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ABSTRACT

During the past three decades or so there has been much
work done concerning contagious probability distributions in an
attempt to explain the behavior of certain types of biological
populations. The distributions most widely discussed have been
the Poisson-binomial, the Poisson Pascal or Polsson-negative
binomial,’' and the Poisson-Poisson or Neyman Type A. Many general-
1zations of the above distributions have also been discussed.

The purpose of this work is to discuss the multivariate
analogues of the above three distributions, i.e. the Polsson-
multinomial, Poisson-negative multinomial, and Polsson-multi-
variate Poisson, respectively.

In chapter one the first of these distributions is discussed.
Initially a biological model is suggested which leads us to a
probability generating furtion. From this a recursion fonﬁula
for the probabilities is found. Parameter estimation by the
methods of moments and maximum 11kélihood is discussed in some
detall and an approximation for the asymptotic efficiency of the
former method 1s found. The latter method is asymptotically
efficient. Finally sample zero and unit sample frequency esti-
mators are briefly discussed.

In‘chapter two, exactly the same procedure 1s followed for
the Polsson-negative multinomial distribution. Many close
similarities are obvious between the two distributions.
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The last chapter is devoted to a particular common limiting
case of the first two distributions. This is the Poisson-multi-
variate Poisson. In this case the desired results are obtained
by carefully considering appropriate limits in either of the

previous two cases.
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INTRODUCTION

In recent years there have been many attempts to inéestigate
statistically the behavior of various insect and plant populations.
It has been found that models using a simple nprmal, Poisson, or
binomial distribution are generally inadequate. The negative
binomial distribution has been used somewhat successfully by
Fisher [1941], Anscombe [1950], Bliss [1953], and others.

More recently, compound or 'contagious'!' distributions have
been applied to biological models with somewhat greater success.
The three which are most commonly used are (1), the Poisson-
binomial - McGuire, Brindley, and Bancroft [1957], Sprott [1958],
Shumway and Gurland [1960]; (2) the Poisson-Pascal (or Poisson-
negative binomial ) - Katti and Gurland [1961]; and (3) the Poisson;
Poisson (or Neyman Type A) - Neyman [1938], Douglas [1955].

Models based on these distributions, however, must assume homo-
geneity in the characteristics of the experimental plot. These
might include soll type, amount of moisture present, type of
vegetation present, etc. Attempts to relax this assumption or
to generalize in other ways have been made by Neyman [1938],
Feller [1943], Thomas [1949], Beall and Rescia [1953], and
Gurland [i958].

So far, only the univariate case has been considered for the
above comﬁcund distributions and their generalizations. The object
of this treatise is to extend some of the results of the three

compound distributions mentioned above to the multivariate case.



CHAPTER I
THE POISSON-MULTINOMIAL DISTRIBUTION

1-1. A Biological Model

In this model we assume there is a large field A of area
SA’ and homogeneous throughout, where batches of insect eggs are
laid. 'Homogeneity implies that the probability density of the
batches follows a uniform distribution over the field. We will
also assume the position of a particular batch is independent of
the positions of the others. This seems to be a reasonable
assumption as long as the average distance between the batches 1s
much greater than their size. Next, let us choose a region B
of A which is far enough from the boundary of A so that boundary
effects will be negligable. Let us divide B into many small
plots or quadrats, Bl’ B2,'..., all having the same shape and

area SB s which is much smaller than SA'
o

Let Z Dbe a random variable denoting the number of batches
laid in a particular quadrat. If M 1is the total number of eggs

laid in A, then
. [Seo)”
P(Z:Z):(Z) o 1l -

Sp

If M is assumed to be large, since SB << SA, this is approxi-
‘ o)
mately the Poisson distribution



z
P(Z:Z):e-l ’L
z!
(1-1.1)
SBO
where A =M -
Sp

Having outlined the breeding ground, let us consider the
insects themselves. We suppose the insects coming from those
eggs that hatch can be divided into n-1 classes on the basis
of same distinguishing characteristic (e.g. colour, slze, type
of insect, etc.). For each integer i, 1 <1 < n-1, let Xy
be a random variable denoting the number of insects in a quadrat

th

that are born into the 1 class. We assume the probability of

an insect being born into the ith

class is Py and is independent
of what happens to any other insect. The probability Ph that

an insect does not hatch 1s therefore
n-1

Py =1 -Z‘ 1 1-1.2)
i=1

We now make the arbitrary assumption that exactly N eggs
are lald in each batch. Assume all the eggs hatch about the same
time, and sometime later we count the number of insects in a
quadrat, notlng how many belong to each class. If we assume the
effect of insects migrating into and out of the quadrat is
negligable, we have that the conditional joint density of Xl’ X2,

., X

n-1 is

NZ tnl X.i
z) = (3 ) g;g 1

g
L
~
M
N
i
N
S
l
g
}
—_
bd
n
i
N
"

(1-1.3)



where we defline

X = (Xl’ Xe, e ey &-l)

n-1
Nz Nz )!
(x ) = . x(ﬁz) - if Ej Xy <Nz, x; >0 |
REAERES
i=1
0 otherwise (1-1.%)

-1
where xn = Nz - E: xi
i=1

Thus we have a multinomial distribution. We can combine

(1-1.1) and (1-1.3) to get the joint density

Py(%) = ) P(X=X | Z=z) P(Z=z)
Z=0

P(X=X)

n
Z X,
e ) @ Tles ! (1-1.5)
° 1=1

Z=0

1-2. Probability Generating Function and Recursion Formula

for Probabilities

Generally it is much easlier to calculate individual

probabilities using a recursion formula rather than the density
function. The first step in thls direction is to find the prob-

ability geremting function g(§) where 3 =(§l, Sps cees Sn—l}
x x
1 2 *n-1
E(sy ~ 85 7 ...8 4 )

n
© © © x n-l x

RO L ) (F) ey DT (sgpy)
Z=0 Xq=0 X, _1=0 i=1

g(s)



We may assume the upper limit of the sums to be o
because of the definition of (gZ) given in (1-1.%).
To simplify the above expression, we simply note that the

n-l summations on the right are the multinomial expansion of
n-1

Nz
(Z 8,p; + Pp)
i=1
Then
n-1
g(g) = e Ej [ 2: 8,04 + pq]NZ
=0 i=1
and the result of summing this is
n-l
i=1

From (1-2.1) and the definition of a probability generating function,
we can calculate the individual probabilities by means of

P, (%48, ) = — = p, 12 5 Tm-l (%)
b k xk+I xi! Dk 1 2 °"*“n-l g 8=0
i=1

(1-2.2)

where @, is the (n-1)-vector with 1 in the k"

position and
zeros elsewhere, and Di means8 the partial derivative with respecﬁ
to 8; - Using the Leibnitz rule for multiple differentiation,

we obtain the following results which are explicitely calculated

in Appendix 1A.



P.(0) = g(0) = exp [A(p,"-1)]
N-1 %1 %na

AL N!
Pa(X+8, ) =-i:”‘_p:’l——- z 2 -1 (1-2.3)
(xk+1) ¥9=0 ¥p.1=° [N- E? (xi-y )-11!
i=

n-1 X, ~y

P ivs
TT ) L] ru(F)
1;£ Py (xi' i)! *

1-3. Estimation of Parameters by the Method of Moments

The first step in this method is necessarily to find the’
moments of the distribution. This can probably be best accomp-

lished if we realize that g(E) is the factorial moment generating

function if we set 8§ = (1, 1, ..., 1) =1 instead of 8=0.
Now set n-1
c(s) = log g(8) = x{’[ 27 8404 +'pn]N-1} (1-3.1)
i=1

This is the factorial cumulant genersting function from whicﬁ we
can easlily calculate the factorial cumulants. Then, using tables
relating moments and cumulants such as the one in David and Barton
[1962], pages 142-3, we may find the factorial moments and finally
the moments about the origin.

Since the above mentioned table relates cumulants and
moments about the origin, it also relates factorial moments and
cumulants since both have the same relationships. (David and

Barton [1962], page 51).



Using the above procedure, we first define

G = N(al) - 1 )
Gy = NZ(A%43041) - ZN(a+1) + 2 > (1-3.
G5 = N (A 463470 +1) - 682(A%+32+1) .
+ 11N(2+1) - 6 y,
Then the moments are, according to Appendix 1B,
E(X;) = Napy
E(Xiz) = Nap, (p; Gy+1)
= Napy [p;N(3+1) - py+1] | (1-3.3)
E(X;Xy) = NAD;P 4Gy
= Nap;py(N(3+1) - 1]
E(X,”) = NAD (Py “Gy+3p,Gy+1) \
E(X;°X,) = NApyp,(p; GptCy)
E(X;X4%) = NAp4P Py Gy
E(Xiu) = pri(p13G3+6p12G2+7p1G1+1) ‘ (1-3.4)

E(XiBXJ) = Nlpipj(p12G3+3piG2+Gl)
E (Xigxdz) = pripd [Pipjc'é‘*' (pi+pd ) G2+G1 1

2
E(Xi\xjxk) = Nlpipjpk(piG3+G2)

Only the moments given in (1-3.3) are needed to estimate the



parameters. The remaining ones, however, will be needed later to
calculate the efficlency.

Let us define a new random variable W,

n-1
W =1Z; Xy (1-3.5)
-1
Then E(W) =) E(X;) = NA(1-p,) (1-3.6)
2 i=ln-l n-1
and E(W%) = E(iz; jz; Xixj)
n-1 n-1
=Y Bx®+) ) E(X,Xy)
1=1 i=1 j41

If we substitute for the expectations from (1-3.3) and sum,
E(W2) = Nx(l-pn){'1+[N(1+1)-1](1-pn)} (1-3.7)
Substituting (1-3.6) into (1-3.7) we obtain
B(W) = B(W) [B(V) + (N-1)(1-p )] (1-3.8)

Now we can solve (1-3.6) for 1-p,, substitute into (1-3.8), and

solve the resulting equation for A. We obtain

_N-1 E2(W)

(1-3.9)
N Ew®)-E%(w)-E(w)

From (1-3.3)



E(X;) E(Xy JIE(W?)-E2(W)-E(W)]

p = =
1 m (N-1) ES(w)
(1-3.10)
n-1
pn=1-2pi=1-m
1=1 n

(1-3.9) and (1-3.10) give the moment estimators i* and py*
for the paramters A and by respectively, if the. population
moments are replaced by the corresponding sample moments.

Before proceeding, let us define some notation. Let PR Ybe

the number of samples we observe. Next define

-

- Xy = (Xpgs Xpgs covs Xn_g o)

where xja is the observation of the Jth characteristic from the

ath sample. Finally, define

B
E:,xja (1-3.11)
a=1

J=1

So, Xx;, is the mean of the number of insects with the 1 th

characteristic per sample and x.. 1is the mean number of insects

per sample.

Thus, from (1-3.9), we may write

x. .2

e = N1 5

N 2 2
(1/8) Z w Zox. Sex
a=1


http://ln3.ll
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Also, Py is estimated by

th

observed no. of Ilnsects with 1" property

no. of insects observed + estimated no. of unhatched eggs

and Py is estimated by

estimated no. of unhatched eggs

no. of insects ¢observed + estimated no. of unhatched eggs
n-1
pn* = 1 - Ej pi* = (N\A* - x..)/N\*
i=1

1-4. Maximum Likelihood Estimators

The likelihood function, L, is given by

B
L = TT P2(%. ) (1-%.1)

a=1

To find the maximum likelihood estimators 3 and ﬁi of 2

and pi, we must solve the following system of equations.

3L/sA = O

(1-}.2)
BL/Bpi=O i=1, 2, ..., n=1

Equation (1-4.1) can be written as follows
g
log L = E: log Py (Xa)
a=1
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Because "log L" 1s a mcnotone increasing function of L, (1-%.2)

is equivalent £b solving the system

B
2 logL =) —=—- 2 PyZ ) =0
3\ P—k(f ) 3 X a
a=l "X‘\"q (1_4’3)
B
2 logL =) —2 8 PyR,) =0
P 4 a=1 Fx(%y) P 4

2 .z n-1 ¢ x X
——3—P¢(}'€)=e')‘zz‘-'- )T e, T2 -2
oP 4 z=0 2* 1=1 Py Pp

Let us expand this expression into two terms. In the second

term replace Nz by X +1 since these two expressions
X / *n

x+e
are equal. Then it 1s clear that

n
. X . _ 00 VA P X X +1
2py(R) = L py()-e ) A (N2 A (T)p, b ——
3p P z! J p p
J J Z=0 n i=l J
(1-4.4)
X X+l
Py P3

Equation (1-4.4) must hold for each observation, i.e. it holds

for X=X, and Xy=Xy,. Substituting this into (i-4.3) we obtain
! x X +1

B
Pj / pj

P—\(Xa

Multiplying by Py and using (1-3.11), this becomes
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B (x, +1)P4(% 48, )
A d _ Jo X'"a J
P;s - 1logL =Bx, -~ =0 1-4,
J J- GZI P—A(J—f ) ( 5)

Considering again the probability function (1-1.5), we can
differentiate with respect to 1\ and obtain

3 N AU %l e % =
— Pi(x) = € Z ——-;—'-- :5(. ) W Py - P"x‘(x) (1“1"'6)
i=1

Equation (1-1.4) implies

n-1
= x /N + (1/N) )
k=

If we substitute for the first 2z in (1-4.6) using this expression,

then
) m:
3 = AV ™
2p(R)=er) 2 2 )Hpi
A 720 N
i n-1 z-1
-A V1 " =
+eh ) § () wm)E— -‘)Hpi - Pg(x)
Z=0 k=1 zZ-
-1
_Pn(x*) S\ Pry "
2 x+e ) i ( Py # (— Z x-1) Py(X)
P, NA ! L —
where--m may be any integer between 1 and n-1 inclusive.
Thus
n-1
P, (% +1) o N
2 p. ( ) = «—L P2 (X+e ) + (-1—- }j X ~1) Po(X) (1-4.7)
A pme NA kel

We should notice at this point that we actually have n-1 expres-
sions for a/ax(Pi(i‘)). These are all equal, however, and it
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does not matter which one we choose.
Equation (1-%.7) holds for each observation, i.e. when

X = Xys Xy = Xy, Then, substituting (1-4.7) with this modifi-

cation into the second equation of (1-4.3), we obtain

B A = = n-1
p,(x +1) Pa(X_+€ )
Y [alma x(im AZxka-l]_o (1-4.8)

Multiplying this by Ncﬁ ﬁm, substituting from (1-4.5) for the
first term, and using the simplifying notation defined in (1-3.11),

ﬁn’ﬁn. +io‘mx.. - mi:‘m =0 (1-4.9)
If we sum over m, this yields
x.. - N\(18,) =0
Hence P,=(M -x..)/ M (1-%.10)
Finally, let us substitute this into (1-4.9)
=x /N m=1, ..., n-1 (1-%.11)

Equations (1-%.1Q) and (1-%.11) give the maximum likelihood
estimators for the Py if we know the corresponding estimator
for . We could conceivably solve for 1 by substituting (1-%.10)
and (1-4.11) into (1-%4.5) or (1-%.7) with the expression set
equal to zero. However, it is not hard to see that it would be
impossible to solvethis directly for A. Thus it is necessary to

use a numerical procedure.
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The following calculation is based on Newton's method,
which says that if f£(X) = 0, then

Rpe1 = Xy - £, )V/D52(R)] (1-%.12)

where in is the n'%

iteration of 1 and Qo is the initial
estimate, which might be the moment estimator of A. To find a

suitable f(X) in our case, note from (1-4.9) that

ﬁn/ﬁm = (M - x..)/xm. (1-%.13)
B n-l
If we substitute for ﬁn/ﬁm and E: 2: X, In (1-4. 8), using

(1-%.13) and (1-3.11) respectively, and multiply the resulting
equation by Ni/(Nﬁ-x..), we obtain an expression which is zero.

