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MULTIPLE COMPARISON METHODS AND CERTAIN
DISTRIBUTIONS ARISING IN
MULTIVARIATE STATISTICAL ANALYSIS

ABSTRACT

The problem of classifying multivariate normal populations
into homogeneous clusters on the basis of random samples drawn
from those populations is taken up. Three alternative methods have
been suggested for this. One of them is explained fully with an
illustrative example, and the tabular values for the corresponding
statistic, used for the purpose, have been computed. In the case of
the other two alternatives only the working procedure is discussed.
Further, a new statistic R, ‘the largest distance’, is proposed in one
of these two alternatives, and its distribution is determined for the
bivariate case in the form of definite integrals.

Ignoring a priori probabilities, two alternative methods are
suggested for assigning an arbitrary population to one or more
clusters of populations, and are demonstrated by an illustrative
example.

A method is discussed for finding confidence regions for the
non-centrality parameters of the distributions of certain statistics
. used in multivariate analysis and this method is illustrated by an

example.

The exact distribution of the determinant of the sum of products
(8.P.) matrix is found (in series), both in the central and the_non-
central linear cases for particular values of the rank of the matrix.
Further, these results have been made use of in finding the limiting
distribution of the Wilks-Lawley statistic proposed for testing the
null hypothesis of the equality of the mean vectors of any number
of populations.

Six different statistics based on the roots of certain determinantal
equations have been proposed for various tests of hypotheses arising
in the problems of multivariate analysis of variance (Anova). Their
distributions in the limited cases of two and three eigen roots have
been found in the form of definite integrals. Also, the limiting
distribution of Roy’s statistics of the largest, an intermediate and the
smallest eigen roots have been found by a simple, easy method of
integration, which method is quite different from that of Nanda
(1948).

Lastly, the distributions of the mean square and the mean
product (M.P.) matrix have been approximated respectively in the
univariate and multivariate cases of unequal sub-class numbers in
the analysis of variance (Anova) of Model IL
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ABSTRACT

.The problem of classifying multivariate normal populations
into homogeneous clﬁsters on the basis of randqm samples drawn ffom
those populatibns is taken up. : Three alternative methods have been
suggested for this. One of them is explained fully with an
illustrative example,and the tabular values for the corresponding
statistic, used for the purpdse, have beenicomputed. In the case of
the other two alternatives only fhe working procedﬁre ié discussed,
Further, a new statistic R, 'thé largest distance;, is proposed in
one of these two alternati&es, and its distribution is determined for
the bivariate case in the form of definite integrals.

Ignoring & priori probabilities, two alternative methods are
suggested for assigning an arbitrary population to one or more clusters
of populations, and:@redemonstrated by an illustrative example.

A method is discﬁssea for finding confidence regions for the non-
centrality parameters of the distributions of certain statistics used
in multivariate analysis and this method is also illustrated by an
exam?;e.

The exact Qistribﬁtion of the determinant of the sum of products
(s.P.) matrix is found (in series), both in the central and the non-
éentral linear casés fof particular values of the rank of the matrix.
Further, these results have been made use of in finding the limiting
distribution of the Wilks-Lawley statistic proposed for testing thg
null hypothesis of the equality of the mean vectors of any number of

populations.
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Six different statistics based on the roots of certain
determinantal equations have been proposed for various tests of
hypotheses arising in the problems of multivariate analysis of
variance (Anova). Their distributions in the limited cases of
two and three gigénroobS: have been’ found in the form of definiﬁe
integrals., Also, the limiting distribution of the Roy's statistics
of the largest, an inte;mediate and the smallest eigenrwots: have
been found by a simplé, easy method of integrationm, which method is
quite different from that of Naﬁda,(l9h8).

Lastly, the distributions Qf_tﬁe mean square and the mean
product (M.P.) matrix have been approximated4respective1ylin the
univariafe and multivariate cases of unequal sub-class numbers in the

analysis of variance (Anova) of Model II.
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CHAPTER ONE

INTRODUCTION

l.l1 Test of Eqnality'of Mean Vectors in the Case of Two p-variate
Normal Populations

In sciences like anthropology, biology, and others, we often wish,
on the basis of two p-vériate samples drawn from two populations, to
find whether the two popul#tions, on é given probability level, are
distinet or not. Karl Pearson (1921) gave a start to answering such
a_qnestion by suggesting his well-known Coefficient‘of Racial Likeness
(C.R.L.) to Tildesley (1921), and he himself discussed it in his paper
~in 1926. But this coefficient was found to be inadequate and was
severely criticized by Mahalanobis and Morant as a measure of divergence.
Mahalanobis (1925) modified C.R.L. and defined a measure of divergence
Dg thg "Mahalanobis distance", both for classical and Studentized cases,
as follo&s:

Given two p-variate samples of sizes N, and N, with observations

1 2

Xin (121,2, veeyp; T=1,2; h=1,2, caay Nr) drawn from two

p-variate normal populations assumed to have the same covariance matrix
EZ but different sets of means /yil and /12 (=21, 2, cees P)»

let iil and f;z (i=1, 2, ees, p) respectively be the means of the ith

trait from the two samples. If the covariance matrix (tr-ij) is known

or has been computed on the basis of large samples, then, taking'(‘,—ij)

\
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the inverse of (v-ij), the Mahalanobis distance in the classical case

is defined as:

P P .
Dg : Z Z _ v—lj (iil = ilz)(i.jl - ijZ) (Lo1.1)
' i=1 j:l ) o . . . ) i

If ( oqj) is not kriown, we estimate it from the samples and define

ﬁhe - Studeﬁtized form as:

: P p .
2 ij - - - -
- i=1 jsl ’ '

where (N1+ N2 - 2)1::1j

2 | Nr : o :
P i = Xy Eypy = X5p)
rs1  h-l

i’ . ‘ .
and (wV) is the inverse of (wij)°

Simultaneously Hotelling (1931) generalized Students!' t to the

multivariate case, We denote this by T2.

It was found to be identical
(Roy and Bose 1938, Fisher 1938) in form to the Studentized D; except

for a factor involving sample sizes, i.e.

2 N.N

12 2
T, == D, o
2 Nl+ N2 2
S -2 2
Distributionsof D2 “and T2 :
2 2 ij
1f A= Z Z U (/il - ,;_2)( /‘yjl - /’:]2) (1010'3)

i= 3ol



be the measure of divergence between the populations, the distributions
. 5. ,
of (1.1.1.) and (1.1.2) for both central (& = 0) and non-central

21
(& #0) cases are known as stated below:

!

:(i) In the Studentized case (Bose and Roy, 1938), under the null
* hypothesis i1 = Mip (1 = 1, 2, veey p) or. a2 = 0, the

quantity _ >
N, + N, =p-1 NNp B D 5
1 2 % x
o+ N, + N =
P BT 1 -

is distributed as the central F-ratio with p and (Nj + Ny-p-1)
degrees of freedam (D.F), while in the classical case, under the
same null hypothesis, .
M 2
Ny + Ny T2
is distributed as central chi-square with p D.F.
(ii) Again, in the Studentized case (Bose and Roy, 1938) for4>? #0,
, the quantity
2
N p Nl + N2 Nl + N2 hand 2

is distributed as non-central F-ratio with p and (N3 ¢+ Ny = p = 1)

D.F. and parameter ol / (-—1]\%5_- t —-1]\;—2) 3 while in the classical case,
NN ‘
again for A2 # 0, 12 DS is distributed as non-central

1\11+N2
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¢hi-square with p D.F. and parameter o 2/( %i— + Slf-)'
1 2

The distribution of Tg in the central case was given by Hotelling
(1931) and in the non-central case by Hsu (1938). These are identical
to the distributions of Studentized Dz except for the constant multiplier.
| When the hypothesis of equality of mean vectors is rejected, the
problem generally arises of giving confidence regions to the corres-
ponding non-centrality parameter. We have attempted to answer this
problem in Chapter Five, where we have takgnvsimultaneously the case of

two or any number of populations. We have first given the method and

then, to demonstrate the method, we have presented an illustration.

1.2 Classification and Discrimination in the Case of k p-variate
Normal Populations

Again in sciences like anthropology, biology and othérs, one is
often faced with the problem of discrimination and classification. In
the biological sciences we are concerned with specifying an individual
as a member of one of the populations to which he can possibiy
belong, as when a taxonomistvhas'to assign an organism to its proper -
species or sub-species or an anthropologist is faced with the problem
of sexing a skull or jaw-bone. We are also faced-with the problem
of classification of the groups themselves into some significant system

based on the configuration of the various characteristics, for example when



1a number of species or sub-species may have to be arrayed in hierarchical
6rder showing the closeness of some.and distinctiveness of the others's
‘In all such problems our first aim is to test whether the populations
involved are distinct or not, Foufr statistics have been suggested for
testing the hypothesis of equality of the mean vectors of the populationse
-We list them below:
Suppose we are given k p-variate normal populations, assumed to

have the same covariance mabrix ZZ and distinct mean vectors

(/’lr, Pops *o0s /I'Jr)(r =1, 2, ..,i, k)o Fram these populaticns samples
fespectively of sizes.~ Ny, Npy eee, Nk- are drawn and observations
xirh (1= 1, 2, ooy p; T= 1, 2, o.to,‘k and h= 1, 2, s0.y Nr) are
midei Let W= (wij) and B = (bij) bg the within and between mean
product (M,Pa) maﬁricés with respecti{rely n, and ny D.F. where Wij

and Dbjj are respectively defined as:

k Nr .
nzwij = Z o (Xirh - i.ir) (xjrh = 1-{jr) - (Le2a)
r-1 h=1 ' " ‘
k .
and nlbij = Z Nr(iir - fi)(ijr - }-fj) | (Le2.2)
rel v ) Y .
k
where m = k=1 and np-= Z_ (Np - 1) (16203)

r=1
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- (i) Hotelling's 'Ti—Statistic:

Hdtelling (1947, 1950) gives a statistic Ti to test the hypothesis

of equality of k mean vectors and defines it in the classical case

using a matrix (q—i j) known or estimated on the basis of large samples as:

M
- Mo
'qc'_.‘?
‘\/]W

-
"
[
[
f
[
H
0
=

N (X, - i‘i) p‘c‘jr - i‘i) (1.—2,@

or Ti e nlltr {( v—iJ)B] - ' (1;205)

. k k
where (oY) is the inverse of (<o— ) and X = E WX ) § (n )
_ iy i r ir’ r’

