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of these two alternatives, and its distribution is determined for the 
bivariate case in the form of definite integrals. 

Ignoring a priori probabilities, two alternative methods are 
suggested for assigning an arbitrary population to one or more 
clusters of populations, and are demonstrated by an illustrative 
example. 

A method is discussed for finding confidence regions for the 
non-centrality parameters of the distributions of certain statistics 
used in multivariate analysis and this method is illustrated by an 
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in the problems of multivariate analysis of variance (Anova). Their 
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smallest eigen roots have been found by a simple, easy method of 
integration, which method is quite different from that of Nanda 
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product (M.P.) matrix have been approximated respectively in the 
univariate and multivariate cases of unequal sub-class numbers in 
the analysis of variance (Anova) of Model- II. 
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ABSTRACT 

The problem of classifying multivariate normal populations 

into homogeneous clusters on the basis of random samples drawn from 

those populations is taken up. Three alternative methods have been 

suggested for this. One of them is explained fully with an 

illustrative example,and the tabular values for the corresponding 

statistic, used for the purpose, have been computed. In the case of 

the other two alternatives only the working procedure is discussed. 

Further, a new statistic R, 'the largest distance', is proposed in 

one of these two alternatives, and its distribution is determined for 

the bivariate case in the form of definite integrals. 

Ignoring a priori probabilities, two alternative methods are 

suggested for assigning an arbitrary population to one or more clusters 

of populations, anddemonstrated by an illustrative example. 

A method is discussed for finding confidence regions for the non-

centrality parameters of the distributions of certain statistics used 

in multivariate analysis and this method is also illustrated by an 

example. 

The exact distribution of the determinant of the sum of products 

(S.P.) matrix is found (in series), both in the central and the non-

central linear cases for particular values of the rank of the matrix. 

Further, these results have been made use of in finding the limiting 

distribution of the Wilks-Lawley statistic proposed for testing the 

null hypothesis of the equality of the mean vectors of any number of 

populations. 



- i i -

Six different statistics based on the roots of certain 

determinantal equations have been proposed for various tests of 

hypotheses arising in the problems of multivariate analysis of 

variance (Anova). Their distributions in the limited cases of 

two and three eigenroots : have been found in the form of definite 

integrals. Also, the limiting distribution of the Roy's statistics 

of the largest, an intermediate and the smallest eigenrobt^a have 

been found by a simple, easy method of integration, which method is 

quite different from that of Nanda (19I+8). 

Lastly, the distributions of the mean square and the mean 

product (M.P.) matrix have been approximated respectively in the 

univariate and multivariate cases of unequal sub-class numbers in the 

analysis of variance (Anova) of Model II. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Test of Equality of Mean Vectors in the Case of Two p-variate  
Normal Populations 

In sciences like anthropology, biology, and others, we often wish, 

on the basis of two p-variate samples drawn from two populations, to 

find whether the two populations, on a given probability level, are 

distinct or not. Karl Pearson (1921) gave a start to answering such 

a question by suggesting his well-known Coefficient of Racial Likeness 

(C.R.L.) to Tildesley (1921), and he himself discussed i t in his paper 

in 1926. But this coefficient was found to be inadequate and was 

severely criticized by Mahalanobis and Morant as a measure of divergence. 

Mahalanobis (1925) modified C.R.L. and defined a measure of divergence 

DJ~ the "Mahalanobis distance", both for classical and Studentized cases, 

as follows: 

Given two p-variate samples of sizes N^ and N^ with observations 

X i r h ( i = 1, 2, p-, r a 1, 2; h = 1, 2, Nr) drawn from two 

p-variate normal populations assumed to have the same covariance matrix 

but different sets of means and ^ a 1» 2> •••»?)» 

let and X ( i » 1, 2, p) respectively be the means of the ith 

trait from the two samples. If the covariance matrix i^^". .) i s known 

or has been computed on the basis of large samples, then, taking ( ̂ —1^) 
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the inverse of ( V . ), the Mahalanobis distance in the classical case 

is defined as: 

P P 

X. 11. ^ ^ i i - ^ ^ j i - ^ ci.i.1) 
i»l j=l 

If ( is not known, we estimate i t from the samples and define 

the Studentized form as: 

2 P P 

i=l j-1 

2 \ 
where (N. + N 0 - 2)w. . * / 7__ (X, . - X, )(X. . - X. ) v 1 2 7 i j ^— * — N irh i r v jrh j r 

r=l h*l 

and (w^) is the inverse of (w )«, 

Simultaneously Hotelling (1931) generalized Students' t to the 
2 

multivariate case. We denote this by T » It was found to be identical 
*c 

o 

(Roy and Bose 1938, Fisher 1938) in form to the Studentized except 

for a factor involving sample sizes, i.e, 
. 2 N1 N2 2 
l2 N X + N 2

 u2 

2 2 Distributions of D 2 and T 2 : 

P P 

i=l j * l 
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be the measure of divergence between the populations, the distributions 
2 

of (1 .1 .1 .) and (1.1.2) for both central (-&• = 0) and non-central 

(^ /o) cases are known as stated below: 

(i) In the Studentized case (Bose and Roy, 1938), under the null 

hypothesis /".Q = /*_2 ( i * 1, 2, p) or_c_ 2 = 0, the 
quantity 2 

N + N - p - 1 N1N2 D 2 

— x N. + N N + N - 2 
1 2 1 2 

is distributed as the central F-ratio with p and (N-j_ + ^-p-l) 

degrees of freedom (D.F), while in the classical case, under the 

same null hypothesis, 
»1N2 D2 

N l + N2 2 

is distributed as central chi-square with p D.F. 
2 

( i i ) Again, in the Studentized case (Bose and Roy, 1938) for_i» / 0, 

, the quantity 

N x + N2 - p - 1 N-jN2 D| 

p N x + N 2 N_ + N 2 - 2 

is distributed as non-central F-ratio with p and (Nj- +- N2 - p - 1) 

D.F. and parameter ___2 / ( - ^ - t while in the classical case 
N]_ N2 ' 

again f or * f 0, l 2 D
c i s distributed as non-central 

N-, + N„ 2 



chi-square with p D.F. and parameter <£x /( rr + 
W l W2 

The distribution of T^ in the central case was given by Hotel1ing 

(1931) and in the non-central case by Hsu (1938). These are identical 

to the distributions of Studentized D̂  except for the constant multiplier. 

When the hypothesis of equality of mean vectors is rejected, the 

problem generally arises of giving confidence regions to the corres­

ponding, non- cent rality parameter. We have attempted to answer this 

problem in Chapter Five, where we have taken simultaneously the case of 

two or any number of populations. We have fi r s t given the method and 

then, to demonstrate the method, we have presented an illustration. 

1.2 Classification and Discrimination in the Case of k p-variate  
Normal Populations 

Again in sciences like anthropology, biology and others, one i s 

often faced with the problem of discrimination and classification. In 

the biological sciences we are concerned with specifying an individual 

as a member of one of the populations to which he can possibly 

belong, as when a taxonomist has to assign an organism to i t s proper -

species or sub-species or an anthropologist is faced with the problem 

of sexing a skull or jaw-bone. We are also faced with the problem 

of classification of the groups themselves into some significant system 

based on the configuration of the various characteristics, for example when 
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•a number of species or sub-species may have to be arrayed in hierarchical 

order showing the closeness of some-and distinctiveness of the others 1. 

In a l l such problems our first aim is to test whether the populations 

involved are distinct or not. Four statistics have been suggested for 

testing the hypothesis of equality of the mean vectors of the populations. 

We l i s t them below: 

Suppose we are given k p-variate normal populations, assumed to 

have the same covariance matrix and distinct mean vectors 

(/*\ » » ••*>/' )(r = 1, 2, ..., k). From these populations samples 

respectively of sizes K̂ , N2, »«*, are drawn andii observations 

X i r h ^ " 1 ' 2* *•*'' P ' r " 1 > 2* °**' k 3 1 1 ( 1 n " •L> 2> • 8 ,» a r e 

made1; Let W = (w. .) and B = (bj.,) be the within and between mean 

product (M0P«) matrices with respectively n 2 and n^ D,F. where 

and b^j are respectively defined as: 
N k r 

(1.2.1) 
r=l h^l 

k 

and n n b. (1.2.2) 
r=l 

k 

where n^ = k 1 and (1.2.3) 
r ^ l 
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2 (i) Hotelling's T -Statistic: 

Hotelling (1947, 1950) gives a statistic to test the hypothesis 

of equality of k mean vectors and defines i t in the classical case 

using a matrix ( or~. .) known or estimated on the basis of large samples as: 

P P 

k = 

i - - l j.-l r * l 

or = n ^ r [(«=r-iJ)B] (1,2.5) 
k / k 

where ("cr-3"*3) is the inverse of ( ) and X = / ( N X . ) / / (N ) 
±y i Z__ r i r / Z — r 

r=l ' r=l 

2 

The Studentized can be expressed in three different ways as 

follows: 
P P k 

T.S Y Y wiJ / N (X. - X.)(X. -X.) (1.2.6) k L— L— — • r xr l jr j 
i=l j r l r=l 

or = njtrCW'^r n 2tr [ ( ^ W ) " ^ ^ ) ] (1.2.7) 

2 
or T~: k i=l 1 i d 1 

where 0^ and 0_ are respectively the roots of the determinantal 

equations: 

| iXjB - 0 n2W | 0 (1.2.9) 
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and | i^B - eCrx̂ B • n 2¥) j = 0 (1.2.10) 

and where s Min.(p,ri) (1.2.11) 

2 

We have found another interesting expression of T in terms 

of weighted Mahalanobis distances. It is given in the last section of 

Chapter Five. In Chapters Two and Four, we have made use of this statistic 

in forming clusters and in assigning an arbitrary population to one of the 

clusters. 

The classical T 2 is known (Rao, 1952) to be distributed, under 
XV 

the null hypothesis, as central chi-square with n̂ p D.F. In the case 2 2 of non-centrality parameter ^ 0, the classical T^ is non-central 
2 

chi-square distributed with n^p D„F0/and the parameter is defined 

as follows: 

i=l j=l r * l 

where /" ± = (\/^±r) / (N P) (1.2.13) 
r=l / r=l 

2 
The exact distribution of Studentized T, is not known in compact 

k 
standard form. Ito (1956) has given, under the null hypothesis, its 

approximate formula as: 
T.2 r V 2+ — 1 P ^ 1 V 4 * ..•]+••.. (1.2.14) k ** 2n 2 L n l P+2 J 



where % is central chi-square with n^p D.F. The use of in multi­

variate analysis of variance (Anova) has been illustrated by Siotani 

(1958), who has constructed its tabular values for % and 1% significance 

levels for three or more dimensions,-

( i i ) Wilks -A- -Criterion: 

Following the likelihood ratio method (Neyman and Pearson, 1928, 

1931, and Pearson and Neyman, 1930), Wilks obtained a suitable extension 

of the univariate F-ratio in the form: 

A- =|n2w| j I n2W+ n ^ l (1,2.15) 

or alternatively as: 

A - T T (f_)-TT a-©±) (1.2.16) 

i=l i=l 

where and are respectively the roots of the determinantal 

equations 

|n2W - f(n 2W * n-B)! = 0 (1,2,17) 

and (1.2.10), where W and B are the usual mean products (M.P.) 

matrices, 

Wilks (1932) and Nair (1939) have given the exact distribution of 

for n^ =. 1, 2 and any p, and for p = 1, 2 and any n^ by comparing 

the moments of A. with those of F-ratio, Bartlett (1934, 1938, 1947) 

suggested its useful approximation;.;as ".follows: 



- n2) - |(p «• lj) loggA-^n/ ^ U p n ^ " X 
Y? , .2 ^2 

l 
(1.2.18) 

n,P 1 2 2 2 where Y ̂ - (p i- n^ - 5) and ̂  is central chi-square with f D.F. 

We have made use of this approximate test in Chapter Two in testing 

for the over-all homogeneity of the species taken in the illustrative 

example. 

More recently Bannerjee (1958) has been able to give the exact 

distribution of .A. in series form, but the tabular values are not yet 

available, 

( i i i ) Wjiks-LawleyU-statistic and Pillai's V-statistic: 

There are two other statistics to test the homogeneity of k mean 

vectors due to Wilks-Lawley (1932, 1938) and P i l l a i (1954, 1956) defined 

respectively as: 

U = | n ^ l J | ngW + n-jBl (1.2.19) 
-1 

and V = tr [(n2W + n^B)" (OjB)] (1.2.20) 

These can also be expressed respectively as follows: 

" - - ^ ( r - V ) , or= H (1.2*21) 
1 1 ( i 7 T : ) ' o r = J J - ( e i } 

i=l 1 i=l 
I t 

and V = X o r * II ( 0 i ' (1.2.22) 
i=l 1 i=l 

where 0̂  and are defined respectively as in (1.2.9) and (1.2.10). 
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These two statistics will be discussed further in 

Section 1.4* 

When the hypothesis of the equality of mean vectors i s rejected 

by the use of any of the above four statistics, three problems 

arise: (i) determining the confidence region for the population 

parameter corresponding to the statistic used to test the hypothesis 

of equality of mean vectors; (i i ) to find groups or clusters 

of populations having like mean vectors; and ( i i i ) to classify 

an arbitrary individual as belonging to one of the k normal 

populations, or an arbitrary population as belonging to one of 

the clusters. 

We have dealt with the fi r s t problem in Chapter Five and have 

discussed the method of giving a confidence region to ~C^* Finally, 
k 

we have demonstrated the method by taking a particular case with 

k = 2, p = 4, = 4, n 2 • 29. 

For forming clusters of populations with like mean vectors, 

Rao (1948, 1955) and Tocher (1948) have given a subjective approach 

which i s not based on probabilistic considerations. Working on the 

principle of minimum average distance, they have suggested a technique 

based on the criterion that 'any two groups belonging to the same 

cluster should at least on the average show a smaller D 2 than those 

belonging to different clusters•. 



-11-

Rao's Graphical Approach 

A graphical approach to the same problem has been given by 

Rao on the basis of significant discriminant scores or canonical 

variates. Since we have also made extensive use of significant 
2 2 

discriminant scores in reducing and D 2 and likelihood functions 

to convenient and easy workable forms, we shall f i r s t discuss how 

Rao obtained these scores and then his graphical approach, 

Rao (1952), like Fisher, takes the linear combinations 

^ i l ^ l + "^ip^p »̂ 2> maximizes the ratio: 

lX:l j e l J j 1=1 J=l 

and gets the system of equations, 

LCBW" 1) : J L (1,2,24) 

where |" (p x p) is a diagonal matrix with diagonal elements 0^ 

( i - 1, 2, p) and L(p x p) is the matrix of coefficients of the 

discriminant functions, Without losing generality we can suppose that 

0p & ^p-1 ' ' ^2 * ^1 a n d t e s ^ t n e i r significance by 
Bartlett's modified approximate formula (1.2.18) (Rao, 1952) given by: 

L I "i 2 

( V V "* 2 (P + \ * x y l 0 « e
( l * 0±) = % i (1.2.25) .2 

where i s c e n t r a l chi-square with (p -* n -»• l ) - 2i D.F, 
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By repeated use of formula (1.2.25), he gets a set of, say, 

p„' ( £• p) significant eigenvalues and hence the corresponding p1 

significant discriminant functions. Placing their p 1 vectors of 

coefficients row-wise, so that the first row should correspond to 

the largest eigenvalue, the second to the second largest and so 

forth, he forms a matrix K(p' x p). Denoting further X( k x p) 

as the matrix of k sample mean vectors, he gets the matrix Y ( k x p ' ) 

of p 1 significant discriminant scores as: 

X K (1.2.26) 

Note: To find J3" (p x p) and L(p x p) as the solutions of (1.2.21;), 

we can first symmetrize BW"1 by the procedure suggested by 

Nash and Jolicoeur (unpublished,' lQf>°) which we have summarized 

in Appendix A and then apply the familiar technique due to 

Jacobi, which can be used on high speed computers. 

Thus, knowing the significant discriminant scores, Rao then 

suggests plotting them in a space whose dimensionality is equal to 

the number of significant eigenvalues. If there are only two 

significant eigenvalues, there is no difficulty in having the plane 

representation of the points in which the closeness of the points 

(populations) with one another can be easily visualized. But i t 

becomes difficult in the case of three or more eigenvalues. Rao 
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(1948) in such situations suggests having pair-wise plane 

representations of the points and then seeing (of course relying 

mostly on most significant scores) which of the populations l i e 

close to one another. 

In our discussion of the procedure for forming clusters in 

Chapter Two, we have sought a departure from Rao's and Tocher's 

subjective approach and have instead suggested two stages. Stage 

I i s a sort of prediction by making use of Rao's graphical approach. 

In Stage II we give f i r s t our own definition of a cluster. Then 

we propose to correct the prediction by three alternative statistics 

where in each, unlike Rao and Tocher, we are able to attach probability 

to our decision. The fi r s t alternative has been discussed with an 

illustration in Chapter Two and the remaining two briefly in Chapter 

Three. Our working criteria for a l l three cases are multivariate 

analogues of previous criteria used in univariate analysis of 

variance (Anova) for forming clusters of like groups. The choice of 

the level of significance i s that proposed by Duncan. Therefore we 

will discuss briefly such procedures for the univariate problem. 

Some of the methods of forming clusters of like groups in univariate 

Anova are the following: Fisher's least significant difference test, 

the Student-Newman-Keuls' range test, and more recently Scfo&ff&'s multiple 

F-test, Tukey's test based on allowances and his gap-straggler and 

variance test, Duncan's multiple range and F-tests based on degrees of 

freedom, and further extensions by Sawkin, Kramer, Hartley, and Roy and 
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Bose. A detailed explanation of these procedures with illustrations 

i s provided by Federer (1955). Since we have generalized Duncan's 

approach to the multivariate case, we give below briefly what he 

did. Duncan made a two-way attack on the problem - f i r s t by the 

multiple range test and second by the multiple F-test. To avoid 

duplication we will not give the description of his range test, 

since i t s procedure, except for significant ranges, i s just the same 

as the Stage I of his multiple F-test. 

Duncan's Level of Significance 

Duncan's multiple range test i s similar to the Student-Hewman-

Keuls1 test and his multiple F-test similar to that of Scheffe. 

The only difference between Duncan and the others has been in the choice 

of a level of significance. He proposes that the level of significance 

should increase with the increase of the number of means in a group 

whereas others have kept the same pre-assigned level of significance 

as in the case of k-means. He justifies himself by arguing that any 

increase in the later levels would result in the increase of type II 

error and thus suggests that the r-mean ( r • 2, 3, k) 

significance level £ , for a pre-assigned , be 
r 

&L = ! - ( ! - / )*-! (1.2.27) r 
r — 2, 3, •».j k 
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vhere (r - l ) is the number of independent comparisons which can 

be specified among the r means. 

Duncan1s Multiple F-test 

Duncan, in this test procedure, has made use of both the range 

test and F-test by setting again the level of significance based on 

D.F. as described above. According to Federer, Duncan's test 

procedure can be set up in three stages of which we wil l give the 

fi r s t two - the second being the most important for our purpose: 

Stage I: The f i r s t stage, as pointed out earlier, is in fact 

Just the multiple range test but with different 

significant ranges. The procedure is as follows: 

(i) Compute the quantities R* = y2(k - 1)F, (r - 1/ f) 
r r. 

for r = 1, 2, ..., k, where, for a pre-assigned 

is defined as (1.2.27) and f is the D.F. associated 

with the pooled error variance A_. 
x ' 

( i i ) Compute the quantities R = R' A_ (r = 1, 2, k). 
x 

( i i i ) Compute the differences between the ranked means. 

(iv) Finally, compare these differences of the ranked means 

with R ( r » 1, 2, k) and determine the group of 

like means by following the criterion: "The differences 

between any two means in a set of k means is significant 

provided the range of each and every subset which contains 
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the given means is significant™. 

Stage II: Stage II is the correction of the prediction made 

in Stage I. The procedure for correction is 

summarized as: 

(i) Compute the sum of squares among the combinations of 

the means bracketed together in the prediction. 

( i i ) Compute the least significant sum of squares 

( i i l ) Correct the predicted groups by following the criterion: 

•; "The difference between any two means in a set of 

k^( ^ k) means is significant provided the variance 

of each and every subset which contains the given means 

is significant according to an ^ - l e v e l F-test where 

r is the number of means in the set". 

As pointed out earlier, the third problem that can arise after 

the hypothesis of equality of mean vectors is rejected is to classify 

an individual as belonging to one of the k distinct normal p-variate 

populations or a population as belonging to one of the clusters. 

Assuming a priori that the individual, with measurements (X-^ X2> •••> 

does belong to one of the k populations, Rao (19^8) computes, where 

we ignore the a priori probabilities, the linear discriminant scores 

for the rth (r = 1, 2, k) population as 
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P P P P 

j=l i=l j«l 

and then suggests assigning the individual to the sth population i f 

L s is greater than every other I»r for r (^ts) = 1, 2, k 0 

We have taken up, in Chapter Four, the problem of assigning a 

population known to belong a priori to one of the clusters and have 

suggested two alternative procedures - the first similar to the L-functions 
2 

and the second based on the statistic Finally, an illustrative 

example is given to demonstrate the theory. 

1.3 Generalized Variance and its Moments 

Wilks (1932) defines the generalized variance to be the determinant 

of variances and covariances and considers i t to be a measure of the 

spread of the observations. He then presents the hth moment of the 

generalized variance in the null case as follows: 

If S be the sample variance-covariance matrix with n D.F, and 

JJ(p x p) = E(nS), then the hth moment of | A| (= (ns| ) in the 

central case is given by Wilks (1932): 

E L i A i h J = 2 * ¥ V t * ^ ^ *
 h> A v ^ S H * (w-w. 

i 1 
2 

Further, let k^ ( i 2 1, 2, p) be the real and nonnaegative roots 

of the determinantal equation: 
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where T= || £ ( - ̂ ) ( ̂  - /*. ) || and /> . 1 £ ^ 
r=l r=l 

2 2 Assuming now k^ = 0 ( i = 2, 3, ..., p) and k^ ̂  0, Anderson (I9k6) 

gives the h-th moment of | AJ in the non-central linear case as: 

(1.3.3) 

Making use of these moments we have found in Chapter Six the 

distribution of the determinant of the sum of products (S.P.) matrix 

A in the non-central linear case for some particular values of p, 

namely p = 2, 3, and h. 

l.k Problem of ElgenrBbtss of Certain Determinantal Equations 

It is shown in Section (1.2) that, for testing the hypothesis 

of the equality of mean vectors of samples drawn from k p-variate 

normal populations, the four statistics (1.2.8), (1.2.16), (1.2.21) 

and (1.2.22) can a l l be expressed as functions of the roots of 

certain determinantal equations. There are two other tests of 

hypotheses due to Roy (1939) and Hotelling (1936) which also result 

in the roots of the same type of determinantal equations with, of 

course, the use of different matrices. 
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Roy's effort (1939) to seek a statistic to test the equality 

of dispersion matrices 5 ^ and ^ 2 o f t w o P _ v a r i a t e normal 

populations finally led him, applying the same technique as Fisher's 

(1936), to test, instead of one, p Studentized statistics 

\ ^, A g, \̂ (all positive in this case) which are the p 

roots of the determinantal equation in A : 

| n ^ - A n2W2| = 0 ( l A . l ) 

or alternatively, by substituting ©. = ̂  . (i=l,2,...,p), the 

roots of j n ^ - © ( n ^ + n2Wg)| = 0 ( l A . 2 ) 

where n,H, and n„W_ are the S . P . matrices estimated from the respective 11 d d 

samples. 

To test the hypothesis of the independence of two sets of variates, 

such as p measurements of physical- characteristics such as lengths and 

breadths of skulls and q measurements of mental characteristics such as 

scores on intelligence tests, Hotelling (1936) considered the determinantal 

equation of the roots ^ ( i = 1, 2, p) and (p < q) of 
-1 , 

¥* w w» - ew' = 0 (1.^.3) 
pq qq qp pp \ 

or Iw' W« ¥' -©[(¥' - ¥' W ¥' ) + ¥ ' ¥' ¥' ]{ =0 (l.^A) ( pq qq qp Lv pp pq qq qp pq qq qpj| 
-1 

.'Here ¥' ¥' ¥' and ¥' are independent S . P . matrices with q and 
pq q.9. qp PP 
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(N - q - l) D.F, and N is the size of the sample of individuals 

drawn from a (p •+ q)-variate normal population with covariance matrix JJj 

Further W1 is the S.P. matrix of the sample observations on the 
PP 

p-set of variates, W1 that on the q-set and W that between the 
qq qq 

observations on the p-set and those on the q-set, 

Thus in multivariate Anova (Pill a i , 1954) the three tests of 

hypotheses above, i.e. I, "equality of two dispersion matrices", 

II, "equality of the p-dimensional mean vectors", and III, "the 

independence between a p-set and q-set of variates" depend, when the 

respective hypotheses to be tested are true, only on the roots 0^ 

or 0^ ( i = 1 , 2, . . . . , & ) respectively of the determinantal equations 

| A - 0 ( A * C)| = 0 (1.4.5) 

and |A - 0G | = 0 (1,4.6) 

where A and C" are independent S.P, matrices based on sample 

observations with n^ and D.F. respectively and can be defined 

differently for different hypotheses. 

The common standard form (Nanda 1948, Roy 1957) of the joint 

distribution of the eigenroots of (1 .4 .5) , under the respective 

hypotheses, is 

A m ' ^ ' 
1 TT TT 

i = » i * 2 j=l i = i 

for. 0 £ &L 5 9 2 < ... < 0 i 1 and £ defined as in (1.2.11), where 
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t/2 l 

c(m,m, C ) - ~ | ~. . . (1.4.8) 

J [ p ( » ^ * i ) \ > y - i ) f ( i ) 
i»l • 

£ , m, n can be different in the different situations defined below 

in (1.4.12) and (1.4.13). 

The common standard form (Hsu 1939) of the joint distribution of 

the eigenroots of (1.4.6), under the respective hypotheses, is 

l l ^ t 

cKn.n IT ^ ( i * * t r ( B * , , * , * 1 ) T T TTt'i-'V T W 
i=l i s 2 > l »"=i 

(1.4.9) 

for 0 « jl. & jrf. « ... t ^ c o o 
1 2 p 

where 2 , c(m,n,t ) are defined respectively as in (1.2.11) and (1.4.8) 

and t , m, n can be different in the different situations defined 

below in (1.4.12) and (1.4.13). 

•Finally, Nanda (1948) gives the limiting form of (1.4.7) by 

setting © i= and then letting n tend to infinity. The limit is 

1 I I i - i « 
K(t,m) ]~[ ^ e x p j " - ^ c i ] T T T T ( c i ~ C j ' T T d c i d-4.10) 

' 1*1 ^ i-1 J i=2 j.-l i=l 

where K( I ,m) = ^ \ J] P 2 J ^ L j L l ± ) ^ ( | ) ( l . 4 e l l ) 

e 

i 1 
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and I i s the same as in (1.211). Again g , m assume different 

values defined below in different cases. 

Finally, for the three tests of hypotheses I, II and III, we can 

sum up the values of £ , m, n for respective hypotheses as: 

I. I = p, m = - p - 1), n - |(n 2 - p - 1), (1.4.12) 

II. If p 6 x^, ft a p, m = 1(1^ - p - 1), n = |(n 2 - p - l) 

If p > n , £ = n . m = i(p - n - 1), n = i( n - p - l ) 
1 1 2 1 2 2 (1.4.13) 

III. Same as II 

No great headway has been made so far in finding the distributions 

of the various statistics we have discussed. The exact or approximate 

distributions of two statistics T2. and .A. have already been discussed in 

Section (1.2). Below i s the brief account of the other statistics: 

Roy (1943) proposed the statistics - largest, smallest or intermediate 

eigenroots of the determinantal equation (1.4.5) to test hypothesis I, II 

and III. Roy (1943) and Nanda (1948) have both worked out the distributions 

both for the limiting and non-limiting cases. Their tabular values have 

been given by P i l l a i (1957) for the cases 0 = 2(1)5, m = 0(1)4 and 

n = 5 to 1,000 both at 5% and 1$ significance values. 

P i l l a i (1954, 1955, 1959) has succeeded in giving an approximation 

to his statistic V defined in (1.2.22) and has been able to tabulate i t 

for t = 2(1)5, m = - ,5(.5)5(5)80 and n = 5(5)80. Nanda (1950) 

has also given its exact distribution for the special case when m = 0. 



-23-

We have also been able to work out the exact distributions of 

various statistics for certain special cases in Chapter Seven. We 

have been able to give the distributions of a l l the statistics for 

the cases Q> - 2, 3 in the form of definite integrals which can 

be easily evaluated by some numerical method. The limiting 

distribution of Roy's statistics by another method of integration 

have been found and particular cases evaluated. Lastly the limiting 

distribution of Wilks-Lawley U-statistic for the cases II = 2, 3 and 4 

has also been found. 

1.5 Note on Analysis of Variance 

Under both the Models I and II (Eisenhart) of Anova one is faced 

with two types of situations - fi r s t l y when the cell frequencies are 

equal and secondly when they are unequal. These cases are usually 

called balanced and unbalanced respectively. 

Balanced Anova 

For tests of significance in both univariate and multivariate 

balanced Anova of Model I and II and further for finding confidence 

regions again in both univariate and multivariate balanced Anova of 

Model I, there i s not much difficulty. One can refer for such 

univariate problems to the various standard books, e.g. by Federer, 

Fisher, Anderson and Bancroft, Bennett and Franklin, Snedecor, Kempthorne 
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and others, whereas for the multivariate problems sufficient material 

has been developed by Roy and Bose (1953), Roy (1955, 1956), Roy and 

Gnanadesikan (1959, I and II), Tukey (1949), Bartlett (1934, 1938, 

1947), Kempthorne (1952), Rao (1948) and others. 

The real difficulty arises in both univariate and multivariate 

problems when, in Model II, one i s finding the confidence regions for 

the complex estimates (Satterthwaite, 1946) of the variance components, 

since in that case their corresponding distributions are not known. 

To overcome this difficulty in univariate problems various methods, 

approximate or otherwise, have been suggested. The more prominent 

amongst them are those due to Satterthwaite (1941, 1946), Brose (1950), 

Fisher (1935), Roy (1954a, 1954b, 1956), Roy and Bose (1953), Roy and 

Gnanadesikan (1957, 1959 I and II), Cornfield (1953), Ramachandran 

(1956) and Grayball, Morton and Godfrey (1956). Since we have made use 

of Satterthwaite's technique in our work in Chapter Eight, we briefly 

summarize what he did while finding the distribution of complex estimates; 

Satterthwaite's Procedure 

Let be the mean squares independently distributed as A^)£ 2
 f 

where j£? i s central chi-square with f^ D.F. The procedure i s to 

L 2 2 ( a ^ ) , a^ being constants, by , | being 

chosen so that the fi r s t two moments of the former are equal to those 

of the latter. 