We may use this as our f(X). . Hence

B (R .
£(X) = 2 (ngtt) P;(x‘i‘+em) -B =0 (1-%.14)
a=1 “m. i(xa)

It remains to find D/xf('i) for substitution into (1-4.12).
From (1-4.14),

‘ " B xma+1 N o .
Dyf(R) = E: { P3(Xy) DyPy(Xytey)
a=1 xm. )
o o o 1 (1-%.15)
- Py(R +8, ) DyPp(E, )} S
Pi\ (Xa)
n-1
Now DiPo(X.) = Z 2. P (R.) - DH, + 2 P,(X.) (1-4.16)
A x\Xa %, X a Pi 3 X a
k=1 %Pk
and from (1-4.11), DB, = .xm_/m2 = B,/% (1-%.17)

Let us substitute expressions for the derivatives in (1-4.16).
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Use (1-4.4) to replace 3/3B, [Pp(X,)], (1-4.7) to replace

a/ax[Pi(ia)] and (1-%.17) to replace Dip Then we may use

(1-4.13) to replace ﬁn/ﬁm and (1-3.11) to replace the resulting

expression.
n-1
-— P e - A
Dy P4(R,) = (1/R) ) (m 1) Pe(R 48, ) - [{(N-1)w /WA) +1]
k=1
. Nh-x. . ( 1) L. (1-4.18)
Po(X,) + ( ) “na” P (X +8)
*mn. R
If we replace X by ’xa+em, and hence Xna by xma+1, and
n-
use (1-3.11) to replace E% Xpear
k=1
n-1
D3Po(E 48, ) = (1/3) ) (% +1 P2 (R 48,48, )
k=1
N N - - +2
- [ &L (w +1)] Pé(x +em) + [/} + Mi-x..-1 xmf ]
N Xn +1 NA
’Pf(xa+2em) (1-%4.19)

The (r+1)°® iterated values of A, py, ..., b, can be

th

calculated from the r iterated values by the following procedure.

First substitute the r°" iterated values into (1-4.18) and (1-4.19)
to obtain DAPA(x ) and DgP: (x +e ). Then substitute these

into (1-4.15) to find Dﬁf(k) which is finally substituted into
(1-4.12) for ‘ir+1' Then the (r+1)St iterated values of the o

m
can be found from (1-%.10) and (1-4.11).
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1-5. Coveriance Matrix of Maximum Likelihood Estimators

é; Method of Calculation

Pal
Direct calculation of the covariance matrix, .f)l, of the

maximum likelihood estimators is practically impossible. Under
certain conditions, however, we may find the asymptotic Hi as

B— « by first calculating the information matrix

. )
le prl... Ilpn-l
Jd = I oo -5.
Plk Iplpl Iplpn-l (1-5.1)
I ,I ., I
Pp-1* "Ppa} pn--lpn--l:J
\
<) d 32
where I . = E($zlogL - 5y log L) = -E(5g5t 108 L) (1-5.2)

where L 1is the likelihood function. The second equality 1is

true by the argument presented in Kendall and Stuart [1961]

pP. 52-53. From the remarks at the beginning of § 1-3 we conclude
that the factorial moment generating function is given by (1-2.1)
where 8 1s set equal to 1 instead of 0. Since g(8) is
clearly infinitely differentiable, all the factorial moments are
finite. Because each moment about the origin is a finite linear

combination of factorial moments, these moments are also finite.
Lemma 1-1.

Let X,Y, and Z be non-negative, identically distributed
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and mutually independent random variables with E(XB) ¢ ». Then
0 < E(XYZ) < E(X%) < E(X°).

Proof':

Consider O < B(xr? - v82)2 - B(x%) - 2E(XYZ) + E(XY2).
Because of the mutual independence and identical distribution of
the random variables, E(X°Y) = E(X°) E(Y) = E(2°) B(Y) = E(YZ2).
Thug 6_5 E(X?Y) - BE(XYZ). Now, noting that XYZ > O always,

we have
0 < E(XYZ) < E(XY)

Now consider 0 < E(X”2 - xM2yf?. g(x?) - 25(x%) + B(xY?).
But E(XZY) = E(XYg) since distributions are identical. There-
fore 0 < E(X3) - E(XQY) and so E(XQY) 5»E(X3). Combining
this with the previous result we have 0 < E(XYZ) < E(XQY) < E(XB).

Q.E.D.
Lemma 1-2.
For the Poisson-multinomial distribution
- n-l n-l N -—
Pa(R+e ) < (pm/pn){ Z: X, + N + AN ( }j X; + N) } P=(%)
1=1 i=1

Proof:

From (1-1.5), X

© n x
Pp(Erey) = e ) (W/z1) (Rie ) (TTpy Mleg/py,) (1-5.3)
2=0 S O |

Let 'T be an integer such that
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n-l
N(T-1) < ) %, < NT (1-5.4)
i=1

T depends on X. From the definition of the multinomial coef-
ficient, we see that the first T terms of the sum in (1-5.3)
are zero. Thus, if we write the multinomlal coefficient in a

slightly different way,

D 4 Z Xy  Nz-x,-...-X
P2(%X+e ) = ZZ;'fz () (1—_Pi —;;;+1 2l (p /o)
< (py/p )Z(x /z1) () <TTpi 1) wa
z=T n n
X
= (o/o) { wE(aT/m1 )(F) (T2, e w P o &) (TTey 1)
z=T+1 i=1

(1-5.5)

Note that the first term in the brackets is NT times the

"z=T" <term in the expansion of Pi(i) and, since each term is

positive,
n n-1
wr(8/ms )(F) (TTpy 1) < WIPg(%) < () %4M) Py(R)  (1-5.6)
1=1 1=1 nel
Now consider the second term in (1-5.5). Because }j x; < NT
i=1
and 2z > T+l,
-N)! N-1 -
(g?) = n-1 (Hz-H): n-1 (Nznﬁfg' (1-5.7)
(T—T x4 ! )(Nz-N- E: x;)! k=0 (Nz-k- E: x4 )
i=1 i=1l i=1

Wow since k<N and z-1>T we have
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n-1
Nz - k Nz - N
nEf AT £ “"—"'J.'—n- £ Z + N
Nz-k~ xi Nz-N- Z xi NT- Z x i=1
i=1 i=1 i=1

Thus (1-5.7) becomes

n-1 N
(gg) ¢ (Nz - N) ( E: X, + N)

1=1
Hence the second term on the right side of (1-5.5) is less than

or equal to
(V2N Soxy T N
ng ), (50 (T ey 1) () =)
+1 n-1 i=1 i=1
This expression is A\N( 2: xi+N)N times part of the expansion
i=1 n-1

of P=(X) and thus is less than AN( Z: xi+N)N.
1=1

Using this fact alohg with (1-5.6) in (1-5.5) we have
n-1

P§(§c+€m)_g (Py/Pp g Z x; + N+ AN ( Z x; + N) )(P}_e('i')
i=1

Q.E.D.

Lemma 1-3.

For the Poisson-multinomial distribution, E[|3/3A(log L)|3]<o

Proof:

Using (1-%.1) and differentiating the logarithm,

td
—~~

B B B 3/[PR(X )] 3/3A[P(E,)] 3/an[Pg(%y)]
) =)

P_-(:‘c‘a ) Pi(xY) P2(X; )
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Because the observations are}mutually independent, the expressions

3/ [Py(X, )]
Pi(xa)

apply lemma 1l-1 to the above inequality.

a=1 Pi(x)

are independent for a=l, 2, ..., B. Hence we may

Since the observations are identicslly distributed, the above
expression 1s Independent of a, hence
a/ax[P—\(x)] 3
E( | 1)
P3(X)

and substituting for a/al[Pf(f)] from (1-4.7),

(1-5.8)

E( IaX log L|°) < g3 &

n-1

— B4 (1/M) ) x,-1]7)
PN Po(X) igl i

pn(xm+l). P§(§4éh)

E( |2~ 1og L|7) < > B(|
1.8

Replacing the absolute value of the sum by the sum of the absolute

values and using lemma 1-2,

n-1
£ BBE% ;x+2 Ej x; + (% +1)[1/0 + ( Ej +N)N] +1}

i=1
When the above expression is expanded, it will yleld a finite sum
of terms of the followlng type -
n-1 n
constant E(F“T X 3y
J:l (1—5'9)

where the n, are non-negative integers

J

These terms are all finite since we know all the moments are finite.

Hence the result follows.
Q.E.D.
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Lemma 1-4.
For the Poisson-multinomial distribution

E(|a/3 py(log L)|°) <@ , 1 =1, 2, ..., n-1.

Proof':

By the same argument as in lemma 1-3 but using Py instead
of A\ , we will obtain (1-5.3) with p; replacing X, i.e.

B 10g 117) ¢ pPn( PLEAE N 5,
Bpi - “(x)

Substituting for the derivative using (1-%.4), we find

X+l Po(X4€E,)
B 10e /%) ¢o¥m(id - - XN

)

Replacing the absolute value of the sum by the sum of the absolute

values and using lemma 1-2.

n-1
SEg—--—J-— Z +N+7\N(in+N)N]%
Py  Pp 1=1

Upon expansion, the above expression becomes a finite sum
of terms of the type described in (1-5.9), and by the same reasoning
as was used there, E[[a/api (log L)|3] is finite.

Q.E.D.

Let us appeal to theorem 2, page 282 in Rao [1947]. This
theorem says the following -

Let fﬁ be the covarliance matrix of the maximum likelihood
estimators -91,'92, cees gh-l’ and L be the likelihood function.
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Then, if 3”3/391 (log L)|2+9] ¢ oy, 1 =1, 2, ..., n for some
n > 0,

éiﬂ Bt = éi‘: A (1-5.10)

where J 1s the information matrix and B 1is the number of
samples observed. .

Lemmas (1-3) and (1-4) show that the Poisson-multinomial
distribution satisfies the conditions of Rao's theorem if we
choose 1n=l. Hence (1-5.10) holds, and thus for samples of

reasonable size we can make the approximation

st = A (1-5.11)

& Calculation of the Elements of J

Before proceeding let us first prove the following result.

Lemma 1-5.
(x;+1 )(xJ+l Py (R484 )Pi‘c(i""e‘;L)

. -]
Define A =-1+Z Z
iJ 2.2 =
_ N2 p,p, P=2(X)
Xy=0 X, =0 i3 "%
(1-5.12)
Then AiJ = Amk = A, Sa-y’ for m,i,jgk = 1’ 2, LI n-l.

Proof:

o

S

xl.-.-.o Xn_1=0

Byg - Bue =845 - A * Aqp - Bk
O (%41 )Pp(%4E, ) [(x 41 )Pi‘c(z"'éi) i (%, +1)P3(F4E )
N\, Po(R)

P
15% Pj Py



2>

-]

+ E:... i:(xm+l)P*(§4§h) [(Xi*l)Pi(f4éi) _ (x,+1 )P (Fey )

2,2 .
X=0 X, 1=0 N°\“p P= (x) Py Px

Recall now that (1-4.7) is true for all values of m from 1 to
n-1. This is possible only if

( (%) )
pth

(x,+1)
pme X

( m Pi(x+ek).
Using this fact, the terms in the brackets of the above equation

are zero and hence the whole expression is zero.

Q.E.D.

Let us consider I, From (1-5 2) and (1-4.1)

<
Ty = BLE- 208 1)) -Euz log P3(%,)1°)
a=1 A
Z Z E[2~ 1log P-»(x) -1 log Pi(’i )]
A 3 Yo
a=1 y=1 3
Because the observations are independent of each other and also

have ldentical distributlions,

I,, =8 E([2- log P3(%)1%) + B(B-1) B°[2- log Px(%)]  (1-5.13)
A dA

At this point let us observe that

E[2- log P2(R)] = 1 2. pu(R)]
A X( Pi\(f X(
= Z... Z 2 Pi(i‘)=—a—— Z...Z Pi(f)
xl=o Xn_1=0 oA 3 X1=O Xn_1=0
=2 (1) =0 (1-5.1%)
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Thus (1-5.13) becomes, after differentiating the logarithm,

2
I, =B E ([_1..)_.3_ P=(%)17) (1-5.15)
P3(X)
X
Substituting for the derivative from (1-%.7) and using the

definition of expectation,

c T { Py (% +1)

(1/8) I = Z ...Z 1_.
M X,=0 X _,=0 Px(X) Py NX

P)'E( §+3m )

n-l 2
+ [(/m) ) x 1] p.i(f)}
k=1

If we now square, replace the resulting sums by the moments they

represent and use (1-5.12) along with lemma 1-5,

n-1
%IM = p,° (A1) + (1/82F) E[( Z x )21 + 1
n-1 k=1
- (2pp/p M) EIX,( ) X - 1)) + (20,/p,N2%) E(X,)
k=1
n-1
- (2/M) E( ) %)
k=1

We can evaluate the various moments by expansion and the use of

(1-3.3). After simplifying the resulting expression, we obtain
2
(1/B) I,, =Pp° A + (1-p, )(NA + Np -p, )/NA (1-5.16)

By a similar procedure the other entries of the information matrix

may be calculded. The results are
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(1/8) IM’J (1/8) ij,\ = -p, MM\ + Np +1-p,

2

2
(1/8) Ipipi = NA"A + M\(1/p; +1 - N) (1-5.17)

2

N°\2A + NA(1-N)  for idj

il

(1/8) Ipipj

The calculations of the above results are done in Appendiﬁ 1C.

Let us define

Ba = (/B) I,
Byp = (1/B) pri ~ (1-5.18)
Bpp = (1/B) Ipipj J4

Thus B, + N/py = (1/8) :cpipi (1-5.19)

If we substitute (1-5.18) and (1-5.19) into (1-5.1),

(
By s Byp . .. Blp W
Byp Bpp+m/pl~ . . Bpp
J =8| . . . (1-5.20)
LBm Bop ... Bpp+N)\/pn_l)

By (1-5.11) the inverse of this matrix is (1 . In Appendix
1D the inverse of such a matrix is calculated in detail. By

making the appropriate association of variables we have
. n-1
n 2 )
det T = B iBll + (B,,Byp-Byy )(1.pn)/Nx} E L (M/p;) (1-5.21)
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N)\+B (l-p )

var 3\ =%—
Bialr + (Bxx oo Pap )a-ry)
cov(ﬁ,ﬁi) = -.% Pap Pi 2 :
(B, NA*(B, B - By “)(1-p,)’
2
COV(pi,pj) = - l (Bxx PP Blp ) pil;;j (1-5.22)
[B W2 + (B,,B op = B )(1-p,, ) IN)
var P, =2 [EE.- (BXX pp_ Xp ) pi )
1P m (B,M + (B “)(1-p, ) 1N\

ll 9 XP

Corollaries 2.1 and 2.2 in Rao [1947] state that if the
distribution satisfies lemmas 1-3 and 1-4, then the maximum
likelihood estimators are minimum variance estimators for large

Pal

samples and in terms of the generalized variance, det () , are

asymptotically efficient.

1-6. Efficiency of the Method of Moments

A, Method of Calculation:

The efficiency of a method of parameter estimation for a

multivariate distribution is defined to be

gfr = 9% Cy (1-6.1)
det C

where C 1is the covariance matrix of the estimators for the method
in question and CM is the covariance matrix of the minimum
variance estimators.

Because the Poisson-multinomial distribution satisfies
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the conditions of lemmas 1-3 and 1-4, corollary 2-2 in Rao [1947]
states that the maximum likelihood estimators have minimum variance.
Thus, in our case, C, =0 and C = , the covariance matrix

of the moment estimators. Hence Eff = (det A )/(det L) and

by (1-5.11),

Eff = — = (1-6.2)
det (1 - det J

To calculate 0l , we will first find the covariance
2

matrix, M, of the moment estimators. Let us define W° and 'Xi
as follows
- 8 n-1
2
W= (1/8) ) () X
a=1 k=1
) (1'6'3)
X, = (/) ) %,

a=1

where Xka is the random variable denoting the number of insects

observed with the k'l th

characteristic on the a observation.

