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ABSTRACT 

The numbers 1, 2, and 6 have the same sum and same sum of squares as 

0, 4, 5. These two sets are solutions of degree 2 of the Tarry-Escott 

problem. This problem of finding sets of integers having equal sums of . 

like powers has been investigated for at least two hundred years and we 

have presented most of the general results. 

For any given k there exist solutions in integers of the system of 
s . s . 

equations ^ = ^ b^ (j = 1, 2, k) for s |5 k + 1. 
i=l i=l 

If s.<= k + 1 any solution will be composed of a set and a permutation 

of the set; such solutions are called t r i v i a l . Many writers have 

attempted to provide non-trivial solutions for the optimum case where 

s = k + 1. These so called ideal solutions exist for a l l k S 9 but no 

such solutions have been found for k §=10. We have been interested in 

providing solutions where s is smaller than for previous known examples, 

and have generated such solutions using a digital computer. Some of our 

results also apply to an extension of the Tarry-Escott problem in view 

of a result concerning bounds for this problem. 
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CHAPTER I 

THE NATURE OF THE PROBLEM 

1. Introduction 

The Tarry-Escott problem in Diophantine Analysis is to find two 

sets of integers equal in number such that the integers in each set have 

the same sum, the same sum of squares, etc., up to and including the same 

sum of kth powers, i.e. we are to find solutions in integers of the 

system of equations 

s s 

(j - 1,2, k) (A) 

i - i i=i 

k A solution of (A) is written a,, a - b,, b and a 1 s 1 s 
set of integers (a^, a g ; b^, b ) satisfying (A) will be referred 

to as a set of degree k. A solution of (A) in which the a's are merely a 

permutation of the b's will be called t r i v i a l ; we are concerned with non-

trivial solutions. 

This problem has attracted the attention of number theorists 

since the time of Goldbach and Euler who noted (1750-51) that 
2 

a, b, c, a + b + c = a + b, a + c, b + c, 0. 

Dickson ĵ 3, Chapter 24 j has given a comprehensive summary of papers on the 

problem of sets of integers with equal sums of like powers, and i t was at 

his suggestion in view of the contributions made to this problem by 

G. Tarry and E. B. Escott that the problem is referred to as the 

Tarry-Escott problem. 
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2. Existence of Solutions 

General parametric solutions of (A) have been found for only a 

few values of k and s. Dickson ^4, pp.52J has proved that every set 

(a^, a^j a^ ; b^, b^, b^) of degree 2 is obtained by adding an arbitrary 
2 

integer to each term of AD, AG + BD, BG = AD + BG, BD, AG (where A,B,D,G 

can be formed using the proof of this theorem from the set (a^ ; b^)). 

Dickson Ĵ 4, pp.54-58 j also gives general solutions of (A) for s - 4 and 

k = 2, and for s = 4 and k = 3. 

There are numerous particular solutions in both parametric and 

numerical form: 

2, 3, 7 = 1, 5, 6 

2 

a + c, b + c, 2a + 2b + c = c, 2a + b + c, a + 2b + c 

0, 5, 5, 10 = 1, 2, 8, 9 

+ (23a + 57b), + (40a - 6b), + (17a - 63b) 

= + (23a - 57b), + (40a + 6b), + (17a + 63b) 

However in view of the following two theorems we can prove the existence 

of solutions of (A) for other values of s and k without depending on 

illustrations. 
k k Theorem 1. If a^, ...,< a = b^, •••> b g then Mâ  + K, ..., Mag + K = Mb.. + K, Mb + K where M, K are arbitrary integers. 

X S 

This theorem is due to M. Frolov |̂ 5j and can be proved using the binomial 

theorem. The theorem allows us to operate on a set (a^, a g ; b^, 

b g) according to the rules of elementary algebra. If one solution of (A) 

comes from another through the use of Theorem 1 the two solutions are said 



to be equivalent. We define distinct solutions as solutions that are not 

equivalent. From Theorem 1 i t follows that for each solution there is an 

equivalent one where ^ a i = ^ ^ i = *̂ This equivalent solution 

has been called the standard form by Escott. Thus in: 

0, 11/ 13, 22 = 1, 7, 18, 20 

if we multiply by 2 in order to make the sum divisible by four, and then 

subtract one fourth of this new sum from each term, we have 

-23,-1, 3, 21 = -21, -9, 13, 17 

in standard form. 