=1 r=1

The Studentized Ti' can be expressed in three different ways as

£ o],loﬁs :

p' o -k ' .'
2. ) ) WM Z NGE -Z)E -X) (1.2.6)
, »k . ‘ r ir i Jr J. .

w
i=1 j=1 r=1

or Tﬁ: nltr(W-;LB)z nztr_[(nzw)_l(nlBZ] _ (1.2.7)_
. , ) | ) ;o |
© _
or Ti: n2 Z (¢i) H n2 Z (ﬁ-) . (10208)
- il - T 11 i

where ¢i and ©; are respectively the roots of the determinantal
equations:

‘ n,B - 1) n M I = 0 (1e2.9)
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and ] n.B - 6(n B+ nM) , = 0 (142410)

and where ¢ - Min.(p,,ri) . (1oR611)

2
We have found another interesting expression of Tk in terms

of wei”ghted Mahalanobis distances, It is given in the last section of
Chapter Five, In Chapters Two and Four, we have made use of this statistic
in formiﬁg clusters and in assigning an arbitrary population to one of the
clusters,

The classical Ti is known (Rao, 1952) to be distributed, under
the null hypothesis, as central chi-square»with nlp' DoFe In the case
of non-centrality parameter 2_"12{ #O, the classiéal Ti is non-central
chi-square distributed with n,p D.F@} and/_ the para.niete‘r Zi is defined

as follows:

P k
3 | |
Z 1 Z Nr(/ir = /’i)(/gr - //.j) (102012)
i=1 j=1 r=1 :
. K N
where /3= Z : (Nr /ir) Z_ (N;) (1e2,13)
: r=1 . r=1 g :

The exact distribution of Studentized Ti is not known J.n compact

standard forme Ito (1956) has given, under the null hypothesis, its
' approxnmate formula. as:

2 Prm J ‘
g s o) e
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where xz is central chi-square with np D.Fs The use of Ti

variate analysis of variance (Anova) has been illustrated by Siotani

in multi-

(1958), who has constructed its tabular values for 5% and 1% significance

levels for three or more dimensions, -

(4i) wilks £\ —Criterion:
- Following the likelihood ratio method (Neyman and Pearson, 1928,

1931, Kand' Pearson and Neyman, 1930), Wilks ébtained a suitable extension

of the univariate F-ratio in the fbrm:
N\ ='|n2W| / | i + nlB|  (1e2.25)
or alternatively as:
) R
A-TT pp=-TT a-ep (102.16)
is=1 o E S i ' -

where f‘i and Oi are respectively the roots of the determinantal
equations | |
| ngi = £ (@ +nB)| = 0 C (Le2617)

and (1.2.10), where W and "B are the usual mean products (M.P.)
matricese:: » . ‘ “

Wilks (1932) and Nair (1939) have given the exact distribution of
for n = l,'2 and any p,.ana for-p = 1, 2 and any ny by comparing
the moments of /\. with those of F-ratio, Bartlett (1934, 1938, 1947)

suggested its useful approximation:as:follows:



g

2 Y. 2 -2
- [(nl" nz‘? - %—(p +ng+ 18 1°3¢A=7$ni~" ;—% (lpnfh - Xpn? + ooo

l .
(1e2018)

np .
where \(2= T.%‘ Sp2+ ni - 5? and xi is central chi-square with £ D.Fe

We have made usé of this approximate test in Chapter Two in testing
for the over-all homégeneity of the species taken in the illustrative
example,

More recently Bannerjee (1958) has been able to give thé exact
distribution of /\. in series. form; but the tabular values are not yet

available,

(iii) Wilks-Lawley U-statistic and Pillai's V-statistic:

’-Théx.‘e‘ .are two other statistics ito tes‘t; the homogeneity of k mean
vectors due to Wilks-Lawley (1932, 1938) and Pillai (1954, 1956) defined

respectively as:

U= |ng / | oW + n,B| (1e2.19)
-1 ] .
and V= tr[(n+ nlB? (nyB) (102420)
- These can also be expressed respectively as follows:
'ﬂ' ¢i LT :
U= ( ) or = }] (&) (Le2621)
Lt gy o o
i=1
a .
) 2, e
and V= . (m;), or = g (65) (1e2,22)
A=1 ’ i=1 ’

where ¢i and O, are defined respectively as in (Le2¢9) and (1.2.10),
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These two statistics will be discussed further in
Seétioﬁ 1.4, _

When the hypothesis of the equality of mean vectors is rejected
by the use of any of the above four statistics, three problems
arise: (i) determining the confidence region for the population
parameter corresponding to the statistic used to test the hypothesis
of equality of mean vectors; (ii) to find groups or clusters
of populations having like mean vectors; and (iii) to classify
an arbitrary individual as belonging to one of the k normal
porulations, or an arbitrary population as belohging fo one of

the clusters.

We have dealt with the first problem in Chapter Five and have
discussed the method of giving a confidence region to ZE. Finally,
we have demonstrated the method by taking a particular case with

k=2,p=4 n =4 n,=29,

For forming clusters of populations with like mean vectors,
Rao (1948, 1955) and Tocher (1948) have given a subjective approach
which is not based on pfobabilistic considerations. Working on the
principle of minimum average distance, they have suggested a technique
based on the criterion that 'any two groups belonging tb the same
cluster should at least on the average show a smaller Dé than those

belonging to different clusters'.
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Rao's Graphical Approach

A gfaphica.l approach to the same problem has been given by
Rao on the basis of significant discriminant scores or canonical.
variates, - Since we have also made extensive use of significant
K and DZ and likelihood functions

to convenient and easy workable forms, we shall first discuss how

discriminant scores in reducing T

Rao obtained these scores and then his graphical approach,

‘Rao (1952), like Fisher, takes the linear combinations

p

¢=[i ie ny bij] [i__ i__e s 93 wij] (1,-2.»23?

and gets the system of equations,

€. %)+ o +2ipx' (1= 1, 2, eee, p) and maximizes the ratio:

wei s F1 | (Le2024)

where @ (p x p) is a diagonal matrix with diagonal elements ¢i
(i= l,»2; ...,‘p) and L(p x p) is the matrix of coefficients of the

discriminant  functions, Withoﬁt losing generality we can suppose that

g« @

p* “p-1 %
- Bartlett's modified approximate formula (1.2.18) (Rao, 1952) given by:

eve si¢2 ] ¢l and test their significance by

[‘nl+ ;) -5 (o n + 1)] 1og (3 + % g,) = X, (202025)

2 .
where Xi is central chi-square with (_p - nl + 1) =~ 2i DoFe
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By repeated use of formula (1.2.25), he gets a set of, say,
p! ( & p) significant eigenvalues and ﬁence the corresponding p!
significant discriminant functionse. Placing their p' vectors of.
coefficients row-wise, so that the first row should corre§§ond to
the largest eigenvalue, the second to the second largest and so
forth, he forms a matrix K(p' x p). Denoting further if-k X p)
as the matrix of k sample mean vectors, he gets the matrix Ttkk xp')
of p' significant discriminant scores as:
<t r
XK (1.2426)
Note: To find § (p x p) and L(p x p) as the solutions of (1.2.2L),
| we can first symmetrize BW™l by the procedure suggested by
Nash and Jolicoeur (unpublished, 1959) which we have sumarized
in Appendix A and then apply the familiar technique due to
Jacobi,'which can be used on high speed computers.

Thus, knowing the significant discrhninént scores, Rao then
suggests plotting them in a space whose drnensionalitj is equal to
the number of significant eigenvalues. If there are only‘two
significant eigenvalues, there is no difficulty in having the plane
representation of the points in which the closeness of the points
(populationé) with one another can be. easily visualized. - But it

becomes difficult in the case of three or more eigenvalues. Rao



(1948) in such situations suggests having pair-wise plane
representations of the points and then seeing (of course relying
mostly on most sighificant scores) which of the populations lie
cloée to one another;

| In our discussion of the procedure for forming clusters in
Chapter Two, we have sought a departure from Rao's and,?ocher's
subjective approach and have instead suggested two stages. .Sﬁagé
I is a sort of prediction by making use of Rao's graphical approach.
In Stage II we give first our own definition of a cluster., Then
we propose to correct the prediction by three alternative statistics
where in each, unlike Rao and Tocher, we are able to attach probability
to our decision. The first aiternative has been discussed with an
illustration in Chapter Two and the remaining two briefly in Chapter
Three. Ourﬁworking criteria for all three cases are multivariate
analogues of previous criteria used in univariate analysis of
variance (Anova) for forming clusters of like groups.. The choice of
the level of significance is that proposed by Duncan. Therefore we
will discuss briefly such proéedures for the univariate problem.

Some of the methods of forming clusters of like groups in univariate
Anova are the following: Fisher's least significant difference test, 
~ the Student-Newman-Keuls' range ﬁest, and ﬁore recently Schéffé's maltiple
F-test, Tukey'!s test baséd on allowances and his gap-sfraggler'énd
variance test; Duncan's multiple range and F-tests based on degrees of

freedom, and further éxtensions b& Sawkin, Kramer, Hartley, and Roy and
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Bose. A detailed explanation of these procedures with illustrations
is provided by Federer (1955). Since we have generalized Duncan's
approach to the mnltivariatelcase, we give below briefly what he
did. Duncan made a two-way attack on the problem - first by the
multiple range test and second by the multiple F-test. To avoid
duplication we will not give the description of his range test,
since its procedure, except for significant ranges, is just the same

as the Stage I of his multiple F-test.

Duncan's Level of Significance

Duncan's multiple range test is similar to the Student-Newman-
Keuls'! test and his multiple F-test similar to that‘of Scheffé.
The oﬁly difference between Duncan and the others has been inlthe choice
of a lefel of significance. He proposes that the level of significance
should increase with the increase of the number of means in a group
whereas others have kept the same pre-assigned level of significance
as in the case of k-meﬁns. He justifies himself by arguing that any
increase in the later levels would result in the increase of type II
error and thus suggests that the r-mean ( r = 2, 3, ..., k)

- significance level ‘[';, for a pre-assigned ./ , be

,&r =1 -(1-L) (1,2.27)

r=2, 3, OQQ,k
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where (r = 1) is the number of independent comparisons which can

be speéified,among the r means.

