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ABSTRACT

The nmnﬁérs 1, 2, and 6 have the same sum and same sum of squares as

0, 4, 5. vThesé.two‘seﬁs are solu£iéns of degrée 2 of the Tarry-Escott
problem. Thig p’_roblgm qf finding sets of integers having equal sums of
like powers has been invéstigated for at least two hundred years and we

" have presented most of the general results.

For any given k _there exist solutions in integers of the system of

. s . s
equations Z ; ai= Z bi_ (3=1, 2, «.., k) for s=k + 1.
R S

If s<k+1 any '_solution will be composed of a set and a permutation
of the sei‘; ‘s.uch_ s’o“,l‘utions .are called trivial. Many writers have
attéﬁpted to provid'é non-=trivial solutions for the optimum. case where

s =k + 1. These so 'cvavll‘ed ideal solutions exist for all k = 9 but no
such solutions héjie: ‘been'.lfOun‘d for k =10.° We have been interested in
ISroviding _solut:fg:vq‘n;'ﬁﬁe"_re. s 1is smaller than for previous known examplés,
and have gen‘era‘t::.e_dl‘slg‘ch,solutions using a digital computer. Some of our
results also appiy..‘tld».én extension of the Tarry-Es;:ott problem in view

of a result cor'ice‘r'ning‘b‘ounds for this problem.
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CHAPTER I

'THE NATURE OF THE PROBLEM

l.. Introduction7:

The iatfy;Esqott_problem in Diophantine Analysis is to find two
sets of integérs‘équél invhuﬁber such that the integers in each set have
the same sum, tﬁe same'Sum of squares, etc., up to and including the same
sum of kth. powe;s;;i;e. we_are to find solutions in integers of ﬁhe

system of eqﬁations 

Z 2 i (3 = 1,2, «o0e, k) (A) - v

i=1
A solution of. (A) is written ajy sees A = bl’ ceey bs and a
set of integers (aI,-,..; aS 3 bl’ esey b ) satlsfylng (A) will be referred

to as a set of degree k. A solution of (A) in which the a's are merely a
permutation of the b's_will be called trivial; we are concerned with non-
trivi#l solutions;i

“This pfObleﬁ hés attraéted the éttenfion.of number theorists

since the time of Goldbach and Euler who noted (1750-51) that

a, b, c, a + b+c 2 a+b, a f c, b+ c, 0.
Dickson [3, Chapterj24] has given.a comprehensive summary of papers on the
problém of éets'of inteééfs‘vith eéual‘sums of like powers, and it was at'.
his suggestlon in view of the contrlbutlons made to thls problem by
G. Tarry and E. B. Escott that the problem is referred to as the

Tarry-Escott problem,5 }



2. Exisfgncévéf.8§iutioné

Gene?ai péraﬁe;ric solutions of (A) have been fdund for only a
few values of 'kf andt s;} Dickson [4, pp.SZ] has proved that every set
(al, a,s a3 3 bl’ bé? b$)'o£ degree 2 is obtained by adding an arbiqrary‘
integer to each term of AD, AG + BD, BG 2 AD + BG, BD, AG (where A,B,D,G".-
can be fbrmed:usiﬂé thgiproof of this theorem from the set (ai ; bi))'-
Dickson [4; pp.54-58] aiso-giveS'general solutions of (A) for s = 4 and
k = é, and'for.s‘=>4 ;nd k = 3. | |

Thefe arélnﬁﬁérpﬁs particular soluﬁions in both parémetric and
numerical form:

' 2,'3’- 7 ; l’ 5, 6

a+c, b +'é%r25u+ 2b + ¢ 2 c, 22+b+c, a+ 2 +c

3

7 0,5,5,10 21, 2, 8 9

+ (23a + 57b), * (40a - 6b), + (17a - 63b)

2 & (23a - 57b), + (40a + 6b), + (17a + 63b)

However in view'qf the'following two theorems we can prove the existence
of solutionsvofb(A)'for other values of s and k without depending on

illustrations.

k

Theorem 1. If 'al, ceey a '1=‘b1, «es; b_ then Ma, + K, ..., Ma_ + K =

s 1

1

Mb, + K, «o., MbS +'Ki where M, K are arbitrary integers.
This theorem is dde,foxM; Frolov [S] and can be proved using the binomial

theorem. The theqf¢m a1lows7us to operate on a set,(alg essy g 3 by een,
bs) according tb théerLésfof elementary algebra. If one solution of (A) ..

