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ON THE EQUATIONS OF MOTION OF
MECHANICAL SYSTEMS SUBJECT TO NONLINEAR
NONHOLONOMIC CONSTRAINTS

ABSTRACT

The author has obtained the equations of motion for a nonlinear
nonholonomic mechanical system in many a different form. The
importance of these forms lies in their simplicity and novelty. Some
of these forms are deduced from the principle of d’Alembert-
Lagrange using the definition of virtual (possible) displacements due
to N. G. Cetaev (Izv. Kazan, Fiz.-Mat Obsc.6 (1933), no. 3, 68-71),
The others are obtained as a result of certain transformations. More-
over, these different forms of equations of motion are written either
in terms of the generalised coordinates or in terms of nonlinear non-
holonomic coordinates introduced by V. S. Novoselov (Leningrad.
Gos Univ. Ucenye Zap. 217. Ser. Mat. Nauk 31 (1957), 50-83). These
forms involve the energy of acceleration of the system or the kinetic
energy or some new functions depending upon the kinetic energy of
the system. Two of these new functions, denoted by R & K, can be
identified to a certain approximation, with the energy of acceleration
of the system and the Gaussian constraint, respectively.

An alternative proof is given to the fact that, if virtual displace-
ments are defined in the sense of N. G. Cetaev, the two fundamental
principles of analytical dynamics—the principle of d’Alembert-
Lagrange and the principle of least constraint of Gauss—are con-
sistent.

If the constraints are rheomonic but linear, a generalisation of
the classical theorem of Poisson is obtained in terms of quasi-
coordinates and the generalised Poisson’s brackets introduced by
V. V. Dobronravov (C. R. (Doklady) Akad. Sci. U.R.S.S. (N.S.) 44
(1944), 221-234).

The advantage of the various novel forms for the equations of
motion is illustrated by solving a few problems.
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ABSTRACT

Suppose Qy,9g5 +++,9, 8T the generallsed coord-
inates of a mechanical system moving with constraints

expressed by r non-integrable equations (r<in)

(1 (59099 Wipod)=0 | (ot 2t

where the dots denote differentiation with respect to
the time t, and f are nonlinear 1n the q's. The equat-
ions (1) are said to represent nonlinear nonholonomic
constraints and the system moviﬁg with such constraints
is called nonlinear nonholonomic,

From a purely analytical point of view, the
author has obtained the equatio#é of motion for a non-
linear nonholonomic mechanfcal ;ystem'in many a different
form. The importance of these forms lies in fheir
simplicity and novelty. Some of these forms are deduced
from the principle of d'Alembert;Lagrange using the
definitien of virtual (éossible) displacements due tb
Cotaev [11] . The others are obtained as a result of
certain transformations. Moreoﬁer, these different forms
of equations of‘motion are written eithéf in terms of
the generalised coordinates or in tgrms of nonlinear non-

holonomic coordinates introduced by V.S. Novoselov [25].
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These forms involve the energy of acceleration of the
system or the kinetic energy or some new funcfions
depending upon the kinetic energy of the systéﬁ; Two
of these new functions, denoted by R (Sec. 2.3) and K
(Sec. 2.4), can be identified, to a certain approximaﬁion,
with the energy of acceleration of the system and‘the
Gaussian constraint, respectively.

An alternative proof (Sec.2.5) is given to the
fact that, if virtual displacements are defined in the
sense of N.G. Egtaev [ll] , the two fundamental princ-
iples of analytical dynamics - the principle of d'Alembert-
Lagrange and the princlple of least constraint of.Gauss -
are consistent.

If the constraints are rheonomic but linear, a
generalisation of the classical theorem of Poisson is
obtained in terms of quasi-coordinates and the generalised
Poisson's‘brackets introduced by V.V. Dobronravov [17] .

The advantage of the various novel forms for the.
equations df motion is illustrated by solving a few

problems,
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INTRODUCTION.

Let 95 9, eee, 9, be the generalised coordinates
of a mechanical system subject %o'constraints expressed by
r nonintegrable equations of the typei (M(n)
(1) f(t3q1’q2’-u,qn;él,aép..},t‘ln)m::‘ (%=1,2,000,7 )
where the q's are the derivatives of the q's with respect
.‘to the time t and f are nonlinear 1n the a's. The equat-
ions (1) are said to represent nonlinear nonholonomic con-
straints.,  However; 1if the. equations (1) reduce: to non-
integrable Pfaffian equgtions, the cons%raints are referr-
ed to as 11near non-holonomice, ! o |

The problem of mechanlcél systems moving with non-
linesr nonholonomic constraints is an acute problem of anal-
ytical dynamics. The idea;of such constraints originated
with Appell [3,4,5] Delassus [12 15; 1é] and their contemp-
oraries ﬁho, in an attemptvto ‘deduce the fundamental princ=
| iples ofvanalytical dynamlcs5fdrlsuch,systems from the
dynamics of systems moving with 'linear congtraints, were
~ confronted with two serioﬁs problems. -First, thé real exist-
ence of suchoconstraints was not known;WSecondly, considering
. such conStrainfs, from a §uréij“analytical point of view,
the two fundamental principles of analytical dynanics - the
_principle of d'Alembert-Lagrange and the principle of least
constraint of Gauss - appeared to be inconsistent. Though

the first problem isg st11l open, the second has been dis-

| cussed by N. G Cetaev [ll] In 1933 he offered a new
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~ definition of 8 virtual (possible) displacement for such

systems. As 1t should be expected his definitlion embraces

the usual definition of such displacements for systems which

are holonomic or move with linear nonholonomic»constraints.,
In 1948 G.S. Pogosov [26] found the eduations of

motion for a nonlinear nonholonomic system in the form
. (2) ‘ aai Qt —_ Qo( (O( ‘RI O L:‘Y‘.}-l 1‘+2/‘--,1'L),

4
where S’ 1s the energy of acceleration of the system cal-

oA

culated on the basis of the equations of constraint (l),

)?&

Q's are the. generalised forces and a;iﬁz' a. o These
v .9 A

equations which are essentially-Appell's equations were
deduced.from‘the principle of»least constraint of Gauss'by
a long and complicated method° :

In 1957 V.S. Novoselov [22 23; 24] started a
series of papers on nonlinear nonholonomic systems., One of
his pepers [22] contains a. variety of results deduced from
the equations of motion involving undetermined multipliers
of’Lagrange. Another paper [25]' deals exhaustively with
the various forms of the equations of motion in nonlinear
quasi-coordinates or nonlinear nonholonomic'coordinates. He
obtains several lmportant and interestingiresults. The
quintessence of his researches is the generalisation of the
:classical results for linear nonholonomic systems to non-
‘linear nonholonomic systems. ._ ’ | |
| ‘The present thesis is concerned with nonlinear non-
.holonomic mechanical systems from a unified point of view,

'The starting point of these conslderations i1s a synthesis of
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the differential principle:: of d'Alembert-Lagrange and an
idea of P, Woronetz [29] o According to Woronétz we con-
.sider in the equations of constraint, a certain number of
velocity-ﬁarameters, equal in number to the degrees of
freedom of the system, as independent. parsmeters. Through-
out the discussion the indicial and sumﬁation conventions
are used. A brleflf resume of the different aspects of the
work is given below: |

(1) The consistency of the principle of d'Alembert-

Lagrange and the principle of Gauss, ‘as proved by Cetaev

[11] demands that the former principle must lead, to
Appell's equations of motion, That it 1s so is shown by

finding the equations of motion (Sec 2 2)

!
(5) as — QL (L: Y‘+|,Y‘+2,...)TL>’
% s
/
where QL = Q, - %w Q“ + The method applied is easier and

more direct than that of Pogosov,[zsja. Furthermore, if
S 1s the function s/ for the corresponding holonomiec
system, it is shown that the equations (3) can be written

'in the symmetric form

2S
(4) 31Q GQ E;;' GL)

« = z, ,f L-—T+lr+z ).

Let T’be the kinetic energy of the system calculated
by tekinglthe constraints into account and let T; be the
function T/ considered as a function of q's and t only.

The equafions of motion are then obtained in a new form

(Sec, 2.3)



i

o 2R g L eaytrtn),
| 29 |

where P\I = _J_("l"/._z,'.]';,),

It‘is also shown that R’ coincides with S’ as far
as the terms in g are ooncerned.

In Sec. 2,4 the equations of motion are transformed

to the form
/
(6) _a__K__. = (L:r,q,'mz,...,m),

%1& ' |
where K = R-‘_QL%___'Q“%.

Tater on (Sec. 2.5) the function K 1s identified,
.to a certain appfoximation,‘with the Gauésian conatraint,

In the same section an alternative proof for the consistency
“of the principle of d'Alembert-Lagrange and the principle
of Gauss is given.

If R and T are the fﬁhctibns R’ and Tlf for the

correSponding holonomic system, the identity (Sec.2 6)
T . .
?R 0[ a_r - 3 , .(,6: 1A ..,Tb)

29, 4% 2%
.yields the equations of motion

A9 2T @ .. (d 2T 2T
- . - - QL =& s ~y - "Q
At 29 2y ALl g o9

.(‘X: I,RI,..\,'Y‘,- L: ’Y‘+‘)'T+2,...) ‘Y'\/) .

)

, _
If in place of T the function T is used, the
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equations>arévtransformed into the equations (Sec.2.7)
(8:)— f{%ﬂ__ 2T DT 4 T + 2R, Q:.
Y aQ/ .aq, Tat 2% - 29, _
(L=1‘+|,1‘+2«,~-~, ),, ,

wherevT; is what T becomes when considered as a function of
the a's only and R, 1s R regarded as a function of the q's
only. ‘} _
| With the help of the ldentity

d T 2T _ 2T (s-1,3 n)

At 2% %

the equations are obtalned in a novel form:

2 4 2T _2T _q. zMT DTQ

-.,"

v (d = l)z)“‘ ’TSL:"T"'\)T*'RG"TL) .

Agaln, by virtue of themidentity

4 9T aT T - (S=0,2,...,
dt a% 31/5 aq/s' |

the equations of motion assume another novel form (Sec.2.9)

§ , . )‘ ‘
(10) 2 2;[‘3. -3 T, = Q‘._ Q-:‘Y‘+l,’f‘+2r,...,'fb).,
' ’ 3%' ' acl’t.

*

where T,  denotes T considered ;s‘a function of'the a's
6n1y, and ﬁov dendﬁes iy regéfded as a function of theMa's
onlye. |

A certain transformstion discussed in Sec.2.6
allows the transition from the Eqs.(7) to equations in terms

of Lagrange's multipliers. The convéréé problem 1s discussed



~in Sec.2.10. ) o _ _

In Sec.2.11 the Eqs.(7) are put in the form of
determinants all of which'are"oﬁfained according to a
general scheme from an (r+ 1l)xn matrix,

When the mechaniéal sﬁstem is holonomic or moving
with linear nonholonomic constrgints many results of other
authors, notably I.Cenov [7;8;9;10] ‘and I.I.Metelicyn

[21], follow as immedlate corollaries from the results of
this chaptere' »

(11) Despite-ﬁhe fact %h;t in nature no mechanical
system has so far been discovered which moves with non-
iinear nonholonomic constraints; it 1s sometimes possible
to writé ih an artificlal menner the equations of‘iinear'
consfraints in & nonlinear fbnnL Based on such coﬁsider—
ations three.well-known examples have been solved to support
fhé general treatment of Chap;2; Thebclassicél methdds of
golVing these examples depend oh the equations of motion 1ﬁ
terms of Lagrange's multipliers. The methods used in this |
thesis cohpletely‘avoid the uSe of such multipliers;

(111) Sec. 4.2 deals wiﬁh the generalisation of
the classical theorem of Poissogiin_térms of linear quesi-
' coordinates or linear nonholéﬁomic'coordinates so as to be
applicable to systems moving with rheonomic constraints.