Therefore, 
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i 
and 

i i 

From (l.5".l) and (l . j f .2) we have 

,2 2 U 

2 

Since X7~~^ are not known, he suggests to substitute for them their 

respective estimates and gets: 
2 

(1.5-3) 

It is again unfortunate that very l i t t l e has been accomplished in 

analogous multivariate problems. Roy and Gnanadesikan (1959* I and HI) 

have recently been able to give a lead,but their approach is under the;,very 

restrictive assumptions of ^ - ^ ( P X P ) = \ (P X P)> i« e« °f 

proportional dispersion matrices, proposed usually (Federer, 1951) for 

certain types of genetical problems, where 2J. ±
 i s t 5 i e covariance 

matrix, due to the ith factor.. 
Unbalanced Anova 

The problem is considerably complicated for both the cases of uni­

variate and multivariate unbalanced Anova especially of Model II. In 

the univariate balanced case the mean squares were independent and 

distributed independently as chi-square but the situation now is worsened 
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by the fact that the mean squares are not orthogonal and hence are 

not distributed as central chi-squares. They are in fact distributed 

(Anderson and Bancroft, 1952) as sums / ( A Y 2 ) where A are 
L— r r r 

functions of the variance components and the number of observa-
p 

tions, and each Ŷ * i s a central chi-square with 1 D.F. Since the 

^ r are distinct, we cannot apply the additive property of independent 

chi-squares to the sums ( A % 2)» 
Similarly for corresponding multivariate situations, the M.P. 

matrix i s no longer distributed as a Wishart matrix but, as proved in 

Chapter Eight, i s distributed as a sum (Wr) of independent 
r 

Wishart matrices Ŵ , each distributed as W \T[ r» l j • If these 

Wishart matrices W had the common corresponding parameters, i.e. 
r 

^ g 2£ ̂  = ̂ £ (say), then there would be no problem. We 

could then simply use the additive property of independent Wishart 

matrices and would get another Wishart matrix. 

We have attempted, in Chapter Eight, to find the approximate 

distribution of mean squares or M.P. matrices. We have determined 

fi r s t the values of the above quoted quantities A and 2^ and then 

have applied Satterthwaite1s technique in approximating the di s t r i ­

butions of sums / (A X 2) a n d / C O . 
i.— r r Z r 



CHAPTER TWO 

ANALOGUES OF DUNCAN'S PROCEDURE IN FORMING CLUSTERS IN 

MULTIVARIATE ANOVA 

2.1 As already stated, we sometimes come across the following type of 

problem in anthropology and the biological sciences, namely this, certain 

multivariate populations are found to be distinct, and we want to find 

out which populations are most nearly alike and which are least alike. 

To do this, we propose to extend Duncan's procedure of the multiple 

comparisons' tests used in univariate Anova and to seek a departure 

from Rao's and Tocher's subjective approach. We give below first a 

different definition of the cluster and then, after clearing some 

preliminaries, suggest a procedure based on probabilistic considerations. 

Definition of a cluster: 

"A cluster of populations i s a group of populations having 

the same vector mean." 

2.2 Preliminaries and Procedure 

Suppose we are given k p-variate normally distributed populations 

( i = 1, 2, pj r « 1, 2, k and h = 1, 2, N ) be the 

assumed to have the same dispersion matrix Let X irh 
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observation of the ith trait on the hth individual from the rth 

sample of size drawn from the rth population. Further, let 

B and ¥ be the between and within independent S.P. matrices, with 

n^ and n^ D.F. respectively, computed on the basis of k p-variate 

samples defined respectively in (1.2.2) and 1.2.1.). 

Suppose also the hypothesis of homogeneity of mean vectors of 

the populations has been rejected by the use of Wilks-W statistic 

(1.2.15) and Bartlett's approximation to its probability (1.2.18). 

Knowing thus that the populations are heterogeneous, we proceed 

to form clusters. Before doing this we make the following preliminary 

remarks: 
2 2 

Since we have made frequent use of both Studentized D̂  and T~, 

i t would be appropriate to modify them to an easily workable form. 

To do this we derive f i r s t the significant discriminant scores discussed 

already in Section (1.2). We sum the matter up briefly in the following 

steps: 

(a) Find, by the method given in Appendix A, anonsihguiarl 

matrix L(p x p) and the diagonal matrix j|{p x p) as the 

solution of (1.2.24). 

(b) Test the significance of 0̂^ by the formula (1.2.25). 

Without losing generality suppose the fi r s t p'( £ p) 

of the p eigenroots are significant and the last (p - p 1) 

are non-significant. 



Discard the last (p - p 1) eigenroots, and hence the 

corresponding eigenvectors, because they in fact account 

for random variation. ; 

Obtain the matrix K(p' x p) of the eigenvectors whose 

firs t row corresponds to the largest eigenroot, i t s 

second to the second largest and so forth to the smallest 

one left, namely the p'th. 

Taking X^Ck x p) to be the matrix of k sample mean vectors, 

using columns for characters and rows for sub-population 
—t 

samples, compute the matrix Y ( k x p 1 ) , defined as in 

(1.2.26), which is the matrix of significant discriminant 

scores, and whose fir s t column gives the discriminant score 

corresponding to the largest eigen value, the second column 

to the second largest, and so forth. With these scores, 

the Studentized statistics D 2 and T 2 reduce from (1.1.2) 

and (1.2.6) respectively to: 
(2.2.1) 

i=l 

and 
i=l r=l 

(2.2.2) 

where (2.2.3) 
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Note; The same technique works for the corresponding classical D*. 

Statistic Used 

For testing the hypothesis of equality of the mean vectors involved 

in a cluster we suggest an analogue of Duncan's Stage 2 of the multiple 

F-test. He computed the variance of the means involved in a predicted 

group of like means and tested i t against his least significant sums 

of squares with type I error based on D.F. In the multivariate situ­

ations as the analogue of his "variance of the means involved in a 

cluster" we propose an expression T 2 , where k (5 k) i s the number 
k l 1 

of sample mean vectors of the populations involved in the predicted 

cluster. The distribution of TT , under the null hypothesis, i s 
1 

known in the classical case to be central chi-square with p(k^-l) D.F. 

and in the Studentized case to be an asymptotic expression involving 

chi-squares as shown in (1.2.14), where again the D.F. for chi-square 

i s p d ^ - l ) . 

Note: It should be noted that we have used p instead of p' for 

defining degrees of freedom, since (Rao, 1948) the effect 

of a l l p correlated variates has been taken care of by the 

discriminant scores. 

Level of Significance or Protection Level 

In selecting the level of significance or protection level we 

again propose to follow Duncan. In order to keep the two types of 

errors well balanced, we shall let the type I error increase with 
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the increase in the number of populations in a cluster. Thus 

with (6 k) populations in a cluster, for a pre-assigned 

significance.level / , we shall fix the level of significance 

to be: 

JLV = 1 - (1 - / ) 1 (2.2.4) 

Preparation of Tables for the new Levels 

Since the statistic T^ involves a central chi-square for both 

the Studentized and classical cases, we need to modify the central 

chi-square tables for both 5% and 1# significance levels and also for 

different values of k = 2(l)(20), To do i t , we proceed as follows: 

The table 1 below gives the various significance levels 1 - Y k 
(= ^ or = Q) for k = 2(l)(20), for pre-assigned significance 

levels 5% and 1$. 

Again table 1 gives under the column X the normal variates X 

corresponding to each level of significance Q. X has been used in 

the computation of tabular values of chi-squares. To compute these 

X values, a linear interpolation formula: 

f(X) - f(X Q) 
X = X, :o* ilXj)- *U Q) ( x i " x o ) ( 2 - 2 ' 5 ) 

has been used where X i s the normal variate to be determined between 

the two known normal variates X^ and X^ and where also f(X) (= Q) i s 

a known quantity and f(X^) and f(X^) ? corresponding respectively to 

Xrt and X., are taken from table I of Hartley and Pearson, 1954. 0 1* 
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Table 1 

1$ 

k V k - 1 - Q l - Y k - Q X \ - 1 - Q 1 -Y k- Q X 

2 0.9500 0.05000000 1.64490 0.9900 0.0100 2.32630 

3 0.9025 0.09750000 1.29600 0.9801 0.0199 2.05584 

4 0.85737500 0.14262500 1.06860 0.970299 0.029701 I.88523 

5 0.81450625 0.18549375 0.89450 0.96059601 0.03940399 1.75766 

6 0.77378094 0.22621906 0.75136 0.95099005 0.04900995 1.65455 

7 0.73509189 0.26490811 0.62830 0.94148015 0.05851985 1.56729 

8 0.69833729 0.30166271 0.51960 0.93065349 O.O693465I 1.48068 

9 0.66342043 0.33657957 0.42180 0.92134695 0.07865305 1.41421 
10 0.63024941 0.36975059 0.33250 0.91213348 0.08786652 1.35403 

n 0.59873694 0.40126306 0.25008 0.90301215 O.O9698785 I.2989I 

12 0.56880009 O.43119991 0.17330 0.89398202 0.10601798 1.24800 

13 0.54036008 0.45963992 0.10140 0.88504220 0.11495780 1.20058 

14 0.51334208 0.48665792 0.03350 O.87619178 0.12380822 1.15617 

15 0.48767497 O.51232503 -0.03090 0.86742986 0.13257014 1.11434 
16 0.46329122 0.53670878 -0.09220 0.85875556 0.14124444 I.07476 

17 0.44012666 0.55987334 -0.15065 0.85016800 0.14983200 1.03717 

18 0.41812033 O.58187967 -0.20670 0.84166632 0.15833368 1.00134 

19 0.39721431 O.60278569 -0.26060 O.83324966 0.16675034 O.96710 

20 0.37735359 0.62264641 -0.31244 

1 , 

0.82491716 0.17508284 0.93428 

Figure 1 
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Further, the study of the behaviour of the chi-square curves 

(Fig. l ) for various degrees of freedom is very helpful. 

From Fig. 1 i t is obvious that with the increase of degrees of 

freedom, chi-square curves tend to be symmetrical while for the smaller 

degrees of freedom they lack symmetry. Thus direct linear interpolation 

of ( l - Q) values along with the corresponding chi-square values 

(especially for the smaller degrees of freedom) cannot be expected to 

lead us to accurate results. To keep the accuracy for the smaller 

degrees of freedom and also the uniformity of method^ we have decided to 

use, instead of ( l - Q) values, the corresponding normal varlates X shown 

in table 1. 

Then, the Aitken's Iterative interpolation formula has been used 

to compute the tabular chi-square values. We give below a demonstration 

of the method for 3 D.F. against the normal value 2.0558M4-. Then some 

of the values have been actually computed both by the use of ( l - Q) values 

and the corresponding X-variates and have been list e d below in table 2 . 

A brief glance over the table 2 w i l l show that as the degrees of freedom 

increase, both methods lead approximately, to the same result. 
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Demonstration of the Method 

Let D.F. = 3, X = 2.055844 and v j 2 corresponding to X is to be 

found. 

X X2 X - X 

1.6449 7.81473 -0.410944 

1.9600 9.3484 9.81489 -0.095844 

2.3263 11.3449 9.94373 9.84660 0.270456 

2.5758 12.8381 10.03228 9.84872 9.84846 0.519956 

Thus adopting Aitken's iterative method for interpolation, the 

new chi-square values have been computed at various significance levels 

X for k = 2(1)20 and D.F. = 1(1)30(10)100 for pre-assigned /- • .05 

and .01. We record them for use in Appendices C and D respectively. 

Table 2 

D.F. 1 - Q 2 
X -corresponding 

to Q-values 
X-normal • 
variates 

X -corresponding 
to normal variates 

3 .9801 9.71768 2.055644 9.84846 

10 .9703 19.88597 1.885233 19.95269 

25 .9703 39.90252 1.885233 39.92268 

Finally, to find in the Studentized case the tabular values for 

any k, we have to use the formula (1.2.14) and substitute in i t the newly com­

puted chi-square values with n. p D.F. i l and n are the degrees of freedom 
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respectively for between and within independent covariance matrices and 

p i s the number of characters. Since our illustration which is presented 

for demonstration concerns the studentized Tp, i t s tabular values needed 

for the purpose for k - 2(1)5, « 1(1)4, p = 4, and n 2 = 29 at 5% and 

1$ significance levels are tabulated approximately and presented below 

in table 3. 

Table 3 

D.F.sp(k-l) 
=nxP * 2(,05) k X?(.ca) k 

T 2 

r ( . 0 5 ) k 
^ ( . o i ) k 

2 4 9.4877 13.2767 12.1371 18.2030 

3 8 13.4428 18.1825 16.7783 24.0936 

4 12 17.1889 22.7746 21.7064 29.9100 

5 16 20.8200 27.1912 25.6131 35.6187 

Note: The tabular T^ values have been computed on the assumption that 

terms involving the third and higher powers of — are negligible. 
n2 

In fact they may affect the fourth significant figure. 

2.3 The Proposed Stages for Forming Clusters 

We propose two stages for the purpose. Stage I comprises three 

steps wherein we predict the possible clusters. Stage II then corrects 
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the predictions on some probabilistic basis. So far three alternative 

methods have been proposed for Stage II. The first has been discussed 

with illustration in this very Chapter and the other two will be 

described in Chapter Three. The methods are as follows: 

(i) The Duncan-Hotelling test. 

(i i ) The 'Extreme Distance from the Mean' - E-test. 

( i i i ) The 'Largest Distance' - R-test. 

Stage I: Prediction 

Step 1: Compute ( j£ ) Mahalanobis distances by the formula 

(2.2.1) between a l l the pairs of k populations and set up the table 

of distances, where the distances of each population from the remaining 

ones are arranged in order of increasing magnitude. Such a table 

(like Table 7) will help us to visualize which of the populations are 

closer to a particular one and which are farther away. 

Step 2: Represent graphically the significant discriminant 

scores of each population. For p' > 2, they should be represented 

pair-wise on plane graph paper. Relying largely on the plane rep­

resentations of the most significant discriminant scores, visualize 

which of the populations cluster together and which of them l i e 

farther apart. 

Step 3: Step 3 deals with the prediction of the clusters on 

the basis of the fir s t two steps. Keeping in view the table of 
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distances and the graphic plane representations, estimate roughly 

the 'would be' clusters - closeness being the only criterion for the 

populations to form a predicted cluster. The following two points 

are worth noting: 

(i) That a wide range should be allowed to the 

clusters since giving a narrow range might 

result in the loss of a population lying 

actually in the cluster. 

( i i ) That overlappings should be allowed since 

sometimes one is uncertain as to whether to 

include one (or more) populations) in one 

or the other cluster(s). In a l l such cases 

i t is advisable to include the doubtful 

cases in a l l the neighbouring ones. 

Stage II: Correction by the Duncan-Hotelling Test 

No generality is lost i f we. explain the procedure for only one 

predicted cluster having k^ populations in following steps: 
o 

(i) Compute the statistic T, by the formula (2.2.2). 

p p 
( i i ) Compare the computed T with the tabular T, where £, is 

kl k l 

already defined as in (2.2.^). 

2 2 
( i i i ) If T, is less than or equal to T, , a l l the k- populations 

1 ^ X 
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are concluded to form a cluster. Otherwise, split the 

k^ populations into sets of (lc^ - 1) populations each, 

(iv) Compare the computed T^J^^^J values for each of the k^ 

sets with the tabular T? . Of these some may be 
^k^-1 

significant and some may not be. Those non-significant 

will yield clusters with the corresponding number of 

populations involved in them. Those for which T 2 

k x - l 

values are significant are further split into (k^ - l) 

sets of (lc^ - 2) populations each and their corresponding 

T 2 values are compared with the tabular T 2 . In k-L-2 

this way the process i s continued t i l l we arrive at the 

clusters of the type defined. 

Thus the working criterion analogous to Duncan's can be presented 

as: "A group of 1c. populations will form a cluster i f T 2 computed for 
1 k x 

the mean vectors of the k^ populations i s non-significant and also the T 2 

of each and every set of populations of which the k^ populations form 

a subset i s significant according to JL -level T^-test for some pre-
r r 

assigned L , where r i s the number of populations in the set." 

Note: The above procedure i s for the Studentized case. In the classical 

case the procedure i s the same except for the use of tabular chi-

square values in place of T^-values. 
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2.4 Demonstration of the Above Procedure by an Example 

To demonstrate the theory we present below an example where the 

samples have been drawn on the basis of nested sampling: 

Description of Data 

Data has been taken from the 'Forest Products Laboratory Division, 

Forestry Branch, Department of Northern Affairs and National Resources, 

Vancouver, B.C., Canada1. Shipments of logs of various species of 

trees from various localities of Canada were received. The interest lies 

in comparing the species on the basis of static bending properties. For 

this purpose the following six measurements were taken at several loca­

tions in each tree: 

X̂ : Modulus of elasticity; 

X^: Work to the maximum limit; 

X^: Fibre strength at proportional limit; 

X.: Modulus of rupture; 

X : Specific gravity at oven dry; 5 
and X^: Work to the proportional limit. 

Note: While finding the values of the determinants of the S.P. matrices 

to be used for tests of significance, i t was found that they came 

out to be zeros, which enabled us to conclude that the variables 

were functionally dependent. The fact was actually verified when 

the physical interpretation was known. The last two variables 

X_ and X, were found to be functionally dependent on the 5 o 
firs t four X^ , X 2 , X^ , and X^ . We thus 
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discarded X_ and and continued our work on the 
5 6 

variables X̂ , Xg, X̂ , and X^. 
The species taken for the purpose are listed as follows: 

(l) Yellow cedar, (2) Lodge pole pine, (3) Western larch, 

(k) Western yellow pine, (5) Western white pine, (6) Western white 

spruce, (7) Sitka spruce, (8) Amabilis f i r , (9) Western hemlock, 

(10) Engelman spruce, ( l l ) Western red cedar, (12) Coast mature Douglas 

fir, (13) .Interior mature Douglas f i r , and (l4) Coast second growth 

Douglas f'ir. 

Note; In what follows we will call each species by its corresponding 

number instead of specifying each time its name. 

Description of the Model of Wested Sampling 

We have the mixed model of Tflested sampling - with fixed species 

and random localities and locations on trees. Further, the number of 

localities and locations is not uniform in a l l cases. 

Let X^jj.^ be t n e observation of the ith character on the t th 

location of the t-th tree belonging to the jth locality of the hth 

species. In place of observation X^^.^ w e were provided with the 

means X^j-j . along with the corresponding number of locations. The 

model for such data would be: 

4 J t
 + l)(h) + it(hj) + *hjt <2A.i) 

where ( l ) X j ^ s (X^^., X^^) is a four dimensional 

mean vector of locations on the t-th tree from 

the jth locality of the hth species. 
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(2) is the four dimensional mean vector of the 

populations and X ....is the corresponding sample 

statistic. 

(3) ^ is again the four dimensional hth species fixed 

effect, but for the sake of illustratbn we will take 

i t as random, distributed normally with mean vector 

zero and covariance matrix 

(4) !Lj(h) * s t h e f o u r divisional jth locality within 

hth species random effect, normally distributed with 

mean vector zero and covariance matrix ZL 

(5) J L j - ^ j ) i s t h e f o u r dimensional t-th tree within hth 

species from the jth locality random effect, normally 

distributed with mean vector zero and covariance matrix 

(6) is the four dimensional mean error vector of 
v ' -hjt -hjt£ 

where each ̂ j ^ g l s random and normally distributed with 

mean vector zero and covariance matrix 2£ £ 

(7) Finally, i^, ^ ( ^ j a n d t(hj) a r e * n d e P e n d e n t a n d 

Our model is just the analogue of the univariate model on jested 

sampling with unequal cell frequencies presented by Ganguli ( l 9 4 l ) . 

We follow his method for finding the cceefficients of the expected M.P. 

matrices and end with the Table 4 of analysis of variance. 
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Table k 

Source of Variation D.F. S.P. Matrices E(M.P. Matrices) 

Species 13 A E f i + 1 3 . 3 8 1 ^ 

+ 8 1 . 2 7 ^ ^ + 

Localities within species 29 B 

+ 81.26 5f.n 

Trees within localities 217 C 13.372 %fc 
* 

Locations 
32U8 D 

We do not have this row in our example since we have only the mean 

observations on each tree. 

' A = ( Z [ v . / \ h . . . - \ . . . > ( % h . . . - % . . . ? J y ) Here 

and (JJ) = 10675527 38557 3097l6*+7 53851101 

38557 305 156717 273320 

3097161+7 156717 121780733 201012595 

53851101 273320 201012595 3*+3055522 

B (Z H [ \ j . . ( \ h j . . r \ h . . . ^ % h j . . . - % h . . . > j j 

'29' 
988308 1397 19365^1 31679^9 

1397 21 6231 12721 

19365^1 6231 7821366 9^69922 

31679^9 12721 9^69922 15396656 



and C = " h j t r i ^ t T X i 1 h j . . ) ( X i 2 h j t 7 X i 2 h j 

299438 558 593421 994326 

558 7 1496 313 

593421 1496 21011669 2575188 

994325 313 2575188 4281234 

Note: Referring back to Table 4 showing the analysis of variance, 

we notice that the corresponding coefficients in the formula 

treat i t as a problem of nested sampling with equal numbers in 

the sub-classes and will proceed with the usual procedure of 

tests of significance. 

To test the locality effect, Wilks' TV -criterion was applied 

to the independent S.P. matrices B and C, with 29 and 217 D.F. 

respectively, and the locality effect was found to be significant 

by Bartlett's approximate test (1.2.18). Similarly the species 

effects were found to be significant upon taking the independent 

S.P. matrices A and B respectively with 13 and 29 D.F. From this 

we may conclude that the species are heterogeneous. 

for expected values are approximately equal. Thus we will 

Start of the Problem 

After concluding that the fourteen species are heterogeneous, we 

proceed to our main problem of forming clusters as follows: 
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We treat A and B respectively as the between the within 

matrices with 13 and 29 D.F. and present below in table 5 "the 

means of the characters of the species along with the corresponding 

sizes: 

Table 5 

Species No. Size x l X 2 X 3 X 4 

1 264 1311 8.04 3664 6527 

2 78 1285 5.35 2989 5657 

3 158 1648 7.85 5002 8609 

4 212 1137 5.45 . 3334 5718 

5 324 1183 5.13 2877 4818 

6 93 1113 5.76 2644 4831 

7 380 1368 4.84 3078 5408 

8 436 13 1̂ 5.57 2999 5460 

9 200 1477 6.68 4150 6952 

10 90 1251 5.36 3079 5662 

11 207 1046 4.87 3102 5302 

12 U58 1650 6.97 4491 7548 
13 348 1647 6.59 4099 7351 

14 260 1583 7.41 4285 7697 

He solve for L(4 x 4) and_ (̂4 x 4) the equation 

by the method described in the Appendix A, and get: 
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L(4 x 4) = -0.001064336 

0.001162664 

0.001336923 

0.000325045 

-0.158567182 

0.369050519 

-0.069180685 

0.023168191 

-0.000067004 

0.000134634 

-0.000181461 

0.000669918 

0.000590678 

-0.000497864 

-0.000028873 

-0.000460445 
J 

and j?(4 x 4) E 25.94 0 0 0 

0 11.84 0 0 

0 0 5.65 0 

0 0 0 1.65 

Applying Bartlett's modified first approximation test (1.3.25) we 

test the significance of the eigenroots 0, i.e. of 25.94, 11.84, 5.65 

and I .65, and find 1.65 to be non-significant at the 5% level. Discarding 

thus the last row of L(4 x 4) which corresponds to 1.65, we get the 

matrix K(3 x 4). Now, i f X (14 x 4) be the matrix of mean vectors of 

species given in the last four columns of table 5, we get, by the 

formula (1.2.26) the matrix ̂ (14 x 3) of significant discriminant scores 

which are presented below in Table 6 again, along with their corresponding 

sample sizes. (See Table 6, following page.) 

Finally we compute the distances between the ("H*) pairs of species 

of trees by the formula (2.2.1) and present them in Table 7 - called 

"Table of Distances", arranging the distances of each population from 

the remaining ones in order of increasing magnitude. (See Table 7, page 47.) 

Also we plot these points pair-wise, i.e. (Y^, Y^), (Y^, Y^) and 

(Y_, Y-) on the plane graphs which are shown respectively in Fig.2, 

Fig.3, and Fig.4. 



-46-

Table 6 

Species No. Size Y, Y0 Y 

1 264 0.94597083 1.72039748 0.34593229 

2 78 0.91725592 1.07290071 0.63864788 

3 158 •., 1.74328671 1.21889759 0.50048469 

4 212 1.07183611 O.95381032 0.36949996 

5 324 0.58531407 1.24622259 0.56758425 

6 93 0.57211123 1.38532958 0.46747816 

7 380 0.75515749 1.12082710 0.77524229 

8 436 0.70890607 1.31124555 0.70355287 

9 200 1.19390269 1.28747391 0.55733533 

10 90 0.95036642 1.04299783 O.57671666 

11 207 1.03365387 0.80245391 0.34345856 

12 458 1.29139812 1.34851322 0.68878220 

13 348 1.26791986 1.24270782 0.78926436 

14 260 1.40109551 1.31631867 0.60461486 

Note: The column under Y^ corresponds to the largest significant 

discriminant score, the column under Y g to the second 

largest and that under Y^ to the third largest significant 

score. 



Table 7 (Table of Distances) 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

6/ 
.2669 

10/ 
.0058 

14/ 11/ 6/ 
.1375 .0250 .0296 

5/ 
.0296 

8/ 
.0436 .0380 

12/ .2/ 4/ 13/ 12/ 12/ 
.0306 .0058 .0250 .0119 .0119 .0202 

9/ 
.2936 

77' 
.0472 

12: 10 8 
.2565 .0657 .0380 

8 
.0800 

2 
.0472 

7 
.0436 

14 4 10 14 14 
.0460 .0657 .1193 .0202 .0573 

9 
.0460 

8 
.3516 

8 
.1048 

9 2 7 
.3098 .1106 .0877 

7 
.1983 

10 
.0836 

6 
.0800 

13 7 2 9 9 
.0613 .0836 .1739 .0306 .0613 

13 
.0573 

12 
.3752 

4 
.1106 

13 9 2 
.3100 .1616 .1453 

2 
.2427 

5 
.0877 

2 
.1048 

10 11 9 2 2 
.1195 . H 9 3 .3067 .2185 .1745 

3 
.1375 

5 
,4o4i 

9 
.1292 

4 7 10 
.5384 .2929 .1747 

1 
.2669 

6 
.1983 

10 
.1464 

2 9 13 10 10 , 10 
.1292 .1195 .3475 .2223 .i860 .2698 

l 4 
.4374 

5 
.1453 

10 14 4 
.6655 .2951 .3614 

10 
.2723 

9 
.2675 

9 
.2572 

4 8 7 3 7 
.1616 .1464 .3654 .2565 .2780 

2 
.2946 

2 
.5078 

11 
.1739 

11 13 9 
.7018 .2984 .3722 

9 
.4043 

13 
.2780 

13 
.3245 

8 5 5 4 4 
.2572 .1747 .4483 .3060 .2984 

4 
.2951 

10 
.5122 

13 
.1745 

2 12 1 
.7232 .3060 .4o4l 

4 
.4457 

4 
.2929 

12 
.3409 

7 13 14 8 3 
.2675 .i860 .4676 .3409 .3100 

1 
.4374 

13 
.5284 

12 
.2185 

1 5 11 
.9112 .3614 .4483 

12 
.5677 

12 
.3470 

1 
.3516 

1 12 12 7 8 11 
.2936 .2223 .4840 .3470 .3245 .4674 

7 
.5802 

6 
.2427 

7 8 13 
I.0615 .3712 .5151 

11 
.5681 

11 
.3654 

4 
.3712 

11 14 8 1 11 
.3067 .2698 .4941 .3752 .3475 

7 
.4847 

4 
.6o4i 

14 
.2946 

8 6 12 
1.1198 .4457 .5237 

13 
.6080 

14 
.4847 

14 
.4890 

3 6 6 11 5 
.3098 .2723 .5681 .4840 .5151 

8 
.4890 

11 
.8504 

1 
.5078 

5 3 14 
1.3460 .5384 .6718 

14 • 
.7108 

1 
.5802 

11 
.4941 

5 1 3 5 1 
.3722 .5122 .7018 .5237 .5284 

5 
.6718 

3 
.9111 

3 
.7232 

6 1 3 
1.4003 .6o4i 1.3460 

3 
1.4003 

3 
I.0615 

3 
1.1198 

6 3 1 6 6 
.4043 .6655 .8504 .5677 ."6080 

6 
.7108 
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Forming of Clusters  

Stage I: 

In Stage I we predict the clusters, keeping before us Table 7 

and Figures 2, 3> and k. Relying on the plane representation of the 

most significant discriminant scores and and then following 

the criteria discussed in Step 3 of Stage I in Section (2.3), we 

predict the following clusters: 

(1) 2, 5, 6, 7, and 8. 

( i i ) 2, 5, 7, 8, and 10. 

( i n ) 2, 10, and 11. 

"(!•) 2, K 9, and 10. 

(v) 9, 12. , 13, and Ik. 

(vi) 1 and 3 by themselves. 