Duncan's Multiple F-test

Duncan, in this test procedure, hasvmade use of hoth the range

test and F~test by setting again the level of significance based on

D.F. as desgribed above. According to Federer, Duncan's test

" procedure can be set up in three stages of which we will give the

first two - the second being the most important for our purpose:

Stage I: The firs£ stage, as pointed out earlier, is 1@ fact

(1)

(i1)
(111)
(iv).

Just the multiple range test but with different

significent ranges. The procedure is as follows:

Compute the quantities R; = J2(k - l)FI (r -1, T)

. ~r. o
forr =1, 2, ..., k, where, for a pre-assigned_‘f ’ ,"Cr
is defined as (1.2.27) and f is the D.F. associated

. . 'y »
with the pooled error variance A .
. , R e
Compute the quantities R = R} A (r=1,2, ..., k).

®)

Compute the differences between the ranked means.
Finally, compare these differences of the ranked means

with R | (r=1, 2, ..., k) and determine the group of

1ike means by following the criterion: "The differences

between any two means in a set of k means is significant

provided the range of each and every subset which contains
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the given means is significant”.

Stage Ii: Stage II 1is the correction of the prediction made

in Stage I. The procedure for correction is
summarized as:

(i) Compute the sum of squares among the combinations of
the means bracketed together in the prediétion.

(i1) Compute the least significent sum of squares

,Xé_z %-Ri (r=1,2, .., k), and

(ii1i) Correct the predicfed groups by foliowing the criterion:

R "The difference between any two means in a set of
kl( < k) means is sigﬁificant provided the variance
.6f’each and every subset which contains the given means

is significant according to an J[r-level F~test where

r is the number of means.in the set”.

As pointed out garlier, the thifd problem that can arise after
the hypothesis of equality of mean vectors 1is rejected is to classify
an individual as belonging to one of the .k distinet normal p-variste -
pofulatiops or aﬁpopulation as belonging to one of the clusters.
Assuming & priori thet the individual, with measurements Cxl, Xos oo )‘p)’
does belong to one of the k ‘populations, Rao (1948) comﬁutes, where
we ignore the & priori probabilities, the linear discriminant scores

for the rth (r = 1, 2, ..., k) population as
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p P P | -
~no J= 1 _ ij - = _ -
Lp= Z ir)xj -3 L wUE L3 (242.26)
i : “i=1 o i=1 j‘-'-l . ’

and then suggests assigning the individual to the sth population if

~

A
Lg is greater than every other L, for r (#£s)= 1, 2, ses, ko

We have taken up, in Chapter Four, the problem o‘f assigning a
population known to belong a priori to one of the clusters and have
suggested two alternative procedures - the first similar to the L-functions
and the sécond based on the statistic T2.' Final 1y, an J'.].lustrat:i:ve

k
example is given to demonstrate the theory,

le¢3 Generalized Variance and its Moments

W:les (1932) defines the genera.lized variance to be the determinant
of variances and-cova.riances and considers it to be a measure of the
spread of the observations, He thén presents the hth moment of the
gveneralized variance in the null case as follows:

If S be the sample variance-covariance matrix with n D.F, and

ﬂ(p x p) = E(nS), then the hth moment of IAI (=|ns} ) in the

central case is g:.ven by Wilks (1932)

E [_‘A‘h_] Ph TI' “(n + 13 h)/“(ﬁ_l_l—'i (l.v‘3.l)'

Further, let k (121, 2, eeoy p) be the real and non-negative roots

of. the determinantal equation:
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|2 -Kzﬂll -0 | (1.3.2)
where T = \\ i(/"}r '/"i)(/":j /’)“ and /'; X Z/’ir

r=1- ’ r=1

Assuming now ki =0(i=2,3 ..., p) and ki # 0, Anderson (1946)

gives the he«th momenﬁ of | Al in the non-central linear casé as:

yl =-+1h) ﬁJilm*h+ﬁ
E[lA'h] =2Ph eXP(-% o %W Zgjj R 1)
, - - 3 3=0 € 9+ |3
- ' (1.3, 3)

Making use of these moments we have found in Chapter Six the

distribution of the determinant of the sum of products (S.P,) matrix
A in the non-central linear case for some particular vaiues of D,

namely p = 2, 3, and k.

1.4 Problem of Elgenrdots: of Certain Determinantal Equations

It is shown in Section (1.2) that, for testing the hypothesis
of the equality of mean vectérs 6f samples drawn from k p;variate
normal populations, the four statistics (1.2.8), (1.2.16), (1.2.21)
and (1.2.22) can all be expressed as funétionslof‘the roots of
certain determinantal equations., There are two other tests of
hypotheses due to Roy (1939) and Hotelling (1936) which also result
in the roots of thé'saﬁe tyﬁe of determinanéal eéuations with, of

course, the use of different matrices.



Roy's effort (1939) to seek a statistic to test the equality

of dispersion matrices » Zl and Z o of two p-variate normal:

populations finally led him, applying the same technique as Fisher's
(1936), to test, instead of one, p Studentized statistics

Ao A 5y oo Ap (all positive in this case) which are the p

-roots of the determinantal equation in A :

\ o v - - Ao \ . (1.4.1)
or alternatively, by substituting e {\ i ’\i (1;1,2,...,p), the
roots of ‘ nlwl - e(n L FoNM ), ' (1.k.2)
where nlwl and n2w2 .are the 8.P, matrices estimated from the respective
samples.

To. test the hypothesis of the independence of two sets of variates, |
such as p measurements' of physical- characteristics such as lengths and
breadths of skulls and g measurements of mental charac‘ceristicsl such as
sbpres on iptelligence tests, Hotelling (1936) considered the determinantal

equation of the roots Qi(i =1, 2, vee, D) and (p < q) of

a ,
¥_W oW - =0 o (1.bk.3)
Pa qqa  gp PP : A
-1 -1 -1 '
or |W' W' W -e[(w' - )+ W W' w'}=o (1.4.4)
PQa 49 g9p PP P4 qq qp_ Pq qq qp. A A
-1

~Here W! W' W' and W' are independent S.P. matrices with q and
Pq qq qp bp



(W - g -1) D.F, and N is the size of the sample of individuals
drawn from'a. (p + q)-variate normal population with covariance matrix Z °
Further W;)p is the'S.P. matrix of the sample observations on the

p-set of variates, W' that on the g-set and W"l that between the
aq q

observations §n the p-sét and those on the g-set,

Thus in multivariate Anova (Pillai, 1954) the three tests of
hypotheses above, i.e. I, "equality of two dispersion matrices',
11, "equality of the p-dimensional mean vectors", and III, "thé
iﬁdebendence between a p-set and g-set of variates" depend,'when the
respective hypotheses to be tested are true, only 6n the roots Gi

or ¢i i1=1,2 cees { ) respectively of the determinantal equations

|a-e(+0)]= o (Loka5)
and |a-gc) =0 (Lokeb)
where A and C are independent S.P. matrices based oﬁ sample
observations with n1 and n,

D.Fo respectively and can be defined
differently for different hypot,hes.es.‘ |

-The common standard form (Nanda 1948, Roy 1957) of the joint
distribution of the eigenroots of (lo4s5), under the respective_

hypotheses, is

L ¢ i 4
cmmt) | | 6, (1-86,)" 17 717 (8; - 8.) T o, (Leha?)
' © = : © o i:2 0 32 S

£OR 0 0 0,4 oeo ¢ © « 1and L defined as in (1.2,11), where



C/Zﬂ \—‘(Zm+2n+e+ 1+l)

c(m,m, { .) = (Loke8)
T Ts T 1o
il S |

) s I, n can be different in the different situations defined below
in (le4el2) and (lehel3)e
" The common standard form (Hsu 1939) of the joint distribution of

the eigenroots of (l.-l...é), under the reépect.ive hypotheses, is

i-1
c(asn, €) ” J“(uw"m‘“"’l’ﬂ TT ¥, -4 TTM
: i=2 j=1 BEEY
(Leke9)
f0r0£¢‘li~¢25 voe g;‘ecoo )

where 0 , c(m,n,ﬁ) are defined respectively as in (1.2.11) and (l.l+.8)
and ¢ , m, n can be different in the different situations defined
below in (lehol2) and (lekhel3)e

Finally, Nanda (1948) gives the limiting form of (L.k.7) by

. ¢ . i .
setting 6, = ;i and then letting n tend to infinity. The limit is

k(L ,m) W c, exp[ Z_ )ﬂ ﬂ (c, - c)ﬂ de,  (14:10)
, ey s

i=1

‘ 0 :
¢ . .
where K({ ,m) = 11/2/ U r(-%li—'*—%'—t—]’-) i—‘(%) (Leholl)
. - i l - ) : : . .



=22

and £ is the same as in (1.211). Again { , m assume different
values defined below in different cases. ‘

Finally, for the three tests of hypotheses I, IIVand 111, we can
sum up the values of § , m, n for respective hypotheses as:

I. & =p,m= %(nl -p-1),n= %(n2 -p=1), (1.4.12)

II. Ifp¢n,? =p,m=3n -p-1), n=30n, -p-1)

o if P>n;, Q‘= n,m= %‘p -n - l), n =%(n2 -p -(i?k.IB)
III. Same as 11 . :
No great headway has been made so far in finding the distributions

of the various statistics we have discussed. The exact or approximate
distributions of two statisﬁics Tﬁ and /\. have already been discussed in
Section (1.2).' Below is the brief account of the other statistics:
Royv(l9h3) proposed thé statistics - largest, smallest or intermediate
eigenrooté of the determinantal equation (1.4.5) to test hypothesis I, II
and III. Roy (19h3) and Nénda (1948) have both'worked'out the distributions
both for the limiting and non-limitihg cases. Their tabular values have
been given by Pillai (1957) for the cases £ = 2(1)5, m = 0(1)4 and
n=5to 1,000 both at 5% and 1% significance values.
Pillai (1954, 1955, 1959) has succeeded in giving an approximation
to his statiéﬁic V defined inA(l.2.22) and has been able to tabulate it
for L =2(1)5, m=- 5(.5)5(5)80 and n = 5(5)80. Nanda (1950)

has also gi#eﬁ its exact distfi5u£ion for the sﬁecial case when m = O.
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We have also been able to work out the exact distributions of
various statistics for_certain special cases in Chapter Seven. We
have been able to give the distributions of all the staéistics for
the cases a = 2, 3 in the form of definite integrals which can
be easily evaluated by éome numerical method. The limiting
distribution of Roy'!'s statistics by another method of integration
.have been found and particular cases evaluated. Lastly the limiting
distribution of Wilks-lawley U-statistic for the cases 2 = 2, 3 and 4

has also been found.

