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ABSTRACT

The purpose of this thesis 1s to attempt to
evaluate the permanent function of a nxn complex matrix

with entries 3, ='eij, © being a primitive n*? root of

unity.

If this matrix is denoted by An then its permanent

per An =Zﬂa10’(i)

Tes, b

_ Zgi:icr(i).

Tes,

function is given by’

In this theslis the following results are proved,
Per An is always an integer; with per An = 0 mod n.
If n is even per A.n = 0.
For n odd however, the problem is in general not resolved.
It is shown that if n=p2 with p a prime, that per A.n = 0 mod p4
. and that for any prime n, per An can be narrowed down to be

one of a restricted class of numbers.
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I INTRODUCTION

The purpose of this thesis is to attempt to evaluate

the permanent function of an nxn complex matrix with entries

1j

a,, =07, © being a primitive n®? root of unity.

iJ

(a) Permanents.

For a matrix A of order n with entries in some field,
the permanent function of A is defined by

1y

per A = ;
a 0¢5n

where S_1s the symmetric group of order n. This scalar
function of the matrix A appears frequently in combinatorial
problems concerning enumerations [1], and has the following
formal properties. The per(A) remains invariant under arbitrary
permutations of the rows and columns of A and is also invariant
under transposition; i.e., per(A) = per(AT); If & is a

scalar from the underlyling field of A,.then the multiplication

of a row or column of A by « replaces per(A) by o.per(Aa).

The similarity of the above definition to that of a
determinant function of a matrix suggests the possibility of a
computational procedure for per(A) analogous to the well

known theory for det(A). Certain determinantal laws such as



the "Laplace Expansion Theorem", end the "Binet-Cauchy Theorem"
for example have analogies for the permanent function, put

the most useful property, that determinants are invariant
under addition of a multiple of a row (or a column) to another
row (or column); has no counterpart. This alone unfortunateiy
invalidated the analogy for the permanent of the basic multi-
plicative relation, det(AB) = (det A)(det B) as well as the
fact that det(A) can be expressed in terms of the character-

istic roots A

; of A (namely det(4) = ‘[IA1)4

o=l

It 1s these properties that are not possessed by
the permenent function that allow the determinants of most
matrices to be easily evaluated, and the lack of them greatly
inhibits the computation of per(A) and, in fact, make it an
extremely difficult problem, Many matrices have eesily

evaluated determinants and undetermined permanents.,

Efforts to relate permanents to other more tractable
matrix scalar functions, to overcome this inherit eomputational ‘
difficulty, have not been overly successful; In fact, it
has been shown for determinants, that no uniform affixing
of ¥ slgns to the elements of a matrix can convert the
permanent into the determinant (2] as well as that there is
no linear operation on matrices T : A—T(A) such that
per T(A) = det(A) for all A [3]. 1In fact, it is even a
difficult problem to establish if per(A) = det(A) or vice versa,

for special classes of matrices,
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Much work has been done recently {9] to establish
bounds and inequality relations for the permanent function
by presenting the permanent as an inner product in the
symmetric class of completely symmetric tensors (and using the
Cauchy-Schwarz inequality). The best reéult that can be
offered at the present time regarding the permanent of a

product is the following inequality obtained from this approach.

Iper(AB),2 < (per(AA™)) (per(B*B)) where a* = XT,

the transposed conjugate of A. '(For unitary matrix U this.
inequality trivially gives the result |per U)f& 1) The
n

i

1
useful inequality ,per AJ £ (Zwi/n)2 where w
(for all 1 = 1,'2, « « « 5, n) are the characteristic roots

of A¥A, and the Binet-Cauchy relation mentioned earlier, are

examples of results obtalned by thié technique.

To evaluate per(A) directly is a formidable task if
n is large, even for a high speed computer, since this
computation involves n! permutations. (On an IBM 7040 this
would take almost a day if n = 11 aﬁd 5 months if n = 13,)
Various methods have been developed to avoid this evaluation
of n! permutations in the computation of per(A): The best

known is the following formula due to RYSER [}].

Let B be a n-square matrix and let Br denote a matrix
obtained from B by replacing'some r columns of B by zeros.

Let S(X) be the product of the row sums of the matrix X.



Then
per (B) = S(B) - 238(31) + zzé(Bz) ~ e (-1)“‘1§:é(an_1),

where S(Br) denotes the sum over all (?) replacements of r

of the columns by columns of zeros.

(b) The Matrix An‘

An is defined to be the n-square matrix over the
complex fleld with general ijth entry eij, where 6 is a

h
primitive nt root of unity:

el o2 o . . ™14

o2 ot & . . e™2

o3 & & . . o™

. . . . . 1
i.e. A.n = . o . . . . o |y

.en-z en—h n-6 : . 62

)
ot~l gn=2 gn=3 = Gl
1

1 .1

S S X

. . 1
It is readily seen that An is 1ndependent of the chSice of
a primitive nth root of unity.

This matrix, which is met frequently in problems
concerning extreme values of hermitian forms, also occurs
very naturally in the study of circulants, which are matrices

of the type;



C1 02
C

n C1
C = .
C

2 C3

o C
n-1 n

¢ Cn-2 Cn-l

. Cn C1

All circulant matrices of order n have in common the set of

orthonormal eigenvectors {1/[5 Uk

K =1, 2, « o o s n}

where elk
' 2
o k
th
Uk = o for © a primitive n root of unlty.
enk

The eigenvalues of a circulant are Ak

Let U = (Ul’ Uz,...,Un)/fﬁ. Then the

matrix which transforms all

matrix of their elgenvalues

Xl *

0\,
e, U*cU= |-

o .

circulant

[-6.] 9

n

= chek( j"l) . k=1, .o.‘,n.

J=l

matrix U is the unitary

matrices to the diagonal

, Wwhere C is a circulant.

(Note that U is just the matrix An/fﬁ;)



By the basic multiplicative law for determinants and since

the determinant of a unitary matrix has absolute value 1,

det C = ﬁ%k,

W(Zc Jek(J“l)) , and the determinant of

a éirculant is thus easily obtained. To determine the

i.e., det C

permanent function for circulants on the other hand, poses a

very difficult problem which is still unresolved.

In attempting to resolve this problem by applying

the "Binet-Cauchy Theorem®” we obtain

per C = ZZlcp(w) per U*[l,z,...,n’w]per U[w]l,z,.;.,qTTYXWt
W
2.
= Zgléﬂ(W),Xw per U[l,z,...,nlw] ’
where w={w1,w2,...,wl;‘}, léwl,..., ﬁwné n;
,\w = )\Wl, /\Wz’"" }\Wn; and V(w) 1s the product of the

multiplicities of the.distinct integers appearing in the
sequence w, This leads to the study of per (U) or
since U = AhA[ﬁ'to the study of per An.