comes from anothef5thtbugﬁ the use of Theorem 1 the two solutions are said



to be equivalent..‘We~define distinct solutions as solutions that are not
equivalent. . From Theorem 1 it follows that for each solution there is an
equivalent one where"  §:‘314= E: bi = 0. This equivalent solution’

\

has been called the stéhdérd form by Escott. Thus in:

0, 11, 13, 22 21,7, 18, 20
if we multiply by 2. in drdér to make the sum divisible by four, and then
subtract one fourth of this new sum from each term, we have

-23, -1; 3, 21 2 -21, -9, 13, 17

in standard form. =~

vesy bs> is a set of degree k then for

Theorem 2. If (al,”.;., a_ ; bl’

s
any integer'.d '
(agy =-er 2, by + dy . eee, bo+d by, «eey b, a) +d, ees g + d)
is a set of degree ﬂk +1 .

This theorem is due-ﬁé.iarry.[S] and can also be proved using the binomial
theorem. Theorem 2 ailows us to build up_é solution for (a) of any
desired degree syéffing from any bartiéular solution of (A)f Moreover if
we choose d to bevﬁhélﬁumbervwhich occurs most frequently amoﬁg the
différénces a; -.?j,éha bi -.bj we are then able to remove a good many of
thevterms whichv9¢Cuf:qp.both_sides of the resulting solution of degree

k + 1. To iilgétratéthe pbwér of this theorem we present the following

sequence [6, ppc-331]



0,3 = 1,2
d =3 '
0, 4,5 2 1, 2,6
d=>5 oL
0,4, 7,112 1, 2,9, 10
0 4, 8, 16, 17 2 1, 2, 10, 14, 18
e S
0, 4, 9,17, 22, 26 2 1, 2, 12, 14, 24, 25
d =13 T
0, &, 9,‘15; 26,.27, 37, 38 & 1, 2, 12, 13, 24, 30, 35, 39
d =11 | - o '
z

0, 4: 9; .23:‘,‘27) 41) 46) 50 i, 2, 11, 20, 30, 39, 48, 49

3.  1Ideal solution.s §

A number of :'wr‘_iters ‘have been interested in finding the ieast
value .of s for whlch kA) will have solutions for Iany particular k. The
‘following theorem &ge,to.vBasAtien [1, PP- 171-172] provides a lower bound

for s , and we p:esent_é proof for the sake of completeness.

Theorem 3. ‘If‘eq'uéﬁion‘s (A) have a non-trivial solutionm, then s Zk+1
" Proof. Suppose::s élkj, then the sets (ai ; bi). have the same sums of
powers from the first co‘the‘vkth; and hence the same symmetric functioms.
Hence él’ .'..,'as ahd:Pl; ;.f5 bs'are roots of the same equation and the
a's'are’merely~é perﬁufatioh of the b's.
erigﬁtz[9;ﬁpp, 261]vhas defined a function N(k) as the least

number N <Sucb-‘,that*"§1‘" cees anl_-S bl‘, ceey bN has non-trivial solutions. .



Theorem 3 states that " N(k) = k + 1 and Tarry [8] gave the first upper bound

for N(k) by showing thaﬁv N(k) = Zk-l (this result follows immediately from

any solution of (A) wi;h s =4 and k =3 together with Theorem 2). ‘Iq:

has been conjectg;gd that in fact N(k) k + 1, and solutions of (A) with
s=k+1 have'beeﬁbgalyed,ideal solutions by Chernick [2, pp. 626]¢hho
proved that there;é*ists:an infinite number of distinct idé;i solutions of
(4) for every va1§e §f l};;S;Z. We have provided examples above of ideal

. solutions of (A) fgrﬂﬂk:=‘1; 2, 3, 4, 5, 7 and these together with the

following three examples [6, PP. 332 and 338] give Theorem &.

Hos

0, 18, 27,58, 64,789, 101 2 1, 13, 38, 44, 75, 8, 102

flco

0,24, 30,83, 86, 133, 157,.181, 197 1, 17, 41, 65, 112, 115, 168, 174, 198

T 12, T 1iss1, ¥ 20231, T 20885, ¥ 23738

2 F 436, T 11857, ¥ 20649, T 20667,%23750

Theorem 4. N(k) =k + 1 for all k=9
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CHAPTER II

'SOME RECENT RESULTS

1. Bounds for N(k)
The bestjuppér bound so far for ©N(k) is that due to
Wright,[é, pp,26l] who proved .
2 L x? + 3) k odd
- N(k) = W(k) =
' ’ ' (k2 + 4) k even.

