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STABILITY IN THE LARGE OF AUTONOMOUS SYSTEMS
OF TWO DIFFERENTIAL EQUATIONS

ABSTRACT

The object of this dissertation . is to discuss the stability in
the large of the trivial solution for systems of two differential equa-
tions using qualitative methods (of course in combination with the
construction of Lyapunov function). The right hand sides of these
systems do not contain the time t explicitly.

First of all we discuss the system of the type

=F(x,y), L =f@), d=cx-dy, c#o _ (1)

dx

dt
These equations occur in automatic regulation. Using qualitative
methods we determine sufficient conditions in order that the triv-
ial solution of system (1) be asymptotically stable in the large. In
this connection we note that a theorem proved by Ershov (Prikl. Mat.

Meh, 18(1954), 381-383) is wrong. We then solve the problem of
AYzerman for the systems of two equations, namely, for the systems

dx - 4y = bx+ cy . 2

& f(x).+ ay., s X+ ey (2)
and

X —ax+fy), SL=bxexy (3)

In the case of'system (2) we givera'néw proof of a theorem
which asserts that if ¢ + ab #.6,. then the trivial solution is asympto-
tically stable in the large under the generalized Hurwitz conditions.
The theorem was_ first proved by Erugin. For system (3) Malkin
showed that the trivial:solution is asymptotically stable in the large
under the conditions:

a+c<o, (acy - bf(y)) y > o fory #o0 and (4)

J(acy -bi(y))dy —» + oo é.s l‘y'—> + oo (5)
o

We prove a similar theorem without the requirement of (5).
We also discuss the stability in the large of the systems

dx = ‘f d ___4, .
* ax+ 1, (y) , Etz £,(x) + cy

»

X =f(x)=f _ &N = bx+ecy .. .
. ]_(X) Z(Y)" R X+ Cy o

We consider again the system of the type (1) under assump-
tions as indicated by Ershov (Prikl, Mat, Meh: 17(1953), 61-72) who
has discussed various cases where the stability in the large holds.

Not agreeing fully with the proofs of these theorems we give our own
proofs. Finally we discuss the stability in the large of the systems

T dy =hy(x) x+ by
dtx }11(Y)X+ 2y : 2 =
dx — xh; (y) + ay gy: = bx + h,(X)Y o 6
dt. 1( ) ? dt 2( ) . ©

under_suitable assumptions. As a sample case we prove that if

‘ab > o, then-the trivial solution-of system (6)-is-asymptotically

stable in the large under conditions:

hl‘(Y) f'hé_,(x) < o, hiy(y) hy(x) - abF oforx#o0, y#o.
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ABSTRACT

The object of this dissertation is to discuss the
stability in the large of the trivial solution for systems of
two differential equations using qualitative methods (of course
in combination with the construction of Lyapunov' function).
The right hand sides of these systems do not contain the time t
exrlicitly.,

First of all we discuss (Sec. 2) the system of the

type
ax
E.E' = E(x,y)
L = f(e), & = ox - d (1)

These equations occur in automatic regulation. Using
qualitative methods we determine sufficienf conditions in order
that the trivial solution of system (1) be asymptotically stable
in the large. In this connection we ﬁote that a theorem proved
by Ershov [7] is wrong (Sec. 2). We then solve the problem of

Alzerman for the systems of two equations (Sec. 3), namely,for

the systems
dx -
s = f£(x) f ay
(2)
_X . o=
gt bx + cy
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%% = ax + f£(y)

(3)
&y
i bx + cy

In the case of system (2) we give a new prodf of a
theorem which agserts that if c° + ab % 0, then the trivial solution
is asymptotically stable in the large under the generalized
Hurwitz ' conditions. The. theorem was first proved by Erugin [81
For system (3) Malkin showed that the trivial solution is asymp-
totically stable in the large under the conditions a + ¢ < o,

(acy - bf(y)) y > o for y # o and

¥
j (acy = bf(y)) dy—>+= as |yl + o
o
We prove a similar theorem without the requirement of
35 (acy = bf(y)) dy— + = as |y|-9+ oo
o

We also discuss (Sec. &) the stability in the large of the

systems

L}
I

ax Sy
= ax + f1(y) Tl fZ(X) + cy

bx + cy

RN CORE NN
We consider (Sec. 5) again the system of the type (1)
but under assumptions as indicated by Ershov [6] who has dais-
cussed various cases where the asymptotic stability in the large
holds. Not agreeing fully with the proof's of these theorems we

give our own proofs. Finally we discuss (Sec. 6 and 7) the .
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stability in the large of the systems

& _ dr _
% - h,l(y)x-f-ay s FE T hz(x)x+by

E oy , L= exanEy @

under suitable assumptions. As a sample case we prove that if
ab > o,then the trivial solution of system (4) is asymptotically
stable in the large under conditions

| h1(y) +h2(x) <o , h1(y) hz(x) - ab > o,for x ¥ o,y % o
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INTRODUCTION

The investigation of integral curves in the large
using geometrical or qualitative methods for a system of two
differential equations.(i.e.,on a plane) was started by Poincare’,
and continued by many authors during the last eighty years. In
1950 N.P. Erugin ([8],[9]), formulated a general theorem of quali-
tative nature for the stability in the large. We have made fre-
quent use of this theorem in our work,

The main purpose of the thesis is to study the stability
in the large of systems of two differentiallequations. This prob-
lem is solved sometimes by constructing Lyapunov functions, some-
times on the basis of qualitative methods and sometimes by the
combination of qualitative methods and the construction of
-Lyapunov functions. It should be noted that in solving the prob-
lem of stability by these methods we do not have to find either
particular or general solutions of the differential equation.

In Section 1, we review the concepts of stability in
the sense of Lyapunov and asymptotic stabilities in the small
and in the large and give criteria for stability in the large
based on the construction of Lyapunov functions and on qualitative
methods. Towards the end of the section we construct a Lyapunov
function for the equation of the second order:

a’x

3 +o(E) g(x) +f@) &) - o



and give sufficient conditions which ensure the stability in the
large of the trivial solution of the above equation.,
In Section 2, we discuss the stability in the large of

the following system of differential equations

dx

&y
dt

f(s) , where & = cx - dy,

using qpalitativé methods in combination with the construction
of Lyapunov function and obtain certain sufficient conditions
which guarantee the stability in the large.

In Section 3, we discuss the famous.problem of Aizerman
for the systems of two equations,

In Section 4, a sort of generalization of problem of
AYzerman is discussed.

In Section 5, we discuss again the system of equations
of Section 2 but under different assumptions and establish the
stability in the large using qualitative methods only.

In Sections 6 and 7, we discuss the stability in the

large of

%% = hz(x) X + ay
and

-g—f: = xh1(y).+ay_

bx + hz(x) y

25



mostly by qualitative methods. It may be noted that Gu,éao-hao
f16] has considered a similar problem. He has discussed the

stability of

E - ) +ely)
%% = ax + f(y)

by constructing a Lyapunov function.



1. Some Basic Theorems On Stability. Let us consider a system

of diff'erential equations

dTl = Xi (x1’ X2, ---,Xn’t) (1'1)

of the perturbed motion. It is assumed that

Xi(o, O, seey t) = 0 (i = 1, ...,n)

and the right hand sides Xi of (l.l) are continuqus functions with
respect to all their arguments and satisfy the condition of unique-
ness of solutions of the system (1.1) in tke region

- o L X e - , t » o (1.2)
If we denote the totalities (x1, Xpy eees xh) and (X, , oo, Xh) by
x and X(x, t) respectively, each being (n x 1)matrix, then the sys-
tem (1.1) is written in the form ,

x = X(x,t) o (1.3)

Since it is assumed that X(o,t) = o, equation (1.3) admits the
trivial solution x(t) z 0. The motion corresponding to this
solution is called unperturbed motion and motions corresponding
to all other solutions are known as perturbed motions.

Definition 1. The trivial solution x(t) = o is called stable in

the sense of Lyapunov if, given a small ¢ » o, there exists a

3 (€ ,t ) such that, for all perturbed motions x(t) for which
\x(to)‘ ¢ % holds, the inequality |x(t)| ¢ € is satisfied for
t 2 to > o,

Pefinition 2. If the trivial solution is stable in the above

sense and every perturbed motion sufficiently close to it is such



that %Tﬂ‘x(’c)' = 0, then we say that the trivial solution

x(t) = o is asymptotically stable in the small or in the sense

of Lyapunov.

Definition 3. If however ‘x(t)l—» 0 as t —» o0 , no matter what

the point (xo, to) may be, then the unperturbed motion is said

to be asymptotically stable in the large.

Let us discuss in more aetail the implications of the
above definitions. By saying that the trivial solution is stable
in the sense of Lyapunov, we understand that any perturbed motion
started near x = 0 pdssesses two properties (i) it is defined
for all t » t_  » o and (ii) satisfies the inequality lx(t)[ <€
for the same values of t as in (i). The first property is not ex-
plicitly st_ateci in the definition though it is always understood.
Erugin [11] showed that the boundedness of solutions implies the
existence of solutions for all t = to » o when the right hand
sides of (1.1) are defined and continuous in the region (1.2).

. Examples cém be given where the solutions are bounded even if
they aré not defined for all t » to % 0..This can. Hai:pen, f‘or.
example, in the case where the right hand sides of differential
equations (1.]) are defined for all x and t but are not bounded
for all t > o (Erugin 112]).

We now turn to the definition of asymptotic stability
according to Lyapunov. This concept includes in itself  two pro-
perties of the solutions of system (1.1). One is that of stability

in the sense of Lyapunov and the other is %i":lx(tﬂ = o.



There are cases where the solutions of the system (1.1) possess
the second property but the trivial solution may not be stable

in the sense of Lyapunov. One such class of a system of diff'eren-
tial equations has been given by N.N. Krasovskil [18].

Other types of stabilities, e.g. uniform stability,
unif'orm asymptotic stability are also found in the literature.
These types of stabilities have been considered by J.L. Massera
(23], I.c. Malkin [22], N.N. Krasovskii [20], and others.

For solving the prdblemsbrelating to the stability of
the trivial solution the methods are divided into two groups.

In the first group we include all the methods in which either
particular or general solutions of the equations of the perturbed
motion are determined. In the second group the problem of
stability is made to depend on a function V(x,t) satisfying cer-
tain properties. As the above classification was done by Lyapunov
we call the two methods the Lyapunovfirst and second methods.

‘Let V(x,t) denote any scalar function of x,t, contin-
uous and having continuous partial derivatives of the first order
in a domain |x| g §, t » o, where V(o,t) = o.

Definition 4. The function V(x,t) is called semi definite in a

domain if it assumes values of the same sign in that domain
(the value zero is also allowed).

Definition 5. A function W(x) independent of t is said to be

positive definite in a domain if W(x) > o for all x % o and

W(d) = o,



Definition 6. We shall say that V(x,t) is positive definite in

a domain, if there exists a positive definite continuous func-
tion W(x) such that V(x,t) » W(x) in the domain of definition.