This matrix A.n is indeed interesting in its own
right. A
% %*
An is normal (L.e., AhAh An An).
AnAfH is unitary (i.e., Ah-l/fﬁ = Ah*/fﬁ).
Ah can also‘be put in equivalent forms by elementary row and

column operations such that the permanent remains invariant,



In one equivalent form it is a Vandermonde matrix,

i.e. a matrix of the type,

1 2 n-1
1 r11 r12 o o r1 )
Ne
1 r2 r2 o o r2
B = (rij—l) =] . . . ° . .
1 2 3 n-1
1 T, r, T, o rn

per(eij) by definition,

= (elaez...s;én_l)per(ei(J_l)

Since per Ah

’ i
), by taking © out

of 1™ row of Ankfi

en(n+1)/2 per(ei(J-l)).

per(©
Per A =
n |- per(e

i(3"1)) if n odd,
1(3'1))

if n even,

where (91(3'1)) is a Vandermonde matrix.

1+3¥
. In another equivalent form A 1is a circulant. If (6(‘ J))

2
+
denotes the matrix with general 1Jth entry e(i j), then

(1+3)

) is a circulant and is easily shown to be equivalent

(i+3f).

(e
tq Ah’ with per An = per(©

The determinants of all the matrices mentioned above
are readily found but almost nothing can be said about the

permanent of any of them.



(¢) The Permanent of An;

Per(An) can be computed by hand without too much
difficulty for n = 2, 3, 4, 5 to give;

per(Az) =0,
per(AB) = "'3 »
per(Au) =0 .
per(AS) = -5,

One would perhaps conjecture from these values that per(Ah)
equals 0 for n even and equals -n for n odd. The former
proves tokbe correct., The latter is destroyed by the
result for n = 7:
per(A7) = = 3e5.7 = =105,
This result and those for n = 9, 11, 13 were obtained by
use of the University of.Britlsh Columbia's IBM 7040 computer,
per(Ay) = +3% = 481, |
3e5.11.41 = 6765,

per(a,,)
11131229 = 175747,

per(AlB)
These results which were also communicated by Professor
D.H., Lehmer of the Department of Mathematics, University of
Santa Barbara, California, do not appear to'present any

simple pattern.

As we shall subsequently see, the permanent of
An is always an integer and is always divisable by n. In
. 5 ' . | ,
particular if n=p , where p is a prime, then per(An) is

divisable by pu. By using any of a variety of permanent
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inequalities [ 7] we can show -J-r?‘éper(%) < /r? ‘or
equivalently that - ,det(An)lsper(An) =] ,det(An)’

(since (clet(An))2 = n2). For n even, per(An) is determined
(=0) but for n odd the problem remains generaliy unresolved.
In Section IV of this thesis we investigate the case of

n prime, n >33 the best result obtained, is that the permanent
of An can be narrowed down to Bé one of a restricted set of
integers. |

Since per(4)) = Ze'zmo

oS,

- ) act.

k=0
where a denotes the number of permutations 0 ¢ Sn
R Kk
S.te. Ziﬁf‘(i) = K(mod n), we can attempt to find per(An) by
CEN - .
resolving the alternate number theory problem, of finding

the number of permutations J° 1n the symmetric group Sn,

such that Zm‘(i) = k(mod n), for k=0,1,2,...,n-1,

It is easilly-‘ seen that if n 1s a prime these two problems
are equivalent. In the proof of the results that follow,
almost no linear algebra is used; t‘he apprqach generally
being to find the permanent of’An by. solviﬁg this second
problem. Thls involves for the most part a study of the

symmetric group Sn;
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II PRELIMINARY THEOREMS

The following lemma shows that per An is independent

of the choice of the primitive nth root of unity.

' . L h
Lemma 2.,1. If A, = (eij) is nxn, where € is a primitive nt
root of unity, and k is a positive integer such that

(kyn) = 1, then

per(eij) = per(ekij).

Proof: Since (k,n) = 1, kj(mod n) = 0(j) where o is a.

permutation in Sn; Thus
per(@kij)

10'(:1))\
/.’

= per(eyT(J));

The matrix (e however, is just the matrix (e3d)’
with its columns permuted according to the permutation 0.
Since the bermanent of a matrix is invariant under |
permutations of rows or columns,

kij)

per(®e = per(eij).

QeEsDe

The permanent of An is obviously a polynomial in ©:
per A, 13y

pexr(e

_ Zﬂeio'(i)

oes, L

Z f.la'(i)

v'65"
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Hence ‘
per(eij) =a +80+..00+a 0 ‘ (1)
: (o) 1 ‘ n-1 - °
is the number of permutations T € Sn such that

‘§i1v<i>

el

where a

J

i

J(mod n), | (2)

We are thus presented with an interesting problem in number
theory, which to the best of our knowledge, has not been

solved,

Not all of the coefficients in (1) can be distinct.

More precisely, we have

Theorem 2.,2. If (k,n) = 1, then in the representation

- : n-1
per Ah =a_ + ale + ¢ e 0 ot an—le ’

o
8 = Ot (moa my? O 1T Lyseseomels

Proof:s A
=299% i k.1
per(6¥!9) = per((e)*Y)
' o k, - - k(n-1)
- ao + ale + . o- o o + 6 .
By Lemma 2.1, per(ekij) = per(eij);
N n-1 n-J
therefore Ejaieki = alei;
(=1 L:I
2 n-1
Since 8, 97, « « o 4 © are linearly independent over

the real numbers,

a i= 1,.;..,!1—1-

— a .
i ki(mod n)’

Q.E.D.
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Corollary 2.3. If n is a prime, n > 2, then in the

representation '
S n-1
perAn-ao+a16+....+an_1e R (1)
a1=a2=o o o o=an.1,

Proof: If n is prime, (k,n) = 1 for all 1£k<n-1., Thus by
Theorem 2.2,
a =a), for 1<k=n-1.
Q.E.D.