To this end use has been made of the generalised Polsson's
brackets introduced by V.V.Dobronravov [;71 . If the con-
straints are scleronomic the result reduces -to that of |

Dobronravov [17] established in 1944,
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Introducing nonlinear nonholonomic coordinates in
the menner of V.S.Novoselov [?3] s the author has obtained !

the general equations of Appell (Sec.4.3) in the form

!

!
3§_ = Qg o ($=12T)

(11) -
. D

for holonomic systems, and in the form

/-
(12) ._2—-5—- =Q:. GJ:T+|)'Y\+2,..‘,'T\')

’
for nonlinear nonholonomic systems. The WS denote the

kinetic characteristics,



CHAPTER. I
NOTATIONS AND DEFINITIONS

l.1 Consider a mechanical system consisting of N
particles, and denote by x, one of the three rectangular
coordinates of any one particle of mass m, . Further
denote by Xv' the component of the resultant external
force correspohding to x, .

If the mechanical system is free to move, the
motion of the system will be governed by the Newtonian

equations

(1.1.1) e, %, = K (“’“”

o v V)

where the dots denote differentiation with respect to
the time t;
In writing the equations (l.l1.1) as well as

rthroughouf our work we usé the foliowingm

Notations:
(1) An index unrepeated implies a given range of values,
éné,'when repeated in a single term, summation over that
rénge. |
(11) As a derogation from this rule, an index within
parénthesis, although repeated_in a single term, will not
be an index of summation.

With these notations the motionlof a free mechan-

1cal system is completely determined by the equations



(1.1.1). |
On the other hand, if the motion of the mechanicél
system is subject to some constraints expressed by r { 3N

equations of the type:

(1.1.2) _Fd Qt;x"’%""’§N5;L"”§,’-""13N)=F (tsx, 5% - )=0
: ‘ (o(—-l,/?/7 2 T‘)’
. the equations (1. 1. 1) are no longer valid, and to obtain

the equations of motion it is necessary to apply one of
fhe‘tWO'fundamental principles'of analytical dynamics,
either the>principle of d'Alembert-Lagrange or the princ-
iple of least constraint of Gauss,

B Althngh the principle Sf ieést constraint of Gauss
is thé most genéral principle, it is fhe formaliém of the
principle of a'Alembert-Lagrangébwhich is mostly used in
analytical mechanics and which we shall apply in most of
our work.‘

To formulate the prlnciple of least constraint of
Gauss let us first define the term "constraint",

Definition 1., Let X, be the acceleration of the particle

of mass m_, in any kinemetically possible tra jectory for .
which the coordlnates and: velocitles at the instant con-
51dered are the same as ln some actual trajectory. The

" constraint is defined by the function

(101 .3) G(XV) = _‘i.m_l/(_xw—g- .,xv> . ] V= }7 2).--73N,
o . %) ,

‘which is of the second degree inkﬁv .

" The following is then the formulation of
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The‘principle of least constraint of Gauss - Of all the
trajéctofies consistent with the constraints (which are
supposed to do no work), the actual trajectory is that
which has the-least constraint,

The other principle -.fhe principle of d'Alembert-
Lagrange - is the unification of the principle of d'Alembert
and the principle of virtual displacemenfs. This cémbined
principle was given by Laegrange. That this isba different-
lal principle can be seen from the formulation of

The principle of d'Alembert-Lagrange - For every éystem of

virtual (possible) displacemehts ng;satisfying the cond-

itions -
oF _

(101.4) : gx‘l/ _..O)

: . 0%, :
the equation
(1.1.5) (mmi.,,—x.u> SXV:O, V=125 3N,
holds. - N
l.2. The mechenical system with which we deal is of the

most,genefal type. 1t may be subjJect to moving constraints,

in which case it 1s rheonomic: if the constraints are fixed,

‘1e.e, independent of the time, it is scleronomlc. The con-
straints may be defined by non-integrable equationé in iv ’

in which case 1t is non-holonomic: otherwise holonomic. In

the case of a non-holonomic system the constraints if def-
ined by non-integrable Pffaflan equations will be called

linear: otherwise nonlinear. The rheonomic non-linear

1
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non-hoionomic eystem is the most general, including the
others as special or degenerate cases.

The equations(1l.1.2), supposed to be independent,
allow us to express the rectangular coordinates x, as
functions of n = 3N-r independent parameter ql,qz,...;qn,
called the genseralised coordinates, and of the time te

Let the transformation equatione be
(1.2.1) X-_V: VQC; qll7q/k,”-7 (1/“):—:_ x:v(t, C\/S) 5 Y I PR W

Differentiating (1o2.1)fw;th fespect to the time,
we get .
(iez)‘ % 2vg
.2.2) ,,wq/ﬁ»
| Substituting the value of x_, and iv from (1.,2.1)
and (1.2.2) in (1.1.2) we get the equations of constraint

in the following form: ‘

(1:.2.5) f“(ti ‘i/IJ CI/R’)"') ‘l/“?‘l/laq/z '>7 ‘}n) '—::ﬁ((‘ti ‘1/85 ‘{/S) =0, o= l?z?...,r.

Let us now assume thatithe equations (1.2.3) can be
solved to obtain any r, say thelfirst r, q's as functions
of t, q's and the remaining q's.' Then we shall have
relations of the form: |

e 4= (5999 ‘v 2, e )zfvf;ww

T+2 n

(o(_t,z) ST = f~+l Yok, §=1,2,. )

In view of (l.2.4) the relations (1.2.2) take the

form:

#



. . ol . .. o YA
(102.5) X,v: xv(t,q/sj C‘/"‘): X,_V.
1.3, So far as holonomic or linear non-holonomic systems

are concerned,'the principle of d'Alemberf-Lagrange and
the principle of least constraint‘of Gauss are found to be
‘consistent. The question arises: "Can these principles be
extended to nonlinear non-holonomic systems9" In an
attempt to answer this question Appell [3;4;5]- and
Delassus [12;15;16] found that the principle of least con-
straint of Gauss could be extended whereas the principle of
d'Alembert-Lagrange broke down.. In other words, the two
fundamental principles of analytical oynamic showed an
inconsistency. | ib | |

In 1933 N.G.Cetaev [11] considered the problem of
nonlinear non-holonomic systems: In order to remove the
inconsistency bétween,the two anove-msntioned principles he
proposed a new definition of a virtuel (possible) displace-

ment which can be expressed as follows:

Definition 2. 5xv is said to be a virtual displacement
consistent with the constraintS'(l.2;$) provided that the

relations
,bi/ .
= 9%y : L= Ryorsgs Vel ooy IN
(1.5.1? va ;%; Sﬂé _ ( T+ &y ooy VAo )

hold, where 5q1 are infinitely small arbitrary quantities;
The constraints for which the. relations (1 3. 1)
hold are called constraints of the tzpe of Cetaev. |




A sallent feature of Definition 2 of a virtual
: i
- displacement 1s the fact that 1t contains as a special case
the usually given definition of a virtual displacement for
a holonemic or linear non-holonomic¢ system. Moreover, the
existence of » virtual displacements, satlisfying the con-
ditions (1.3.1) hes been shown by Cetaev [11] . He also
proved the relation . .

&'o 6’. ai’ (J-- 5’-
(1.3.2) X -o0x =_—x(49_049
. . Y v 29; ﬁk %Q)
In the above relations div , déi denote the change in

X, ’éi’ respectively, along the actual motion during an
interval of time dt and 4yivA, S,éi refer to the correspond-
ing changes, during an interval of time 5%=dt, along any
conceivable motion which is consistent with the lmposed con-
straints. From (1.3.1) and (1 3. 2) it follows that Sx, §ay
can be taken proportion to dx; 5 X dqi, Sqi, respectively.
By virtue of the relationms (1.3.1) the constraints
(1.1.2) impose.the following condifieﬁs on the variations .
of the"rectangular coordinates x; :
(1.3.3) E_FS‘. b, =0 . @:\,z)...jr; V= 1,8y 3N).
. - X, -

The conditions (1 3. 3) 1n the generalised coord-

'ﬂlinates assume the form:

(1.3.4) ' . Bfa Sw__o ; (5:bzrﬁ$55=b%"wha.
. Bﬂ@ :

That is, the relations (1.3.3) and (1.3.4) are equlvalent,

As a consequence of Definition 2 of a virtual
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displacement 1t becomes necessary to restaté

The principle of d'Alembert-lagrange for constraints of

v
the Cetaev type:

In the case of ideal constraints for every system

of virtusl displacemehts va satisfylng the conditlons

..a.E"_‘.SX. =0,

. . -V
axw
the equation 3
' % - 21y %y-rey3N
(1e305) ™%, - K %= 0 (v=1:2%--53N)

.holds.



CHAPTER 2

EQUATIONS OF MOTION AND THEIR TRANSFORMATIONS.

2.1, Some General Considerations.

In this chapter we shall derive the equations of
motion in various forms. The mechanical system will be
assumed to be subject to nonlin;ar non-holonomic constraints
of the Cetaev type. The derivation of the different forms
of the equations of motion will be either centred around
the application of the principle of d'Alembert-Lagrange, as
given by the equation (1.3.5), or based on some transform-
atlions, Moreover, the equations will elther involve the
kinetic energy or the energy of acceleration or some
function R or K to be defined-later. 0f the functionsR and
K the former will be shown to- coincide, under certain:
conditions, with the energy of acceleration and the latter,

under the same conditions, with»the Gaussian constreint
L7

defined by (1.1.3)

2.2. The General"Equations of Anpell.

'~ As shown by N.G. éetggv;ti1j , on the basis of Def-
inition 2 of & virtual displaceéent,'the two fundamental
principles of analytical dynamics - the principle'of
d'Alembert-Lagrange and the‘principlevof least constraint
of Gauss - are consistent;"lt'is, therefore, néecessary
that the application of either principle should lead to the

same form of the equations of motion. We shall deduce the
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so-called equations of Appell from the princip1e>of
d'Alembert-Lagrange. Theselequatibné were first obtaiﬁedA
by Appell [5] , using the principle of least conStraint of
Gauss. However, the pfinciple'of d'Alembert-Lagrange
failed to give them.’ '
| ‘Let us coﬁéider a mechanical sysfem whbse position
is'characteriZed by n generaliséd coordinates'qi,éz,...,qn,
-and assume that it moves under the most general type of
nonlinear non-holomic constraints of the type of Cetaev.

Let these constraints be expressed by r<(n equations:

ECE I A e A L N IS Wi
(&=0,20,755 = [,y esy T)e

Further, let us supposé that the functional matrix
%l
29s

is of rank r. According to Woronetz'[29] we can then

-choose; without loss of generality, the last n-r éi
(L=r+l,r+2,...,n) as independent parameters and solve the
system of equations (2.2.1) with respect to qd (=1, 2,...,r)

Thus we obtaln the follow1ng equations
(2.2.2) -qvf %Qt;qv.’%"ﬂ"‘iffé wrfu"c"ﬂz""’q’n)a ‘h(h T %)

The equations of transformation from the set of rectang-

ular coordinates (xw,) to the set of (qs) variables are

(é.izj.s) =%, (699 9,0 = %55 %)

(v =\,z,“,3N).
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Differentiating the equations (2.2.3) with respect

to t ,we get
| : Xy - Xy
X = — + —
(2.2.4) 2T Yo 3t

Substituting from (2.2.2) in the equations (2.2.4)
we find,‘by putting a dash to every function of the indepeﬁd-

ent velocity-parameters:

. - » el . | o . . - o/
(2.2.5) AN A S e e AL
X a.x’ a / [ - ; f z".‘ ) l
X = ST% 1Q *'\f; (4 = T4, T2y es™) 5

‘Where‘45'rapresents terms not containing §1°
From (2.2,5) it follows that

9Ky _ 2%y |

29, 29,

According to the principle of d'Alembert-Lagrange

(2.2.6)

we.have
) V—X)(Sx :-.o,

whereva satisfy the conditions (1.3 1). Hence we have
. va |
(2.2.7) ( o) -y"'X> S

Since §qi are independent, (2.247) leadsto the

relations:

: v 9x " . A
(2.2.8) mv)x-_v --—,—1-/ = X _a._zc-i ' (L:T+l,1‘+2,,...,‘r\,>.