1.5 Note on Analysis of Variance

Under both the Models I and II (Eisenhart) of Anova one is faced
with two typgs of situations - firstly when thé cell frequencies are
equal and secondly when they are unequal. These cases are usually

called balanced and unbalanced respectively.

Balanced Anova

For tests of significance in both uni;ariate and multivariate
balanced Anova of Model I and II and further for finding confidence
regions again in both univariate and multivariate balanced Anova of
ﬁodel I, there is not much difficulty. One can refer for such
univariate problems to the various standard books, e.g.‘by Federer,

Fisher, Anderson and Bancroft, Bennettand Franklin, Snedecor, Kempthorne
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and othérs, whereas for the multivariate problems sufficient material
has been developed by Roy and Bose (1953), Roy (1955, 1956), Roy and
Gnanadesikan (1959, I and IT), Tukey (1949), Bartlett (1934, 1938,
1947), Kempthorne (1952), Rao (1948) and others.

The real difficulﬁy arises in both univariate and multivariate
problems when{ in Model II, one is finding the confidence regions for
the complex esﬁimates'(Satterthﬁaité, 1946) of the variance components,
since in that case their correspdnding distributions are not known.

To overcome this difficulty in univariate problems various methods,
approximate or oﬁherwise, have been suggested. The more prominent
amongst them are those due to Satterthwaite (1941, 1946), Brose (1950),
Fisher (1935), Roy (1954a, 1954b, 1956), Roy and Bose (1953), Roy and
Gngnadesimﬁ (1957, 1959 I and 11), Cornfield (1953), Ramachandran
(1956) and Grayball, Morton and Godfrey (1956). Since we have made use
of Satterthwaite's technique in our work in Chapter Eight, we briefly
sumarize what hé did while finding the distribution 6f complex estimates:

Satterthwaite's Procedure

Let Vv, be the mean squares independently distributed as Alxi

b4
where }ti is central chi-square with fi D.F. The procedure is to

: . 2 2 .
approximate ; (ai\:lL), ai being constants, by Xf ?_E__ s 8 being
chosen.so that the first two moments of the former are equal to those

of the latter.

Therefore,
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E[ Z (aivi)] ~SE— E(Xf ___fg f —ot (1.5.1)
i | :
nd ' \ \
2
[ Z._(aivi) - B( Z(aivi)] = 'zf—'e_ 2f = g—';-,—- | (1.5.2)
1 i - ' '

From (1.§.1) and (1.§.2) we have:

[ZE(a )J/ZEE(V - 507, [Z(av- )/Z( 71)

Since v‘"i are not known, he suggests to substitute for them their

respective estimates and gets:
2 ai 2 ‘
£ é[ Z_ (aivi)] E (= Vi) (1.5.3)
1 - o ' i _ .

If is again unfortunate that very little has been accomplished in
analogous multivariate problems; " Roy and Gnanadesikan (1959, I and II1)
have recently been able to give a lead,but their approacﬁ ié under thevery
restrictive assumptions of ﬂ (p x p) = V—i Z(p x p), i.e. of
.proportional dispersion matrices,proposed usually (Federer, 1951) for

certain types of genetical problems, Wwhere ZZ i\is the covariance
matrix due to the ith factor.. '

Unbalanced Anova
The problem is considerably complicated for both the cases of uni-
variate and multivariate unbalanced Anova especially of Model II. In

the univariate balanced case the mean squares were independent and

distributed independently as chi~-square but the situation now is worsened
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by the fact that the mean squares are not orthogona‘i and hence are

not distributed as central chi-squares. They are in fact distributed
(Anderson and Bancroft, 1952) as sums Z (A . X,i) where A - are
functions of the variance components T and the number of observa-
tions, and each X«f- is a central chi-square with 1 D.F. Since the

/\r are distinct, we cannot apply the additive property of independent
chi-squares to the sums Z (A - xi)
r
Similarly for corresponding multivariate situations s the M.P.
matrix is no longer distributed as a Wishart matr:ﬁc but, as proved in
Chapter Eight, is distributed as a sum Z (W ) of independent.

Wishart matrices W each distributed as W [ZZ J If these
Wishart matrices Wr had the common corresponding parameters, i.e.

Xl = Zl 2 = ..;. = z (say), then there would be no problem. We
could then simply use the additive property of independent Wishart
matrices and would get another Wishart matrix.

_Wé have attempted, in Chapter Eight s bto find the approximate

distribution of mean squares or M.P. matrices. We have determined
first th;a values of the ébove quoted quantities A r and Zr ‘and then

have applied Satterthwaite's technique in approximating the distri-

butions of sums Z (A r X,f_) and Z (Wr).
r r



CHAPTER TWO

ANATOGUES OF DUNCAN'S PROCEDURE IN FORMING CLUSTERS IN

MULTIVARIATE ANOVA

2.1 As already stated, we sometimes come across the following type of
problem in anthropology and the biological sciences, namely this, certain
multivariate populations are found to be distinct, and we want to find
out which populations are most nearly alike and which are least alike,

To do this, we propose to extend Duncan's procedure of the multiple

- comparisons! tests uéed in univariate Ariova and to seek a departure

frc;m Rao's é.nd Tocher's subjective approach. We give below first a
different definition of the cluster and then, after clearing some

preliminaries, suggest a procedure based on probabilistic considerations.

Definition of a cluster:

"4 cluster of populations is a group of populations having

the same vector mean."

2.2 Preliminaries and Procedure

Suppose we are given k p-variate normally distributed populations

‘assumed to have the same dispersion matrix ZZ e Let xirh

(i=1,2, eoeyp; T=1,2, oo, kand h =1, 2, ..., Nk) be the
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observation of the ith trait on the hth individual from the rth
sample of size Nr drawn from the rth population. Further, let

B and W be the between and within independent S.P, matrices, with
nl and n2 D,F. respectively, compu#éd on the basis of k p-variate
samples defined respectively in (1.2.2) and 1.2.1.).

Supi)ose also the hypothesis of homogeneity of mean vectors of
the populations has been réjected by the use of Wilks-/M statistic
(1.2.15) and Bartlett's approximation to its probability (1.2.18).

Knowing thus tha_.ﬁ the populations are heterogeneous, we proéeed
to form clusters. Before doing this we make the following preliminary
remarks:

Since we have.made frequent use of both Studentized Dg and Ti,
it would be appropriate to modify them to an easily workable form.

To do this we derive first the significant discriminant scores discussed
already in Section (1.2). ‘WE sum the matter up briefly in the following
steps: | |

(a) Find, by the method given in Appendix A, znonsingularl

matrix L(p x p) and the diagona.i matrix @(p x p) as the

solution of (1.2.24). -

(b) Test the significance of g, by the formula (1.2.25).

Without losing generality suppose the first‘p'( £ p)

of the p eigenroots are signifiéant and the last (p - p")

are non-significant.



(c)

(a)

(e)
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Discard the last (p - p') eigenroots, and hence the
corresponding eigenvectors, because they in fact account
for random variation. °

Obtain the matrix K(p' x p) of the’eigenveétors whose

first row corresponds-to the largest eigenroot, its
second to the second largest and so fofth to the smallest
one left, namely the p'th.

Thkiﬁg ft(k X p) to be the matrix of k sample mean vectors,
using columns for characters and rows for sub—populationv
samples, compute the matrix im(k X p'), defined as in
(1.2;26), which is the matrix of siéhificant discriminant
scores,.aﬁd whose first column gives the discriminant score
corresponding to the largest eigen value, the second column
to the second largest, and so forth., With these scores,
the Studentized statistics D° and T2 reduce from (1.1. 2)

2
and (1.2. 6) respectively to:

p' _ 2
D§= Z T, -Yiz? (2.2.1)
iz ' I
. . 1 k
and lec= {'. . Nr(’fir-fi)?‘ (2.2.2)
izl  r=l1 o ‘ ‘
k Kk
where T, = Z (T, ) Z (§) (2.2.3)
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Note: The same technique works for the corresponding classical D2

Statistic Used

For testing the hypothesis of equality of the mean vectors involved
in a cluster we suggesﬁ an analogue of Duncan's Stage 2 of the ﬁnltiple
E-test. He computed the variance of the meané involved in a predicted
group of like means and tested it against his least significant sums
of squares with type I error based on D.F. In the multivariate situ-
ations as the analogue of his "variance of the means involved in a

cluster” we propose an express:i.on Iﬁ , where kl( £€k) is the number
) 1

of sample mean vectors of the populations involved in the predicted

cluster. The distribution of Ti , under the null hypothesis, is
1 .

known in the classical case to be central chi-square with p(kl-l) D.F.
and in the Studentized case to be an asymptotic expression involﬁing
chi-sqnares as shown in (1.2.14), where again the D;F. for chi-square
is p(kl-l).'
Eggg; I£ should be noted that we have used p instead of p' for
defining degrees of freedom, since (Rao, 1948) the effect
of all p correlated variates has been taken care of by the

discriminant scores.

Level of Significance or Protection Level

In selecting the level of significance or protection level we
again propose to follow Duncan. In order to keep the two types of

errors well balanced, we shall let the type I error increase with
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the increase in the number of populations in a cluster. Thus
with k (¢ k) populations in a ciuster, for a pre-assigned
significance level [ , we shall fix the level of significance
.to be:

L K * 1-(1-d )kl-1 | (2.2.4)

Preparation of Tables for the new Levels

- Since the statistic Tﬁ involves a cehtral chi-sqﬁare for both
the Studentized and classical cases, we ﬁeed to modify the central
. chi~-square tables for both S%Iand 1% significanée leiels and also for
different values of k = 2(1)(20), To do it, we proceed as follows:

The table 1 below gives the variqus significance levels 1 - Y'k
(=4 , or = Q) for k = 2(1)(20), for pré-assigned significance
levels 5% and 1%.