In Theorem 2,2 we showed a relationship between tl’fe
a; for 1=i1i=n-1, The question whether a, can be related to

any of the other a,, 1is answered if n is even in the next

i
_ Theorem. We first require the following lemma,

Lemma 2.4, If ¢ is any permutation € Sn where n is even, and f

is the full cycle permutation; L= (1, 2, 35eeeey 1),

then " "
E(O“P)(i) = ZiO'(i) + n/2 (mod n),
=1 Loy
Proof: 1T LY(1) = ) 1|(0(1) + 1)(mod n)|,,
700 Z _)0 Z [ mo n]

L=

since (Q"jo) (1)

il

(0(1) + 1)(mod n).

n

Zi(O‘P)(i) = iio‘(i) +’zi (mod n)

e v tel

Zio‘(i) + (n+1)n/2 (mod n)

Zitr(i) + n/2 (mod n), since n is even.
=1
Q.E.D.~
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Theorem 2.5 If n is even, ai (1+n/2)mod n

for 1 =0, 1, « & . . ’ n-1,
Proof: Let k be any natural number from 1 to n.
Consider the set
_k {U’ES | Z-’io—(i) = k(mOd n)}; k = 0,0.0,!‘1"10
If P=(1, 2, 3, « « « « » N) We have by the previous lemma

- n
Zil(<fp)(i) _.253011) + n/2 (mod n) /Vk@_e X,

L=l t=l

=k + n/2 (mOd n)o

fl

Since for g, T ¢ S with T#FT, UP#TP

X >~ where denotes the
Therefore ; (k+n/2)mod n{ __’Xk‘ ’in

number of elements in Xk.
Similarily if we consider g ¢ x(k+n/2)mod n
we obtain |

’x((k+n/2)+n/2)mod n[ EE,X(k+n/2)mod n"

l.e., "xkl Ezlx(k+n/2)mod n"

Therefore weﬂhave that the number of pérmutations geS

that give Ezac(i) = k(mod n) is equal to the number
(=]

that give j?f[(i) =k + n/2 (mod n);

ioe., a fOI‘ 1 = o,éoo,n—lo

s a(i+n/2)mod n
Q.E.D.

n-t

ob that =
serve tha Sn L}xk.

k=0
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Theorem 2.2 glves the relation |X = (X
& , J| ’ jk(mod nJ

where (k,n) = 1. We would now like to look at the parity of

the permutations in X ..

J
Let X; and XE denote the sets of even and odd
permutations in XJ respectively, wlth IXEI = a;, ‘XS‘ a;
where at + a7 = a
J J 3°

+
The analogy to Theorem 2.2 with XJ

XJ is not generally true. For the case k = n-1 we can state

the following.

or X; replacing

Theorem 2.,6. (a) If n is odd, (n-1)/2 even, or if n and

(n-2)/2 are both even, then

a+ = af and a, = a
3 j(n-1)mod n’ 3 j(n-1)mod n’

(b) If n is even, (n-2)/2 odd, or if n and

j=0, 1,...,1’1.

(n-1)/2 are both odd, then

+ -
aJ = aj(n—l)mod a for J—O,l,ooo,n‘lo

Proof: Let G‘ésn be an arbltrary permutation and let

1 'Y 2 9 3 [ . . . [} -1 ]
X = ((n"l),(n"Z), . [ . * ) ,(nl ), g>

®
[

1, 2 4, o o 4 1 1, 2, .
0d= hﬂﬂ,¢wh wﬁm)an,mau : 3>

1 ] 2 ’ . ’ n
= (n-Oil),n-OXZ), . e ,n-Oln;>
lcee, (0TN)(1) = n - 0(1).

.ZL:i(n - 0(1))

»

Thus Zi(O’X)(i)

(n-1) / 19(1) {mod n),

&
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€. X h a X
i.e., If ge 3 then J e j(n-1)mod n

one-~to-one mapping of XJ onto X

« This glves a
J(n-1)mod n°* (Since if
oY =TY then 0=T,) It is readily checked that ¥ is
an even permutation if n is odd, (n-1)/2 even, or if n,
(n~2)/2 are both even. Similarly ¥ is an odd permutation
if n is even, (n~-2)/2 odd, or if n and (n-1)/2 are both |
odd.

Finally since the product of two even permutations
is even, the product of an odd and an even 1is an odd

permutation, etc., the result is proved.,

Q.E.D.

" Theorem 2.7. If n is even, (n-2)/2 odd, or if n and (n-1)/2

are both odd, then Xo has an equal number of even and

odd permutations.

Proof: Consider any U ¢ Xo with o even. As in the previous

theorem, if

Ve (im0 i »),

then ” .
Zi(o‘b’)(i) = (n-1)Zlcr(1) (mod n)
= 0, since 253011)(mod n) = 0.
- (T8) € X,.

Since ¥ under the conditions of this theorem is an odd
permutation, there is thus a one-to-one mapping of the
even permutations of Xé onto the odd permutations of Xo.

Q.E.D.
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Theorem 2.8, If r/n, say r . n1 =n

and if R ={x'x = kr(mod n) (k,n)=1, l2k<n },

then S = z:bx is an integer.
xeR

Proof:

(a) Let rl; T seees T = 1 be an ordered listing of all the

2
divisors of n, with r1 > ri+1, 1=1,00eym1,

Let
/ ) .

R1 = {1r1, 2r1, o o o (nl-l)rl} where n, *r, =mn,

/ : . -

Rz = {11’2, 21‘2, e o o (nz"l)rz} n2 r2 = n,

Rl;l={1’ 2,.00,, ,n-l} n‘1=.n,
and define ’

R, = R,

L=

/ /
R,=R_-(R_NR
2 2 ( 2 1)

' . wi-1
! . ]
R = B - &Z(Bm.” Ri)’

It is easily seen that all Rj are disjoint, and that

R;) ={x'x = kr!wan),(k,n)=1, lekan } J=1,2,..,m.

(b) To show Sj = zsz is an integer ¥ J = 1,...,m

xek; o
we proceed by indud%ion as follows.
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(]

\ Lig
(1) 51=Ze '= -1, an integer

izl

(2) Assume that all S, are integers for i = 1,...,k¥1

i
(3) To show Sy is an integer, consider
' "K.‘ §
. X _ q{i -
.Sk = 2:9 = E:é = 1.

xeﬂ"( ]

K-t
By definition R = RL'{ - H(R}; N R).

If r /r then EH{ N R = Ri by construction of R, and Bl‘(

If r ,// L j:hen RKﬂR1=O,

since say Xx € Ré N Ri'

4 i
Let rk1 be the L.C.M. of rk and r .

. rki/x and also rki/n

Since ;ki is higher in the 1list r1, r2,..,, Th |
than ri; this implies X € R, which gives a contradiction,

since Rj are disjoint.

We can now write Sk as follows.

xeR

is for all i,
= g! —Zsi ' ) ,
- sete ByNR_#4,

S = Z Z[Z@ ] - where the summation over i,
xeR,

= (=1) = Z:(integer) , slnce the_s1 are integers by

the induction hypothesis.
Qo Eo D.
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III SOME GENERAL RESULTS ON PER A, .

