El Io (zl-ai’ 0) + > 151 lo(zz-ai,O) (triangle law)

are
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z. + z
(7) f (—l——z——3>< -;- f(zl) + %f(zz) = N2+ N2 =N

(7) contradicts the assumption that A is the minimum and also shows that

f(z) is strictly convex.

The next few results concern the unique point P which minimises
P (P,A) + (O(P,B) + P(P,C) where A,B,C are distinct points of Mz. We

shall use the following abbreviations:

P = min P {ABC} for the above point, Q{ABC} for the sum (O(Q,A) + (O(Q,B)
+ P(Q,C) and AB for ﬁ (A,B).

We omit the proof of the following

Proposition 2, Let P

min @ {ABC} then P lies within or on the triangle ABC.

]

Proposition 3. Let P = min F[ABC} and suppose 1 | {A,B,C}. Then if A' is

any point of the line PA between P and A, P = min 0 {A'BC}.
Proof. Suppose the contrary and min F{A'BC] = Q4 P. Then

A'Q + BQ + CQ < A'P + BP + CP.

.. (AA' +A'Q) +BQ 4+ CQO<A'P + BP + CP + AA' = AP + BP + CP.

Applying the triangle inzquality on the left we obtain Q{ABC} < P{ABC},
contradicting the hypothesis P = min (0 {ABC].

Proposition 4. Let P = min O {aPB}. Then for all A',B' on PA, PB on the

same side of P as A,B respectively P = min /O(A‘PB'].

Proof. Case (i) Let A',B' be between A and P, B and P respectively and

suppose the contrary. Then there exists Q such that

A'Q + B'Q + PQ < A'P + B'P.

' (A'Q +AA'Y + (B'Q + BB') + PQ < (A'P + AA') + (B'P + BB').

Application of the triangle inequality to the terms bracketed on the left
gives Q{ABP} < P{ABP) contradicting the minimum property of P.
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Case (ii) 1If conditions of Case (i) are not satisfied,draw A"B" parallel

to A'B' with A",B" satisfying these conditions (see Fig. 7).

Then by Case (i)
P =

min f:{A"PB“] and by similar triangles P = min f:{A’B'P} as required,

Figo 7.

Proposition 5. Let min f>[ABC] = B and A' be any point on the line AC
but not in the closed segment AC.

Then B = min O {A'BC].

Proof Take points R,S,T on BA', BA, BC respectively such that BR = BS = BT.

By hypothesis and Proposition 4 ,min p {BST} = B. Suppose the contrary of

the Proposition i.e. min f)[A'BC] 4 B. This implies by Proposition 4 that

B

(a) (b)

Fig. 8.
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(8) min fJ{BRT] =P 4 B.

There are two cases to consider:

Case (i) P lieson or to the left of BS (see fig. 8a). Let PT
meet BS at X, (internally since the unit ball L of the metric is strictly

convex). Then

BX + SX + TX = BS + IX

BR + TX < BR + TP

< BP + RP + TP by the triangle inequality.
< BR + BT by Equation (8).
= BS + BT .

i.e. X {BST} < B{BST}. Contradiction since B = min fo{asr].

Case (ii) P lies to the right of BS (fig. 8b). Let PR meet BS at X.
Now P = min F (BRT} implies by Proposition 3 that P = min ’o {BXT]}.

Using the uniqueness property,B % min F[BXT} and therefore by Proposition 4.
B + min F {BST}. Contradiction. Cases (i) and (ii) together prove the

proposition.
Definition. Let PAl,PAz, PBl’ PB2 be four lines from P meeting a line ST
not through P in Al’AZ’Bl’BZ respectively such that Bl and B2 are contained

in the closed segment A/A,. We say that A.All’A2 contains 2§.B1PB2 and
properly 1if Bl or B2 or both is in the open segment AlAZ'

Proposition 6. (i) If P

min O {BIPBZ] and 4 A[PA, contains 2&.13117'32
then P = min {AlPAZ]

(i1) 1f B
triangle ABC except on AC, then P = min /0 {aPC]).

min ABC} and P is any point within or on
Pl

Proof (1) is immediate from the above definition and Proposition 5. Tc
prove (ii) draw parallels to AB, BC through P and let these meet AC in X
and Y. Since X XPY is a translation of X ABC, P = min F {pxY]}.

Then by part (1), P = min {o{APC} as asserted.



- 28 -

Proposition 7. If C = min fD{ABC] there exists A' between A and B on the
line AB such that for all X on this line between A' and B, min f>{XBC} 4 C.