Theorem 2. If a g ; b^, b g) is a set of degree k then for 

any integer d 

(a^, a g, bl + d, ..., b g + d ; b ^ b g, al + d, a g + d) 

is a set of degree k +1 

This theorem is due to Tarry. ^ 8 J and can also be proved using the binomial 

theorem. Theorem 2 allows us to build up a solution for (A) of any 

desired degree starting from any particular solution of (A). Moreover if 

we choose d to be the number which occurs most frequently among the 

differences a. - a. and b. - b. we are then able to remove a good many of \ J. 1 J 
the terms which occur on both sides of the resulting solution of degree 

k + 1. To illustrate the power of this theorem we present the following 

sequence ^6, pp. 331j. 



4. 

d = 3 

d = 5 

d = 7 

d - 8 

d - 13 

d - 11 

0, 3 i 1, 2 

0, 4, 5 = 1, 2, 6 

0,- 4, 7, 11 = 1, 2, 9, 10 

0, 4, 8, 16, 17 » 1, 2, 10, 14, 18 

0, 4, 9,17, 22, 26 = 1, 2, 12, 14, 24, 25 

0, 4, 9, 15, 26, 27, 37, 38 = 1, 2, 12, 13, 24, 30, 35, 39 

0, 4, 9, 23, 27, 41, 46, 50 - 1, 2, 11, 20, 30, 39, 48, 49 

3. Ideal solutions 

A number of writers have been interested in finding the least 

value of s for which (A) will have solutions for any particular k. The 

following theorem due to Bastien [ l , pp. 171-172] provides a lower bound 

for s , and we present a proof for the sake of completeness. 

Theorem 3. If equations (A) have a non-trivial solution, then s 2 k + 1 

Proof. Suppose s S k , then the sets (a^ ; b^) have the same sums of 

powers from the first to the kth. and hence the same symmetric functions. 

Hence a,, a and b.., b are roots of the same equation and the V ' s '•• 1 s n 

a's are merely a permutation of the b's. 

Wr ight Ĵ 9, pp. 26l] has defined a function N(k) as the least 
k 

number N such that a^, a^ = b^, b^ has non-trivial solutions. 
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Theorem 3 states that N(k) = k + 1 and Tarry |^8J gave the first upper bound 
k - 1 

for N(k) by showing that N(k)^ 2 (this result follows immediately from 

any solution of (A) with s =v 4 and k = 3 together with Theorem 2 ) . It 

has been conjectured that in fact N(k) = k + 1 , and solutions of (A) with 

s = k + 1 have been called ideal solutions by Chernick J^2, pp. 626j'who 

proved that there exists an infinite number of distinct ideal solutions of 

(A) for every value of k ^ 7 . We have provided examples above of ideal 

solutions of (A) for k = 1 , 2 , 3 , 4 , 5 , 7 and these together with the 

following three examples ^ 6 , pp. 332 and 3 3 8 j give Theorem 4 . 

0 , 1 8 , 2 7 , . 5 8 , . 6 4 , 8 9 , 101 = 1 , 1 3 , 3 8 , 4 4 , 7 5 , 8 4 , 102 

0 , 2 4 , 3 0 , 8 3 , 8 6 , 1 3 3 , 1 5 7 , 1 8 1 , 197 = 1 , 1 7 , 4 1 , 6 5 , 1 1 2 , 1 1 5 , 1 6 8 , 1 7 4 , 198 

- 1 2 , - 1 1 8 8 1 , - 2 0 2 3 1 , - 2 0 8 8 5 , t 23738 

• = • 4 3 6 , - 1 1 8 5 7 , - 2 0 4 4 9 , - 2 0 6 6 7 , - 2 3 7 5 0 

Theorem 4 . N(k) = k + 1 for a l l k = 9 
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CHAPTER II 

SOME RECENT RESULTS 

1. Bounds fo r N(k) 

The best upper bound so far f o r N(k) i s that due to 

Wright £9, p p . 2 6 1 j who proved ( 

y (k 2 + 3) k odd 
N(k) 2 - W(k) =/ 

•| ( k 2 + 4) k even 

In 1961 Melzak j^7, pp.234] gave an exact express ion fo r N(k) when he 

proved that ' 

«*> - \ P t \ , s[n:<)(i - ,) k + l] 

where Q i s the c lass of a l l polynomials whose c o e f f i c i e n t s are in tegers , 

not a l l zero, and 

n 

s r £ p ] ^ |a i | for P = P(x) = ^ a i x 1 

i=0 i=0 

This express ion does not al low one to compute N(k), but with each 

estimate fo r N(k) i t leads to so lut ions of (A) with s = N . 