Introduée the function

'S: .me"'
Y v %)
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called the energy of agceleration_of the system, and
sgbstitute,in S the expression for iv from (2.2.5). Then
S transforms into S which is a function of q;,d,
(1=r4+l,r+2,...,n), a5 (8 =1,2,...,n) and t.

‘ By virtue of (2.2.6) we obtain

’ 25 . iy . DX
(202.9) —— =m)X—-—.—-—= W\a_l/)‘c
‘ 29, Ty PV ag,
If we put
. ax

v
T
the equations(2.2.8), with the help of (2.2.9) and (2,2,10)
reduce to the form ” ) ' ’
: , ,
‘ P, - : .
(2.2.11-) S. = QL. . (4’:1‘+|,1‘+2;,..A.’1\,),
. ._ - 29, | | -

These are the general equations of Appell. N

‘Corollary 1. In 1948 G.S. Pogosov [26] obtained the equat-
ions of motion for nonlinear non-holonomic constraints of
the Cetaev type, using the principle of least constraint

of Gauss. These equations follow:as an 1mmeaiate coroliary
" of the eéuatibns (2.2.11).

| | From the relations (2.2.4) wé have

%, 2%, axv 2%

(2.2.12) - ($=1 Ay L2t 142,70,
g} _, 24, a% 29, 2% . |
If we put
a = 9%

(2.2.13) ”
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we obtain from (2.2.6) and (2.2.12) the relations

(2.2.14) By 2%y 2%y Mﬁ ‘
. 29 9% %% %
Putting
(2.215) @ =X 2%, Q =X 2%v,
- 2%, . 29,

it follows from (2.2.10) and (2 2.14) that
Q=0Q-20.

'Hence the equations of’ Appell take the form

(2.2.-16) 28’ Q a,
. i aq,i

Qx =LAy, = TR M)

These are the equations of motion obtained by Pogosov,

Corollary 2. It 1s possible to write the equations (2.2.16)

in a symmetric form., To this end, all we have to do 1s to
use the function S in placé of’ s,

We have ) o 5
S _ BS _ 95 %% .
29, 29, 9%, 2%

Also from (2 2.2) it follows, on differentiation with

‘(2.2.17)

respect to t that

'ci/“ a;vz +tm¢wotwnimm%c’/

"Hence by virtue of (2.2.13) we get

(202.18) ' _?_j,._;“_ = aqld = a .

- m—— TR -

Finally the equations (2.2.16), in view of
(2.2.17) and (2.2.18), assume the symmetric form


http://22r.25f.22b:-*
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| S _Q _-a _Q
(2.2.19) —_— = . !
29, - B‘i/ “> _

(ok = L&, -7 i :Y‘+\,Y‘+&,~--:Y\’>.

Corollary 3., Suppose we define r parameters 7\-1, 7‘2"“”7\7‘

by means of the relations

3 | o
(2.2.20) - Q = A > (%, B=12,007).
awd, % |
Then the equations (2.2.19) give
(2.2.21) 2’_5,_% —_=a;“'7‘P s
2% 29, |
= P uin—E v (L:'f‘-}-\,"f‘*-?;).,,)'r\),
a7 -

But from the equations (2.2, 1) we have
| e 2% 25 _o
BC[/ 3‘111_ 3‘1/

or, by virtue of (2.2.13) we get

P
(2.2.22) a‘(ﬁ‘ = aa-“—{?-
' ’ 3‘1/ , 21/« ‘
Using (2.2.22), the equations (2.2.21) become
(2.2..;‘25) ‘ oS Q = >\|5 B{-ﬁ 4(]5-_-.I,R/,...)T‘;,L=T+I)T+R,,...,n.).
T W ,

The n equations (2,2.20) together with (2.2, 25)
give the equations of motion in terms of Lagrange's

multipliers o
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2¢5. A New -Form for the Equations of Motion.

Here we again obtain the equations of‘mofion for
the mechanical system treated in the previous section.
These equations, invplace of involving S, thé energy of
" acceleration of the system,‘will'involve & new function R =
which dépends on the kihetiC‘energj of the system. Further-
more, we shall invéstigate the rélatibnship bétween the
functions S snd R. - |

Suppose the position of the &echanical systeﬁ is
. defineq by n_generalised coordinates ql,gg,..,,qn, and let
the nonlinear non-holonomic constraints of the type of
E;taev, iﬁpbsed on the mechanical‘system, be defined by

r{n equations of the form

(2.3.1) ](d(t 5 Y% U Yoy Y = = lAenT).

If the functionsl matrix

‘bfd S.—_Iz...'r\)
2 Ys ( 1

is of rank r and the q's are suitably numbered, we have

(5.8 | ak‘-=ak(t;qvl,%,...,wa,m,a'vm,...,wgab}t;qys;@

(d_l yeeny 15 2 T4, 142,00 S 2 1,20

Let the cartesian coord;nates,'va, in terms of
the generalised coordinates be given by the following
equations: |

X = . Q. . =% (t:
v 'V(t’ci’:’q/zf Y ‘_‘xv(t’q’S)'
Differentiating these transformation equations

thrice with respect to t, we get



¥

f' ‘22".’

+terms not containiné ﬁ,

k ) P = 12”.”r,ia,r+lr+2“.”m

Ps

‘Hence, using the notation (2.2.13), we have

(2.3.4) ?_:’i?-':?_fiz 2%y a4 %y,

Let T be the kinetic energy of the system which,

with the help of the equations of constraint (2.3.2),15

trensformed to Tl . Then we have the following results:
/

1= _.:\’—IT?"U;‘T;"V ? T ‘mn/)x'v % T =My 4 w)xvi:v :
Using (2.3.3) and (2.3.4), we find
_"I 5" (X}
('20335.) . 3T —R,Tvt_,v xv_::_‘!. +M1/ iva#
. . )

:&mil’_‘_z+3m>'< Zfl.}-?xvﬁ‘_\_
<, < -
1t % Y09,

Xy 3 X, ?%Q é-xv ' 3€& 3an‘

1% i S o aw 3%, "

Let us now introduce a function T; ; which is

- / .
the function T considered as a function of the q's and ¢

i)

only, i.e. for fixed values of the q s. In what follows we

denote by ésothe fixed value of q g, 8=1,2,...,n. With

this in view, corresponding to the expressions (2.3.3) we

get fhe following expressions:

. ax, .
%= %;v ;i" . ?af;; ;i'ﬂv‘;;‘v awﬂ"i’ "a«,;%t“’z o
 '(2'.3.3)§ yaw,_zl’ v 3-&?‘?1[ +3;:; ’ .
| | x" ﬂié&;ﬁ*%ﬁ T aﬂf q,a m*v, ) ;'m Wét*:{;wj’ﬁ;}*
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* - 2¢ vw ngﬂgo zxv
AN 2;;1' 3«/3‘;m SRR oy
(2.3.6) < +>)°/;; ok * w ;

r

o) dxqy 3 Xy o 2 Xy Yx'u y

&= 2t31/-q'i+ atzuq’ »«wv W,,ﬁ'a a‘w“v °‘ﬁ/ré+
oy

3‘1/,,(3‘? q,uqy >“v 2%0'/ q’ }

L+terms not containing q. -

Since the second of the relations (2 3. 6) shows

that
PE -o,
29,
it follows from the relations (2 3 6) that
bT - Bi . )x
(205.7) = RITYY‘V)X:VTK ‘VV\(I_V) X._V_s__'z
: - Yoo ;
R A
=m k) I Xy 2%y 2% Py g, LIy 51/31/«
@V aray, A 2% 9% Yo 2929, B2,

o z )
- Bz‘xv Cf/ ?‘y’d*aiw ‘1/ ]
2,09, Yo 9 399, o

Because of (2 3.7) the relation (2 3. 5) becomes

' D) ﬂ, . Bz 'ZT
(2.3.8) —I- = ?IW\(V)’%,—D—.Y— +
. . )@a, WL( 31@
Let us define a functioan'as follows:
; Y
R :‘_(T,BTO> .
2

The relation (2.3.8) then reduces to
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?RJ s Dx .
(2.3.9) —_— (1/) x, S v Q‘L =“t‘+!,*‘*2'>""n)'
3% Y
But from the principle of d'Alembert-Lagrenge we

have

_X) 3"1/ 5, =0 .

or, the independence of5qi's leads to the relations

('V) 4

. /
bx.‘/ = J‘.:'Y‘-\—‘ T4 R eee, 'n'))
m X = = H ) >
(2.3.10) T Q; (- .
4
where
| >< 'Bacv
Y .
a%
From (2.3.9) snd (2.3.10) it follows that
. , /
2R .
(2.5.11) —_— = QL 3. (L =T+‘)'f+2/) )n)
29.
4’ .

which sre the required equations of motion,

| Comparing the equations (2.2.11) and (2.3.11) we
observe that both S/ and R’ satiéfy the ssme equation. In
other words, the function R/ coincides with the function
s’ » the energy of acceleration of the mechanical system,
as far as the terms in ﬁi ({=zr+1,r+2,...,n) are concerned.

Further, let R denote the function R’  without

taking into consideration the equations of constraint

(2.3.1), 1i.e. without changing the dependent a into éi
. : « v

and q into ai' Then we have
S
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QRI _ 2R 2R az“a
3‘114: az"; 31/ 3%.

(K= LAy T 5 4 =14, T42. ) -

In view of (2.2.18) the above relatlons become

? P\ _ 2R R _a 2R . (e(-;l,x,...,-r,' izt na,, )
i =z
3‘7,, 3, 0% ,

Also from (2.2,14) and (2.2.15) we have

(2.3.12)

By virtue of (2.3.12) and (2.3, 15) the equations of
motion (2.3.11) assume the symmetric form |

| - 2R -
,(2’3'14) | Y ‘QL‘ %t 3?.‘;" Qa)

L

(o.(: LAY 5 ‘T”'T*“T":’?’J"‘ ,)Y\,) :

Comparing the equations (2.3.14) with (2.2.19),
Wwe find that R and S both satisfy the same differential
equations. Consequently the function thcoinci:ides with S
as far as the terms in iis (s.—_1,2,...,n.5 are concerned.,

Special Case. Let the linéar non-holonémic 6onstraints

be of the form

Wd——: AQL$L+ Ad ' ' (“3 l’z)-'e)r;i’=1‘f",’r+&?"'l'n') )
where A ., A, are functions of 9y ,0gs ¢ 00,y and t.
Then ' | B
a = % A . | (COULARA FYEUNE SR ) )
oL 251, KL .
A .

Accordingly the genersl equations of motion (2.3.,11) by
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virtue of (2.3,13) reduce to the following ones:

I}
.0 |
(203015) "-_.R':_ = Qi*-Aded (d ‘ "L 'fqlf.‘.&’ "n')
29.
4
The above equations for the linear non-holonomic
systems were established by I.Cenov [9] .
2.4, A Transformation of the Equationsof Motion.

In the pfeceding section we obtained the equations

of motion in the symmetric form}

2w‘ i

Let us define a function K as follows :
(2.4.2) K?R-Q%4Q$-
o : v *

Then by virtue of (2.2.18) we obtain
K 2R _D_LzP\ VQ*'“;“Q,(
2 2, *a,

and, consequently the equationsi(2.4.1) reduce to the form

(2.4.1) QL Q@ ( 3? Q) (e(=|,z,...,1‘;i=f+|,f-+,z,.,.,n).