Ww° estimates E(We) and X; estimates E(X;). By definition
. — n
var We cov(h?,Xl) cov(n}?,’xz) cov(v?,'}gl_l)
cov(‘P,Xl) var X, cov(Xy,X5) ... cov(E LXK, 4)
M= cov(v-\r_2,X2) cov(Xl,Xg) var X, e cov(Xg,Xn_l)
cov(w2,X'n_1) cov(X’l,Xn_l) cov(Xz,Yn_l )... var X, 4

A

(1-6.4%)
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By Appendix 1lE we can approximate det fl by

det CL = (det §)° det M (1-6.5)

where det ¢ is the Jacobian

det § = o Py oo Pooa (1-6.6)
AE(WT), B(Xy)s --s B(Xy ;)]

_B_._ Calculation of det M in Terms of the Parameters

First we must express the elements of M in terms of
pl’ p2: veny pn-l’ A. Consider
B
var ’Xi = var [(1/B) z Xia]
=1
Because the observations are independent and identically distri-

buted for each observation,

B
var ‘Xi = (1/:32) 2 var X, = (1/8) var Xy

o=1 (1-6.7)
= (1/8) [E(X,%) - B%(x))]

If we now replace the expectatio:}s by the expressions glven in

(1-3.3), we will have
var ')'('i = (1/8) Nx py [pg(W-1) + 1] (1-6.8)
Now consider cov (X, 'XJ) i43.

B B
cov (%;,%,) = cov [(1/p) Zl Xyqs (1/8) 21 Xy,]
a= Y=

] B
- /e®) B {1 ) %, - em O T Xy, - aE(XJ)I}
- a=1 y=1
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The last .r-equality is true since E(Xia) = E(Xi) for all a.

Also, since the observations are independent,

B
cov(’Xi,'X ) = (1/52) z {[Xia = E(Xi)][xja - E(XJ)])S

a=1

+ (1/p )z ) ElXy, - E(X;)] EBIX,, - B(X,)]

a=1yda
But E[X, - E(X)] = E(X;,) - E(X;) = 0. Hence, since'the X

are identically distributed in o, we can write

cov(X,X,) = (1/8) E {[Xi-E(Xi)]{Xj-E(XJ)]}

(1-6.9)
= (1/5) [E(XiXJ)‘B E(Xi) E(Xj)]
Substituting (1-3.3) into the above équation we obtain
cov(Xi,XJ) = (1/B) N(N-1)a PPy (1-6.10)

Now consider cov(T/_J-2 X ). By the same reasoning as before

n-1 n-1
cov(W‘,Xk) cov { (1/8) % ( z Z X;]_a Jq)’ (1/8) zxka§

a=l i=1 j=1 k=1
n-1 n-l n-l n-l
= (1/8 )§ Y ) (XX Xy) - E(%) ) ) E(Xixj)}
i=l j=1 i=1 j=1

- (1/5){E(Xk3) +2 JEX) 4 ) ] OE(ERXX)
LIS

ik jk,1i
n-1 n-1
+ 5 Exx2) - B [ ) E(X,” £y ZE(X:LXJ)]}
i%k i=1 i=1 J i

(1-6.11)



By substituting (1-3.3) and (1-3.4) into the above expression,
we obtain an equation in terms of the parameters which ultimately

reduces to
cov(We, Ty ) = (1/8 Mipy { 6p(1-p)° + 36y (1-9,,)
- mA(L1-p ey (1-p, ) + 1]\¢~1§ (1-6.12)

The steps between (1-6.11) and (1-6.12) are-outlined in Appendix
1F. For simplicity, let us define
2
Hy = G5(1-p,)" + 3Gy (1-p,) - NA(1-p )[G (1-p,) + 1] +1
(1-6.13)
Then cov(we,'Xk) = (1/p) MAp,H, (1-6.14)

Finally consider var Wg. Using again the arguments of
identity and independence, we obtain

B n-1
var w2 - var{ (1/8) E ( Z Xia E
n-1 a=1 1=l
- (1/5)%E<Z X, ) - B2 ) xi)2§
i=1 i=1
n-1 n-l n-1 n-1 n-l n-1
= (1/5)? Z Z Z E(XyXy% X ) = [Z ) E(% }
121 *|_1 K=l i=1 j=1
n-1 !

WB)%Z Yy ) L E X, X% Xn)

=1 J4i k#i,J m*l,a,

n-1

+6Z Z ZE(Xi Jk)+32 ZE(xiexjg)

i=1 j4i kd4i,] i=1 j$i
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n-l n-1 n-1
+ 4 E: 2: E(X 3xJ) + ) E(Xiu) - 1) E(xC)
1=1 jH1 i=1 i=1
n-1
4-}? E: E(xixk)]e} (1-6.15)
J=1 k4J

Now substitute (1-3.3) and (1-3.4) into the above equation and
simplify as is done in Appendix 1G. Then

Var'i:v“2 = (1/B)Nx(l-pn){G3(l~pn)3 + 6G2(1-pn)2 + 7G1(l-pn)

+1 - Nx(l-pn)[Gl(l-pn) + 1]2§ (1-6.16)
For simplicity we may define

Hy = G5(1-p,)° + 66,(1-p, ) + 76y (1-p,) + 1

- MA(1-p, )G (1-p,) + 17° (1-6.17)
Then var &é = (1/B )N\ (1-p, H, (1-6.18)

Thus, substituting (1-6.8), (1-6.10), (1-6.14), and (1-6.18)
into (1-6.4),

, )
“Nx(l-pn)Hg Nxp,Hy e Wip, 1H;
NipqH,  Nap,[py(N-1)417 ... N(N-1)xpyP,_;
1
Me=e
B NPpoth N(N-1)rp, P N(N-1)APP,_;
L.Nlpn’lﬁl N(N-1)ApqPp_q --- prn_l[pn_l(m-1)+1])

(1-6.19)
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The determinant of this matrix is calculated explicith;w
in Appendix 1H. We need only set N' = N-1 and R = NA» in the

matrix in the appendix and we have (1-6.19). Then

n-1 ,
1 2
det M = (N/B)*(1-p, )([ | vy )H,(N-Np_+p )-E, 1 (1-6.20)
i=1
C. Determination of the Jacobian, det ¢

To evaluate det ¢ as defined in (1-6.6) we must evaluate

the determinant of the following matrix -

S XN o A A
PE(WF)  3E(X) 3E(X, 1)
4= | E(we) 3B(X;)  BE(X,) ...  3E(X, ;) (1-6.21)
apn-l apn-l ' . apn-l
| o) aE(Y) o ()

To find the above partial derivatives we appeal to (1-3.9) and

(1-3.10), noting that
n-1

E(W) = ) B(X;).
i=1

. After differentiating we obtain

oA _ _ N-1 E2(W)
SE(W2) N [E(W)-E2(W)-E(W)]°
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3\ _ N-1 _ E(W)[eE(WZ)-E(W)]
AE(X, ) N [E(WE)-E(W)-E(W)]"
E(WT)  (N-1)E°(W)
¥y _ E(%i)_ E(W)-2E(W°) e 1dy
3E(X, ) N-1 E-(W)
2p, E(X,) E(W)-2E(W°)  E(W®)-E°(W)-E(W)
PE(X,)  N-1  E’(W) ¥ (N-1)E(W)
It will be more convenient 1f we are able to express the

entries of ¢
substitute for

using (1-3.3),

in terms of the parameters. To this end we may

the expectations in the a?ove set of equations

(1-3.6), and (1-3.7). After simplification we

will find
A\ - - 1
2E(W7) N(N-1)(1-p,)°
- 2[p,+N(2+1)(1-p,)]1-1
RE(X, ) N(N-1)(1-p,)°
opy _ Ps
PE(WS)  N(N-1)A(1-p,)°
(1-6.22)
by (1-2[p (L )(1-p, )] i 1
aE(XJ) - N(N-l)k(l-Dn)g
3Dy Dy {1-2[pn+N(x+1)(1-pn)1} L1

—

3E(X, )

N(N-1 )A(1-p, )° N
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The substitution of (1-6.22) into (1-6.21) gives an explicit
expression for ¢. Its determinant may be found by multiplying
the first row by p,/\ and adding it to the (1+1)%° row for
i=1,2, ..., n-1. This will give an upper triangular matrix
which may be expanded by the first column to give

= - 1 -6.
O PR E (o-22)

If we now substitute (1-6.20) and (1-6.23) into (1-6.5),

[H,(N-Np,+p, )-H, °] n-l

N°(N-1)"(1-p, ) (Mn JP %"

det Q) = |1 »y

i=1

At this point we can find the efficiency by substituting the
above equation along with (1-5.21) into (1-6.2). Hence

N2(§-1)%(1-p, )
Eff = » (1-6.2%)
[B,,NA+(1-p, )(B,,B op~Bap: )1 [Ho(N-Np +p,) )- H

1-7. Sample Zero Frequency and Unit Sample Frequency Estimators

A. Sample Zero Frequency and First Moments

Sample zero frequency estimation is useful if the zero
sample, (i.e. X = 0), occurs quite frequently. From (1-2.3),
if we set féﬁ

P§(6) = exD[x(pnN-l)] (1-7.1)

Let us define F(Z) to be the frequency with which
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—-——ht

X =132 = (al, Bpy eees an-l) occurs in B observations. Consider

the estimator (1/B) F(0O) for %{5)

ElF F(3)] = B(T) = expla(p,"-1)] (1-7.2)

Hence (1/B8) F(0) 4is an unbiased estimator for %{6).

We may obtain the sample zero frequency estimators by
and ﬁl for A and Py by using the moment estimators for the
first moments given by (1-3.3) and (1-6.3) ff. together with the
estimator just defined in (1-7.2) to obtain the equations

X, = Nip,
(1-7.3)

(1/8) F(B) = exp[X(B,"-1)]
To solve for X, ﬁ;, let us first add the top equation of (1-7.3)
for i=1, 2, ..., n-1.

-1
M(1-5,) = ) ¥,
i=1

Solving for 55 and substituting into the bottom equation of
(1-7.3),

n-l
l1og FO) - x7(1- X Y ¥, %] (1-7.%)
B Y i=1

We can use a numerical method to find ¥, and then from (1-7.2),

By = X/ (1-7.5)
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B. Unit Sample Frequency Estimation

If the unit samples (i.e. X = 8 k=1, 2, ..., n-1).
occur- fairly frequently it may be advantageous to use this

estimator. From (1-2.1) we can see that

B(e,) = _?li.gil ={exp [n(pN-10}¥ p N Fp, (1-7.6)
x ! 8=0 :

Consider the estimator (1/B) F(§,) for R} ). We notice

k).~ Hence the estimator is unbiased. Thus

we may solve the equations

that E[% F(8,)] = B(E,

(1/8) F(&,) ={exp[x(pnN-ID}anN'lpkx k=1, 2, ..., n-1

(1-7.7)
along with (1-7.3) for py and ) to obtain their unit sample
estimators 51 and 1.

To solve these equations let us divide (1-7.7) by (1-7.7)
with k=1. Then

F(&) P
S (1-7.8)
Dividing (1-7.7) with k=1 by (1-7.3)
- - ned v N-1 (VAR
P8 )/F(B) =N(1 - ) B) By}
k=1 N
If we substitute for ék from (1-7.8) and solve for 1 ,
v = I~ n-1
p,NF(0) P L, N-1
=2 ——1-—2— ) FE)] (1-7.9)

Y P
F(&y) F(&) xa1
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From (1-7.3) and the fact that the sum of the p; 1s one, we
obtain

- n-1 N
4 v
logm = A[(1 - Z Pp) - 1]
B k=1
Upon substitution for 5? from (1-7.8) and division by 2,

we find
N \p’ n-l N
L10g20) 1o - 22 RICH) (1-7.10)
A B F(&1) xa

If we now substitute for 1/X from (1-7.9), equation (1-7.10)

becomes
,NF(D) pp . oma F(3)
— 1 - ry }:‘ F(ek)] log + 1
Y n-1
P .|
=01 -—2— ) F(E)]
F(el) k=1

This may be rewritten as

\15 n-l N-1 \If, N n-1
[1 - F(_{ ) ) F(é‘k)] {F(i ) [NF(D) log Eé.?.l + Z F(8 )]~ 1
€1/ k=1 € k=1
+1=20 (1-7.11)

We can now use a numerical method to find 51. We can then
calculate A from (1-7.9) and finally ﬁi, i=2, 3, ..., n-1 from
(1-7.8).
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CHAPTER IT
THE POLSSON-NEGATIVE MULTINOMIAL DISTRIBUTION

2-1. A Blological Model

This distribution arises froma model very similar to the
one given in é 1.1 for the Poisson-multinomial distributioﬁ.
The only variations are the following.

Let N represent, instead of the total number of eggs
laid in each batch, the mean number of eggs that do not hatch in
each batch. Let Z be a random variable denoting the number of
batches of eggs lald in a particular quadrat and assume the egg
laying stops as soon as the (I\Tz)th egg is laid that will not
hatch. Hence if we define Pys Pos <ees Py g the same as in
§1.1 and p_ by (1-1.2), then

n-1
Po(%]2 = 2z) = Pn 1] Py
X X 1X .. X, o 1(Nz=1l)r B
1' 20'0‘ n-lt . i=1
1 250 (2.1.1)
P2(X[z2 =0) = (1 if x=0

0 otherwise

If Z again has a Poisson (A) distribution as in é 1.1, then

Po(X) = ) Py(R]Z = z) P(Z=z)
zZ=0 (2-1.2)
n-1

(%) +.. 4%, _4+Nz-1)! Nz Xy
Pn 1—[ Py
i=1

Sy (A%/z1)
ZZO Xqle..x, g !t(Nz-1)!
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where we adopt the convention that

]2
I
ol
\»

N

i
o

(xy+. . o4x, o +Nz-1)! 1 ir

= (2-1.3)
Ryte. X q!(Nz-1)! 20

o
e
)
i
4
ol

2-2. Probability Generating Function and Recursion Formula for

Probabilities

The probability generating function i1s defined by

X X

X
g*(%) = E(sy s, ° n-1)

T (2-2.1)

Thus from (2-1.2), (2-1.3), and (2-2.1)

L. 4 C (Ry+.oo4x) (+N2-1 )1 n-1 Xy
g*¥(s8) =) ... e~} (lz/z!) 1 p 2 (844 )
Z Z=o §z§ xlt...xn_l!(Nz-l)! n E_ 171

+ 83,3

= 1 if X =0

ol

0 if X 4

Let us sum the terms in éi 3 separately and rearrange the order
3

of the sums of the other terms. Then

© @ © Nel
. - 2 Nz (x1+...+xn_1+Nz-1)! Xy
g(8) =) Wz p MY .Y ' =TT (s,y)
z=1 X,=0 X, =0 xl""xn-l‘( z-1)! i=1
+ e} (2-2.2)

To evaulate the above expression we use the identity
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n-1
1 Z xk+N z=-1
(xpte.tx (#Nz-1)1 D70 kay
X, ! 1 (Nz-1)! = 71. (2-2.3)
1t X, qt(Nz-1)! 321 e

From Feller [1950], page 61, (12.%), we have the identity

(72) = (**27H) () (2-2.4)
Hence ) (72) (-p)* =) (*2™L)(-1)(-p)* = (1-p)7® (2-2.5)
X=0 X=0

The last equality is true because the middle term is simply the
binomial expansion of (1-p)~%. We may use (2-2.%) to replace

the combinatorial expression on the right side of (2-2.3) and then
use the result to replace the factorials in (2-2.2). We obtain

an expression involving negative binomial coefficients

n-1 .
@ o o n-1 "Z x-k- A
gx(38) = e Y Wzt Y L) k=J+1 (2-2.5%)
z=1 Xn_1=0 Xl‘—‘-'O J=1 Xj
n-1 x
TT (-sgpy) * + ™
i=1

After carrying out the indicated summations using (2-2.5) as is

done in Appendix 2A,
n-1
-Nz
2Y _ a~A A Nz
g*(S) = e z "Z—' p-n (1 = Z Sipi)
N Z= * i:l
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and hence
Pn N
g*(8) = exp )2 -1 - A (2-2.6)
1- Ej 84P4
i=1

Let us consider the following change of variables

Pp = 1/Pg
py = b, /o, i=1, ..., n-1 (2-2.7)
N = ~V>0

Then (2-2.6) becomes

n-1
g*(8) = exp {x[bn £y 8,1 - x% (2-2.8)
i=1
Notice this formula is exactly the same as (1-2.1) where V
corresponds to N, and P to p. Hence whatever we say about
A and Py in the Poisson-multinomial distribution, we may say
the same thing about A and bi respectively in the Poisson-
negative multinomial distribution by virtue of (2-2.8). In
many results obtaiﬁed in this chapter this fact will greatly
reduce the length of calculations, while in others, especially
those involving derivatives with respect to Pys it is better to
calculate directly.
To obtain an expression for the probabilities we must

differentiate g*(8) an appropriate number of times. Starting
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with (2-2.8) we can exactly follow the procedure in Appendix 1A
with the obvious change in symbols and obtain (1lA-4) which will

be wrlitten as

*n-1 n-1
Py (R48, ) = Z C) WV el (V- Y (g )]
¥1=0 ¥p.1=0 i=1
n-1l
-y
{TT <bi)l t_ ]P;c(y)
i=l1 “n (xi-yi)l
From (2-2.7) it is clear that
bi = 'pi/pn (2"2'9)

Upon substitution for the b's and V in the above equation from
(2-2.7) and (2-2.9), we obtain

A(py/Pp )1/, ) 2 2

*n-1
Y oo ) (-N)(-N-1) .