D= N

In 1961 Mélzak [7,_pp;234] gave an exact expression for N(k) when he

proved that -~

: H_JN(k).~ 2 PEQ S[P(X)(l %) ]
where Q is the class of all polynomials whose coefficients are integers,

not all zero,‘and-‘

L :J::vn o n
S-[P']: =Z la,| for P =P(x) = Z a, x*

This expressiomn does not allow.one to compute N(k), but with each

k k

estimate N, for N(k) it leads to solutions of (A) with s = N, .
Melzak found that relatively low bounds for N(k) result from taking

P(x) of the form - o
S - .

n
' N S . B, :
P(x) = [].. T @ - xd J] [ ] Z x7
where p is a Smalllpositive integer and Bj =0 or 1.
‘The boundsioﬁ FN(k)‘ are then of the form
e -p' 5
Bk '[Q(x):*l', g xb] vith Q(x) = - xhJ
A S e i=1



In constructing his table fb'f results Melzak used four multipliers Q(x):

1, 1-x 1-x%, (1-3x)(1-x%.
He selected ﬁhe.l.ioviest est.imat:e Nk for N(k) and showed that
- k+ 1< N < W(k) for 2=k = 29.
We have improx‘rec.l‘ ‘t.hg‘se.A results slightly and also extended them to all .kg 85.

We conSi_dei‘ed the following multipliers Q(x):

1-x . (1 - %) - x5
-2 (-0 - )
-3 (1 -0 - x9)
poat . (- x5Ha - x%)

Lo R @ -xHa -«

1okt 1 - ) - x*)
1-x’ (-0 - xHA - )
1- x8-_}; ‘v. - (1 -0 - 21 - x*)

(1 - xz)»(l - x3)(1-x4) (1 - x)(i - x3)(1 - x4)
-0 -a- Ha - and T T (L-x" forn=d 5 6 7.
| T e

B ' k+1 .
For each Q(x), the expression % S [Q(x) | l (1 - xJ)]
o _ i=1 o
was evaluated (using an I.B.M. 1620) for 1__'<_ k = 30. It was apparent from

these results that the lowest estimates N, were given when '

k

k
: n Coa : : .
Q(x) = l (1 - x), where n varies with k. The calculations were then
j=1 I | n .
continued for 31= k=85 with Q(x) = ] | (1 - xn) where 1="n = 7.
' v : =1 .
Table I was formed by selecting the lowest estimate N, for 2=k= 85"

and inserting the value of n relevant to each k.
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18

18
2
22 -

30

32

41

46

58
58
68
74

88

92

119

124

118 -

146

159
166
196
198 .

207

228
274
258 -

305
308

344

332

" 381
402
472

- 4620
525 .
514

WPWLWLWWWWRWWRNWRNWRNWNRORNNRRONFN - E R R e N e

TABLE I

44
45
46
47
48
49
50
51
32
53
54
55
56
57

29
60
61
62
63
64

65

66
67
68
69
70
71
72
73
74
75

76 -

77
78
79
80
81
82
83

84

85

58 -

588
. 588
627
644
742
802
830
872

834

896
958
1072

1202 .

1206
1218

1248 -

1270
1376
1517
1464
1694
1750
1866
1902

1990

1994
2120
2224
2372
2618
2947
2906
2902
2822
2853

3150

3386
3604
3903

4136

4502
4547

NN NNNONOOOORGORCULULULULUULUUMLMUDSEEUGBULGES S DS DSW S
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Fiégrelhjis‘ﬁhé graph of Table I together with the graph of ﬁ(k).‘
It is obvious from Figﬁfeia that while our upper bounds on N(k) are lower
than W(k) . for 2=k = ‘.7.'3,, ;hey soon become larger than W(k). Hence 1f
this method is to'give further useful results new multipliers P(x) are
needed. |

Followiﬁg;é.sugggsted result of P. Erdds we attempted to fitl.;

exp (kl_c) for some ¢ <1 ‘to the graph of Table I (see Figure2:). A

reasonable approximétion-tq this graph is given when c¢ = 0.52. ot
| R y
InN - " FIGURE 2 . ]
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2. Smallest solutions for certain degrees.