(2.4.3) 2 K =0 (L2740, ¥4 2e V).
24,

Moreover, let K’denote the function K when the

equationé of constraintA(z.Z.l) are taken intb consider-

ation., Then K will satisfy tﬁe equation
: ' Y S v “
(2.4.4) K =R —Qiﬂl,i—Q‘q,“,

where a is considered as a function of q (izr4l,r42,...,0n).
: « 1 ’

~
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Hence we agaln have

1 i
_a_|<.- =ZK—— —Q.+® Q .
. .. & di— oA
Y
Y, %
By virtue of (2.3.13) the equations of motion (2.3.11)
then assume the form’
/
2K o

29,

The equeations of motion in the form (2.4.5) show

" (2.4.5) (b=t ram) .

thet the function K’ assumes»sta;;onary-ﬁalués in the
actual motion when compared.to any conceivable motion
(consistent with the constraints), obtained by varying ﬁi
in K . | | | '

In the next sectlion we shall prove that thé functiﬁn
k' 1s actually a minimum along the actual motion of the

mechanical system.

2.5. The Function K and the Gaﬁésian Constraint.

In order to show that of all trajectories consist-
ent with the constraints, the actuel trajectory is that
which has the ieast value of the funetion x’ , We shall
first prove that, as far ﬁs termé in 51 aré,concerned, the
function K' coincides with the Gaussian constréint‘defined
by the equation (1.1.3) | |

If G denotes the Gaussian constraint, we have
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The first term on the right-hand side is the energy of
acceleraﬁion s’ obtained by taking constraints into
account. If in the second term we substitute for iv its
‘ expfession from the second of the relations (2.3.3), we
got . .
G = S X ( q,)+terms not containing q.
LA

2%(
As remarked in Sec.Z2. 3 the function R’ coincides with 8

as far as terms in g are concerned. Therefore, we can

write

C‘l R Q C‘/ ﬂ/ + terms not containing q

; k( ,.+terms not céntaining q-
Thus‘the truth of the asSert;on is proVéd.
o Next, to show the minimum property of K , We only
have to prove that this property holds also for G.

| To esteblish this result, let X, be a typical

component~of acceleration in a tra jectory under consider-
ation (which is supposed ﬁo be kineme#ically possible but
is notﬂnecessarily the actual trajectory). Further, let'ﬁ;o
be the corresponding component of acceleration in the
actual trajectory. We also assﬁme that at the time ¢
the coordinates, x,6 , and the velocities, x, , of the
system are the same in the consiaered,and the actual traj-
.ectory. Then, if div is the change in iv along the actual
trajectory in an interval of ti@e dt, and 5iv is the éhange'
along the considered trajectory.in an interval of timeS%L=&i,

we have



X =
(2.5.1) 3

Now, according to equation (1.3.2) a small dis-
placement of thelsystem,va ’ which 1is préportional to
dj;- 55;, is consistent with the equations of constraint,
l.e. it is a virtual displacement. Hence the principle of
d'Alembert-Lagrange can be written in the form .

s _o,
(wv v)(d'x’ 'Sx)
or, by virtue of (2.5.1), in the form

(2.5.2) (% X)( %) =
of, finally in the form
X . V¥ pow B
Vx) ( ..x):.'_-m.(x_x)_
z w‘[—y) v -ij w0 2 Y\ v Yo
Since the terms in the summetion on the right hand

side are all positive, it follows that
. ’ 2 2
_|-m<z<l_;e) >nw()< | )
2 v "("-V) v. (v:
which establishes the result.
Remark 1, For a linear non-holonomic system the mimimum
property of"thg function K[‘was proved by I;Ceﬁov [}01;
Remark 2. As a consequenée of the fact thét the function
K' coineides with the Gaussian constréint G as far as

terms In g are concerned, it follows that

(2.5.3) bﬁ" =0 (i=f+l,*‘+2»,---,n)-
e 24,
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These equations esfabliéh the stationary prOpérﬁy dfiG.
That thé.sfationary property automatically leads to a
mihimum has-already been proved above.. Since the equat- .
ions (2.5.3) were deduced from the principle of dtAlembert -
'Lagrange, the compatibility of this principle with the
principle of least constraint of Gauss is 1ndirect1y
established. -

The following is an alternative. but interesting
approach.of deducing the pfinciple of Gaﬁss from the princ-
iple of d'Alembert-Lagrange.

From the eqﬁation (2.5,2) we have
(2.504) | (m(V)x-y~Xv) (‘Iv__

But since %’ '-%h‘ represents the change in the acceler-
atlion causing a deviation in the trajectory of the particle,
we can put . | ‘
§% . X _%
v v Vo
The equation (2 5.4) then reduces to
‘ ' -X)Sx =0.
Since the forces applied are given and.canhot be varied,'the
above equation may be rewritten as foilows: :
(>< 5(?‘V"Tﬁvi v ) -o.
)
This, however, means that

~ % :
-2 -

This'again establiéheé the stationary property of

the Gaussian'constraint for the actual motioh.'To prove that



it is actually & minimum we can proceed as before.

2.6, Lagrangisn Form for the Equations of Motion.

In Sec. 2.3, we obtained the equations of motion
for a nonlinear non-holonomic system in the form given

by equations (2.3, 14), €

R N
(20601) '9_5' - Q&, a’ - Q() ) (d:’,z,---,'f, _T+I)T+R,)...Jn,)

29 aw

with
(T 3T),

where T 1ls the kinetic energy of the system without taking
into consideration the constraints imposed on the system,
and T, 1s the value of T for fixed values of the general-
ised velocities ds (s;=1,2,...,n);

Here our aim is to transform the equations (2.6,1)
so that they assume a form Similar to Lagrange's equétions"

of motion., To this end we first prove the following

Lemma: For R and T defined above, the ldentity

(2.6.2) — -—"-LBI,——-B——‘———

hOldS fOI‘ s:l,z,oc.,ng

" Proof: We have

(T W\.’C’c

z n ¥ V2

i}

m x X
v v’

| (2.6.3) /[ T

= m ii&.;w» x X .
) v v v v v




Moreover, since

we get

X . 0%y ? Xy ¢ ) Xy,
X, = =29 Cl’ t a[’ zt’*
(2.6.4) A« % >"V>‘V %

X _ szv : i}nw‘s ,
e {b%tﬂ/s a@aﬁyﬂ/%}( . et ) 3%
- SLo 1,200,

From the rilations (2.6 3) and (2.6.4) it follows that
Ei;_‘Zw%”QVQ:? + (vfﬁigji
29 2% ’T

or,
. 2

(2.6.5) 2 2%y

| Y . (2 :
=2m x 2V L 3w x
227'/5 o v 3% + 42 ”{B%’t aq/‘aﬂ/?/[}

Now if we denote the fixed velue of q by q s then
- % = axvﬁ/ ?x'l’ i
v 3‘% So at :
’ z
Pxy ] LTI : 7”‘1'

1

(2.6.6) 4 %

ac[/Dt So 9‘1/3‘1/%0% Bta‘}ﬂ/ o

e ’) x . ,
%, - B e e g §

~ where in the first term on the right-hend side of the last

relatlon we have'interchanged»the repeated suffixes.

For these expressions of 3; , X and X _we have
. ‘ v
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L X x
o 2 Wvy
To v,y v?
‘E_macfé._l_m,x'a'c'
vV oy w v v

Hence, In view of (2.6.6) we find

‘DT RIW}:V) 5(:-u Bx + W(\'wiv 2}1
Y 29, g7
or, ' :

' Zi; 9 2 3 xv :
(2.6.7 - = ™

Thus (2.6.5) with the-help of»(2.6.7) reduces to

0T 3 ol =AM X ZEEZ
,e - o - ’V) Y v
aci/g ' 3‘1/5 ¢ acI/s
or,
2R e Biv
(20608) - . . = W\L"V) x_ll"—:." p) (S 1,
o aq/s 36[/5
"Also we have
é‘. QI_ — ____.._BT i.Q,(_m va 8 [ m)xvx.v
Y g, v
At 29 9% dt 94, 2 o> V'V Tag 2
cm i K m % A%y g d Xy,
v ?C‘/ o) 'Val,t 2(1, (1/) V4t 3‘1/5

But from the first two relations of (2 6.4) 1t follows that
. Bx-y Bx‘ll __ B’('1/

—_— -

a% a%s 2%.

‘Hence we get

AoT T _ .o %, g o
(206.9 ' 5 - m —_ . S_l) »-7'7'\,3.
) A, 3% W 55, | ( ’ |
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By virtue of (2 6.8) and (2,6, 9) the Lemma 1s established.
" The above is an independent proof of the lemma

which, of course, can ‘be easily established if we recognise .

the fact that R colncides ﬁithtS, the.enrgy of écceler-

étibn, as far as the terms in ﬁs are concerned, and make

use of the well-known result

> 4 T _ T (521200,

2 A% s
. Let us now use the identity (2.6 2) to transform
the equations of motion (2.6, 1) This leads us to the

following form of the equations of motioh

d 2T 2T

2.6.10) 4 27 21 _0Q ;a & BT 2‘!‘ _0
( ! AT L At 29, aq, d)

(= 1Ry A= T a1 42, 5T
- These are the lLagrangian equations of motion for the non-
linear non-holonomic systems.

'Some Special Cases:

Case I, If the system is holonomic with n degrees of free-
dom, we have _
(=0 (K0T AT R ,W)

The eduations (2.6.10) then reduce to the usual form:
o AT T _ ¢ (=12 m).

— —— — ——

Ai:b%@ 0% S | ‘

Case II. If the system is linear honholonomic, the con-

straints afe given by non-integrable equations of the type:
. _ A . A o o(=\>2,-)...7’\‘5l..:‘l‘+l ‘1‘_,.2,),,,’%
%d '4L%Q.+ o ( ' > )

where Adi ’ Aa are functions of Q15095 e se5q, and t.
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In such a case we have

aéu.z 2‘?/0(_____;/5‘0“;.
2611';_ ’
With these values of a_ the equations (2.6.10) become
gi_a_t,_,__ (L2 2T Q).
at 2%, at 29, 29, “~

(O( :l)z)..,ff‘, L:T-\-I,f,\.g,,...)'r\,) .

Case III. Let us define r parameter Al’ Az,...,;Ar .in

the following menner:

4 9T T 2f |
(2.6.11) 4 2.2 Q9 =, 28 « Bel,2)
At % « - P, e

where

‘( ( Ci/S C"S) =© (dzl)z’"":""a' 5‘")’76“‘?"")'

are the equations of constraint.
Then the equations (2 6.10) yield

d 2T . )\aﬂa

ak 2%, a% y ’.“ fﬂg‘

ﬁ o(L bcl/o(
Using the relations (2.2. 22), the above becomes
(2.6.12) 'd— 2"7‘: - “%‘-,——" - Q A B{ﬁ (P \2’) s )L T+|>T+R/,...)’h,>.

4t ‘bﬂk 261/4' AT Paq/'t

The equations (2.6 11) together with (2.6. 12)
represent the equations of motion in terms of the
Lagrangien multipliers.