Py(x+8), ) = -

X * 1 ¥y1=0 ¥,_1=°
n-1 n-1 Vs N
[-N- ) (x-y VU] (-py) * F —=—— 1 P4(¥)
121 t W ' 79

If we now factor the "minus one" out of each term immediately
following the multiple sum and each Py> and note that N is an
integer, we obtain the second equation of (2-2.10). The first

comes from (2-2.6).
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. - N
P;<0)=g*<o>= MPn L)

n-1 [N+ E:(x -yi)]'

. AP, p. "
P2(x+8) ) = —kn_ z: Ej (N-l)' (2-2.10)
¥1=0 ¥y :
n-1 X, -y
T oy 2 (x40t B3(F)
i=1

2-3. Estimation of Parameters by the Method of Moments

To obtain the moments of this distribution, we use the
same method as in § 1-3. From (2-2.8) we may form the cumulant

generating function
n-1

c(8) = Xi[bn + z: sibi]v - 1% (2-3.1)

1i=1

By following the calculations of Appendix 1B, but replacing

N with V, and p; with b, 1 =1, 2, ..., n, we will get

12
(1-3.2), (1-3.3), and (1-3.%4) with the above replacement. Let
us call these modified equatioms (1-3.2)', (1-3.3)', and (1-3.4)'.
If we apply the transformation given by (2-2.8) and (2-2.9) so
as to express (1-3.2)', (1-3.3)', and (1-3.%)' in terms of N

and Py and then define

Gl*

*
G,

N(A+1) + 1

No(a24304L) + 3N(A+1) + 2

Gz* = N2 (A+6)°4+7+1 ) ¥ en2(3%+3n41)
+ 11N(x+1) + 6

(2-3.2)



the moments will be

E(X, )

E(X, %)

E(X;X,)

E(X,°)
E(Xing)
E(Xy XXy )
E(x, ')

E(X,” X,)

P

E(xiexdz)

E(X, x X, )

E(X

1% 3% Xp )

fl

i

i

NAp, /P, \\

Nip;, p
j'(—iG’r*+1)
1

Pn

Pn

Nip; p.N P
—L A o)+ 241
pn pn pn

NxPipj 6, ¥

Pn

Nip.
-—%ﬁ [N(a+1) + 1]
pn

2
Nxp; P p
1 2P
= (=3 G* ¥ 3= G ¥ +1)

pn n pn
NAp,P, D

pn pn
NAPs PPy
—51E e,

pn

3 2
Nap;, p
i 6—53 G5 +6-2 G *+7—- Gy *+1)
2

N

Kpépi(pig G5* + 5 2L G* + Gy ¥)

pn pn pn
pripl» (P1P (p1+p1)

‘% G 4 Gy *)

p n
pripgpk (pi Gx* + Go*)
pripjpkpm o

4 '3

Pn

I

(2-3.3)

(2-3.4)
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Let us now define the random variable, W, by

n-1
W) X, (2-3.5)
1=1
n- NA(1-
Then E(W) =) E(X) = M-p,) (2-3.6)
i=1 pn
n-1 n-1
and E(Ww?) =E( ) V X,Xy)
i=1 j=1
n-1 n-1
=Y mx B+ Y Y E(X,X,)
i=1 i=1 jdd

If we substitute for the expectations from (2-3.2) and sum,

E(We) = (1-p,) { 1+ [N(»h+1)41] 53:5313} (2-3.7)
Py Pn

Then, the substitution of (2-3.6) into this yields

E(W°) = E(W) {E(W) + (N+1)(1-pn)+1} (2-3.8)

Pn
Consequently we can solve (2-3.6) for p,s substitute into

(2-3.8), and solve for \ to obtain

_ N4l ES(W)
N E(W-)-E°(W)-E(W)

(2-3.9)

From (2-3.3), py=p,F(X; )/N\ and from (2-3.6) p,=NA/[E(W}NA].
Thus we may eliminate Py from these two equations and substitute

for A from (2-3.9). After simplifying
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E(X;)  E(X )IE(W®)-E2(W)-E(W)]

Py = = -

L UE(n) E(W)IE(WS)-ES(W )4+NE(W) ]

p, = M/[E(W) + NA]

To obtaln themoment estimators =~ A* and pi* of A

and Py respectively, we simply replace the population moments
by their corresponding sample moments. Using the notation defined

in (1-3.11), (2-3.9) and (2-3.10) yield

. x..°? . N+l
¢ = B N
(1/8) 2 wae-x..g-x..

a=1

py* = xi./{x.. + Nax]
n-1

1 - Z pP.* = Na*¥/[{x.. + Na¥]
=1 T

i}

2-4 Maximum Likelihood Estimators

In this section we will see that the derivation of the
maximum likelihood estimators closely parallels that for the
Poisson-multinomial distribution. Let us define B, ia, and Xy
as at the end of §1.3. Then we may define the likelihood .function,
L, as in (1-4.1) and obtain (1-4.3). TFor convenlence we will

record this set of equations again



A7

B
13 oy
SRR s
(2-4.1)
B
2 1ogL =) L2 p(E)=0
oP3 am1 Px(%y) 2py

Here, of course, Pi denotes the Polsson-negative multinomial

rather than the Poisson-multinomial density.
It is possible to find the derivatives of P§(§) by
differentiating (2-1.2)
5 .\ bt \Z (x1+...+xn l+Nz-l)! Nz
=3 - -
— Pp(x) =ce Z S P,
api o

Xy looxy q1(Nz-1)t

n-1

WPJ i/pi - NZ/pn)

Consider the following identity

n-1 n-l
= (I/N0Vz + ) xy) - ) xy] (2-4.2)
J=1 J=1
in the

If we use this ldentity to substitute for the last 2z

above equation, then
(Xy+. oo, 1+1\Iz--1)1

2 pi(3) = (xy/py) P3(R) - ¢ )

Py z=0 X1 xn 1} (Nz-1)!
n-1
Nz-1 TTpJ Ywz v ) xm) + (1 )Z % Pa(%)
k=1 k=1
n-1

= Ixy/py + (/b)) %] Py(%)
k=1
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(xi+1)e 2: Xz (x1+...+xn_1+Nz)! o Nz . n-1
P;P, - xll...xn_ll(xi+l)(Nz-1)£ *n 1 1_r pj

Clearly this reduces to

X,+1

EL.ypi(f) = [x,/p; + (L/p,) z: % JP2(X) -

3py k=1 ppy T

(2-4.3)

Now 1let us differentiate (2-1.2) with respect to A.

-1
2-1  (Xq+...4x, o +Nz-1)! n
e” z 1 -1 Nz W—F

dA Xy loo.xy 1 1(Nz-1)!

- B (x)

The use of (2-4.2) to substitute for the first z in the

numerator of the above expression results in

® n-1 o
= (e'X/Nx) Ez.li [(Nz + z: ) _ z: x, (Xl+ oK, l+Nz 1)
z=0 %' 121 ... o 1(Nz-1)!

n-1 x
P T Py - P3(R)
J=1

Therefore we simplify to
n-1

+1
2. Pa(%) =-fE-vPi(§+§m) - [(1/mr) Z? Xy + 1] Pg(X)
3\ NP, =1

m=l, 2, ..., D=1 (2-4.4)
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Equations (2-4.3) and (2-%.4%) will hold for each observation,
i.e. when X =‘§a, Xy =X,s @=1, 2, ..., B. With this in mind
we may substitute (2-4.%) into the top equation of (2-4.1) to

obtain
B =2 2 B n-l
+1 P.(X_+€ ) a
> x'ff g m Yol (aml)) x l=o0 (2-4.5)
a=1 ¥APy Pi(xa) a=1 k=1

Using the same 1dea we substitute (2-%.3) into the bottom equation
of (2-4.1)

B
) xy /B + (/B )Z Xeq] - (WA/B, )Z
a=1 k=1 a=1 Xpi

10t P3 (x +ei)

P—i(xa)

It is possible to replace the last sum by substituting from
(2-4%.5) and then simplifying the notation by means of (1-3.11)
to get xi./ﬁi + x../B, - (Nﬁ/ﬁn)(a+x../Nﬁ) = 0. Solving for
ﬁi’ this becomes

By = Bpx; /M 1=1,2, ..., n-1 (2-4.6)

If we now multiply this equation by N\ and add for i=l, 2, ...,
n-l, we will obtain

n-1 n-1
M Z: ﬁi = N’7\‘(1“311) = 6h 2: S ﬁnx"
i=1 i=1
Hence B, = NA/(NR + x..) (2-%.7)

and upon substitution of this into (2-4%.6) we have the estimator

for p;.

ﬁi = xi_/(Ni +x..) 1i=1,2, ..., n-1 (2-4.8)
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It still remains to find the estimator for 1\, that is,
%. As is the case with the Poisson-multinomial distribution, it
is almost impossible to solve for i directly, and hence we must
use a numerical method. The following calculation is based on

Newton's formula which is given by (1-%4.12). Writing it again,

Yna1 = A - [£(R,) 7/ 3 2(X)] (2-4.9)
where (%) = o. (2-%.10)

If we use (2-4.8) to substitute for P, in (2-%4.5), the latter
equation reduces to an expression which is a candidate for f(a)

since it satisfies (1-4.13), 1i.e.

B N —_ =
£(3) = Z (g *1) P:i’(c;%;m) -B=0 (2-%.11)
a=l Xm. X\

The final step in our procedure is to find Dif(ﬁ) for
substitution into (2-4.9). Differentiating (2-4.10) with respect
to A glves

(xX.)] (2-%.12)

But we know
n-l1
2 ) = 2 3 3 S p. (% -
Dy Py(R ) =) 2 P(%, )58, + 2= P3(%,) (2-4.13)
m=1 m GRS

and from (2-4.7), Dyfy = - x, /(M + x..)° (2-4.14)
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Now let us substitute for the derivatives in (2-4.12). Using
(2-4.13) to substitute for the partials wlth respect to ﬁi and

% respectively
n-1 n-1

Di Pi(ia) =Z {[xja/ﬁ,j + (l/ﬁn) Z xia] P’i(ia)
= i=1
X, 41 Nx " n-1 .
- %i%; PSE(xa,"'eJ )} ( - Tmi—)ﬁ - [1+ (1/Nx)i§1 X1 Px(X,)
+1
+ 11\:‘;; Pi(fa":ém)
m

Next, substituting for ’ﬁn and ﬁi using (2-4.7) and ( 274ﬁ§f
respectively, and using (1-3.11) to replace the expression ija,

we finally have j=1
n-1
Dy Pa(%,) = (/%) ) (x3q+1) Pg(X#84) - [(w,/R)(1+1/N)
31
- . e J&n +1 - -t
1] Py(%)) + (1“'3“‘x X N‘; ) P2(E_+8 ) : (2-4.15)
If we now replace X by Fc’a+'e’m and hence x by X +1, we
obtaln
n-1
Dy Pa(E8,) = (3/R) ) (xgql) Pp(Ras, )
. =1
w_+1 N " A X__+2
-[ 22— (141/M) + 1] P (X 48 ) + [1/% + NAtx..+1 | “mo
Y x +1 M
*m.
. P-i(xa+2em) (2-%.16)

th

If we know the r" ' iterated values of x,ﬁi, cves Py _qs the
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substitution of '(2-4.15) and (2-4.16) into (2-%.12) and the result

into (2-4.9) yields %.... Then the (r+1)5® iterated values

r+l1
of pys ---5 P, may be found from (2-%4.7) and (2-%4.8). One
suggestion for initial estimates of ), Pys ---s Pp g is the

moment estimators.

2-5 Covariance Matrix of the Maximum Likelihood Estimators

A. Method of Calculation

As with the Polsson-multinomial distribution, direct
calculation of fi is nearly impossible. We wlsh to show however,
that it may be calculated indirectly by the same method as in

§ 1-5A, 1.e. using Rao's theorem which is stated in that sectlon.

To prove this distribution satisfies Rao's theorem, the
same procedure as in § 1-5A is followed. From the femarks at
the beginning of §21-3 we conclude that the factorial moment
generating function is given by (2-2.6) where 8§ 1is set equal to

- n-
1 instead of ©. Since 1 - Z Py =P, > 0, it is clear that

. i=1
g*(¥) is infinitely differentiable. Hence all the factorial

moments are finite. Because each moment about the origin is a
finite linear combination of factorlial moments, these moments

are also finite.

Lemma 2-1.

For the Poisson-negative multinomial distribution,
n-1 n-1
2 x,+NA[1 + ( z x,+1)] ¢ Pa(x)
i i X
i i=1

P:-xb(i-l-é‘m) _S%
i=1
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Using the convention defined in (2-1.3),
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z (Xyt..o4xy HNZ-1)0 (Xp+.. X, 4 +NzZ)

22 -\ A
Po(x+ey) = e Z;,’
z=1""

n-1

X
- Nz-]-T 1
'pn ( pi )pm
i=1

Xyle..x, q4(Nz-1)! X, +1

Xh+1
n-l x
. N
'pnz(_ﬂ‘pii)zi
i=1

Let us observe that for 2z 2 2

(X +-00+ +NZ—1)!
1 Xn-1
Xy teooxy 1 (Nz-1)t
N

(xy+...4+x,_1+Nz-N-1)! _ﬂ (Xq+.. 4%, +Nz-k)

-1 ©
P - - (Ry+. ..+ +Nz-1 )¢
z X X, P3(X) + Ne A z (\%/z1) = "n-1
Xy !l.. X, o !(Nz=1)!
i=1 z=1 1 n-1l

Xyt Xy ! (Nz-N-1)! Kl (Nz-k)

I

n-l
Xyl Xy 4 !(Nz-N-1)! 1e1

(2-5.1)

We may use the above inequality to substitute for the factorials

in (2-5.1) for z=2, 3, ... . Thus

n-1
P R (X S 4N-1)
Pi(ic‘+é“ ) < __r_n__{ z x, P=(X) + Nae AL n-1
m’ — i~x ' ' '
%n.""l i=1 xl e o e .Xn_l . (N"l ) .
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n-1 n-1 ®

Xy z-1  (Xq+...+ +Nz-N-1)!
.pnN —H— I Mrne=( Z xi+1)m A2 1 Xn-1
1 l i=l z_a(z-l)' ' o.%_ll(Nz-N-l)!
n-l
N(z-1
‘P'a (3-1) ‘ ( Py }
The second term in the braces is the "z=1" +term in the expansion

of Pi(i). The third term in the braces is equal to Ef(i)
minus the "z=0" term in its expansion, a fact which is easily
seen if we replace 2z by z-1. Since each term in the expansion

of Pa(x) is non-negative, we can conclude

= - )
Py

{ 2 x; Py(R) + M Py(%)
i1=1

n-l

+ pn ( Z xi+1)N N\ P (X)§
1=1

If we now note that e'l, Pps P, &re positive and less

than one and x5 20 for all i, we can write

n-1 n-1

P-»(Si+e )<{ z x, +NL (1 + ( Z xi+].)K } P2(X)
i=1

Q.E.D.