Melzak found that r e l a t i v e l y low bounds for N(k) r e s u l t from taking 

P(x) of the form 
p k n 

p(x):> \j—r (1 - x J ) P j l [ 1 1 Y. * j l 
L j= i J L n=l j=0 J 

where p i s a small po s i t i ve integer and p = 0 or 1. 

The bounds on N(k) are then of the form 

k + 1 - P . p . 

with Q(x) = 1 I (1 - x J ) , J 2 S [ Q < X ) ( 1 " * j > 



In constructing his table of results Melzak used four multipliers Q(x): 

'. -1, 1 .-.x, 1 - x2, (1 - x)(l - x 2). 

He selected the lowest estimate N, for N(k) and showed that 
k 

k + 1 < N <= W(k) for 2 = k = 29. 

We have improved these results slightly and also extended them to a l l k 85. 

We considered the following multipliers Q(x): 
1 - x (1 - x)(l - x 2) 

1 2 
- X (1 - x)(l - x 3) 

1 3 
- X (1 - x)(l - x 4) 

I - X (1 - 2 3 x Z ) ( l - X"*) 

1 - 5 
- X (1 - x 2 ) ( l - x 4) 

1 6 
- x (1 - x 3 ) ( l - x 4) 

1 7 
- X (1 - x)(l - x 2 ) ( l -*3> 

1 8 
- X (1 - x)(l - x 2 ) ( l -*4> 

x 2 ) ( l - x 3 ) ( l - x 4) (1 - x)(l - x 3 ) ( l 

x)(l - x 3 ) ( l - x 4 ) ( l - x 5) a n d 

n 
1 1 (1 - x ) for n = 4, 5, 6, 7. 

For each Q(x), the expression •- S Q(x) ] f (1 - x J) 

was evaluated (using an I.B.M. 1620) for 1 ̂ k ̂  30. It was apparent from 

k+1 

these results that the lowest estimates were given when 
n 

Q(x) = ~] \ (1 - x ), where n varies with k. The calculations were then 

continued for 31 =5 k ̂  85 with Q(x) = "| |" (1 - x n) where 1^'nS 7. 
j=l 

Table I was formed by selecting the lowest estimate for 2 ̂  k S 85 

and inserting the value of n relevant to each k. 
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TABLE I 

k N n k n k k n 

2 3 , 1' ' 44 588 4 
3 4 1 45 . 588 3 
4 . 6 1 46 627 4 
5 6. 47 644 4 
6 10 2 48 742 4 
7 12 •• 1 49 802 . 4 
8 18 1 50 830 4 
9 18 1 51 872 4 
10 22 1 52 834 4 
11 22 1 53 896 .' 5 
12 . 30 2 54 958 5 
13 32 1 55 1072 5 
14 41 1 56 1202 5 
15 46 1 57 1206 4 
16 58 1 58 1218 4 
17 58 1 59 1248 5 
18 6.8 .2 60 1270 5 
19 74 1 61 1376 5 
20 88 2 62 1517 5 
21 92 2 . 63 1464 5 
22 119 2 64 1694 . 5 
23 124 2 65 1750 5 
24 118 2 66 1866 5 
25 146 2 67 1902 5 
26 159 2 68 1990 5 
27 166 3. 69 1994 5 
28 196 2 70 2120 6 
29 198 3 71 2224 6 
30 207 2 72 2372 6 
31 228 3 73 2618 6 
32 274 2 74 2947 . 6 
33 258 3 75 2906 6 
34 305 3 76 2902 6 
35 308 3 77 2822 6 
36 344 3 78 2853 6 
37 332 . • 3 79 3150 7 
38 381 3 80 3386 6 
39 402 3 81 3604 7 
40 472 3 •82 3903 7 
41 462 3 83 4136 . 7 
42 525 4 84 4502 7 
43 514 3 85 4547 7 
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FIGURE 1 
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Figure lv.is the graph of Table I together with the graph of W(k). 