Stage II: 

We now correct the above predicted clusters for each of which 

we have a tabular set up given below, and from them we cobtainc the 

corrected clusters. 
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Table 8 

Populations 
involved 

Computed 

i 
D.F. Tabular T 2 

*- k 
Conclusion Cluster 

5% 

2,5,6,7,8 34.47 16 25.6131 35.6187 Significant 

2,5,6,8 19.89 12 21.7064 29.9100 Non-significant 2,5,6,8 

2,5,6,7 41.43 » II it Significant 

2,6,7,8 40.56 n II u it 

2,5,7,8 34.21 n n II Significant 

5,6,7,8 27.91 it II it II 

2,5,7 20.50 8 16.7783 24.0936 Significant 

2,6,7 22.83 II it ti it 

2,7,8 13.61 ti II « Non-significant 2,7,8 

5,6,7 23.37 ii II n Significant 

5,7,8 20.44 4 it n n it 

6,7,8 19.21 II ti ti II 

6,7 17.38 4 12.1371 18.2030 it 

5,7 15.35 4 it ti 



Table 9 

Populations 
involved 

Computed 
T2 
k 

D.F. Tabular T 2 

k Conclusion C 
1 
Luster Computed 

T2 
k 5% 

2,5,7,8,10 34.98 16 25.6131 35.6187 Significant, 

2,5,7,10 27.62 12 21.7064 29.9100 n 

2,5,8,10 25.30 n 11 it it 

5,7,8,10 30.15 n n 11 it 

2,5,7,8 26.31 n n 11 n 

2,7,8,10 21.37 it it 11 Non-significant 2,7,8,1C 

2,5,7 20.50 8 16.7783 24.0936 Significant 

(*)2,5,8 17.79 n n it Significant 2,5,8 

2,5,10 18.90 n it it n 

5,7,8 20.44 it it n tt 

5,7,10 23.62 it » » 11 

5,8,10 19.07 II ti ti it 

5,7 15.35 4 12.1371 18.2030 tt 

5,10 12.98 4 n ti tt 

Table 10 

2,4,10,11 15.76 12 21*7661} 29*9i6d Non-significant 2,4,10,13 

(*) 
We could exclude this from being considered because i t already 
has been included in the bigger cluster (2,5,6,8). 
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Table 11 

Populations 
involved 

Computed 
D.F. 

Tabu. 

5% 

Lar T 2 

1* 

Conclusion Cluster 

9,12,13,14 16.62 12 21.7064 29.9100 Non-significant 9,12,13,14 

Table 12 

2,4,9,10 24.37 12 21.7064 29-9100 Significant 
2,4,9 21.82 8 16.7783 24.0936 ti 

) 2,4,10 8.20 it it n Non-significant 2,4,10 

2,9,10 11.45 » II n n 2.9.10 

4,9,10 20.42 i II n ti Significant 
4,9 16.624 4 12.1371 18.2030 ti 

We could exclude this from being considered because i t already 

has been included in the bigger cluster (2,4,10,11). 

Thus, from tables 8 to 12, one concludes that the following are 

clusters: 

(a) 2,5,6, and 8. 

(b) 2,7,8, and 10. 

(c) 2,9, and 10. 

(d) 2,4,10 and 11. 

(e) 9,12,13, and 14. 

(f) 1, by itsel f . 
(g) 3, by itself. 
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Further, i t remains to prove that each and every set of populations 

of which these clusters form a subset is significant. To do this, we 

refer back to the Table 7 of distances and the Figs. 2, 3, and 4 and 

form the following bigger clusters by incorporating in the corrected 

clusters the populations lying closest to them: 

(i) 2, 5, 6, 8, and 10. 

(ii) 2, 4, 7, 8, and 10. 

( i i i ) 2, 4, 7, 10 and 11. 

(iv) 2, 4, 9, 10, and 11. 

(v) 2, 9, 12, 13, and 14. 

(vi) 3, 9, 12, 13, and 14. 

(vii) 2, 9, 10, and 13. 
1 (viii) 1 and 6. 

(ix) 3 and 14. 

We test the significance of these bigger clusters and, as shown 

in Table 13, find them a l l to be significant which confirms the conclusion 

made above. 

Table 13 

Populations 
involved 

Computed 
D.F. 

Tabular T 2 

Conclusion Cluster 
Populations 
involved 

Computed 
D.F. 

5% 1* 
Conclusion Cluster 

2,5,6,8,10 31.02 16 25.6131 35.6187 Significant 
2,4,7,8,10 68.39 II ti II it 
2,4,7,10,11 68.07 it it it it 
2,4,9,10,11 41.88 it n it it 
2,9,12,13,14 30.85 II n it it 
3,9,12,13,14 50.23 it ti ti it 

2,9,10,13 26.63 12 21*7064 29*9100 it 
1,6 18.36 4 12.1371 18.2030 n 
3,14 14.71 4 it n n 



CHAPTER THREE 

ANALOGUES OF DUNCAN'S PROCEDURE IN FORMING CLUSTERS IN  

MULTIVARIATE ANOVA (Contd.) 

3.1 In section (2.3) we have proposed three alternative approaches to 

correct the predicted clusters where the fi r s t - called the Duncan-

Hotelling test - has been explained quite at length with an illustrative 

example. Now we take up the remaining two - the. ';Extreme Distance from 

the Mean' - E-test and the 'Largest Distance' - R-test. The exact 

distributions of both the statistics are not known. Siotani (1958) has 

found the approximate distribution of the E-statistic for the k p-variate 

normal populations and has computed the tabular values at $% and 1% 

significance levels for some particular values of p. With Siotani's 

tabular values in hand we fi r s t discuss below the procedure for the 

E-test in Section (3.2). We then take up the R-statistic in Section 

(3.3) and discuss the working procedure. Lastly, in Section (3.4) we 

present the distribution of the R-statistic for the bivariate case in 

the form of definite integrals. 

3.2 Procedure for the E-Statistic 

The E-test is based on Mahalanobis' distance and Duncan's level 

of significance based on degrees of freedom. 
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Suppose again that the clusters have been predicted by following 

the procedure discussed in Stage I of Section (2.3). Without losing 

generality, we take up one of the predicted clusters containing k^ 

populations and discuss the;procedure for the E-test in the following 

steps: 

(i) Compute the statistic E.̂  ( i = 1, 2, ..., kj), the 

Mahalanobis' distance between the mean vectors of the ith population 

and the grand mean vectors of the k^ populations. 

( i i ) Without losing generality, let E, be the largest of a l l 

the computed E^ ( i = 1 , 2, k^). 

( i i i ) Compare this E, with tabular E^ ,where £ is defined 

already in (2.2.6) and X is the pre-assigned significance level. 

(iv) If E, is less than or equal to E r , a l l the k populations 
K l 1 

involved are concluded to form a cluster. Otherwise, split the k^ 

populations into k j ) sets of (k-^-l) populations each. 

(v) Compare the extreme distance of each set of (k^-l) populations 

from their, respective grand mean vectors with the. tabular 

Out of them some may be significant and some may not be. Those non­

significant ,vwill yield clusters with the corresponding populations 

involved in them. Those, for which the extreme E's are significant, 

are further split into sets of (k^-2) each and their corresponding 

extreme E's are them compared against the tabular value E, . In 
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this way the process is continued t i l l we arrive at the clusters of 

the type defined. 

Thus a working criterion analogous to Duncan's can be stated as 

follows: 'A group of k^ populations will form a cluster i f the extreme 

distance E (assumed to be the largest amongst a l l the k distances 
*1 1 

between the mean vectors of individual populations and their grand mean 

vector) i s non-significant and i f furthermore such extreme E's of each 

and every new set of populations of which the k^ populations form a 

subset, is significant according to Ji -level E-test for some pre-
r 

assigned JC , where r i s the number of the populations in the set'. 

Note: The exact distribution of the extreme classical distance 

was taken up by Mrs, Cuttle in her Master's thesis, 1956. 

She successfully solved the problem for three bivariate 

populations and gave the tabular values at some probability 

levels. We tried in vain to extend her procedure to four 

bivariate populations. The joint distribution of four 

distances came out in terms of elliptic funcions, whose 

further integration, in order to find the distribution of 

the extreme E amongst the four E's, was found to be quite 

involved. 
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3.3 Procedure for R-Statistic 

Duncan's range test has already been explained in Section (1.2). 

We extend his procedure to the multivariate case. Suppose we have k 

p-variate normal populations having significantly different mean 

vectors. Suppose further that the clusters have been predicted by 

following the procedure discussed in Stage I of Section (2.3). In 

correcting these predicted clusters no generality i s lost i f we take 

up one cluster containing k^( c k) populations. The procedure i s 

described in detail in the following steps: 

(i) Compute ( ) Mahalanobis distances R (r # s = 1, 2, ..., k ) «c rs 1 
between the rth and sth populations. 

(ii ) Again, no generality i s lost i f we suppose that the distance 

RJJ^ between the f i r s t and the k^th populations i s the largest amongst 
k l 
( 2 ) distances. 

( i i i ) Compare the computed R_, with the tabular R, , where 
± k l k l k l 

is already defined in (2.2.6) and -C i s a pre-assigned level of 

significance. If R„, i s less than or equal to R/ , a l l the k 
l k x ^k]/ 1 

populations involved are considered to form a cluster. Otherwise, 

split the set of k^ populations into k^ sets of (k^-l) populations 

each. 

(iv) Compare the largest distance of each set of (k^-l) populations 

with the tabular R/ . Out of them some may be significant and some 
k^-1 
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may not be. Those non-significant W i l l yield clusters with the 

populations involved in them. Those for which the largest distance 

is significant are further s p l i t into sets of (k^-2) and their 

respective largest distances are then compared against their corres­

ponding tabular values R.- . In this way the process is continued 

t i l l we arrive at the clusters of the type defined. 

Thus the working criterion analogous to Duncan's can be summed up as 

fellows: 'A group of k populations i.will form a cluster i f the distance 

(assumed to be the largest amongst a l l (̂  ) distances) between the f i r s t 

and the k^th populations is non-significant and also the largest distance, 

amongst a l l possible distances between pairs of each and every new set 

of populations of which the k^ populations form a subset, is significant 

according to £ ^-level R-test for some pre-assigned JC , where r is 

the number of populations in the s e t 1 . 

There is no doubt that the test procedure set up above is com­

pletely analogous to what Duncan did in his multiple range test, but, 

in order to apply i t , we need the distribution 1 of the s t a t i s t i c R and 

hence the tabular values at / ^-level for r populations. To overcome 

part of the d i f f i c u l t y we present below the simultaneous' distribution 

of the distances involved in a predicted cluster in the case of bivariate 

populations. we have actually found the joint distribution for 

k = 3> 4, 5 populations and then have generalized i t for any k. Lastly, 

we have also suggested the limits of integration to find the distributions 
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of the individual largest distance i.e. of the st a t i s t i c R. To 

find the tabular values one could apply any method of numerical 

integration. 

3.U The Distribution of the R-Statistic i n the form ofaDefinite Integral 

(a) Preliminaries and Notations 
_t 

( i ) Let X(k x p) be the matrix of k mean vectors (columns for 

characters and rows for sub-population samples) of samples of sizes 

N^, N^, ..., N^ respectively drawn independently from k p-variate normal 

populations. 

Let the covariance matrix («£ ) be known or estimated on the basis 

of large samples. 
_t 

Further, l e t the matrix X(k x p) be transformed into another matrix 
_t 

Y(k x p) by such an orthogonal transformation that the covariance matrix 

of y's is a diagonal matrix J\. (p x p) with elements \ ^ 

( i = 1, 2, p). Without loss of generality we can assume that the 
true centroid of the distribution i s = = ... = f* = 0. The 
joint distribution of the y's is then: 

_ P k 
f ( y i r . . . , y y l k,..., y k ) I 1 dy 

i=l r=l 

J£ p p K 

r=l i=l i=l r=l 
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where c , pk 

r=l i=l i=l r=l i=l 
k 

where n k • ^ N r (3.4.3) 
r=l 

Further, i t is easy to prove that: 

k k-1 k 
£ N > i r " = n\ ]T C ^ i r " y i * ) 2 

r=l r=l s=r+l 

Thus we have: 
k p k-1 k 

r=l i=l r=l s=r+l i=l 

where - - i ± £ ( y ± p - y i g ) 2 (3.4.5) 
• i=l X 

Thus the joint distribution (3.4.1) can be written as: 

k-1 k p p k 

* K " * F F *» - i t Z $ 5501 A ^ 
N r=l 8-r+l i=l ' 

( i i ) From the quadrilateral joining points i , j , k and £, 

6) 
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we can find the distance v between i and j as follows: 

V - Ri<* Bj« - 2 ^ x T 7 ^ C 0 S A (3.4.7) 

i R „•» R . - R n R. + R - R 
where A- Cos"1 - l L — & * _ ^ - 1 M *k Jk ( 3 . 4 < 8 ) 

2 y R i ( ? R £ k 2 J R ^ R F K 

( i i i ) Frequently we shall have relations of the type: 

ax + by = L 
2 2 x + y « M 

and a 2 b 2 - N ( 3 . 4 * 9 ) 

where we shall be required to find the value of: 

bx - ay (3.4.10) 

Solving the first two equations of (3.4.9) we have 

a L i b N/(a2+ b2)M - L 2 

x = 2 , 2 a -»• b 

f 2 2 a 
and y _ bL + a J (a -» b )M - L* 

2^ ,2 a •+ b 

where we have placed the restriction that the signs before the square 

root in the expressions of x and y must be opposite. Therefore 

7 2 2 2 / 2 
(a • b )M - L s i Jm - L (3.4.U-) 

(iv) We shall frequently need the following: 



-64-

/ = I ^ = T T (3A.12) 
S Jax - x 

(v) Lastly we give below the notations which are used quite 

frequently in what follows: 

s i J k
 2 N i N A i R k o + 2 H i H k R j i R j k + 2 N A R i k R i j - N i 4 

- ^ 4 - 4 R h ( 3 - u - i 3 ) 

5 i j k = 2 R k i R k j + 2 R j i R j k + 2 R i k R i j - R j k " 4 - R L ( 3 . 4 . 1 1 + ) 

S ' - 2 R k R k j * 2 R J i R j k * 2 R i k R i j - R S - R i k - R i j (3.4.15) 

(b) Distributions 

Case I: For k = 3 

c 2 3 exp 

where, 

The joint distribution of ( y ^ y ^ y ^ ' y 2 1 ' y 2 2 , y 2 3 ^ f r o m  

6 > ) i S : 2 3 2 i l l 

r=l s=r+l i=l 

N N N 

from ( 3 - 4 . 2 ) , C = 1
 2 3

r—r-..6 ( 3 - 4 . 1 7 ) 

and from ( 3 . 4 . 3 ) , ^ = 1^ + Ng.+ N3 ( 3 . 4 . 1 8 ) 

Consider the orthogonal transformation: 
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V n ( ; 7 n + .^12) v 2 i - J ; ( - y 2 i + ^22) 

V12 C" 7 H " ^ 2 + ^ 1 3 ) V22 = ^ ( " y 21 • y 22 + 2 y 2 3 ) 

(3.4.19) 

whose inverse transformation i s : 

- U l V l l V12 
and V 22 

Y l 1 ^ 3 v/2 " 76 ~73 v/2 " 76 

- u l 
^ V 3 

V 
+ 1 1 -

v/2 

V12 

V6 
y22 

73 

v 
21 

v/2 " 

^ 2 

u l 
7 1 3 = 73 

2 v12 H! 
y23 

U 2 + 

73 + 

2 V 22 
76 

and from these and from (3.4.5)> we have: 

2 2 

*12 

R!3 

^1( 72 5 A 2 v/2 J 

V i r g i n + * k , a
 + , ( i 2 i + ^ a ] 

n 3 L A v/2 >/6 V 7 2 76 . J 

N0N_ r . 7 , , - - 5 7 : . 2 v 3v 2 1 

The distribution now takes the form: 
2 3 2 2 n 2 

G 2 3 exp [ - 1 1 5 - , r ^ 
l — r=l s=r-f-l i=l 

(3.4.21) 
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where R are defined as in ( 3 . 4 . 2 0 ) . rs v 

Integrating with respect to u^ and both with the limits from 

_ oo to 0 0 , we get the reduced form; of (3-4 .21) as: 

6 F J~~k—A" 2 3 2 2 

— = T ^ °23 \ I L B r s ] I 5 
3 r=l s=r+l i=l j=l 

N N N 
Let N = — - . Then we define R* R* and R' as: 

n^ 12 ' 13 23 

2v 2v 
R 1 2 = N3R 1 2 = A- (-72-) + ^ ( - ^ ) 

Dt A T o N / i i . 3 V 1 2 ,2 N / V 21 ^ 3 V 2 2 A 2 
R i 3 = N 2 R i 3

 = * 7 5 - ) + X 2
( 7 2 * + 7 6 - ) 

R P 3 = K 1 R23 - f ^ ^ ^ - 3 " 2 2 >2 ( 3- U' 2 3> 23 1 23 Ax v/2 v/6 X 2 j 2 " - y g -

Further, to effect the change of variables from the v's to R's, we 

introduce a fourth R' defined by: 

R' - j 1 (7I ) 2 (3-4.24) 

Finding f i r s t from (3.4.23) and (3.4.24) the Jacobian of the transformation, 

we conclude that: 

2 2 dRf
12dR' dR« dR̂  

I II d V i j = 2 8 8 N 2 ^ N v u ^ N V 2 1^N V l l N ^ 2 _ N ^12 N V 2 1 j 
i=l j=l A l x 7 2 - A2 J2 h v /2 ^2 J6 X l yJS X2 J2 
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Further, with the help of ( 3 . 4 . 9 ) , (3 .4 .10), (3 .4.11), (3 .4.23) and 

(3 . 4 .24) , we obtain: 

2 2 dR* dR' .dR'_dR' 
U H av ± J - 1 2 1 3 2 3 — 
i=l j=l J 24r 

'123 

where i s defined as i n (3.4.15). Again using (3-4.23), we get 

2 2 WnW0N0 dR dR dR^dR' 
TT Hdv.. = - ^ 1 2 1 3 2 3 (3.4.25) 

N NN 
Using (3.4.12), (3.4.25) and the value N = - , the joint distribution 

. . . . n 3 

(3.4.22) reduces, after integrating with respect to R' over the range from 

N 
0 to - j - R 1 2 as shown in (3.4.12), to: 

W e x p L " 2 1 2 i3 23_J dR 1 2dR 1 3dR 2 3 (3.4.26) 

^ 1 2 3 

which i s the joint distribution of R
1 2 > R

1 3
 a n d Rg^-'-All these variates 

are always positive,and i t i s easy to check that they do not assume values 

outside the cone defined as S 1 2 3 \ 0. The distribution of f ( R
1 2 ' R 1 3 ' R 2 3 ^ 

i s therefore always positive. 
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The Distribution of the Largest R _ rs 

Let us further restr i c t the problem by assuming the number of 

observations to be the same for a l l the three groups, i.e. 

1^ = N2 = = NQ, say. The joint distribution of ( R ^ R ^ R ^ ) i s 

. exp [- \ (R +R +R )J 
>/ &123 

where now the variates R, 0 , R-,->, and R0_ do not assume values outside 
l<= l j 

the cone defined by S^2^ 0. 

We can assume without loss of generality that the variates have been 

ordered, say 0 ^ R 2 3 £ R^ <. R 1 2 . The density of these 

ordered variates i s 3*.f(R12, R.̂ , ^23^ ̂ -hus t n e probability 

G(t), that R 1 2 £ t , i s : 

V 

where V is the region: 

123 

(3.4.28) 

2 
( A 2 "^ / R 13 ) - R 23 ~ R13 

? R 1 2 ^ R13 - R12 

0 i - t < ^ 
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The procedure for i t s numerical integration has been given by 

Mrs. Cuttle and one can easily compute the values of t for known 

values of G(t). 

Case II: For k = 4 

The joint distribution of (y^Y^Y^Y^Y^^^Y^,^^) 

from (3.4.6) is 

r=l s=r+l i=l 1 1 - 1 r = 1 

N N N N 
where, from (3.4.2) j C_, = 3 ^ • (3-4.30) 

and from (3.4.3), n^ = Nx + N 2 + N3 + (3-4.31) 

Consider an orthogonal transformation of the type (3-4.19) whose 

inverse transformation we write as: 

V _ u l V l l V12 V13 and y 2 1 

_ U 2 V21 V22 
y l l 

~7^ "76 712 
and y 2 1 

"7^ "72 76 712 

y l 2 
u l 

\ A + 

Y i i 

72 

! i 2 

"76 

_ ! l 3 

J12 
y22 

_ "2 

" 7 4 

V21 
+ 7 V -

V22 

"76 

123 
"712 

u i 

V + 

2 V12 U2 
2v 

22 
V23 

y l 3 

u i 

V + 76 "712 
y23 

76 v/12 

y l 4 

' u ; • • 

7^ 

3 v13 

712 
y24 

_ 2̂ 
+

 3 v 23 

712 
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R12 

R13 

R l 4 

R2k 

With the help of these and (3.4.5) we have: 

1 2 r 2v 2v 1 

= V i r i ( i i i 
n 4 L \ 72 76 A 2 y 2 76 J 

= W l ( ! l l + - ^ 2 + ^13)2 + 1 (Igl + ! 2 2 + ^ F \ 
\ l \ J2 76 712 A 2 7 2 J6 712 J 

N 2 N
3 f l ( ^ 1 3 V 1 2 ) 2 ^ 1 (̂ 23L 3 V 2 2 } 2 ] 

\ [ \ 1 . 7 2 " 7 6 A 2 7 2 " 76 J 

_ ! g \ r i ^ S i 2 + l ' ( ^ l . ^ 2 U v 2 3 ) 2 l 

\ L \ v/2 */6 "712 A 2 7 2 7 6 712 J 

3 k D 4 L A 1 > / 6 N / 1 2 A
2 V / 6 V/12 J (3.4.32) 

Making use of (3.4.32) and integrating with respect to u^ and u 2 

both vextehdihg3 from - <=>o to °o , the digtribution (3.4.29) takes 

the form: 

r=l s=r-frl 
f A A c a exp[- I f_ f_ R r s ] E I av t J ( 3 > . 3 3 ) 
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N NJI.N 
Let N - ? * . Then from (3.4.32) we have: 

4 
2v n 2v n 

„ « » N ' 1 2 n 2 . * / 21*2 
12" 3 \ 12 * AX<-3TJ J ^ T T * 

R' = N N R = ^ ) 2 * ^ £ 3 L - ^ p ) 2 

13 2 4 13 X /2 -/6 » <7. 

" V " W i t 
v v 4v o v v 4v o N ( j a + JL2 ̂  l l l ) ^ N (_21 , _22 f 121)2 

A x /2 >/o~ 7l2 A 2 72 To* x/l2 

v 3v o v 3v o » » » N 12v2, N r_21 l_22x 2 

23 1 4 23 A /2 A J2 SZ 

V V ZlV V V 2lV 
O I H H P N / 11 12 113N2 N / 21 22 23^ R' - N N R = — (—=- - — - -t — (—7=.- —7=. - —7=r-j 
24 1 3 24 /\x >/2 J12 A 2 V ^ * T /12 

However, in changing from the v^j to the Rj^. , we discover that the 

Jacobian of the transformation vanishes. In fact i t should, since the 

quadrilateral is completely determined by taking two triangles standing 

on the same base or by taking any of the five out of six R' s« Thus, 

we do away with one of the six R" s (which can be done in 6 ways) and 

then,to complete the set of six R1 s corresponding to sis v's, we 

bring in another R', functionally independent of the five retained R1 s. 

It is defined as: 
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Assuming R^ to be the smallest, we do away with i t and replace i t 

by (3.4.35"). Then, with the help of (3-^-3^) where R^ is l e f t out 

and of (3.4.35*), we find: 

n IT av ( A A ) 3 / g ^ V ^ ' i ^ V ^ 
i=i ]iiTiJ~ *̂  y^*^ - *• > ^ w s l > 3 

Finally making use of (3.4.34), (3.4.36), (3.4.13), and (3.4.30), the 

distribution (3.4.33) reduces, after integrating out R* from 0 to 

i ' w 
5 j : R ,

1 2 ( o r -JJ--2- R 1 2),again as in (3.4.12), to 

expf"- \ Y Y R 1 dR dR dR ,dR dR , 
,6^1,4+1^.4-2 L 2 Z — J 3 3  

( l ) ( 2 } p ) r = 1 8 - p f l (3.4.37) 

N / ^ 2 4 >/^123 

where, by using (3.4.7) and (3.4.8), R^ is determined from the 

quadrilateral formed by the points (1,2,3,4) and is substituted i n (3.4.37). 

Furthermore, the variates R 1 2, R^, Rg^, R-^j and R^ are a l l positive 

and i t is easy to prove that R,0, R, and R__ do not assume values 

Ld l j . O 

outside the cone S^2^ ^ 0 and that R]_2'Rl4> a n c * R24 ^° n o * ' a s s u m e 

values outside the cone S^2^ 0. 

The Distribution of the Largest Distance: 

Let us further restr i c t the problem by assuming that = N 2 = = 

= NQ, say. The joint distribution (3-4.37) then becomes: 
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3 4 

f. •% o -i eXP[" * T Z R r s ] d R12 d R 1 3 d RlU d R2 3
d R24 

q ) ( | ) 3 ±2 r * l g T f l  

^ 1 2 4 ^ 1 2 3 

(3.4.38) 

where again the variates B.^R^^ and R 2 3 do not assume values outside 

the cone ^ 0 and also R^' R l U a n d R24 d o n ° * a s s u m e values 
outside the cone 0. Furthermore the distribution of 

f ( R 1 2 ' R 13' R l V R 2 3 ' R 2*^ i s a l w a v s Positive. 

Me can assume without loss of generality that R ^ 2 is the largest 

of the five R's and further that they are ordered as: 

o £ R 2 3 - R 1 3 * R 1 2 ^ ~ 

and 0 ^ * ^ ^ * - (3.4.39) 

The density of the ordered variates is 5(21 )(2. )f (R 1 2 > R
1 3 > R 2 3 ' Rlk' R2l+^' 

and the probability S'(t) that R 1 2 i t Is 

3 4 

* i , i rrrrrex^ Z HRrs)dRi2dRi3
dRi4dR23

dR2u 
G(t) « ( ° ) ( 5 ) ( 2 : ) ( 2 : ) ( | ) 3 f 2 / / / / / r=l w f l - 

V N/^123 >/^124 
(3.4.40) 

where V is the region: 

^ (s /R 1 2 - y R 1 3 ) 2 * R 2 3 * R 1 3 

\ R12 - R i 3 - R12 

( 7 R 1 2 -jRlkf * R ^ < R L U 
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F R12 £ hk i R12 

0 i R
1 2 * t 

0 i . . t <-

GJ^ib) can be evaluated by some numerical method. 

Case III; For k = 5 

UEollgwing the similar steps as in Case II for k = 4^£rom (3.4.29) 

to (3.4.32)) we finally cbbtairie the distribution of R (s = (r+l) to 5, ' rs 
r = 1 to 4) <ls: 

10Try A r • • , ^ J- -\ 4 1+ 

n 5 25 
C_ exp [ " I I L R r s ] IT ff 

r=l s=r-M i=l o=l 

N N N N> N 
where, from (3-4.2), Q = 1 2 3 ^ — ( 3 . 4 . 4 2 ) 

2 5 ( ( 2 r r ) 5 

and from ( 3 . 4 . 3 ) , n ? = Nj_ + Ng + » 3 + + N? (3 .4 .43) 

I N I N,N 
Letting N = 1 2 3 ^ , we obtain as in (3 .4 .34) the following: 

U 5 

R12 " N 3 N 4 V l 2 = j^T 2"* + A 1
( 7 2 ~ ) 

N A 1 ^ 3 V12\2 j . N /V21 . 3^22>2 
Ri3 = W 5

R i 3
 = \^72 + 7 o - } + A " 2

( " 7 2 + 7 O - ) 
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N / l l 3 V 12 N 2 . N , V 21 3 Y22x2 R' - w w N p - i i ( X J L
 ^ j l ™ /J~L _^£V 

R 2 3 - W 5 R 2 3

 = A^T 2 " 7 o ~ } * r 2
( 7 2 

pt « M n B w / l l 1 2 ^ 13 N2 „ N , 2 1 „ V22 „ _ ^ 3 . 2 

\k - w 2 N 3 n 5 R i 4 = * 7 ° ~ + 712> + r 2
( 7 2 * 7 5 - + 7 i 2 1 ) 

R » - N N M R - W A 1 V l 2 W l3\2. N / 2 1 V22 W 2 3 x 2 

R 2 4 - " l D 3 V * " ^ 1 7 2 " " 7% " . " 7 2 + A" ( 7 2 ' 7 5 " " 7 1 2 } 

pi „ w „ R N / i i . V12 ^ V 1 3 . ^ V l 4 N 2 N /V21 „ V22, . V 2 3 ^ ^ V 2 U A 2 
R 1 5 " N 2 N 3 N 4 R 1 5 = Ax T2" + 75 * J l 2 + 720> + A"2

(72 + 7 ^ + v 7 l 2 +
N 7 2 0 _ ) 

R. _ N N T J R _ n / l l V ! 2 V 1 3 5 V14\2 N /V21 V22 V 2 3 5 V 2 ^ 2 
R 2 5

 = N 1 N
3 \ R 2 5 = 3^72" ~W - 7 1 2 " 7 2 0 ) % ( 7 2 - "Jo" \ 7 l 2 " 120 

2v l+v 2v k-v 
?t n TVT « p W / 12 1 3 v 2 ^ N / 22 J_23\2 

p» n « TVT p N / 2 V 12 V 1 3 ^ V l 4 A 2 a N , 2 v 2 2 V 2 3 ^V24>2 
R 3 5 = N l W 3 5 - A ! ( 7 5 - "712 ' 720> % ( 7 5 - -712 1 " 7 2 ^ ) 

Again from the fgeometric representation of the five points, we 

see that seven of the R* s are independent and the remaining three can 

he found with the help of the known seven. So again we discard any 

three of the ten R' s (which can he done i n (^®) ways) and then to 

complete a set of eight R* s corresponding to eight v s, we bring in 

another R', functionally independent of the remaining seven, defined as: 
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Thus, assuming R^, and R^ to be the smallest of the ten 

R',.s, we discard them and then with the remaining seven R1 s and R1 

in (3.4.45), we conclude that: 
i i 2 

JL. JL U,AJ dR' dR' dR« dR« dR' dR'r dR' dR' 

Making use of (3.4.44), (3.4.46),(3.4.13) and(3.4.42), we get the 

joint density of the seven R' and R'0 As was done in (3.4.12), we 

integrate out R', where 0 <-R* S £ R£ 2 • This yields 

exp [ - i £ H R r s J % 2dR 1 3cffl 23C^di^dR 1 5dE 
r l O w l N 5 * l / ^ 5 - 2 rsl s»r+l 

( 3 ) ( 2 ) W / s " / a " / s ~ 
>/ 123 V 124 V 12 

(3.4.47) 

25 

125 

Here R3^, R35 and R̂ ^ are functions of the other R r s and should be 

expressed in terms of these other Rj.s in (3.4.47). R34, R35 and R^IJ 

can be determined from the quadrilaterals formed by joining the sets of 

points (1,2,3,4), (1,2,3,5) and (1,2,4,5) respectively. The variates 

1*12* R]_3* ^23* ^14* ^24* ^15* ^25 a r e all>P 0 S j-tive, a n d the sets of 

variates (R 1 2, R 1 3, R 2 3), (R 1 2, R^, R^) and (R 1 2, R 1 5, R 2 $) do not 

assume values outside the cones S-^^ 0, >, 0 and S-^ >, 0 respective­

ly. Thus the density in (3*4.47) is always positive. 