Proof Let the metric ball centre B through C cut AB at A'. A' is between
A and B since AB is the "longest" (in the sense of the metric) side. Then
for all X between A' and B, XB < A'B.

.. XC+XB< XC+A'B = XC + BC. (by construction A'B = BC).
i.e. ¥{xBC} < C{XBC} hence C # min P {xBC].
Definition ZP ABC is a critical angle if and only if
(1) min P (aBC} = B
and (ii) min fJ{A'BC'} 4 B for any A', C' such that
2. A'BC' is properly contained in ZrABC.

Propositions 4 and 7 show that this definition is meaningful and critical
angles exist. For the Euclidean metric, critical angles are 120° angles.

In Minkowski spaces critical angles will vary in their Euclidean magnitude.

Proposition 8. (1) C = min FD{ABC] if and only 1if Z*ACB contains a

critical angle,

(ii) In any triangle exactly one angle or no angle
contains a critical angle.

(iii) The angle vertically opposite a critical angle is
itself critical.

Proof (i) follows from the definition’(ii) is immediate from the
definition and the uniqueness of the minimum point. (iii) is proved
using similar triangles, We now prove our principal result on the

minimising point of a triangle:

Theorem 7. For any triangle ABC in G exactly one of the following occurs:
Either (1) Exactly one angle (say Z* BAC) contains a critical angle
and A = min p {ABC)
or (i1) There exists a unique point P at which the sides of the
triangle subtend critical angles and P = min fJ[ABC].
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Proof (i) Suppose Z}BAC contains a critical angle. Then no other
angle of ABC contains a critical angle and A = min fD{ABC}. (Proposition 8)
(11) Suppose no angle of ABC contains a critical angle, then

P = min ‘O{ABC} is not at a vertex, Now assume that ﬁ,APB does not contain
a critical angle. Then

€)) min P (aAPB} = X 4 P.
CX < PX + PC. (triangle inequality)

.

.". AX + BX + CX < AX + BX + PX + BC
< AP + BP + PC . by (9).

i.e. X {ABC} < P{ABC} contradicting the minimum property of P.
Therefore Z}APB(gnd similarly Z}APC, Z}BPC)contains a critical angle.

We contihue the proof by showing that there exists only omne point
at which each anglé subtended by a side of the triangle contains a critical
angle. Suppose the contrary, then there exist two such points namely

Q and P = min fD{ABC}. We consider two separate cases:

Case 1. Assume P is strictly inside triangle BQC and AP meets QC in X.
Then since Q = min p{QBc], Proposition 6 implies that X = min p{xnc].
But P = min (o{ABC}. Therefore, by Proposition 3, P = min ‘o[XBC] which
contradicts the uniqueness of min f)[XBC]. Proofs for P strictly inside
AQC or AQB are similar.

Case 2. Assume P lies in the open segments QA. A.AQB contains a critical
angle, therefore Z}APB properly contains a critical angle and there exists
a point R on the open segment CP such that ZrARB contains a critical angle.
Zfs ARC, BRC also contain critical angles (Proposition 6), hence each
angle subtended at R by a side of ) ABC contains a critical angle. We
now apply Case 1 using R instead of Q and obtain a similar contradiction.

To complete the proof of Theorem 7 we have only to show that if
the angles subtended at a point P by the sides of triangle ABC, contain
critical angles then these angles are exactly critical angles. Suppose

the contrary and é}APB properly contains a critical angle. Then by
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Propositions 5 and 7 there is a point D on AB such that for all A' in
the closed segment AD, the angles subtended at P by A'B, BC, A'C each
contain a critical angle and hence for all such A', P = min f)[A'BC}
which is impossible with a strictly convex unit ball. Hence the Theorem.

Proposition 9, If of the three angles subtended by AB, AC, CA at P, two
are critical, then the third is critical.

Proof. Suppose A.APC, erPC are critical and ZylAPB does not contain
a critical angle. Then min F {APB} = X # P and by Theorem 7 the angles
PXB, PXA, AXB are critical, Draw parallels to AX, BX through P and
produce XP. We see that one of the critical angles APC, BPC (in Fig. 9
it 1is Z* APC) properly contains a critical angle which is impossible.
Therefore ZrAQB contains a critical angle and by Theorem 7 it is a
critical angle,

Fig 9.
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Corollary 1. If of 3 angles at a point, 2 contain critical angles, one of
them properly, then the third angle does not contain a critical angle.