It is obvious from Figure!, that while our upper bounds on N(k) are lower 

than W(k) for 2 ^ k.^ 73, they soon become larger than W(k). Hence i f 

this method is to give further useful results new multipliers P(x) are 

needed. 

Following a suggested result of P. Erdos we attempted to f i t 
1-c 

exp (k ) for some c < 1 to the graph of Table I (see Figure 2.). A 

reasonable approximation to this graph is given when c = 0.52. •> 

4 
ln 10 4 

ln 10" 

ln 10' 

In 10 

ln N. FIGURE 2 

10 20 30 40 50 60 70 80 
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2. Smallest solutions for certain degrees. 

By use of Theorem 2 we attempted to obtain solutions of (A) for 

k 5r 10 where the number of terms s is less than the estimates N. given — k 
in Table I. An I.B.M. 1620 was programmed so that it would read a solution 

of (A) of any reasonable length and degree, and then calculate the difference 

d that occurs most frequently between any two terms from the same side of 

this given solution. It would then use d with Theorem 2 to produce a 

solution of (A) of the next higher degree, and continue in this manner. 

By considering solutions of (A) of many different lengths and 

degrees we have found examples of solutions for 10 ̂  k jfj 22 where the 

number of terms s is less than those given in Table I. Table II gives the 

value of s corresponding to each value of k; the actual solutions of (A) 

may be found in the Appendix. 

TABLE II 

k 10 11 12 13 14 15 16 17 18 19 20 21 22 

s 14 18 24 30 30 30 38 48 58 58 65 80 84 

However the following weakness was discovered in the algorithm. It 

had been assumed that from any particular solution of (A) solutions of higher 

degree would be generated containing the least number of terms s , so long 

as the most frequent difference d was used at each step. This assumption was 

false. 

When forming Table I the multiplier (1 - x) was used with 
11 • . 

~\~ f (1 - x J) to produce a solution of (A) where s = 22 for k = 11. 
• j - l 
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This is equivalent to starting with the solution 0,2= 1, 1 and 

using Theorem 2 with d = 2,..ll. Using the algorithm with this solution 

the results shown in Table III were obtained. 

TABLE I I I 
k+1 

(i - x) i r (1 " * j) 

.1 
2 . 

2 2 

2 
3 

. . 3 3 

3 
. .5'. 

••••••'".'"4 4 

4 6 6 

5 
7 

6 6 

6 
11 

8 11 

7 
9 

10 12 

.8 
13 . 

14 . . 18 

9 
17: 

14 18 

10 
19 

18 22 

11 24 22 

Thus, by a more careful choice of d, the length of solutions 

can be decreased for k = 6, 1, 8, 9, 10. But for k = 11 this gives a 

solution of (A) where s =24. This solution is longer than that obtained 

from a sequence of solutions which were constructed from values of d 

that were not always the most frequent. 
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3. Sequences of ideal solutions. 

I(m,n) was defined to be any sequence of ideal solutions of (A) 

of each degree from m to n inclusive, that is generated by Theorem 2. Then 

we indicate the proof of the following Theorem. 

Theorem 5. 1(1,n) does not exist for n 5r 6 

Proof. We need only show that no ideal solution of (A) of degree 6 can be 

obtained by the use of Theorem 2 from any sequence of ideal solutions of 

consecutive degrees starting with degree 1. 

Al l ideal solutions of (A) of degree 1 are equivalent to 

0, a = b, c (where b ̂  c). 

This gives 

0, 2b + c, b + 2c = b, c, 2b + 2c (d = a = b + c) 

0, b + c, 2c - b = b, c - b, 2c (d = c - b) 
These give 

0, b + 2c, 3b + c, 4b + 3c = b, c, 4b + 2c, 3b + 3c (d = 2b + c) 

0, 2b + c, b + 3c,; 3b + 4c = b, c, 3b + 3c, 2b + 4c (d = b + 2c) 

0, 2c - b, 2b + c, b + 3c = b, c - b, 2b + 2c, 3c (d = b + c) 

0, b + c, 3c - 2b, 4c - b = b, c - b, 3c, 4c - 2b (d = 2c - b) 

0, b + c, 2c - 3b, 3c - 2b = b, 2c, c - 2b, 3c - 3b (d = c - 2b) 