By usé of'Tﬁéqfem 2 we attempted to obtain solutions of (A) for
k 210 where the nﬁﬁber‘of terms s 1is less than the estimateé Nk given
in Table I. An'I;B.MQ.l620 was programmed so that it would read a solution
of (A) of an?ireésonéﬁle léngth and degree, and then calculate the différence
d that occurs mostnfrequently between any two terms from the same side of
this given soiuﬁipn; it would then use d with Theorem 2 to produce a
solutioh of (A):of.£He next higher degree, and continue in this manner.

By coﬁs;defingféolqtions of (A) of many different lengths and
‘degrees we héve foﬁnd\examples of‘solutions for 10= k = 22 where the
number of'te;ms {s“is less than those given in Table I. Table II gives the
value of s corresponding to-eéch value of k; the actual solutions of a)

may be found in the:Appendix.
TABLE II

k 10 11 12 -13 ‘14 15 16 17 18 19 20 21 22

s 14 18 24 .30 30 30 38 48 58 58 65 80 84

'HdweQér.the félloﬁiﬁg weakness was discovered in the algorithm. I;
had been assﬁmed_that.from-ahy parﬁicular solution of (A) solutions of.higher
degree would'be'gehefated containing the least number of terms s , so long
-as thé most ffequénﬁ{différeﬁce d was used at each step. This assumétibn was

false.

AT,V

wﬁen fbfming,TaBlé I the multiplier (1 - x) was used with
11 S ; : Jf ,
| l (L - xJ)fto produce a solution of (A) where s = 22 for k = ll.
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This is ¢quivaleh£ to stafting with the solution 0, 2 i 1, 1 and
using Theorem 2 with d = 2,.ll. Using the algorithm with this solution

the results shown in Table III were obtained.

TABLE IIIX
k+1
K d 5 %S{(l-x)l'll(l-x-])jl
J:
1 2. 2
2
2 A 3 3
3 o
3 4 4
4 - 6 6
4 -
5 : L6 6
_ ,
6 ' 8. 11
5 R : ,
7 o 10 : 12
9 . s -
8 A VA 18
B ‘
9 ’ R P/ © 18
10 C 18 22
9
11 . 2k 22

_;Thus, byﬁa ﬁo£é carefu1 choice of d, the length of solutions
can be decrggséd f§t: k % 6, 7, 8, 9, 10. But for k = 11 this gives a
solution'of (A)fwﬁété' s.¥.24. This solution is longer than ;hat.obtaiﬁed
from a sequenCe.bfvg§iQCiqns'whiqh were constructed from values of d.

that were not.alwéysvthe most frequent.
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3. Sequences of.ideél golutions.

I(m,ﬁivwasTaéfinéd to be any sequence of ideal solutions of (A)
of each degree frém vﬁ ?O'n inclusive, that is generated by Theorem 2. Then
we indicate'the‘prOOf of the following Theorem.

Theorem 5. i(l,ﬁ) does not exist for n =6

Proof. We néed;onlyvshow fhat no ideal solution of (A) of degree 6 can be
obtained by ﬁhe u;é.of Tﬁéorem 2 from any sequence of ideal solutioms of
consecutive degree; sﬁarting with degree 1.

'Allvidéal solutions of (A) of degree 1 are equivélent to

0, a i b, ¢ (where b =c).
This gives
0, 2b+c,b+2 2 b,c, 2b+ 2¢ (d=a=>b+c)
o B ) )
0, b+c¢c, 2¢-=b = b, ¢ -b, 2 (d =c - b)
These give
0, b + 2¢, 3b + ¢, 4b + 3¢ _; b, ¢, 4b + 2¢, 3b + 3¢ (d = 2b + ¢)
0, 2b +c, b+ 3c, 3b + 4c 2 b, ¢, 3b+3c, 2b + 4c  (d =D + 2¢)
0, 2¢c - b; 2b +*¢, b + 3¢ 2 b, ¢ - b, 2b + 2¢, 3¢ (d =>b+¢c)
O, b+c, 3c - 2b; 46 -b 2 b, c-b,3, bec-2b (d=2c-b)
0, b+ ¢, 2¢c ;‘3b;'3C,f 2b : 2 b, 2¢, ¢ - 2b, 3c - 3b (d =c¢c - 2b).