2.7. Another Transformation for the Equations of Motion.

In the last eection we considered the equations‘of‘

motion in the so-called Lagrengian form, involving the
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kinetic energy T. It is assumed that in the expression
for T no substitution has been made for the_depéndent
velocitieé in terms of the-independent‘ones, l.e. cdné
straints have not been taken into account. In the present-
section our aim is to transform the sbove-mentioned equat-
ions by changing T into 7’ s in which the'dependent
velocities have been expressed in terms of the independent
ones. . |
Let us assume that the equations (2.,6.10) can be

thrown into the followlng form: v
(2.7.1) i:- —g—};’/* %'%’ +DL _ Q{_”%LQ« (0= ), iP5 4 =) T2 m)

’ (8 L )
where D; 1s a corrective term to be determined later,

' By virtue of equations (2.6.10) we obtain from
(2 7. 1) the following expression for Di :

D _ 4 2T 9T a(db’r aT>aLaT T

(.2.702?. L= ';"t" ;1'[— aq/" AL\ gt aq/ ac{/o( dt aq/ aﬁ/

But on using (2.2.18) we have .‘

AT _, 2T
7, o, 4o,
d 2T _doT _a 4 T _ 4 2T
2.7.3 L B e T —
( ) 0(.'(: bq/b d.t acl,/& AL th QOI/ &L aq/d ?
and
_?Ilz _al’. +..a_._{:-.2i?.( . (0(—‘-[,3',-'-»'1‘,'/:=++',T‘+'?f;'-",-r\9‘-

(2.7.4) - -

By virtue of (2.7.3) and (2.7.4) we}get from (2.7.2)

-~
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the followiﬁg expression for Dj :
| | IT a2
(27e8) D= 2T T (4, 2
._ ' oY, - % 2%

(F = LRy =TT

Let s now regard T as a 'function of d“ ((#=1,2,000,
r) only, ‘and in the sequel denote it by T, . Then using
(2 2. 18), we have ‘ ' | o

A o 2T

29, ‘_u %,

' d 3T - a 4T _ 4 21;
,(_2'7'62 at B‘k LAt g 29 L
and | |
(2.7.7) oL T 2
o 2% 3% 97&

Using (2.6.2), (2 7.6) and (2 7. 7), we get from

(2 7 5) the following expression‘

~

D-a 2T O _, d 2T _4 2T

S T T T2
- ?_Elé_z__t,a 43 I
29, At 29,  «L\&ag, 29
. S |
| D= 2h 4 2T 2R

R - e - A, =
$2.7.83 4 251/" At a%; oL aq/d

Finally let us consider R asié-function of ﬁd

( 4=1,2,00.,r) only and in the sequel denote it by R, .
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‘Then by virtue of (2.,2.,18) we get

R
(2.7.9) 3‘.{4 = -2, 2.
29, ) 2%

In view of (2.7.9) the final expression for B;,
given by (2.7.8), becomes

D _?L—'__'__EL—AI'—+2§1-

MW AR 2% 2

With this expression for Di the equations (2;7.1) take the

form

/ / '
(2.7.00) 42T 2T 2% 4 91 oR g 4 @

: n m _ A
. dt 3%@ 2%@ BﬂQ dt aﬁa 3qq v f x4 |
(0(:: Ry T3 L -.:.'1‘.+\,1‘+2,,...,‘Y\o).-

These are the required transformed equations.

In the case of linear ﬂonholonomic_systems the
equatiOné of motion in the form (2,7.10) were established
by I. Cenov [s]. | “ ‘

2.8; A Novel -Form for the Equations of Motion.

. ‘Once aéain we shall transform the eqﬁations of
motion (2.6.10) by means of an identity to be establisheéd
below. - This novel form of the equations of motion will
include as. a specisl case the result obtained bj I. Cenov

[V]vfor_holonomic systems. |

Let us first prove thé following

Lemma: If T denotes the kinetic energy of a holonomic

mechanical System, then the identity
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(2.8.1) 4 T T 2T

— ™ e

T AT A I

holds for s=1,2,...,n.

Proof: We have

(2.8.2) {

Also we have for &,S:gl,z,...,n the following expressions

. ‘Xv = x_yct;cvs)7

. 2%, . ax
. X = 7 Zv
S

AP .

 " % [ 13‘1,[1/7’ 31,31:1/5 at" |
Now in view of the relations (2.8.2) and (2 8 5)'

we find that . T "

al 31_ x_daiv 5 Xy
o _____.'__+'m.x___._
(?84) [ta% “’“’Atas ””"25’

and

2T L X, . n oIk
(2.8,5) - =" —= bt 4 +%)"§Va.v .
'% 29 °%
Since .
dxy Xy

< =T

2% 9%s
from (2.8.4) and (2.8.5) we have
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d 2T Zi. 4 2* 3%,).
it 39, 25, s %

By virtue of (2.8.3) the sbove becomes
’ 3 o .
LT AT ) g "\’ W ﬂ
#2323, TR B e

£
= -m xv{ 3, o s I,
UL oy a‘ys}t

- y aiv
= -~ X

Vy Yy Bﬂ@
T

29

This proves the Lemma.

Taking into consideration the identity (2.8 1)

we have

(2.8.6) ‘4—?—:’[ —2——[‘—'2-4-—2;‘_———3—,— ' (szl,z,...,n),
| oAt 9 AL DY 29 .

Hence the equations of motion (2.6.10) assume the form

(z.8.7) 24T 2T _Q_q (u,zz T > |
: : ; = L L + 56 : o ‘
AR oyt RTUE, g

(%=0,2p0 75 4 24,7 a2, ).

Special Cases:

Case I. If the system is holonomic with n degrees of free-

dom, we have

‘ a;(‘.' =0 for .d—;l,z,o.c,r;iz r+l,r+2,...,n.
In this case the equations (2.8.7) reduce to A
pd T 9T _Q ($ b0,

a2, 2, °
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a result of I,.,Cenov E?] .
Case II. If the system is linear nonholonomic, the con-

straints are givén by non-integréble equations of the type:

%/ = Ad‘.".}‘ + Ad . (d :‘,z’...,'r’,' L:T+[:r+],,-.-,n))
& L
where Aai s Ad depend only on Qy 9995 e e o5y and t.
Hence
54
a;i=- ?" ="Adl. .
29;

Consequently the equations of motion (2.8.7) take the form
(24 Al _ZZ.;Q>‘_0
Y % A
&tbﬂ& aﬂ&

(0(: i z)-..)f;l.. :T‘-H,T-Q-Rl,- ")“’) .

e — Wi

2’0(31: _B_j-__Ql.yA.
wtaqt aqa ,

Case IIT. Let us define r parameters Al,Az,...,)r by

means of the equations

- (2.8.8) z—‘i-lz _zj.-. - Q A D{p ~‘ (a(,P:l,z,.‘..,-r),

A T S

where (}. are defined by the equations of constraint (2.2.1).

Then from equations (2.5.8).we have
(2.8.9) - T : H .
i dt 31,4' 3?/4'_ 4 ai P acI/“

Changing_the order of summation on the right-hand side of

, (£ =147 43,..,m)

equations (2.8.9) and making use of the relations:

_'3__‘£E_ = ar.—-b—ﬁ’-
aq/L ou.agl/“

we can write the equations (2.8.9) in the following form:



The set of equations (2.8.8) together with
(2.8.10) forms the equations of motion with r Lagrangiaﬁ
mult ipli‘_e rs. ‘

2.9, Another Novel Form for the Equations of Motionm.

Here we‘shail transform the equations of motion

(2.8.7) so that they assume a very simple and novel form.,
-This ihteresting result will include as a specisal case a
result obtained by I.Cenov (7]

To obtain the equations of motion in the desired

form let us first prove the following -

Lemma: If T denotes the kinetic energy of a holonomic

mechanical system, then the identity

(2.9.1) 42T 2T 2T

e S P
holds for S=1,2,...,n.

Proof: We have

(T

—

mJ‘CX,
2 Wvv

at

(2;9,2) < T- % 0

T_ = Wwivgv +W\('1J)ivi1/ ’
" where k

X, = x, (% q,s)

).(_v = 91 0 + ’2",, >

(2.9.3) 4 7 2% s ot 3,

X axv 3 Xy

29, % 31,)1,1’51 za«,at‘i' at" ?
([_,S-_- 12, 0y V).

(2.8.10) z,_;&__?_I_?_I___Q. = ‘7\ i&'— (P:n,z,..-,r,'i.—.nl,nz;"'-

e
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By virtue of the relations (2.9¢2) and (2.9.5) we have

4 aT d ?_s_al 2%,
EN a4 ‘X.

alt ?@ 3‘1' J.t( @ 3,1, "% apv w v ‘I/

:27\‘&;——-+m ;A_. 2_1_._1 +m ‘x_bx‘l‘

: 'W)vaqu m,d’( ‘1/) v -,/aq,s

% D%y ;c(”.‘v- 7%\ pym. (3"1' W1
22 XXV X\ Vg + ) m X
vy, T 3‘1,57:‘1,?'1 v Biga‘ﬁ’e 29t

. 2 2
w % 8%y o=, . 0%
Wy A)
AR RN Mot (4

since
2%, 9%, 0%,

% % 2% |
Now differentiating the 1ast relation of (2 9 3) we get

o,

os X .- -
(2.9.4) xV:S(a‘yat(i's WWQW ‘1/) + terms not containing q.

In view of the expressioﬁs for T from (2.9.2) and X

from (2.9.4) we get

2T 2% %%
— = z"%o*bjﬂi'*“b)ﬁf;g
2% s q’s ,
o . . 2 z
2% 3%, Fx
=3 — 3"""' x
"L"'V)X‘V aqls 2% 11(31/31; 2“1/3'1' 1’() (B).

On comparison of (A)'and (B) the identity
(2 9.1) follows. o |

In section 2.8 we obtained the equations of

motion in the form
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zé_l'[_éi-Q.=a.( 24 2T 2T _ Q)'
dt 29, 2y o aLtaq/ 29,

(0‘ :I,Z,.-.,‘Y"; L :'7‘4.\,1‘...2,7...,7\,),

43T g doat (aT BT) 0-Q, s,
R« a" —a— — = Q.‘a. 4‘,
(2.905) J:t 21’( dLAta%) 3? d"awd L oL o g‘]

With the help of the 1dentity (2.9.1) this reduces to

2 2T 2T 3(a'r 2T *Q".
(2.906) (a'q'l. d")“]) aq/‘. d*b‘[/d) £
. A .

Now let To denote T considered as a function of q's only,

and let 50 denote T regarded as a function of g's only.

Then we immediately‘have

(2.9.7) oL —Z—T— ~0;£2T )
~ and
T, T T
(2.9.8) = -

.o di' P ’
By virtue of (2.9.7) and (2.9.8) the equations (2.9,.6)
take the form | W »

. i ,
QT 3 27, _ Qi. (L=f+|)f+z)...)n),
29, 29

which are the equations of motion in the desired form.

2.10, Transition from Equations of Motion with Lagra_ge's
Multipliers to Equations Free from Then. )

In several previous sections we derived the equations



- 45 -

of motion for a nonlinear non-holonomic éystém in various
forms which dld not involve the undetermined multipliers
of Lagrange. Later, however, by means of a certain trans-
formation we obtalned from them the equations of motion
containing the seid multipliers. Here we propose to con-
sider the converse problem, 1.e. the transition from the
equations involving the undetermined multipliers of
Lagrange to those free from them. In the case of a linear
non~holonoﬁic system such a pfoblem was solved by I.I.
Metelicyn [21] 1in 1934. |

Let us start from the equations of motion

(2.10.1) AT T _Q -

dt a@s atvs -S. \ A agvs

(o( =|’2,,,,)T‘5 S= |,z,---;"’);
obtained 1n section 2.6, where

(2.10,2) f (ts9,39) =0 C (@=n2en®

are the equations defining the nonlinear constraints.
To obtain the equations (2.10.1) the following
assumptiéns were made:: h ‘

(1) The functionsl matrix
it

29

(11) The functionsl determinant

is of rank r.

(2.10.5) WofarA) (i ) £O-
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Under these_assumptions it is possible to apply the imp-
licit function fheorem in order to obtain the foliowing
expressions for the dependent velocities:
IETETEN (arrmrstamiran
' S:'a“’;"""fb),

On differentliating the relations (2.10.2) with respect to
éi we find

2 2% ofw

(2.10.4)
~ WWW

=0 . (a(,r&\,k)...,f,‘L:-ru,-r_,z,).,.,n),

Invview of (2.10.3) we can solve the system of equations

(2.10.4) for 3‘?& ; obtaining the following expressions:
: 2

2 E oG,

L R O AR & AR AR
(2.10.5) Bél/zh,a,‘: ?(ffar £ ) (T b0 :‘m
- 29, R T 4% T )f-f)/a(%,"n :‘k'.)