The Distribution of the Largest Distance 

We again restrict the problem by assuming that N R * NQ (r=l, 2, 5)« 
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The joint distribution (3.4.47) reduces to: 
. 4 5 

l n , f i c , e X P [ " l L L R r s J ^ d R ^ d R ^ d R ^ d R ^ d R ^ 
(")(|) (fif) 3 ^ s=r-fl J 

^ 2 3 ^ 2 4 >^125 
(3.4.48) 

where again the sets of variates (R 1 2, R13, R^)* ( R i 2 ' R l 4 ' R24^ 

and (R,„. R,,-, Roc.) do not assume values outside the cones §,„_ X- 0, 
Ld 1? O 123 

^124 ^ 0 a n d ^125^ 0 r e sP e c" t i v e ly» 

We can again assume without loss of generality that R^ is the 

largest of a l l the seven R's and further that they have been ordered as: 

0 
R 23 R13 

<. 
R12 

<. 

0 < R l l t *. 
R12 

and 0 
R 25 R15 

<. 
R12 

The density of the ordered variates is 7(21 ) 3f(R 1 2, R13> R23> R^, R^, 

R,_, R „ c ) , and the probability G(t) that R,_ £ t i s : 
V) d? Id 

4 5 

, 6 , J f 6 X P t I Z E R r s ] a R 1 2 d R 1 3 d R 2 3 - d R 1 5 d R 2 5 
G(t) - ( 1 0

3) 7 ( 2 l ) 3 ( | ) 6 ( 2 4 ) 3 J ' - y r=l s=r+l J  

7 ^ ^ 2 3 ^124 N/ § 125 

(3.4.49) 
V is the region: 

where (7R 1 2 - ^ R 1 3 ) 2 C ^ C R ^ 

I R12 - R13 - R12 
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( y i L 2 " * R24 * hu 

R25 * R15 

1 ^ 2 * ^15 <• ^12 

G - R^ ± t 

0 £ t «o (3.4.50) 

Generalization. For any k 

An inspection of (3.4.26), 0.4.37) and (3.4.47) enables us to 

generalize the joint distribution of E's for any k - the number of 
/k\ 

bivariate normal populations. To start with we shall have ( ) R's 
from which (2k - 3) geometrically independent R's denoted by R^, , ... 

^lk* R23* R24' "**' R2k 0 5 1 1 1 a r ^ ^ r a r H y 1 3 6 chosen to complete the k point 
figure. It should be noted that such a choice can be made in / ̂ " 1) Ways. 

V 2 k - 3 y 

The remainder £(*) - (2k - 3)J of the R's denoted by R^, R^j 

R^j, R^j . ; ^(^2.)^ a r e again assumed to be the smallest and 

are discarded. Thus we conclude that the generalization of 

(3.4.26), (3.4.37) and (3.4.47) i s the density 
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k-l 

S X P [ " \ L 11 * » ] d R12 d Rl 3
d R23-'' ( k(k-l) V n, C ^ L " ̂  Z_ Z_ " » | u n12^ 1 3 u n 2 3-" d Rlk d R2k 

2 ( | r + 1 ( p | ) k " 2 r=l 8i»l  

v/S123 v/ 124 ••*^ S 12k 

(3.4.51) 

where R^> • ^ j j * R45* ***' R 4 k ' '"' R(k-l)k c a n ^ e determined 

as shown in (3.4.7) and (3.4.8),and where the line joining the points 

1 and 2 is the common side of the quadrilaterals ( l , 2, 3, 4), ( l , 2, 3, 5), 

(1, 2, 3, k); (1, 2, 4, 5) ...(1, 2, 4, k); ( l , 2, k^I, k) 

respectively. Again the variates R ^ , R ^ , R L K , R ^ , R G K 

are a l l positive,and the sets of variates (R-j^, R13* R 23^' '"> 

(R^g, R ^ , ̂2k^ d o n a t a s s u m e values outside the cones >, 0, 
S124 °* '"' S12k J' 0 respectively. 

The Distribution of the Largest Distribution 

Assuming again the equality of sample sizes, that is the largest 

and that the variates in each of the sets (R-J^* Ri3> **23^' **"' 

(R O T R. , R 0 , ) are ordered as in the previous cases, we conclude finally 12' lk' 2k' 
the probability G(t) that R t t is 

k-1 

J k - 3 / 

^ k + 1 ( 2 i ) k - 2 ( 2 k . 3 ) ( 2 i ) k - 2 ' - ' ' r = 1 

eXP[^r L Rr 8 J d R12 d Rl 3- d R2k 

^^123 J^l2h "'J^lZk 

(3.4.52) 
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V is the region 

where ( J \ 2 " ^ R 1 3 ^ ~ R 23 ~ R13 

F R12 - R13 - R12 

2 

i r R i 2 * R i u * R i 2 

( JR12 -J\kf £ R 2 k 6 

F R 1 2 ~ R l k 6 R12 

* R12 * t 

0 6 t <. 



CHAPTER FOUR 

ASSIGNING A POPULATION TO ONE OF THE CLUSTERS 

k.l We propose a method for assigning any other individual or 

population to one of the clusters obtained by any of the methods 

described in Chapters Two and Three, where the prior fact is known 

that the individual or population being assigned belongs to one of 

the clusters. Two alternative approaches have been suggested, both 

of them being based on the assumption that the populations concerned 

are normally distributed. The first approach deals with the method 

of likelihood functions as already discussed in Section (1.3), and 
2 

the second with the use of T values. Finally an illustration is 

presented to demonstrate their use. 

k.2 Since, by definition, a l l the populations included in the 

cluster have identical mean vectors, we can consider the cluster as 

one population whose mean vector is estimated to be the grand mean 

vector of that of the populations included in the cluster. Thus, i f 

there are C clusters, we shall imagine them as C distinct populations 

with their estimated mean vectors as the grand means of those populations 

which are included in the respective clusters. Let the estimated mean 

vectors of the C (so-called) populations be given in matrix form as: 
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- t , . 
Z (C x p) Zll» Z21> Z p l 

Z. , Z , . . « , Z 
12 22 p2 

1C* 2C' * pG 

(4.2.1) 

To get the corresponding significant discriminant scores, we post-

multiply Z*(C x p).by the matrix (introduced in part (d) of 

Section (2.2) and obtain the corresponding matrix U defined as: 

i - 1, 2, p» 
t - 1, 2, C 

_t _ t 
U (C x pt) = (U i t) (4.2.2) 

Further, i f Xp j be the mean vector of the sample from 

another new population which we are trying to assign to one of the 

clusters, then the corresponding significant discriminant scores can be 

similarly obtained. We denote them by 

( V V V } ( 4 o 2 ' 3 ) 

4.3: 
Discussion of Approaches 

A . 

(a) Approach I: Use of L-functions 

Since the C so-called populations are normally distributed, we use 

Rao's procedure for assigning an arbitrary population to one of the 

multivariate normally distributed populations. We f i r s t compute L-

functions in the form already defined in Section (1.2) or in the form 

obtained below by the use of significant discriminant scores, namely 
P1 P« 

i t l i»l (4.3.1) 
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- i TJmen, following Rao, we would assign, ignoring the a priori 

probabilities, the new population to the Ath (ft £ C) "so-called 

population" (or cluster) i f 

^ A. 
L - L. > 0 for a l l t = 1, 2, s-1, s+1, £ 
s u 

p 
(b) Approach II: Use of T -Statistic 

In the previous method we have not been able to assign tae 

probability to our decision. To achieve this aim we propose the 

following steps: 

Step 1. Let the size of the sample drawn from the new normally 

distributed population be N and try including i t in each of the 

clusters so that the number of populations involved in each cluster 

increases by one. 

2 /o 

Step 2. Compute the statistic T^ + ^ for t = 1, 2, *»,and 

where k^ is the number of populations in the t-th cluster. 
Step 3» Include the new population in the Sth cluster i f 

(i) T2. + 1 < a l l T 2
 + 1 for t ( ^ s) = 1, 2, tf-1, S+l, C 

s' t 

2 2 and ( i i ) computed T, , < tabular T. 
V * 1 " Z k +1 

s 
Note: Since we allow overlappings, we shall include the population in 

2 
each cluster for which the computed T is non-significant. 
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4.4 Illustration 

To demonstrate the above approaches we continue with the 

illustration discussed in Chapter Two. 

The B.C. Forest Laboratory obtained later a shipment of 

7 trees of black Cottonwood from some locality. To assign i t to 

one of the clusters on the basis of i t s static bending property, 

the same four measurements X^, X^, X^, and X^ were taken on 

different locations of each tree, and the following results were 

obtained: 

S i Z e * L *2 h h 

61 982 4.70 2287 4102 

The corresponding significant discriminant scores are: 

s i ' « J l 2 l 2 l 

61 0.4794140 1.1417523 0.4540478 

Demonstration of Approach I 

Considering each cluster to be one population whose mean vector 

is estimated as the grand mean vector of the populations (species) 

involved in the corresponding cluster, we write below the mean vectors 

of each of the seven clusters by use of (4.2.1) and (4.2.2): 
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Size 
h 

(a) 931 0.66968541 1.27604842 0.62721413 

(*> 984 0.76536770 1.19428189 0.71449228 

(c) 368 1.08072219 1.17054579 0.58144678 

(a) 587 1.01019297 0.92978089 0.42782876 

(e) 1266 1.29464479 1.30553049 0.70800378 

(f) 264 0.94597083 1.72039748 0.34593229 

(g) 158 1.74328671 1.21889759 O.50O48469 (4.4.2) 

Note: These clusters (a) to (g) have been written in the same'order 

as shown in the end of Chapter Two. 

Using (4.3.1), (4.4.1) and (4.4.2) we obtain L-functions as: 

L(a) = ° - 8 2 7685l4 L( d* = O.69443164 

1̂ , = 0.79361765 L ( f ) = °'58770051 

£ ( e ) = 0.49183864 L = 0.72048219 
(CJ 

and L ( g ) = O.O6075676 
o 

Since I ^ a j is greater than a l l the remaining £-functions, we would 

assign the black cottonwood to the cluster (a) i.e. to (2, 5, 6, 8 ) . 

Demonstration of Approach II 

Combining the new species of black cottonwood with each of the 
2 

sets of populations already in clusters, we compute T -values by the 

formula (2.2.4) and obtain:;: 
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4 (for 2, 5, 6, 8 and new one) = 24.70 

(for 2, 7, 8, 10 and new one) = 29.91 

< (for 2, 9, 10 and new one) = 30.94 

(for 2, 4, 10, 11 and new one) = 34.39 

T 2 (for 1 and new one) = 37.44 

(for 9, 12 , 13, 14 and new one) = 43.99 

4 (for 3 and new one) = 77.66 

Clearly T,. (for 2, 5> 6, 8 and new species) i s less than a l l 
2 

the other computed T -values and also i s the only one non-significant 

for l6 D.F. and for >£ = .05*since the corresponding tabular value i s 

26.7251. Hence the black cottonwood would naturally be assigned to 

the cluster of species 2, 5, 6 and 8. 

Remark: We have plotted the point representing the new species 

•black cottonwood' in Figures 2, 3 and 4. This graphical.: 

representation also shows that the new species is close to 

2, 5, 6 and 8. 



CHAPTER FIVE 

DETERMINATION OF CONFIDENCE REGIONS FOR NON-CENTRALITY PARAMETERS 

CORRESPONDING TO D 2 AND T 2  

2 k 

and 

ANOTHER EXPRESSION FOR T 2 

k 

5.1 In multivariate analysis of variance, when the hypothesis of the 

equality of mean vectors in the case of two or more populations i s 

rejected, the need arises to set up confidence limits for the non-

centrality parameters corresponding to the statistics used for tests 

of hypotheses. In Chapter One, Sections ( l . l ) and(L.2), we have 
2 9 

considered using the statistics D̂  and T£ for testing the hypotheses 

of equal mean vectors. Now we discuss the problem of setting up 

confidence regions for the corresponding non-centrality parameters 
2 2 9 ^ and J " ^ . Lastly we shall give another expression for T£ 

in terms of the sum of weighted Mahalanobis distances. 

5.2 Distributions of the Two Statistics in the Non-Central Case 
2 

The distribution of D̂ , both for Studentized and classical cases, 

i s summed up in Section (1.1) for the non-central case 4 0. As 

regards Studentized T2, we do not have i t s exact distribution in compact 

known standard form even for the central case. The asymptotic 



- 8 8 -

2 expression of a percentage point of the central T -distribution in 

terms of corresponding percentage points of central chi-square with 

p(k-l) D.F. has been given by Ito (195°")}-thish we have already 

given in Section (;1.2'). We again write i t below but in a different 

form suitable for our purpose as: 

2 - 3 4 
c x X 2 + G 2 ( x 2 ) + c 3 ( x 2 ) + c ^ ( x 2 ) ( 5 . 2 . 1 ) 

p - n 1 + 1 7P2 + 12(1 - n x)p + ( 7 n 2 - 12^ + l ) 
where G, = 1 + + :—-x 

1 2 n2 24n2 

p + n 4 1 1 3 P 2 + 24p - l l n 2 + 7 
C — A. 

2 2n 0(n np +2) 2, „ _x 
2V 1̂  ' 24ng(n p + 2) 

kn^ + 2(3n2 + 3n± + 10 )p 2 + 2(2n3 + 3n^ + 1 7 ^ + l8)p44(5n2+9n1+2 ) 
3 24n 2(n l P + 2) 2(n Lp + k) 

C4 = 
6(p - l)(p - 2)(n 1 + l ) ( n i + 2) 

24n2(n p + 2)\n p + k)(n p + 6) 
2 1 1 1 (5.2.2) 

n^ = k - 1, 

and n is taken so large so that the cubes and higher powers of — are 

negligible. 
2 

Although Ito considered only central ^ , there is no difficulty in 
2 

deducing the approximate distribution of non-central T^. If we go 

carefully through the procedure Ito (1956) followed in arriving at the 
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distribution of central. T2, we can easily deduce the distribution 

for non-central T2. We have only to replace the central chi-square 

by the non-central chi-square with the same degrees of freedom and 

non-centrality parameter tdefined in Section 1.2. Thus we write 

for T2, when Z\* ®> 

T2 = C i x : 2 * c 2( X ' 2 ) 2 * c 3( X' 2) 3 + c 4( Xl2)k (5.2.3) 

where X i s non-central chi-square with p(k-l) D.F. and parameter 

•£"2, and Ĉ , C^, Cy are defined above in (5.2.2). Further, in 

the classical case, T^ i s again $,'2 distributed with p(k-l) D.F. 

and parameter 

5.3 Tabular Values of Non-Central F-Ratio and Chi-Square 

The percentage points for both the non-central F-ratio and chi-

square with appropriate degrees of freedom and non-centrality parameters 

are then needed for the above purpose and so we refer to the following: 

Non-Central F-Ratio 

Wishart (1932) and Tang (1938) have evaluated the probability 

integral for the non-central F-ratio. Patnaik (1949) has also computed the 

tables by an easier and approximate method by fitting an F-distribution 

.with the exact f i r s t two moments of non-central F-ratio. Thus, for the 

use of tabular values at the required confidence level, any of the tables 

given by Wishart, Tang or Patnaik may be referred to. 
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Non-Central Chi-Square 

Fisher ( l 9 3 l ) and Garwood have each computed tables of,the 5$ 

significant points, of non-central chi-square for 1 to 7 D.F. and TT^ 
2 

X 

0(0.2)(5.0). Patnaik (19^9) has also evaluated"them by 

using various approximations to non-central chi-square, which are 

quite close to exact ones. Thus, for finding the confidence intervals, 

any of the available tables given by Fisher, Garwood, or Patnaik may be 

referred to. 

5.4 Description of the Method Used for Confidence Regions 

We now give the method for determining the confidence regions for 
2 2 

either of the parameters ^ or Since the method used is the 
2 

same for both, we shall take up only one s t a t i s t i c - Studentized T^. 
>- ? 

We shall describe f u l l y the procedure for this s t a t i s t i c , sande the 

same technique can be made use of for the other also. 

To do this we shall follow Mood's method (Art. 11.5) given for t .: 

functions not distributed independently of the parameters. 

Let, for a pre-assigned X- , the confidence level be 100(l-.£)$. 
2 2 2 Since, for a given value of £ k = "C^^y the density of T^, which 

2 2 \ 

i s g ^ k / "£-k(o)) i s c o m P l e t e l y specified, we can find numbers <f> 

such that: 

P r [ T k ^ = £ k ( o J " / Z l i 0 ) ] ^ l - 1 
. 0 
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and P r 

2̂ (5.4.1) 

where + JL^ ^ L (•£,> ^x. a r e two predetermined numbers) 

2 
Similarly, for every value of £ , the pairs of numbers ̂ ., ̂_ can be 

il 1 2 found 2 
which enable us to write ^ , ̂  as functions of JTjj- **e* 

2 2 ^( Z^) and ̂ ( 7 ^ ) r e s P e c t i v e l y , and finally we state: 

P r [ iSZl) * o b s e r v e d Tk - ^ ^ k ^ = 1 (5.^.2) 

Writing ^ ( r 2 ) = T2, S^ Z 2 . ) = T 2 , (5-4.3) 

we invert them to obtain respectively: 

and then rewrite (5.4.2) as: 

' p r [ * 2 ( T k> 4 Z l * % ( T k ) ] = 1 - l ( 5 A ' 5 ) 

2 2 which determines the region for £" for a known value T^ at ( l -£. )$ 

confidence. 
2 

Thus to compute the interval for ,corresponding to a known 
2 

value of T ,.we refer meanwhile to the Fig. 5 below and explain the 
1 

procedure as follows: 
2 

Suppose we have computed T on the basis of k populations. 
kl 1 

Through the point E £ T 2
 f o J on T 2-axis, erect a perpendicular to the 
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P 2 2 T -axis and let i t cut the curves ( T v ) a n d ( T ir ) 
. *1 1 K l 

respectively at the points A and B. Take A' and B' respectively to 
2 

he the images of A and B on the £ -axis. Then, i f the distances of 
1 2 2 A" and B' from the origin are respectively Z-^i) a n d 2*^ ( 2 ) ' w e 

have: 

2 2 
which determines the region for a known value T, of T with 100(l-.£)# 

k l 
confidence. 
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5.5 Example 

To make the procedure clearer we present below an example for 

p = 4 , n^ = k-1 - 1 , - 29, and construct the 90$ confidence region 

for ~C 2 corresponding to known value of Studentized T2, = 25. 

Both lower and upper % significant points (Fisher and Garwood) 

of non-central chi-square for D.F. = 1(1)7 QXAJ\ (= ̂ T ^ ) = 0 (0 .2)5 .0 

have long since been computed; but, since they were not immediately 

available to us, we have preferred to compute them by the approximate 

method suggested by Patnaik (1949), for A = z\ ~ © ( 2 ) 3 6 and D.F. 

f - p(k-l) = 4 as follows: 

(i) We fir s t select an appropriate percentage point of chi-

square as tabled by Hartley and Pearson (1954) and use the 4-point 

Langrangian formula to get the same percentage point for chi-square 

with D.F. ~{t • f t 2 \ ̂ t h e n multiply the result by f - ( l * j^)* 

The appropriate lower and upper % points obtained by the method are 

recorded respectively in the second and third columns of table 14. 

( i i ) Then we find the values of Ĉ , G^, 0y and (^defined in 

(5*2.2) for appropriate values of p, n^ and n^which in our case are 

1.07432, 0.0197, 0.000198 and 0.0000037 respectively. 

( i i i ) Lastly, substituting the values, obtained above in steps (i) 

and ( i i ) , in formula ( 5 . 2 . 3 ) , we obtain the corresponding lower and 

upper 5% tabular values of Studentized T^ and record them respectively 

in columns 4 and 5 of table 14. 
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2 Having obtained these lower and upper 5$ tabular values of , 

we plot them on the graph corresponding to respective values of 
2 / 2 / 2 

i . e . "C2>an^ obtain two curves ^ ( t g ^ ) a n d ^ 2 v ? 2 . ) a S s ^ o w n * n 

Fig. 6. 

2 
Finally, to find 90$ confidence region for computed T g = 25, we 

2 
erect a perpendicular through the point E(25,0) on the Tg-axis and 

2 2 
let i t cut the curves ^g(Cg) and ^ ( l 2 ) respectively at A and B. 

2 

We then take A' and B' respectively the images of A and B on "Cg-axis. 

Reading their distances from the origin respectively to be 3.9 and 29.1 

approximately, we conclude that: 
p r ^ 3 . 9 ^ r | < 2 9 . 1/T 2 = 25J = . 9 0 (5.5.1) 

2 

which determines thus the region for a known value 25 of with 90$ 

confidence. 
2 

Note: The non-centrality parameter involves sample sizes. 

In order that the non-centrality parameter should contain 

population constants only, we have to resort to the 

assumption that the sample sizes are equal i.e. 

W l = W 2 Wk ^ N ( s a y ) ' i n w h i c h c a s e 

i j r=l where = ( £ / " l r ) / 
r=l ' 
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or alternatively that Z. \ = N 7 2 (5.5-3) 

p k 

where ^ £ J_ X
± A £ ( < i r " /"i>< /" J r " > <5.5.*> 

i j r=l 

Thus i f we suppose N » 15, say, we can deduce from (5.5.I) the following 
2 

for as: 

P| 0 . 2 6 ^ ^ 2 * 1.9W Tg - 25] . - .90 (5.5-5) 

Table 14 

A 5$ chi-square values 5# T2--values 
Lower Upper, Lower Upper 

0 0.71 9.49 0.773 12.168 

1 0.93 11.72 1.005 15.676 

2 1.24 13.72 I.362 19.090 

1-77 17.31 1.965 25.859 

6 2.83 20.77 3.202 33.275 

8 3.80 24.08 4.379 41.302 

10 4.85 26.97 5.698 49.146 

12 5.98 29.93 7.176 58.079 

14 7.15 32.85 8.770 67.878 

16 8.36 35.69 10.493 78.440 
18 9.64 38.44 12.396 89-731 

20 10.91 41.29 14.375 102.635 

22 12.24 43.96 16.547 115.935 

25 14.26 47.94 20.053 138.136 

30 17.77 54.55 26.792 182.128 

36 22.12 62.24 36.432 246.443 



9m 

32$ 
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2 
5«6 An Alternative Expression for T, — • k 

2 We have already given three expressions of in Section 1.2 . 

We now give below another expression as the sum of weighted Mahalanobis 

distances as: 

2 V~ N N 2 
v 2 L Z u (5-6>1) 

l i r o i k ^ ( N
r) 

r=l 
2 

where D is the Mahalanobis distance between the rth and the sth 
(rs) 

populations. The statement (5.6,1) is proved as follows: 

Consider the set of numbers u r, v p and the set of integers N r 

(r — 1, Zf • k)e 
k > k k 

Let N s £ N r and Nur £ N ru r, Nv = £ N rv r. 
r=l r * l r ^ l 

Let S(u.v) r i / J ~ N N (u - u )(v -v ) v ' u A — £ r s v r s / v; r s' 

1* n <. s s k 

k k 

Then S(u,v) = ^ ^ Z N r V u r *" u s ^ v r " v s } 

n»l s=l 

k k 

nrl s=l 



k k 
^ z\JL H KrN|(ur-u)(vr-?)-(ur-u)Cvs-v)-(us-u)(vr-v) 

n=l s=l 

+ (u -u)(v -y)J 

f k k k k j 
| I N r(u r-u)(v r-7)( L Ns) • ( L V INS(US-U)(Vs-7)J 

* ~ r - l s=l r=l s=l 

k 

I 
1< r <-s ik *' " . * ". . * ". r=l 

Thus S(u,v)=|H H . N rN s(u r-u s)(v r-v s)= Z N r(u r-u)(v r-v) 

Now we apply this relationship, taking Uj. =. Xjj., v r =. X j r , so that 

, v a. x. • In tt J 
p p k 

I s x., y a?.» In the Studentized case 

T 2 = Z . 2 1 w1^ Z L Nr(5Lr-35)(x, 
K 1=1 o*l r=l J J. 

_ X 21 ^ I H H N r N s ^ x i r - x i s ^ x j r - x o s > 
i=l 3=1 l < n < s £ k 

1 £ r <. s i k i ; l j=l 

L— *— a - ( r s ) 

l*r*s£k 

N N r 3 ? 

2 ¥ s 2 o 
L e t T ( r s ) = K > ' N D(rs) d e n a t e t n e corresponding Hotelling T^ • 

r s 
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Then 2 y \ _r_s D 2 a \ N _r 
V ^ ^ H (rs) ^ - N 

s ij,2 

1 * r <.s *k 1 i r < s *k 
(rs) 

The same argument works for classical T , which wil l be expressed 
2 2 k i i i j in terms of classical D and T , where ^j— replaces w throughout. 
(rs) (rs) 

2 
The same argument works for the parameter C • 

k 

P p . . * L r r S B . 2 • 

r - l 1 * r <-s* k 

2 P P i j 
where ^ ( r s ) * H ^ ( ^ i r ~ ̂ i s ^ Ajr" ^s> 

i * l J * l 

Again the relation (5.6.1) can also be expressed in matrix form as: 

[ H N J Tk * l * i - * 2 - - * t 
L r . l J 

D12 ° 1 3 — D U c 

2 
D 0 

21 

2 2 
D ... D 

23 2k 

2 2 2 D D D ... 0 k l k2 k3 

(5.6.16) 



CHAPTER SIX 

DISTRIBUTION OF THE DETERMINANT OF THE S.P. MATRIX IN THE NON-CENTRAL 

LINEAR CASE FOR SOME VALUES OF p 

2 

6.1 Let k^ be the non-centrality parameter for the linear case. 

Then the h-th moment of the determinant |A| , where A is the S.P. 

matrix with n D.F., is rewritten from (1.3-3) as:follows: 
f p - i r c ^ + ^ i r - ^ k ^ 2

h f t f + 5 4 h - ] 
B l l A ( ] h =[l * h f P S - J L «P(- \ A> L 2* J S R | + J ) J 

U i=l 1 2 j=0 1 2 

(6.1.1) 

The right hand side of (6.1.1) can be interpreted as-.follows: 

(i) — — — : is the h-th moment of f. (u. ), 
n i i . i 

1 2 1 where f i ( u i ) - - u. exp^^-u^) i=l ,2 ,... ,p-l 

X 2 r 2 (6.1.2) 

1 2 V 4 ^ f ( t ^ J + h ) 

and ( i i ) exp(- ^ k ) / — = — is the h-th 

• U 2 j ; ?i+ j> 
moment of f 0 ( u Q ) , where 

j=0 2 2 |?|n.+ j) 
(6.1.3) 
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Thus: (i) from (6.1.2), f^u^), i a 1, 2, p^l, are 

central chi-squares, which we can take to be independently distributed 

with (n-i) D.F. for u ±; 

and ( i i ) from (6.1.3), £QX uO^ i s a n o n - c e n t r a l chi-square which 

we take again to be independently distributed, with n D.F. and non-

centrality parameter k^ • 

Since the moment of a product of independent variables is the 

product of the moments of the variables, i t follows that: 

E[jA|hJ= E(u£) E(u£) ... E ^ ) * E [ ( V l U
2 — V l ^ J " 

Alternatively, therefore, the h-th moment of |A| could be directly 

determined by multiplying respectively the h-th moments of independent 

u ^ ( i * 0, 1, 2, p-l) variates defined above from which one con­

cludes that i f one wants to determine the distribution of JA| , one 

can do so by finding the distribution of the product ( UQ^»' , Up ])* 

Since u Q, u^, u _^ are independent, their joint distribution 

can be written down and the distribution of (ur,un...u ,) can further 
Ox p-1 

be determined for p sr2, 3, and 4 as follows: 

The joint distribution of the independent variates ( i = 0, 1, . . . 

can be written as: 

"p-1 "Sii -j • . 1 . 2 , 1 , 

TT 1 , u i v 2 1 , 1 V l.«l,ir«p(- ? k l ) 
|| - _ - ( - ) exp(- 5 Ui)d(-)Jl Q n ( 2 ) 

, i ? l \ V 2 > 

(6.1 
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where 0 £ <. oo ± = 0, 1, 2, . . . , p-1 

After a l i t t l e manipulation and setting n » 2m + p + 1 

(p 6 n)> "the joint distribution of u^(i = 0, 1, 2, ..., p-l) becomes 

m * 4 P - l 
1 Up-1 Up-2 ' • -U2 U l U0 / I V " "\ 

1 2 T U0 ( 4 / 2 ) U0 ( ^ 2 ) 2 1 T T e x p ( - ^ k L ) L l + i r ( g B f p f , l ) ( 2 m f p f r 3 ) + "J [ I du ± (6.1.5) 
i=0 

where 0 < ̂  <.«» i = 0, 1, 2, ..., p - l . 

6.2: Preliminarie s 

( i ) We make use of Legendre's duplication formula for the gamma 

function, namely of 

f ( n + 1, J 7 n + 1) - ^ ± 1 L (6.2.1) 

( i i ) Me l i s t below the standard integrals^ derived from various 

books of integral tables, of which frequent use has been made: 

(a) Larsen's book of tables (p. 254) gives 
CO 

e x p [ - ( x
2 + a 2 x"2)Jdx = ^ exp(-2a) (6.2.2) 

0 

for a }>, 0. 
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(b) Bierens de Haan gives i n his Table 98 (pp. lk-3-lkk) two 

integrals numbered (5) and (17) as follows: 

00 
1 
2 

a 
exp L-(.px + Qx"1)} dx (^)2 exp(-2/pI) x 

n=0 L 

(a 4 1 - n) 
L 2 ^ ( 2 7 p i f 

2n/ll 
(6.2.3) 

and 
1 
2~ exp 

.J§ 7 T ( v ° > g D / 1 

[-(px + qx' 1)] dx = (|) 2 exp d-2/pi) 

(6.2.4) 

Note: In both of these Kramp's notation i s used, namely 

n/h „ 
x ' = x(x + h)(x + 2b.) ... (x + n-1 h) 

(c) From Whittaker and Watson's book, we quote two integrals 

(p. 116, ex. 6 and p. 2^3, ex. 4): 

J exp (-t )-exp(-tz) dt = 
/

exp(-t j-exp^-zt" 1) d t = l Q g z ( 6 2 5 ) 

where the real part of z is positive,; 
1 ' 1 

J ex P(-u ) + exp(-u) -1 ^ = y = _ u 
(6.2.6) 

where Y is known as the Euler constant. 
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( i i i ) Evaluation of Pertain Integrals by the Use of Differential Equations 

(a) Evaluation of I, where 
CD 

I s J x exp(-2x-2ax-1)dx. (6.2.7) 

Setting x s i . u - 1 and b = 4a in I, one obtains the integral 
• 2 
CO 

K(b)i 1 J u" 3 exp(-u~1-bu)du (6.2.8) 
4 % 

If 

k(u) : i u - 3 exp(-u"1) (6.2.9) 
. 4 

then 

• E 31 ' (l-3u2)u-2 (6.2.10) 

and co 
K(b)= / k(u)exp(-bu)du (6.2.11) 

0 . . . . . . 