Now considér the séihtién_

0, b+ 2c,v3bf+_¢;_4b ;’3c 2 b, ¢, 4b+2c, 3+ 3¢
This will give.an ideal sélution of»degree 4 only if the same difference
occurs between th%éévbaifs of terms. The only numerical solutions that

satisfy this pon@ition are
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0, 3, 4, 7 2 1, 1, 6, 6
0, 5, 10, 15 = 1, 3, 12, 14
' : 3
..0,6,° 7,13 = 1,3, 10, 12
o 3
'AO, 4‘, 7’ 11 = 1, 2, 9, 10
_O,.8', 9, ].7 = 2, 3, 14, 15
These give -
0,76, 8, 17, 19 £ 1,3, 12, 14, 20
.0, 4, 8; 16, 17 £ 1, 2, 10, 14, 18
These give
0,5,6, 16, 17, 22 2 1, 2, 10, 12, 20, 21
0, 6, 8,23, 25, 31 2 1, 3, 11, 20, 28, 30
2

0, 4,9, 17, 22, 26 1, 2, 12, 14, 24, 25

None of these solutions will generate an ideal solution of degree 6.
N

- Theorem 5 follows after considering in a similar manner the remaining four

ideal solutions of degree 3.

4. An'exteé§i§h bf the problem.
.Ih aniexﬁensioﬁ of the Tarry-Escott problem the function
M(k) has beeﬁ_definédvas the least value of s such that_(A) has a solution
‘with | ‘>4
' k+1 k+1 k+1
s

K+l .
\"’,‘.1'_,"'»'..;,'."";"";',"‘-‘s # byt ... +D



15.

Clearly M(k) ;N(k) =k + 1, while Theorem 3 and Theorem &4 prove that
M(k) = N(k) .= k+1 for all k=9. Wright'[9, pp.262] proved
‘that M(k)= N(kg),'and was then [ 10, pp.48] able to prove that

4
7K

Mk)< ZK. |
(k)= 775

Ihé‘results obtained in Table I also apply to  M(k) in view

of the folloWing'theQrem._

‘ 1 min k+1
Theorem 6 - M(k) = = SIP(x)(L - x)
m | (k) 2 pe g [ (x)( ) ]
where Q' is the class of all polynomials whose coefficients are integers,

not all zero, and furthermore if P € Q' then P(1) # 0.

Proof For evéry.'P"EjQ', P(x)(1 - x)k+l generates a solution of (A) of
degree k; vAssume that.this solution is also of'degree k+l. Then it must

o k2 '
be generated by - Q(x)(1 - x) for some Q € Q.

Hencé»P(x)ﬂﬁ‘(L - x) Q(x),which is false.
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APPENDIX I

f ' DATA FOR TABLE II

(a) 0,3,7, 10 23 35 50 53,56,81,82,93, 96 97

0 4 5,5,16,17,42,45,48,63,75,88,91,95,98.

Using d 5_3 “this generates a solution for k = 11 where s = 18,
which for a % 4' - ‘génerates a solution for k = 12 where s‘= 24.
(b) We could not produce solutions for k = 13 and k = 14 where

s = 30 and hence uséd

0,5,7,19,21,21, 25 32 46,47,48,50,53,74,75,78,79,100,103,105, 106,
107,121,128,132,132,134,146,148,153.

1,2,13,15,15,27,29;30,40,44,51,55,56,65,76,77,88,97,98,102,109,
113,123,124,126,138,138,140,151,152.

Using d é_ZS{this.generates a solution for k = 16 where s = 38
which for d % 27:, .génerates a solution for k = 17 where s = 48
which for dlﬁ-zi':‘ generates .a sélution for k = 18 where s = 58
which for d = 31 generates a solution for k = 19 where s = 58
which for d = 29 ‘ generates a solution for k = 20 where s = 65.

(¢). 1,6,8,9,20,23,32,43,44,45,49,57,60,66,68,69,79,80,84,92,101,102,
103,104,105,115,116,119,127,129,131,138,139,140,143,143,151,154,
155,163,166,174,175,178,186,186,189,190,191,198,200,202,210,213,
214,224,225,226,227,228,237,245,249,250,260,261,263, 269 272,280,
.284,285,286,297,306, 309 320,321,323,328.