2y, L 3ubud )i

-

a@k B f"l a((n PR AN ;ff)/)(ﬁ,‘y 3 ;?f)
Denoting the left-hand side of the equations (2.10.1)

by M_ , we can rewrite them in the form

S

(-2.i0.6) 2{“ = (4=l,2,;..\,r5 S =|,z,.,.,w).

31%

If we iIntroduce the notation

we can rewrite the equations (2.10.6) in the matrix form



(2.10.7)

Let us now partition the matrices in (2.10.7) in

the followlng manner:

>¢ ) %, L4/ )é"fﬂ 2 ‘.V”, ? ":t/wn
L T I R
of 3y 26, 2 2y
W, 2% % %, % 23,
m\ M_'N—l
ml-_: 15 W\J. mz:’_
M. - Mo

Then the equation (2.10.7) is equivalent to the

matrix equations

A?‘ :‘VW"V

(2.1o.é)
_ k BA =,

Taking into consideration (2.10.3) we can eliminate
A between the equations (2.10.8) to yield
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2 -

. A—\
_(2.10.9) | BA my =m

If lAi denotes the determinant of A and A is
the cofactor of 3£¢ in ‘A‘, we have

o, CVP 2, A
- )i%+l 3%4+' N
BA b e e
A} \ 28 . . . A
29 29, o
I T "R W) PR N L Y SR
) ‘Al ‘ 2;1’.,.“ 0“. )él'ﬂ-\ o 3;1/1‘*“ "

A h  Mapo M
v 251,“ « | aﬁl‘” A% bévﬂ ol P

CERNISTEN )

- But for«,p=1 2,...,r and 1._r+1 r+2,...,n by virtue of

(2.10.5) we have A N
Aap My Ly ey
TR A
| :. b('fl ’fzb;"'a‘fﬂr""7{r)
| 3(%,1%,”.,?3..W14)
. AL,

Hence we get

Qa ... ‘
LTH 2w LA

o ' -
(2.10.10) EA =
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Substituting from (2.10.10) into (2.10.9) we

finally obtain

a & e

1r+! &, 14\ 1,74l
& a ce &

LT T2 1,1k
e m, =",

a b &
LM 2, N
or,

a&i md = ML («:l,z,-.-,f,‘i. ='r'\",'f+2'»"‘>n)-

Writing out the full expressions for M, and Mi

the last equations become

,i?.I-EI..Q,:a,(A_?;‘:._éT__Q)
dt 29, 29, * «e\dt2g 29,

(6= 1,2, T 5 & 2tal, T4 2,0, TY)s
These equations as established previously are the equations

of motion free from Lagrenge's multipliers.

2.11. The Equations of Motion in the Form of Determinants.

Starting from the equations of motion

42T _ 27T _0 :a,(_el,i__!—__aﬂ_—._Q
(2.11.1? m an 31& o L it'B%& 31& d)

(d=4,2f“,rgi=r+gf+z,”;n)
we propose to rewrite them in.térms of determinants all of

which can be obtalned from a certain matrix according to a

‘general scheme. For a linear nonholonomic system such a:
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problem was solved by I.I.Metelicyn [21]
If we put o

4aT 2T _Q -,

(2.11.2) (S-.hz,..,,n)

the equations (2.11.1) take the following form:

a.l"\—o

(2.11 05) M' (°(=I,Zr,--»,"','3.:1‘-»1,1‘4-2',...,7;).

Now let us consider the determinant

M, M, MM

o |2 h L of

(2 11. 4), | ?q"--?_a'?'_ 0% 2%
o oy . O O

W%, Y, %, %%

If we denote by A, the cofactor of M, (s-=1,2,

W Y
eee,n) in IA ,, we find, on expanding (2.11.4) in terms

~ ~

of the cofactors of the top row, that

(2.11.5) M + VL)AL - N

QX:hzr‘ﬁT;i?*+hT+kru,nD,

But we easily find that

= (-)T a({l’fz"“:f-r) .
;(éﬂ’gwR';'”) @1.)
b 2 o)
o : . . . "
2 Yy)
= (,)'f"l a. ?(‘prz o fr)
4 3(@p@2,n,1p

(2.11.6) AL

(2.11.7)

(0(::\,%,
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where a are given by (2.10.5)

ad
With the help of (2.11.6) and (2.11.7) the

expansions (2.11.5) become

)T—IM a PIC R RN +(_)f M'Lb({"{&,...,{r) ) IA(“‘

“ O, )
or , .
Al
-1 )
( 2.11 08) ac-li Mg( - M.i. = (’) \ 2 (fnf:b’ 41‘) (“sz’;“'af 3
' - 255, %) Attty ym)-
Since ) ,
24, |
(2.11.9) (8 fas o) 7&0

(% ih)"‘: “Y.,.) |

the equations (2.11.8) by virtue of (2.11.3) yield
(2.11.10) B e B (R o

As a conéequence of (2.11.9) and the fact that n - r
determinants of the type (2:11.4)'vanish, 1t folloWé that

any determinant of order (r+1) obtained from the (r+l)xn

‘metrix | v |
M Mo ", MT-H Mv\.
o oh 2 o
251,‘ _ a;i'z . 38"7 a{"rﬂ 361’»
(2.11.11) | e 2h 2R da o

? ""s 2%, ) _?_;‘_’f 2 él’fa_n ) 2 i

- - - - .« e s =

- e e a e a4 e = ma e e & = % e = = m-

oy ?_5_7_ . fo e ¥+

. e RS A

2, 9, % M. W,
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must also vanish.,

Hence the equations of motion (2.11.1) can be

found by equating to zero any determinant of order r4+l

obtained from the mstrix (2.11.11).
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CHAPTER 3

APPLICATIONS

3e.le Some General Considerations.,

There are not very many known examples of mech-

anical systemsbmoving with nonlinear non-holonomic constraints.’

In 1911 Appeil [4] gave.an example of such constraints,
However, nonlinear non-holonomic constraints‘can be realised
in problems concerning the regulation of the motion, or in
other problems of technical interest where the constraints
between the moving parts are realised by measns of electro-
magnetic devices. It 1s expected that with technical
development the use of nonlinear non-holonomic constraints
will also increase,

The procedure for solving problems with nonlinear
nonholonomic constraints is quite straightforward., To
obtaln the equations of motion one has only to write down T,
the kinetic energy, and the external forces in terms of the
generalised coordinates, and substitute them in one of the
meny forms of the equations established in the prgvious
chapter. |

Let us now conslder some examples of this procedure:
1, A system of two wheels and their axle moving on a

horizontal plane,
2. A disc moving on a horizental plane,

3. A heavy ball moving on a horizontal plane,
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Despite the fact that the equations of constreint
in all these examples are essentially linear nonholonomic,
‘they can be artificially thrown: into a nonlinear form. The
purpose of doing so is two-fold., First, it provides us
with examples of nonlineaf,noh-holonomic conétraints.'Second-

1y, it serves to illustrate the general treatment of the

' theory developed in the previous chapter, R ~
In viéw of the 1inearitj of constraihts the solut-

ions of the above-mehtioned exaﬁples ;re well-known, but'

the method depends on the use of the equations of motion in

terms of Lagrange s undetermlined multipliers. This, of

coursé, réquires the determination of these multipliers?

prior.fo the actual solution of the problem.. But in the

methods employed below we use the equqtiohs of motion estab-A

lished in Chap. 2, which_ére free from such'mﬁltipliers.

Consequently the calculations become simple;

5;2. Motlion of a System of Two Wheels and Their Axle on

a Horozontal Plane.

“Let the axle be a
homogeneous rod of length 2a
and mass mq, and'the wheels

be two homogeneous discs,

each of radius s and mass mg, Q,

which ere fixed normally to

the rod at the centres O and

. X,
O’ and free to turn about it. '

Let .‘O‘ X,v,%, be a
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reference system fixed 1n space and let the wheels'move.on
the plsne z=o0 (fhe wheel with centre O having a.contact'
without friction and that with centre O having’a perfectly
rough contact).

: Suppose we introduce an intermediate trihedron Guv:z
at the centre, G, of the rod with Gualong the roAd, GV - |
horizontal and perpendicular to Gu , and Gz vertical. The
parameteré, characterizing the position of the.system, ére
the coordinates (xl,yl) of the centre G, the angle vy which
G w makes with lel , and the angles of rotation 4 and X of
the two discs with centres O and 0O respectively.

The well-known theorem of Kbnig, when applied_first'f
to the entire system, then to eachAdisc, immediatély gives

for the kinetic energy, T, the following expression:

.2 2.2
(3.2.1) AT =mram, )(x+a.>+( TNV TS TR

Since the forceé of gravity do ﬁo work we can assume that
there are no externally applied‘forceso

If I denotes the instantaneous point of contact,
we shall éxpfess the kinemetical conditionvof the absence
of sliding at I by means of nonlinear (with respect to the
veloclties) differential equations. The absence of sliding
demands that the velocity a£ th; point I of the disc be zero.
‘But this velocity is the resultant of the velocity of G
and of a (y+&), parallel to Gv , due to the rotationSNy and .

& o Hence we must have
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(3.2.2) ¢ |
Ei famy.

Theée'are the equations of constraint of which the first

is nonlinear 1n_velo¢itiés.
 Solving the system (3.2,2) for %, and y, we get

. i"= a.(\i/.,.é)si-»‘{’:

(3.2.3) §=-a(¥ad) ey
Taking \, ¢ andX as the independent velocities,
we have,.in the notation of Sec.2.3,

5m a* 7"'“1.2'2'
AT (m+2m)ﬂ-(\r+¢) +("‘ ")a‘f+ bl T e %>

~and

u&’z mzaz.z‘
2T, mp ) (e (2 E0) £V, TR T T
Hence we get
5'."‘2' FA o ar M;,az * o0 mzaz‘kox-
-(m+kmﬂa(v+¢XV+¢ﬁ( )@va7;'¢¢+—z— x,

o () z ..k m ’l ..?- z uz
- a ™ Sma g ™A i Ma& % fiams
T' (m2m,) (\F+¢) +( 3+ ) Y+ 2 ¥ 2 + |

met containing the second derivatives,

T - T -o.
By virtue of the above expressions the function
Rf:___(T 3'F)
reduces to
R- L
% v

or, as far as the terms in second derivatives are concerned,

to
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! X0 e 5 .2 2.2 2.2
= am)a m I g R ma &g mad
PR = (meamde (3 TV

Using the equations (2,3.11) we have for the equations of

motion of the system considered:

[ (¥4 ) +( T +22) ¥ =0,
(3.244)

I\

(ma2m) (F+4) + (T2 +222)F =05

Z
X -o0.

.

The equations (3.2.4) can be integrated, yielding
the three first integrels: —

4

(m ) (1) o 2 TR 2 ()49 )0 (ST
(3.2.5) ¢ (maam)(¥ed) + B G = (mAm)(Vad)r R e
=%,
(

o

where \//z ¢, X are the initial values of v, o, X respectively.

The equations (6.2.5) are equivalent to
(3.2.6) Y=V , b=d  and X=X,

Integréting the above equations we get
(3.2.7) y=Vt, ¢=¢t, x4t
By virtue of (3.2.6) and (3.2.7) we get from the equations
(3.2.3): | "

x, = a.(\'y°+<§>°)siw vt N
(50208) . N .0

) \al=_a(\y+¢)wv+—.

Integrating the equations (3.2.8) and sultably

choosing the arbitrary constents, we get ﬁ
s 0 +p

‘ .\r 8 .0
- _alv+®) snvt,
“.' v’

2
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The last equations show that the trajectory of

the centre G is a circle, of radius 4

QZiii_l , described
¥°
with a uniform velocity,

5.3;- Motion of a Heavy Clrcular Disc on a Horlzontal Plane.