The function K satisfies a differential equation of the form 

( c ^ ^ b ) ^ | + (c-jtd-jb) || * (c^dQbjK- 0, (6.2.12) 

which after some simplification reduces to 

b d?K . dK - K s 0 (6.2.130 db2 db 
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Solving (6.2.13) by Frobenius method of series, we get: 

K(b) = fA +.H log bir-_j£_ - _ b L - _ V l -
L J L 2 Jit 3J1I 4!2J 3 

(6.2.14) 

To find A and B we proceed as follows: 

Set b = 0 in (6.2.8) and in its derivative: to get: 

K(0) = -K'(0) = I (6.2.15) 
- 4 

Now setting b = 0 in (6.2.14) and then using (6.2.15), we get: 

B = 7 (6.2.16) 
4 . ' ' 

However, the substitution of b = 0 in the derivative of K(b) defined 

in (6.2.14) does not help since by using (6.2.15): 

K'(b) • jL[i + b log b • log b(|L,U + ,„)), Q(b) 

b 
- A = Lt 

b-»0 

which i s indeterminate. 

Again, making use of L'Hospital's Rule, 

- A - i - Lt f K»(b) + r log b] 4 b ^ 0 L 4 J 

or -4A - 1 = Lt 
b-*0 

= Lt 
b-»0 

j [ u - 1 exp [-(u"*1 + bu)J du + log b 
- 0 J 

exp [-(u* + bu)J % + J e^P(-u) -exp(-bu) D UJ 

(by using 6.2.5) 
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- Lt 

b-»0 /

exp(-u ^ - bu) •*• exp(-u 
u 

L 0 

-u) - exp(-bu) du ] 
-1 

Since (i) f(b,u) = exp(-u •- bu) ̂  exp(^) - wqp(-ba) i s C G n t i n u o u s 

on the right at b r 0 and ( i i ) for 0 £• b i 1 

|f(u,b)l < max [|f(u,0)| , ]f(u,l)|] 

exp(-u 1 ) -exp(-u) +1 
u u 

exp(-u) 1 - exp(-u "S 
u u 

for 0 j u j 1 

for 3i s u c ^ 

where each term in the last expression is integrable over the given inter­

val, the order of limit and integration can be interchanged and oneagets: 

- 4A - 1 = 
O<0 

/

acp(-u ) <• gg>(-u) - du 

•i 
exp(-u 1)+ exp(-u) - 1 

u du exp(-v. X)+ exp(-v)-l 
y . , . . . dv 

Now setting v= ̂  in the second integral, we obtain by using (6.2.6) 

1 

- 4A - 1 = 2 

0 

j. 

j exp(-u 1) + exp(-u) - 1 d u - 2 Y 

. I t 2% 
k (6.2.17) 
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Finally from (6.2.7), (6.2.8), (6.2.14), (6.2.16) and (6.2.17), we get: 

I r of . A fCUg* ) - log 4aIf (^a)2 „ (4a)3 . 
J x exp L-2(x + ax )J dx=|_v ~% Jl 2*0*. * 3TTT" + 

0 

(6.2.18) 

(b) Evaluation of L r(a) =2 ^ x 2 r + 1 exp(-x2 - ax _ 1)dx (6.2.19) 

0 

for a real and positive and r = 0, 1, 2, ... 

The values of successive derivatives at a = 0 are: 

L.(O) = [ V * ^ l;<°> = -H r+1>> L
r(°) = T(r) 

1^(0) = - [(r - | ) , L*V(0) = f ( r - 1), l7(0) = f ( r - f ) , etc. 

(6.2.20) 

Setting x = u \ we get from (6.2.19): 

L r(a) =2 J u" 2 r' 3 exp(-u"2 -au)du (6.2.21) 
0 

Consider £,(u) = 2 u" 2 r" 3 exp(-u"2) (6.2.22) 

Its differential equation i s : 

_1 d k s 2 - ( 2 r . 3)u2 (6.2.23) P du u c r 

Now L r(a)= J" £r(u)exp(-au)du is the solution of the differential equation: 



-108-

3 2 \d L . , . , \ d L . / _ , \ dL (c^ + d^a) r + (c 2 + d 2a) r -ft- (cj-fr d^a) r + (c Q + d
0

a ^ L r = 0 

da 3 da 2 d a 

oo (6.2.24) 

i f j £ (-c^u3 + c gu 2 - + c Q) + a(-d 3u 3 + d gu 2 - d^u + d Q ) J £ (u) 

0 

exp(-au)du ̂  0 

Proceeding as before, as in part (a), we obtain: 

c^ = 2d^ , c 2 = -2rd^ , d^ ̂  0 

and c 1 = c 3 = d Q = d x = d g = 0 

Thus L r(a) satisfies the differential equation: 

3 2 d°L d L 
a — j L - 2r — + 2L r = 0 (6.2.25) 

da da 

To solve (6.2.25) by Frobenius method of series, let: 

L r(a) = a C(b Q -9 -b La + b 2a 2 + b^a 3 + ...) (6.2.26) 

Substituting i t in (6.2.25), we obtain the following: 

(i) from indicial equation, c = 0, 1, 2(l+r) (6.2.27) 

( i i ) b x = b 3 = b 5 = ... = b 2 n + 1 = ... =0 (6.2.28) 

and ( i i i ) b = "^0 
(c+2)(c+l)(c-2r) 

b,, = 
91 

4 ( c-fr4)(c+3 )( C42 )(c-frl)( c -2r )(c -2r+2 ) 

b 
2 \ 

6 (c-ft6)(c+5)...(Gi>l)(c-2r)(c-2r-*2)(c-2rf4) 
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2 0," 
0 

Do = _ 
(c+3)(c+7)...(c+l)(c-2r)(c-2r+2)(c-2r+4)(c-2r+6) 

-, etc. (6.2.29) 

Evaluation of L (a) for Particular Values of r r v  

(i) Setting r = 0, the differential equation (6.2.25) becomes 

d 3L 
a — + 2 L Q = 0 (6.2.30) 

da 

Making use of results (6.2.26) to (6.2.30), we get: 

L 0(a) = [ A Q + B 0 log a][ - ^ + 1^-**-^+ . . . ] 

r . 2.3 2 4(124) 4 -i 
+ B0|_l + x2 a " h2 2.24 x2 a * • • • J 

+ c o L a " 3 T " a 3 + f l T T a 5 " T T I T T a ? + * * * ] (6.2.31) 

With the help of (6.2.20) and remembering that r = 0, we easily obtain 

from (6.2.31): B Q = f ( l ) , C Q = - p i ) (6.2.32) 

To find AQ, we differentiate twice (6.2.31) with respect to a, 

and then, setting a = 0, we obtain: 

- 2AQ = Lt jj.J(a) +.2 log a] 
a-* 0 

= Lt 
a-> 0 

^2 j u 1 exp(-u~2 - au)du + 2 log aj 
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2 Setting u = t we obtain: 

- 2A = Lt 
0 

T 
I 1 t" 1 - exp(-t - at 2)dt + log a 2 / 

a-r 0 
0 

Finally, making use of (6.2.5) we get: 
1 

t " 1 £exp(-t - at 2 ) -fr exp (-t"1 - a2t~^}dt J . = Lt 
a-* 

0 
Again an interchange of limit and integration is possible, so we obtain: 

2 A0 j t _ 1[_exp(-t) + exp(-t _ 1) - l j dt 

Now proceeding as before in part (a), we get: 

- 2Aq = 2Y , so AQ = - Y » -thei Euler constant. 

Thus 
2a2 k k 8a6 

L Q(a) = ( * - log a ) ( ^ - + 

2 1 4 3 • 2 • 1 

-Vff ( a - f ^ a 3 + a 5 - ̂ J L _ a 7 + ...) (6.2.33) 

( i i ) Setting r = 1, the differential equation (6.2.25) becomes: 

3 2 &\ d L 
a ±- -2 — ± +2L =0 (6.2.34) 

da 3 da L 

Proceeding as above and similarly evaluating the constants with 

the help of (6.2.5), (6.2.6), (6.2.20) for r = 1, we get: 
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L ^ a ) = + ̂  " L QS
 aJ ( lH2 a "

 S + 81 2-4-2 a " • " ) 

+ ( l + I" a 2 + â " + ... ) 

- ^ ( a + | r a 3 - a 5 + | ^ a 7 - ...) ( 6 . 2 . 3 5 ) 

( i i i ) For r = 2, the dif f e r e n t i a l equation to he solved i s : 

,3 - , 2 T aJL„ d Lg 
+ 2L_ = 0 (6.2 .36) 

* 3 . 2 " 2 da da 

Again with the help of ( 6 . 2 . 5 ) , ( 6 . 2 . 6 ) and ( 6 . 2 . 2 0 ) for r = 2, the 

solution o f , ( 6 . 2 . 3 6 ) is 
• 3 h 

L 2(a) = [( % + |) - ( ? 3 ) log a j f ^ f ^ ; a 6 - ft,^) 2 a 8 4 . . . ] 

+ f?3) [ l + ^ a 2 + ^ ^+5^5- a 6 + . . . J 

- [(§) [ ^ + 3 1 3 a 3 + 5 i f ^ a 5 + - - - ] ( 6 . 2 . 3 7 ) 

6 . 3 : Distribution of the Determinant of the S.P. Matrices A up to the Order 

k i n the Mon-Central Linear Case  

Case 1: For p = 2 , i.e. when A is of order 2 and is positive definite. 

Substituting p = 2 i n (6.1.5)> the joint distribution of u Q and u^ 

i s : 



-112-

5\ ,m mfr 1 

u Q 4/2 uS (k=/2)2 

IT 2S3 * ST (2j*3)(gw5) * ••• J a " o d u l ( 6 - 3 a ) 

0 £ u , u <.00 

where 0 1 

Set Vo = V l ' uO = 2 V 2 ( 6 . 3 . 2 ) 

so that dû du., = 1<V,V"1 dv\,dtf 
0 1 1 2 1 2 

Making use of ( 6 . 2 . 1 ) and ( 6 . 3 . 2 ) , the distribution (6 .3.I) reduces to: 
v2m+l 2 2 2 

2 1 / 1 , 2 , , *1 ,,2 J . „ 2 1 
= — exp( - g k 1)exp( - - j - - v 2 ) | j L + i r S j r + . p 2 m * 2 ) 2 1 4V2 

1+ U V k 
+ # + . . . J a V j d V g ( 6 . 3 . 3 ) 

21 (2m+3)(2mfr5) 

where 0 <• V,, V„ <. 
1* 2 

The distribution of V^( = Ju^) is then: 

- [ J ^ < - ^ - ^ L 1 + S 1 S T * 
v2=o 2 

where 0 £ V^4 C > 0 
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Now using (6.2.2) J exp(- " V d V

2
 = 2~ 6 X p ^ " V ( 6* 3* 5 ) 

v2=o 

For r ̂  0, V 0 = t, the integral I = 

1 
r- — 

2 

2 r exp(- - i f - V2)dV 2 ^2 2 2 

reduces to I = r 2 
2 1 t exp(-t - )dt, and now using 

(6.2.3) we have: 

= § < ^ e x p < - V 

2n/l 

2 ' V n=0 v l 

-2 exp(- V 1)T j (6.3.6) 

* - . T r - ( V I ^ 
2n/l 

2 ' V n=0 1 

Thus the distribution of = / U Q I I ^ is 

vf* 1 exp(- V x - § k2) T T x k2 T 2 k* 1 

p2m42) L 1 + IT 2m+3 + 2 T (2m*3)(2n*5) + • • • J d V
X 

(6.3.7) 

where 0) < V C and m n-3 

Note: For k2 = 0, and m = , (6.3-7) becomes: 

f i f e ) V l 2 eXP< - V l > d V l 

which is a gamma variate with parameter (n-l). 

(6.3.8) 
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Case 2: For p = 3 

Substituting p = 3 in ( 6 . 1 . 5 ) , the joint distribution of 

V V u2 i s ; 

_ m m-fr- m-fl-1 
3% u_u., 2 ur -3(mfr£) *2\ * u

0 , 1 T- • 1 . 2 . 

2 J V 2' F ^ o-p exp(- - > u - - k ) 
PmH)pn*f)f(m«) 2 ^ - 1 2 1 i = 0 

2 / „ x 2 r uo <V2> V ( 1V 2 ) i 
L1 + lT ^ P T * 2f (2nĤ )(2nHf6)̂  •••JdU0dUldU2 

where 0 - V V u2 c o e ( 6 . 3 - 9 ) 

Setting UgU^s u ^ 2 = V2,, uQ= 2V̂  (6.3.10) 

so that duQdu]Ldu2= ^ - S r " 1 dV]dV?dV3 

and then making use of (6.2.1), we obtain the distribution of after <*. 

l i t t l e manipulation as: 
oo 

Vlf 2 n * l f W ) ^ m + 3 ) J J e X p { ' ~ 2 - ' ^ ' V 3 ) L 1+ 
v3=o v2=o 

^ .2 „U ,U V„ k. i f 2mir + 2^ T ^ f e o T * ...]dV 3dV 2d V l ( 6 . 3 . 1 1 ) 

where 0 * \ « • 0 0 

Making use of (6.2.2), 
oo ? 2 

v,vr v 
0 2 3 

Then ( 6 . 3 . 1 1 ) reduces to: 
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2 m |(ntfH) j(2m+3) J 3 2 J ^ X* * a w d* 
0 

(awUKaatg) + — ] d V v i t 6 - 3 - 1 2 ' 

Now making use of the integral (6.2.19) for r = 0, 1, 2, ... 

given respectively in (6.2.33), (6.2.35), (6.2.37), etc., and 

remembering that a in (6.2.19) is equal to / 1 , the distribution of 

V X ( = " Q " ^ ) I S : 

L U W 2 V IT ~2nHff + 2 T (2nrt4)(2n 

„m , 1 ,2 v 
V l 6 X P ( - 2 k l } 

211*1 [(mtl)p(2m*3) L "°l>/2^ " i t i s p f ~ + 2T (2mW)(2m*6) + d V l 
n 4 

where 0 < V^<-<>~ f and m = (6.3.13) 

n—4 
;ucing = u ana m = 

case becomes: 

Note: Substituting k^ = 0 and m = ̂  , the distribution in the-central 

n-4 
V , 2 

n-2 r-» 0 2 
2 l ( f - ̂ f a - L> 

U J ^ ) (6.3.14) 

for > 0 f V < 

where I^G/^) is defined in (6.2.33) 

Case 3: For p = 4: 

Substituting p = 4 in (6.1.5)> the joint distribution of u Q, u^, u 2 

and u^ i s : 
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7 m 2 mfrl "* 2 

0-U(m+ir) U 3 U 2 U l U 0 ( L ST 1 „ 2 . x 

Rm+l)RnH(|)Rii>fr2)(T] 
' i=0 

r U q (kJ/2) (k 2/2) 2
 n 

L 1*IT 2 m i 5 - + 2T (2nHh5)(2nHh7) * • • J * V V V 1 ^ <6-3*15) 

where 0 * u Q, u.^ Ug, 

Setting u^gU-jU^ U g i y ^ 2 V 2 , W= u
0= 2 v f (6.3.16) 

so that d ^ d U g d u ^ u ^ S f V g V ^ ) " 1 av^VgdV^V^ 

and also making use of ( 6 . 2 . 1 ) , we obtain the distribution of 

afteralittle manipulation; as-.'.follows 
00 00 

2VJ exp(- |k! 

TTf(2mfr2)|(2mf4 2Mh) J J J u v 2 v 2 t v T 
V ° v

3 = ° V 2=° 

V 2 k 2 V*- k^ 
t+TT 2^5 + 2T (2 n ^5)(2m f r 7 ) + - J d V 2 d V 3 d V 4 ( 6 * 3 * 1 T ) 

where 0 < 0 0 

Making use of ( 6 . 2 . 2 ) , we integrate (6.3.17) first with respect to Vg 

and obtain: 

V™exp(-|-k 2)dV f FT f ••V? • 

v T K2m42)R2nH^) 7 3 V
3 ' ' Uv? U 

V v3=o V^=0 * 

/ V2, k 2 V,,11 k,1* • A 
( l + J£ * Jt i •> ... dV.dV. (6.3.18) 
V l i - 2m+5 2 (2m+5)(2m+7) • / 3 U ^ 

where 0 J ^ 



- 1 1 7 -

To integrate with respect to V^, we evaluate' again the f i r s t integral as 

before by using ( 6 . 2 . 2 ) , while i n the others we set = t and then, 

using ( 6 . 2 . 3 ) , we obtain in place of ( 6 . 3 - 1 8 ) : -

v ; e x p ( - | k 2 ) d V 1 f V j. I k* 
—=; i=s / V exp( - — - V ) 1 + y r p — + 
2 p 2 m + 2 ) p 2 m + 4 ) / = Q

 3 V 3 3 - L 1 * ^ 

3 

+ 2 T (Lf5)(aM-7)
 + — J d V 3 ( 6 . 3 . 1 9 ) 

for 0 i v <> 

V_ V c . i \ 2 n / l 

v h e r e l r = 0 y?e Xp(-V 3) 2 _ ^ f ^ 3 r - (6-3-20) 
n=0 3 

Further to evaluate ( 6 . 3 . 1 9 ) , we have to use either ( 6 . 2 . 3 ) or ( 6 . 2 . 4 ) 

for p = 1 , q_ =v/V2_ a n d suitable value of a. This determines the 

distribution of V^(= u^u^UgU^) where i t should be remembered that m = 7j{n-5). 

Note: For the central case we set k^ = 0 i n ( 6 . 3 . 1 9 ) and then^making use 

of ( 6 . 2 . 1 8 ) , we get the distribution of V.̂  a 
n 1 

V l d \ _ I" flUSX) - log a W a 2 ' a 3 a^_ N 
p - 3 ) p - i ) I K. ~2 ; ( 2 l o T + 3TlT + 412T + "J 

•+ h i - a + \ a 2 + 4 i p - a 3 +...)] ( 6 . 3 . 2 1 ) 
2 3 2 J 

where 0 f V 1 <- 0 0 and a = Jl~^ 



CHAPTER SEVEN 

STATISTICS PROPOSED FOR VARIOUS TESTS OF HYPOTHESES I, II AND III  

AND THEIR DISTRIBUTIONS IN PARTICULAR CASES 

7*1: We l i s t below the statistics,based simultaneously on the roots 

of both the determinantal equations (1.4.5) and (1.4.6),which can be 

used to test the hypotheses I, II and III with the suitable use of 

independent S.P. matrices A and C: 

( i ) Roy's st a t i s t i c s of largest, smallest and intermediate eigen-

roots based on the determinantal equation (1.4.5). We can simultaneously 

propose to include that of the eigenrootst: based on the determinantal 

equation (1.4.6). 

2 
( i i ) Hotelling's T^-statistic defined as: 

I 

= n 2tr ( 0 - l & ) - £ . £ ( ^ ) . 

i=l i=l 

( i i i ) Wilks-^7V-statistic defined as: 
I I 

- | c | / |A + c l - [ f (1 -e±) = Jf U + ^ r 1 ' 

i=l i=l 

(iv) The Wilks-Lawley U-stat^stic definedgas: 

U - M i | A + c | - fl < V = I < r W > 

' i=l i=l 

(v) P i l l a i ' s V-statistic defined as: 
t 1 

V = t r [ ( A • 0)-h] <*i> " H ^ 1 
1=1 1=1 
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(vi) We propose another statistic Y defined as: 

i-1 i r l 

Of course, the distribution of any of the statistics, under the null 

hypothesis, can be found from either of the joint distributions (1.4.7) 
and (1.4.9); hut i t wi l l be more convenient to use (1.4.90 for finding 

that of J\ , U, V, and either of the two for finding that of Roy's 

statistics. 
2 

We have taken in Section 7*2 the statistics T and Y and have been 

able to give their distributions for t s 2, 3 in the form of definite 

integrals. Since the procedure is quite similar for the remaining 

statistics, we have only listed at the end of the Section 7.2 their 

respective distributions in the form of definite integrals, again for 

the cases t - 2, 3o 
Nanda (194$) gives the joint limiting form of (1.4.7), which we 

have listed under (1.4.10). Following him, the joint limiting form of 
C. 

(1.4.9) is easily proved also to be (1.4.10) by setting -~ in 

(1.4.9) and then letting n tend to infinity. 
The fact that the limiting forms of both (1.4.7) and (1.4.9) are 

the same enables us to conclude that limiting distributions of the 
2 

statistics Y and U will be the same and also that of T^ and V except 

for the constant multiplier. The same can be said in the case of 

Roy's statistics. 
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In Sections (7*3) and (7 .4) we have given another method, 

different from that of Nanda (1948b), of finding the limiting 

distributions of Roy's s t a t i s t i c s . Further, to demonstrate the 

method of integration, we have solved some particular cases, giving 

various values to m, for ̂  = 2 , 3> and 4 . 

Lastly, i n Section 7.5, we have f i r s t found a new form suitable for 

finding the limiting distribution of Ucr Y. Since this form i s quite 

similar to that already obtained i n Chapter Six for finding the 

distribution of the determinant of S.P. matrix, we have only effected 

certain substitutions i n the results obtained in Chapter Six and 

have been able to deduce the limiting distributions of U or Y for 

£ = 2, 3 and 4 . 

7.2: Distributions of the Statistics T 2 and Y for t = 2, 3/ and 

Further Results 

Case I: For ft = 2 , 

The joint distribution of ̂  and <f>^ from (1 .4 .9) is 

c(m, n, 2 ) ( ^ 2 ) f f l [ ( 1 +̂ )J "m-n-3(̂  - ^ ) d ^ 2 

for 0 «. ̂  j ^ 2 < <=*=> 

( i ) For Y-statistic: Let, 

7.si; ( ^ 2= u, (1 + . ^ ) ( l + 42) = v 

(7-2.1) 

(7 .2 .2) 



so that - ̂ ) d ^ dĵ g = du dv, and the relation (7.2.1) becomes: 

c(m, n, 2)u m v" 2* 1**** 3* du dv (7.2.3) 
Now the roots ^g of the quadratic: 

x 2 - (v - u - l)x + u = 0 (7-2.U) 
g 

are real i f (v - u - l ) h bu 

o 

i.e. i f ( l +Ju) < v 

Then the limits for v and u are given by: 

( l -&VU) i- V «o 

0 Sr U <~ <— (7.2.5) 

The distribution of u(= b-^^) o r Y i s S i ven by: 
-3 c(m, n, 2)u m d u ^ v " m " n dv 

2 v=dVu) 

where 0 < u <. o - 3 

( H / u ) 2 ( » « 2 ) 

where 0 u c 0-0 

Further, for any test of hypothesis, we need to make two forms of 

substitutions: 
n l ~ 3 n2" 3 

If p = 2( < n^, m = — — , n = — — 

I f n i = 2 ( i p ) , m = ̂ 3 - , n=-|-^ (7.2.7) 
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Effecting these changes in ( 7 . 2 . 6 ) , we have: 

For p = 2 ( £ n 1 ) , the distribution ( 7 . 2 . 6 ) reduces to 

n ( V 1 ) _ 1 

\(n + n - 2 ) Uul d W ( Q ) 

r ( n r 1 ) r V 1 ) ( l V u ) 1 2 

where 0 £ u 0 0 

which states that (= Jfi^^) i s distributed as F-ratio with 

2 ( n 1 - l ) and 2 ( n 2 - l ) D.F. 

For n^ = 2(< p) the distribution takes the form: 

ftD2} W ^ " 1 a(/u) ( 7 . 2 . 9 ) 
fXp-DfTn2-pfrl) ( l V u ) 

where 0 £ u <-

which states that V/Y (=Jp^^) i s also F-distributed with 2(p-l), 

2 ( n 2 - l ) D.F. 

( i i ) For T 2 - s t a t i s t i c : 

Considering now the change (j^-fr^) = u, ^-^2 ~ v ( 7 . 2 . 1 0 ) 

and proceeding similarly as above, the joint distribution ( 7 . 2 . 1 ) 

becomes: 

c(m, n, 2 ) v m ( l + u + v ) " m ~ n " 3 du dv ( 7 . 2 . 1 1 ) 

u 2 

where 0 <• v i 

0 £ u *~ °° 

Then the distribution of u i s : 



-123-

1 2 
4* 

J 
m -m-n—3 

c(m, n, 2) / v (1 * u •* v) du dv (7.2.12) 

Vs.0 

where 0 * u <• ***> 

Setting v = (1 4 U)VQ, we get in place of (7.2.12), the distribution 

of u as: 2 
u 
4(l*u) 

c(m, n, 2)(1 + u)" n" 2 du J ' VQ(1 * VQ)~m~n~3 dVQ (7,2.13) 
V ° 

where 0 £• u 0 0 

Again, effecting the changes in (7.2.13) as indicated above in (7.2.7) 

we have: 

For p r 2( £ n^) the distribution of Ur for two roots i s : 

2 

i » ( n i V 1 } 7 v ~ ( > v ) 2 dV 
4 [ V ) [Tn 2-D ! 2 i j 0 I 0> 

( 1 ' U ) 2 V ° (7.2.14) 
where 0 £ u cea 

The integral involved is an incomplete beta function which can be easily 

evaluated. 

2 
For n r 2( <. p) the distribution of u(= T ) for two eigenroots i s : 

1 M t v ^ J v° (1<v 

( 1 * U ) V ° (7.2.15) 



-12'U'.-

where 0 -fe u <. o° 

and again the integral involved is an inaomplete beta-function which 

can be easily evaluated. 

Case II: For I = 3 

The joint distribution of <f>^, <f>^ from (1.4.9) is 

c ( m , n , 3 ) ( ^ 3 ) m [(1 + ^ ) ( 1 + ^ 2 )(1 + t3)]-m-n-k Ii 

3 i-i 3 

|T TT W± - I d ^ i (7.2.16) 

for 

„2 For finding the distributions of both the statistics Y and T^ for 

three eigenrootsj.. we effect the following changes: 

^ + 42 + ̂  = u, + 1̂̂ 3 + ^ 3 = v ' a n d ^ 1 ^ 3 = w (7.2.17) 

so that (^ 3-^ 2)(^ 2-^ 1)(^ 3-^ 1)d^ 1d^ 2d^ 3 = du dv dw 

Then (7.2.16) reduces to: 

c(m,n,3)wm(l + u + v + w)"m"n"^ du dv dw (7.2.18) 

where j ^ , j ^ 2 , ^ 3 are the roots of the cubic: 

x - ux +vx-w = 0 (7.2.19) 

(i) For Y-statistic: 

In order for the roots of the cubic (7.2.19) "to be real and 

positive, we know, from the Appendix B, Form II, the limits on u, v, 
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and w respectively Bust be the following: 

0 <• w < and 0 * w < ~° 

3w2/3 < v 5 3w 2 / 3(l+V3) 3w 2 / 3(lV3)* v <. oo 

(7,2.20) 
Thus the distribution of w(= j ^ g ^ ) = Y from (7.2.18) and (7.2.20) i s : 

c(m,n,3)wm y (l-*u+v4w)"m"n"^ du dv dw (7.2.21) 

V u 

where u, v, w are defined as in (7.2.20). 

Effecting another change i n (7.2.21) as follows: 

v = ( l + w ) V 1 , u = (1 + w)(l + (7.2.22) 

so that du dv = ( l + w ) 2 ( l + V •) dV 1 d l ^ , we get in place of (7-2.21): 

ri r a u i c(m,n,3J 1 I -L / 7 9 Po\ 
(l-ftw)1***142 / (l+V ̂ m + n + 3 ' ^ n W + 

V u 
1 1 

f o r o i w < =*° and 0 5 w <; *»° 

3wfZi < v < 3v 2 / 3(W3) 3w 2 / 3(lV3) , v . ^ 
Hw V l ~ 14W • " l^w""^ " , V1^ 

fi3 P k ?3 « u Ph 
( n f w J d ^ ) * u i ~ (nwXi+v^ (i+w)(i*v1) - i - (l+w)(l+V1) 

Further, for any test of hypothesis, we need to make following two fci-hds 

of changes for m, n in (7.2.23) as fgjfeven:below 
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n -k n -h 
If p = 3U n 1), m = , n = - ~ -

and i f n x =• 3( 4 p), m = , n = - 2 — (7-2.24) 

p 
( i i ) For T k-statistic: 

In order that the roots of the cubic (7.2.19) be real and 

positive, we write down the conditions respectively for u, v and w, 

derived in Appendix B, Form I, as: 

(a) 0 * u o*" 

2 
0 6 v ~< u _ 

and 0 * w */?2 (7-2.25) 

and (b) 0 £ u <• 

1 2 , 1 2 
^ U £ V £ - r U 

/{ & w s £ 2 (7-2.26) 

Thus the distribution of u(= ̂  + ^ 2 + ^ ) = T^ for 3 eigenpaots^ from 

(7.2.18) with the help of (7.2.25) and (7-2.26) i s : 

(i) c(m,n,3) J j w^HKrt-vHw)"131"11"11 dw dv du (7-2.27) 

w 

and ( i i ) c(m,n,3) J J w
m(i4u+v+w)"m"u"'+ dw dv du (7.2.28) 

v w 
with limits in (i) and (i i ) given by (a) and (b) above, respectively. 
Effecting another change for both (7.2.27) and (7.2.28) as: 

v = (1 + u)V2 

w = (1 + u)(l + V 2)U 2 (7-2.29) 

n i / , . . . \ - m - n - 4 

file:///-m-n-4
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2 we get respectively as the distribution of u = for 3 eigen-roots: 

*u f f ^ 
(1) c(m,n,3) n+2 / / — — r r dÛ dV. 