Lemma "2-2.

For the Poisson-negative multinomial distribution,
E( [3/a1 (1og L)|?) < =.
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Proof:

By the same argument as in lemma 1-3, we are able to obtain

(1-5.3) 1.e.

3/ [P3(X)] 5
(1 = )
P2(X)
Substituting from (2-%.3) for the derivative
n-1

- &% {lxm+1 Pu(%+8 ) - /M) 2: x3+1'3}
J=1

E( |2~ 10g L|%) < B7E
3

! -
Nlpm P2 (%)
After replacing the absolute value of the sum by the sum of the

absolute values and using the result of lemma 2-1, we have

x 41 n-1 n-1
E(]2- 10g L)) < B3E< m { Y x LD +( ) xi+1)N]}
ak WPy ( 121 1=1
n-1
3
+ (1/M) )le 153+1>

Upon expansion this wlll be a finite sum of terms of the following
type - |

constant . E (_FY xJnJ)
J=1 (2-5.2)

where the nJ are non-negative integers

These terms are all finite since we know all the moments are

finite. Hence the result follows.

Q.E.D.
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Lemma 2-3.

For the Poisson-negative multinomial distribution,
E([3/3p; (Log L)|°) <@ for 1=1,2, ..., n-l.

Proof':

By the same argument as in lemma 1-3, but replacing A
by p; we get (1-5.3) with p; replacing A. Thus
[3/3p, [P3(X)]

Eili— log L|”) < p7E(| — 1)
api Pi(X)

Let us substitute from (2-4.2) for the derivative.

n-1 P
x,+1 Pz(%+8, )
< BIE( [x;/py + (1/p,) Z‘ X - i XL p
k=1 PpPy  PR(¥)

By the manipulation of absolute value sign and use of lemma 2-1,

we arrive at

n-1
BE(R— 1og L|?) < p’E <xi/p1 v (/) ) %
Py k=1
x, 41 n-l n-1
+ { Z xJ+Nk [1+(2 xJ+1)N]§>
P p, (=1 =1

If this expression is expanded, a sum of termms like those in
(2-5.2) is obtained and by the same reasoning as there, the result

is obtained.

QoE.D.
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If we consider Rao's theorem which is stated near the end
of §1~5A, we notice that lemmas 2-2 and 2-3 show that the Poisson-
negative multinomial distribution satisfies its conditions by
choosing h = 1. Hence (1-5.5) will hold, and for samples of

reasonable gize we may use the approximation

-1

J* T = A% (2-5.3)
r )
L - * ¥* *
where J* = le prl . e Ilpn-l
I % I * I *
PpA PPy P1Pn3
T * T * I *
pn-l)t pn-lpl pn-lpn-l
. )
(2-5.4%)

is the information matrix, i.e.

I

st* = E(>- log L.2- 1log L) (2-5.5)
dt '

ds
where L 18 the likelihood function for the Poisson-negative
multinomial distribution.

‘g; Calculation of the Elements of J¥.

Before proceeding with the calculation, let us first prove
the followlng lemma which will be of use to simplify the notation.
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Lemma 2-4.
(xi+1)(xJ+1)P§(§4€i)Pi(§+€3)
NAp;py Pp(X)

-]
Define Aij = =1 4 z Z
X1=O Xn_1=0

(2-5.6)
Then Aij = %k = A’ Ba}y i,,j’k’m = 1, 2’ v ey n"l
Proof':

The proof is identical to that of lemma 1-5 except that
in place of equation (1-4.7) we refer to (2-4%.4). We must also
‘note that Pﬁ now refers to the probability function of the
Polisson-hegatlve multinomial whereas in lemma 1-5 it referred to

that of the Poisson-multinomial.
Q.E.D.

Consider I,,*. If we substitute (1-4.1) into (2-5.5)
and use the same argument as was used for obtaining (1-5.13),
we get a formula for Ixx* which 1s exactly the same as that

for I in the last mentloned equation. Now substitute for

AL
the derivative using (2-4.4). Then
© © X +1
(1/B)Iy % =) v ) - ti‘) { N’i P (%48, )
2 P
X =0 X, 1=0 "X m

n-1

2
Sl a/m) Y x] P-,%(i‘)}
i=1
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Expansion of this expression using the definition of

expectation and lemma 2-4 yields
n-1 o)
(/B)I,,* = A + 2 + (1/822) E[( z X,) 1]
AX i

1=1
n-1

- (2/%%\%,) BI( ) X;-1) X,] - (2/Mp,) E(X,)

i=1
n-1

+ (2/m) ) E(x,)
1=1

Let us make use of equations (2~3.7) to substitute for
the expectations. After simplification, we find

2

(1/B)L),* = A - (1-p, )IN(M1)(14p,) + 1] / Napy (2-5.7)

Similarly we may obtaln the other entries of the information

matrix
(1/8 )IM,J* = (1/B )ijx*
= NM/p, + [(NA+F+1 )pn2 - 1/p, - ™\1/p,
2.2, .. 2 2 2
'(I/B)Ipipg* = N°\"A/p, " + (NA/p, " )[-(WA+N+1)/p, (2-5.8)
+1/p, + N\ +1] for 143
/By 5 " - ¥\%a/p, % + (m/p,?)[- (a1 )/p, 2

+ 1/pn + M+ 1] + m/pmpi

The calculations of the above results are outline in

Appendix 2B. Now let us define



Hence

o
*
|

AX

AP

PP

ppP

J¥ =8

-

*
(1/8) 1,,
*
%*
(1/8) Tp, o,
B * 4+ N =
+ M/ppy = (1/8) Top,”

Ban” Byp*
Blp* Bpp*+Nx/pnpl

* ¥*
Bip Bop

.

s J41

(2-5.9)
(2-5.10)
"\
Byp*
BPP*
Bpp*+Nx/pnpn_lJ

Now, from (2-5.3) we have that () = J'l, and using

Appendix 1D, formulas (1D-1) and (1D-6) with the appropriate

association of variables,

det J* = g"

*
{Bxx + (Bya*Bpp*

Byp*” Jen(1-p, M} T

n-1
Nx

1=1 P nP1

(2-5.11)
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* -
var A =‘% N: + Bpp pn(l pn;
By *WA+(B, \ ¥By o * =By o * 7 oy (1-py )
3%
2« 1 zp PnPi
C = - ==
ov(i.By) P B, *N\+(B B, *)p_(1-p_)
AA Xl pp Xp n n
2 2
coV(Pi,PJ) = -.l (Bxx BPP BXP )pn Zipj
* o * -
[B 2 FIA+(B,, *B*-B, %" )p (1 p, )M
«2y 2 2
var B __1{,P nP1 (Bya"Bpp"~Bap™ Pn'Py
- B8] %_p %2 -
N [Bn Nx+(Bn oD 1p )pn(l pn)]m

(2-5.12)

Corollaries 2.1 and 2.2 in Rao [1947] state that if the
distribution satisfles lemmas 2-2 and 2-3, 'then the maximum likeli-
hood estimators are minimum variance estimators for large samples
and in terms of the generalized variance, det.fi*, are asym-

totlcally efficient.

2-6 Efficiency of Method of Moments

éé_ Method of Calculation

The method used i1s identical to the one described in 1-6A.
To distinguish certain quantities such as the information matrix,
covariance matrix, etec. for the distribution now under consider-
ation from those for the distribution described in chapter 1,
superscript stars will be written after the symbols (e.g.fﬁ *
J¥*, M*¥, etc.). Thus the efficiency is given by
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1
det 0) * det J*

Eff =

(2-6.1)
where fi * 1s the covariance matrix of the moment estimators.
As is shown in Appendix 1E,

det AL * = (det 4*)® det M* (2-6.2)

where det ¢* is given by (1-6.6) and M* 1is given by (1-6.4%)
except that the quantities now refer to the Poisson-negative

multinomial distribution.

E; Calculation of det M*¥ in Terms of the Parameters

We may repeat the argument that led to (1-6.7) for the

present distribution and-obtain an identical result, namely
var X, = (1/8)IE(X,2) - E3(X,)]
i - i i
Substituting for the expectations using (2-3.3), we obtain
var X, = (1/B)(Map,/p, ) (py/p, )(N+1 }4+1] (2-6.3)

If we repeat the argument that led to (1-6.9) we will obtain
cov (X&,f&) = (1/5)[E(Xin) - B(X) E(XJ)] and substitution
from (2-3.3) ylelds

cov(%,,X,) = (1/8)N(N+1)A pyp,/p,° (2-6.%)

Similarly, repetition of the arguments leading to (1-6.11) and
(1-6.15) lead to identical equations for the Poisson-negative
multinomial distribution. By substituting (2-3.3) into (1-6.11)
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and (1-6.15) and using Appendices 1F and 1G with G;* replacing

G

cov (W2, %) = (1/B)(NA p,/p, ), *

1-p 1l-p
where Hy* =-—-—E'{G2* ( n) + 3@1;} (2-6.5)
pn pn |
1-p
- Moy * (—2) +1] +1
pn
and
var W = (1/8)INA(1-p, )/p_JH,*
l1-p 3 l-p 2 l-p
where Hy¥ = Gg* (—2) + 6G,% (—=) + TG * (—=)/ (2-6.6)
P, P, P,
l-p 1-p 2
+ 1-M\ (—2) [6y* (—=2) + 1]
P, P,

Now let us stubstitute (2-6.3) through (2-6.6) into the expression
which is given by (1-6.4).
r
Nx(1l-
A ( pn)H .

for M*

1
M*= &
2

pn

Nlpl

Hl*

Pn

Then
N
XP]_H:L*
Py
Nip, p
LYt (N+1 )+1] ...

Pn Pp

Py Py
N(N—i-l ))\—T
pn
1Pn-1
pn

P
N(N+1 )x

Nap,,

4 and pk/'pn replacing P> we have respectively

\

prn-l "

1
2L N )41 ]

Pn Pn

(2-6.7)

/
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The determinant of the above matrix is found in Appendix
1H if we replace H,, N', and R by H¥*, (N+1)/pn, and m/pn
respectively in the result given in the appendix. Thus

n-1
det M = (m/Bp,) (1-p)(TTpy) {Hz*m(l-pn)(m Vo]
i=1
- Hl*?‘-z (2-6.8)

C. Determination of the Jacobian, det ¢*

The expression for (* is the same as the one given for
¢ in (1-6.21) with the exception that the quantities refer now
to the Poisson-negative multinomial distribution. The partial
derivatives in (1-6.21) can be obtained in a straightforward
manner from (2-3.9) and (2-3.10). Hence, by differentiating,

3 _ N4l E2(W)
SE(W2) N [E(W®)-E5(W)-E(W)]°
3\ _ N4l | E(W)[2E(W?)-E(W)]
3E(X, ) N [E(W®)-E5(W)-E(W)]®
¥y (F+1 )E(X, )
BE(W2)  [E(WP)-E°(W)+NE(W)]Z

3P4 E(Xi)

= B2 VR )oE2
3E(Xy) Eg(W)[E(WE’*)-EE(W)mE(w)F{ BT )-E7(W)+NE(W) ]

+ B(NE(P)-E(WIEW)-N] - E(1)} 1 14

¥y E(X, ) e e s
RE(X ) E(W)[E(W®)-E2(W)+NE(W) 17 { B(WT)E()-ES (W 4NE(W) ]
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+ E(W)[E(W?)-E(W) {E(W) - N] - E3(w)}

E(W? )-E2(W)-E(W)
E(W)[E(W)-E=(W )+NE(W)]

Let us use (2-3.3), (2-3.6), and (2-3.7) to substitute for the

expectations and then simplify the results to obtaln

2

Y Pn
BE(1° ) N(N+1)(1-p, )

™ _ Py
3E(X, ) N(N+1)(1-p, )°

>
3Dy Dyb,
= 2'6'9)

SE(W2) N(N+1 )A(1-p, )* (

3

Pr PP1Pn 5 for 14
2E(X, ) N(N+1)A(1-p, )

¥y Dpy P, N P,
SE(X, ) N(N+1)A(1-p,)° M

where F and D are defined by

F = 2(1-pn)[N(x+1)+1] + P,

2 1 2
D=-0N(1-p,”) -1- E:I [28%ap,(1-p, ) (2-6.10)

- ¥%(1-p, )% + m(1-p,7)]

We may now substitute these values into (1-6.21) and obtain an

explicit expression for (*. The determinant of (¢* is calc-
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ulated in Appendix 2C if we replace Q in the appendix by
N(N+1)(1-p,)%/p,. The result is

n+l
Py, [(N+1)(l-pn)+D+Fpn]

dot ¢ = - (%+1)W(m )P (1-p, )7

(2-6.11)

Now we are able to substitute (2-6.8) and (2-6.11) into
(2-6.2) to get

P n+2x[(N+1)(1-p J+D+Fp,, 12
-1 5 {He* - Hy*
(N1 ) N(NA )L (1-p_) 8

A ¥ —
det (L * = 1

nol (2-6.12)
+ (1-p, JH* (N+1)/pn.§ T »y
i=1

By the same argument that led to (1-6.2), it is easy to see that

1
det {1 * det J*

Eff =

If we replace the determinants by their explicit -expressions
given in (2-5.11) and (2-6.12), we find that

NQ(N+1)4(1-p )5
Eff = —p —

1 1

-

[(I1)(1-py, J+D+Fp, 1% [(Hp*-H, *° )p +(1-p, )(N+1)H *]

(2-6.13)

2-T7 Sample Zero Fregquency and Unit Sample Frequency Estimators

A. Sample Zero Frequency and First Moments

This type of estimation is useful under the same conditions

as outlined in § 1-7A, i.e. the zero sample occurs fairly frequ-
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ently. Setting X =0 in (2-2.10), we obtain
P2(0) = exp [A(p, -1)] (2-7.1)

If we define F(Z) in the same marmer as in §1-7A, then
E[% F(3)] = Pi(ﬁ) = exp[x(pnN-l)] and hence (1/B)F(0) 1is an
unbiased estimator for Pi(ﬁ).

Thus, to obtain the sample zero frequency estimators X
and ﬁi of A and p;, we solve the equation (1/8 )F(Ef) =

exp [T(ﬁnN-l)] along with the equations of (2-3.3) which involve

the first moments. Hence we solve the set

(1/8)F(8) = exp[X(B,N-1)]
(2-7.2)

X, = Nﬁ'ﬁi/ﬁi i=1,2, ..., n-1
for % and ii'i
To do this we add the second equation of (2-7.2) for

i=1,2, ..., n-l1. Then we have
n-1
Z Xy =W (1,08,
i=1

and hence b, = irY (2-7.3)

n-1l
E:‘Xi + N
i=1

We may now substitute this quantity into the logarithm of the
first equation of (2-7.2) and find

N N
logm =Y_L -1
=
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-‘We must now solve for 2A. It is best to use some numerical
procedure. Once having done this we may find ﬁ% from (2-7.3)

and finally 6; from (2-7.2).