Definition 7. We shall say that V admits of an infinitely small

upper bound if given ¢ » o0, there exists a § > o such that
lV(x,t) l ¢ € for t » o whenever |x| ¢ §.

Definition 8, If for every M > o, there exists a number N > o

such that for |x| > N, t » o follows ‘V(x,t)\ > M, then

V(x,t) is said to be infinitely large.

Definition 9. A definite function V(x,t), the total derivative

of which with respect to time in view of the perturbed equations
is either-a semi definite function of a sign opposite to that of
V(x,t) or is identically equal to zero, is called a Lyapunov
function.

Lyapunov proved the following classical result on
asymptotic stability.

Theorem 1.,1. If for the differential equations of perturbed

motions there exists a Lyapunov function, possessing a definite

derivative, and admitting of an infinitely small upper bound, then

the unperturbed motion is asymptotically stable.

It may be noted that this theorem is not reversible. A
simple example to this effect has been given by J.L. Massera [23].

The following theorem an asymptotic stability in the
large can be proved in the same way as is proved a theorem on

asymptotic stability in the sense of Lyapunov by J.L. Massera [23].



Theorem 1,2. If there exists an infinitely large positive defi-

nite function V(x,t) which possesses an infinitely small upper

bound and which is such that its.total time derivative is nega~

tive definite, then the solution x = 0 is asymptotically stable

in the large.

The inversion of this theorem has not been proved so
far in its quite generality. Only in some particular cases this
has been done,

1.2, In this Section we consider the following system of
differential eq;atiqns

i ' . '
rrali ‘Xi(x , ...,xn) (i =1,...,n) (1.2.1)
where the right hand sides are continuously differentiable functions
of the variables XyseeesX in the region - <0 ¢ X, & 4,
i=1, 2,...,n. Furthermore

Xi(o,o, cew0) = o T (i=1,2,...,n).

The theorem corresponding to Thedrem 1.1 is the following

Theorem 1,2.1. If there exists for the system<£l.2.1),aApositive

definite function V(xq,...%) for which &L is negative definite,

then the solution x = 0 is asymptotically stable in the sense of

0

Lyapunov,

This theorem is reversible and we have

Theorem 1.2.2. If the trivial solution of system (1.2.1) is asymp-

totically stable according to Lyapunov, then a positive definite

V-function exists such that $¥ is negative definite.




The above two theorems show that the V-functions charac-
terize the asymptotic stability of the zero solution in the sense
of Lyapunov.

We give a simple example to show how Theorem 1.2.1 is
applied to the problems concerning the asymptotic stability in

the small, Consider the system

ax 3

& = - |
(1.202)

%% = -x-y3

the characteristic roots of the system of first approximation are

ii,i.e.,the real parts of the roots are zeros. Hence Lyapunovsfirst

method cannot be applied. let us take the following as V-function
V(x,y) = +3

Clearly, this function is positive definite. Its time derivative

by virtue of (1.2.2) is given by

d Lk
% = 2(x+ j%

which is obviously negative definite. Hence the trivial solution
x = o of system (1.2.2) is asymptotically stable in the small,
Note here that we did not have to find either general or particu-
lar solutions of the system in order to decide the stability prob-
lem,

We now show by an example that the V-functions which
guarantee the asymptotic stability in the small are not good
- enough for the establishment of the stability in the large of

the trivial solution. Consider the system of two equations
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Eoy-ex , E=-ex (1.2.3)
where # (o) = o, =x ¢(x) > o for x % o,

Following Malkin [21] the V-function for this system can be taken
X
as V(x,y) = %yz + th(x) dx

o
Its total time derivative in view of (1.2.3) is given by

2
&= (e(0)

Clearly, V(x,y) is positive definite and %% < o for x ¥ o and -
% = o for x = o, It can be shown that in this case asymptotic

stability in the small holds even if %V is not negative definite.

X

Now if th(x) dx <>+  as |x{— + °° , then it is possible
o

(Pliss [25]) that the stebility in the large may not hold,i.e., we

can show that there exist trajectories .going to infinity for
t— 4+ o0

| The above example shows that it becomes necessary to put
an exti'a condition on the V-functions in order to realize asymp-
totic stability in the large. The V-function should be such that
_ V(x1 s¥Xpy os W ,xn) £C, C > o, defines a bounded region contain-~
ing the origin for all C. Because then we can be sure of the solu-
tions being bounded and defined for all t =2 to » 0, no matter
what the initial point may be. Ouxi purpose is served if we ime
pose on the V-function an additional requirement of being infinite-
ly large, since it is known (Erugin [114_]) that V(x) possessing

the property V(x) » o for x * o and V(o) = o does not define the
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region V(x) € C, C > o which is always bounded.
The following theorems on stability in the large are
due to E.A. Barbashin and N.N. Krasovskii [2].

Theorem 1.2.3, If there exists an infinitely large‘ppsitive def'-

inite function V(x), the total time derivative-%% of which by

virtue of the perturbed equations is negative definite, then the

trivial solution of (1.2.1) is asymptotically stable for arbi-

trary initial disturbances.

Theorem 1.2.Lk. If the trivial solution x(t) = o is asymptotically

stable in the larpge, then there exists a continuously differen~

tiable infinitely large positive definite function V(x)vhaving

negative definite derivative with respect to time provided that

all solutions can be continued to the interval - =0 & t & o.

It was pointed out b& Erugin [10), inverting a theorem
of Wintner [30], that not évery system of type (1.2.1) possesses
the property that all its solutions be continuable on the whole
interval —e0 < t & + 0 . It has been shown ({4], [31])
that the requirement of continuation of solutions on the negative
t-axis in Theorem 1.2.4 is not essential.

An immediate generalization of Theorem 1.2.3 is the
following .

Theorem 1,2.,5. Let there exist an infinitely large positive def-

inite function V(x) and a set M such that

L ¢ o outside Y ¢ o on M
at e
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Let the set M possess the property that an arbitrary intersection

of the sets V'= C (¢ # 0) and M does not contain the positive

half trajectory of the system (1.2.1) then the trivial solution

x = o of system (1.2.1) is asymptotically stable for arbitrary

initial disturbances,

As an example of Theorem 1.2.5 we consider the differen-

tial equation
2
d'x -
i + ¢(§§) g(x) + £(x) (a..dzcc) =o. (1.2.4)

This can be thrown into the form

=
%‘% = ~o(y) glx) - £(x) ¥(y) (1.2.5)

We assume that
x £f(x) > o for x % o, f(o) = 0o; g(x) > o,
(1.2.6)
v (y) > oand y ¢ (y) > o for y ¥ o,9(0) = o
Furthermore,it is assumed that the right hand sides of (1.2.5)
satisfy the conditions guaranteeing the existence and uniqueness
of solutions of (1.2.5).

We construct the following Lyapunov function for the

system (1.2.5)

V(x,y) = f f(x) ax + ? :3%&) dy

Clearly,V(x,y) is positive definite. Let us compute its total

time derivative in view of equations (1.2.5).
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U )y ey [ - ) e - cv)]
-y‘i}%% g(x) ¢o fory#*o

=0 fory =o

It is easy to see that y = o does not contain a posi-
tive half trajectory of the system (1.2.5) except the origin. If

we now assume that

X y
J' f(x) 4x — = for jx| = e ; j;{;) dy —for |Y|— e
(o) o) : (102‘7)

then V(x,y) is infinitely large. Thus we prove the following

Theorem 1.2.6. If the conditions (1.2.6) and (1.2.7) are satis-

fied then the trivial solution of (1.2.L) is asymptotically stable

in the large.

It may be remarked_here that the construction of suit-
able Lyapunov functions is possible in a very small number of ex-~
amples (see (3], [5], (29}, [24], [27], ena (29)).

In 1950 Erugin [8] proved the following theorem for the
systém of two equations,i.e., for

ax .

'a? = P(x,y)
(1.2.8)
& - Q)

Theorem 1,2.7. (Erugin) We assume that

(i) the point (0,0) is the only point of equilibrium,

(ii) the unperturbed motion X = 0 = y is asymptotically stable

and consequently any motion started in a certain region (€)




X+ y2l < € (1.2.9)

possessethe property x(t) — o, y(t)— o

as t = o (1.2.10)

(iii) a straight line L(o, s ) going to infinity from the point

(0,0) is intersected by the motions in one direction

only for t —soe,

(iv) the motions having bounded polar angles are bounded;

(v) there are no periodic motions;

then all the motions possess the property,(1.2.10).

The above theorem has been generalized to the case of -
a system of n equations by V.A. Pliss [26].

2. Stability in the large of the system-%% = F(x,y), %% = (),

In this section we shall consider the system of equations

%’% = F‘(X:y)
(2.1)
L = #(e), o= cx - &

where c and d are constants, ¢ ¥ o ; the functions F(x,y), ()
are continuous and F(o0,0) = o, £{0) = o. Besides, the fulfilment
of conditions of uniqueness of the solution x = o = y is assumed.

The above system was considered in the warks of Ershov
(16}, (7)) and Krasovskii [19). Following Krasovskil we transform
the system (2.1) to the following form (2.2) by the change of de-
pendent variables expressed by the relations

¢ = cx - d&

y =¥



15

The above transformation is non-singular because ¢ is

not assumed equal to zero. We then have

%i': = ¢ ("’,Y)
(2.2)
%% = f(d")
where ¢ (&,y) = ¢ F(—s-%i'Z , y) - af(e) .

Krasovskil constructed the following Lyapunov' - func-

tion for the system (2.2)

V(e ,y) = jcf(') ae - §¢(o,y) dy
(e} (o]

and using Theorem 1.2.5 proved the following theorem.

Theorem 2,1, If the conditions

vf(é) > o for & % o (2.3)

ye#(o,y) ¢ o fory % o (2.4)

c‘[¢(c',y)- #(o,y)] < o for € % o (2.5)

and jﬂf(‘-)d“‘z * f‘:o:y)dyl'= °°: (2.6)
o] o ’

are satisfied then the trivial solution x = 0 = y of system (2.1)

is asymptofically stable in the large.

It may be remarked that conditions (2.3) and (2.4) can
be replaced by the following conditions:
e r(¢) < o for ¢ % o (235
vye(o,y) > o for y % o (2.4)
Ershov [7] claimed that Theorem 2.1 holds without the

requirement of conditions (2.6). In fact,he stated the following
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theorem:

' Theorem 2.2. If conditions (2.3), (2.4) and (2.5) are satisfied

for the system (2.1), then the trivial solution of system (2.1)

is asymptotically stable in the larpge.