Now consider the solution 
3 

0, b + 2c, 3b + c, 4b + 3c = b, c, 4b + 2c, 3b + 3c 

This will give an ideal solution of degree 4 only i f the same difference 

occurs between three pairs of terms. The only numerical solutions that 

satisfy this condition are 
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These give 

0, 3, 4, 7 = l , l , 6, 6 

0, 5,. 10, 15 = 1, 3, 12, 14 

0, 6, • 7, 13 = 1, 3, 10, 12 

0, 4, 7, 11 = 1, 2, 9, 10 

0, 8, 9, 17 = 2, 3, 14, 15 

0, 6, 8, 17, 19 = 1, 3, 12, 14, 20 

0, 4, 8, 16, 17 = 1, 2, 10, 14, 18 

These give 

0, 5, 6, 16, 17, 22 = 1, 2, 10, 12, 20, 21 

0, 6, 8, 23, 25, 31 = 1, 3, 11, 20, 28, 30 

0, 4, 9, 17, 22, 26 = 1, 2, 12, 14, 24, 25 

None of these solutions will generate an ideal solution of degree 6. 

Theorem 5 follows after considering in a similar manner the remaining four 

ideal solutions of degree 3. 

4. An extension of the problem. 

In an extension of the Tarry-Escott problem the function 

M(k) has been defined as the least value of s such that (A) has a solution 

with 
k+1 , , k+1 , , k+1 , , ,k+l a, .+ ... + a. f b, + ... + b 1 s 1 s 
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C l e a r l y M(k) ^ N(k) 2: k + 1, while Theorem 3 and Theorem 4 prove that 

M(k) = N(k) = k + 1 for a l l k ^ 9. Wright [̂ 9, pp.262 proved 

that M ( k ) ^ N (k 2 ) , and was then \ 10, pp.48 1 able to prove that 
4 

M(k)<= 7JL_ . 
216 

The r e s u l t s obtained in Table I a l so apply to M(k) in view 

of the fo l lowing theorem. 

. k+1 
Theorem 6 M(k) = ^ m i n S 

2 p e fi' P ( x ) ( l - x ) ' 

where Q' i s the c la s s of a l l polynomials whose c o e f f i c i e n t s are in tegers , 

not a l l zero, and furthermore i f P € fi' then P ( l ) f 0. 

k+1 
Proof For every P £ fi', P ( x ) ( l - x) generates a so lu t i on of (A) of 

degree k. Assume that th i s s o lu t i on is a l so of degree k+1. Then i t must 

k+2 
be generated by Q(x ) ( l — x) for some Q £ fi. 

Hence P(x) = (1 - x) Q(x) which i s f a l s e . 
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APPENDIX I 

DATA FOR TABLE II 

(a) 0,3,7,10,.23,35)50,53,56,81,82,93,96,97 
X« 1,2,5,16,17,42,45,48,63,75,88,91,95,98. 

Using d = 3 this generates a solution for k = 11 where s = 18, 

which for d = 4 generates a solution for k = 12 where s = 24. 

(b) We could not produce solutions for k = 13 and k = 14 where 

s -= 30 and hence used 

0,5,7,19,21,21,25,32,46,47,48,50,53,74,75,78,79,100,103,105,106, 
107,121,128,132,132,134,146,148,153. 

15 
1,2,13,15,15,27;29,30,40,44,51,55,56,65,76,77,88,97,98,102,109, 
113,123,124,126,138,138,140,151,152. 

Using d =. 25 this generates a solution for k = 16 where s = 38 
which for d = 27 generates a solution for k = 17 where s = 48 

which for d = 21 generates a solution for k = 18 where s = 58 
which for d = 31 generates a solution for k = 19 where s = 58 
which for d = 29 generates a solution for k = 20 where s = 65. 

(c). 1,6,8,9,20,23,32,43,44,45,49,57,60,66,68,69,79,80,84,92,101,102, 
103,104,105,115,116,119,127,129,131,138,139,140,, 143,143,151,154, 
155,163,166,174,175,178,186,186,189,190,191,198,200,202,210,213, 
214,224,225,226,227,228,237,245,249,250,260,261,263,269,272,280, 
284,285,286,297,306,309,320,321,323,328. 

21 
2,3,10, lly16, 24,38,39,39,50,51,53,59,63,74,75,76,77,85,89,98,99, 
100, 111, 112,113,120,122,124,125,132,133,134,136,144,148,156,159, 
160,161,168,169,170,173,181,185,193,195,196,197,204,205,207,209, 
216,217,218,229,230,231,240,244,252,253,254,255,266,270,276,278, 
279,290,290,291,305,313,318,319,326,327. 