B. Unit Sample Frequency Estimation

For cases where the unit samples occur frequently, the
unit sample estimators are sometimes useful. From (2-2.7)

Pp(&) = XL < em (o110, oy (2-7.4)
38

8=0
Now E[(1/B)F(& )] = Pz(&,) and thus the unit frequency estimator
1s unbiased for P2(¥, ). To find the unit sample estimators X

and ﬁi for )\ and Py respectively, we must solve

v

(1/B)F(3,) = exp[R(d,"-1)15, "5, X (2-7.5)

together wlth the zero sample estimator
- v,v N 7 6
(1/8)F(3) = exp [X(5, -1)] (2-7.6)

After dividing (2-7.5) by (2-7.5) with k=1, we get

F(ik) - 55 (2-7.7)
F(el) Pl

Also, after dividing (2-7.5) with k=1 by the first equation

of (2-7.2) and noting the definition of p,
n-1 N
- = " v v Y
F(& )/F(0) = N1 -) B) By A (2-7.8)
k=1
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If we now take the logarithm of (2-7.6) and substitute for the

v
P from (2-7.7)

V n-1 N
%-1og-—£—l +1=1[1- 2: F(ék)]
A ‘el) k=1

(2-7.9)

Let us divide (2-7.8) by X and substitute for Py, k =

2y, 35, ..., D=1 from (2-7.7)

. PpNF(3 p, = N
1/x=ELJ;2[l- pa RICHY
F(2;) Fléy )k

We may now substitute this into (2-7.9) and obtain

b,NF(D) . B, B N A
E'l_:f_l 1 pl 2 F(& )] 1og 190 41
¥ n-1
3 . N
=1 -—2— ) F(E)]
F(&1) a1

This may be rewritten as

v ‘ n-1 N v -
1 - -1 Z: F(& )] [plNi(O) log F(9) _ 1] +1
F(e1 el F(&;) B

(2-7.10)

=0 (2-7.11)

Probably the best way to solve this for El is to use

a suitable numerical procedure. After doing this,

v
A may be

obtained from (2-7.10) and Ek’ k=2, 3, ..., n-1 from (2-7.7).
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CHAPTER II1
LIMITING DISTRIBUTICNS OF THE POISSON-MULTINOMIAT
AND POISSON~NEGATIVE MULTINOMIAL DISTRIBUTIONS

3-1 Introduction

In many applications certsin parameters may be known
already to be very large, to be a particular value, or to be
almost negligable. Usually, 1f circumstances permit, it 1s much
easier to consider the limiting distributions as the parameters
approach thelr respective limits.

If a particular Py is allowed to approach zero in either
of the above distributions, +the feorm of the diebtribubtlens, the
form of the distribution will remain unchanged except that the ith

variate will be completely ignored.

3«2 The Poisson-Poisson Distribution

The most interesting limiting distribution is the one in
which N—2 o and py = 0 for 1i=1, 2, ..., n-1 in such a way
that Npi=ai = constant. Then, by using the fact that

n-1
P, =1 - (1/N) 2: ags we have from (1-2.1)
gL(§) = 1lim g(8) = exp { A 1im [(1/¥) E: a, (s;-1)+1] -x}
Moo N-oow $=1 1

1

If we now apply the mathematical identity

e = 1im (14@/8)" = 1tm (141/W)W (3-2.1)

> N>
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we will have

n-1
gL(§) = exp { A exp [ E: ai(si-l)] - x} (3-2.2)
i=1
If, instead, we start from (2-2.6), we get
N
R - Pn
gL*(s) = 1lim g*(8) = exp A 1lim =T -2
N-o -» -
1-) 80y
i=1

By using the definition of the Gy and a familiar theorem about

limits,
n-1 n-1
N N
= exp { A lim [1-(1/N) ) o1 Lim [1-(1/N) Y ags ] - x}
Noo 1=1 N>e 1.1

Finally, let us apply identity (3-2.1) to tne above limits. After

slight simplification we get
n-1

gL*(§) = exp g x expl 2j ai(si-l)]- x} (3-2.3)
i=1

Equations (3-2.2) and (3-2.3) show that gL(ﬁ) = gL*(ﬁ). Hence
both the Poissson-multinomial and Poisson-negative multinomial
have the same limiting distribution. From the form of the
probability generating function we see that thls is a Poisson-
multivariate Poisson, or the multivariate analogue of the Neymen
Type A distribution.

From what has been done in cnapters I and II it is, for
the most part, an easy matter to obtain the same results for the
limiting distribution as we obtained for the two previous distri-
butions. We simply allow the parameters to approacn their
limits in the formulas which give the guantities we wisn to find.

The moments of the distribution may be found from (1-3.3),
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E(X.) =1lim NMX p, =2 , or from (“~3.3),
i s oo i i

E(X = 1lim N) =\ Q
( i) Now Pi/pn 1

Similarly, E(X,%) = A(al)a,® + aey (3-2.%)

E(Xin) = x(x+1)aiaj

Here we may consider estimating the parameters. We must
be aware that these are now 3, Qgs covs Gy - From either
(1-3.9) and (1-3.10),0r (2-3.9) and (2-3.10), we can derive the

moment estimators

A = E(Wg)
= -
E(W")-ES(W)-E(W) )
1im N E(X, JE(W)-E2(W)-E(W)] y
a, = 1 - )
1 e pi EZ(W)

Also, the maximum likelihood estimators for the oy may
be found from (1-4.11) or (2-4.8) by taking the limit of Np,

as N-»w. Thus we have

a = x, /A

The maximum likelihood estimator for A is given by either
(1-4%.14) or (2-4.11) since both of these remain unchanged as
N>e. We must realize, however, that now Bf refers to the
density of the limiting distribution. We shall henceforth

denote the limiting density by 3&'



3=-% The Information Matrix

From either (1-5.12) or (2-5.6) it is clear that in the

limiting case

-]

- 1 +i z (xi-;-l)(x +1)Pa(§+-é‘ )pi.(ﬁ.é‘i)

- 2
' _ 2\ a PA(Y)
Xy=0 X, 1=0 1@ J

Let J 'denote the information matrix and zst denote its entries.

Then

I = 1im I =1lim I, _*

From (1-5.16) and (1-5.18), or (2-5.7) and (2-5.9)
= = i * = -,
(1/8) Ly = Lin By = dim 3,7 = & (>-3-1)
In calculating the other entries we must be careful since
oy corresponds to Npi rather than Py - Thus from the defini-
tion of the information matrix, (1-5.2)

1 3 2y O
I = Bl———— = Pa(X) = P2(X)]
= Um El—y— & Py(¥) —2— P, ()]
N»o  P27(X) a) 3(Npy )
1 d 21 9 Y
= lim (1/N) El—5— = Pu(X) == Px(X)]
N>e P (x) an X ) X

I

1im (IX /N) = 1lim (L */N)
N> Py N

Now from (1-5.17) and (1-5.18), or {2-5.8) and (2-5.9)
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Similarly, us

(18, o =(1/B) lim (l D /N ) (1/B) lim (-L
1 J Noo  Pi J N> = P3P
= linm (B /N ) = 1im (B */N°)
= A(2A - 1)
Also, (1/B)L, i A(AA-141/a, )
Hence we may swmmarize J as
‘ )
=1 La Iy Iap, 1
I I I
=iy =P1Py © TP3Ppa
i '\
I I I
=MPp_1 “P1Pn1 “Pp_1Pa-y
\ J
where
(1/B)L,, = B,, = A
= B = - 1
(1B, = By Mt
= B = A~ £ i
(1/8)Ly p.= Epp MAA-1)  if 14y
= . = A-1+1/c,
(1/8 )ipipi Bop + May = A(AA-1+1/ay )

= 1lim (B /N) = 1im (B */N) = -AA+1
N2 Ap oo AP

ing the same equations,

*/5°)
]

(3-3.3)

(3-3.4)

(3-3.5)



3-4 Efficlency of Method of Moments

By using the same arguments as are used to cobtain (1-6.2)

and (1-6.5), we can show that

Eff = = (3-%.1)
(det ¢)° det M det g

where M 1s the covariance matrix 6f the moment estimators of

As @y, ..., @, ; and det § is the Jacobian

a[l,al, . .,an_l]
a[E(wg),E(Xl),...,E(Xn_l)]

First let us consider M. M may be found by taking
limits in either (1-6.19) or (2-6.7). This results in

cov (Xi;XJ) (1/8) kaiaj for i3]

var X

1 (1/8) ray (ag+1)

_ (3-4.2)
cov (we,xi) = (1/B) \oqH,

e
"L
-

var W2

(1/8) A H,

where
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H = l1lim H = l1im H, *
= (2m1)a® + (Ba3)a + 1
(3-403)
,EQ = 1lim H2 = 1lim Hg*
N e

= a3(‘4)\2+6x+1 12a2( 20248043 Ja(6A+7 )41

Because each entry of M and M¥* converges to the corresponding

entry of M as N-e,

det M = 1lim det M = lim det M¥ (3-4.4)
- N>e Nye

Now consider det _(1

det ¢ = 1lim Z[l’al’ *e "a'n-:l-]
Nve 3[E(W )sE(X]_ )s - "E(Xn-ll )]

/
= 1im | _a) ax o 21
Nre | 2E(WS) 3E(X;) 3E(X, ;)
day a0y a0y aay
BE(W")  2E(X;)  oE(X,) BE(X, ;)
o1 .1 -1
BE(W")  3E(X, ) BE(X,, 1)

By virtue of (1-6.21) and the fact that ay =Np,
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det ¢ = ln ™1 et ¢ = Lin N1 et g+ (3-4.5)
@ >0 )

From §3-3 we see that

det J = lim | I I, /8 T /N
~ e Ad APy APp_y
, - P D
T._ /N 3 iy
*Pl/ Lplpl/g ) Iplpn-l/
2 ' 2
I /N T /N ... T /N
APp-1 Ppn_1P3 Pn-1Pn-1
= 11m §2(2-1) et 5 (3-4.6)

N3o

The same relation holds if we consider J%. Now if we substitute

(3-4.%4), (3-4.5) and (3-4.6) into (3-%.1) we have

Eff

g(lim N ldet 4)°(1im det M)
N> N2w

1
. (1im §-2(R-1) et J)z
Nye

-1
= lim {(det 4)? det M det J‘}
Noo

= lim (Eff) (3-4.7)
>

Exactly the same result will hold if we consider (%, M*, and J*

instead of ¢, M, and J. By taking limits elther in (1-6.24) or
in (2-6.13) and then substituting for the B's from (3-3.5),
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Eff = a’ 2 (3-4.8)
— [M(a+l)-allHy(atl)- 171

where <§1 and H, are given by (3-%.3). This calculation
is outlined in Appendix 3A.

3-5 Sample Zero Frequency and First Moment Estimators

From either (1-7.1) or (2-7.1) we can deduce that the

probability of the zero sample is

P3(0) = lim exp [A(p"-1)]

Moo

= exp [X(%ﬂ <pnN> -1)1,

Because o = N(1-p_ ), we have

1im pnN

= lim (1-a/M)¥ = ™ (3-5.1)
Noe N

Thus ‘gf(G) = exp [A(e™%-1)]

Defining F(&) to be the frequency with which X =3 =

(al, ceos an-l) occurs in B observations, we have
E(F F(0)) = P,(0) = exp [A(e™%-1)] (3-5.2)

Thus (1/B)F(0) 1s an unbiased estimator for P.(0). The sample
zero frequency estimators X and 5& for A and Py respectively
may be found by solving the above equatlions simultaneously with

the first moment equations of (3-2.4), i.e.
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(1/8)F(3) = exp[X(e~-1)]

(3-5.3)
Xi = Y Cf,i

Adding the second egquation of (3-5.3) for i=1l, 2, ..., n-1,

n-1 n-1
) % = %) & =%7
i=1l i=1

This equation may be solved for & and used to replace a in

the first equation of (3-5.3). Hence
n-1
(1/6)%(®) = exp { ¥ empi(1/0) ] %, - 7]
i=1

/

This may be solved for by using a suitable numerical method.
Once having done this we can solve for the &1 using the second

equation of (3-5.2), i.e. a'i = X, /%

3-6 Unit Sample Frequency Estimation

"Taking limits in either {1-7.7) or (2-7.4) with the help
of (3-5.1) yields

Po(8) = exp[r(e™®1)] qre™ k=1, 2, ..., n-1 (3-6.1)

Let us note that E[(1/B)F(X)] = P3(X), hence (1/B)F(¥,) is

— v v
an unbiased estimator for Pa(%,). Thus, 1f we let 1 and a
be the unit sample estimators for A and e respectively, then
we may solve (3-6.1) with P=(%,) replaced by its estimator,
and (3-5.2) with §§(6) replaced by its estimator for 2\ and
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Qs k=1, 2, ..., n-1, i.e. we must solve the system
(1/B)F(3) = exp [X(e™-1)]
(1/8F(Z,) = exp [X(e0-1)I55e™ (3-6.2)
k=1, 2,..., n-1

Upon division of the second equation by the second equation
with k=1, we obtain

F(jk) B (3-6.3)
F(el) -

and upon division of the second equation by the first and
setting k=1,

F(e, ) v
(Gr) by ke (3-6.4)
F(0)
By taking the logarithm of the first equation of (3-6.2) and
substituting for the o, in a =oay+ ... + a from (3-6.3)
we obtain
y N a n-1
(1/1) log () _ exp ) - —%5— Z: F(ék)} -1 (3-6.5)
B F(&) a1

v v
We may solve (3-6.4) for 1/. and then replace the o in &
using (3-6.3) to obtain

v %F(D) &
/0 = ——— exp |- —= F\ek)
F(&) F(&1) k2
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\'d
Let us now substitute this equation for 1/% in (3-6.5). Then

v n-1
{._ﬂgl 1og_§_l } exp g- a:_‘; ZF(eK)}+1=O

F(&) F(&) ey

Because this equation does not lend itself easily to exact solu-

tion, it is best to try a numerical procedure to find P Then

1
52, e cn -1 may be found from (3-6.3) and A from (3-6.%4).



APPENDIX 1A
OBTAINING AN EXPLICIT EXPRESSION FOR THE
PROBABILITY FINCTION

We will start with the probability generating function
given by (1-2.1).