The following example shows that conditions (2.6) can-
not be removed in general,

Example. Consider the system of equations

%% = -y - f(x)
’ (2.7)
g{g = f£(x)

vhere £(x) is defined as below

e-2x
£(x) = T =X for x » 1
‘= érz X for x ¢ 1
1 + e'1
Obviously, xf(x) > o for x # o and f(o) = o
2
ye(o,y) = y(-y -f(0)) =-y"¢ ofory %o
#[o(e,3) ~#(0,3)] = x(=y -£(x) + y) = —x £(x) ¢ o
for x % o

Moreover, it is not difficult to show that f(x) is continuous and
satisfies the Lipéchitz‘ condition. Thus all the conditions of
Theorem 2.2 are satisfied. We show that the triviallsolution of
this system is asymptotically stable in the sense of Lyapunov but
not in the large. The stability in the small followé from the fol-

lowing Lyapunov function

X

2

V(x,y) = f £(x) ax + 3y°.
(o]
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We now show that there exist trajectories going to infinity for

t—> + oo,

It is easy to verify that y = fe—x is a particular inte-
gral of the system on the interval 1 € X < % passing through

the point (1, -e_1) at t = o. We show that along the curve y = ~e ,

%%_ > o,i.e., x increases with the increase of time.

dX ( ) -X §2x éx
7 ’- ~y =f(x) = +e ik g = = > o forx »1
We integrate 3% = 7% along the trajectory y = -e™* and have
dat  Tye-x
x ot p'e t
J_1_+_e_xdx=Jdt or ex+x’= tl
e—X
1 [ o) 1 [o]

or x + e - e-1=t
From the last equation it follows that as t — + e
X—=> + o , i.,e. the positive half trajectory y = -e™X of the

system (2.7) tends to infinity as t —» + e , Hence it follows

that the trivial solution is not asymptotically stable in the

large.
2.2, Let us consider the system
dx _
dt - F(x,y)
(2.2.1)
Ay f(e), e =cx ~dy, ¢ ¥ o
at _
under the conditions:
F(o,0) = 0, f(o) = o (2.2.2)
®f(e¢) o0 for ® % o (2.2.3)

¢ [¢(€',y) - ¢(o,y)] ¢ ofor e %o (2.2.4)
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y#(o,y) <o fory # o (2.2.5)
where & (e,y) =c F(;"_Z.EX, y) -arf(e) (2.2.6)

Besides, the fulfilment of conditions of uniqueness of
the solution x = o = y is assumed. As before we reduce the .system

(2.2.1) to the following system

de
’a‘;‘ = ¢ ("’y)

| (2.2.7)
%% = f(e)

We consider the positions of the curves represented by
the right-hand sides of (2.2.7) on the (e,y) plane,i.e., of ¢ (e,y)
= 0 and £(#) = o. Since # £(e) > o for ¢ + o and f(o) = o,
f(e&) = o only when & = o,i.e., f(e#) = o represents the y-axis,
We now turn to the curve represented by < I(c‘,y) = 0. We observe
that ¢ (0,0) = o and on the ¢ -axis 4 (¢,y) > ofor & < o,
#(¢,y) ¢ o for ¢ » o ; on the y-axis ¢ (e,y) > o fory < o,
¢(oﬁ,y) < o fory > o. From these facts it follows that 4 (c',y)(oa
¢ 20,y 2> oand « (e,y) > o for ¢ <0,y < o. In deriving
these conclusions we have made use of the conditions (2.2.4) and
(2.2.5), Thus it follows that & (r,y) changes sign in the second
and fourth quadrants and hence the curve ¢ (c‘,y) = o lies in the

second and fourth quadrants. It is easy to see that

%f- ¢ (e,y) > o for the points lying to the left

of the curve @ (¢,y) = 0

¢ (e,y) ¢ o . for the points lying to ‘the right

of the curve # (e,y) = o
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% = f(e) > o for the points lying to the right of
» ys-,axis
%% = f(#) ¢« o  for the points lying to the left of
y-axis
The curve 4 (e,y) = o and the co-ordinate axe:s decom-

pose the plane (r,y) into six regions. y(t) is'maximum' on the y-
axis for y » o0 and minimum for y < o ; ce(t) is maximum on the
curve ¢ (¢,y) = o for ¢ » o and minimum for ¢ < o. The direc~
tion of motion is indicated in fig.l. We introduce polar co-ordinates
¢ =rcose ,y=rsind , then

r = ¢ cos® +y sinb
and ' r e ='—6's:'me\+jcos

The signs of r and @ in different regj.ons are given as

below:
(1,4) r maybe %, o, 8 >o (2,5) r may be % o0, 8 >- o

(3,6) v ¢ o, ® may be o0

The ILyapunov . function for the system (2.27)is

£ Y,
V(e,y) =Jf(°‘) de - j¢(o,y) dy
(o] (o]

Its total time derivative in view of 'e.qua’cioné (2.2.7) is
vV = f(e) [Q(o’,y) - #(o,y) ]( o for ® % o
| | = 0o for = o
Obviously, V(e,y) is po‘sitive definite and V is of negative sign.

Now %f- = ¢(o,y) for ¢ = 0 and it is different from zero unless y = o,
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This means that ¢ = o does not contain any other positive half

trajectory of the system (2.2;7) than the origin. Whence follows

the asymptotic stability in the sense of Lyapunov of the trivial

- solution of system (2.2.7). Thus we have shown

(i) the point (0,0) is the only point of equilibrium,

(ii) the unperturbed motion is asymptotically stable according

to Lyapunov,

" (1ii) there are no periodic motions, since for (2.2.7) is con-

| structed a Lyapunov function.

Since the ¢ positive half axis-is intersected by the motions in
one direction only, it cén be taken for the straight line L(o,00)

appearing in Theorem 1.2.7. Thus all the conditions of Theorem

1.2.7 are satisfied except the fourth,i.e., the motions having

bounded pélar angles are bounded. We now indicate what additional

conditions are to be imposed in order to realize the fourth con-

dition of Theorem 1.2.7.

\ Y= CI 9
k-—
3
\ X
o’ N [} i g
&
4. 5
-7
/
Y
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Let a motion M(t) start in a region,.say (6). Any motion
M(t) started in the region (6) or entering this region either tends
to the origin or goes out of this region and enters the region (1).
This follows from the fact that r < o in this region. After en-
tering the region (1) the motion M(t) either crosses the y-axis
or tends to . -infinity along the y-axis, but it cannot go to the
origin since ® > o. We are thus led to impose the following

Condition A, We assume that & (o,y) satisfies such conditions called

A that the motion entering or starting in the regions (1) and (4)
leaves these regions with the increase of time,

This condition guarantees that there are no motions
with bounded polar angles in the regions (1) and (4). We impose
another condition called B.

Condition B. We assume that & (@, ¢) = o has a solution for all

’
Ce.

If Condition A is satisfied then the motion M(t) enters
the region (2). We now show that the motion M(t) leaves the region
(2) with the increase of time if Condition B is satisfied., In fact
if & (#,c) = o has s solution for all ¢,i.e.,if y = c intersects
the curve ¢ (&,y) = o, the motion after entering the region (2)
can neither cross the line y = czsince.%% < o in this region nor
it can enter the origin because 8 > o0 in region (2). Therefore
the motion must intersect the curve @ (e,y) = o. Similar reason-
ing can be carried out in the regions (3), (4) and (5). The above

analysis shows that there are no motions with bounded polar angles

7
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in the regions (1), (2), (4) and (5) and that the motions with
bounded polar angles can occur only in the regions (3) and (6) and
as proved above they are bounaed. Thus any motion with bounded
polar angle is bounded.

The Condition B was imposed with a view to ensure that
in the regions (2) and (5) there are no motions with bounded
polar angles. This éan also be achieved if we assume that in these
regions 8 > & » o. We call this condition as Condition C.

We now collect these results in the following:

Theorem 2.2.1, If Conditions (2.2,2)=——(2.2.5) are satisfied and

if either Conditions A and B or Conditions A and C are satisfied,

then the trivial solution of (2.2.l)_is agsymptotically stable in

the large.
It may be remarked that Conditions B and C are indepen=-

dent,i.e., if Condition B holds then Condition C may or may not
hold or vice versa. In the linear case,i.e., when the right hand
sides of system (2.2.1) are linear, however, both hold.

" Let us consider a few examples now,

Example 1, Consider the system

%—3;- =.-y+§x-1

(2.2.8)
&y .
at x

Obviously, this system satisfies the conditions (2.2,2)—
(2.2.5). We verify that in this case Condition A is satisfied.

Let us for the sake of definiteness assume that the motion M(t)
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is in the region (1). We assume that the Condition A is not satis-

Y
fied. Then the motion M(t) goes to

&
infinity as t = < and during this \\G\ 2 1

V4

y(t) — = . From the first equation

of (2.2.8) follows that %’fc— becomes in-

finitely large but negative which .~
means that M(t) cannot remain in the

first quadrant and hence our assumption

J

is not true., It is not difficult to FiG.2

verify that the straight line y = ¢ does not intersect the curve
-y +8%-1 =o0 for all ¢ (see fig 2)

Hence Condition B is not satisfied. However Condition C holds. In

fact T @ =-xsin® + y cos8 = -sin@ (-y+&¥-1) + x cose
and 5 = - 8in® (_y 4 5%4) 4+ cos?e >¢ 7 o
I‘ .

in the regions (2) and (5). This establishes the asymptotic sta-
bility in the large of the trivial solution of (2.2.8).

Example 2, Consider the equation

2

d dy _

w2 * +ED el v £ =0 (2.2.9)
This equation can be thrown into the system

ax _  _ _ .

T = -*() e@ly) - £(y)

& .

at - *

by writing x for dy
dt

We assume that the following conditions are fulfilled:
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y f(y)» o, (o) = 0 and

either h, (x) >0 for x* o and g(y) o for all y
or . h1(x)< o for x ¥ o and g(y) <o for all y
where h, (x) = 2(x) for x % o

- .

The Lyapunov function for this system is

V(x,y) = jf xdx +}rf(y)dy

3

Then v

x(- o (x) g(y) - £(y)) + £(y)x

- x ¢(X) g(y)

It is not difficult to see that in this case Condition
C of Theorem 2.2.1 is satisfied. Thus if Condition A is also sat-
isfied then the trivial solution of (2.2.9) is asymptotically
stable in the large. |

Example 3, Consider the system

& - () + £, (v) | (2.2.10)
- 56

For the system (2.2.10) the V function is
X 'y
VGy) = 5(x) ax - [£,(3) ay
0 o

£x) ¢ (x)

We subject (2.2.10) to the following conditions:

Then V(x,y)

< (0) = o, h3(x) <o for x ¥ o , where hs(x) =#(ror o o
_ X
(2.2.11)
£1(0) = 0,xfy (x) o for x # 0 , £5(0) = o and yfz(y) <ofor y#*o
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Phe trivial solution of (2,2,10) is thus asymptotically stable in
the large if in addition to (2.2.11) the Conditions A and B or 4
and C are satisfied.