Theorem 3.1. If n is even, per A =0,

) 1 n-1
aoe + a19 + o e s o+ an—le (1)

o n/2 1 (n/2+1)), -
(goe + an/ze ) + (ale + a(n/2+1)9 I )4-

(n/2-1) _ _ en—1>
n-1 ‘

Proof: Per(An)

e o o o + .8
(a(n/z-n
By Theorem 2.5 '

a for 1 = 0yeeeeyn=-1,

1" %(14n/2)°

Therefore Per(Ah)_z ao(e° + en/Z) + al(gl + g(n/2+1))

(e(n/z-l) + en-l)

. L 4 L] °

-t a(vn/z-l)

k
oy oo{n/aHk) _ gy g2 | gk L 6K 4 (c1)e

But ]
=0 for any k.
Thus the result is proved.

Q.E.D.
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Theorem 3.2. Per An is an integer.,

Proof: It is easlly seen that we can write
| o b4
per An = aoe + Z[Zﬂaxe J (3)
XeR;

where R1 ={x)x = kri(mod n) (k,n)=1, 1ek4n}

and the summationZ is over all i, such that ri/ n.
¢

. {Note that R, does not contain n; hence aoe° term in (3).)

i
Since by Theorem 2.2, ai = aik(manI;or all 1 = 1,.ee4n
and for 1<Xk«n, (kyn)=1,
X
therefore per A = a + [a 5] ]. L)
n ° E{: 13'22& (

L

But by Theorem 2.8 Zex is an integer.

KE&

Therefore per An is an integer,

Q.EOD.

Theorem 3.3. Per An = 0(mod n)

Proof: If n is even the theorem is obviously true since
per An = Q.
The theorem is also true if n is odd, but we are not yet
in the position to prove this. It will follow from
Theorem 4.2 that n/ai for 1 = 0,1,25ee0yn~1,
This fact together with Theorem 2.8 gives the result.

Q.E.D.
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Theorem 3.4. Let per An =a, + a161 + ¢« 0 o t 2 en'l,

If n is an odd prime, then
per An = ao - al,

Prdof: By Corollary 2.3

a1 = 32 =‘o‘o e o = an"l.

Therefore per An = ao + al(e1 + 92 + ¢ o 0o o + en—l)
= a, + al(—l)
= ao - alo
Q.E.D,
Theorem 3.5. Let per =a <+ a e1 + . e o t 8 en—l
Ay =83y .- n-1° ?
where n is the square of a prime p, Then
per A = ao'- gp.

Proof: Let Y be the set of residues mod n which are
relatively prime to n. Then by Theorem 2.2
| ai = aik(mod n)’ for k e Y .
. For n= p2, the only numbers less than n not relatively
prime to n are p, 2P, o o ;_. ,4(p-1)p.

It follows that

per A = a + a zzé + a_ ZSOJP

Key,‘

Now Zzéi.= -1,
and j?edp = -1.
‘ | -
Subtracéting, /0 = 0,
KeYa ,
hv rA = + o) + -1
T ug per A = a al( ) ap( )

= 8 = 8 . Q.E.D.
' P
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IV PER An IF n IS A PRIME > 3.

The aim in this section is to show that if n prime,
n > 3, then the permanent of A  1s limited to be one of a
restricted class of odd integers. Most of the preliminary
Theorems used here’are stated and proved in greater‘generality
~ than is needed for the above result.

| Let o denote an arbitrary permutation in Sn’ and P

the full cycle permutation (1, 2, 3, « » « , N)

Lo f:(l' 2, 35 o o o s n).

2y, 39 4y ¢« o o 4, 1

It is easy to ckeck that

Pz_(ly 29 39 . 0 L | n)
2, 3, 4, « ¢ o , 1
(1’ 25 35 ¢ o o n)
A3, 4,5, 0 0., 2/

and in general that

)Ok (1 s 2 4, 3
—P(:‘\9 P(:)’JO(;)’ . o ’

k
where S =(k+i)mod n. If

1 ,,2 4,3 43 ¢ ¢4 n
g = ,
O'(l) 'Y 0-(23 ’ 0-(3) 9 o o o O—(n) ?

(is 2y 3 e o o 9 N
2y 35 4, ¢ 0 o, 1

o B
S x
SN——
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s N 1,2,3,.;..,11
1 Ty ()‘(Q),(f(}), * o o o ’O'('Vl)

1,2’3,...,11
-079)70@), ¢« o o o ,Cm)>,

and in general

W

-
.
°
.

G [tz
P -(2,3,

L]
°
L[]
[ 3
[
-

f{0_=( 1 ,2 ,3 , f . f s N ‘>
700, (Pge, o, « . .« om
where fﬁT(l) = Uﬁ}i+k)(mod n{].

By giving k, values from 1 to h, we obtain the set
of n permutations§

PT s PT s o o - ,jo"o- (with Jo=0), (5)

which are all obviously distinct (Jjust looking at the image )
of 1 under each permutation shows them all to be different).

Similarly the permutétions obtained by multiplying

on the right by powers of (0, are of the general form
7F {(PE-)(JJ’(;‘OY’ o ) ’
’ @4?&%% o« o o {P@m)
where (Oj%)(i) = DJ(i) + k] (mod n).
This again gives us n distinct permutations
TP TPs o o o 2P (with 0P"= 0~ since f'= 1) (6)
which are not necessarilyﬂall equal to those in the first set,

The fact that }}iﬁbyﬁ(i)._ [Z}OTii](mod n) for n odd

=]

and for all k and !/, is proved in the following two theorems.,

All this leads to the fact, that with any o ¢ Sn

but U'¢Gh, where Gn is a certain subgroup of Sn’
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we can assocliate a block of(n2 distinct permutations (viz. the
, p ,
permutations (fojD) where Ky,{ = 1,2,¢eeyn) such that if
. ‘ . n n
g and T belong to such a block, then §Z§Gxi) = {jZET(i) (mod n)
. ' (=1 =1

‘Theorem 4.1. If o € 5 and P=(1,2,040o,n) & full cycle

permutation, then

}liofyﬂ(i) = [Z;(pka)(i)](mod n), kK= 1,2,0ee,N.

Proof':

n .

Zi(O’pk)'(i) - Zi(PkG')(i) ‘
=1 1

L=

= 21([¢(1) + kj(mod n) - Zi o-[(i + k) (mod n)]

[ZNH) + kii - (‘Zmi) - kZi)J (mod n)

t=]

n .
Zkzza(mod n)

2k(n+1)n/2 (mod n)

0(mod n).

Therefore zia(vpk)(i) [2ii(p%r)(i)](mod n).