- N-
g(8) = MT-1)
n-1
where T = z Sipi + Pn
i=1

Then D g(s)

A&(8) o (V) (1A-1)

For simplicity let Ag(3) = A, D (T") = B. Then (1A-1) becomes
D, &(%) =
To find the higher order derivatives, let us resort to

Leibnitz Rule which states that

X
n-1
Xn-1 Xn-1 In-1 Ap-1Vn-1
Dp-1 (AB) = 2: (yn_ ) Dy A - Dy B
Yn-1=°
Now, we may differentiate termwise with respect to 8,_o and
obtain
n-1 x ’ y -y
n 1 -2, n-1,. n-1 “n-1,4
Dn_2xn 2 D,_ ln'%AB) X: ) Dya2 D1 ABpa Bj
Yn-1=°
Use Leibnitz Rule on each term.
X
n-1
X ¥ ~ Y
n—l n-2 n-2 n-1
= Z ) Z (yn_g) [Dn._o Dh-1 Al
Yn-1=° yn-E—O

X =Y. xp -
-2 -2 =1 ‘n-1
h-2 Dp-1 Bl
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The sums are independent of each other and consequently we nay

reverse their order

Xn-2  *na

X y ¥
_ Z’ Z’ (xn-E)( n-l) D n-QD n-lA
Ynoo''¥q1 n-2 n-1
=0y =0 n- -
Yn-e n-1

X -¥. X -y
=2 VN2 n-1 n-1
“Dhoo Dp-1 B

Continuing this process we find that, after replacing A and B

by the expressions they represeunt,

X, X
1 n-1
X X X x
1 n-1 > n-1 1
D, *...p_, "Ipe(E) =) ...} (o) e ()
I1=0 Yp.1=°
Yn-1 1 = *n-1"Vn-1 Rk N
" Dpq +- Dy .[Xg(s)]Dn-l ...Dy Dy (T )
(1A-2)
The remaining problem is to find the above multiple derivative of
TN. Notice
N -1 -1
D (TN) = vt p.1 = Wt p
Continuing,
X, -y Xy
171 N 19Y91,N-1
D1 (DkT ) = Npk Dl (T )
N-(x,-¥yy )-1 x%,-¥
= p N(N-1)(N-2) ... [N-(xy-y;)lT =17 py 74

We may proceed in the same manner through the derivatives with

respect to all the 84 - The resulting expression is



84

X =Y X, -y
D,y 2t Rt P p (oY) i
n-1 -y n-1 N- Z: (Xi'yi)’l
i )
=TT 2y ¥ H)W(w-1) ... [n- z: (x, -y, )IT 1=l
i=1 i=1

(1A-3)

From the definition of a probability generating function,

X X
n-1 1 2
D1 ...Dy "D&(B)

n-1
(xk+1) T %!
i=1l

P-,-a(\X—FEk ) =

Sy

wk

and, substituting from (1lAs2),
*p-1 n-1 yl

- A 2: - T« i) [D, _ ..D; “g(%)]
(% +1) TT %3t yy=0 ¥, q=0 i=1
i=1
-y
. [Dn-lxh-l n-1 .. 'Dl 1 le(TW)]
B=0

If we use (1A-3) to evaluate the second square bracket

*1 *h-l n-1 n-1

- Ay Y.y T (Q)[TT y, ! P2(¥)]

(% +1) T %4 yl_o ¥p.1=0 1=1 i=1

i=1l n-l
n-1 n-1 .
N- Y (x, -y, )-1

pel T py Ty ) L - ) (x4-3;)p, iZ; e

i=1 i=1

Finally, we can express the combinations as factorials

and, after rearranging the terms, we arrive at



(o)
i

AP, D ot s
PyRidy) = —ER— S Z YWY ) (xyry )]
Y170 Jpna=° 1=
a1 |z, (1A-%)
[77- i) Pt P2(7)
(xg-y; )

If, as in the case of the Poisson-multinomial distri-

bution, N 1is a positive integer, then

Pi(i‘*gk:) = lpkp Z Z AT = y

=0
V10 In1=0 [N- ) (xg-y, )-11
i=1
n-1 X, -y n-1
P i1 .
[TT (= --———1-———;] Po(¥) 1if E (%4-¥3)
1=1 Pn (%3 -v; ) 1=1

0 otherwise



APPENDIX 1B
CALCULATION OF MOMENTS FROM FACTORIAL
CUMULANT GENERATING FUNCTION

From (1-3.1), the cumulant generating function for the

Poisson-multinomial distribution is
. n-1 N
e(8) = A {[ Y spyep,] - 1f
i=1l

For simplicity of notation, in the following calculations the

expectations of products of X X2, X2, X4 will be calculated

1° 3
explicitely. It 1s clear, however that these results may be
generalized to products of any Xi's.

Let us now calculate all the partial derivativesof c(F¥)

with respect to the s of order less than or equal to four.

i
These are
n-1
, N-1
3¢ _
1. S;_ = AN( z: sipi+pn) P
1 i=1
5 n-1 N-2
3¢ 2
2. 22, AN(N-1)( ) 8,044P,) Py
1 i=1
n-1
5 N-3
3%¢c  _ 7
3. 22, - AN(N-1 )(N-2 )( z: S;Ps+Pp) Py
1 1=1 L
\ n- N-4
. b
4, ':s ) = AN(N-1)(N-2)(N-3)( )’ s;p3+p.) Py
1 i=1
n-1
5 N-2
3% _
5. = X_N(N-l )( z sipi+pn) plp2

382381 i=1

86
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3¢ " 0-> 2
6. — = AN(N-1 )(N-2 )( Z sj_pj_"'pn) Py Po
08,38y i=1 )
al‘-c ‘ n-l N")'" 3
7. ———3 = XN(N-].)(N-Q)(N‘B)( z sipi+pn) pl p2
332381 1=1
3 n-l N-B
8., —2C _ = AN(N-L)}(N-2)( ) 8,p,4P.)  P4D
28,435,905, iZ; i¥1"n 1P2P3
4 n-1 N-4
9., —2 & - AW(N-1)(N-2)(1-3)( E: 84Dy +P, ) p12p293
383382381 1=1
4 n-1 N-4
2
10. ——_8_2-2 = AN(N-1)(N-2)(N-3)( Z: sipi+pn) p12p2
a'e (m-1)(F-2 ) )(nil o
11. = AN(N-1)(N-2)(N-3 S.P,+D P4P PP
35425535,98, S i1 n 172 3L

To obtain the factorial cumulants corresponding to the above
derivatives we set 8S=1. We denote the factorial cumulants by
Kijkm where this symbol represents the ith cumulant with respect
to Xl,ljth with respect Xg, kth with respect to XB’ mth with
respect to Xh' If the last subscripts are zero, they may be

omitted (e.g. Ki100 = Kq10 = Kll). Thus formulas 1-11 become

respectively
2. K, = N(N-1) ap,?
3. Ky = N(N-1)(N-2) ADy”
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. Ky = N(N-1)(N-2)(N-3) 1p14

5. Kqq = N(N-1) ap4D,

it

2
6. Ky = N(N-1)(N-2) ip;°p,

7. Ksl = N(N-1)(N-2)(N-3) kp13p2

8.  Kyyy= N(N-1)(N-2) Apipbs

9. Kyyp= N(N-1)(N-2)(N-3) kplzpzp3

10. K,, = N(N-1)(N-2)(N-3) XPlepg2

11. Kyyq7= N(N-1)(N-2)(N-3) ApiPoP=DPy

(xy)

(ry)
.. %, ') tove the r,*™™ ractortal

1
moment with respect to Xl’ ... and the rtth factorial moment

Now define E(X1

with respect to Xt' Then, using tables converting factorial
cumulants to factorial moments, we have i1f we define the G

i
by (1-3.2)

1. B(X,) = K = NMp
2 2 2
2
= NXpl Gl

3. E(X3X,) = Kjq + KKy = NAP; P, [N(2+1 )-1]
= NAp;DP Gy
3, E(X1(3)) = Ky + KK + K’
= Map; P [N2(AP43041 )-30( L J2]
e

= Nkpl 5



lo‘

B(x, (2)

B(X; XX

E(Xl(u)

X2)

3)

)

E(x1(3)x2)

(x{®)x

E(xl(e)x

2*))

oX3)

]

+ K

89

x

Ko1K ooKo1tE1 187010 Kon

o
NAPy Polp

Ky11%310%001 1010100115100

+ Ky 00¥010%001

NAP; P P3G,
K, + 4 + 3K 2 4 6KK.Z+K 4

4 2Ky 5 ] 1
pr14[N3(x3+6x2+7x+1)-6N2(x2+3x+1)

+ 11N(A+1)-6]

i
Nkpl G3

K3y + EKxnKyo + K30¥o1 + FKq1K50
+ K. K. K. + ZK, K2 + K, 0K
20510501 11510 10 %01

3
NPy 7Py Gy

2
Kop + Ky Kyg + KyKyy + XKy + Ko Ko

o 2 2
+ KooKy + MEy1KoKo1 + KpoKoy ™ + K102K01

2 2
Nxp, Pp° Gy

Kxny + ZEy11K500 + Ko10K001 + Foo1¥o10

2

K XK . K K, 11K

011200 t “110%101 + Fo11™M100

+ K51 0%100%01 t Z101%100%010

+ K

=

%

K K

200%010%001 * 100 Fo10%001

2
N)\Pl P2P3 G-3
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¢

11, E(X) XXXy ) = Ky1737 + K1310%0001 + Fr101%0010 + F1o11K0100

+ Xo111%1000 + ¥1100%0011 + K1010%0101

+ Ky501%0110 + ¥1100%0010%0001

+ Xy 010%0100%0001 * K1001%0100%0010

+ K5110%1000%0001 * Kor01¥1000%0010

+ K5011%100050100 *+ K1000%0100%0010%0001

= NXP1P2P3P4 G3

Now 1t is an easy matter to find the moments about the
origin. Equations 1, 3, 6, and 11 need no change. The others
need slight modification which is done as follows -~

21, E(X,°) = E(Xl(g)) + E(X)) = Mapy { [N(a+1)-11p; + 1}
= Nxp; (P10 + 1)
b, E(X,°) = E(x1(3)) + 3E(X1(2)) + E(X;)

5'. E(X,°X,) E(Xl(z)xe) + B(X,X,)

My Po(Py &y + Gy )

T E(XT) = 5(x; (M) + m(x, 3)) + 7E(x, (3)) 4 B(x))
- mpl(pfe3 + 6p %G, + TpyGy + 1)
8'. E(X,7X,) = E(xl(3)x2) + 3E(X1(2)X2) + B(X,X,)

i

NAD-Po (P Gy + 3pG, + Gy )
1P (PG5 160 + G
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9'. E(X,2x,2)

15X, E(Xl(g)xz(g)) + E(Xl(g)xz) + E(XZ(Q)X1)+E(X1X2)

NAp, P, [p1p2G3 + (P1+P5 )G, + Gy ]

2 (2)y x.
10!'. E(X1 X2X3) E(X1 X2X3) + E(X1X2X3)
= MAp PP 5(Py G+Gp)
Formulas 1, 3, 6 and 11 together with the primed formulas
give expressions for the moments of order four or less. These,

in a slightly generalized form are summarized in (1-3.4).



APPENDIX 1C
CALCULATION OF THE ENTRIES OF THE
INFORMATION MATRIX "Jg"

The calculation of IM is outlined in §Il.SB.

Consider prj and ij)t

Ip. =TI, 5 =K 9 _1og L 2 1logL) by definition.
Py Py 3\ 3

Differentiating after substituting from (1-4.1) yields

= B % L 2(%, )11 Po(% )]
{ a1 Fx(%, P4(X) 2 YZI Pg(%,) apj v }
5 B ! d 1 d

= E[—=— 2 P(X)) — = Pu(X_)]

agl Ygl (%) o T s X,) apy =y

Because the observatlons are independent and identically

distrivuted
1 3 -
I = E — = P P
APy g {[Pi(i)] YN z(%) - apj X(X)}
1) E[—+ . 2 1 E[ 2 p.(%.)] (1C-1)
Hoel) Bty B m Bl 2 B G] (

The second term is zero by the same reasoning as in (1—5.8).
From the definition of expectation, and substituting from (1-4.%)
and (1-4.7) for the derivatives,
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“ el (x,+1) .
1/8)I,. =) ... 1 i (48
(/8] T, xz=o xnz_:lzo P,»{(Sc‘){ p M LY
n-l . X +1 N
+ (/) T x gl®) - ()} { g/ gt)- —m ot )
k=1 J

As is seen from (1-4.7) this holds for a2ll m. If we choose
m=j, multiply the expression out and replace the sums by corres-
ponding expectations and use lemma 1-5 where necessary,

pn
(1/8) prj = -‘ggﬁ E{XJ(XJ-:L)] - p,NA(A+1 )+(1/me)E(xJ)

If we choose m#j and follow the same procedure,

p
(1/8) I =—2 _ E(X.X ) - p NA(A+1)+(1/p,N))E(X,)
Wy ppm 4 R J J
Jm
In either case, we may substitute for the expectations using

(1-3.3). Both will lead to the same result which is
(1/8) prJ =-p, N +p N +1-p (1c-2)

Now conslder . finiti =
o) onsi Ip.p' By definition Ipip'
i° 4 d
El3/3p; (log L) . a/apj (log L)]. Let us now substitute from
(1-4.1) and realize that the observations are independent and

identically distributed. Then




Reasoning as in (1-5.8), we see that the second term is zero.

The substitution for the derivatives from (1-4.4) yields
(/B) Ty p =0 - ) [(xy/py g(®) + ~L— py(i8)]

x=0 %y y=o Fx(%) a

T -
[ (Xi/pi ) Pﬁ(x ) + P P’i(x‘*'ei ) ]
i

If 1=], we use the definition of expectation and expand the

expression. Then
(1/8) Ty p, = (1/p; *)IE(K, %)-2B(X; (1)) + N2 %p, *(a02)]

and the use of (1-3.3) and simplification gives

2,2
(1/8) Tpyp, = WA A+ M (1/py + 1-N) (1C-3)

If 143, we may use the same procedure to get

2

(/) Ty = (1/pypy )-B(X)) + Whpypy (A1)

2

= 2% + NA(1-N) (1C-4)

Equations 1C-1, 2, 3, and 4 give the remaining entries of the

information matrix.

9L



APPENDIX 1D

CALCULATION OF THE INVERSE OF THE MATRIX

J/B = Q R R R W
R S+W/p1 S S
R S S+W/p2 . S
/L R S S . S+W/p, 4
Step 1. Find det (J/B)
Let us perform the following elementary row operations
on J/B.

. Subtract column 2 from columns 3, 4,

1l

2 Subtract

3. Add (py/py)
4

ooy n=1.

(S/R) (column 1) from column 2.

. Add (pl/W)(QS/R-R) (row 2) to row 1.

will have

det (L) =
B

These operations leave the determinant unchanged.
the result
n-1
P a p
Q+-—1—(9—3-R)(R+Rz -35)

w R k=2 P1
* W/pq
; O

n-1

det (J/B)

= [Q+(QS-R2)(1-pn)/W]T—F (W/p; )

i=1

[row (k+1)] to row 2 for k=2, 3,

ces n=1,

Hence we

W/p, 1

(1D-1)

95
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Step 2. Find minors of matrix elements

Let Kay be the minor of the (a,y) entry of J/B.

Ky, = | S+Wp S . S
S S + W/p2 :
: ‘ IR
S [ - .

Carry out the following elementary row operations.

1. Subtract column 1 from columns 2, 3, ..., n-l1,

2. Add (pk/pl) (row k) to row 1 for k=2, 3, ..., n-l.

The result is a lower triangular matrix whose determinant is

n-1
Ky, = [1+ 8(2-p )W ] (W/py) (1p-2)
i=1
w
K = R S —
)\pi + pl
S .
W
S + ——
P51
] S
W
S + o n— a
Pina
S
‘ W
S + 5-—'




Do the following operations.