Example 4, Consider the equation of the second order

2
-g—& +  fleLy) %}c’-* g(y) = o (2.2.12)

We write it in the formoefasystem of equations

a
T = -ty x - 8(y)
dy

at %

We assume that
glo) =0, yaly) »o fory # o and

f(x,y) > o for x* o

It is easy to verify that asymptotic stability in the

large holds if Condition A is satisfied,

3. The Problem of AYzerman. In 1949 Aizerman [l] proposed the
following problem,

Let there be given a system of linear differentiél equa~

tions
a i : o
X axs
i T Y . A X
Tt D ST MIXy g T ST % S

(3.1)
(i = 2,3,«00,n)

Suppose that for the given constants 85 (i = 1,3pr«,n;j=1,w.o,n)
and for an arbitrary value of 'a' from the interval k ¢ a < B

all the roots of the characteristic equation of (3.1) have negative
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reel parts. Let ax_be replaced by f(xk) in (3.1). We then have

x4 n
T S P oAy o+ )
(3.2)
ax; n
o Eiwy Gezen

It is required to find out whether the trivial solution

X =0 of system (3.2) is asymptotically stable

M
n
el

N
It
.
1}

in the large or not, fog?arbitrary choice offgontinuous function
f(xk), which reduces to zero for x, ; o and which satisfies the
inequality

L xi < X f(xk) < B xi for x, * o (3.3)
The answer to the above problem is in the negative (FPliss [25]).
The interest in the problem is revived if we slightly change the
above problem and ask ourselves the following questions. For what
values of aLi’j the answer to the above problem ig in the affirma-
tive and for what values in the negative, If the trivial solution
is not asymptotically stable in the large under the generalized
Hurwitz'  conditions (i.e.,the condition (3.3) and f(o) = o),'What
additional assumptions should be made on f(xk) so0 that the trivial
solution becomes asymptotically stable in the large. We shall dis=-
cuss here the case when n = 2, The case n = 3, k = 2‘has been com~-
rletely solved by Fliss [28]. First of all we take n = 2 = k, i.e.,

we consider the system

dx  _ '
3 S ax + fy)

(3.4)
& - bx + ¢y

dt
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under the assumptions that

f(o) =o,a+c ¢ o, ac=-nbh(y)> o,y %0

(3.5)

where ‘, hiy) = %ﬁ for y+o
Besides, the uniqueness of the trivial éolution is assumed. System
(3.4) was considered by N,P. Erugin [9} and I.G. Malkin[Zl] .

Melkin [21] showed that tle trivial solution of system
(3.4) is asymptoticslly stable in the large if for sufficiently
 large values of |¥| the inequality ac - b h(y) > € holds. This

condition can be relasxed to the condition that

J
J(ac-bh(y)y dy — +o° as [yl—2 + e
o (3.6)

We show that asymptotic stability in the large of the
trivial solution of (3.4) holds without the requirement of con-
dition (3.6). For b = o, from (3.5) follows that a <0, c< o
and an immediate integration of the system (3.L4) shows that the
equilibrium is asymptotically stable for arbitrary initial distur-
bances and f’or?érbitréxy choice of the function f£(y).

Let b % o, We introduce new variables defined by

4

b'd = bx = ay

/

y = y

4
then gx____bg_;_(__ady_ _ /SN ‘
T G~ &L = blexf(y)) - albxscy) = -y(ac-bh(y))

'
gzz.@z: _ ‘ 13 I— ’ ’
3t e bx+cy=x+ay+cy=x+(a+c)y
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Thus the system (3.4) reduces to the following :

dx

el -y(ac = b h(y)) (3.7)
g% = x+(a+c)y

Ve represent the curves —y(ac - bh(y)) =0 andvx+(a+c) y=0
obtained by putting the right hand sides of (3.7) equal to zero on

the (x,y) rlane, The first of these represerts the straight line

¥y = o and the second the straight line y = = = f S - It is easy to
see that

& = vlac - bh(y)) > o below the x-axis

ax .

e ~-y(ac - bh(y)) < o above the x-axis

g% = x+(a+c)y 2o Dbelow the>straig'ht line

x+(a+c)y=o0
%% = x4+ (a+c)y { o above the straight line

$c+(a+c)y=o

The direction of motion is indicated in fig, 3., The straight line

x + (a + ¢) y = o and the co~ordinate ’ 2 a,/O
axes divide the plan§ (x,y) into six a A o ,
regions. We introduce polar co-ordinates : 4 ‘ ==
X=rcose¢ ,y=rsined, x,{‘ o },T =
Then ¥ = X cos ¢ + y sin & and 4
r¢ = -x sin¢ + y cos¢ . It is not dif- 5 //4 s
ficult to verify that in different regioris ,
the signs of r and 4> are given as below J

FlG.3

(1,4) r may be 2, 0, 4 > 0
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(2,5) v ¢ o, # maybe o (3,6) rmeybe % o0, & > o.
The motion started in the region (6) must cross the

axis of x. This follows from the inequality

g%- ="x +(a+c)y»na>» o

in the region (6). After entering the region (1) it cannot remain
there and must cross the straight line x + (a + ¢) y = o with the
increase of time since x = £ intersects the straight line

x+ (a+c)y=o for all £, The Lyapunov‘ : function for the sys-

tem (3.7) is easily seen to be

M
o= x4 zj (ac-bh(y)) v dy
o .

Repeating the same argument as in Theorem 2.2.1, we

arrive at the following

Theorem 3.1. The trivial solution of system (3.L) is asymptotically

stable in the large under Conditions (3.5).

It may be noted that we may or may not have é >€>0
in the regions (1) and (4). Before studying the case n = 2, k = 1

we discuss the system

& -y - P
(3.8)
%% = = g(x)

This system is a particular case of the system (2.2.1).
Since it is quite an important system, we discuss it independently.
The conditions to which (3.8) is subjected are

xF(x) > 0o, xg{x)>0 forx%*o

(3.9)
F(o) = o = g(o)
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The V-function in thisv case is

X
2V = y° + 2 fg(x) ax (3.10)
(@]

and -g¥ = y(-g(x))+ g(x)(y ~F(x)) = ~g(x) F(x) ¢ o for x % o
=o for x = o
The straight line x = o does not containapositive half

trajectory of the system (3.8) except the origin. Ia fact %EX, =y

for x = o, Hence it follows that the trivial solution is asymptoti-
cally stable in the small, Since there exists a Lyapunov function V
for the system, there cannot be any limit cycle. Also we note that
the origin is the only point of equilibrium. It is not difficult to

see in virtue of the Conditions (3.9) that

%15 = y - F(x) 20 to the left of the curve y = F(x)
L - y-TF(x) <o to the right of the curve y = F(x)
-g% = -g(x) Y o +to the left of the y-axis
%% = -g(x) <o to the right of the y-axis

The curve y = P(x) and the co-ordinate axes divide the plane (x,y)
into six regions. The direction of motion is represented in fig.k.
We introduce polar co-ordinates x = r cos¢ , y = r sineé ., Then
T =X cCosSe¢ + 3 éinqt
re= -x sing+ y cos &
The signs of r and ¢ in the regions are given as below :
(1,4) r may be % ©, & ¢o (2,5) r ¢ o, @ maybe g, ©

(3,6) rmaybe % o, & < o.
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Let us follow the motion

M(t) afterit intersects the nega- ’ P
tive half y-axis. Let us assume 1 95?

that y = A intersects the curve s T

y = F(x) for all A,i.e.,F(x) = & B ,2

has a solution for all A, then =/ g71 °© # =
since in the region (4) & < o 4 3

and y is increasing the motion M(t) M X ‘T[_,

cannot remain in the bounded region ¥ y’

olM, It definitely cannot cross - FiG.4

IM and oL. Therefore it must cross the curve y = F(x) and enter
the region (5) In the region (5) it either enters the origin or
the region (6). This follows from the fact that ©r < o in this

region. Since _g_}tf = -F(x) +y > d > o in the region (6), the

motion must leave this region and enter the region (1). Similar
argumént holds for the regions (l), (2) and (3). This shows that
there are no motions with bounded polar angles in the regions (1),
(3), (&) and (6). The motions with bounded polar angles can only
occur in the regions (2) andV(5), and as proved above they are
bounded. Thus it follows that all motions with bounded polar angles
are bounded., For the straight line L(o,OO) can be taken the posi-
tive half y-axis. Thus all the conditions of Theorem 1.2.7 are
satisfied and we have the following theorem:

Theorem 3.2, If the Conditions (3.9) are satisfied and F(x) = A

has a solution for all A, then the trivial solution of (3.8) is
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asymptotically stable in the large.

We remark that by using Theorem 1,2,5 the stability in
the large holds if N
(&) ax—swss 121 —
This is required in Oorder to make the V function in (3.10) in-
finitely large.

The widely discussed equation

2
d -
EE?ZC. + f(x) % + g(x) = o (3.11)

can be dealt in the same way as the system (3.8), since (3.11) can

be transformed to

-g—}‘tE = y - F(X)
x
%‘é = - g(x) where F(x) = jf’(x) dx
: o

We shall now discuss the Alzerman problem for the case

n =2, k =1,i.e.,the system

ax
i f(x) + ay
(3.12)
S _
i bx + cy
under the conditions:
f(o) =0 ; ¢+ h(x)<o ; ¢ h(x)-ab >0
| | (3.13)
for x ¥ o
where h(x) = £(x), x*o
X

This system is discussed in the works of Erugin ( 18], [13])

and Malkin [ZJJ . Tt was proved by Erugin that if c®+ ab % o,then
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the trivial solution of (3.12) is asymptotically stable in the
large under conditioné (3.13). The proof by Erugin of this theorem
is quite lengthy, so we give here a short proof of the theorem., It
will become clear from our proof why the stability in the large
does not hold under conditions (3.13) in the case 4+ ab= o.
Erugin also showed that for the stability in the large in the case
02 + ab = o, it is sufficient that

lim | ¥
e {(c £(x) - abx) ax + c £(x) - abx;}= 4 o0

—_— (3.14)
lim X
X—2 = j (c £(x) - abx) dx-cf(x)+abx]=+-o

Krasovskii [171 showed that conditions (3.14) are necessary
as well as sufficient. The question of the region of stability in
the case where the stability in the large does not hold is discussed
by Pliss [25].

We assume that 02 + ab * o, Let a = o, then immediate
integration of the system yields the stability in the large of the
trivial solution x = o = y of system (3,12). Let now a # o. We in-

troduce new dependent variables

/

X = X
y’l = ay = CX
4
Then X - & = f£(¥)+y+cx
dt at
' rd N
&y = a dy . c g% = a(bx + cx) -C (f(x) + &y)

at = ° g

abx - c £(X)



The system (3.12) is reduced to the form

% = f(x)+cx+y
L = - x(c h(x) - ab)

Comparing it with system ( 3.‘8) we have
F(x) = ~ x(c + h(x)) ‘a.nd g(x) = x( ¢ h(x) - ab)
The curve y + cx + £(x) = o and the co-ordinate axes divide
the (x,y) plane into six regions. The direction of motion is repre-

sented in fig, 5. We consider the following cases.