(1-fru) 7 7 (14-V 2) Q + 3 ( l 4 U 2 f + n + 4 2 c 

V 2 U 2 (7.2.30) 
i 

where 0 * u <- o° 

P2 
° * V ( H u ) ( W g ) ( 7 . 2 . 3 D 

and where v used in ^ and /*2 is equal to (l+u)V2, and 

(2) <y. c(m,n,3) d U ^ ^ 

( i 4 u ) n 4 2 y y ( i + v 2 ) n + 3 d - « j 2 ) m + n + 4 d U 2 d V 2 

V 2 U 2 (7.2.32) 

where 0 < u <• 0 - 3 

2 2 u ^ v < u 
4(l4u) ~ 2 ~ 3(HHi) 

7*1 /82 

(1-^)(W 2) * V ( l * u ) ( w 2 ) ( 7 - 2 * 3 3 ) 

Finally, for any test of hypothesis, we need to make 2 types of changes 

as indicated in (7.2.24) for m and n in (7.2.30) and (7.2.32). 

Distributions of Other Statistics 

Since the method for the other statistics is quite similar to 

that-sused above, we give below only the final results. 
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Case I ; For 2 = 2 

(i) For U-statistic 

The distribution of u(= & & or U) for fwoie.igenrodtsiis: 

2 C ^ 2 ) < A ) 2 m f r l ( l - V u ) 2 Q # S d( Ju) (7-2.34) 

where 0 < u * 1 

( i i ) For V-statistic 
r (2), The distribution of u(= &x + © 2 or Vv ') i s : 

c ^ n ^ X l - u f * 1 * 1 du j V? ( l + V „ ) n dV„ ' (7-2.35) 
3 v 3 ' 3 

where 0 u * 1 

2 
0 4 V

3 ' 4TIiuT ( 7 - 2 ' 3 6 ) 

( i i i ) For A- -statistic 

The distribution of u(= 1 - © ' 1 - Q^) or JV forrtwo^eigearoots 

i s : 
2 C { Z l 2 ) (^> 2 n H h l ^ -V u ) 2 m f t 2 d ( A ) (7-2.37) 

where 0 i u - 1 

Further, for any test of hypothesis, the changes of the type indicated 

in (7.2.7) are possible. 

Case I I : For 0 = 

(i) For U-statistic 

The distribution of w(= Q^&^Q or = U,£threje reigenvalues) is: 
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c(m,n ,3)w m(l- W) n + 2 j J (l+V^) n + 1(l-U 4) n dV̂  dU^ dw (7-2.38) 

where 0 * w '< 1 . and 0 « w * 1 

• i l l l < y - 3 v 2 / 3 ( l H K M ) 3^/3 ( i V 3 ) t . T . , 
1-w *~ k 7 1-w 1-w ~~ U " 

(i-w)(i+v^) " u 4 ' (i-w)(i+v^) ( i - W ) ( i + v ^ ; ' U k ^'(i-vniw^; 
(7.2.39) 

where P and f ^ are defined in Appendix B, Form II and v used in 

them is equal to (l-w)V^. 

( i i ) The distribution of u(= &1 + e g + 6̂  or V) is: 

m̂+n+1 A r i 

5 5 (1) c(m,n ,3)(l-uf l H f c f 2 du j j ^ ( l - U 5 f ( H V 5 f f c * 1 dU^V, 

V 5 U 5 ( 7 . 2 A 0 ) 

where 0 £ u 5 1 

2 
0 < V 5 r - r ^ — t -u - v5 4(1-U) 

and ( 2 ) : 

5 5 
V 5 U 5 (7.2.42) 

where 0 £ u * 1 

4 ( l - u ) 5 V 5 * 3(l-u) 
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(l-u)(l +V 5) * V ( l - u ) ( u v , . ) (7.2.43) 

where further /5 and 2 are defined in Appendix B, Form I, and v 

used in them is equal to (l-u)V^. 

( i i i ) The distribution of w(= (l-O^Kl-egKl-O^Jor A. for three 

eigen-roots i s : 

C K D , 3 A I - V ) ^ j j (lW6f*hl-V6)m dV6 dU6 dw 

V, U, (7.2.44) 
'6 °6 

where 0 £ w * 1 a n d 0 * w i 1 

1-w 6 1-w » T=jj i w 6 

3 />3 . h fi' 
* "6 * (l-w)(l +V 6) < (I^)(IH.Y6) * U ^ ( £ ^ l + v 6 ) 

_ _ (7.2.U5) 

where again and p ^ are defined in Appendix B, Form II, and v 

used in them is equal to (l-w)Vg. 

Finally for a l l these three parts, under any test of hypothesis, 

the suitable changes for m, n indicated in (7.2.24) can be effected. 

7.3: Distribution of the Smallest Eigen-root in the Limiting Case: 

The joint limiting distribution of the eigen-roots c^ of the 

determinantal equations (1.4.7) and (1.4.9) given in (1.4.10) is 

re-written as: 
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t * i - i ft 

K(e,m) 0 c m exp(- |F |J (o± - c.) ]J dc. (? .3.l) 
i = l i=>2j=l' i = l 

0 4 ° 1 5 C 2 *•* ~ c g c < " ^ = ^ ^ ( P j * ^ ) 

where K(£,m) = R 2 ^ ) R | > <?-3-2> 

The distribution of the smallest eigenrcfro'bt, i s : 

oo 
P r( C l>, x) = K(£,m) J J j ][ c m exp(- C i: 

i=;2 j=l> i=l 

Set c f = c ^ U g ...Ug_ 2u c_ 1 

c t - i = c i u i u 2 ••• u e-2 

C = C U U 
c 3 1 1 2 

c 2 = (7.3-4) 

Then: y ^ 

P r ( C ; L ^ x) = K(£,m) / J J ^ ctm + ^ - 1 ^ - 2 ) e x p ( . C i ) j 
C^=X U^=l Ug =̂1 

L u ! ( u 2 - l ) e x p ( - c 1 u 1 ) J * 
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m(t 2).I ( f l - 3 ) ( g ) 

[ u 2
 2 (ug-lJCu^-l) e x p t - c ^ U g ) ) — ( u 2 ^ 2 (u^_ 2-l) 

(uf _ 2
U t - 3 •**( u «-2 U £-3 •* , U 1 e x P ( " c i u i U 2 •••u?-2'!i)fU?-l^U^-l"1^ 

^ U f - l U C - 2 " 1^ U«-l U ? - 2 U ^ - 3 '••W-l u £-2 "* U 1 e x p ( " c l u i u 2 •**u<». 

d u ^ d u ^ ...du^Cj^ (7.3.5) 

Me have evaluated below the integrals for L = 2, 3, and k. The same 

method can be extended to any value of 2 , 

Symbols and Notations 
OC 

/•\ -r 1 \ / a 1 \ exp(-a)f, . n . n(n-l) . n i l (1) J (n,a) * J x exp(-ax) = —f' ^ L 1 + a + 2 — + * * * ~ I 
1 - • a a 

(7.3.6) 
00 
( 00 

( i i ) J(n,p,q,r, ...;a) = J xnexp(-ax)dx£ j yPexp(-axy)dy 
1 

00 
y zqexp(-axyz)dz(... )J (7«3.7() 

1 

a 

( i i i ) ' P ^ J ( p i , P 2 ; a x ) t j ( q _ i , c | 2 ; a x ) t . . . J 

CO 00 «o 

= J x n exp(-ax)£ ^ y ^ 1 exp(-axy1) (^f ^ e xP( "^1^2 ^ d y 2 ^ d y l 
1 1 1 

* j exp(-axz )/•I z g exp(-axz^) | a x (7.3.8) 
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= T (n,p1,p2;a) t TCn^qj^^ja)* ... (7-3.9) 

iv:,l etc. 

Case I: Substituting t = 2 in (7*3.5): 

(^ >, x) = K(2,m) J" y c 2 m f r 2 exp(-c1) u^(u 1-l)exp(-c 1u 1)dc 1du 1 P 
r 

C;L=x U 1 = 1 (7-3.10) 

Making use of ( 6 . 2 . 1 ) , (7 .3 .2) and after^little manipulation, we deduce 

from (7 .3 .10) : 

22m*-l j 2 m + 2 T -\ 

ĉ =x 

Using (7 .3 .6) and simplifying, we get: 

' c^x 1 

+ (mfrl) 2 i J d c l ' (7.3.11) 

which can be easily evaluated for successive substitutions of m=0, 1, 2, ., 

Case II: For t = 3 

Substituting I = 3 in (7.3.5), we get: 
0 0 OO CX» 

P r ( C l >, x) - K(3,m) J / / [ c ^ e x ^ - c ^ J f u ^ ^ - l ) 
C^=X Uj=l Ug=l 

exp( - c ^ )J [u m ( u 2 - 1)( UjUg-l) 

e x p ^ u ^ J d u ^ d ^ ( 7 > 3 > 1 2 ) 
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Making use of (7.3.2) for ( = 3 and then (6*2.1) , we obtain from 

(7.3.12) after re-arrangement of terms: 

P (c, >, x) = 
,2m-»3 

f(m*l) R2m*3) J 1 1 

c^»x 

~ P £ j (m*2j u ^ ) - J(m<L, tys^J 
2m+4 

c 

•» J ^(mjv^c^ - 7 ( m 2 , u ^ ] 
2m+3 

c 

+ I ^ ( m " * 1 ^ u l c l ^ " ?( m* u i c i ) j 
2m 2 

dc. 
(7.3.13) 

Now we explain below how to make use of (7.3.13) to get the probabilities 

for particular values of m» 

(i) For m = 0 

P r(c x ->f 4 / c 

c 

exp(-c-,) 

i i ^ 
dc. 

1 

(7.3.14) 

Using (7.3o6) we obtain: 

JU .U-LC-L) -T ( 1 > u I C I ) " 

J C O - U ^ ) - J(2,u Lc 1) ̂  

^'-W/,. _2_ 
2 2 ^ » " ' u c 

2exp(-iL c ) 

u c 
1 1 

1 1. 



exp(-u c ) 
J ( l , u l C l ) - J ( 0,u l C l) = g 2

 x 1 (7.3.15) 
V l 

Again using (7 .3 .6) and ( 7 . 3 . 8 ) : 

1 , . exp(-2c ) 
T ( j ( 2 , u c ) - j ( l , u c.))= = ^ ( 1 + ^ - + - ^ ) 
4 1 1 x 2 c i 1 2c1 

1 , . exp(-2c ) 

T ( ? ( o , V l ) - K 2 , V i > J - - " ^ 3 — - ( 2 * ^ > 

~k/ \ exp(-2c ) 

and • X ( j ( l , u l c l ) " T ( 0 » V l 7 = 3 ~ ~ ( 7 . 3 . 1 6 ) 
2 2 C1 

Substituting these in (7.3.14) and simplifying, we get: 

P r(c L V x) = 3 I exp( -3c 1)dc 1 = exp(-3x) (7.3.17) 

Cj=X 

( i i ) For a = 1 

Substituting m = 1 in (7*3.13) and again ufMissing the steps 

of the type (7.3.15) and (7-3.16), we obtain: 

P r C c l > ' 3 \ ) = j ( c i + 5 c 2 + 5c 1)exp(-3c 1)dc 1 (7-3.18) 

C l X = exp ( -3x)[x 3 + 6 x 2 + 9x + 3J J3 

( i i i ) For m = 2 

Substituting m = 2 in (7.3*13) and again v&©Mowing the steps 

of the type (7*3.15) and (7.3-16), we obtain: 
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p
r ( c l > / x) = j$ J (2c^-f 20cJ+ 80c4 - 140c 3 105c 2)exp(-3c 1)dc 1 

CnrX 

r 6 5 4 3 2 i / 
5 exp(-3x) I 2x 24x - 120x * 300x + 4©5x + 2?0x -*• 90j / 90 (7.3.19) 

L e t c . ' 

Case III; For I - 4 

Substituting £ = 4 in (7.3.5) we obtain: 

P r( C ; L >, x) r K(4,m) [cj»* 9 exp(-c 1)J 

c^=x u^=l u 2=l u3~^-

j^u3™ ^ - l j e x p t - c ^ ) ] [ u 2 ^ * 2 ( u 2 - l ) ( u 2 u 1 - l ) e x p ( - c 1 u 1 u 2 ) J [ u ^ u ^ - l ) 

( u ^ U g - l X u ^ U g ^ - l J e x p C - ^ u ^ u ^ ) J dc-jdu-jdUgdu^ (7.3.20) 

Making use of (6.2.1) and (7.3.2) for ̂  = 4, and after re-arrangement 

of terms, we obtain from (7.3*20): 

C 
4m-»5 

p
r < V ' x ) = |T2m-.2) p2m44) 

c± 'expt-c.^ t 
3m+8 2m 4 

c^=x 

( j ( m * 2 , c^ u g ) - J (m+1, c ^ U g ) ) (_7(nwl, c-jU^Ug) -
v 2m-»5 

C ^ r "I 
f (m*3iCjU^)) •* I ^ ( m O . c ^ U g ) - j U ^ c ^ u ^ ! 

r 2m+6 I 
c u 
1 1 

^ ( m ^ u - j U g ) - J(m-t2, c ^ U g ) ! * ' " P ry (m+3 , c ia 1 u 2 ) - yfciijCjUjUg),) 
/ n i l / « 

•a 

3m*7 
T 
2m*3 

V l , 

t ' " " j "* (?(m 2,c 1u 1u 2) - T(m 3 , 0 ^^2)^1 

2m+6 



cifiut . c i u i 

3m+i 
UT^^Iftfr:L,ClUlU2^ - y( m» ci ui u 2 ^ ) + | ( ^ m ' c i u l u 2 ^ " 7 ( ^ 3 , 0 ^ ^ ) 1 + 

| ^ J C m f S j C^Ug)- 7 ( ^ 1 , 0 ^ 2 ) 1 ) + ^ f ^ p 1 ^ j ( m , c 1u 1u 2) -
2m+5 J 3m+5 (,2m+2 

. C 1 U 1 c l u l 
jCmtt^^Ug)J+ 'y H X i i H^CjUjUg) -7(111,0^^2)1+ y 

2 m * 3 , 2m+U 

^ • ( n H - l , ^ ^ ) - 7 ( ^ , 0 ^ ^ 2 ) 1 1 J d C l (7.3.21) 

Now we explain below how to make us of (7.3.21) to obtain the 

probabilities for a particular value of m. 

(i) For m = 0 

First we substitute m = 0 in ( 7 . 3 . 2 l ) , and then by using ( 7 . 3 . 6 ) , 

we obtain the following: 
exp(-c u u ) 

7 ( 1 , 0 ^ ) - J(0,c U ]u 2) - 2 2 2 1 2 

C 1 U 1 U 2 

2exp(-c u.u ) 
7 ( 2 , 0 ^ ) - 7 ( 1 , ^ 2 ) = - g - g - g (1 + — - ) 

C 1 U 1 U 2 1 1 2 

exp(-c y ) 
7 ( 2 , 0 ^ ) - 7 ( 1 , 0 ^ ) = - 2 - 2 - 2 — - (1 + ^ n r ) 

C 1 U 1 U 2 1 1 2 

3exp(-c u,up) 
y ( 3 , c l V a > - 7 ( 0 , 0 ^ ) = 2 u 2 u 2 ( 1 + c T ^ r + - 2 - IT > 

C 1 U 1 U 2 1 ^ V l ^ 

2exp(-c 1u 1u 2) , 
7(3,c u u 2) -7(l,c u u ) - (1 + - J — + 1 T I ) 

C 1 U 1 U 2 1 1 2 C 1 U 1 U 2 

and 
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exp(-c U . IL) , 6 

C 1 U 1 U 2 1 1 2 C 1 U 1 U 2 

(7.3-22) 

Again, using (7-3.*6) and ( 7 . 3 . 8 ) : 

c l u l 
(A) : " T ( j C ^ V i V ~ 7 ( 0 , 0 ^ 2 ) ^ = 

exp( - 2 0 ^ ) 

2 c R 
° 1 U 1 . exp(-2c u ) 

(B) J ( 7 ( 2 , 0 ^ ; ) - J t C c ^ ) ^ 3 3 (1 + 2^r-) 
3 c l u l 1 1 

V l , ' exp(-2c u ) 
(o) T ( j t 2 ' V i V " T ^ W ^ , 3 3 2c^u^ 1 1 SCjU^. 

° l " l / x Zexg{-2c^i^) 
(D) n r ( j ^ ^ c ^ u g ) - 7 ( 0 , 0 ^ 2 ) ) = 

2 c 3u 3 

1 1 

(E) 

( l + ^ V + ^ - ) 
1 1 2 c 2u 2 

/ \ e x p ^ 
r ( 7 ( 3 ^ ^ 2 ) - 7 ( 1 , 0 ^ 2 ) } = 

exp(-2c 1u 1) 
3 

(F) 
c u 

1 1 

U + 2c,u,' +
 0 2 2 + , 3 3 ; 

1 1 2c u IfcJuJ. 

T ( T ( 3 ' c l u l u 2 > " 7 ( 2 > C 1 U 1 U 2>) = 

e x p C ^ c ^ ) 

3 3 
c l u l 

u + <•*, * 2 2 + 3 3 I ^ T ^ ; 

1 1 c,u, c,u, 2c, u. 
1 1 1 1 1 1 

(7.3.23) 
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Finally, using ( 7 . 3 . 6 ) , (7-3.8) and (7*3-23), we obtain: 

K1 1 exp(-3c ) 

-(A) + (B) - (C)J = 5 - ^ -

5 U c l 

c i 
r 1 3exp(-3c ) 

T | ( A ) - (!>>•+ (E) j = r — ( 1 + f - ) 
/- L J 4c? G l c, 
r-r^r 1 3exp(-3c ) 

I [;(B) + (D) - ( ? ) ] - ^ - 1 -UcJ C l c\ 

c l 
I 1 ( C ) - (E) + (F)| - 1_(1+|_ 

L J 4c: l 
6- -fr^+S.) (7.3.24) 

8 ""1 c l c l 

Hence from (7.3.24), (7.3.21) for m = 0, we get: 

/ P r ( c L £ x ) = 4 I e x p ^ c ^ d ^ - exp(-4x) (7-3.25) 

c 1 =x 

( i i ) For m = 1, 

I'EdllcjHiing the similar steps like (7.3.22), (7.3.23) and 

(7.3.24) for m = 1 in (7.3.21), we get: 

; 1<.x)= J (30c 1+45c 2+l8c 3+2c^)exp(-4c 1)dc 1 

c^x 
exp( -4x) [2x^ + 2Gx3 + 60x 2 + 60x +• 15J / l 5 (7•3.26) 

P (c, r v 

etc. 
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Generalization in the case of m = 0 

He can make a generalization for P r( c^ *V x) ̂ a the case of 

m=0. Observing for m=0, the relations (7.3.11), (7.3.17) and 

(7.3«25)> we can conclude for any ^ that 

P r ( C ; L ^ x ) = H j expf-c^ J d ^ = exp(-x£ ) (7-3.27) 

ĉ =x 

7,4; Limiting Distribution of the Largest Elgenroot'.i 

From (7.3.1), the distribution of the largest eigenvalues ĉ  

} c < c 2 a 
P r(c e l x) = K(*,m) J J ] [ c l exp(- C i) 

0̂ =0 c 1 = 0 1 

I e. 
II (o± - c'j) If d C i 

0=2 i=l ' 
(7.4.1) 

Set C ] L = c ^ . . . * ^ ^ ^ 

C 2 ' C t U l U 2 ' - - ^ - 3 ^ - 2 

\-2 - c
t V 2 

c t - i = ° e u i (7.4.2) 

then the distribution (7.4.1) reduces to: 
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X 
P r(c^S x) = K(e,m) / /- / / 

c =0 u 1 =0 ut_2=0 u e_ 1 =0 
_.(£-!)(£-2) , ,n ,x - (g-2)(g-l) L m-F -if m(£.-l)+-i £ 1 n 

81 e x P ( _ c e ) J L u l . " " ' (l-UgJexpC-c^^)! 
|_u2 (l-u 2)(l-u 1u 2)exp(-c £u 1u 2 )J . . . • l u j _ 1 

( 1 - u g _ 1 ) ( 1 - u £ - 1
u £ _ 2 ) •••( 1- u^_ 1

u^_2" * u i ^ e x p ( " c £ u i u2" * u ^ _ i ^ ] d c £ 

J[ a U ; L (7.4.3) 

i=l -

Here below we give the method for evaluating (7.4.3) for particular 

values of £ = 2, 3> 4 which can further be extended for any 2 . 

Symbols and Notations 
1 

( i ) K t y O - j x n e x p ( - « ) d x - - S ? f i I [ l + | + £ ^ + . -
0 

a •* a 
1 

( i i ) J (n^p^r, ...;a) = ^ x nexp(-ax)dx£y yPexp(-axy)dy 

0 
1 

(7.4.5) 

( i i i ) j^I( P l,P 2;ax) t I(q.1,q2;ax)t ... J = 



0 0 

1 1 

J exp(-axz 1)^ j z ^ exp(-axz.^ )dz2J dz 1 * . .^dx 
0 (7.4.6) 

Case I; Substituting t = 2 In (7.4.3): 

x 1 

P r(c 2 £ x) = K(2,m) J J c 2 ^ 2 exp(-c2) u^l-^Jexpf-c^Jdu^Cg 
c 2 = 0 u l = 0 (7.4.7) 

Making use of (6.2.1) and (7.3.2), (7.4.7) reduces to: 

,211*1 
• r v - 2 - - ^2m+2) J "2 - ~ * - v - ~ 2 / L - v " > - 2 / - - . v » . - » - 2 # j — 2 
P„(c0 i x ) = ^ g ^ ^ j c^1"*2 exp(-c2) [^I(m,c2) - l(nHKL,c2)Jdc, 

c„=0 '2 
Using (7.4.4) and simplifying: 

W 1 x a 2 * * 1 / 2m*2 , (-exp(-c2) -
Pr (°2 " X ) - f[2m+2T 7 C2 e x p ( " C 2 ) L * 2 ^ + 2 ~ + 

2 
=2-o 

3 ̂ + 4) + (-*L- - « ^ U ] a c 2 (7A.8) 
C^ C„ •* ^c„ "c« s J 

2 2 2 2 

which can be easily evaluated for successive values of m. 

Case II: For I = 3 
Substituting & = 3 in (7.4.3), we have: 
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1 1 1 

P^C^ . x) = K(3,m) J J J c 3 ^ 5 exp( -cj 
c = 0 • u = 0 u = 0 

3 1 2 

[ ^l-u^eaqpC-c u^J^Cu™ (l-UgJCl-u^JexpC-c^Ugjj dc cta^dii^ 

(7.4.9) 

Using (7.3.2) for I = 3 and (6.2.1), we obtain from (7.4.9) after 

re-arrangemait of terms: 

22m 3 / 3m 5 p (c < x) / c exp(-c )dc x 
3 r(m , l ) R2m*3) / 3 3 3 

~~ c 3 c 3 

J ^ ^ K m u , ^ ) - I U ^ u ^ ) ) * ( i G ^ u . ^ ) - I ( m , Y 3 ) J 

2mt4 2m+3 

* (1(21,^03) - K a + l j^Cj)) 
2m*2̂ - •« 

(7.4.10) 

2m*2 

which can be easily evaluated for different values of m by repeated 

use of (7.4.4). In fact, we have to use the same steps as in (7.3.15) 

and (7.3.16), using repeatedly (7.4.4) instead of (7.3.6). Following 

this procedure we have computed probabilities for m* 0, 1 and 2. The 

results are as follows: 

(i) For m r 0, 

X x 
Pr(c3 < x) = -3 J exp(-303)dc3 + U J exp(-2c3)dc3 

03*0 03*0 

x 
* J ( 2 c 3 " 6 c 3 * 3jiexp(-c3)dc3 (7.4.11) 

C-jrO 



\ 
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( i i ) Kor m = 1. 
x 

/
3 2 
3 * 5°3 "* 5 c 3 ^ e x p ^ ~ 3 c 3 ^ d c 3 

c3*0 
. A . 

+ 3 / c 3 exp(-2c 3)dc 3 

>3=0 
X 

*. / (c3 " 5cl+ 5c 3)exp(-c 3)dc 3 (7.4.12) 

v ° 
( i i i ) Form: 2 

x 

/

6 5 l± 3 2 

(2c 3* 20c3-f 80c3+ 140c3 + 105c3)exp(-3c3)dc3 

X 

+ j | y c 3 exp(-2c3)dc3 

(2c^ - 14c^ • 21c 3)exp(-c 3)dc 3 (7.4.13) 

<y0 

Case III: For I r 4 

Substituting ? r 4 in ( 7 . 4 . 3 ) : 

x 1 1 1 

P r(c 4 < x) = K(4,m) J ! J J L0^9 e X p ( - C 4 } 3 

ĉ = 0 u-jiO u2-0 u^O 

L-f (l-u 1)exp(-u 1c 4)] [ u f (l-u 2)(l-u 1u 2)exp(-c 4u 1u 2)J 

^ u m (l-u 3)(l-u 3u 2)(l-u 3u 2u 1)exp(-u 3u 2u 1c 4 ) J dc^du^Ugdu^ (7.4.14) 



Using (6.2.1) and (7.3.2) for t = k, we obtain after re-arrangement 

of terms: 

-l+m+5 

\X2m42)f[2mlk) % ^ exp(-ck) 
L 3m*8 [_2mft6 

C k U l 

2m+5 

I C n H h l . c^Ug)^ ^I(m+2,cku1u2) - K m f l . c^Ug ) J J 

2mfk 

CU U1 
1 \ ± ( i 
3m+7 2m+k 

V l 

2mfr3 

L (m> cU u l U2 j i * J - ' f / c k u i u2 ) " I (m+3, c^u^g )V 

J. , l 1(11*3,0^^) - X ( % c k u i u
2 } / + JL ( K m > c k u i u 2 ^ " 

2m*4 " ~ 2m#2 

X (mfrl.c^Ugyj + f l d r t S - c ^ U g ) - Ifm+l-c^UgMH 
' J 3m+5 2m+4 

C4 U1 \ U 1 

2m43 °™»? ^ ^ 2m#2 ̂  

(7A.15) 
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The procedure for evaluating (7 .4.15) is the same as we used in 

Case III of Section (7.3) dealing with smallest eigen-roots. 

We have to fMJl^w the same steps as (7.3.22), (7.3.23) and (7-3 .24) 

and have to make repeated use of ( 7 . 4 . 4 ) . 

7.5: Limiting Distribution of U or Y for £ = 2 , 3 and 4 . 

The moment generating function of (1 .4.10) i s : 

,) = \""J K^mXcjCg ...c^ ) m exp[ - Y_ c± * * H c i J I / . i=l , i=l 
m(t; 

; J i w ^ J 

i*2:'-j«l i=l 

from which the h-th moment f about the origin i s : 
I 

/ h KU,mfrh) i t r\/2mfri-lHv 
i=l V k 2 ' 

, Tfea*** f t ^ h j P ^ 4 ^ + hJ 

O T / ^ h ~ ^2m*2j ^2m+3^ *** ̂ 2m+g-frl j (7-5.2) 

This h-th moment shows that the moments of the limiting distribution 

of the product of the roots (c^Cg...c^ ) can also be determined from 

the following: 
2mfr2 _ 1 2m43 _x 

i v x
 2 exp( - V l )dvx v 2

 2 exp( -v 2 )dv2 



2mfrl-frl = -j_ 

^ 2 m f r J - f r J L j t 

exp(- L v ) e-1 
i - 1 m mfr?r mfrl 2 or from . — — 1 — ~ _ — — — — ar-TT- v i vo vo •••v» dv...dv. 

f ( m f r l ) p n 4 ) . . . p ^ l f . ) 1 2 3 ? 1 . t 

• >•:. -.,.v.',, • ( 7 . 5 . 3 ) 
ft'.' 

where 0 6 v ± 4. oof i=l, 2 , t 

Case I: For 2=2 

, Substituting (? = 2 in ( 7 . 5 . 3 ) , we get the joint distribution 

of v^ and v 2 as: 

( W l ) pmfr|) 

m 
v ^ exp( -v x -v2 )a v xd v 2 ( 7 . 5 . k ) 

where 0 £ v i c «*° i=l, 2 , 

which is the same as (6 .3.I) for k^ = 0 , u Q = 2 v 2 , u^ = 2v^. 

Hence from ( 6 . 3 . 7 ) , the distribution of V]L = 2y/v^y2 or of 
' r—- 2 

2 Jc^o^ for k^ = 0 i s : 

v f * 1 expC-V.) 
~ <3V , ( 7 . 5 . 5 ) 

r(2m+2) 1 ' 

where . 1 ' 

which is a gamma variate of parameter (2m+l). Further, for any 

test of hypothesis,, we need to make the two types of substitutions 

form. We proceed as follows: 
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n -3 

(i) : When p = 2( < n^), set m = — in (7.5.5),and get the 

distribution of V (= 2v/ c
1
c
2) fis-follows: 

r ( n ' - i ) , v i r e x p < - V d V i , (7.5.6) 

where O f ^ 0 0 , 

which is a gamma variate with parameter (n^-l). 

( i i ) ¥hen ̂  = 2(c p), set m = in (7.5.5) and obtain: 

flP-i) v i " 2 ^ ( " V ^ i (7.5-7) 

0 «• V <-

which is a gamma variate with parameter (p-l). 

Case II: For t = 3 

Substituting t = 3 in (7.5.3), the joint distribution of 

v l ' v 2 ' a n d v3 i s : 

exp(-v1-v2-v3) m m+3/2 mfrl 
f(mfrl)[?m4)[(W2) 1 2 3 

v" v_ v r * dvndv0dv, (7-5.8) 1 2 3 » 

where 0 * V °" i=1>2,3, 

which J J' " " - - \ - < 2 is the same as (6.3.9) for = 0, u g = 2v̂ , u^ = 2v2, u Q = 2v3< 

Hence from (6.3.13), the distribution of V1(= Ov-jv^ or = 80^0^), 
2 

where k^ =0, i s : 
V* ' ' /V~ 

— — m i - L(J J . ) d V (7.5.9) 
2mfrlr(nHKl) fem^) 0 2 1 
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where L Q(a), for a = J — , is defined in (6.2.33). Again, 

for any test of hypothesis, we need to make the following two 

types of substitutions in (7.5.9) 
n -4 

(i) i f p = 3 U n x ) , set m = - | — in (7.5-9) 

( i i ) i f n1 = 3( <-p), set m = ̂  in (7-5-9). 