Q.E.D.
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Theorem 4.2. If QO € Sn and P

(1,2,;;,,n) a full cycle

permutation ¢ Sn then
- N

1]

(2) if n odd Zi(d'ﬂk)(i) = Zx’o-(i) (mod m)  for any k ,
PR

i

(b) 1f n even zj;«tpk)(i) = 2:}011) (mod n) for k even,
(39} .

)

Zi(ﬂ'ﬁk)(i) = Zicr'(i) tn/z (mod n) k odd,
] I

Proof: " n

Zi((]'/ok)(i) = Zi [(0'(1) + k) mod n] mod n
(=1 ‘ :

(E3]

Et}ﬁ(i)mod n+ kzi; mod n
]

X3 (84|

Zigcii)mod n + k(n+1)n/2 mod n.

=)

(a) If n is odd, k(n+1)/2 is an integer,
n ) n
Therefore Zi((rpk)(i) = Zic‘(i) (mod n) for all k,
I ¢=1 Ul
(b) If n is even, k(n+1)n/2 is an integer,

2 1@ (1) = ) 101 (mod m),  1f k even,
=} (3]

and Zicr(i).'_" n/2 mod n  if k odd.
XX

h ' ‘ QoEoDo ‘

Corollary 4.3. If n'édd, then

ii(PkG'Pl)(i) = Z“‘ic'.(i)" mod n for all k, 1.

L=t

Proof: (From previous two theorems),
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For any b, O=b=n-1, and n ¢ Yh, we éan now define a
function [: .
”[(i) = b+ (1-1)m (mod n), 1= 1,2,00.,0.

where 1=7(1)<n. is a permutation of {1,2,...,n}
since ’[(i) =T(3) implies im = jm(mod n), which in
turn implies | ils_j(mod n) sinFe m € Yn. |
Moreover, diétinct values of b and m give rise to distinct
permutations. For, suppose

T(1) = b

g (1)
Then T = 0 implies that b, =T(1) =07 (1) = b,

1 + (i-l)m1 (mod n) and

b2 + (i-1)m2 (mod n).

and b, +m =T(2) = (b, + m,) since T(2) =0T(2).
We define Gn to be the set of all permutations T that are

of the form (a).

Theorem 4.4. Gh is a subgroup of Sn containing n.¢(n)

elements, where ¢(n) is the Euler Function.

Proof: From the above discussion the permutation 7 in (a)
can be specified in n-¢(n) ways, corresponding ton
choices for b and ¢(n) choices for m.

To show that Gn is a group it is necessary only to
show that ¢, ¢ G, 1implies TT e G . Suppose
7(1) E_bl + (i-1)m1 (mod n) and
T(1) = b2 + (1-;1)m2 (mod n).

Since (mz,n) = 1, there exists m_ such that

3

.m2m3 »5 1(mod n).
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It is readily checked that
1) = (by + (1-1)m,) (mod n),

where b

3 = m3(1—b2) + 1 (mod n).
Then (7Y (1) = T(0(1))
= b3 + [bl + (i-l)ml-l]m3
E(b3 + blm3 - m3) + (i-l)m1m3 (mod n),

~}
Thus 0 T € Gn'

Q.E.D.

Theorem 4.5. If n is odd and (n,3) = 1, then

' z:iUTi) = O(mod n) for all 0 e G, *
e
Proof: Let 0(1) =(b + (i-1)m{mod n).
)1+ thiz - mii
[KY] =1 Y]

b n(n+1)/2 + m n(n+1)(2n+1)/6 - m n(n+1)/2

Then ) 107(1)

[}

il

0 (mod n),

Qo Eo Do

/

Corollary 4.6. If n is an odd prime, n # 3, then
4) ‘ . .
}:ﬂTii) = 0 (mod n) for all U"G'Gn.
L=

Thus in case n 1s a prime, n > 3 we have obtained a

subgroup of Sn each element ¢ of which has the property
) 10(1) = 0(mod n).
=t

There may however be other ( ¢ Sn with this property.
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We now proceed to show that the remaining portion of

Sn consists of disjoint sets K, each containing n2

J
elements, each of which give rise to the same residue

class.

Theorem 4#.7. Let n be a prime > 3; and let Hn =8, - Gp.
' Then Hn is the union of dlisjoint complexes

K J = 1,00.,1’ such tha.t

J’
(I) each KJ contains n2 elements, which all
have the same parity, and

(II) for each j there exists c, such that

J
Ziicxi)

Proof: Let O ¢ H ; and let P = (1,2,3,...,n)

Define K, {P(r}) dn = 1,2,000,0 8.

The n? permutations ,Paj> are distinct, for suppose
Pz'cr)o"" = /OI‘G-P""; then, (J(1) = 14)/5 ?1) for

i= 1',2,;0.,110

i

cJ(mod n) for all G € KJ-

Specifically, for each i,
a(1) E.GTi+l%—Ja) + m,-m, (mod n) or
U—(i-bzz- /21) =0 (1) + ml

Since n is prime, if_lé - la # 0, there exists k sugh

-m, (mod n).

that (L-2) x = 1 (mod n),
2 1

Then (0 (i+1) = 0(1 + k(lz-ll)).
= T(1) + k(ml-mé) (mod n).
This means that U‘e.Gn, contradicting our assumption

that 0 € H . Therefore lz - 21 = 0; it follows from (7)
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that m1 - m2 = 0 also. Thus K, has n2 distinct elements.

By Corollary 4.3 we have

Zi(Pk(T_PJZ)(i) = Zi(]’(i) (mod n)
&) CL=

for all k,.L = 1,2,+0eyn. Thus for any particular

complex K.,
ZiO'(i) (mod n) gives the same residue for
L=}

all permutations U € K..

We have

Oel,

S, = GnU(wa).
We now show that foi‘ two complexes Ko-’ 'KT, either
Kq- N K'( = ¢ or KO’ = KT.'
. ¢ ... )
If K N K, #@, then Pia = PP

_for some .21, my s L, m. It follows that

4

2 2

-2' m,= m
g = PZI'TP M _Pl”T_'P 3, where

13 = ,22 - ‘ﬂl (mod n), my=m, - m, (mod n), and

_ ~d A
1515,mA <n Thus Te K,, and P 0P €K,
- for all L,m, 1< /[m<n Therefore K € K,
Since K_ and X, each have n° elements, |

Ke = Ky

Therefore complexes are eilther disjoint or equal.
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To show all pérmutations in a complex KT? have the
same parity; we note that for n odd;

P=1(1, 2,00ey n) = (1,2)(1,3)5+4.5(1,n) 1is a product
of an even number of transpositions. Also since a product
of even permutations is even and the product of an even
and an odd permutation is odd, therefore T ¢ K1;is even
or odd according if T is even or odd.