Using d = 35 this generates a solution for k = 22 where s = 84. 
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APPENDIX II 

GENERATING SOLUTIONS BY COMPUTER 

FIGURE 3 

READ 
ISUM, JSUM, LENGTH, 

NDEGRE, MAXLTH 

V 
SUBROUTINE 

MAXDIF 

1 
SUBROUTINE 

NEWSOL 

(
PRINT 

LENGTH,. NDEGRE, 

ISET, JSET 

no 

LENGTH - number of terms on one s ide of a s o lu t i on 
NDEGRE - degree of the so lu t i on 
ISET - one s ide of a s o l u t i on 
JSET - remaining side of the so lu t i on 
MAXLTH - maximum number of terms acceptable on one s ide of a so lu t i on 
MAXDIF - most frequent d i f f e rence between pa i r s of terms from the same 

s ide of a so lu t i on 
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Figure 3 is a simple block diagram of the program used to 

generate solutions of (A) by Theorem 2 starting from any particular solution. 

Subroutine MAXDIF determined the most frequent difference occuring 

between pairs of terms from the same side of a given solution. The program 

was routine but care has to be taken to ensure that for a solution such as 
2 

0, 3, 3 = 1, I, 4 the difference 3 occurs effectively twice and not 

four times. 

One cannot program a computer to simply strike out terms that 

occur on both sides of a solution of (A), but subroutine NEWSOL generated 

solutions by Theorem 2 and disposed of common terms by use of an algebraic 

technique. The following example should indicate the method. 
2 

The solution 0, 3, 3 = 1, 1, 4 is converted to the generating 
function „ , 

1 - 2x + 2x - x 
Using Theorem 2 with MAXDIF = 3 is equivalent to multiplying this 

3 
generating function by 1 - x . 

Hence 
3 4 1 - 2x + 2x - x 

. 1 - x 3 

3 4 1 - 2x + 2x - x 

x 3 + 2x4 - 2x6 + x 7 

1 - 2x + x 3 + x 4 - 2x6 + x 7 

which generates the solution 

0,. 3, 4, 7 3 1, 1, 6, 6 

Subroutine NEWSOL appeared to be most efficient and we present it below. 
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SUBROUTINE NEWSOL (ISET, JSET, LENGTH, MAXDIF, NDEGRE) 
DIMENSION NP(1500), IX(1500), ISET(200), JSET(200) 
IE(ISET(LENGTH)-JSET(LENGTH)) 30,30,31 

30 NBIG=JSET(LENGTH)+1 
NBIG2=2--NBIG 
GO TO 22 

31 ' NBIG=ISET(LENGTH)+1 
•NBIG2=2*NBIG 

22 DO 20 MX=1,NBIG2 
20 NP(MX)=0 

DO 21 'JIT=1, LENGTH 
ISET1=ISET(JIT)+1 
JSET1=JSET(JIT)+1 
NP(ISET1)=NP(ISET1)+1 

21 NP(JSET1)=NP(JSET1)-1 
M2=0 
DO 41 NAT=1,MAXDIF 

41 IX(NAT)=0 
LOW=MAXDIF+l 
NHIGH=NBIG+MAXDIF 
DO 79 K3=LOW,NHIGH 
K4=K3-MAXDIF 

79 IX(K3)=NP(K4) 
DO 42 NIS=1,NHIGH 
NP(NIS)=NP(NIS)-IX(NIS) 
NPNIS=NP(NIS) 
M1=ABSF(NPNIS)+M2 

42 M2=M1 
18=0 
19=0 
J8=0 
J9=0 
DO 43 1X1=1,NHIGH 
IF(NP(IX1)) 44,43,45 

44 NP1=-NP(IX1) 
18=19+1 
I9=I9+NP1 
DO 54 L1=I8,I9 
MT=IX1-1 

54 JSET(L1)=MT 
GO TO 43 

45 NP2=NP(IX1) . 
J8=J9+1 
J9=J9+NP2 
DO 55 L2=J8, J9 
MP=IX1-1 

55 ISET(L2)=MP 
43 CONTINUE 

LENGTH=I9 
NDEGRE=NDEGRE+1 
RETURN 

END 