Case III: For t = 4 

Substituting for I = 4 in (7.5-3), the joint distribution 

of v x, v 2, v 3 and v^is: 

expt-Vj^-Vg-v -v^) m ^ x ^g 
- — r; — — ^ v v v v. J / dv dv dv dv, (7-5.10) 

Pm+l)|(m4)|rm42)frm4) 1 2 3 * 1 2 3 

where 0 <• v ± c <x> 1=1,2,3,4, 

which is again of the type (6.4.15) for ̂  = 0, u^ = 2v1, u 2 = 2v2, 

Uj^ = 2v^ and u Q = 2v^. 

2 

Hence from (6.3.19) for k = 0, and making use of (6.2.18), the 

distribution of V^(= ^v^VgV^v^ or ^c^CgC^c^) i s : 
a 2 md(a 2) f f U-tZX) - log a ) / a 2 ^ a 3 • a* ' 
^2m+2)fl2m44) |_ V . 2 A 2'1» + 3-1- + 412T * 

+ | ^1 - a + + ^ L + ' . .- H (7-5-11) 

2 2 3 2 2 2 ^ 

where a =*/V]L and 0 * V.^ 00 
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Again, for any test of hypothesis, we need to make two types of 

changes for m in (7.2.11) as: 

(i) For p s 4( < n-̂ ), set m - — 2 — 

( i i ) For n( - 4( ̂  p), set m = J ^ 

Note: For £ r 5, 6; a similar method was applied but we were 

confronted with the following difficult integrals: 

For I - 5 

The" integral in this case, i s : 

4m*8 + r 

Rm*l)p:2m,3) r(2m»5) J ' ^ " v
2 " \ " 

. • I . 11*0 V,= 0 2 

2V2)dV2dV4 

' (7.5.12) 

for V-̂  =. Ci^c-jC^c^ 0 £ V <- «*° 

For A - 6 

The integral i s : 

\ (2m*2) \ (2m*4) | (2m+6) ' ' 3 5 

(7.5*13) 

for =. c^c 2 ... and 0 s- V-̂  <• 0 0 



CHAPTER EIGHT 

APPROXIMATE DISTRIBUTIONS OF THE NON-ORTHOGONAL COMPLEX ESTIMATES 

8.1: In the case of unequal sub-class numbers in Anova of Model II, 

we run into the difficulty of defining the distributions of the mean 

squares or the sum product (S«P.) matrices respectively in both the 

univariate and multivariate cases. In such situations, as pointed out 

earlier, for the univariate case the mean squares are distributed as sums 

like y ( A r % r ) , where the A r are functions of the variance components 
r 

A/2 

and the number of observations, while each % r is distributed as central 

chi-square with 1 D.F. Similarly, for the multivariate case the S«P0 

matrices, as proved below, are distributed as sums ̂ "*(Wr) of independent 
r 

Wishart matrices with different parameter matrices and one degree 

of freedom for each. 

Thus, we try to approximate ^ ( \- ^ r ) a n d ^L. r e s P e c t i v e l y 
2 r r 

by A ^ and a Wishart matrix W with revised D.F. To do this we determine 
first what are the \ and //_ and then use Satterthwaite' s technique to 

r r 

approximate the sums ̂  (A rX^) and ^ (Wr) respectively by A X 
r r 

and W to find the respective corresponding D.F. 

For finding A r suid r> we begin below with the multivariate case, 

from which the univariate case is deduced, and the corresponding D.F. 

determined for both0 



8.2 Suppose N is greater than p or n. Observations (X..,, X_ ...X ; U 7 24' p^ 
ZUL' Z2JL' "'Znj) ^ 0 r ^ = 1> 2, ..., N, are made on (p -8- n) variables. 

The overall set of assumptions i s >A, : 

X i X - ^ i l z l / + — + ^ i n z n ^ + e i . i ( 8 ' 2 - l ) 

for i = 1, 2, ..., p; = 1, 2, ..., Njand furthermore: 

( i ) the z (r = 1, 2, ..., n; «d = 1, 2, ..., W) are non-random, 

and the matrix Z(n x w) = ( z
r > t) is of rank n. (In the case 

we are most interested in, the case of Anova, some of the z's 

are zeros and the rest are ones) 

( i i ) the vectors e_^ s (ejjj '"> ep/^ a r e ^^P^ndent a n ^ normally 
O 

distributed with mean vectors and error covariance matrix 
£ e ( p x p), i.e. Eie^) = 0 and E ( e ± z x e ^ ) = v 

for i , j = 1, 2, p and j[~ 1, 2; N, so that 

e ^ i j 

I ( p x p ) = ( , J (8 .2 .2) 

( i i i ) - oo <. fi •<,•+«» 

Let us introduce some further notations as :ffollows: 

P (p x n) = ( ̂ i r)B.[/S x, p2] for n x*i'=n (8 .2 .3) 

h£ h! . 

where n.̂  and n' w i l l be specified below. 

X* (1 x p)s ( X u , X2^,.., X p z ) , 

so that t ( p x N)2 (X. z) = ( j ^ / ^ , X^J (8 .2 .4) 

4 ( 1 X U ) - (zU'Z2l>~-> Z n J 
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A(n x n) s 

<•«> - U l > *e 

" A n ; A 12 n l 
* 

A ' 
_ 21 J A 2 2 n" 

n l n' 

ZJJJ (8 .2 .5) 

isf ( 8 . 2 . 6 ) 

(p x n) = [ J C 2 J = XZ t (8 .2 .7) 

1 n * 

and _ 
n 

Under the overall set of assumptions «/L , the matrix B rt (p x n) 

which is the least square estimator of P (p x n) is 

B (p x n) = CA"1 (8 .2 .8) 

and hence the S . P . matrix Q (Anderson, pp. l 8 l ) i s : 

Q = XX* - £ , B. A (8 .2 .9) 

If a hypothesis H specifies P-^(v x n^), then the distribution of 

Qg., the S . P . matrix,due to deviations from hypothesis, depends on the 

nature of the P i ( i = 1, 2, p; r = 1, 2, n.^). The 

overall set of assumptions can be completed i n two useful ways as :follows: 

( i ) The columns of )5 ̂  are independent, normally distributed 

vectors with common covariance matrix (P X p) of 

rank p, and are a l l quite independent of the columns of 

i ^ 2 ( p x n' ) and of e_ . /3 2 may be either random or constant, 

( i i ) i s constant. 

Case ( i i ) i s the usual regression problem considered in standard texts. 

In what follows we consider only case ( i ) . We let w denote the subset of A 

for which the following hypothesis holds, H ZL =0, which implies 

that E ( ^ 1 ) = P 1 Q , a matrix of constants. 



Then % = (X - / Z ^ X X - fi^fa? - B ^ S ^ w 

= XX* - B^ A ]&•+ ( B 1 A ^ 1 > 0 ) A 1 1 < 2 ( B 1 A - A ^ ) * 

(8.2.10) 

where B 2 w = (Cg - B ^ g f c j * (8.2.11) 

and *na A 1 1 > 2 ( n ; L x n L) - A ^ - A ^ A 2 1 (8.2.12) 

Hence from (8 .2.9) and (8.2.10), we obtain: 

Qg(p x p) = ^ -

Now there exists an orthogonal matrix U such that 

U A 1 1 . 2 u t = [ ~ 2 ( n l X n l ) (8 .2 .14) 

where ( i ) (~ is a diagonal matrix with elements 

2 
^ r (r = 1, 2, nj) 

2 

and ( i i ) A1 0 P and U are a l l non-random and each 

of order (n x n.^). 

Therefore y P x p) = ( B ^ - ^ 0 ) U * f 2 " h , < f 

- 1<bIA - r 2 [ < \ A - fl1,oX'tjt 

(8.2.15) 

Setting ( B 1 A - ^ Q J U * - ( D 1 A - ^ Q ) , (8.2.16) 



we obtain: from (8.2.15):the following: 

O^P X p) = ( D 1 / T - V
2 ( D i a - ̂ Q ) t (8.2.17) 

Its (ijj)th element can be written as: 

n l 
Qrx •< = y fa2 (d. - & „)(a.- - I, j l (8.2.18) 

r=l 

so that its expected value i s : 

1 W - E < " . , i 3
 + 1 f r (8.2.19) 

r=l 

which enables us to write that: 
n l 

r=l 

wherehthe u^ r ( i = 1, 2, ..., p and r = 1, 2, ..., n^) are normal 

variates with mean zero and variance 1. Therefore, for the univariat 

case, as also proved by Nash (1956), we obtain: 

V 
. - f 2 2 2 7 2 

(for univariate case) = ̂  I ̂ ~e + ^ r ^fi J U r 
r=l 

(8.2.21) 

2 

where u^ are independent central chi-square variates each with one D. 

Thusthej\ ( r = 1, 2, n^), indicated earlier,ace obtained•\',yl :'\ 

T-h'ey..are J 1 2 . s/2 2 
r v ̂3 r = i , 2, ..., n^ 

(8.2.22) 
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Similarly from (8.2.20) we can deduce: 

^ ( p x , ) S £ „r( £ # + 5 )»J = £ > r (8.2.23) 

r=l r "' 

where * r = S ] p( % e + 1 ^ )£, r = 1, 2, (8.2.24) 

so that % « E(Wp) = ? e + Y * ^ = (^ ± J ^ ± J 

(8.2.25) 

8.3: Approximate Distributions 

(a) Univariate Case 

Wecbnsider again the relation (8.2.21) and write: 

n i 
Q H ( i x , D = y ( ^ + v j ^ 2 ) u 2 . 

r*T 2 2 2 2 f.Since the h-th cumulant of ( + )u is: 

i t follows^" that the h-th cumulant of 0^(1 x l ) i s : 
n l 

2 h- l(h-Di x . < H ; + Y r ^ 2 ) h -
r=l 

-Behcet the first two moments of 0^(1 x l ) about the origin are: 

r=l 
/ A 

^ 2 = 2 2_ ( ^ r - / ' 2 C 8 ' ^ ) 

r=l 

(8.3.1) 

(8.3.2) 

(8.3.3) 
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Following Satterthwaite, we approximate QJJ, defined in ( 8 . 3 . 1 ) , by 

A X where is a central chi-square with f D.F., so that the f i r s t 
2 

two moments of Q^(l x 1). are respectively equal to those of A X . 

Therefore, making use of ( 8 . 3 . 4 ) , we obtain: 
n l 

f A = 21 +V 2TT-£) ( 8 . 3 . 5 ) 
r . l 6 r ^ 

n l 

since E( % ) z f and var ( X ) » 2f• 

Finally, from ( 8 .3 .5 ) and ( 8 .3 .6 ) we obtain: 

f = [ Z > ^ e " ' r ^ ' l / Z_ v ~ e T °r ~ / » 

2 2 
Since and <o—„ are not known, we shall substitute for them e fi ' 2 A 2 *. their respective estimates and and write: e fi-

2 2 
) 

( .8 .3 .7) 

( 8 . 3 . 8 ) 

which thus determines the approximate distribution of a mean square 

A 2 2 X , where X is the new chi-square 

with estimated degrees of freedom defined in ( 8 . 3 . 8 ) . 

Note: In ordinary analysis of variance with a balanced design the eigen-
2 

values are a l l equal, say Y • A balanced design occurs for example when 
the number of observations is the same in each sub-class. Then we obtain 
from ( 8 . 3 . 1 ) the simpler result: 



-158-

QjjCl x l ) - ^ (<^-2
 + V 2 V ^ V = (^r-g + Y 2 ^ 5 2 ) j f * * 

r r l r-1 

or Q H ( l x l ) r + (8.3.9) 

2 

Thus, Qjj(l x 1) in the balanced case is distributed as A % ^ 

where \ - <3~2 + Y 2 ^ 7~^ • 
(b) Multivariate Case 

We approximate the sum ^~ (Wr) or Wr £ 2 £ r> r s 1> 2 » n]_ 

r 

by a Wishart matrix W , f J or order (p x p) where f is to be 

determined such that: 

(i) The expected matrix of the approximating matrix is equal 

to that of the sum of the Wrj 

(i i ) The elements of the approximating Wishart matrix have an 

ellipsoid of concentration (Cramer 1946) whose volume is equal to 

the corresponding volume for the sum of the given Wishart matrices* 
Condition (i) gives: 

E(W) r 21 E(Wr) 
r 

i.e. f % = Sjl x
+ 2 £ 2 + • • • * 2 . n (8.3.10) 

Further, i f p ^ ^ (?2^^ x ( P2^ J b e t n e m a t r i x °^ t i i e covariances of 

f ,p-*lN /P+lJ 

elements of W? and P that of W also of order ( ̂  ) x ( ̂  )J > 

condition (i i ) gives: 



Det.(P) = Det.( (8.3.11) 

Thus to find f 1 , one should find from (8.3.10) by comparison the 

elements of in terms of those .of ^ and should substitute 

them in the left hand side of (8.3.11). For instance, in our case 

from (8.3.13), we have: 

-. - y 
13(r) ) (8.3.12) 

where U(r) 

r=l 
• 2 

^ , i j + * r ^ i j ' ^ " X' 2 7 — ' » 
(8.3.13) 

and, following T.W. Anderson (p. l 6 l ) , from (8.3.II) we have: 

det 

( 

i£ Ok 
1 r D l 

)J= det.j ^ 
r=l 

(8 .3 .14) ik(r) ^Tg(r) * ^ ( r ) ^ j k f r ^ J 

for i , j , k,C = 1, 2, p. 

Finally, making use of (8.3.12) and (8.3.13), the relation (8.3.1U) 

becomes: 

det •V.% 
n. 

p(p+D 

=f 

1 r = 1 r-1 , - r = 1 

^ C x : r i k ( r ) ^ ( r ) + r r ± H r ) ^ ( r ) ^ 

jk(r) 

(8.3.15) 
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Again, since the <j~'s are not known, we substitute for them their 

respective estimates and then obtain appropriate degrees of freedom 

f, where i t should be noted that the °~j_j(r) a r e defined as in (8.3.13)• 

In this way the distribution of the S.P. matrix is approximated by 

the Wishart matrix with the estimated D.F. f and the estimated parameter 

matrix JJ^ . 

Note; In ordinary multivariate analysis of variance with a balanced 
2 

. design the eigenvaluesare a l l equal, say Y • A balanced design 

occurs for example when the number of observations is the same in each 

sub-class. Then we obtain from (8.2.23) the simpler result that 

Q (p x p) is a Wishart matrix with the density 



APPENDIX A 

EVALUATION OF THE EIGEN-VALUES AND EIGM-VECTORS OF THE MATRIX BW"1 

2 
We need to solve, for \ (pxp) and L(pxp), the system of equations: 

-1 _2 
L(BW ) = T L U- 1) 

where W and B denote symmetrical matrices, positive definite and at least 

positive semi-definite respectively, and \ denotes a diagonal matrix. 

Since the matrix (BW ) is non-symmetrical, the calculation of eigen­

values and ̂ eigenvectors for this matrix is much more difficult than 

that for a symmetrical matrix. To solve the matrix equation (A-l), the 

step-by-step procedure due to Nash and Jolicoeur is as follows: 
2 

(i) Solve, for A, (diagonal) and U (orthogonal), the matrix equation: 
UW = vMl (A-2) 

(ii) Obtain the matrix ~ \ 

( i i i ) Compute the matrix product: 

G - J V ' H J B ^ x A T 1 (A-3) 

This matrix is theoretically symmetrical. If the computed matrix i s not 

quite symmetrical due to round-off errors, symmetrize i t by replacing 

g^j and gj^ each by their arithmetic or geometric mean. 
a, 

(iv) Solve for (diagonal) P (pxp) and orthogonal V(pxp), the matrix 

equation: 
VG f ̂  (A-4) 

(v) Obtain the matrix L of co-efficisnts of the discriminant 
function as follows: 

L = V J\.~\ (A-5) 
2 

Thus both the matrices p (pxp) and L(pxp), the solutions of ( A-l), 

are known respectively from (A-4) and (A-5). 



APPENDIX B 

FINDING BOUNDS. FOR THE COEFFICIENTS OF CERTAIN CUBIC EQUATIONS 

We take the cubic defined in (7.2.19) and re-write i t : 

- ux2-*- vx - w =• 0. (B-l) 

We want to determine bounds for u, v, w so that the roots of 

equation (B-l) are real and positive. 

Referring to any standard book on theory of equations, such as 

Burnside and Panton, the discriminant ^ of (B-l) is found to be 
• ' 2 

A 5 ( W ~ f + 2 ? 7 U ^ 2 V V " T ) 3 ( B " 2 ) 

3 2 2 2 3, , or 27 = 4wu - u v - lSuvw • (27w + 4v )• (B-3) 

Furthermore the equation (B-l) has real and positive roots i f A 

is negative, i.e., i f 
3 2 2 2 3 

27 A = 4wu - u v - 18uvw t (2?w + 4v ) 6 0 (B-4) 

2 
and v - ̂  6 0 i.e., i f V3v 6 u (B-5) 

Now we deduce the bounds for u, v, w from (B-4) and (B-5) in the 

following two forms: 

Form I: 

We re-write (B̂ -4) as: 
-• '- 2 

A s w 2 - | u ( v - | u 2 ) + | ^ ( 4 v - u 2 ) i 0 (B-6) 

Solving A = 0 for w and making use of equation (B-5), the range 

for w i s obtained as: 



Max 
1 , 2 2, 2 , 2 _ s3/2 ^u(v - ) - 2̂ <u - 3v)J/ 

1 / 2 2 , 2 , 2 _ v 
i v * ̂ u(v - ) + ̂ u - 3v) 

(B-7) 

Further, -|u(v - §u 2) - § T (U 2 - 3v)3/^2 is positive 
J y c 1 

i f [9u(v - J u 2 ) ] 2 - U(u2 - 3v)3 >, 0 

i.e. i f v >, u (B-8) 

Thus, from (B-5), (B-7) and (B-8), the following two parts of the 

bounds of u, v, w are: 

(i) 0 < u <- 0 0 

0 £ v < JJ- u 

0 w * £ 

and ( i i ) 0 4 u 00 

1 2 , 1 2 
jj- U 5 V £• — U 3 

ft. 

where /? and /3 are defined as:.follows: 

a U/ 2 2 N 2 / 2 
^1 " 3 ( v " 9 U } " 2 7 ^ " 3 V 

/ ^ " ^ 9 
2 2v , 2 , 2 _ ,3/2 

3,v - - u ) + gy(u - 3v)J/ 

(B-9) 

(B-10) 

Note: When the roots of (B-l) assume values between zero and one, 

we have to change the range 0 * u < . i n (B-9) into 

0 £ u £ 1, and the bounds for y and w remain unaffected. 



Formll;: 

Applying Descartes* rule of signs to A = 0 in (B-3), we conclude 

that the cubic in u, for known positive real values of v, w, has at most 

two positive roots and one negative root. Setting: 
2 

y = Uwu - ~ (B-ll) 

in (B-k), we obtain: 
k 6 

f(y) = y 3 - 3y(24vw2 + j-) + 2(2l6wU + 20v3w2 - |~) $ o (B-12) 

Now two cases arise: 

Case I, 2l6w + 20v\ - v /27 is positive (B-13) 

Case II, 2l6w^ + 20v3w2 - v 6 /27 is negative (B-13 1 ) 

Further, applying Descartes1 rule of signs to (B-12) and using the case of 

(B-13), we conclude that the cubic in y, for known positive and real 

values of v, w, has again at most two positive roots and one negative 

root. Thus, for known real and positive values of v, w, the negative 

root of (B-12) shall correspond to the negative root of ("B-k) and the 

two positive roots of (B-12) to the two positive roots of (B-4). 

Similarly (B-13*) enables us to conclude that the largest positive 

root of (B-k) corresponds to the only positive root of (B-12) and the 

smallest positive root of (B-k) corresponds to the largest negative root 

of (B-12). 

To find the bounds on u, v, w, in both these cases we proceed as 

follows:-
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Case I 

To find the bounds for y, v, w for f(y) in (B-12), we first 

draw its curve and from its shape we conclude what the bounds for y are; 

Consider: 

f(y) = y 3 - 3y(24vw2^ 2L_) ^ 2 (21ow 4i- 20v3w2 - (B-14) 

(i) When y = 0 , f(y) > 0 . 

( i i ) By Descartes rale of signs f(y) has at most two positive roots and 

one negative root. 

( i i i ) Finding f'(y) and f"(y), we conclude the following: 

(a) y = 

(b) y = 

gives a minimum of f(y). 

gives a maximum of f(y). 

and (c) y - 0 is a point of inflection. 

Thus the shape of the curve (B-14) is as shown below. 

Hence, in order that f(y) be negative for real and positive values 

of y, y must take the values from A to B, i.e.: 

OA * y <• OB 
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and-
d 2 

from (B-ll), jL.(0A+i-) * u * jL(oB + y-)' (B-15) 

Thus to have positive zeros of (B-l4),i.e. OA and OB, we follow 

Todhunter or Burnside and Panton and write the zeros of (B-l4) as: 

2(24vw ' + — ) cos f- , 
y 5 
k , 

-2(2W 2 + J-) cos £ ± ± , 
k , 

-2(24vw2 + J-) cos 2Llj£ , (B-16) 
y J 

where ̂  is defined by the relation: 

•8(~ - ^ 
tan i = - —-2 j- — g (B-17) 

2(2l6w + 2 0 v V - v^ ) 
27 

and .where real value of <p is possible, 
A 

v 3 2 i f j - > 9w 

i.e. i f 3w2//3 < v (B-18) 

3 2,3/2 

Since tan <j> in (B-17) is negative, ̂  will be an obtuse angle 

which will make the first two roots of (B-l6) positives and the 

last negative. Therefore, OA and OB are obtained as: 

OA = 2(2Ww2 + j-) cos & f 

h , 
and OB = -2(2Ww2 + cos W* r (B-19) 

y J 

which enable us to write the reduced form of (B-15) as follows: 
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[ 2 (2W 2
 + cos i + i - ] 4 u , ( - 2 ( 2 k w 2 + |- )̂  

or, making use of (B-5), we get: . 

£ 3 i U £ (B-20) 

where fi^ = Max £ 73vr]j|(2(2Ww2 + | - ) 2 cos |- + j - j ] 

and /» k - £X-2(2kvw2 + ^ c o s ( - ^ ) + ^ ] j L . (B-2l) 

4 3 2 v 6 

Further, 2l6w + 20vJw - — is positive, i f 

27w 2(l0 - 6J3) *• v 3 i 27w2(l0 + 6 ^3) 

i.e. i f 3 w 2/ 3(l - 7 3 ) ^ v «• 3 w 2^ 3(l+ 7 3 ) 

But v cannot be negative% Therefore 

0 * v * • 3 w 2^ 3(l + 7 3 ) (B-22) 

Finally, from (B-5), (B-20), (B-2l) and (B-22), we obtain: 

0 f- -v <t oo 

3w 2 / 3 . v 6 3 w 2 / 3 ( l + V 3 ) 

P3 < n * Pk (B-23) 

where ft^ and ft k are defined in (B-2l). 

Note: When the roots of (B-l) assume values between zero and one, 

we have to change the range 0 £• w ^ <* < > in (B-23) to 

0 £ w £ 1,and the ranges for v and u remain unchanged. 
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Case II 

Proceeding as before, the graph of f(y) in (B-12) is as follows: 

Hence, in order that f(y) be negative for real and positive values 

of y, y must take the values from C to D and thus from (B-ll), 

2 2 
^ ( C O + ^ - ) . u , i ( O D + |-) (B-24) 

To find CO and OD, we proceed as in Case I, and conclude that the same 

relations as (B-16), (B-l?) and (B-18) hold. Further, since tan $ in 

(B-17) is positive, 4 will be an acute angle. Noting this fact and 

equation (B-13')> we can easily obtain the bounds on u, v, w, for this 

case also. Finally the bounds obtained for both of the cases are 

written down as follows: 

0 $ w <. <» and 0 6 w c •*» 

3w2/3< v < 3w 2 / 3(W3) 3*^(1 V 3 ) & v < ~ 

where 

and 

fi' .- i [ 2 ( 2 4 w 2 - ^ ) 1 / 2 cos i . ^ J (B-26) 

where ̂  is the supplement of ̂  used in Case I. 



Upper 100-^Percentage Points of % 
. 0 5 and /.* I - ( I - / . 

o r 8 
I 

2 

3 

4 

5 

6 

7 

9 

10 

II 

12 

13 

14 

15 

16 

17 

18" 

19 

20 

21 

22 

3.8" 4146 

5 .99147 

7 .81473 

9 .48773 

1 1 . 0 7 0 5 

1 2 . 5 9 1 6 

14.067.1 

15 .5073 

1 6 . 9 1 9 0 

18.3070 

1 9 . 6 7 5 1 

21 .0261 

2 2 . 3 6 2 1 

23.68" 48" 

24.9958" 

2 6 . 2 9 6 2 

2 7 . 5 8 7 1 

2 8 . 8 6 9 3 

3 0 . 1 4 3 5 

3 1 . 4 1 0 4 

3 2 . 6 7 0 5 

3 3 . 9 2 4 4 

2 . 7 4 6 0 5 

4 . 6 5 5 9 0 

6 . 3 0 9 2 3 

7.8"43I5 

9 . 3 0 5 1 0 

1 0 . 7 1 7 9 

1 2 . 0 9 4 4 

13.4428" 

1 4 . 7 6 8 5 

1 6 . 2 9 6 6 

1 7 . 3 6 6 4 

18". 6438" 

1 9 . 9 0 9 2 

21 . 1643 

2 2 . 4 1 0 0 

2 3 . 6 4 7 3 

24.8"7I0 

2 6 . 0 9 9 9 

2.7.3164 

28".5272 

2 9 . 7 3 2 5 

3 0 . 9 3 3 0 

2.15OII 

3.0*9530 

5.43433 

6.8"7534 

8.25704 

9.598" 08 

10.9092 

12.1970 

13.4660 

14.7194 

I 5 . 9 5 9 S 

17.1889 
18.4080 

19.6187 

20.8215 

22.0173 

23.2070 

24.3909 

25.5699 

26.7436 

27.9131 

29.0785 

I. 75364 

3.36943 

4.81934 

.6.18829 

7.50787 

8.79351 

10.0504 

II. 2951 

12.5205 

13.7328 

14.9342 

16.1261 

17.3096 

18.4861 

19.6560 

20.8110 

21.9789 

23.I33O 

24.2827 

25.4283 

26.5703 

27.7088 

I. 46490 

2 . 9 7 2 6 6 

4 . 3 4 8 4 7 

5 .65765 

6 . 9 2 5 8 0 

8 . I 6 5 6 I 

9 . 3 8 4 4 5 

1 0 . 5 8 6 9 

II. 7762 

1 2 . 9 5 4 6 

1 4 . 1 2 3 8 

1 5 . 2 8 5 0 

16 .4392 

17 .5875 

18 .7302 

19.8680 

2 1 . 0 0 1 5 

2 2 . 1 3 1 0 

2 3 . 2 5 6 8 

24*3792 

25.49^5 

26 .6149 

I. 24301 

2 . 6 5 6 7 7 

3 . 9 6 8 3 2 

5 .22577 

6 . 4 4 9 4 1 

7 . 6 4 9 7 0 

8 . 8 3 2 5 0 

1 0 . 0 0 1 6 

II. 1599 

1 2 . 3 0 9 1 

1 3 . 4 5 0 4 

1 4 . 5 8 5 2 

1 5 . 7 1 4 2 

1 6 . 8 3 8 2 

1 7 . 9 5 7 5 

1 9 . 0 7 2 7 

2 0 . 1 8 4 4 

2 1 . 2 9 2 7 

2 2 . 3 9 7 8 

2 3 . 5 0 0 2 

2 4 . 5 9 9 9 

2 5 . 6 9 7 3 

I. 06704 

2.39686 

3.65123 

4.86276 

6.04700 

7.2I2I5 

8.36304 

9.50270 

10.6334 

II. 7567 

12.8735 

13.8950 

15.0915 

16.1940 

17.2927 

18.3879 

19.4802 

20.5697 

21.6567 

22.7413 

23.8238 

24.9043 
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APPENDIX C 

Upper 100 /^Percentage Points of % 

.05 and A»l-(I../) "-' Contd. 
a. 3 k 5 6 7 8 

23 3 5 . 1 7 2 5 3 2 . 1 2 8 7 3 0 . 2 4 0 1 28 .8441 2 7 . 7 2 8 5 26.7923 2 5 . 9 8 2 9 

24 3 6 . 4 1 5 1 3 3 . 3 2 0 2 3 1 . 3 9 8 2 2 9 . 9 7 6 5 23 .8397 2 7 . 8 8 5 4 2 7 . 0 5 9 8 

25 3 7 . 6 5 2 5 3 4 . 5 0 7 6 3 2 . 5 5 2 4 3 1 . 1 0 6 0 2 9 . 9 4 8 6 , 2 8 . 9 7 6 4 28 .1351 

26 3 8 . 8 8 5 2 3 5 . 6 9 1 1 3 3 . 7 0 4 2 3 2 . 2 3 2 8 3 1 . 0 5 5 1 3 0 . 0 6 5 4 2 9 . 2 0 8 7 

27 4 0 . 1 1 3 3 3 6 . 8 7 1 2 3 4 . 8 5 2 8 3 3 . 3 5 7 3 3 2 . 1 5 9 6 3 1 . 1 5 3 0 3 0 . 2 8 1 1 

28 4 1 . 3 3 7 2 3 3 . 0 4 7 9 3 5 . 9 9 8 6 3 4 . 4 7 9 3 3 3 . 2 6 2 2 3 2 . 2 3 8 7 3 1 . 3 5 2 0 

29 4 2 . 5 5 6 9 3 9 . 2 2 1 4 3 7 . 1 4 1 8 3 5 . 5 9 9 2 3 4 . 3 6 3 0 3 3 . 3 2 3 0 3 2 . 4 2 1 7 

30 4 3 . 7 7 2 9 4 0 . 3 9 1 2 3 8 . 2 8 2 4 3 6 . 7 1 7 0 35.4620 3 4 . 4 0 5 7 3 3 . 4 9 0 1 

40 55.7535 51.958-1 49.5762 47.3005 46.3717 45.1660 44.1189 

50 67.504^ ' 6 3 . 3 3 5 5 ' 60.7110 58.7506 57.1704 5 5 . 8 3 4 5 54.6717 

60 79.0819 74.5791 71.7368 69.6095 67.8920 66.4380 65.1708 

70 90.5312 85.7220 32.6795 80 .3988 78 .5550 76 .9924 75.6293 

30 101.879 96 .7843 93.5562 91.1329 89.1717 87.5082 86.0559 

90 113.145 107.733 104.379 101.822 99.7505 97 .9922 96.4562 

100 1 2 4 . 3 4 2 118.726 115.157 112 .473 IIO . 2 9 8 108.450 106.834 

X 1.6449 1.2960 1.0686 0.8945 0.7514 0.6283 0.5196 
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Appendix C 

Upper 100 Percentage Points of X1 

/:.05 a n d / ^ I-(I- I Contd. 