Thus the n2 elements in the complex have the same
parity. | | |

Q.E.D.

Note: If r is the number of disjoint Kg .,
8, = G, U K, UeoooUK,,
Considering the number of elements in each of these
sets, we get
n! = n(n-1) + r n2 (n prime).
Thus (n~1)! =ne-1+orn,

or (n-1)! = - 1(mod n),

This is just Wilson's Theorem!

Theorem 4.8. If n is a prime, n > 3, and if a, is the

number of permutations in Sn such that
2:1011),5.k(mod n), then
151

(I) n(n-1) divides 8,

and (II) n° divides & if k = 1,2,...,0-1.
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Proof: By Theorem 4.7,
S, = GnUKl, e o o o UKS_; (8)
and if

}:&0(1) =k # 0, then T ¢ some K3
n

It follows that those o such that Zicr(i) = k(mod n)

t=!
completely occupy a certain number, r .of Kﬁs. Since

k?" J
each Kj has n2 elements, a.k = rk-n.; this proves (II).
By Corollgryﬁa, a1 = 8, T geeesy = an-1’
Hence, all rk are equal, 14£k=n-1; say rk = r.
2 :

Then &, = In.

=l
Now a°+a1+ XXX +2an_1—-n..
Therefore a, + (n=1)rn" = n! .
a, = n(n-1) kn—z)! - rn];
and (I) is proved.

Q.E.D.

Theorem 4.9. For n a prime, n > 3, there exists non—negative
integers y and z such that '

per A = n[(n-l) + y(n-1i)n - zﬁ].

Proof: From Theorem 3.4,
per An = a, - a,.
Now a, is the number of T € S, such that jt;c(i) = 0.
(R}

Such 0" ocoupy G, and a certaln number of the K,'s in the

decomposition (8).
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L 2
Thus a, = n(n-1) + wn .
Since n-1 divides ao, it also divides w,

2.
Therefore & = n(n-1) + y(n-1)n, for some non-negative

" integer y.
Since n2 dlvides a, »
' 2
therefore a = 2zn

1
for some non-negative integer z.

Therefore per A = n(n-1) + y(n-l)n2 - zn2
n
= nf(n-1) + y(n-1) - z].
QR.E.D.

Theorem 4.10. For n a prime > 3, there exists a non-negative

integer y such that

per An = n2 - n(n—2)! + n3y.

Proof: From the discussion in Theorem 4.9,

a, = n(n-1) + ynz(n-1);

and a, = an, K= 1,2,000eyn-1,
Slince n! = Zai,
=0
| _ 2 2
n. = n(n-1) + yn (n-1) + (n-1)zn",
Hence zn = (n-2)! - 1~ yn,

. per An = ao - a1

= n(n-1) + ynz(n-l) + (yn + 1 - (n—2)l)n
= n2 + nj& - n(n-2)!.
Q.E.D.
Remark: Computed values for the i and y above wili be

indicated in Section VI.
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This result does not answer the question as to the
value of Ah’ even for n a prime, but it does restrict

considerably the possible values.

We note that An/fﬁ is a unitary matrix. By a
result of Marcus and Nevman [ 7]
)per An/ﬁx) =1,

which implies Iper An]g;nn.

Thus if n is a prime, then per A,n is restricted
to the wvalues of n2 + n3y - n(n-2)! that lie between

-n" and + n®, where y is a positive integer.
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V THE CASE OF n = pz, WHERE p IS A PRIME

In this section we shall obtain some results for
the square of a prime somewhat similar to those obtained in
Section IV for a prime. Let n=p2, where p is a prime,

The group Gn, which was useful in Section IV is not large
enough for our purposes here. We shall form a larger group

Fn consisting of permﬁtations of the followlng type.

Let G be a permutation of {1,2,...,p}. Define:

T(1i + cp) =0(1) + (ai + cs)p (mod p2) (20)
fOr 1 = 1,2,444,0 and ¢ = 0y1,400,0-13
where {ai} and s are constants such that Oé-aisp-l}
1=s<p-1., We show that each such function « is indeed a

. ~ 2
permutation of {1,2,...,:9 }. Suppose

g(j) =a(k), where, say, j = 11 + c,p and k = 12 + c,P.
Then
' - —~ 2
0'(11) + (ai_l_+ cls)p av(ié) + (aiz+ czs)p (mod p“), (1)
and (T(il’) 50‘(12) mod p.

By the definition of 6-", it follows that 11 = 1,, ay =

Ml PR

and, from (21), 48 = ¢,8 (mod p).

Hence 01 = C and finally j = k. Thus 0(j) = a(k)

implies that }J = k, so that 0" is a permutation.,
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Theorem 5.1. The set Fn of permutations in Sn of the form (20)

form a subgroup of S, of order pP e p! e (p~-1). Every
permutation T in S, With the property
T(i+p) = T(1) + kp (mod pz), for a fixed k, 1<k<p-1,

is a member of Fn’

Proof: Suppose
0 (i+cp) = (1) + (a;+cs)p (mod pz). (20)
Then g~ 1 is given by
o L(14ep) =G H(1) + (by+ct)p (mod p%),

where 0<b, €p-1, t is such thaﬁ 1<t <p-1,

i
st = 1 (mod p), and 1=b,<p-1, b,=-a;t(mod p). For,

oo L(i+ep) = 0’1[5‘(1) + (a1+cs)ﬂ (mod n)
50_"0_'-1(1) + [bi + (ai+cs)t]p (mod n)
= 1 + [—alt + a,t + c|p (mod n)

i+ cp' (mod n).

= |l

Thus if J e Fn’ a € Fn'

Similarly, if u is defined by
- M(1+cp) 5}(1) + (x;+cu)p (mod n). .
then O'/u(1+cp) = /J[O:(i) + (éi-l-cs)p] (mod n)
= @:/U(i) + Exi + (ai+cs)u]p (mod n)
= G/b-(i) + [o(i + aiu'+ csu]p (mod n)
= (T'ﬁ(i) + [Xi + cw)p (mod n),
where Oé-xiSp-l, and 1<w=p-1. Hence UT € Fn’ and Fn

is a group.
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To obtaln the number of elements in F,, we note
that there are p! ways of choosing 5-’; p ways of choosing
each a,, 1=1,2,44.,P; and p-1 ways of choosing s; yielding

P!'Pp

e (p-1) ways of choosing §. These choices are
distinct; for, suppose |
| Q(i+cp) = G(1) + (ay+cs)p (mod pZ)

= 7 ‘h 2
and /U(i+cp) _-://(1) + (bi+ct)p (mod p*©)
define two members U and T of Fn. iIfq ;4/7, there exists
j» 1=)=p, such that T (J) # H(§); then T(3) # Y(3).
If (T=/U, ay # bi fo:p sqme i, then (i) ;é/u(i).
If 6:=}j, all a, = by,
T (i+p) ;é/u(i‘+p).j Thus there are p'. o pp « (p-1) distinct

and s # t, then

elements in Fn.