Again table 1 gives under the column X the normal variates X
corresponding to each levei of significance Q. X has been used in
the computétion of tabular values of chi-sqpares. To compute these

X values, a linear interpolation formula:

£(x) - £(x)) ,
X= XQ+ m) (Xl - Xo) (2-2.5)
has been used where X is the normal variate to be determined between

the two known normal variates XO and Xl and where also £(X) (= Q) is

a known quantity and f(Xo) and f(Xl)’corresponding respectively to

Xo and Xl’are_taken from table I of Hartley and Pearson, 1954.
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Table 1
- 5% 1%

k| ¥ =1=-Q|1-Y, =Q X | ¥ =1-Q|1 -, =Q X

2| 0.9500 0.05000000( 1.64490 | 0.9900 0.0100 2.32630

31 0.9025 0.09750000] 1.29600( 0.9801 0.0199 2.05584
4| 0.85737500 | 0.14262500| 1,06860| 0.970299 0.029701 1.88523
51 0.81450625 | 0.18549375( 0.89450| 0.96059601 | 0.03940399 | 1.75766

61 0.77378094 | 0.22621906| 0.75136| 0.95099005 | 0.04900995 | 1.65455

7| 0.73509189 | 0.26490811| 0.62830| 0.94148015 | 0.05851985 | 1.56729

8| 0.69833729 | 0.30166271| 0.51960 | 0.93065349 | 0.06934651 | 1.48068

9| 0.66342043 | 0.33657957 | 0.42180 | 0.92134695 | 0.07865305 | 1.k1421
10| 0.63024941 0.36975059 0.33250| 0,91213348 | 0.08786652 | 1.35403
11| 0.59873694 | 0.40126306 | 0.25008| ©0.90301215 | 0.09698785 | 1.29891 -
12 | 0.56880009 | 0.43119991 | 0.17330| 0.89398202 | 0,10601798 | 1.24800
13| 0.54036008 | 0.45963992 | 0.10140| 0.88504220 | 0.11495780 1720058
1k | 0.51334208 | 0.48665792 | 0.03350 0.87619178 | 0.12380822 | 1.15617
15 | 0.48767497 | 0.51232503 [=0.03090 0.867&2986 0.1325701% | 1.1143k
16 | 0.46329122 | 0.53670878 |-0.09220 [ 0.85875556 | 0.1hk12klhll | 1.07476
17 | 0.44012666 | 0.5598733k [-0.15065 |- 0.85016800 | 0.14983200 | 1.0371T
18 | 0.41812033 | 0.58187967 |-0.20670 | 0.84166632 | 0.15833368 | 1.00134
19 | 0.39721431 | 0.60278569 |-0.26060| 0.83324966 | 0.16675034 | 0.96710
20 | 0.37735359 o.6226h6y1 ~0.31244 | 0.82491716 | 0,1750828% | 0.93428

LA .
PO
Fi 1
ouls %=u __§2£S__

°-{o ’g:\o

o.os.- ‘,\: lo.
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Further, the study of the behaviour of the chi-square curves
(Fig. 1) for various degrees of freedom is very helpful.

From Fig. 1 it is obvious that with the increase‘of degrees of
freedom, chi-square curves tend to be syﬁmetrical while for the smaller
degrees of freedom they lack symmetry. Thus direct linear interpolation
of (1 - Q) values along with the corresponding chi-square values
(especially for the smaller.degrees of freedom) cannot be expected to
lead us to accurate results, To keep the accuracy for the smaller
degrees of freedom and also the uniformity of method we have decided to
use, instead of (1 —'Q) values; the corresponding normal variates X shown
in table 1.

Then, the Aitken's Itergtive interpolation formula has been used
to compute the tabular chi;square values. We give below a demonstration
of the method for 3 D.F. against the normal value 2.0558L4., Then some
of the values have been actually computed both by the use of (1 - Q) values

~and the corresponding X-variates and have been listed below in table 2.
A brief glance over the table 2 will show that as the degrees of freedom

increase, both methods lead approximately. to the same result.



Demonstration of the Method

Let D.F. = 3, X = 2,055844 and x,2 corresponding to X is to be

found.

X X2 ~ X-X
1.6449 7.81473 | -0.410944
1.9600 | 9.3484  9.81489 ~0.095814
2.3263 | L3S  9.94373 . 9.84860 0.270456
25758 | 12.8361  10.03228  9.84872  9.84846| 0.519956

Thus adopting Aitken's iterative method for interpolation, the
new chifsqyare valﬁes havé been éomputed at various significance levels
“évk for k = 2(i)2Q and D.F; = 1(1)30(10)100 for pre-assigned L = .05
and .0l. We recérd them for use in Aﬁpeﬁdices C and D respectively.

- Table 2
D.F. l1-Q 7C2-corresponding X-normal: )ﬂz-corresponding
to Q-values variates to normal variates
3 .9801 9.71768 2.05560L4 9.848L6
10 .9703 19.88597 '1,885233 19.95269
25 .9703 39.90252 1.885233 ' 39.92268

Finally, to find in the Studentized case the tabular Ti values for

any k, we have to use the formula (1.2,14) and substitute in it the newly com-

puted chi;square values with n, p D.F; n, and n

, are the degrees of freedom



respectively for between and within independent covariance matrices and
p is the number of characters. Since-ouf illustration which is presented
for demonstration concerns the studentized Ti, its tabular values needed

for the purpose for k = 2(1)5, n, = 1(1)4, p = 4, and n_, = 29 at 5% and

2
1%‘significance levels are tabulated approximately and presented below

in table 3.
Table 3
k=(n+1) | D.F.=p(k-1 2 2 = T2
2 b 9.4877 |13.2767 | 12.137m | 18.2030
3 8 13.4428 | 18,1825 16.7783 24,0936
b 12 17.1889 | 22.7746 | 21.7064 | 29.9100
5 16 20,8200 | 27.1912 25,6131 35,6187

Note: .The tabular T2 values have beén computed on the assumption that

k

terms involving the third and higher powers of ;l are negligible,

2

In fact they may affect the fourth significant figure.

2+3 The Proposed Stages for Forming Clusters

We. propose two stages for the purpose,

Stage I comprises three

steps wherein we predict the possible clusters. Stage II then corrects
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the predictions on some probabilistic basis. So far three alternative
methods have been proposed for Stége II. The first has been discussed
with illustration in this very Chapter and the other two will be
described in Chapter Three. The methods are as follows:

(i) The Duncan-Hotelling test.

(ii) | The 'Extreme Distance from the Mean' - E-test.

(iii) The 'Largest Distance' - R-test.

Stage 1I: Prediction

Step 1: Compute ( ; ) Mahalanobis distances by the formula
(2.2.1) vetween all the pairé §f‘k populations and set up the table
of distances, where the distances of each population from the remaining
ones are arranged in order of increasing magnitude. Such a table
(like Table 7) will help us to visualize which of the populations are

éloser to a pérticular one and which are farther away.

§§§E_g: Represent graphically the significant discriminant
scores of each population. For p' » 2, they should be represented
pairuwise on plane graph paper., Relying largely on the plane rep-
resentations of the most significant'disqriminant scores, visualize
which of the populations cluster together and which of them lie
farther apart.

Step 3: Step 3 deals with the prediction of the clusters on

the basis of the first two steps. Keeping in view the table of
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distances and the graphic plane representations, estimate roughly
the 'would be' clusters = closeness being the only criterion for the
populgtions to form a predicted cluster, The following two points
are worth noting: |
(i)  That a wide range should be allowed to the
clusters since giving a narrow ranée might
result in the loss of a population lying

actually in thevclustef;

(ii) That overlappings should be allowed since

) | sometimes one is uncertainas to whether to
include one (or more) population(s) in one
or the other—ciuster(s). In ali éuch cases
it is advisable to iﬁciude the doubtful

cases in all the neighbouring ones.

Stage II: Correction by the Duncan-Hotelling Test

No generality is lost if we explain the procedure for only one

predicteéed cluster having k

1 populations in following steps:
(1) Compute the statistic Ti by the formula (2.2.2).
L . 1 . . .
(ii) Compare the computed Ti with the tabular T2 where J:k is
. 1 Lk : 1
1
already defined as in (2.2.4).
(iii) If 7° is less then or equal to 2 » 8ll the k, populations

k L
1 ky
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are concluded to form a cluster, Otherwise, split the
ki populations into k1 sets of'(k1 - 1) populations each.

(iv) Compare the computed T%kl-l) values for each of the kl

sets with the tabular ?f N Of these some may be
ki_l _

significant and some may not be. Those non-significant

will yield clusters with the corresponding number of

populations involved in them. Those for which Tﬁ 1
l-

values are significant are further split into (kl -1)

sets of (k1 - 2) populations each and their corresponding

T2 values are compared with the tabular 72 . In
g

this way the process is continued till we arrive at the

clusters of the type defined.

Thus the working criterion analogous to Duncan's can be presented

as: "A group of populations will form a cluster if 72 computed for
ky

the mean vectors of the kl populations is non-significant and also the =
of each and every set of populations of which the k1 populations form
a subset is significant according to -[r—level Ti-test for some pre-

assigned [ , where r is the number of populations in the set."

Note: The above procedure is for the Studentized case. In the classical
case the procedure is the same except for the use of tabular chi-

square values in place of T?—values.
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2.4 Demonstration of the Above Procedure by an Example

To demonstrate the theory we present below an example where the

samples have been drawn on the basis of nested sampling:

Description of Data

Data has been taken from the 'Forest Products Laboratory Division,
Forestry Branch, Department of Norﬁhern Affairs and National Resources,
Vancouver, B.C., Canada'. Shipmente of logs of various species of
trees from various locaiities of Canada were received. The interest lies
in comparing the speqies on the basis of static bending properties. For
this purpose the following six measurements were taken at several loca-
tions in each tfee:

Xlz Modulus of elasticity;

XZ: ‘bek tq the maximum limit;
X3: Fibre strength at proportional limit;
Xh:' Modulus of rupture; |
XS: Specific gravity at oven dary;

and Xé: Work to the proportional limit.

Note: While finding the values of the determinants of the S.P. matrices
to be used for tests of significance, it was found that they came
out to be zeros, which enabled us to conclude that the variables
were functionally dependent. The fact was actually verified when

the physical interpretation was known. The last two variables

X5 and Xé were found to be functionally dependent on the

first four X s, X, , X, , and X

1 2 3 )y We thus
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discarded X_ and X6 and continued our work on the

p)
variables Xl, X2, X3, and Xh.

The species taken for the purpose are listed as follows:

(1) Yellow cedar, (2) Lodge pole pine, (3) Western larch,
(4) Western yellow piﬁe; (5) Western white pine, (6) Western white
spruce, (7) Sitka spruce, (8) Amabilis fir, (9) Western hemlock,
(10) Ené?lman spruce, (11) Western red cedar; (12) Coast mature Douglas
fir, (13) Interior mature Douglas fir, and (14) Coast second growth

Douglés frir.