Let @ cirecular disc, of unit mass and fadius a, roll
(without sliding) along a fixed horizontal flane 0, X, 7. Let
the centre of inertla, G, of the disc be the centre of the
figure and the central ellipsoid of inertia be an elllpsoid
of revolution about Gz of the disc,

The parameters characterising the pcsition of the
disc are the Eulerisn angles 8, Y, ¢ and the coordinates x, ,
v, of the point G, for which z, is obviously equal to 2 sine o
If Guvz 1s an Intermediate trihedron, the componenfs
p,q,r of the instantaneous rotation W of the disc along
the axes of Guvz are given by the expressions:

(3.3.1) |=>=é, 4 =V 40, T o VO,

whence we get
(5.3.2) 9.—.‘:, \i”d"’"’e"‘il’ \i’CO‘\’e =$c"te-
If '%i is the velocity of the centre G, the velocity

of the point of contact I is given by the expression

VG-\-(I)XGI .
However, the kinemetical condition of the absence of sliding

demands that the velocity of I be zero, Hence we have

(3.3.3) V. + wx Gl =o.
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Since the coordinates of I referred toGQuVZ are (0,-a,0),

the components oftdxéﬁ>along the axes of Guvz are
When pro jected along the fixed axes 0, x, and Oy, they
become . _
_a_*mv_ra.‘;,&ia\,e@wy amd -&TM\V_APMQC&Y.
Hence the relation: (3.3.3) gives the equations of constraint

in the form:

W

o A 2, A A A
R G L
_’.1'.: TMV+PM9M1’
. il -rwv_tmeﬁmv
the first of which is nonlinear in velocities.

(3.3.4)

Solving the equations (3.3.4) for x and y , we get

-

i = -a.TCbS\y +an9MY 'E

(3.3.5) 4 )

| Yy = __a.r,&w\y-af S peod

Hence
,

" . . . . - . % . .
= -a,‘rmv.,.a.'r‘vuwv.‘.af MOM\Y*G{DMOM\F +af\rmawy,

(3.3.6)<
4= -afmy-afymv_arMOCdy -af,memy +a‘>yme&%
‘ .

where, as far as terms in the second derivatives are
concerned, we have
t;:é. ) . F:O b3
. —'. ‘. -me n‘zq- me ..C“e
(3.3.7) = Wemo4pyes® § = 2¥pestrtpesse,

+=4;+<,>me_ywwe,' | ié:-zq;‘ma_q/}:&me.
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In the notation of Sec., 2.7 we have
AT (e eldf oA +CF it |
where A,C are the principal moments of inertis of the

disc with respéct to Gu and Gz respectively.
Hence
' (3.3.8) 2T - (A+a.)t>+Aa‘,+(C+a.)r
(3.3.9) T =% a4

- If T, denotes the expression of T, for fixed

values of x, and m , then clearly we have
V ' ':fto =0- ‘
Consequently

(3.3.10) "_"':3 L = (x +«a)+fmm4 mtw-\tammz "\3:

With the help of (5.3.7) and4(3.5.8) we get

,
39 A%VCO'SQ (C+a)f\yme
/
(3.3.,11) . ¢ AT o,
. - Y
aT -0,
3¢
and
-t
_a.l:— = (A+a~z)‘>,
» 29 ' .
= —_— _A M9+(C+a.)1‘m6
(5.3.123 {3 4
BT' (C+a)f

Again, with the help of (3.3.5), (3.3.6) and (3.3.9) we

~ N P ~ —

find that



-

. . - 6]l =

AN evysne ;af,Fwwwe,
20
- 2N Lo,
(5.3.1:5). d ™
..2‘_];.: 0,'
TS
R\
and -, '
' A
-2-_—r—|-= a?‘?,&.wve,
20 ,
_ DT _ s
(3.3.14) < — = arwb,
2V
Z.T:'.: a.zf.
Finally, from (3.3.6), (3.3.7) and (3.3.10) we find
R, _

= BB (T 4b in B 4 preoso
28 ( f‘ o)

M . Reosolbo s )
_.5-7\‘:,— 'a'ma(‘DYMO -p)" |

\

g_g;._._: ,_af‘Uni/ Abne_+),

B The 6 - equation, written with the help of (2.7.10)
and simplified with the help of (3.3.2) gives

(3.5.15) (Amz)tQ -Ml”cote +(C 4d") gt =-gacmo.
Similarly, the V- and q> - equations are

- Ao
(3.5.16) ﬁ-[Aﬂ,Me+(C+uz)?@3]~i4€(azvm£9)-a—““e(f’vme-f)-;o,
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(3.3.17) (C-+a?)% _a?rw -0.

Simplifying (3.3.16) with the help of (5.5.;7) we get
(3.3,18) A% +\@(Acvc$e_c-r) =0.

The equations (3.3.15), (3.3.17) and (3.3.18)
are the well-known equations describing the motion of the
disé.

3.4, Motion of a Heavy Bsll on a Fixed Horizontal Plane,

Let & heavy non-homogeneous sphere, of centre O
and radius a, roll and pivot without sliding on & horizon-
tal plene z =0 of the fixed reference system lelylz:l.
Let us also suppose that the centre O of the sphere is
the centre of inertia and the central ellipsoid is an
ellipsoid of revolution sbout a diameter O Z of the
sphere, where Oxyz 1s a trihedron rigidly connected with
the sphere.

The parameters of the sphere are the coordinsates

(xl,yl,-zl) of the point O and the three Eulerian angles
8,V¥,¢ . The condition that the sphere remains in contact

with the plane Z=0 givesl
Z‘___ a =0,

The condition of contact without sliding demands that
%::O , i[ being the velocity of the point I of the sphere
which is in contact with the plane. But

- VI =V0 +(A)X01)

where \L' is the velocity of O and W is the instantaneous

rotation., The components of \L , W and 01 , along the axes
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fixed in space, are respectively (xl,yl,o), (pl’ql"rl)

and (o,0,=-a), where

(3.4.1) < <1,|=_4',4;nemy + B sy,

L T.-‘—' C‘PWB-)'":Y

The requirement of the sbsence of sliding demands that

it = (4
(3.4.2) ¢ jL:—f_l_,

x, 9,

the first of which is nonlinear in velocities.

Taking into consideration the relations (3.4.l1)
the equations (3.,4.2) are esquivalent to w :
X, = a&v (éibwﬂ’ §>Ah~9°”Y0)

(3.4.3) omap - _a(Besy 1 binddiny).

Differentiating the equations (3.4.3) with respect to the
time, we get —
i‘za(§My+é\}lcxv-&}MBmw_$ewemv.,.cpy’/uuemv),

(5.4.4) .e . . .. . .
~ i =,a_(§m\y-é\ib§»\n—?MOM\}’+¢ew9M\y+¢wM9M‘V).
{

The kinetic energy, in terms of the notations of
Secs 2.9, can be written as

&
(345) 2T = "%}+1-JQ+V&WQ C@+ww@,

where m is the mass of the sphere and A and C are the
moments of inertia about OW and 0z , Duvz being an inter-

mediste trihedron.



From (3.4.5) we get on differentiation with respect

to the time
. Ve e N A
(3.4.6) T= M(*.".+‘3?3|)+A(°9+WM°+%—V B 4in 28) +
+C(4 piead)( v ase b aint),
. . o b R
T - m(;(-,z‘k“%a) +A(92'+ \yzﬁa-fe $AY YO &n 204 i—B\y Mzo)'i'
. i

(3.4.7)

fC(E Y erf0 125 0t0 2576 bime - ¥ ¥ 6 inal) -
- C(4'> +\i’°°49)(2,{{féme +8 \ilme) +

+terms not conteining the second derivatives.
Using the notaetions of Sec.2.9 we have, with the help of
(3.4.3), (3.4.4), (3.4.6), and (3.4.7), the following

expressions.

22T 33T omds 3 (md -C)oy sine ~L(AC) ¥ sina® ,
20 26 2

22T 320 - = A(F.620 108 4ma) 4 C(§ eod'® + & 00 _ 6 sim0_y6 4in20),
WV ¥

2 2T, o7, ma"(w_gpme ¢ecua)ma+C(¢+wma..vem9)

3%~

2¢ 3¢

Hence the equations of motion are

\ 2
(3.4.8) (A-\-maé')'o'.{.(ma?_ C)%@;MB_'E'_(A +C,)q/ ALun 28 =0,
(3.4.9) A({P&Z‘e+\ifé&-z9)+(,(q>m"e+$ma_$éme_ V8 4in26)=0,

(3.4.10) -«waz(éfv— éhe—cbéwe)me#:@;wm _\;,é,s;me) 0.
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Equation (3.4.10) can be written as
ma gm0 4-_(¢M9) +C .4_(<}>+~}er) ~mi OV4ino,
at A€ |
or,

Z y o 2l H ‘. . .

Also the equation (3.4.9) can be put in the following

form:

A iljc(\jwbv?e) N C‘%.c(&cose.,. \}zcoa“'e) =0,

for which a first integral is obviously
A . - &9 C . . . . . » )
(3.4.12) (y 4o )+ (‘P+\V“’-‘9) ces®6 = constant,

We can ignore the equation (3.4.8) since in the case undef
consideration we have
AT e )P AT o iR (b rbamse)
which, being a quadratic form 1n;é,ﬁf,$ , leads to 8
first integral -

I -
(3.4.13) 1- =. constant.

Hence the motion of the sphere 1is pompletely
determined by the equations (3.4.11), (3.4.12) and (3.4.13).
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CHAPTER 4

QUASI-COORDINATES OR NON-HOLONOMIC COORDINATES

4,1, Some General Considerations.

Let ql’q2’°"’qn be"the generalised coordinates
defining»thé position of a mechanical system. Following
Hamel [18] , let us introduce n parameters

- wl’ wz’ouo’ wn’ ,
called the kinetie characteristigs; by means of the

relations:

Ww=a & 4+ & L szt2,0i,m)
(4.1.1) ¢ lsq@ T . ¢ . ’
Where,als s al ‘are functions of ql,qz,..'.,qn and t. In
general the Pffaffian forms
als %5 '+af,

are non-integrable.,
Assuming that the determinant of the coefficients
QY§ is non-zero, we can express és a8 linear functions of

W. Let these functions be

(A
(4.1.2) 1, L 2 +b, (Ls=12,..,n)
where
(st " (st '
(401.5) I)ks: a b .nr:-—% a aé (l)s';‘)z’)“'l“)x

"a.‘lbeing the inverse of the matrix“a “,
With each ui we can associate a quantity dJWl ’
defined by



- 67 =

(4.104) AR =wdtoa dg e dt (L$=02,00m).

The quantities 4%, are called'thé differentials_of the
quasi-coordinates [28] or the differentialé of non-holon-
omic coordinates Ty o

If the forms
d. t
are exact differentials, =w, exist and are the true coord-
in the usual sense; otherwise Fl-do not exist,

The variations, representing the virtual displace-

. ments, of Qg are given by
. ' SK =a § A ’.,S;I,J',....,w .
(4.1.5) 1 = %59 | ( )

In case of a holonomic system, with m degrees of freedom,
all of 8ﬂ1 are independent. However, 1f the system is
sub ject to linear non-holonomic constraints of the type:
] A = | S=|,z...,w.'a'=|,z,...,-f n
AdS WS + ° ( ? ? < )
we can take

A A

&S T das 2 & od ;
- 80 that the equations of constraint become

wa( =0 (o( 252,47}, .
Corresponding to W, we have ‘ | ‘
' ,5%&}: o (&= 12,00 7)

The remaining §%; (1= r+1,r+2,...,n) are independent,

| In 1957 V.S.Novoselov [?5] generalised the
definition of non-holonomic coordinates. His definition
includes as a speclal case the above given definition of

nonholonomic coordinates for holonomic or linear
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nonholonomic systems. It is well-sulted in case where the
constraints béing nonlinear nonholonomic are of the type
of égtaev.
Following_the point of view of NovOseloV, let us
define the kinetic characterlistics by the relations:
(4.1.8) Wy =, (£ 4) (Lss=te o™,

where w; are not necessarily linear functions of éé.