Corollary 2. Supplementary angles cannot both contain critical angles.

Proof Suppose the contrary and let A.AOB, ZS_BOC be supplementary
angles each containing a critical angle (Fig. 10). Take any point A'
within Z&.AOB' as shown. Then Z A'OB properly contains the critical
angle AOB and ﬁFBOC contains a critical angle by hypothesis. Hence by
Corollary 1’ Z% A'0OC does not contain a critical angle., But the critical
angle B'OC (Proposition 8 iii) is contained in ZS_A'OC. Contradiction.

Fig. 10.

We digress and state the following fact which will be used in
the next section. Suppose A,B,C are distinct points in an m-dimensional
Minkowski Metric Space with strictly convex defining surface S and let
the plane 7 defined by A,B,C meet § in the curve I . Then the above
theory holds in the plane Minkowski space defined on T by & i.e. we can
apply Propositions 1-9 and Theorem 7 to three points A,B,C in an
m-dimensional Minkowski Metric Space.
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Theorem 8. Let U be a minimising tree of (Sn) in M2 with additional

vertices SERRRFLI Then U has the properties P1-P4 of section 3 and
the following analog of P5:

P"5. For each i = 1,...,k, 8, = min f:[xyz] where X,y,z are the points

of (si} and each angle xs,y, ys,z, zs;x is a critical angle.

i
Proof Suppose branches X110 X,5, intersected at p (not a vertex of U)

then some angle at P say X,PX, does not contain a critical angle.
(Proposition 9, GCorollary 2). Therefore min f>{x1px2} =z 4 p and a
replacement of X PsyX,P by the three lines X2, XyZ, P2 shortens the

assumed minimising tree which proves Pl, Similarly, no vertex x of U

has w(x) > 3, Thus U satisfies P3 and w(si) < 3 for all 1 = 1,...,k. There
is no gain in introducing additional vertices with valency < 3. Hence P2.
The proof of P4 is identical to that given for (Sn) in E2 and P"5 is the

result of theorem 7.

It is shown in [4] that for (Sn) in the Manhattan metric, where
the defining curve is not strictly convex, the property w(x) < 3 for

each vertex x of a minimising tree does not hold.

The equilateral construction of the Steiner point of 3 triangle
in E2 enabled us to solve the problem (Sn). Accordingly one isqlead to
search for a generalisation of this construction for P = min f){ABC} in Mz
when no angle of A\ ABC contains a critical angle. The following two

conjectures were made:

(1) Let (AB) be the third vertex of the triangle built outward
on AB whose exterior angles are critical angles. Then the
line (AB)C passes through P. ‘

(ii) A triangle XYZ in M2 is P- equilaterial if

P(X’Y) = P(Y’Z) = (J(Z,X)- Let (AB) be the third vertex
of the ‘O - equilateral triangle bdilt outward on AB.
Then (AB)C passes through P.

We note that in E2 (i) and (ii) are equivalent and may be used

to construct the Steiner point. The counter examples below show that in M2
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the conjectures are not equivalent and that neither is true in general.
The examples will use the metric with unit ball |x|P + |y|P = 1, which
is strictly convex if p > 1 Then fD[(x 5Y.) 5 (x.,¥,)) =
~ P pyl/p - 272

sz-x1| + ,yz'yl' ) . Let A= (0,1) , B= (1,0) , C (-1,0).
Symmetry and uniqueness insist that P = min fD{ABC] lies on the y-axis
and by elementary methods, the sum f)(A,P) + P(B,P) + f(C’P) takes

its minimum value at the point P(0,\) where

. L \l/p
- ( 2p/p—1_1> ’

Recall that if A is moved to any point A' on PA on the same side of P
then P = min fD{A'BC].

Example 1. To show that a triangle whose exterior angles are critical,
is not mecessarily FD- equilateral.

Using the special case given above, the three angles at P in fig. 1ll(a)
are critical angles since P = min fo{ABC]. AP, BP, CP have slopes

®, A, =A. The sides of triangle ORX shown im fig. 11(b) have identical
slopes and hence the exterior angles of this triangle are critical angles
e.g. Zy.ORQ is a translatiom of the critical angle BPC. We show that
triangle ORX is not ()- equilateral.

)
) ).\ X (0,1)
‘ A(o,1)
R
“R(w’ 2 )
Plo,)\) \
\‘ Q
B(-1,0) C(1,0) 0

(a) (b)

Fig. 11
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But ‘o(OX) = 1. Hence triangle is fD -equilateral if and only if
,2=2)/(p-1) _ .

i.e, if and only if p = 2 and the metric is Euclidean.