~Note: ~ In what follows we will call each species by its corresponding

number instead of specifying each time its namé.

Description of the Model of Nested Sampling

We have the mixed model of wmested sampling - with fixed species
and random localities and locations on trees. Further, the number of
localities and locations is not uniform in all cases.

Let X be the observation of the ith character on the ¢ th

ihjkel
location of the t-th tree belonging to the jth locality of the hth

species. In place of observation X we were provided with the

ihjtt
means Xihjt along with the corresponding number of locations. The
model for such data would be:
X . =p#4é
st /:+:—h+7z )+3t(hj Cast (2..1)

) is a four dimensional

where (l) zh,jt_ (thJt’ ceey ll-hdt

mean vector of locations on the t-th tree from .

the jth locality of the hth species,
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(2) ¢/ is the four dimensional mean vector of the
" populations and X ....is the corresponding sample

statistic.

(3) éh is again the four dimensional hth species fixed
- effect, but for the sake of illustratbn we will take
it as random, éistributed normally with mean vector

zero and covariance matrix 215:

(&) 'Eﬁ(h) is the four dimemsional jth locality within
" hth species random effect, normally distributed with

mean vector zero and covariance matrix :EZ .
' n

: is the four dimensional t-th tree within hth
() 84(ns) |
species from the jth locality random effect, normally

distributed with mean vector zero and covariance matrix EZ‘

e
(6) & is the four dimensional mean error vector of Ehjte

where each is random and normally distributed with

Enste
" mean vector zero and covariance matrix ile
(7) Finally, éh’ Eﬁ(h)vand'j‘t(hj) are independent and
B(&y) = BB ,0) = B(L ) = O
Our model is Jjust the—aﬁalogue_of'thé univariate‘mo@el on mested
sampling with unequal ceil frequencies presented by Gangﬁli (1941).
We follow his method for finding the cceefficients of the e#ﬁecteé M.P.

matrices and end with the Table 4 of analysis of variance.
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Table 4
Source of Variation D.F. S.P. Matrices E(M.P. Matrices)
Species 13 A 21_+~13.381§Zs
' [
_ +81.27Z_n+ 216 7],
Localities within species 29 B ZZQ? 13.791515
+ 81.26 Zn
Trees within localities 217 c [+ 13.372 ﬂ_&
c .

¥* .
Locations 3248 D ZZ

. o e

* . .
We do not have this row in our example since we have only the mean

observations on each tree.

Here, A = (ZE:[;nh...(Xi heoo X ...)(Xi heoo” X ...ll)
- e} 1°°% . "2 2"

and (1%0‘= 10675527 38557 30971647 53851101
o 38557 305 156717 273320

30971647 156717 121780733 2010125951

_§3851101 273320 201012595  343055522];

ana (2) - { 083308 137 1o3ea 316709
* 1397 21 6231 12721
1936541 6231 7821366 9l69922
3167949 12721 9k699e2 15396656J 5
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and € = (z Z Z "hjtfzilhjtf Xilhj...)(iizhjtf zizh,j..))
h 3 t

and (-2-5;’—7)= 299438 558 593421 994326
558 7 1496 313
593421 1496 21011669 2575188

L99h325 313 2575188 4281234) .

Note: Referring back to Table 4 showing the analysis of variance,
we notice that the corresponding coefficients in the formula
for expected values are gpproximatelj equal. Thus we will
treat it as a problem of nested sampling with equal numbers in
the sub-classes and will proceed with the usual procedure of

tests of significance.

To test the locality effect,'W1lks'zﬁ&4 -criterion was applied
to the independent S.P. matrices B and C, with 29 and 217 D.F.
respectively, and thellocality effect was found to be significant
by Bartlett's approximate test (1.2.18). Similarly the species
effects weré found to be significant uﬁon taking the independent
S.P, matricest and B respectively with 13 and 29 D.F. From this

we may conclude that the species are heterogeneous.

Start of the Problem

After concluding that the fourteen species are heterogeneous, we

proceed to our main problem of forming clusters as follows:
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We treat A and B respectively as the between the within

matrices with 13 and 29 D.F. and present below in table 5 the

means of the characters of the species along with the corresponding

sizes:

Table 5
Species No. Size ii ié ié EL
1 264 1311 8.04 3664 6527
2 78 1285 5.35 2989 5657
3 158 1648 7.85 5002 8609
4 212 1137 5.45 3334 5718
5 324 1183 5.13 2877 41818
6 93 1113 5,76 26Uk 4831
7 380 1368 4,84 3078 5408
8 436 1341 5.57 2999 5460
9 200 1477  6.68 L4150 6952
10 90 1251 5.36 3079 5662
11 207 1046  L4.87 3102 5302
12 458 1650 6.97 Lho1 . 7548
13 38 1647 6.59 k099 7351
1L 260 1583 7.4l L4285 7697
We solve for L(4 x 4) and B(4 x 4) the equation
Ay, By-1
11[(130(55) } =j§1a

by the method described in the Appendix A, and get:

(2.4,2)
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L(k x 4) = | -0.001064336  -0.158567182  -0.00006700L 0.000590678
0.001162664 0.369050519 0.000134634  ~0.000497864
0.001336923  -0.069180685  -0.000181461  -0,000028873

| 0.000325045  0.023168191  0.000669918 -o.booasohhsJ

and (4L x 4) = —25.914, .0 0 0] ’]
: 0 11.8, 0 0
0 0 5.65 0

L’o 0 0 1.65

Applying Bartlett's modified first approximation test (1.3.25) we
test the significance of the eigenroots @, i.e. of 25.9k, 11.8k, 5.65
and 1.65, and find 1.65 to be non-significant at the 5% level. Discarding
thus the last row of L(4 x 4) which corresponds to 1.65 s we get the
matrix K(3 x 4). Now, if ft’(lh x 4) be the matrix of mean vectors of
species given in tﬁe last foﬁr coluﬁns of table 5, we get, by the
formula (1.2.26) the matrix T x 3) of significant discriminant scores
wh_ich aré preseﬁted below in Té.ble 6 é.gain, along with their corresponding

sample sizes. (See Table 6, following page.)

Finally we compute the distances between the (112‘) pairs of species

of trees by the :érmula (2.2.1) and present them in Table 7 - called

"Table of Distances", arfanginé the distances of each population from

‘the femaining ones in order of increasing magnitude. (See Table 7, page 47.)
Also we plot these points pair-wise, i.e. (-Y-l, YZ)’ (Yl, fB)v and

(?é; YB) on the plane graphs which are shown reépectivély—in Fig;z,

Fig.3, and Fig.4.
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Table 6

Species No. Size Yi ?é ?3
1 26L 0.94597083 1.72039748  0.34593229
2 78  0.91725592 1.07290071  0.63864788
3 158 - 1.74328671 1.21889759  0.50048469
4 212 1.07183611 0.95381032  0.36949996
5 32k 0.58531407 1.24622259 0.56758425
6 93 0.57211123 '1.38532958, 0.4674T7816
7 380 0.755157T49  1.12082710 0.77524229
8 436 0.70890607  1.31124555 0.76355287
9 200 1.19390269 1.28747391  0.55733533
10 .90 0.95036642  1.04299783  0.57671666
11 207  1.03365387 0.80245391  0.34345856
12 458  1.29139812 1.34851322  0.68878220
13 348 1.26791986 1.2k270782 0.78926436
1k 260 1.40109551 1.31631867 0,60461486
Note: The column under Y. corresponds to the largest significant

1

discriminant score, the column under Yé

to the third largest significant

to the second

largest and that under YS

score,
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Forming of Clusters

Stage I:

In Stage I we predict the clusters keeping before us Table 7
and Figures 2 3, and L, Relylng on the plane representation of'the
most significant discriminant scores Y1 and Y2 and then following
the criteria discussed 1n Step 3 of Stage I in Section (2.3), we
predict the following clusters: | )

(i) 2, 5, 6, 7, and 8.

(i1) 2, 5, 7, 8, and 10.
(1i1) 2, 4, 10, and 11.
m(iv) 2, 4, 9, and 10.
“(v) 9, 12, 13, and 1k,

and (vi) 1 and 3 by themselves.

Stage 1II:
We now correct the above predicted clusters for each of which
we have a tsbular set up given below, and from them we cobtain: the

corrected clusters.



-52-

Table 8
Computed
Populations 2 D.F. Tabular ;i Conclusion |Cluster
involved k k
5% 1%
2,5,6,7,8 | 34.47 16 25.6131 | 35.6187 | Significant
2,5,6,8 19.89 12 21.7064 | 29.9100 | Non-significant|2;5,6,8]
2,5,6,7 L1.43 " o oo Significant
2,6,7,8 ho.sé n n " n
2,5,7,8 34.21 n n " Significant
5,6,7,8 27.91 | " " n -
2,5,7 20.50 8 16,7783 | 24.0936 | Significant
2,6,7 22.83 " " n "
2,7,8  13.61 [} n " Non-significant| 2,7,8
5,67 291 | " n Significant |
5,7,6 | 20.44 ° n " n '..
6,7,8 19.21 n " S
6,7 17.38 o 12,1371 | 1852030 "
5,7 15.35 A " n |
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Table 9
Populations Computed | D.F. Tabular Tﬁ Conclusion Causter
involved 72
k- 5% 1%
2,5,7,8,10 3498 | 16 | 25.6131| 35.6187 | Significant.
2,5,7,10 27.62 | 12 21.7064 | 29.9100 n
2,5,8,10 25.30 " " n n
5,7,8,10 30.15 | n n n "
2,5,7,8 26.31 n n n n
12,7,8,10 21.37 " n n Non-significant| 2,7,8,10
2,5,7 2050 | & | 16.7783| 24.09% | significant
(#)2,5,8 17.79 " " " Significant 2,5,8
2,5,10 18.90 n n " n
5,7,8 0.4 | " " "
5,7,10 23.62 | " : .
5,8,10 19.07 n n n "
5,7 1535 | 4 | 12037 182030 | m
5,10 12,98 /A n " n
Table 10
2,4,10,11. 15.76 12 214706l | 2949160 |Non-significant 2,4,10,
(%)

has been included in the bigger cluster (2,5,6,8).

We could exclude this from being considered because it already
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Table 11

Populations| Computed Tabular T2

involved 2 D.F. Conclusion [Cluster

_ T .