Now suppose that T is a member of Sl;l such that
T(1+p) = T(1) + kp (mod p),  1sk<p-1,
for all i=1,...4n. Then T(i) can be written
T(1) = d; + a;p, 1=1,2,...,P,
Where 1éd1_<.p, and OSais.p-l. We show first that
{di} is a permutation of {1,2,.;.,p}.
Choose r such that rk = 1(mod p). If
di = dj for 1=<j<p, then
Th + (a-2,)rp] =T(1) + (a,-8,)7kp (mod n)
= di + a;p + (aJ—ai)p (mod n)
=d, + a,p (mod n)

J J
= T(J) (mod n),
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Since VU is a permutation, 1+ (aj—ai)rp skj ”‘(_mod n),
which implies 1 = j (mod p), and finally that i = j.
We can now write d, = T(i), where Te€ 8,3 and
T(1) = T(1) + a;p.
Since T(i+p) = T(i) + kp,
we have T(i+cp) =:E(i) + (éi-i-ck)p.
T is therefore a member of Fn’ This completes the proof

of Theorem 5.1,

Q.E.D.

n We next examine the residue class of

210"(1) for @ € Fe

(]

Theorem 5.2. If T € Fn’ then

n

e
Zid‘(i) = pzm'(i) (mod n),

where T is th;"permutatic;;x' Of 1,2,.004D, &iven in (26).

The number of permutations ¢~ in F_ such that
Zicr'x(fi) = " (mod n), 0%£j<p-1, is equal to

pp ‘-" (p~1) times the number of permutations g esS

P
such that

e
ZICT'(i) = ) (mod p).

[]]
n d ' '
Proof': Ziﬂ‘(i) = ZiE’(i) + a1§]+2(1+p) [511) + (ai+s)p]
_ ¢zl e U3 U= .

+ Z(i+2p) [F(1) + (ai+28)P] e e

(34]

+ Z[i + (p-l)p] [5'(1) + iai + (P-l)S}P}
(=1
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P

Lid P ' | |
'p Zic?(i) + P Zi ayp + Zi [s + 25 4+ . . o * (P-l)s]p
p ! ] ' (

[}

+ Zi(T‘(i)[p 420+ . . %+ (p-1)0)

[

P Zif‘(i) + p(p+l)/2 [s + 25+ o o o (p-l)s]p
+ p(p+1)/2 [p + 2D+ . o o+ (p—1)p]

o) zif]:(i)' (mod n).

Lt

il

The latter statement in the theorem follows

immediately from Theorem 5.1.
Q.E.D.

As in the previous section, we now consider for

each J ¢ S_ - F , the set
n n

Ko =§P£G—Pm \ lam = 0;1”“’n’1}¢
(see page 27),

| 2
Theorem 5030 Ifo_-e Sn - Fn, then lKG'l =N e

For all elements T ¢ K_,

ii‘t’(i)

Proof: As I,n run through O,1,.e.,n-1, n? permutations

il

Zic‘(i) (mod n),

PlG_)Om are produced, It is regquired to show that they
are different. It 1s sufficlent to show that
PO P =T implies L=m=0. 1t PTP" =T,
then T(i+l) +m =Q0(1) (mod n).

First, 1=0 implies m=0. If (.,h)=1, choose r so
that r{=l(mod n). Then
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 0(L1 + rf) =0(1) = rm (mod n),
or  G(i+ 1) =0(1) -rm (mod n).
Then r m # 0 (mod n), and
(i +p) =0(1) - rmp (mod n).

By Theorem 5.1, U ¢ Fn’ a contradiction. The remaining
alternative for /is / = cp, 1<c<p-1. 1In this event
T(1 + pf) =T(1 + cp?) =C(1) (mod n),

and hence J (i) =TJ(1) - pm (mod n). ‘
It follows that m = 0 (mod p). Moreover m # 0 (mod n),
since, in that case,
(1 + cp) =0(1) (mod n),
which is impossible, Thus m = kp, 1sk =p-1,
' By Theorem 5.1, 0 ¢ Fn, a contradiction.
Thus 'KG_]= n?.
Let T= PP(TP'"; 0 < Jym<n-1.
Then

) iT(1) = Zi Pla P
=LZ|:1[G‘(1+J/) + m)
- z(i+))0‘(i+]) - Zr:)z T(1+D) + Zi m
-_-.A Zjiq(i) - Jn(n+;)/2 + m n(n+l)/2

= Zicr(i) (mod n).
' Q.E.D.

T

Theorem 5.4, ForJ,T sji Fn’ either XK =K., or K N K. = ¢.
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) m, !, m
Proof: If U eK 0K, thjen M= PapP= PET P
which implies L = P "O—Pm'-m‘, and hence YT €K .
It follows that K. < Kg.

Since lKa_' = 'K_rl, K = K.

a r°

Thus Sh is partitioned as follows:

where the number of elements in the varlious subsets are

shown in brackets.

We are now in a position to get some information

on per An. Recall that

where a 3 is the number of T ¢ Sn such that

n .
Zio‘(i) = j (mod n). 1In fact, for n=p2; by Theorem 3.5,
(=)

per An = ao - ap.
By Theorem 5.2, the number of Q 's in F_ for which

. Ziﬁ"(i) = 0 (mod n) is pp e (p=1) times the number

[
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of T € Sp such that Zia'(i) = 0 (mod p). By Theorem /g

=)

the latter is p(p-1) + k1p2 for some integer kl'

0.

i

. . n
There may, in addition be 0™ ¢ F, such that 2.1011)
]

of n2=p4, by

The number of these will be a multiple k2

Theorems 5.3 and 5.4, Thus

a = pP*(p-1)% + x

p+2 L
o P (p-1) + kp.

n
Similarly, each J in Fn such that EE}CTi) = p
Lz2)
P

corresponds to a G:in-sp such that }:yf(i) = 1 (mod p).
T : )

pz, by Theorem & %

The number of the latter is k3

Thus the number of G'E.Fn such that 2;}011) = p (mod n)
. : Czi .

is k.pP % (p-1). Outside F_ there will be a multiple

3
k4 of pu further permutations of this type. We have then
_ P+2, . 4y - b,
ap = k3p (p=-1) = kup H
and as a result
p+2

(p-1) + (kz-ku)pu-

p*Ey+l=ky and k,+k, =), we have

_ .p+l _ 2 _
per A =p “(p-1)" + (k& k3)p
Setting k

Theorem 5.5. For n=p2, P#3,

+ L
per A = o+ (p-1) (kp-1) +.Ap",
where k,/ are positive integers. In particular

per Ah = 0 (mod pb).
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VI COMPUTER RESULTS

(a) Computer Programme.
| Per An was calculated for the odd primes,
n=5,7 11, 13, on an IBM 7040 computer. This was done

using the following well known formula due to Ryser (571,

Let B>be a n-square matrix and let Br denote a
matrix obtained from B by replacing some r columns of B
by zeros. Let S(X) be the product of the row sums of the

matrix X. Then

per B = S(B) - ZS(Bl) +Zs(132) - .. (-1)n.1}:s(Bn_1) ()

where z:§(Br) denotes the sum over all (?) replacements of

the r columns by columns of zeros.