Example 2. To show conjecture (i) is false.

\\ Ao, %)

B(-1,0) C0)

Fig, 12

In Fig. 12 P = min f)[ABC]; the exterior angles DAC', EC'A of triangle
ABC' are translations followed by a rotation through 90° of the angles
APC, APB, Since each such transformation is anm isometry for this metric,
the angles DAC', EC'A are critical angles and hence triangle ABC' has

its exterior angles critical. We show that CC' does not pass through P.
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CC' has equation 3\y = 1 - x and passes through (0,\) if and only if

3x2 =1or A ==J% i.e. CC' passes through P if and only if p = 2
and the metric is Euclidean.

Example 3. To show conjecture (ii) is false.

B(-'l)o) Cv('>°) i

Fig. 13

In Fig. 13 A,B' have co-ordinates (0,(2P-1)'P) , (2,(2P-1y)!/P).
Then it is easily verified that triangle AB'C is FJ- equilateral
with sides of length 2. We show that BB' does not in general pass
through P = min @ (ABC). BB' has equation y = -;— @P-»MP (x + 1)
hence has y-intercept (2p-l)1/p/3. .". BB' passes through P if and

only 1if p/p-1 __-1/p

@P-1)P/3 = 2 1)

or (@P-1y(22P o1y = 3P

We see that this is satisfied for the Euclidean case p = 2 but is
certainly false for any imteger p > 2.
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Vi - MORE PROPERTIES OF (Sna )

By

In this chapter we prove two results for (S )}, concerning

naBy
finiteness of solution in Minkowski Space and non-constructibility of

~solutions in E2 by Euclidean constructions.
The following threorem uses the notation of Theorem 2. Chapter II.

Theorem 9. If M is a Minkowski Metric space Mm for which the defining
surface & is strictly convex, then there is a unique tree of minimum length
in C € {cl,...,cu}.

Proof Suppose the contrary and f has minima, value £, at [sl,...,sk} and

1 71 k 'k
2 ,0.0’ 2

[tl,...,tk] where ti + 5, for some i. Consider the set { 8.+t s, +t }

Using Properties (i) - (iii) of Minkowski Spaces Chapter V.

s .+t 8,-a t.-a
i _ i 7ij i %414
F( 2 ’aij>‘/°<°’ 7t T3 )
s,.=-a,. t,-a
5(’(0’ izi)J'/D(o’ izi>

1 1
=3 lo(o, s; - aij) +"2"P(0’ ti - aij)

1 1
=3 f(si’aij) + > ’o(ti, aij)'
This inequality is strict unless aij’ 547 ti are collinmear with S.» ti on
the same side of a_ ..

ij

K M

s,+t k i
. z % L1 ) 1 T L (s,, a,.) + p(t,, a,.)
i=1 j=1P( s s ayy) S5 dE B P M T LT Ry

and the inequality is strict unless for each i = 1,000k, 8,95 8iorcees

, t, are collinear with Bi’ ti occupying suitable positions on the

I LR (e
line. Such a situation cannot occur in a minimum length tree of C.

Assuming n > 2 (otherwise the problem is trivial), there exists i for
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which Ki > 2 and s; joins only one other s-point. If ki > 2 a simple
application of the triangle inequality proves that the assumed tree could
not be minimum length in C and the case ki = 2 is disposed of using

Proposition 9, Corollary 2. Thus we can conclude

k x s +t Ki k ki

K
i 1
405 4k F( VRS I AR CHUID RS BN L NE

By a similar use of the properties of MP we can show

N

s ; - 8 4
e, 54 22 (e, PEV° b w el
Adding this to (10) and " ) f>(ai,a ) to both sides we obtain
»J €R

+t t
k 'k 1 1
f(lz L ey '—2-_> <'§ f(slyreo,sk) +Ef(t1,oo-’tk) = § which

contradicts the minimum property of £.
Corcllary 1In M, (snaBY) and (Sn) have a finite number of minimising trees,
Proof Immediate from Theorems 1,2 and 9.

Similar proofs to those given here may be used to establish identical

results when the function to be minimised is

n k
JUORRAICH I AR

where F is any positive function which is strictly increasing in each of its

four variables.