10 M 11 ' 3 \ii \T 

2 

3 

4 

5 

6 
7 

9 

10 

II 
12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

0.92376 0.80490 0.70494 0.61989 0.54904 O .48403 0.42935 
2 .17786 1.98989 1.82634 1.68238 1 .55476 1.94048 I.33761 

3.38059 3.14536 2.93815 2.75354 2.58790 2.43980 2 .30102 

4.55064 4.27748 4.03522 3.81794 3.62I7I 3.44275 3.27864 
5 .69931 5 .39360 5.I2I26 4 . 8 7 5 9 5 4.65347 4 .44973 4 .26213 

6.83281 6 .49816 6 . 1 9 9 0 9 5 .92886 5 . 6 8 3 0 4 5.45726 5.24877 
7 .95493 7.59396 7 . 2 7 0 5 8 6 .97769 6 . 7 1 0 6 4 6 . 4 6 4 8 3 6.23734 
9.06802 8.68277 8.33697 8 .02317 7.73656 7.47226 7 .22724 

1 0 . 1 7 3 9 9 .76510 9 . 3 9 9 2 5 9 .06594 8 .76105 8 . 4 7 9 4 8 8.2I8I0 
11 .2739 10.8446 10.4581 IO . IO64 9.78433 9 . 4 8 6 5 1 9 . 2 0 9 7 0 

12.3686 II.9I9I II.5140 II.1449 IO.8O65 10.4933 10.2019 
13 .4586 12 .9901 12.5672 12 .1816 11.8276 11 .4998 II.1945 

1 4 . 5 4 5 4 14.0582 13.6183 13.2168 12.8481 12.5062 12.1876 

15.6285 15.1237 14.6674 14.2507 13.8677 13.5123 I 3 . I 8 I O 

16.7085 16.1867 15.7147 15.2834 14.8866 14.5183; 14.1747 
17.7858 17.2475 16.7604 16 .3149 15 .9049 15 .5241 15.1686 
18.8607 18.3065 17.8046 17 .3454 16.9226 16.5297 16.1627 
19.9333 19.3637 18.8476 18.4752 17.93.99 17 .5353 17 .1572 

21.0038 20.4192 19 .8893 19.4040 18.9567 18.5406 18.I517 

22.0725 21 .4737 20.9300 20 .4321 19.9730 19 .5459 19.1464 
23.1395 22.5261 21.9696 21.4595 20.9890 20.5510 20.1413 
24.2048 23 .5775 23.0082 22.4862 22.0045 21.5560 21.1363 
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Appendix C 

Upper 100 /^Percentage Points of X 

/ « . 0 5 and /,= ! - ( ! - / ) - Contd. 

10 II 13 Hi 
23 2 6 . 2 6 8 6 2 4 . 6 2 7 8 2 4 . 0 4 6 0 23 . 5123 2 3 . 0 1 9 8 2 2 . 5 6 I O 

24 2 6 . 3 3 1 0 2 5 . 6 7 7 0 2 5 . 0 8 3 0 2 4 . 5 3 7 9 2 4 . 0 3 4 6 2 3 . 5 6 5 8 

25 2 7 . 3 9 2 1 2 6 . 7 2 5 1 2 6 . 1 1 9 1 2 5 . 5 6 2 9 2 5 . 0493 2 4 . 5 7 0 5 

26 2 8 . 4 5 1 9 2 7 . 7 7 2 2 2 7 . 1 5 4 5 2 6 . 5 8 7 4 2 6 . 0 6 3 5 2 5 . 5 7 5 1 

27 29 . 5 1 0 6 2 8 . 8 1 8 4 2 8 . 1 8 9 3 2 7 . . 6 I I 4 2 7 . 0 7 7 5 2 6 . 5 7 9 7 

28 3 0 . 5 6 8 1 2 9 . 8 6 3 8 2 9 . 2 2 3 4 2 8 . 6 3 5 0 28 .0913 2 7 . 5 8 4 1 

29 3 1 . 6 2 4 7 3O.9O84 3 0 . 2 5 7 0 . 2 9 . 6 5 8 3 2 9 . 1 0 4 9 2 8 . 5 8 8 6 

30 3 2 . 6 8 0 3 3 1 . 9 5 2 2 3 1 . 2 8 9 8 3 0 . 6 8 1 0 3 0 . 1 1 8 1 2 9 . 5 9 2 9 

40 4 3 . I 9 0 6 4 2 . 3 5 4 4 4 1 . 5 9 2 2 4 0 . 3 9 0 4 4 0 . 2 4 0 4 3 9 . 6 3 2 9 

50 53 . 6393 5 2 .7080 51 .8580 £1 . 0 7 4 5 5 0 . 3 4 7 9 4 9 . 6 6 8 0 

60 6 4 . 0 4 4 4 6 3 . 0 2 7 3 6 2 . 0 9 8 2 61.2408. 6 0 . 4 4 5 1 5 9 . 7 0 0 0 

70 74 .4166 : . 7 3 . 3 2 0 7 7 2 . 3 1 8 7 7 1 . 3 9 3 5 7 0 . 5 3 4 4 69 .7293 

80 3 4 . 7 6 2 9 8 3 . 5 9 3 6 8 2 . 5 2 4 1 8 1 . 5 3 5 8 8 0 . 6 1 7 5 7 9 . 7 5 6 7 

90 95 .0879 9 3 . 8 4 9 8 92 .7166 9 1 . 6 6 9 2 9 0 . 6 9 5 6 8 9 . 7 8 2 4 

100 1 0 5 . 3 9 5 1 0 4 . 0 9 2 1 0 2 . 8 9 8 1 0 1 . 7 9 5 1 0 0 . 7 6 9 9 9 . 8 0 6 7 

X 0 . 4 2 1 8 0 . 3 3 2 5 0 . 2 5 0 1 0 .1733 0 . I 0 I 4 0 . 0 3 3 5 

2 2 . 5 6 1 0 



Appendix C 

Upper 1 0 0 P e r c e n t a g e Points of X 

/= . 0 5 and ̂ = I-(I- JL ) - Contd. 

\5 16 17 18 3.0 

I 0 . 4 2 9 3 5 8.38I7I 0.34003 0.30333 0 .27092 0 .242283 

2 1*33761 1 . 2 4 4 5 7 I .-16017 I . 0 8 3 I O I.01246 0 . 9 4 7 6 8 0 

3 2 . 3 0 1 0 2 2 .17582 2 . 0 6 0 8 7 1.95466 I . 8 5 6 I 6 1 . 7 6 4 7 4 

4 3 . 2 7 3 6 4 3 . 1 2 7 4 5 2 . 9 8 7 7 9 2 .85793 2 . 7 3 6 7 7 2.62363 

5 . 4 .26213 4 . 0 8 8 6 1 3 . 9 2 7 6 9 3 . 7 7 7 4 8 3 . 6 3 6 7 9 3 . 5 0 4 9 1 

6 5 . 2 4 8 7 7 5 . 0 5 5 3 8 4 . 8 7 5 5 3 4 . 9 0 7 2 0 4 . 5 4 9 1 0 4 . 4 0 0 5 1 

7 6 . 2 3 7 3 4 6 . 0 2 5 8 8 5.82882 5 .64400 5 .47005 5 .30624 

8 7 . 2 2 7 2 4 6 . 9 9 9 1 0 6 .78613 6 . 5 8 6 0 7 6 . 3 9 7 5 0 6 . 2 1 9 6 4 

9 8.218" 10 7 . 9 7 4 3 8 7 . 7 4 6 5 7 7 . 5 3 2 2 9 7 . 3 3 0 0 5 7 . 1 3 9 0 4 

10 9 . 2 0 9 7 0 8 . 9 5 1 3 0 8 . 7 0 9 5 3 8 . 4 8 I 8 6 8 . 2 6 6 7 4 8 . 0 6 3 3 7 

II 1 0 . 2 0 1 9 9 . 9 2 9 6 0 9 . 6 7 4 5 8 9 . 4 3 422 9 . 2 0 6 9 1 8 . 9 9 1 8 2 

12 II.1945 1 0 . 9 0 9 0 1 0 . 6 4 1 4 •00O.3889 1 0 . 1 5 0 0 9 . 9 2 3 7 8 

13 12 .1896 1 1 . 8 8 9 5 II.6098 11*3458 1 1 . 0 9 5 7 10.8588 

14 I3.I8IO 12 .8707 12.5794 12.3043 12 .0436 11.7964 

15 14 .1747 13 .8527 13.5503 13.2645 12.9935 12.7364 

16 15.1686 14.8353 14.5222 14 .2260 1 3 . 9 4 5 1 13.6785 

17 16.1627 15.8185 1 5 . 4 9 5 0 15.1888 1 4 . 8 9 8 3 14.6225 

18 17 .1572 16 .8024 I 6 . 4 6 8 7 16.1529 1 5 . 8 5 3 1 15.5683 

19 1 8 . 1 5 1 7 17.7866 1 7 . 4 4 3 1 I 7 . H 7 9 16 .8091 16.5156 

20 19.1464 18.7113 18.4183 18 .0839 1 7 . 7 6 6 3 17.4644 

21 20.1413 1 9 . 7 5 6 4 1 9 . 3 9 4 1 1 9 . 0 5 0 8 18.7246 18.4144 

22 21.1363 20.7419 20 .3705 20.0185- 1 9 . 6 8 3 9 1 9 . 3 6 5 7 

\ 



Appendix C 

Upper 100 Percentage Points of X 

/ = . 0 5 and I-(I-/) - Contd. 

1 5 " 16 1 7 11? 3.0 

23 22.1315 21.7278 21.3475 20.9871 20.6443 20.3182 

. 24 23.1267 22.,7139 22.3250 21.9562 21.6055 21 .2717 

25 2 4 . 1 2 2 1 23.7005 2 3 . 3 0 3 0 22.9261 22.5675 2 2 . 2 2 6 2 

26 25.1175 24.6872 24.2314 23.8965 2 3 . 5 3 0 3 23.1817 

27 26.1131 25.6742 25.2603 24.8676 24.4939 24.1380 

23 27.1089 2 6 . 6 6 1 6 26.2397 25.8394 25.4583 2 5 . 0 9 5 3 

29 28.1047 27.6491 27.2194 26.8115 26.4232 2 6 . 0 5 3 2 

30 29.1004 28.6368 28 .0161 27.7841 27.3886 27.0119 
40 39.0623 38.5244 38.0161 3 7 . 5 3 3 0 37.0722 3 6 . 6 3 2 7 

50 49.0289 48.4257 4 7 . 8 5 5 2 4 7 . 3 1 2 3 46.7943 46.2996 

60 58.9990 58.3369 57.7192 57.1135 56.5435 55.9990 

70 68 .9714 68 .2551 6 7 . 5 7 6 7 6 6 . 9 3 0 5 6 6 . 3 1 3 0 6 5 . 7 2 2 7 

80 7 8 . 9 4 6 0 ' 7 8 . 1 9 9 4 7 7 . 4 5 3 1 7 6 . 7 6 0 2 7 6 . 0 9 9 1 75.4662^ 

90 88.9221 88.1082 87.3368 86 .6014 35.8981 85.2253 
100 98 .9994 98.0409 97.2270 9 6 . 4 5 0 7 95.7081 9 9 . 9 9 7 6 

X -0.0309 -0.0922 -0.1567 -0.2067 -0.2606 -0.3124 



Appendix „D 

Upper 100 Percentage Points of X 

.81 and 1.=. I - ( I - Jt ) - C 

5 > A 3 5 6 7 
I 6.63490 5.42074 4.72647 4.24329 3.87492 3.57869 3.29841 
2 9.21034 7.83416 7.03308 6.46767 6.03136 5.67655 5.33716 

3 11.3449 9.84847 8.96928 8.36409 7.85922 7.46260 7.08130 

4 13.2767 11.6797 10.7359 10.0614 9.53601 9.10502 8.68933 

5 15.0863 13.4008 12.3998 11.6825 I I . I 2 2 I 10.6612 10.2156 
6 16.8119 15.0464 13.9941 13.2382 12.6461 12.1584 11.6860 

7 18.4753 16.6362 15.5368 14.7453 14.1243 13.6120 I 3 . I I 5 I 

8 20.0902 18.1825 17 .0394 16.2148 15.5671 15.0319 14.5123 

9 21.6660 19.6938 18.5095 17.6540 16.9811 16.4246 15.8836 

10 23.2093 21.1759 19.9527 19.0680 18.3714 17.7946 17.2335 

II 24.7250 22.6336 21.3734 20.4608 19.7415 19.1457 18.5655 

12 26.2170 24.0701 22.7746 21.8354 21.0945 20.4804 19.8820 

13 27.6883 25.4881 24.1586 23.1940 22.4325 21.8008 21.1849 

14 29.1413 26.8897 25.5277 24.5385 23.7571 23.1085 22.4758 

15 30.5779 28.2768 26.8832 25.8705 25-0699 24.4050 23,7562 

16 31.9999 29.6509 28.2269 27.1912 26.3720 25.6914 25.0269 

17 33.4087 31.0131 29.5595 28.5017 27.6646 26.9687 2 6 . 2 8 9 1 

18 34.8053 32.3646 30.8823 29.8030 28.9485 28.2378 27.5439 

19 36.1908 33.7061 3 2 . I 9 6 0 31.0957 30.2242 29.4992 28.7905 



iii) 

A p p e n d i x D 

U p p e r 100 P e r c e n t a g e P o i n t s o f )C *~ 

/ = . 0 I and JI-(I-/) - C o n t d . 
h 

X 3 5 Q 7 2 

20 3 7 . 5 6 6 2 3 5 . 0 3 8 7 3 3 . 5 0 1 4 3 2 . 3 8 0 7 3 1 . 4 9 2 7 3 0 . 7 5 3 6 3 0 . 0 3 1 0 

21 3 8 . 9 3 2 1 3 6 . 3 6 2 8 3 4 . 7 9 9 0 3 3 . 6 5 8 4 3 2 . 7 5 4 3 3 2 . 0 0 1 6 3 1 . 2 6 5 4 

22 4 0 . 2 8 9 4 3 7 . 6 7 9 2 3 6 . 0 8 9 5 3 4 . 9 2 9 5 3 4 . 0 0 9 7 3 3 . 2 4 3 6 32 .4942 

23 4 1 . 6 3 8 4 3 8 . 9 8 3 4 3 7 . 3 7 3 4 3 6 . 1 9 4 4 3 5 . 2 5 9 2 3 4 . 4 3 0 1 3 3 . 7 1 7 7 

24 4 2 . 9 7 9 8 4 0 . 2 9 0 7 3 8 . 6 5 0 9 3 7 . 4 5 3 5 3 6 . 5 0 3 2 3 5 . 7 H 4 3 4 . 9 3 6 3 

25 4 4 . 3 1 4 1 4 1 . 5 8 6 7 3 9 . 9 2 2 7 3 8 . 7 0 7 0 3 7 . 7 4 2 0 3 6 . 9 3 7 7 3 6 . 1 5 0 2 

26 4 5 . 6 4 1 7 4 2 . 8 7 6 3 4 1 . 1 8 9 0 3 9 . 9 5 5 5 3 8 . 9 7 6 1 3 8 . 1 5 9 5 3 7 . 3 5 9 8 

27 4 6 . 9 6 3 0 4 4 .I6 1 1 4 2 . 4 5 0 0 4 1 . 1 9 9 0 4 0 . 2 0 5 5 3 9 . 3 7 6 9 3 8 . 5 6 5 3 

28 48 .2782 45 .4402 43 .7062 4 2 . 4 3 8 1 4 1 . 4 3 0 7 40 .4903 3 9 . 7 6 7 0 

29 4 9 . 5 8 7 9 4 6 . 7 1 4 4 4 4 . 9 6 7 8 4 3 . 6 7 2 8 4 2 . 6 5 1 7 4 1 . 7 9 9 7 4 0 . 9 6 5 0 

30 5 0 . 8 9 2 2 47 .9838 4 6 . 2 0 5 1 4 4 . 9 0 3 5 4 3 . 3 6 8 9 4 3 . 0 0 5 6 4 2 . 1 5 9 5 

40 6 3 . 6 9 0 7 6 0 . 4 6 0 6 58.4783 57 .0242 55 .8661 5 4 . 8 9 8 1 53 .9480 

50 7 6 . 1 5 3 9 7 2 . 6 3 9 9 7 0 . 4 7 8 1 6 8 . 8 8 9 5 6 7 . 6 2 2 6 6 6 . 5 6 2 5 6 5 . 5 2 0 8 

60 8 8 . 3 7 9 4 8 4 . 6 0 8 5 82 .2843 8 O . 5 7 . 4 i 7 9 . 2 0 8 8 7 8 . 0 6 5 5 7 6 . 9 4 H 

7Q": 1 0 0 . 4 2 5 9 6 . 4 1 7 $ 93 .9443 92 .1223 90 .6666 8 9 . 4 4 6 7 8 8 . 2 4 6 2 

80. . 1 1 2 . 3 2 9 1 0 8 . 1 0 2 1 0 5 . 4 8 1 1 0 3 . 5 6 3 1 0 2 . 0 2 2 1 0 0 . 7 3 1 9 9 . 4 5 9 8 

90 1 2 4 . 1 1 6 1 1 9 . 6 8 2 1 1 6 . 9 3 9 1 1 4 . 9 1 5 1 1 3 . 2 9 6 III.978 1 1 0 . 6 0 0 

100 1 3 5 . 8 0 7 1 3 1 . 1 7 7 1 2 8 . 3 1 0 1 2 6 . 1 9 3 1 2 4 . 5 0 0 1 2 3 . 0 7 8 1 2 1 . 6 7 8 

X 2 .32630 2 . 0 5 5 8 4 1 . 3 8 5 2 3 1 . 7 5 7 6 6 I . 6 5 4 5 5 1 . 5 6 7 2 9 1.480)68 
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Appendix D 

Upper 100 Percentage Points ©f 

/_.QI and //=!-(!-/) Contd. 

10 II 15. 13 /A 
1 3 . 0 9 2 5 4 2 . 9 1 3 0 2 2 . 7 5 4 2 9 2.61264 2 . 4 8 4 9 4 2 . 3 6 8 9 2 

2 5 . 0 8 5 3 6 . 4 . 8 6 3 8 0 4 . 6 6 6 2 0 4 . 4 8 8 2 3 4 . 3 2 6 3 9 4.I78I7 
3 6 .79703 6 . 5 4 5 8 8 6 . 3 2 1 0 2 6.11768 5 . 9 3 2 0 9 5 .76154 

4 8 . 3 7 8 5 0 8 . 9 0 3 1 8 7 . 8 5 6 0 8 7.63206 7 . 4 2 7 2 0 7 . 2 3 8 4 9 

5 $.88171 9 . 5 8 5 4 3 9 . 3 1 9 0 5 9 . 0 7 7 2 0 8.85561 8.65123 

6 II.3 3 1 4 II.0 1 6 4 1 0 . 7 3 2 7 1 0 . 4 7 4 9 IO . 2 3 8 4 1 0 . 0 2 0 0 

7 1 2 . 7 4 1 7 1 2 . 4 0 9 5 I 2.II0I 1 1 . 8 3 7 7 1 1 . 5 8 7 5 11 .3563 

14.1213 1 3 . 7 7 3 2 1 3 . 4 5 9 3 13 .1733 12.9106 1 2 . 6 6 7 6 

9 1 5 . 4 7 6 3 I5.H33 1 4 . 7 8 5 7 14.4871 14 .2125 13.9584 

10 16.8107 16.4336 16.0931 1 5 . 7 8 2 7 15.4969 1 5 . 2 3 2 4 

II 18.1280 1 7 . 7 3 7 6 17.3849 17.0630 16.7669 16 .4924 

12 19 .4304 19 .0274 I8 e6629 18 .3303 18.0240 1 7 . 7 4 0 1 

13 20.7199 20.3046 19 .9290 19.5860 19 .2700 18.9771 

14 2 1 . 9 9 7 9 2 1 . 5 7 1 0 2I.I846 2 0 . 3 3 1 7 20.5065 2 0 . 2 0 4 9 

15 23.2658 22.8276 2 2 . 4 3 0 9 22.0684 2 1 . 7 3 4 3 2 1 . 4 2 4 3 

16 2 4 . 5 2 4 5 2 4 . 0 7 5 3 23.6686 23.2969 2 2 . 9 5 4 1 2 2 . 6 3 6 1 

17 25 . 7 7 5 0 2 5 . 3 1 5 2 24.8989 24.5182 2 4 . 1 6 7 1 2 3 . 3 4 1 2 

18 27.0180 26.5480 2 6 . 1 2 2 2 2 5 . 7 3 2 8 2 5 . 3 7 3 6 2 5 . 0 4 0 2 

19 2 8 . 2 5 4 2 2 7 . 7 7 4 2 2 7 . 3 3 9 3 2 6 . 9 4 1 5 2 6 . 5 7 4 3 2 6 . 2 3 3 5 



C i v / 

A p p e n d i x D 

U p p e r 100 P e r c e n t a g e P o i n t s o f X-

/ ^ . O I and JL' - ! - ( . ! - / C o n t d . 

11 SSL IB Ik ' 
20 2 9 . 4 8 4 0 28 . 9 9 4 3 2 8 . 5 5 0 5 2 8 . 1 4 4 4 2 7 . 7 6 9 7 27 .4216 

21 3 0 . 7 0 7 9 3 0 . 2 0 8 8 29 .7563 2 9 . 3 4 2 2 2 8 . 9 6 0 0 2 8 . 6 0 5 0 

22 3 1 . 9 2 6 5 3 I . 4 I 8 I 3 0 . 9 5 7 2 3 0 . 5 3 5 3 3 0 . 1 4 5 7 2 9 . 7 8 3 9 

23 33.I4OO 3 2 . 6 2 2 6 3 2 . 1 5 3 4 . 3 1 . 7238 3 1 . 3 2 7 1 3 0 . 9 5 8 6 

24 3 4 . 3 4 8 9 3 3 . 8 2 2 7 34 .3453 32 .9083 3 2 . 5 0 4 6 3 2 . 1 2 9 5 

25 3 5 . 5 5 3 2 3 5 . 0 1 8 4 3 4 . 5 3 3 1 3 4 . 0 8 8 6 3 3 . 6 7 8 3 3 3 . 2 9 6 8 

26 3 6 . 7 5 3 5 3 6 . 2 1 0 1 3 5 . 7 1 7 1 . 3 5 . 2 6 5 5 ; 34 .8483 3 4 . 4 6 0 6 

27 3 7 . 9 4 9 9 37 .39 .82 36 .0976 3 6 . 4 3 9 0 36.OI52 35 .6213 

28 39 .1425 ; 3 8 . 5 8 2 7 38 .0746 . 3 7 . 6 0 9 1 3 7 . 1 7 8 9 3 6 . 7 7 9 0 

29 4 0 . 3 3 4 5 3 9 . 7 6 3 9 3 9 . 2 4 8 5 3 8 . 7 7 6 2 3 8 . 3 3 9 8 3 7 . 9 3 3 9 

30 4 1 . 5 1 7 5 4 0 . 9 4 1 9 40 .4193 3 9 . 9 4 0 3 3 9 . 4 9 7 7 3 9 . 0 8 6 0 

40 5 3 . 2 2 6 1 - 52 .5781 . 5 1 . 9 8 9 1 .51 .4493 5 0 . 9 4 9 9 50 .4851 

50 64.;7286 64*0169 ' 6 3 . 3 6 9 6 6 2 . 7 7 5 4 6 2 . 2 2 5 3 6 1 . 7 1 3 0 

60 76 .0853 7 5 . 3 1 6 1 7 4 . 6 1 6 0 7 3 . 9 7 3 1 7 3 . 3 7 7 6 7 2 . 8 2 2 8 

70 8 7 . 3 3 2 1 8 6 . 5 0 9 9 8 5 . 7 6 1 4 8 5 . 0 7 3 6 8 4 . 4 3 6 5 8 3 . 8 4 2 6 

80 9 8 . 4 9 1 4 9 7 . 6 2 0 1 9 6 . 8 2 6 7 9 6 . 0 9 7 2 95 .4213 9 4 . 7 9 1 0 

90 1 0 9 . 5 8 0 108 . 6 6 3 1 0 7 . 8 2 7 1 0 7 . 0 5 8 1 0 6 . 3 4 5 8 1 0 5 . 6 8 1 

100 1 2 0 . 6 1 0 1 1 9 . 6 4 8 118 .772 1 1 7 . 9 6 7 . 1 1 7 . 2 2 0 1 1 6 . 5 2 3 

X I . 4 I 4 2 I 1 .35403 I . 2 9 8 9 1 I . 2 4 8 O O 1 . 20058 I . I 5 6 I 7 



( i n 

A p p e n d i x D 

U p p e r 100 P e r c e n t a g e o f X 

/ = . 0 1 and / , = I - ( I - / ) - C o n t d . 

15 16 17 1 £ n mo 
I 2.26275 2.16508 2 . 0 7 4 7 7 1 .99093 1 .91282 1 . 8 3 9 7 9 

2 4 . 0 4 1 4 9 3 . 9 1 4 7 9 3 . 7 9 6 7 8 3 . 6 3 6 4 2 , 3 .58286 3 .48535 

3 5 . 6 0 3 7 2 5 . 4 5 6 9 5 5 . 3 I 9 8 I 5 . I 9 H 6 5 . 0 7 0 0 8 4 . 9 5 5 7 3 

4 7o06353 6 . 9 0 0 4 9 6 . 7 4 7 8 7 6 . 6 0 4 4 2 6.46917 6 . 3 4 I 2 I 

5 8.46146 8 . 2 8 4 3 8 8.II839 7.96218 7.81472 7 . 6 7 5 0 2 

6 9 . 8 1 6 9 9 9 . 6 2 7 3 7 9 . 4 4 9 4 6 9 . 2 8 1 8 7 9 . I 2 3 5 I 8 . 9 7 3 3 6 

7 II . I 4 I 3 1 0 . 9 4 0 2 1 0 . 7 5 1 4 1 0 . 5 7 3 5 1 0 . 4 0 5 2 1 0 . 2 4 5 5 

12 .4413 1 2 . 2 2 9 7 12.0308 1 1 . 8 4 3 3 1 1 . 6 7 5 8 11 .4973 

9 |I3.72I8 1 3 . 5 0 0 2 1 3 . 2 9 2 0 1 3 . 0 9 5 4 1 2 . 9 0 9 3 1 2 . 7 3 2 6 

10 1 4 . 9 8 5 9 1 4 . 7 5 5 1 14.5380 1 4 . 3 3 3 0 1 4 . 1 3 8 8 1 3 . 9 5 4 3 

II I 6 . 2 3 6 5 1 5 . 9 9 6 9 15 .7713 15-5533 1 5 . 3 5 6 5 1 5 . 1 6 4 6 

12 1 7 . 4 7 5 7 17 .2273 16.9937 16.7730 16.5639 16.3650 

13 18.7039 18.4477 18.2064 1 7 . 9 7 8 4 1 7 . 7 6 2 3 1 7 . 5 5 6 7 

14 1 9 . 9 2 3 5 1 9 . 6 5 9 5 1 9 . 4 1 0 9 1 9 . 1 8 0 6 1 8 . 9 5 3 1 18.7410 

15 2 1 . 1 3 4 9 2 0 , 8 6 3 5 2 0 . 6 0 7 8 2 0 . 3 6 6 0 2 0 . 1 3 6 6 19.9184 

16 2 2 . 3 3 9 1 2 2 . 0 6 0 5 2 1 , 7 9 7 9 2 1 . 5 4 9 6 21*3140 21.0897 
17 2 3 . 5 3 6 8 23*2512 22.9320 2 2 . 7 2 7 3 22*4357 2 2 . 2 5 5 7 

18 2 4 . 7 2 8 6 2 4 . 4 3 6 2 2 4 . 1 6 0 6 23.8998 2 3 . 6 5 2 2 2 3 . 4 1 6 6 

19 25.9i .5O 2 5 . 6 1 6 0 2 5 . 3 3 4 1 2 5 . 0 6 7 3 24.8141 2 4 . 5 7 2 9 
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Appendix D 

Upper 100 -^Percentage of X * 

/=.0I. and ^ f e = - I - ( I - ^ ) - Contd. 

15 16 17 IS 3LO 

2§ 27*0964 26 . 7 9 1 0 26 . 5 0 2 9 26.2303 2 5 . 9 7 1 5 25.7251 

21 23 o 27.31 27 . 9 6 1 4 27.6675 27.3892 27.1250 26.8733 

22 29.4456' 29.1278 28.8280 28.5442 28.2748 28.0180 

23 30.6140 - 30 . 2 9 0 2 29.9848 2 9 . 6 9 5 6 29.4210 29 . 1593 

24 31.7738 31.4492 31.1383 30.8438 30.5641 30.2975 

25 32 . 9 4 0 0 32.6047 32.2884 31.9887 31.7041 31.4328 

26 " 34 . 0 9 7 9 33.7570 33.4353 33.1306 32.8411 32.5652 

27 35.2528 34.9065 34.5796 34.2699 33.9757 33.6952 

28 36.4049 36.0531 35 . 7 2 1 1 35.4065 35.1076 34.8227 

29 37 . 5 5 4 1 37.1971 36.8601 36.5407 '36.2373 35.9479 , 

30 38.7007 38.3386 37.9966 37.6726 37.3646 37.0709 

40 50.0496 49.6398 49.2525 48.8853 48.5390 48.2026 

50 61.2330 60.7811 60.3539 59.9486 5 9 . 5 6 2 9 59.1948 

60 72.3027 71 .8129 71.3496 70.9100 70.4915 70.0919 

70 83.2856 82.7609 82.2646 81 , 7 9 3 3 81.3447 80.9I6I 

80 94 . 1 9 9 8 93.6427 93 . 1 1 5 6 92 . 6 1 5 0 9 2 . 1 3 8 3 9 1 . 6 8 3 9 

90 105.058 104.470 1 0 3 . 9 1 4 1 0 3 . 3 8 6 102.883 I02:o403 

100 115 . 8 6 9 115.2530 1 1 4 . 6 7 0 114.115 113.587 113.083 

X I.II433 1 . 0 7 4 7 6 1 .03717 I.00134 I..96711 <&. 93428 
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