9,12,13,14 16.62 12 | 21.7064 |29.9100 | Non-significant{ 9,12,13,14
Table 12

2,4,9,10 | 24.37 12 | 21.7064 |29.9100 |Significant

2,4,9 21.82 8 |16.7783 |24.0936 "

(#) 2,4,10 | 8.20 " n Ul Non-significant| 2,4,10
2,9,10 .45 F L " " 2,9,10
4,9,10 042 | 0 " i Significant

5,9 | 16.624 | 4 |12.137m |18.2030 "
(%) | |
. We could exclude this from being considered because it already
has been included in the bigger cluster (2,4,10,11). |
Thus, from tables 8 to 12, one concludes that the following are
clusters: |

(a) 2,5,6, and 8.
(b) 2,7,8, and 10,
(e¢) 2,9, and 10,

(d) 2,4,10 and 11.
(e) 9,12,13, and 14.
(£) 1, by itself.
(g) 3, by itself.



Farther,

it remains to prove that each and every set of populations

of which these clusters form a subset is significant., To do this, we

refer back to

the Table 7 of distances and the Figs. 2, 3, and 4 and

form the following bigger clusters by incorporating in the corrected

clusters the populations lying closest to them:

(1)

(ii)
(iii)
(iv)
(v)

(vi)
(vii)

- (viii)
© (ix)

2, 5, 6, 8, and 10.
2, 4, 7, 8, and 10.
2, 4, 7, 10 and 11.
2, 4, 9, 10, and 11.
2, 9, 12, 13, and 14.
3, 9, 12, 13, and 4.
2, 9, 10, and 13.

1 and 6. |

3 and 4.

We test the significance of these bigger clusters and, as shown

in Table 13, find them all to be significant which confirms the conclusion

made above,

Table 13
Populations |Computed - Tabular Ti
involved o D.F. | , Conclusion Cluster
k - 5% 1%
2,5,6,8,10 31.02 | 16 25.6131 | 35.6187 | Significant
2,4,7,8,10 68.39 n n o n n
2,4,7,10,11 | 68.07 u " n "
2,4,9,10,11 | 41.88 " n n n
2,9,12,13,14 | 30.85 ] n " n
3,9,12,13,14 | 50.23 " ] n n
2,9,10,13 | 26,63 [ 12 21,7064 | 29.9100 "
1,6 18.36 L 12.1371 | 18.2030 u
P L I V2 4 T Y A oo




CHAPTER THREE

ANALOGUES OF DUNCAN'S PROCEDURE TN FORMING CLUSTERS IN

MULTIVARIATE ANOVA (Contd.)

3el In section (2;3) we have proposed three alternative approaches to
correct the predictea clusters where the first - calied the Duncan-
Hotelling test = has been explained quite at length with an illustrative
example. Now we take up the remaining two - the 'Extreme Distance fram
the Mean! - E—test and the 'Largest Distance'! = R-fest. The exact
distribu%ions of both the sfétistics are not”known. Siotani (1958) has
found the approximate distribution of the E-statistic for the k p-vériate
‘normal populatiohs and has computed the tabular values at 5% and 1%
significance levels for some particular values of p. With Siotani's
tabular values in hand we first discuss below‘the procedure for thé
E-test in Section (3.2)s We then take up the R-statistic in Section
(3+3) and discuss the working procédure. Lastly, in Section (3.&) we

presenﬁ the distribution of the R;statistic for the bivariate case in

the form of definite integrals.

3.2 Procedure for the E-Statistic

The E-test is based on Mahalanobis' distance and Duncan's level

of significance based on degrees of freedom.



-57-

Suppose again that the clusters have been predicted by following
the procedure discussed in Stage I of Section (2.3). Without losing

generality, we take up one of the predicted clusters containing kl

pofulationsAand discuss the:procedure for the E-test in the following 
steps:

(i) Compute the statistic E, (i=1,2, ..., kl), the
Mahalanobis® distance between the mean vectors of the ith population

and the grand mean vectors of the k populations,

1

(ii) Without losing generality, let'Ek be the largest of all
' 1

the computed E, (1=1,2, ..., kl).

(iii) Compare this E, with tebular E, ,where [, .is defined

1 ,kl 1 A

already in (2.2.6) and [ is the pre-assigned significance level.

(iv) 1Ir E, 1s less than or equal to %ﬁ , all the k, populations
1 k '
1

involved are concluded to form a cluster. Otherwise, split the kl

populations into'ﬁ_ki,ﬁ sets of (kl-l) populations each.
R BN

(v) Compare the extreme distance of each set of (kl—l) populations

from their respective grand mean vectors with the.tabuiar %[
' k, -1
. : 1

Out of them some may be significant and some may not be. Those non-

significant awill yield clusters with the corresponding populations
involved in them. Those, for which the extreme E's ‘are significant,
are further split into sets of (k1-2) each and their corresponding

extreme E's are them compared aéainst the tabular value %L . In
. - k _2
1
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this way the process is continued till we arrive at the clusters of

the type defined,

Thus a working criterion analogous to Duncan's can be stated as
follows: 'A group of ki populations will form a cluster if the extreme

distance Ek (assumed to be the largest amongst all the'k1 distances
1l .

between the mean vectors of individual populations and their grand mean
vector)»is nonésignificant and if furthermoré.such extreme E's of each
and evéry new set of populations of which the kl populations-form a
subset, is significant according to r-level E-test for some pre-

assigned £ s Where r is the number of the populations in the set!',

Note: The exact distribution of the extreme classical distance
‘was taken up by Mrs, Cuttle in her Master's thesis, 1956.
She successfully solved the problem for three bivariate
populations and gave the tabular values at some probability
levels. We tried in vain to.extend her procedure to four
bivariate popglations. The joint distribution of four
distances came out in terms of elliptic funcions, whose
further integration, in order to find the distribution of
the extreme E amongst the four E's, was found to be quite

involved,
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3.3 Procedure for R-Statistic

Duncan's range test has already been explained in Section (1.2).
We extend his procedufe to the mnltivariate_case. Suppose we have k
p-variate normal populations having significaﬁtly different mean
vectors. Sﬁppose fufther that the clusters hav§ been predicted by
following the procedure discussed in Stage I of Section (2.3). In
correcting these predicted clusters no generality is lost if we take
up one cluster containing kﬁﬁ.& k) populations. The procedure is
described in detail in the following steps:

(i) compute (Zl) Mahalanobis distances B (rts=1, 2, ...,-kl)
between‘the rth and sth populations. ’ |

(ii) Again, no generality is lost if we suppose that the distance
lel.beéween the first and the klth pdpulations is the largest amongst

K
(2 ) distances.

(iii?. Compare the computed lel with the tabular @‘kl, where < ky

is already defined in (2.2.6) and L isa pre-assigned level of

significance, If B is less than or equal to R, , all the k
1Y ky 1

populationé involved are considered to form a cluster, Otherwise,
split the set of k1 populations into ki sets of (kl-l) populations.
each, |

(iv) Compare the largest distance of each set of (kl—l) populations

withhthé tabular R, 1° Cut of them scme may be significaﬁt and some
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may not be. Those non-significant «will yield clusters with the
populations involved in them. Those for which the largest distance
is significant are further ;plit into sets of (kl-2) and their
respective largest distances are then compared against their corres-

ponding tabular values R . In this way the process is continued

Ikl-2
till we arrive at the clusters of‘the tyﬁe defined.
| Thus the working criterion‘analogous to Duncan's can be summed Up as
follows: 'A group of kl populations ‘will form a cluster if the distance
(assumed to be the largest amongst all (:l) distances) between the first
énd the klth populations is non-signifiéant and also the largest distance,

amongst all possible distances between pairs of each and every new set

of populations of which the k, populations form a subset, is significant

1
according to 1: r-level R-test for some pre-assigned L, where'r is
the number of populations in the set'.

There is no doubt that the test procedure set up above is com-
pletely analogous to what Duncan did in his multiple range test, but,
in order to apply it, we need the distributioﬁ‘of the statistic R and
henc% the tabular values at [ r-level fér:r populations. To overcome
part of the difficulty we present below the simultaneousfdistribution
of the distances involved in a predicted cluster in the case of bivariate
populations. We have actually found the joint distribution for
k=3, L, 5 populations and then have generalized it for any k. Lastly,

we have also suggested the limits of integration to find the distributions
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of the individual largest distance i.e. of the statistic R. To
find the tabular values one could apply any method of numerical

integration.

3.4 The Distribution of the R-Statistic in the form ofaDefinite Integral

(a2) Preliminaries and Notations

(i) Let i%k x p) be the matrix of k mean vectors (columns for
characters and rows for sub-population samples)} of samples of sizes
Nl, N2, ceny Nk respectively drawn independently from k p-variate normal
populations,

Let the covariance matrix (J;J) be known or esfimated on the basis
of large samples.

Further, let the matrix i{k x p) be transformed into another matrix
Yik x p) by such an orthogonal'transformation that the covariance matrix
of y's is a diagonal matrix J/\ (p X p) with elements )\i
(i=1,2, ..., p). Without loss of generality we can assume that the
true centroid of the distribution is »1 =/’é = ... =/'Z) = 0. The

joint distribution of the y's is then:
, P k

£(Fyyreeer Togpeeer Tpreer 3.0) UL 1 65
11’ ’ ’ > ’ b Y s
Pl 1k Pk izl rsl AT

k

| o | k
C ok exP(’% ZNr ZP__ (']A:i ;§r9 ﬁ de—ir (3..1)

r=1 i=1 izl r=1 LT
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where ﬂ _[[ m—

(3.4.2)

P k
Now Z Z (X y:ir Z ,'\li Z Yir yi) +n Z()\
r=1 i=1 -

i=1 o i=1

. k.

where nk = Z Nr
. Ir=

Further, it is easy to prove that:

Kk . k-1  k

- -2 1 § § - - \2
Z Nr(yir - yi) N Ek NrNs(yir " Yis )
r=1 ' =] s=r+l ) T

Thus we have: )
kel k

k P , p
Z 1 =2 z: 2 ' 1 -2
Z N, (-i yir) B Reg * 0y Z(-Xl vy)
r=1 i=1 r=1 s=r&l i=1
P
where R (yir s
Li=1

Thus the Jjoint distribution (3.&.1) can be written as:

_ 1 ‘P 1 —2
et B SnenSan)k s

(3.4.3)

(3.h.1)

(3.4.5)

(3“6)
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we can find the distance N Rij between i and J as follows:

Rijz Ril’ Rje -2 /Rié Rje Cos A ‘ (3.4.7)
R.,R, =R

R «+ R =H
- -1 X
where A= Cos - T3 ik _ Cos eJ tk Jk (3e448)

2 J Ryp Ry 2 JRpy Rey

(iii) Fréquently we shall have relations of the type:

ax + by= L
s y2 = M
and a®+ b2 = N (3.449)

where we shall be required to find the value of:

bx - ay : (364410)
Solving the first two equations of (3.4.9) we have

2 2
Lt b J(a*+ pm -1

X =
3.24 b2-.