If the functional matrix

i |
s

is of rank r, we shall have

(4.1.7) g =a(t;q;w) (L,s2020m
) %‘Q %’Z %S f% .
The variastions, represénting the virtual displace-
ments, of qé are defined by

(4.1.8) 81@ = ;%% 23 S ' (Q;:gz,qn).
s

The SNS in (4.1.8) are called the differentials
of nonholonomic coordinates . |
| For nonlinear ncn-holonomic systems subjéct to
v
constraints of the type of Cetaev and expressed by the
equations ’
't' ; c =0 ‘ v(:l,z,.-. Ly 'S:‘,";"')“')
| —E*( 7%5 ‘vs) ) ( ST |
we take :
W, - ‘4 ;% \=0.
‘ d'{d(i’qis’tvs)’o
The remsining w, (1= r*.l,r; 2,+0.,n) are arbitrary funct-

ions of the form (4.1.6). The n - r independent 5Ki
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satisfy the relations

Bcl, = .3_1.2. 57\'L (f-:l,z,u.,ﬂ.,‘i:-f.u,-v‘+&,...,-¢).
L 2w ~ . :

In case w; in the equations (4.1.6) are linear
functions of és we cali Sﬁl the differentials of linear
nonholonomic coordinates; otherwise they are called non-"

linear nonholonomic coordinates,

4,2, Polsson's Theorem in Linear Non-holonomic Coordinates,:

In 1944 the classical theérem of ?oisson, dealing
with the propertiés of integrals df canonical equatiéns of
dyhamips, was extended by V.V.Dobronravov [17) to the case
of canonical equations expressed in linear nonholonomic
coordinates., This generalisation was achieved by aéSuming
the’so-called kinefic characteristics to be independent of
the time. We propose to geﬁeralise his result by taking
the kinetic characteristics to be time-dependeht.

Consider a holonomié system for which the kinetic
characteristics u& and the cbrrespondingvdifferentials of
linear non-holonomic coordinates ciKQ are given respectively
by the equations (4.1.1) and (4.1.4)

‘For such sjstems G.Lempariello [20] in 1942

established the equations of Volterra-Hsmel in the form

— T
(4.'2.1) ..4_'. _3_1:_ —..a_I. + Y + s —Q
dt gug  ong 5.7 S,

(.I.)m,5=l,24,...,w),
Here ™ is the kinetic energy of the mechahical system

expressed as a function of the time t, the coordinates 9

' ' *
and the kinetic characteristicsu% H QS are the generalised
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forces corresponding to the llnear nonholonomic coordinates

ﬁ%' . :
In the above equations the operator gl- means the
4 - Rg

relation

| d - 4 2 ' | KS=b2,.om),
(4.2.2) - = . KS e ( 19 = Ay )

37\'5 3‘1/«
and the Y% ére defined by the relations
(4.2.3) L s “‘“) >
b 0%
(402.4) ‘ Ys :f' b ""E_.S - ) ( mk _
,  ~(“5“(3%u 2V« ks 2% /

(K)va)s»u' =LA, ) )

“where the a's and b's are given by the relations (4.%.1) and
(4.1.3), respectively.
It is known that

m o m
0 .

i

LetlJ be the potential functlon for the geheralised

forces Q; and let

< T '
. _ot_ (S=h*
(4.2.6) k‘s T |

If the generslised Hamiltonian function is defined

by

(4.2.,7) H(t,q,k (T +U
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~

Lampariello [?dl showed that.the cononical equations of

motion are

2H y™
‘7;'-;;'“\’.“ !, Y \’,,.
(4.2.8) o
E 2H
Y%= ﬂgl-‘ vk
N1}
(i)m)s - '71'7 ’“’)
L

Next let us introduce, following Dobronfavov~[17] .
the generaiised Poisson brackets denoted by double

parentheses:

| a2 ((](]( ___.,Eﬁ_fl(_?iz_ R Ef'.b‘&k;m,

(lms-lz ,n), .

l‘whefe £ f(t,qs,p ) end % {(t,q 3Py )

It was also shown that these generalised brackets possess

the properties of the usual Poisson brackets, namely:

(42,00 (({,,f,‘))wu((,c&,fl))':o, .
Czan (A GEAD LA -0

wher§ ][3:" {5(%1’5’."’5) ‘

In terms of the generalised Polsson brackets, we

. shall investigate the condition that f(t,qs,p ) = constant

'be'a first integral of the canonicasl equations of motion
(4.208) .

In fact, 1f we take the complete derivative,off



with respect to t and substitute in it for py and ds the

expressions obtained from the equations (4.2.8), we have

o M 2 -
" ?1,5(!20. BI, ) (_-S;- st hﬁ 3 ‘3) 20

or, by virtue of (4.2.2) and (4.2.5), we have

of 20 33y My oy o L,

ot Ay apy I 27 s b ok m' 5”'1' * Im 2,
~In the second term on the left- hand side we change the
repeated suffix { to s and make use of (4.2.9) to obtain
the following: | A

of - mooaf  , of
4,2,12 —_ 4 H =1, 4 b L ™S 2l,dpe )
( ) Zt ((&) )) S })m 3*’5 (3 )‘Vs ( ™)y
which is the condition we were looking fore

Finally, let us suppose that £(t;qs;ps) - constant
and -&(t;qs;ps)' - constant are two first integralé of the
canonical equations (4.2.8). Then according to (4.2.12)

we have

SERIE TS

(4.2.13) <

‘B‘f - m 2‘( Mz \ ‘n
T gm) SR, (5= i),

™ 3"5 S 3%

By virtue of (4.2,13) the identity (4.2.11) ylelds

((.{‘, ‘a{,, o, rm oy, b 2&)) (()(& Bf-» 7 },m ﬁ. b Bﬁ) ( ({,Dw)))

o ° t *s )‘1:
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01'7

((( l’z:) H)) "'Z‘ﬁ (( oY b 3{")) (" }’3’(’ 4 -
(0t 2)-(82 4D

* 2%

264 + () W) - Uh (64D -5 2 (A 22600
TR -F2E R (G0,
N oh 9fz e 1922 (6 8) | bt o emst
$4°2°14? ((\(m()) 4([?5“— s}’m vst’m "‘ z)s))+ns<(1(n s)):l

is also a first integral of the canonical equations of

motion (4.2.13).

' Thus fhe theorem of Poisson can be stated as
follows:

Let f(t,qs,ps) =const. and {(t,qs,p ) = const.

be two integrels of the canonical equations of motion

(4.2.13). If the expression on the left-hand side of

(4.2.14) does not reduce to zero or a constant, and if

moreover 1t 1s not expressible in terms of {1, %2, then

the equation (4.2.14) constitutes a new integral of the
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system (4.2.13).

'vIn.parfioular, if the kinetic characteristics do
not depend on the time, i.e. 1f Y, zo for sm=1,2,...,n,

the equation (4.2.14) reduces to

«{’ﬁ»= constant,

" yielding & new integral of the system

AR RS -
s T ms st Im 9p
w _ 2H
s~ st 5y !
b |
a result which was proved by Dobronravov (17]}.
In case of a linear non-holonomic s&stem with n- r
degrees of freedom, the equations of constraint can be

expressed by

(4.2015) wd =o (d:l,z,---,r).

Hence the independent kinetic charaecteristics are
LO"_(j_: r+l’r+2,.oo,n)o ‘
Consequently |

(4.2.16) h =0 (=1, %000y )

and the remaining ké(iz r+l,r+2,...,n) are 1ndependent;

Furthermore, ‘4—& -0 (d:';a':"').r)v
dt

or A = constant (4=1,2,.0.,7 ). That is the linear non-

1

holonomiec systems, when referréd‘to linear non-holonomic
coordinates, assume a holonomic form. Taking into consider-
ation the equations (4.2.15) and (4.2.16), the canonical

‘equations of motion (4.2.8) still hold. As a consequence,



the theorem of Polsson in 1lts generalised form holds for

lineer non-holonomic rsﬁstémgrg:provided that we take

into asccount the relations (4.2.15) and (4.2.16).

4,3, Appell's Equations in Nonlinear Non-holonomic

Céordinates.

Let us consider a holonomic mechanical system

with generalised coordinates ql,qz,,,,’q . Following

Novoselov (23], et us define the kinetic characteristics

w wzn wn,

by the relations , :
(2.3.1) = W= wﬁ(’t;avs;ﬁ,s) - (Ls=13..5m)

which are nonlinear in the q's.

Assumling that the fﬁnctional matrix
2wy

29,

has the rank r, we have

(4.5.2) ;1’2 = %(’c; 9 %) (g,s,n,z,..., n).

The variations of the q's are given by

)ngw' (s =1,2,...,m)
2 W

(45.3) 59, =

where 5”5 are the varistions of nonlinear nonholonomic
coordinates Rs o

According to the relation (4.3.1) the variations
of the cartesian coordinates, X, and the g's are related
as follows '

5 = 2xy g V= 1,&,..»3“' »Q':\,;’)"')w).
Yo, Y ( ’
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Or, by virtue of (4,3.3)

5Iv = Afl' _?jl_e 57?5 (V=38 s 0,2,.0,m)
W
Dqk dwg
i.es

(4.3.4) Sx = 251 SN (V:\,Z,--')5NJ‘S=|»3':"~:'"')

In (4.3.4) g; represents i; after substituting for qz
from (4.3.2), i.e.

(4.3.5) %, = %, (Y9 (8 ‘pe;“’g)) :

Hence the principle of d'Alembert-lLagrange,
expressed by the equation

(s %~ X

takes the form

(4.5.6) (- %) 22 55 =0 (Va1 345 30
2 Ws

Since the mechanical system is holonomie, 5ﬂgare.

independent. Therefore the equation (4.3.6) leads to the

system of equations

(4.5-7) - x ¥ :X D____"-v ) (1'1"2')“‘\3"’35:"3'""’“)'

Let us introduce the energy of acceleration, S,

defined by

S-lm %%
2 W v v

and denote by S' +the function S when és and as are changed
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into @ and ; Dby means of the equations (4.3.2). Also,

from (4.3.5) we have

</

2. %% +terms not containingw
Vo oJuws B ’
so that
. X
. 'ax ?x
(4.3.8) — =
: . g IWg
Now /
205 oy,

or, by virtue of (4.3.8)

' ol
28 L
4.3.9 —_— e X
( ) aws (V) 4 aws
Further, let us put
/ Y4
(405010) Qs-—— ><'V?i! N ($=|,Z,.-.,'n.7.
. Bws

As a consequence of (4.3.9) and (4.3.10) we can

rewrite the equations (4.3.7) in the foliowing form:
, -

- = z-oi 7\‘)
(4.3.11) — =4 (820200
, JWs
which are the so-called equstions of Appell,
| In case of a nonlinear nonholonomic system we can

. v
take the non-linear constrsints of the type of Cetaev to

be given by .
‘ W, =0 (d:g&“wT<n).

Hence the lndependent kinetic characteristics are w;(iz r+1,
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r+2,..0,0). AS a8 consequence the relations (4.3.2) and

(4.3.3) are replaced by

(4.3.12) 51/2';"1,{({5‘1/53“&):

and
(403015) 561/ = ?—3/-—4—- 67‘i (Q,S:\,Z,...,W;i:‘f«\-l,’f‘+7'r“)"'\')_,
L 2w

respectively, where 5% are the variations of then- r
independent & .

Proceeding exactly as in the holonomic case we
derive the equations of motion for the nonlinear non-

holonomic system in the form

/ /
(4.3.14) _B.S. =9, ‘ Q,:m,nz,.‘.,w)
WL

where S 1is a function of t,qq, W; and 3, and
Q. =X ¥y
. CTTY i -
The equations (4.3.14) are Appell's equations of

motion for nonlinear non-holonomic systems,
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