Case 1 c¢ ¢ o. Consider the y by
—_— o
¥
L 4
straight line &
2 T 5,
y=-0+ab x (3.15) _ 1 xo
c (= 3 7 b
G=-SF2Bx
Ir 02 + ab > o, then the straight /’2/ 9 c
: zr oL /
line (3.15) lies in the first and x' 7 __ = Z x
third quadraents. Let us see how _ - 4 3
it is situated on the (x,y) plane L
with respect to the - y/
curve y + cx + £(x) = o (3.16) F1G. 5

1
Let y( ) and y(z) denote the ordinates of (3,16) and (3.15)

respectively, then
1 2
L) @)

-CX-f(X)-i-_Q_Z_-}_ah x
C

2
-c"x - cf(x) +(c:2+ ab) x = -x{c h(x) - ab) % o
c c

according as X .>» 0,
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i.e., the curve (3.16) lies above the straight line (3.15) in the

first quadrant and below in the third quadrant,. Obviously, the

2

straight lines y = A and y = - &% ab

x intersect, whence follows
thet ¥y = A and the curve y = - cx - £(x) intersect for all A. Hence
the trivial solution of (3.12) is asymptotically stable in the
large in this case according to Theorem 3.2,

Ir 02+ ‘ab <€ o,then the straight line y = -~ _0.2_2_4’. b
lies in the second and fourth quadrants and no such conclusion as
above can be drawn, However,we can prove that in this case
® < -€ < o in the regions (1) and (4) which ensures the stabil-
ity in the large. ‘.

.According to Conditions .(3.13)

c+h(x)<o, ch(x)-ab>o forx%o
i.e. h(x) <« -c, h(x) < %-
but since 02+ ab < o, the above inequalities are satisfied if we
take h(x) €< -¢. £(x) can then be written as
£(x) = - ex - L(x) where L(x) %2 0 according as
X % 0

Let us calculate & :

r ¢ = - sine(f(x) + cx +y) - cose (ch(x) - ab) x
= - sine (y - &(x)) - cos #[c(~cx - &(x)) - abx]
= - sind(y - £(x)) + cos ¢ [ (c°+ ab) x + ok(x)]
¢ = - ANt (y - L(x) 4 o0 (P o) x4 ()] <-eco

in the regions (1) and (4).
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Case 11 ¢ » o. In this case 02+ ab ¢ o,because from Conditions

(3.13)

-%’-(h(x)( -c

Let h(x) be taken as h(x) = - ¢ - &L(x)

Then a—:(-c-f.(x)( -c
v LG< o
- c2+ ab
co+ ab 5 £ (x) » 0
c
24 ab
or 0 € L(x) ¢« -~gc* ab
c

Let us consider the region (1). If & ¢ -€ ¢ o, then it means

that -}?i_—’nl“%[(::z-r ab) x + cx L(x)]: o, i.é‘, ijinax L(x) = oo,
whence it follows that the straight line y = A intersects the curve
¥y = - cx - £(x) for all A
In fact, =~ A =cx + £(x) = cx + (-cx - XL(X)): - xd(x)
therefore x £(x) = A

If x L(x) = A does not have a solution for all A, then

——

x‘_"gct(x) = finite = D

%w-[(c2+ ab)x + cx L(x)]),_i_i_:n_l“ [_(c2+ ab) X] + %%n—“(-c xi(x))

= Lim (y(c? . Iim
x-—no[ x(c™+ ab)] X_-N,(cx L(x)) ,

whence follows that ¢ < -€& < O.

Case 111 ¢ = o. The System (3.12) reduces to
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dx _

ol f(x) +y
& .

T abx

and the Conditions (3.13) reduce ‘to h(x) <o, ab < o.
For this system we take the following Lyapunov : func-
2
tion - K 2V = - abx + y'2

the derivative of wvhich is

av
at

= = ab x?h(x)
This V function satisfies all the conditions of Theorem 1.2.5., Com-
bining all these results we have the following theorem:

Theorem 3.3. If for the System (3.12) c2+ ab + o, then the trivial

solution is asymptotically stable in the large under Conditions

3.13).

In the case c2 + ab = 0, we remark that ¢ ¢ o and from
the proof of stability in the Case 1, we find that the straight

line y = - Eg_%_éh x coincides with the x=axis and hence we can

neither say that the straight line y = A intersects the curve
y + cx + £(x) = o for all A nor ¢ ¢-e<oin the regions (1) and

(&).
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L. A generalization of the problem of Alzerman, In this section

we discuss the system of differential equations given by

dx

ot (y)
4 (4.1)
E%- = fz(x) + cy

under the conditions:

a+ceo, ac - hy(y) hy(x) >0 for x # o, y # o,.f’1 (o) = 0 -

=fp(0) = o, (4.2)
where h1(y) and hz(x) are defined by f1(y) =y h1(y) and fz(x)=-xh2(x).
The above system was first discussed by Krasovskil [lé]who

obtained certain theorems regarding the stebility in the-iarge of the
trivial solution x = 0 = y of (h.l). We prove here the fdllowing
theorem:

Theorem 4.1, If either h1(y) > o for y # o and h2(x)‘> ofor x ¥ o

or h1(y) < ofory %o, hz(x) ¢ o for x # o, then the trivial solu-

tion of (4.1) is asymptotically stable in the large under Conditions

(4.2)

Proof. We assume h1(y) > o,y ¥ o0, and h2(x) > o, x ¥ o, From Con-
ditions (4.2) follows that a < o, ¢ ¢ o. We consider the curves

ax + f1(y) = o and f2(x) +cy =o (4.3)

Since h1(y)-> 0, ¥y ¥ 0o and a ¢ 0, the curve ax + f1(y) = o0 lies in

the first and third quadrants. The same is true for the curve
fz(x) + ¢y = o. We further note that the curve ax + f1(y) = o lies

above the curve fz(x) + ¢y = o in the first quadrant ard below in
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the third quadrant. In fact, if ¥y and Y5 denote the ordinates of

the curves in (L4.3) respectively, then

- - —ax x hp(x) ac-hq (y) ho(x)
Y1 =9 b, () c - c h,(y) ;

I

> 0 according as

X >< o]
It is easy to see that

ax
at

1}

ax + f, (y) »o0 to the left of the curve ax + f, (y) = o

ax
at

&y
at

L}

ax + f‘1 (y) & © to the right of the curve ax+f‘1 (y) = 0

f‘z(x) + cy €0 to the left of the curve cy + f‘z(x) =0

%}tv- = fz(x) +Cy >0 to the right of the curve cy+f2('x) =0

The function x(t) is maximum on the curve ax + £, (y) = o
for y > o and minimum for y < o; and the functions y(t) is maximum
on the curve f2(x) + cy = o for y » o and minimum for y < o. The
curves and. the direction of motion are shown in fig.6. As before we

introduce polar co-ordinates x = r cose¢, ¥y = r sin ¢ . Then /
<

I = X cos¢ + Y sine

ré= -x sin¢g + y cose 8

The signs of r and ¢ in different re- -

gions are (1,5) r maybe %0, & < 0
(2,6) r < 0, ¢ maybe P ©

(3,7) © maybe % Os & >0

(4,8) r <« 0, & maybe % o : FiG. 6

From Theorem 2.1 of Erugin's work [8] it follows that there
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is at least one integral curve going to the origin, the only point
of equilibrium, in each of the regions (4) and (8). Other motions

started in the regions. (4) or (8) either go to the origin or enter
the regions (3), (5) or (1), (8) (since r < o, ¢ maybe aaé in (4)
and (8)). Let us suppose that the motion enters the region (1), we
show that the motion leaves this region with the increase of time.

Let c, be the least upper bound of h2(x). ¢, is finite otherwise

ac - h, (y) h2(x) > o will not hold. We consider the straight line

CoX + ¢y = O. It is easy to verify that this straight line lies

above the curve fz(x) + ¢y = o and below the curve ax + f1(y) = 0.
in the first quadrant. In the third quadrant the positions are re-
versed. We consider the region bounded by y = {, the curve

ax + f1(y) = 0 and the positive half y-axis. The motion cannot in-

tersect the straight line y = Z,since.%% < 0. It cannot go to the

origin,since ¢ < o, Therefore it must intersect the curve
ax + f1(y) = o and enter the region (2) where it goes to thé ori-
gin with the increase of time. For region (3) we take the straight
line x =4é and similarly show that the motion crosses the curve
fz(x) + cy = o and enters. the région (2) where it goes to the
origin as t—+ o , Similar reasonings hold for the regions (5) and
(7) which completes the proof of Theorem 4,1.

~In the same way we can prove the following: theorem for

the system

£, (x) + £,(y)
(hok)

dax
dt
gy
at bx + cy



under the conditions:

h, (x) + c¢o, x % 0, ch, (x) - hz(y) b>0, x ¥ 0, y * 0, f, (o)=f2(o)=o’

f (x) £
where h1 (x) =g X * o, hz(Y) = _2y_(y_) s, Yy ¥o (4.5)

Theorem 4.2. If b hZSy) > o for y # o and the Conditions (4.5) are

satisfied, then the trivial solution of system (4.h) is asymptoti-

cally stable ih the large.




5. The stability in the large of the system-g% = F(x,y), %%-: £ ()

using qualitative methods.

In this section we consider the system (2.1). The assump-
tions under which we will be working will be diff'erent from those of
Section 2. B.A. Ershov({6] discussed this system and obtained cer-
tain theorems regarding the stability in the large of the trivial
‘solution. We here show that his results are correct but the proofs
are wrong.

Let us consider the system

ax
at

F(x,y)
, "~ (5.1)
%% f(e) , where & = c,x -~ 4,y

end ¢c,, d, are positive constants. We shall assume that F(x,y) is a
continuous function, having first order partial derivatives with

respect to x and y, for all values of x, y. Further we assume that

3y < o, F(o,0)=o0 (5.2)

We shall discuss three cases (i) %g <o ,(ii).;% = o0,

o

(iii) %_E > o.