1. Subtract row 1 from all other rows.

2. Expand by column 1.

The result is a diagonal matrix whose determlinant 1is

Kap, = (1 y+ r g;li (W/p,)
I%ip3= Q R R . . . . .
R S+ %’-I s
' s
S+ -1%:1 s
W
5 Stg
S :
s L
. pj—l
row J 5 ‘ S 5
St
Py
R

column i+l

97

(1D-3)

14
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Do the following operations

1. Subtract row J from all other rows except row 1.
2. Subtract (R/S) (row j) from row 1.

3. Expand by column (i+l) and then by row 1.

Ky p. = (-1 asw®) TV (w/py) (1D-4)
iP3 ki, j
Kpipi= Q R . . R
R S+.gz‘
s .
S+ 5§:i.
" - 2

This will be the same as det (J/B) but with the expressions
in Py missing.
Th 2 71
us K = [Q+(Q8-R")(1-p, -p; )/W] (W/py ) (1D-5)
P;Py noi K41

From either (1-5.6) or (2-5.3) we know that {) = J'l,

1.e. [l = (l/B)(J/B)'l. By a well known theorem in matrix
theory, the elements of fﬁ can be expressed as the cofactors

of corresponding elements of JT

(1p-1), ..., (1D-5),

dlvided by det J. Hence from
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var % = = . .._I_{.M\___. = X, W+S(1-pn)
B det(J/8) P WQ+(QS-RQ)(1-pn)
K
A A p')\- Rp.
cov (L,By) =5 ———— =-3 L
det(J/B) WQ+(Qs-R°)(1-p, )
K 2
. S-R .
cov (pi,ﬁ ) =% ) PP _ 1 (@ zpipJ
d det(3/8) P [WQ+(QS-R)(1-p, ) IH
2, 2
. K P, (QS-R°)p
varpi=-é;. DyPy =-—é-[*.. gi
det(3/B) [wa+(Qs-R")(1-p, ) W

(1D-6)
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APPENDIX 1E

Lemma.:

Let @ = (w, ..., w) and U= (py, ..., B)) be two

.sets of random variables related by the equations w, = w, (H),

i=1,2, ..., n. Let EE and Eﬁ denote the expected values
of w, and M, respectively, and () = (f)ij) and M = (Mij)

denote the covariance matrices of ® and H respectively. Also,

denote by (, the Jacobian

w o
(/) My | a2

Then if higher order der'wvatives of Wy with respect to “J
are negligable compared to the first order, we have ) ¢ Mg .

Proof:

Using Taylor's theorem;

n -—
dW
— 4 -
w, -, = E:-g—— . (M -F ) + second order terms
k=1 Mk 'B=w
Thus

ow
E[ (u; -8 )(wy-54)] = t _dE[( ) (kT )]
' kzl mzl oMy 3y L

=
W

where the derivatives are evaluated at T = From the defi-

nitions of {1l and M,

Ly = 2 z—ﬂiﬁ%m
k=1 m= uk aum -
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T
= (Q Md)ij
Thus each entry of () agrees with each entry of ¢° Md.

Q.E.D,

By a well known theorem from matrix theory, the lemma

implies det M) = det ¢T. det M . det ¢, or

det £l = (det ¢)° det M.
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APPENDIX 1F
CALCULATION OF (1-6.12) AND (2-6.5)

Let us substitute (1-3.3) and (1-3.4) into (1-6.11).
2 oy 2
cov (W ,Xk) = (l/B){pk )\(pk Gy + 3Py Gy + 1)

+ 2 Z Nkpkpj(pk(}2 + Gl) + Z Z Nx Ggpkpipj

Ik 14k J4k,1
. n-1
+ Z N)‘pip/k (piG:2 + Gl) - Nap, z I\W\pi(pi(}l + 1)
i:,l:k i=1
n-1 ]
- My ). Z N}‘Glpip;j}
i=1 j4i

After carrying out the summations we obtain

(1/8) { Py A ( pk2G2+3ka1+1 J+2NAPy (Py GGy )(1-Pyc~Pp )

2 2 o 2
+ NPy Gl (1-py-p, )"~ z Py “1+p, {€, ;pi +Gq (1-p)-p,, )
14k

idk
n-1 n-1
2,2 2 2,2 2 2
- N7\ pk(Gl z pi + 1‘pn )"N A G'lpk[(l'pn) - z pi ]
i=l i=1

Upon simplification, this yields

cov (W2, %) = (1/8)Mpy. { (1-p,)[Gy(1-p,) + 36,
- w6y (1op W1 ) T + 1)

This equation is (1-6.12).
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APPENDIX 1G
CALCULATION OF (1-6.16) AND (2-6.6)

Let us substitute (1-3.3) and (1-3.4) into (1-6.15)
— n-1 ' ‘
var w£ = (1/B ){ Z z Z Z NiG3 P4PyPiPy
i=1 41 k=i, J mel, J .k :

n-l1 n-1
+ 6 Z Z ) NX(GBpi Dby + GpPyP Dy ) + 3 ) Z N\
1=1 J4i k41, i=1 341
. ' ' : ‘ n-1
[G3p12p52 g(pl p‘.ﬁ-p:pj 2) + Gypypyl + 4 Z z M
| ' i=1 j4i
n-1
(G, 2 4 2 -y
(G503 7Py + 30G5p; ° p + Clp Py bt Z NA(G5p; +6G,py “+7GyP;+P; )
n-1 Ln-l» . h 5
-1 ) Mpy(pyGy Ll [ ) MaGipypy] }
i=1 L=l §di

After carrying out the summations we obtain

n-1 n-1 ‘ | n-1
=(1/8){ Mmegl(1-p,)* - 610,02 ) 023§ 5 2)%8(1-p,)) b,
' ' T k=1 ' k—l ' i=1
n-1 n-1 . n- n-1
65 p '+ 62&[@3((1-;)1,1)22 p, *-2(1-p,) Ep -( ) py®)°
_L=l i=1 ' i=1 J=1 4
n-1 1
+gz ") 46, (1om, Po3(1o5,) ) v Poe Zp 2
i=1l J=1 =1
Ti-1 n 1 n-1
+3m[G3<(Zp )-Zp >+Gg<2(1p )EP -QZP 3>
1 4=l i; 1 =1
- n-

+C%1((l-pn) ZP >]+4m[& ((1-p, )2913 ZP )

=1 .
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n-1 n-1

n-1
2 2 2
+36, ((1-py) ) ps®- ) 27 ) 46 ((12y)% T o %) ]
1= i=1 n-1 i=1
n-1 n-1 n-1

b 3 2
+(C5 Zpi +6G, z Py +7Glz Py “+1-p,)

i=1 i=1 i=1
n-1 n-1

2 . e 2\ 12
_[m<G1 2 p; “+1-p, ) +NAGy { (1-pn) - Zpi )1 } .
i=1 i=1
Upon simplification, this ylelds
2 3 2
var W= = (1/B)WA(1-p, ) {G3(1-pn) +6G5(1-p,, ) +7G (1-p, )

+ 1-m(1-pn)[Gl(l-pn)+1]2}

This equation is (1-6.16)



=
i

2.
3.

W] -
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APPENDIX 1H
CALCULATION OF det M WHERE M IS GIVEN BY

: )
R(l'pn)HQ Rpy Hy Rpp 1ty
RpHy Rpl(plN'+l) RN'D1Py - RN'plpn_1
Rp2Hl RN'plp2 ’ E
: ‘ RN'Ph-2Pn-1
Rpp-1Hy RN'P1Py e an-l(pn-lN'+1?)
S

Let us perform the following elementary operations.

Take the common factor R out of each row, the common factor

H1 out of row 1 and column 1, and the common factor Py

Multiply row 1 by -N' and add to rows 2, 3%, ..., n.
Multiply row i+l Dby -P4 and add to row 1, i=1, 2, ..., n-l,

We now have

n 21 (1-p, )H (1-p, JHN'
aet M = (3) 8 °(Tpy) —ﬁ_g ~[1- H"TQN 1(1-p,)
1=1 1 h
* 1

| o

n-1

=(R/B)n(77’pi)(l-pn) { HQ-Hle(l-pn)Hgmf}

i=1l
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APPENDIX 2A
OBTAINING THE PROBABILITY GENERATING FUNCTION g*(%)

Let us start with (2-2.53), This expression is equal to

-] -]
X
- - z Nz -Nz n-1
=1 X =0 n-1
~Xo= oo« =NZ X -XA~=. -NZ X
2 27 1 -\
2 ( ? X5 )('SQPE) Z:( xl )("slpl) + e

We can now apply (2-2.5) to the last sum and obtain

g*(8) = 2 ()\Z/z!)pnNz E: (;Nzl)(-sn_lpn_l) n-1_

a— n-
. Z=1 xn_l—o
-Xo=...=N2 X “Xn=...=N2
3 2 2 =X
2 x, (-8zPp) "(1-8,p;) + e
2=0

e -..-NZ - x --n—NZ

~X,~ SAP 2 “X = -
= ... ZT( 5 x )(1 2 2 ) (1-syp4) 2 + e”?
X =0

“S1Py

Applying (2-2.5) again and continuing in this manner

[ -]
-A z Nz -Nz -
=e E:(x /z!)pn (1'Slp1""'sn-lpn-l) + e}
Z=1
. -]
-x 4 Nz -Nz
=e zl(x /z!)pn (l~s1p1-...—sn_1pn_l) -

Z=0

The sum is simply the power series expansion of

N
pn
eXp )\ n"'l - X
1- Z 4Py
i=1

from which (2-2.6) follows.
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APPENDIX 2B
CALCULATION OF THE ENTRIES OF THE INFORMATION
MATRIX J*

The calculation of I,,* dis done in §2.5B.

Consider I *¥ and I ¥, By the same argument as in
XPJ PJK
Appendix 1C, we may obtain the same equation as (1C-1), and as

in (1-5.8), second term will be zero, i.e.

1 3
I, *=I .%=8E 2 po(%).2 Py(X)
Py oo Pgh {[Pi(f)]E ) 3y }

Substitution of (2-4.2) and (2-4.3) into the above equation

results in

) © -1
x_+1 R n
(1/8)T,, 1 Po(X48, )-[(1/m) ) x
g-o X z 1=0 x(x) { NXpm * " ;jgl /
n-1
11p(3)) - {Txy/0y4(1/0y) ) IP3(3) - Py (%48, )}
k=1 pnpi

(2B-1)

From (2-4.3), we see this must hold for any m, m=l, 2,

., n-1. If we choose m=1, expand this expression, and make
use of lemma 2-4%, we can wrdte the above equation in expectation

notation as

n-1
(L/B )y, *=(3/p3 M (-143/p JE(H; )-(1/MNECY; ), %)
=1

+(1/1y,) { (2/p4 JBIX, ( 2 X, -1)1-E[ ( z %, )%}
k=1
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n-1

~(1/py) } E(% )= (/o J(A+L b (1/M0)[E(K, ®)-B(X, )]
k=1

Similarly, if we choose m#i, we obtain
n-1

(1/8)T,p, *=(1/0y J(-141/0 JB(X, )-(1/M0 JE(X, Z %)

k=1
n-1

+(1/Mwy ) { (2/p, BIX( ) xk,-l)]-E(i %)%}
' ' k=1 k=1 '

] n-1 '
~(1/py) ) B(X)-(NA/py (AL }+(1/MApy 0, JE(X X, )
'L . St Xy %)

Upon simplification by means of substitution from (2-3.3) of

elther of the above expressions, we find that

A 2 : "\

(1/8 )Ilpi*=N7\A/pn+{(Nl+N+l on~ - /e, - M1/ ,(,213-2_)

Next consider Ip D" From (2~5.5) and same procedure-

. ' 173 : ’

as above,

. 1 d - d =
I, 5 % =BEl ——=—5 = Py(X)- = Px(X)] .
P1Pj [Px(3¥)1° 2oy © ° o *

Let us substitute for the derivatives from (2-4.2) and expand

n-1’

(185 5 % “z Z { [x4/p4+(1/py) Z‘ %] Py(X)

1=0 X,_1=0 / L k=
X, +1 n-
- = Pg(f+€i)} {[xj/pj+(1/pn) z: %, ] Pa(X)
‘ pnpi ' k=1 '
X 4+l L. | ‘
- Py(3+2,)} | (2B-3)

PPy
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If 1=j, expansion and the definition of expectation yield

(1/B)T, o * = (/04 °)(1-2/p, B0, ®)-(2/p,py DL (1/0y

n-1 n-1
+1/pn)E(xi)+(1-1/pn)E(Xi }j Xk)+(1/pn2)E( 2: Xk)2
k=1 k=

+ (Ngxe/png)(A+1)
Substitution for the expectations using (2-3.3) will glve us
(1/8), [ * = ¥A%a/p, % + (nn/p,®)[-(Maemed )/p, 2 + 1/p
P4Py n n n n
+H+1] + Na/p oy (2B-4)

If 1i4j, (2B-4) yields

n-1
(1/8 )Ty p * = (1-2/0, JB(X, Xy 2e(1/0 )L (3/py )E(Xikzl %)
n-1 n-1 -
+ (1/pgB(Ky ) %)+ (/p,%) { B Y %)
k=1 k=1
n-1 n-1
- (/0 JEIX( ) %1)T - (1/pg )BIX () %-1)]
k=1 k=1
+ (N3%/p_)(as1)
= No\%a/p, "+ (/D% ) (- (Na41441 )/, Bl /p, 41041 ] ‘ (2B-5)

Equations 2B-1, 2, 4 and 5 glve the remalning entries of the

information matrix.
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APPENDIX 2C

' CALCULATION OF det (* WHERE

& =

pn-lD

e

F
Q

p,D

e

PsD P,

AQ N

Pra1
AQ
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ol

P

D

AQ

poD
2\Q

pn-.lD

AQ

Pn

PR ¢

N

To find the determinant we must perform the following

elementary'operations.

Factor Q out of every row of the matrix,

Pn

out of

cdlhmn l, and finally pi/x out of row i+l for i=l,

2, LI Y n-lo

Multiply column 1 by F and add to the other columns.

Subtract row 2 from rows 3, 4, ..., n.

Multiply column 1+l by p;/p; and add to column 2 for

i=2, 3,

e o3 n-lo

Expand by row 1 and then by column 1.

!
i
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The result is a constant times the determinant of a diagonal

matrix, and so

~Np n-1

det ¢* = W [Qp,/N + (D+Fp, )(1-p,)]
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APPENDIX 3A
CALCULATION OF EFFICIENCY OF METHOD OF MOMENTS
FOR THE POISSON-MULTIVARIATE POISSON DISTRIBUTION

Equation (3-4.7) ff. suggests two ways to find the
efficlency. We may take the limit of the efficiency of elther
the Poisson Multinomial or the Poisson-Negative Multinomial distri-
bution as N->e, 1.2. we may take limits in either (1-6.24) or
(2-6.13).

Method 1. Take limiting value of (1-6.24).

After dividing numerator and denominator by N and
rearranging the expression slightly,
{ (1-1/8)°8%(1-p, )
2 2

Eff = 1lim
N»e

1
[H, {N(1-p, p,) -H;"]

Use (3-3.1), (3-3.2), and (3-3.3) to find the limit of the first
factor in the denominator and (3-%.3) to find the limit of the
second. Also use the fact that a = N(1-p,). Then

Eff = o/ { [MA+a AA(AA-1)-(-2A+1)2) 1{H, (a+l) -H12]}

This simplifies to

Eff = a’/ { [MA(atl )-allHy(a+l )-H, %1} (3A-1)
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Method 2. Take limiting value of (2-6.13).

After dividing numerator and denominator by N and
rearranging the terms slightly,
(1+1/X )l‘ND(l-pn )

b2 [AB, %+ ( B *(B_*/N2)-(B,_*/N)?) p_N(1-p)]

Eff = 1im
Noe

1
© [ (LL/H)N( 1-p,, HD+FD_ 1°1¢ Hg*'Hl*g o, +(1-p, IN(1+1/H)H *] }

Let us note that from (2-6.10),

Lin Fy =1im { 2(1-p, )IN(M+1 )+1lp, +'pn2} = 2(l)a + 1
NYe JUE Y-

lim D = lim {-N(l-pn)(l+pn) -1 - 2(X) ap N(1-p, )
Now N>e N+1

#(22) 282(1-p,)% + (S1) A(1-p,)}= -2(nl)a - 1
N+1 N+l

Hence we see that lim (D+Fp,) = O
Now :

If we use this fact and equations (3-3.1), (3-3.2), and (3-3.3)
to find the limit of the second factor in the denominator and

(3-4.3) to find the 1limit of the last factor

Bef = o/ {10+ (AL (M-1) - (-Aa+1)% ) al.a?

2
1By - B ¥ + amp]]
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This simplifies to

Bt = o’/ { [M(asl) - allHy(al) - B °1)

This is exactly the same as (3A-1).
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