N
"r-'

2,3,1o,11,16,24,38,39,39,50,51,53,59,63,74,75,76,77,85,89,98,99,
100,111,112,113,120,122,124,125,132,133,134,136, 144,148,156,159,
160,161,168,169,170,173,181,185,193,195,196,197, 204, 205,207,209, -

. 216,217,218,229,230, 231,240, 244,252,253 ,254,255,266,270,276,278,
279,290,290,291, 3os 313,318,319,326,327.

Using d ? 35_tbis generates a solution for k = 22 where s = 84.
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APPENDIX II

GENERATING SOLUTIONS BY COMPUIER

. FIGURE 3

V
READ
ISUM, JSUM, LENGTH,
NDEGRE, MAXLTH

SUBROUTINE

MAXDIF

SUBROUTINE
NEWSOL

PRINT
LENGTH,
ISET,

NDEGRE , .
JSET

LENGTH -
NDEGRE - -

ISET -
JSET -
MAXLTH .-
MAXDIF -

number of terms on one 31de of a solutlon
degree of the solution

.. one side of a solution

remaining side of the solution

. maximum number of terms acceptable on one side of a solution

~most frequent difference between pairs of terms from the same
,'Slde of a solution
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Figure 3 is'avsimple block diégram of the program used to
generate solutions of (A) by Theorem 2 starting from any paﬁticular solution.

Subroutiﬁe MAXDIFAdefermined the most'f:equent difference occuring
between pairs>df :ermé ffom-;he same side of a given solution. The program
was routine but care;hés ;o'Ee taken to ensure that for a solution such as
0, 3, 3 g' 1, 1,J4:fthe:difference 3 occurs effectively twice and not
 four times.

One cannaﬁ prdéfém_a computer to simply strike out terms that
occur on both sidéé of é-éo1ution of (A), but subroutine NEWSOL generated -

solutions by Theorem 2 and disposed of common terms by use of an algebraic

technique. The following example should indicate the method. |

The_SoLutioh' O,'3; 3 2 1, 1, 4 1is converted to the generating
function .
1 - 2x + 2x3 - x4
Using Theorem 2 with . MAXDIF = 3 is equivalent to multiplying this

generating function by .1_--x3,

Hence
. L -2  + 2x3 - x4
1 - x3
1- 2 420 -kt
| - x3 + 2x4 - 2x6A+ x7
1=4‘23 4+ x3 + x4 - 2x6 + x7’
which generétes the soiutibq'
0,3, 4,7 2 1,1, 6, 6

Subroutine NEWSOL"\a?peargd‘to be most efficient and we present it below.
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SUBROUTINE . NEWSOL (ISET, JSET, LENGTH, MAXDIF, NDEGRE)
DIMENSION NP(1500), IX(1500), ISET(200), JSET(200)
IF (ISET(LENGTH)-JSET(LENGTH)) 30,30,31

‘30

31

22
20

21

41

79

42

44

54

45

55
43

‘NBIG=JSET(LENGTH)+1

NBIG2=2*NBIG
GO TO 22

" NBIG=ISET(LENGTH)+1
NBIG2=2+*NBIG

DO 20 MX=1,NBIG2

NP (MX)=0

DO 21 JIT=1, LENGTH
ISET1=ISET(JIT)+1
JSET1=JSET(JIT)+1

NP (ISET1)=NP(ISETL1)+1
NP(JSETl)—NP(JSETl) -1
M2=0

DO 41 NAT=1,MAXDIF
IX(NAT)=0
LOW=MAXDIF+1
NHIGH=NBIGHMAXDIF
DO 79 K3=LOW,NHIGH .
K4=K3-MAXDIF
IX(K3)=NP (K&)" :
DO 42 NIS=1,NHIGH

NP (NIS)=NP(NIS)-IX(NIS)
NPNIS=NP (NIS) :
Ml= ABSr(NPNIS)+M2
M2=M1

18=0

19=0

J8=0

J9=0 .

DO 43 IX1=1, NHIGH
IF(NP(IX1)) 44,43,45
NP1=-NP(IX1l)
I18=I19+1

19=19+NP1 L

DO 54 L1=18,19.
MT=1IX1-1 o
JSET(L1)=MT .-

GO TO 43 .

NP2=NP (IX1)

J8=J9+1 _

J9=J9+NP2 .

DO 55 L2=J8, J9

MP=1IX1-1

ISET(L2)=MP
CONTINUE
LENGTH=I9 ;
NDEGRE=NDEGRE+1
RETURN "
END