The continuous function f(G), appearing in the right hand
side of the second equation of (S.l) is subjected to the following

conditions:

e fle) > o for ¢« % o (5.3)
flo) = o (5.4)
2f %o for all e (5.5)

°
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In the condition (5,5 :%% is not taken to be identically

zero.
The equations (5.1) can be written as

A G R - ISR

=0,¥y=0 X=0,y=0

il
3

(5.6)
2f X3
at °1( ar) * "dﬂ(——,, Yo+ ¥(xy)
X=0,§=0 X=0,y=0

e

where

+(x,y)

. AF DF
Py '(’oX) . '(ay) :
X=0,y=0 X=C,¥y=0
- o fef f
fe) - eie) x, + w(3E) v
x=0=y X=0=y
o (3%

c1(_b£) | - ¢, (a 2f

30 feo ,y=0 3o

¥ (x,y)

We write for simplicity

| (33

n
o’

X=0 :y

X=0 :y

)¢
X:O:y

The system (5.6) can then be written in the form

dx
Y - Nax - by +W(x,y)

ay (5.7)
dt

cx - dy + ()
The three cases thus correspond to the values 1, o, =1 of N in
(5.7) respectively;

Case 1 .%%g & 0. From equations (5.7) we have for N = 1

- ax - by + X(X,Y)

n

ax
dt

(5.8)

d
-a% cx - dy + ¥ (x,y)



The equations of the first approximation are

dx

at = T - by
; (5.9)
%% = ¢cx = dy
The chéracteristic equation of (5.9) is
A+ a - b = 0
c a+ d
or ;\2+(a+d),\+ad+bc=o (5.10) -

The roots of this equation have negative real parts,since

a+d>o0 and ad + bc>o
Since the roots of (5.10) have negative real parts, it follows that
the trivial solution x = o = y of (5.8) is asymptotically stable ac-
cording to Lyapunov., The absence of periodic solutions is easily

seen by using the criterion of Bendixson, In fact,

2F 3f _ oF 2f
ax+'ay—zx d1as'<o

in view of condition (5.5) and the fact that 2E ¢o, d, > o.
?AX

We represent the curves F(x,y) = o and f£(e ) = o on the
' (x,y) plane, By virtue of Conditions (5.3) and (G.4) fle) =0 repre-

sents the straight line e = o. Since ¢, and cl1 are positive con-

1
stants, ¢ = o is situated in the first and third quadrants. The
curve F(x,y) = o passes thréug,h the origin since F(o,o) = o, It is

situated in the second and fourth gquadrants since the slope of F(x,y):o,

i.e., %}Y{_ = b_Ffazy is negative.

These considerations show that (o,o) is the only point of
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equilibrium of (5.8). We have shown so far that (i) the origin is the

only point of equilibrium,(ii) it is asymptotically stable in the

sense of Lyapunov,(iii) there exist no periodic solutions. We shall

now show that there exists a straight line L(o, @ ) which is intersec-

ted by the motions in one direction only and a2ll motions with bounded

polar angles are bounded. With this thing in view we eXamine the direc-

tions of motions (see fig.?). It is easy to see that
%% = F(x,y) >0 for the points, lying to the left of the curve
F(X:y) =0
%% = PF(x,y) ¢o for the points, lying to the right of the curve
F(x,y) = o
%% = £(e) v fqr the points, lying below the straight line o = o
SY . r(e)co for the points, lying sbove the straight line ¢ = o
dat ?
The function y(t) attains maximum for y » o and minimum for
y € o on the straight line (o) = o3 J
x(t) attains maximum for x » o and r/
minimum for x ¢ o on the curve
’ x=A
F(x,y) = o. The straight line f(e) = o,
the curve F(x,y) = 0 and the co-or ! x

dinate axes divide the (x,y) plane into

eight regions. We introduce
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polar co-ordinates

X = rcosg, y=rsine .
Then r = Xcose® +y sine and
r ¢ = -Xsing + ¥ cose

the signs of r and & in different regions are as follows :
(1,5) © may be %0, @ » o (2,6) r < o, ¢ may be % o
(3,7) r may be % 0, @ r o (4,8) r < o, 4 may be % O

Ershov [6]) argued that,since & > o in the regions (1),
(3), (5) and (7) there cannot be any motion with bounded polar
angle ¢ in these regions and any motion falling in these regions
or starting there has to get out of these regions after intersect-
ing either the straight line f(& ) = o or the curve F(x,y) = o. To
us this reasoning is doubtful,since @ » o is not sufficient to
guarantee that there cannot be any motion with bounded polar angle
in these regions. However,the above assertion remains true if we
could show that ¢ > ¢ » O in these regions, In fact,if & »>g ,
then integrating we have ¢ - @po >e (t- to), whence follows
that as t increases, ¢ increases and hence there will be an in-
stant of time when the motion leaves these regions. |

Let a motion M(t) after intersecting the negative half
y-axis enter the region (7). We show that motion M(t) cannot re-
main in this region and consequently it will enter the region (8).
To show this we write

& = [-_i singe +y cosq»]

(5.11)
( -P(x,y) sin¢ + £(+) cose )>o0 in region (7)

4
r

L
r
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If M(t) does not cross the curve F(x,y) = o, then x(t) becomes
infinite since x(t) and y(t) are increasing and ¢ » o. For suf-
ficiently large x, with the increase of 'x, ¢ increases, Since it

is assumed that gi‘ > 0, f(e‘) is non decreasing and therefore

from (5.11) it follows that & can always be taken greater than

€ > o and hence with the increase of time the motion must leave
the region ('7), which contradicts our assumption. After entering
the region (8) it either goes to the origin as t —+ e or in-
tersects the x-axis and enter the region (1). This follows from
the fact that in this region r < o and @ may be % o. The motion
cannot remain in the region (1) and must enter the region (2). To
see this, consider the region bounded by the straight line ¢ = o,
X = A and the x-axis. Since in the region (1) x decreases, the
motion cannot intersect the line x = A, It cannot go to the origin)
since & > o and therefore it must necessarily go out of the re-
gion (1) and enter the region (2). Here:i.e.,in region (2),since
T ¢ o the motion either goes to the point of equilibrium or enters
the region (3). Similar reasoning holds for the rest of the regions.
All this shows that any motion with bounded polar angle is bounded.
For the straight line L(o, <) we can take the positive half y-axis.
Thus all the conditions of Theorem 1,2.7 are satisfied and we have

the following theorem:

Theorem 5.1. Let.%ég < 0. Then under conditions (5.2) - (5.5)

the trivial solution of (5,1) is asymptotically stable in the large.
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Case II %{- = o, The equations (5.7) in this case take the form
dx = -
(5.12)

]

%% cx'dy"“\i’(x,Y)

The equations of first approximation are

dx

& - TW

(5.13)

dy -
at ex = dy

The characteristic equation of (5.13) is given by

A ~b =0 or§+dhébc=o

c A+ d
The real parts of the roots of this equation are negative, since
d > o and be > o, whence follows the asymptotic stability of the
trivial solution of system (5.12) in the sense of Lyapunov,

The curve F(y) = o represents the straight line y = o and
f(e ) = o represents the straight line ¢ = o. The origin is the

only common point of f( “) = o. and F(y) = o. It is’ €asy to see that

% = F(y) > o for the points, lying below the x~axis

dx _ . . .

% - P(y) < o for the points , lying above the x-axis

%% = f(¢) >0 for the points, below the straight line f(e)= o
f

(VA f(e) ¢o for the points, above the straight line f(e)= o

The function y(t) is maximum for y » o and minimum for

y < o for the points on f(¢) = o and x(t) is maximum for x > -o and
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minimum for x < o for the points on the x-axis. The curves F(y) = 0,

f(&) = 0 and the axes of co-ordinates

J
divide the plane into six regions, o
Z
~
The direction of motion is repre- : g(é
3 H
sented in fig. 8. The signs of r and
in different regions are given as be- 1
{ Ll
low: x! X o ! x
. . 4
(1,4) r may be 30, & > o
: . A &
(2,5) r ¢ 0o, & maybe % o 5 4
(3,6) r may be %05 & » o y/
In the region (6) it is easy FI1G.8

to see that g% > £ > o, whence it follows that there exists an in-
stant t when the motion intersects the x-axis. As in Case I it can bé
shown that the motion #(t) intersects the straight line f(e) = 0 and
enters the region (2) with the increase of time. In region (2) either
the motion goes tO‘the origin with the increase of time or enters the
region (3). Similar arguments can be applied for the regions (3),(4)
and (5). Thus we have shown that (i) (o,o) is the only point of egui-
librium,(ii) it is asymptotically stable in the small, (iii) any mo-
tion with bounded polar angle is bounded. To show that there exists

no periodic motions, we use the criterion of Bendixson

-
-% + —:-Sri: = o = 4, % < 0 (not identically equal .to zero)

For the straight line L(o,e ) we can take the positive half x-axis.
Thus all the conditions of Theorem 1.2.7 are satisfied and we have

the following theorem:
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Theorem 5.2. Let %g = 0., Then under conditions (5.2) - (5.5) the

trivial solution of system‘£5.llfis asymptotically stable in the

large.

Case III 2F > o, The equations (5.7) in this case take the form
X

% = ax - by + (x,5)
(5.14)
g%. = cx - dy + v (x,y)
The characteristic equation of the first approximation is
A~ a -b =0
c a+d
or % + (@-ad+bc-ad = o (5.15)

The roots of (5.15) will have negative real parts under the follow-
ing conditions :

d-a > o (5.16)

bc - da >0 (5.17)

If the conditions (5,16) and (5.17) are satisfied then the
trivial solution x = o = y of (5.14) is asymptotically stable in the
small, We now represent the curves F(x,y) = o0 and the straight line
(o) = o on the (x,y) plane. Since j%g > 0, the curve F(x,y) = o is
situated in the first and third quadrants and so is the straight line
given by f(¢) = o. Since we are interested in having a unique point
of equilibrium we will have to impose an extra condition:

Condition 1. The curve F(x,y) = o is situated between the x-axis

and the straight line f(&*) = o.

Obviously condition 1 implies the condition (5.17). It is
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not difficult to see that

% = PF(x,y) > o for the points lying to the right of the
curve F(x,y) = o
%}5 = P(x,y) ¢o for the points lying to the left of the curve
F(X,Y) =0
%% = f(¢¢) Yo for the points below the straight line f£(¢) = o
g% = (@) <o for the points above the straight line f(e) = o

The function y(t) is meximum for y » o and minimum for
y < o for the points on the straight line f(e¢ ) = o and x(t) at-
tains maximum for x > o and minimum for x <« o for the points lying
on the curve F(x,y) = o, The y
direc¢ction. . of motion is shown
in fig. 9. The curve F(x,y) = o, 32 2)
the straight line f(«) = o and £ , (,J‘O’j

the axes of co-ordinates divide

the plane (x,y) into eight re- g X
gions, As before we introduce v 8
polar co-ordinates T v

X=rcose ,y =r sine,

Then T = X cos4 + y sine : Y
ré = -x sin® + y cosé FiG.9

The signs of r and & in different regions are given as’

(1,5) T >0, & may be % 0 (2,6) r may be %, 0, & > O

(3,7) r ¢o, & may be %0 (4,8) r may be %, 0, & > o.
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In the regions (1) and (5) we see that r > o and &
may be %, o. First of all we need a condition that makes & > o
in these regions, This is necessary in order to ensure that there
is no motion with bounded polar angle in the regions (1;5). Our pur-
pose is served if for example we aésume that
~(x,y) ¢ o, ~ (x,y) > 0o in the region (1)
'N*(x,y) > o, q:(x,y) < o in the region (5) (5.28)

Next we requife that there be no periodic motions and for that we

must have

2AF ?F
= ~ G5 €0 (5.19)

according to Bendixson criterion.