If B= A , where n is odd, and if An denotes the
n (r)
matrix obtained by replacing r columns of Ah by columns of
zeros; then it is easily checked that

(1/r)-€'=(An ) = (1/(n-r))S(An(n_r)) .

if s’(a ( )) denotes the product of the first n-1
n(r

then since the nth row of An consists of

(r)

row sums of A
n(r)’

1's only, we have

S(A ) = I‘ d SI(An(r)).

n(r)
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Thus we can rewrite (¢) as

) - S(A )

-1ZS (A ) + 2)8 ( n(2) n(3)

per An

. o o o *+ ("1)n- (n—l) S(An(n—l))'
Therefore '

per An

(n - 2) S'(An(l)

) - (- W) n(2) (10)

t . . n-
+ (n - 6)Zs %(3) tee et o) 5 An(n-l)/2 .

Thus to evaluate per A.n if n 1s odd, it is only necessary to
compute the product of the first n-1 row sums of all possible

matrices An(r) for * = 1,eeey(n=1)/2., That is for

?}4—(1'21)4- . e o + <(n ?)/2> matrices in all.

The programme used to obtain values for per A ’

~~

for n = 5, 7, 11, and 13, was based on the equation (/0) in

the above paragraph.

It consisted essentially of a combination generator,
which generéted all-possible.combinations of n things
r at é time, for r = 1, 2,e..4(k=-1)/2. From these the
matrices A n(r) were formed for each valge of r, and E:% Ah(r)
evaluated. By equation (10, per An was thus obtained,

This programme was originally desligned to compute
and print out S A (r) for all r, in a particular order;
with the hope of observing patterns which would allow a

conjecture for per Ah to be obtained from equation (/0).
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Due to the excessive checkiﬁg involved in the
ordering of the combinétions, this programme proved to be
very inefficient if used to calculate per An forn > 13.
For n = 17, no result could be obtalned 1n'two hours computing
time. Whereas, for n= 5, 7, 11, 13, per Ah was computed
in less than five minuteé;‘ With an efficient combination
generator, A,, and A _ should Bé readlly obtained by the

17 19
IBM 7040.

(b) Results.
For n an odd prime, n >3 we have the following
computer results.
A = =
per Ag 5
per A, ==~ 3° 57
11 « 13 « 1229 ,

per A13
Theorem'4.9 gives Per A, = n‘kn—l) + y(n-1)n - zn],
or (Theorem 4,10) Per A.n = n? - n(n-z)! + n3y.

Thus for n = 5, 7, 11, and 13, we can list the values of y and z.

n y z
5 0] 1
7 2 15

11 3004 29985

13 36274 2834249




COMPUTING PERMANENT OF A(N) BY RYSERS METHOD.

COMPLEX_ X1 TH(1T) s PROD s RSUMsTHETA (17217 s EN_

INTEGER SP(17)s PER

- DIMENSION KOL(1431,8) -

DIMENSTION MOl (17)

. DIMENSION MOT(17)

PRINT 1

FORMAT(34H_COLUMNS PRODUCT _OF ROMWSUMS

G0 TO 112

PER=0.
SP(1)=1

SP(2) = (N-1)/2
DO 113 I=1sMO

PER=PFRA(N=2%T ) XNxSP (T )% (=] )%%]
WRITE(65111) PER ‘

READ(552)N

FORMAT(I2)

61

PRINT 195N
FORMAT (1Xs12 )
MO=(N=1)/2

38

M=3
GO TO 51
M=M+1

51

Ml1=M=1
M2=M-2

[E(MeGTeMO) GO_T0O 79
T=N . ‘
X1=CMPLX(0e¢52¢%341415927/T)

40

N1=N=1 ' :
DO 40 I=1sN1 - :
EN=FLOAT(I)

TH(I)=CEXP (EN¥*X1}

THIN)=(1405040)
DO 10 I=1sN
DO 43 JA=1sN

4y

KA=1%JA .
IF(KAJsLESN) GO TO 43
KA=KA-N '

43

GO T0O 44

THETA(I»JA)=TH(KA)

t.. CRAIN LIMITED
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11=1+41

. 36

KOL(KsI)=KOL({KsI1)

"KOL (KsM)=KM

IE (MP EQ«M) GO T0O 200
"GO TO 62 |
300 IF(MOL(M)+LE.1) GO TO 24
GO TQ 6 .‘
200 MOT(1)=1

DO 93 [=2sM

93
55

MOT(I1)=MOT(I-1)+MOL(I-1)
PROD=(1¢050+0)/FLOAT(M)

DO 16 I=1,N

RSUM=(0405040)

‘DO 17 LA=1sM

JA=MOT (LA)

17

16

RSUM=RSUM+THETA (I s JA)
PROD=PROD*RSUM
SP(M)=SP{M)}+INT(«5+REAL (PROD) )

52

WRITE(6952) PROD»> (MOT(LA) sLA=1,M)
FORMAT (2F104254X%92013)

201

LE(KeEQel) GO TO 11
K=K+1 '

Kl=K-1

‘39
111

IF(KeGTaNO) GO TO 39
GO TO 300 o
WRITE(65111) SP(M)
FORMAT(60Xs110)

24

GO TO 38
L=t+1
ML1=M=L+1

.25

ML=M~-L
DO 25 I=1sM
KOL(K»sI13=MOL(TI)

_KOL(KsML)I=MOL(ML)+1

IF(LeEQe2) GO TO 41
DO 26 1=ML1sM1

26
41

KOL(KsI)=1
KOL(KsM1)=1
KOL(KsM)=0 ~

30

DO 30 I=1sM1
KOL(KsM}=KOL{KsM}+KOL(KsI)

L. CRAIN LIMITED
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