It was demonstrated in Chapter 1 that (8 ) reduces to (Pn) for

naBy
suitable values of the constamts Q,B,7. We show now that in general (Pn)

in E2 (and hence (S ) ) is not solvable by Euclidean constructions.

napy
We use n = 5 for our example since (P3) is solvable by Euclidean comstructions
(by our equilateral construction). The solution of (P4) is the intersection

of the diagonals if the configuration is convex and the vertex interior to
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the convex hull otherwise, We take 5 points Ai (i=1,...,5) symmetrically
placed with respect to the x-axis as shown in fig. 1l4.

A . Aa,b)
A(o,1) ¢
. >
A: (0,0) P('¥,O)
As(q-o
. A“(q,-ﬁ)
Fig. 14.

The minimum point P lies on the x-axis with its co-ordinate in [0,a]

5 [ 2 72 2
L. PA, =x+2 1+-x2 + 2 b2+(a-x)2 .

i=1 1

Minimising this function by elementary methods,we find that the co-ordinate
x of P satisfies an eighth degree polynomial equation f£(x) = 0 whose

coefficients are polynomials in a and b.

We show that for suitable integers a,b, f(x) is irreducible over
the rationals and f£(x) = 0 has Galois group over the rationals which does not
have order 2k where k is a positive integer. Thefefore X is not an element
belonging to an extension field of the rationals of degree Zk and hence the
segment OP is not constructible by Euclidean constructions (See [10] page 185).
i.e, for suitable choices of the five points (P5) is got solvable by

Euclidean constructions.
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The leading coefficient of £(x) is 15. In order to use the
theory of [10] page 190-191, we need to work with a monic polynomial and
therefore make the transformation x = y/15 and multiply the equation
through by 157 thus obtaining equation g(y) = 0 where g(y) is monic. We
note that such a transformation does not affect reducibility over the

rationals or the Galois group of the equation. The coefficients of g(y)

are:

y8 H 1

y7 :+ =60a

v® : 15 (90a® + 22b% + 22)

y> : -15% (88a + 60a> + 44ab’)

g* 1 150 (42 + 158" + 154a)

y3 : -154 (88a3 + 120ab2 - 36a)

g2 . 15% (22a% + 60a%b2 + 6b* + 6b% - 54a%)
y : 15° . 12a . (3a® - b?)

1+ -157 2 - 33a%)?% .

We take a = lO)b = 3 and notice that the coefficients of y8 and the constant
are odd while the rest of the coefficients are even, so that Eisenstein's
irreducibility criterion using the prime 2 shows that g(y) is irreducible
over the rationals and hence g(y) = O has no multiple root. Let I/(7) be
the field of residue classes of integers modulo 7. Over this field g(y) = 0

reduces to the equation

g7(y) = y8 + 2y7 + y6 + ys + 4y4 + y3 + 4y2 +4y +5=0.

The greatest common divisor of g7(y) and its derivative over I/(7) in 1,
hence 37(y) = 0 has no multiple root. 37(y) has the following factorisation
mod 7:

(11) (y3 + 5y2 + 4y + 2)(y5 + 4y4 + Sy3 + 4y + 6)

and the cubic factor is irreducible mod 7. Therefore the Galois group of
the equation g(y) = 0 contains a permutation « whose representation as a
product of disjoint cycles contains a cycle of order 3. « does not have

order Zk for any positive integer k, hence the Galois group does not have
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k .
order 2 and the proof is complete. We state the result formally:

Theorem 10. (Pn) and (S ) in E2 are not, in general, solvable by

Euclidean constructions.

napy

Finally, we show how the above example was found. 7 is the
smallest prime which can be used. (It is clear from the coefficients that
g(y) has multiple roots modulo 2, 3 and 5). One therefore searches for
values of a and b such that g7(y) = 0 has no multiple root and an
irreducible cubic, quintic or sextic factor mod 7. The arithmetic ‘being
mod 7, it suffices to consider a,b = 0,...,6. In fact since b only
occurs in the coefficients as bz, ve need only take b = 0,1,2,3 as
bz = (7-b)2 mod 7. The 28 polynomials were tested for am irreducible
cubic factor using a digital computer. The method used was to divide each
polynomial by the finite number of irreducible cubics over .1/(7) and
investigate the remainder. The values a = 3, b =3 yielded the
factorisation (11). However Eistenstein's criterion works conveniently
for g(y) with prime 2 if a is even and b is odd so we take a = 10, b = 3.
The polynomial obtained has the same reduction (11) mod 7.

This method of reduction mod p in comjunction with a computing
machine can provide much information on the structure of Galois groups

of equationms.
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