Let a motion M(t) enter the region (8) after intersecting
the negative half y-axisf It is easy to see as in case 2 that the
motion M(t) crosses the x-axis and enters the region (1). We now
show that it cannot remain in the region (1) and must enter the re-
gion (2). This is done as follows. We consider the rate of change

of (cx - ay) along the motion M(t),i.e.,

acx - bcy + ¢ w&x,y) - acx + ady - anv(x,y)

4 -
g (cx - ay)

y(ad - be) + ¢ v (x,5) - a~(x,7) < 0 (5,20)

in the region (1) in view of (5.17) and (5.18).

We consider the straight lines cx - ay = A (A positive)

and cx - dy = o and find their point of intersection (QAQ_‘.'._ s A
' ¢ d~a  d-a

It lies in the first quadrant since 4, ¢, 4, 4 - a are all posi-

tive quantities. Since F(x,y) = o lies always below the straight
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line f(e) = 0, the straight line cx - ay = A intersects the curve
F(x,y) = o for all A. Thus the motion M(t) entering the region (1)
must cross the curve F(x,y) = o, because it cannot go to the ori-
gin since o » o0 and camnot cross the straight line cx - ay = A
due to (5.20). After intersecting the curve F(x,y) = o it cannot
even remain in the region (2) because of the same reason. Thus the
motion enters the region (3) vwhere it either tends to the origin
with the increase of time of goes out of this region ana enters

the region (4). Similar argument holds for the regions (4), (5),
(6) and (7). This shows that there cannot be any motion with boun-
ded polar angle in the regions (1), (2), (&), (5), (6) and (8). The
motion with bounded polar angle can only occur in regions (3) and
(7) ,vhere it is bounded,since I < o. Thus any motion wi»th bounded
polar angle is bounded. For the straight line L(o,cn) we can take
the positive half x-axis. Hence all the requirement of Theorem 1.2,7

are satisfied and we have the following theorem:

Theorem 5.3. lLet _%%E » o. Then under conditions (5.2) - (5.5),

(5.16), (5.18), (5.19) and Condition 1, the trivial solution x=o=y

of system (5.1) is asymptotically stable in the large.
In 1954 Gu, Cao hao [16] discussed the stability of the
trivial solution in the large of the following system

ax
at

g-g' x hy(y) + £(y)

H

xh(y) +e(y)

by constructing a Lyapunov function. In the next two sections we



shall discuss the stability in the large of

&
dt

h, (y) x + ay

&
at hz(x) X + by

dx .
ot xh, (v) + ay

Lo\ 'bx+h2(x)y

mostly by qualitative methods.
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6., The stability in the large of -g% = h, (y) x + ay,

¥ -n (x x + by.
XL = hy(x) y

Let us consider the system

-g—t)s = b, (y) x + ay
(6.1)
%% = hz(x) X + by S

We assume that the right hand sides of the system (6.1)
satisfy the conditions guaranteeing the existence and uniqueness of
every solution.
6a. Let us assume that _

ahz(x) <0, x%*o0,b¢o and h1(y)< o,yto
For the sake of definiteness we take a & o, h2(x) > 0, x ¥ 0. We
represent the right hand sides of (6.1) on the (x,y) plane. The or-

dinates of the graphs of the curves are given by

h
y1= - 1(y1)x

Y > 0 according as x ¢ O

y2 = - hz(x) (6.2)

b

X % © according as x >0

This shows that the curves h1 (y) x + ay = 0 and hz(x) Xx+by=o0
lie in the second, fourth and first, third quadrants respectively
and consequently the origin is the only point of equilibrium. It is
not difficult to see that

dax
dat

h, (y) x + ay ¢ 0 to the right of the curve h, (y)x + ay = o

é—‘ic‘ h(y) x + ay >0 to the left of the curve h (§)x + ay = o
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%‘é = hy(x)x + by <o to the left of the curve hy(x)x + by = o
%%' = hz(x)x +by >0 to the right of the curve hz(x)x +by =o

The function y(t) attains maximum on the curve

hz(x)x +by =0 for y >0 and minimum for y < o; x(t) is minimum

on the curve h, (y)x + ay = o for y > o and maximum for y < o. The

direction of motion and the curves obtained by putting the right

hand sides of (6.1) equal to zero are represented in fig.10. The

curves and the co-ordinate. axes divide

the plane into eight regions. Using

Ze. 3 2
polar co-ordinates we see that the &Jq_ B &
. * 2
signs of r and ¢ in these regions QJV\\ A/
4 o

are = - —
(1,5) © may be %, 0, ¢» 0 5 ’ 8

. . Ay
(2,6) T ¢ o, @ may be %, o >

. i G ¥ T
(3,7) © may be %0, & » © v

(4,8) * ¢ o, @ may be %, o

The trivial solution is

FIG.40

easily shown to be asymptotically stable in the sense of Lyapunov.

In fact, letaV-function be defined by

x 2
2V = 2 ( x h,(x) ax - ay
_([ 2
Then N Y.f = X h2(:\c)(h1 (y)x + ay) - ay (x hz(x) + by)

x2h1 (y) h2(x) - aby2 ¢o y*o

= o possibly for vy = o
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Obviously,V is a positive definite function. The derivative V is
negative for y # o and possibly zero for y = o. Since y = o does not
contain a positive half-trajectory of the system (6.1) except x=o=y,
the trivial solution is asymptotically stable according to‘Lyapunov.
Since b + h1(y) < o, there are no periodic solutions according to
the criterion of Bendixson. This is obvious from tﬁe fact that for
the system is constructed a Lyapunov function. For the straight line
L(o, o) appearing in Theorem 1.2.7 we take the positive half y-axis.
We now show that the motions with bounded polar angles are bounded.
Ve coﬁsider first the regions (2,4,6,8). In these regions any motion
with bounded polar angle is bounded,since r « o. Next we consider
the regions (1,3,5,7). Here we show that there are no motions with
bounded polar angles, i.e., any motion starting or entering these re-
gions must léave them with the increase of time. For this we write

<+ =1;[- sin ¢ (h1 (y) x + ay) + cbs¢(h2(x) X + by) ]

Let us suppose that the motion started in the region (1)
does not cross the. curve hz(x) x + by = o then,since x is decreasing
end y is increasing in (l), y becomes infinitely large and conse-
quently 4 > € » o and hence with the increase of time the motion
leaves the region (1). This contradicts our assumption. The contra~-
diction shows that the motion must leave the region (1) and enter
the region (2). The same reasoning holds for the region (5). Next
we consider the rate of change of the quantity (bx ~ ay) along the

trajectories of (6.1)
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b(h1(y)x + ay) - a(hz(x)x + by)

a
3 (bx - ay)

(6.3)
= }c(bh1 (y) - a.hz(x))><o according as x%0
Consider the straight line
bx - ay = A (6.4)

The straight line (6.4) intersects the curvevxh1(y) + ay = o for
all A. Let A be negative, then the straight line (6.4) intersects
the curve h1(y)x + ay = o in the fourth quadrant. We consider the
region bounded by the negative half y-axis, the straight line

bx - ay = A and the curve h1(y)x + ay = o, The motion entering this
region must cross the curve h1(y)x + ay = 0,since it cannot cross
the streight line bx - ay = A because of (6.3) and cannot enter the
origin,since ¢ » o in this region. Similar argument holds in re-
gion (3). The above analysis shows that all motions with bounded
pélar angles are bounded and we have the following theorem;

Theorem 6,1, If ahz(x)<:o_for x ¥ o, b< o and h1(y) <ofory#o,

then the trivial solution of (6.,1) is asymptotically steble in the

large,

6b., We shall now discuss the case when ahz(x) > o and the condi-
tions

b+ h (y) <o, bh(y) - aby(x) > 0, x*¥0,y¥to0 (6.5)

are satisfied., From (6.5) it follows that if ahz(x) > o we must

necessarily have b < o, h1(y) < o for y # o, We assume a > o,

hz(x) > o0, x ¥ o, From (6.2) we have
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+ X

h,(x)
b
o () - ahy(x)

(6.6)

ab

>0 according as X %O

Since 4 and y, are positive or negative according as x is positive

or negative, the two curves

are situated in

xh1(y) + ay =

drant and below

note that

dx

at = M)x
dx

ar = HO)x

Sy _
at - bplx)x

dy _
gt = Pp(x)x

The

for y , o and

xhz(x) + by

xhy (y) + ay

i}
(o}

(6.7).

1]
(o]

the first and third quadrants and such that the curve

o is above the curve xhz(x) + by = 0 in the first qua-

+ ay »o

+ ay ¢o

+ by <o

+ by Yo

to the

to the

to the

to the

in the third quadrant (becsuse of (6.6)). We further

left of the curve xh1(y) + ay = 0
right of the curve xh1(y) +ay =o0
lef't of the curve xhz(x) + by = o0

right of the curve xhz(x) + by =o

function x(t) is maximum on the curve xh1(y) +ay =0

minimum for y < o; y(t) is maximum on the curve

xhz(x) + by = o for y > o and minimum for y < o. The curves and the

co~ordinate axes cdivide the @5y) plane into eight regions. The dir-

ection of motion and the curves are shown in fig.l1l, As before we .

introduce poler co-ordinates and notice that the signs of r and &

in different regions are as follows:

(1,5) r may be % o

) @® £

o (2,6)r ¢ o, ¢ may be 2% o
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(3,7) r may be % o, ® > o
(4,8) r < o, ¢ maybe % o

In each of the regions (i)
and (8) there will be at least one in-

tegral curve going to the origin, the

only point of equilibrium. This fol-
lows from Theorem 2.1 of Erugin's work

[8] . Other motions started in the re-

gions (4) and (8) either go to the

origin or enter the regions (3,5) or (1,7) FIG.11

(since r < 0, & may be %, o in the regions (4,8)). We now show that
motions entering the regions (1), (3), (5) and (7) must leave these
regions and enter the fegions (2) or (6). To show this we consider

the rate of change of the quantity (bx - ay),i.e.,
-g—%-(bx - ay) = x(bh1 (y) - ahz(x)) > 0 according as x %0 (6.8)

The straight line bx - ay = A (A negative) has positive
intercepts with the axes of co-ordinates and hence intersects the
curves (6.7) in the first quadrant. Consider the region bounded by
the straight line bx - ay = A (-ve), the curve xh1(y) +ay = o and
the positive half y-axis. The motion M(t) entering this region cannot
cross the line bx ~ ay = A (A negative) because of (6.8) and cannot
go to the origin,since é,.( o and hence must leave this region with
the increase of time. Similar argument holds for the regions (3), (5)
and (7). The motions af'ter entering the regions (2) or (6) tend to

the origin as t —5 o . Thus we have proved the following theorem;
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Theorem-6.2. If ahz(x) > 0o for x ¥ o, then the trivial solution of

(6.1) is asymptotically stable in the large under conditions (6.5).

6c. We now assume that either b > o or h, (y) > o for y ¥ o and the
conditions (6.5) are satisfied. For the sake of definiteness we let
b > o. Then from (6.5) it follows that h, (y) < o and ahz(x) < o, We
let a ¢ o, h2(x) » o for x ¥ o, The ordinates of the curves in (6.7)

are
by (34)
a

b (x) (6.9)

Yo ==X _Z._b___ %2 0 according as X € 0

yy=-x% > 0 according as x § ©

We compute the difference between the ordinates

Yy =¥y == X—— 4 x
a b (6.10)
bh - ah
= - X 1(y,) 2(x) > O according as x % 0
ab

F;r‘om (6.9) and (6.10) it follows that the two curves lie in the se-
cond and fourth gquadrants and the curve x.h1 (y) + ay = o lies above
the curve xh2(x) + by = o in the fourth quadrant and below in the
second quadrant. It is not difficult to verify that

-g—fg— = h1(y)x+ay>o to the left of the curve h1(y)x+ay=o
ax
dt

h, (y) xtay ¢ o to the right of the curve h, (y) x + ay

%% = hz(x) X + by >0 = to the right of the curve hz(x) X + by

1
il

%% = hz(x) X + by (o to the left of the curve hz(x) X+ by =o0

The function x(t) is minimum on the curve Xh1 (y) + ay = o
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for y > o and maximum for y <o, and y(t) is maximum on the curve
xhz(x) + by = o for y > o and minimum for y < o. The curves (6.7)
and tﬁe co—érdinate axes divide the plane into eight regions. The
curves and the direction of motion are shown in fig.12,

The signs of r and + in

different regions are 4 J
. G,
(1,5) r may be %0, > o -%x6
. AN
(2,6) r > o, ¢ may be 30 3 Jo » 1
(3,7) T may be % % O3 #>0
X i ° » x
(4,8) & ¢ o, & may be 3,0 = = v .
Let us compute @ in the re- _ & "
Q
gions (2) and (6) and see 5 6 T ‘9*0
Ns
whether it is positive or not.
Let ¢, be the greatest lower ' y'
bound of the function h, (v). c, FiG.12 !

is finite otherwise bh, (y) - ahz(x) >oforx¥ o, y* o is violated.

We then have c; < h1 (y) < =-%®

From the inequality bh (y) - ah (x) > o we have bc - ah (%) >
The equality sign is admltted if h, (y) does not attain its greatest
lower bound otherwise strict inequality holds. Let us suppose that
cy is attainted, then

g gy) < - o (6.11)

and h, (x) > bey

If we leth(y)=c +L(y) then o<£(y)< (b+c1)
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from (6.11). For h2(x) we can take

hz(x) =P . -‘Z(x) , where Lz(x) > o
= ‘

Now
r & = -x sind + y cos @
= - sin @ (xh,| (y) + ay) + cos @ (hz(x) X + by)
. bey, &
— s:.n@[x(c1 + £1 (y)) + ay | + cos@[(—-é— + 2(x)) X + by
Then
; - be, 2 .
P =-asine +__1 cos"¢e + (b -~ c1) sin ¢ cos® -
a

2
-£(y) sine cose *+ LZ(X) cos 4

= - a cose | tan - - 11 - &£ i
@» = tan 4 -;2— 1(y) sind® cos<

+ Lz(x) coszqa (@* multiple of W,)
2 b Cc4 £ .
= - acosa (tane - F)(tane + o) - 1(y) sin ¢ cos e
L 2 |
+ 2(x) cos & (6.12)
The expression (tane - 2)(taneg + ©1) can change its
a = -
. . . . b C4
sign only while passing through the values Y and - = The value

b : C1 . . b - C )
~ >- L sinceb + c; ¢ 0 and a ¢o. Since — > 1 , the straight
a a a 5 ?

line with slope = lies sbove the straight line with slope = 21 for
a

X > o and below for x < o. The straight lines y = -Ex and y = - __Zl x
lie in the second and fourth quadrants. We show that they do not

lie in the fegions(Z) and (6). For this we have only to show that

the straight line y = = %1 x lies below the curve xhz(x) + by = o
o 2
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in the second quadrant and above in the fourth quadrant. In fact,

this is so, because
h, (x)

LG P bc1 .
+ = X = E(T - hz(x)) > o according as x ¢ o

>

Thus we see from (6.12) that & keeps the same sign throughout the
regions (2) and (6) and whicﬁ is easily seen to be positive.
According to conditions (6.5),the origin is the only point
of equilibrium and there are no periodic motions. Let a motion M(t)
start in region (1). The motion ‘Mumust enter the region (2) with

the increase of time, otherwise y becomes infinite and then from

%x{:_ = h1 (y) x + ay it follows that the motion M(t) cannot remain in
the first quadrant. We now show that it cannot remain in the region
(2) for all time. For this we consider the straight lines

bx - ay = A and ay + ¢ix =0

A
: : . el . A 4

Their point of int t b - . i i

eir point of intersection is given y(b+c1 R am)) This lies

in the second or fourth quadrant according as A is positive or nega-
tive, We consider the region bounded by the straight line bx - ay =

A(+ve), the positive half y-axis and the straight line ay + c,x = o.

1
Since %{;-(bx—ay) ¢ 0 in the second quadrant and & » o in (2), it fol-
lows that the motion enters the region (3). Here, in the region (3),

since ® » 0 and the curve xh1 (y) + ay = o lies above the straight line
bx - ay = 0 and ¥ < 0, the motion enters the region (4) with increase
of time. The motion after entering the region (4) either tends to the
origin or enters the region (5),since r ¢ o in region (4). Similar

reasonings hold for the regions (5), (6), (7) and (8). The above analy-

sis shows that any motion with bounded polar angle is bounded, For the
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straight line L(o, =0 ) appearing in Theorem 1.2.7 we can take posi-
tive half y-axis. Now if we assume that the trivial solution is asymp-
totically stable in the sense of Lyapunov, then we have proved the
following theorem.

Theorem 6,3, If either b > o or h1(y) > 0, ¥y ¥ 0o and conditions

(6.5) are satisfied, then the trivial solution of system (6.1) is

asymptotically stable in the large provided it is asymptotically

stable in the small (i.e., according to Lyapunov).

The requirement that the trivial solution be stable in the

small can be realized, if we take,for example,

bec b ’ !
hz(x) = —El + ‘E(X) = ._Zl +m + Jé(x), where m » o and Ié(x)

does not contain any constant term and h1(y) =cCc + ‘%(y), where 51(y)

does not contain any constant term, The equations of first approxima-

tion can be written as

& x4
at - “1 ay
& . (P,
= (= x + b
ot ~ m) y

The characteristic equation is

A - cy a = o
ey
- — +m A-Db
a
or ' f—(b+c1)ﬁ -am = o

The roots of this equation have negative real parts since
b+ Cy & O and - am > 0,

which ensures the stability in the small and which in turn. ensures
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the stability in the large.
' The origin is a node or a focus according as
A= (b+ e, )2v + 4am % o, In case 4 > o, the directions along

which the motions tend to the origin are given by

2 be
au -l-(c,'-b)u-( a1+m) = 0

This is obtained by putting 4 = o0 in the expression

. be
-r ¢ = sin¢(c1x+ay)-cos¢ ((——a-1-+m)x+by)
and by writing u = tan ¢ , where tan & = 'E. The two directions are

called critical directions. A critical direction is called singular if-
it satisfies the equation

c1+au=o,

otherwise it is an ordinary critical direction. Along the ordinar& crit-
ical direction either enters an infinite number of trajectories or only
one integral curve. The question whether along a particular ordinary
direction enters a finite number of trajectories or only one can be
decided by using Frommer' . criterion [15]. _

On similar lines it is easy to prove the following theorem;

Theorem 6.4, If b = o, then the trivial solution of (6.1) is asympto-

tically stable in the large under conditions (6.5)
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A . dx
7. The stability in the large of Jf = xh1(y) + ay, g%-: bx +-h2(x)y.

Let us consider the system

dx

& (y) + ey
(7.1)
g% = bx + hz(x) y

We assume that the right hand sides of (7.1) satisfy condi-
tions which guarantee the existence and uniqueness of every solution,

We first prove the following theorem:

Theorem 7.1. If ab ¢ o and h1(y)4 0, ¥y % 03 h2(x)s o, x *+ o(at least

in one of these conditions the strict inegquality is satisfied), then

the trivial solution of (7.1) is asymptotically stable in the large.

Proof. We assume a <o, b>o. A Lyapunov function for (7;1) under the
conditions of the theorem is

2V(x,y) = bx% - ay2
Its total time derivative in view of (7.1) is

vV = bx(xh1(y) + ay) - ay (bx + hz(X)‘Y)

= bx? h1(y) - ay2 hz(xﬁ ¢o for x*% o0, y %o
= o0 possgibly on x = oor y = o
Obviously,V(x,y) is an infinitely large positive definite
function and x = 0 or y = o does not contain any positive half tra-
jectory of (7.1) except the origin. Hence all the conditions of Theorem
1.2.5 are satisfied which proves the above theorem,
Next we consider the system (7.1) under conditions
h, (y) + hz(x) <0, h, (y) hz(x) - ab>o0 (7.2)

forx ¥ o y*o
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The following theorem can be proved in the same way as
Theorem 4.1.

Theorem 7.2. If ab > o, then the trivial solution of (7.1) is asymp-

totically stable in the large under conditions (7.2).

The proof of Theorem 7.3 goes on similar lines as the proof
of Theorem 6. 3.

Theorem 7.3. if either h1(y) » o or hz(x) > o and conditions (7.2)

are satisfied, then the trivial solution of system (7.1) is asympto-

tically stable in the large provided it is asymptotically stable in

the small,
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8. Remarks. There are some questions remaining to be answered in
connection with the results we have obtained;

8.1. The first question arises in connection with Theorem 2.2.1.
We showed that stability in the large holds if in addition to
(2.2.2) - (2.2.5) either conditions A and B or A and C are satis-
fied. Is it not possible to derive necessary and sufficient con-
ditions? In the author's view it is most unliikely. The second ques-
tion which then naturally arises is this : what special form shoula
F(x,y) and f(e) have in order that the conditions could be necessary
as well as sufficient? HaVing found this, fhe problem of boundaries
and regions of stability could be discussed in those cases where

the stability in the large does not hold.

8.2. Ve discussed the stability of the trivial solution of systems
(6.1) and (7.1) using qualitative methods. We were not able to con-
struct Lyapunov functions for the two systems. Is it possible to
construct a Lyapunov function for the system

ax

5 = xh() +ay

SL - £(x) + hy(x) y

of which (6.1) and (7.1) are particular cases under suitable con-
ditions on the right hand sides of the above system?
It is the author's aim to investigate these questions

in the future.
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