- 2 2 2
'andy=bL*a\[;a+b)M-jI_..__
‘ a2'+b2 o

. where we have placed the restriction that the signs before the squaré

root in the expressions of x and y must be opposite. Therefore

bx = ay = + j(a2+ b2)M -_L-2 = 4 JNM - L2 (3eke11)

(iv) We shall frequently need the following:
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-6l -

a
f 94X -7 (3.%.12)
0 \/ax - X ' ) ‘

(v) Lastly we give below the notations which are used quite

frequently in what follows:

: 2 2
Sy P 21\111\1313]&131&j + 2N,N R 3 iR G HaN NlekRi 5 - Ny Rjk
2 2
- N? R, - NiRij (3.4.13)

S . = 2R R +2R.R. +2R, R, -R, -R. -R (3.4.14)

ijk ki kJ 31Tk Hkiy T Tk ik ij o

1 1 ] 4 t 1 t t2 C2 I2
S = 2R'.R + 2R'.R +2R R!. - R - R - Ry (3.%.15) -

ki kj i3k ik T T3k ik ij

(v) Distributions

Case I: For k =3

The joint distribution of (§il’§i2’§i3; §é1,§é2,§é3) from
(3.4.6.) i§: 5 3 ]I ]I
i 1 ' 3 1 ,
Ca3 exp[ -3 Z Z R -5 Z Xi ] el yir (3#.16)
r=1 s=r+l =1
where,
N1N2N3
from (3.4.2), ¢ (3.4.17)
23 37 4
[2 T/AL A
and from (3.4.3), n, =N +N, +N (3.4.18)

3 1 2 3

Consider the orthogonal transformation:
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1 (- - - 1
17, (yll et y13) sl M (yal MEF-I y23)
1/ ‘+ 1 f = -
117y, ( 451 le) Y217, (’ Yo * yez)
-1 . I =
V12 = 6 ( ip "Y1 ¥ 23’13) 22 g ( Vo1 " Va2 *23’23)
(3.4.19)
whose inverse transformation is:
u v v u. v v
.y-.ll—-_i-_&_._].‘g and ;21—.3_._%}..,32.
V3 2 6 Vi V2 (/6
R N S R ] = e, Te
1203 vz 6 22 /3 2 6
e ST = _2 Va0
3703 U6 23773 R
and from these and from (3.4.5), we have
) -, ,
S - B s ¥ 1, 2
3L 91 2 2 Ve
_ 2 ' 2 -
R.o-l3|1 3"12) L J2 3"22)
13 183 [ M 2 J6 X Jz J6
.. 2 2 1
- B AP SR AT Vo1 2 0"
R23 = n l\ _— = + ‘]_.( — (3.’4‘.20)
3 1 V2 V6 Ao V2o v d T
' The distribution now takes the form:
2 2 2. 2 2 2
s _1 33 Z 14 ‘
Cog exp[ 2 Z Res = 3 X 3]11[1 3]1'1 avy g EL duy
r=1 s=r+l i=1
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vhere R _ are defined as in (3.4.20).

Integrating with respecf to uy and u, both with the limits from

- @© to ®= , we get the reduced form of (3.4.21) as:

WY 2 3 2 2
6_"_51_1_ exp{ ;Z Z Rrs] “ I[ av,, (3.h.22)

3 S=r+l i=1 j=1
N1N2N3
PN 1 l ]
let N = n3 . Then we define R12’ 13 and R23
ev
R' = N ( V11 2 " 21 2
12 3 12 Al J2 ' :7

o 310 3o

N 11
13 ~ 2R13=x‘l(7§*73') *‘I(T 7

1
=

3v
RY. = N.R u G —(21_ 3Vp5 )2 (3.4.23)
= (o7 LG 76
Further, to effect the change of variabies from the v's to R's, we

introduce a fourth R' defined by:
v
N 11 2 ’
== ) (3.h.24)
Ay V2 _ |
Finding first from (3.4.23) and (3.4.24t) the Jacobian of the transformation,

we conclude that:

4 1 1 1
GR") ') AR’ AR’
288N N v 21,8 'u v Y22 n 7 vV

1 Al’\2 A17"’ Ap /2 /\1 2 A J6 “A U6 Ao J2

2
I
i=1

R —
Q
4
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Further, with the help of (3.4.9), (3.4.10), (3.4.11), (3.4.23) and

(3.4.24), we obtain:

2 2 108R" | 20R" 5 AR’

I 1 av,- e

i=1 =1 J. 2hN / ( - R ) 50
A A 123

where S! is defined as in (3.&.15). Again using (3.4.23), we get

123
2 2 N.N.N dR. .dR__4dR__d4dR'
12 12 2
T I vy = uN23 13 23 (3.k.25)
i"',.l. J=1 2 )1 - R? /
JE Lh_ Rip = R V8ps
. N1N2N3
Using (3.4.12), (3.4.25) and the value N = —===, the joint distribution

3

(3.4.22) reduces, after integrating with respect to R' over the range from

N
3 . .
0 to — R;, as shown in (3.4.12), to:

n . L
1,341 (73y3-2 (R, #+ R, +R.) ]
(X" (3) exp L5 (Rip #Ri3+Ryy
2 on . - deede3dR23 (3.k.26)
”3123
which is the Joint distribution of Rl2’R13 and R-3 ..... vATE these variates

are always positiveysand it is easy to check that they do not assume values

outside the cone defined as S, Y 0. The distributien of f(R ).

3 12’Rl3’R23

is therefore always positive,
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The Distribution of the Largest ‘Rrs

Let us further restrict the problem by assuming the number of
observations to be the same for all the three groups, i.e.

N, =N, = N3 = Ny, say. The joint distribution of (R ) is

12°%137823

3 exp E— % (R12 + Rl3 + R23 )]

f(R,.,R..,R..) = (3.k.27)
1227137723 3270 _
AT |

where now the variates R do not assume values outside

127 R13’ and R

23

the cone defined by § 0.

123 %
We can assume without”:_(],.os"s‘ of generality that the variates have beén

ordered, say 0 £ R23 < R, € R, <= .. The density of these

13 = 12

' ordered variates is 3'f(R Thus the probability

122 P13 Rozh

12 £ t, is:

. !
6(t) = zzo= 3 f// |- 2 (o * Mg +R23)J dR. AR, _dR
32w : " e ) 1213 23
: v v 8123
- (3.4.28)
where V is the region: -

G(t), that R

2
(VR, -VR3)" £ Ry ¢ Rypg
L R Z R R
L 1o £ 13 £ Fyo
0 < R12 < t
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The procedure for its numerical integration has been given by

‘Mrs. Cuttle and one can easily compute the values of t for known

values of G(t).

Case II: For k = &

The joint distribution of 6’-11’3’-12’;13511; ;521,3?22,52352&)

from (3.4.6) is

3 b4

. n
1 z z L
C2LL exp[- 3 'Rrs -

r=1 s=r+l

where, from (3.4.2) & Cyy, =

and from (3.4.3), n, =N, +N,

RS

2 3

(3.4.30)

(3.4.31)

Consider an orthogonal transformation of the type (3.4.19) whose:

inverse transformation we write as:

ua -V v v

;» _1 1112 13 g 5= E_ ; Vo1 ; Voo i V23
o J2 J6 12 2l /M J2  J6 12
- Y Y11 Vi Vi3 - Y V9 Voo Vo3
Y12 = 7+ - - Y= Tm 4T - -
JU J2 J6 J12 Jy J2 J6  J12
- Wooev, Vg - Uy 2Vpy - Vg
Vi = — 4+ - — Vog= = =— - ——
137/ V6 J12 23" M J6  J12
R Bwe il o L ioe u 3v,.
_ 1 I - 2 2
iy e
VU SNG V- JioJl2



With the help of these and (3.4.5) we have:

N.N
R, = 12 1(2V11)2

1
12 L 1
D), Ul J2 Ae J2

13 . Voo

_25f1
13 T Jl( Ja 6T A 2 6

N.N v 3v v 3v ,
11 12,2 1 21 2242
).ﬂ.._.(____ KR )

N.N V.. V. hv. v v bv,
R = ih[i( 1,12, 13y 1 21 22 23)2]
4 )\1_ J2 /6 J12 A2 J2  J6 J12
N,.N v 3v v 3v
Ry, = 1213 1,11 _.12)2+_1_ (_2; _ 22y
LA, V2 U6 )«2 2 /6

R a5 (AL T2 _uv13)2+; (-2L Vo2 _)*v2352jl
oom LA Ve U6 2 A, V2 Y6 (12

R = -
3’4- nh_

Fﬂ 1 -(2V12 i )+V,13)2 .5“!: (2V22 ll-v23)2]
Ay ve vt A e e

(3.4.32)

Making use of (3.4.32) and integrating with respect f.o uy and u,

both iextendings from - O to =o , the digtribution (3.4.29) takes
the form: -

3 L 3 3 »
Al 1 Z
Ez:'/ /\lhg Coy, expE— 5 Z_ Rrs] i]I I dvij ‘3.1&.33)

r=1  s=r&#l =l J=1



Let N = 2224

53 NN R,

R' - NNR
2

132

R' -

o« Then from (3e4.32) we have:

2v
12,2, N

AT

N.(v_l;_3v12)2¢ N.(Y_Z_l__?_v_Zg)z

A J2 JET A V2 J6

1 2

v T2 Mz ow fa T My
A V2 Ve J2 A, V2 VB V12
v Lv 2 v Lv 2

on T, Tueon T Py
W W 0 TR ST T (Fehe2t)

However, in cha.nglng fram the vy i3 to the R'J s W€ discover that the

bring in another R,

It is defined as:

Jacobn.an of the transformation vanlshes. In fact it should, -since the
duadrilateral is c__ompletely determined by iaking two triangles standing
on the same base or by taking any of the five ouﬁ of six R,' se Thus,
we do away‘with one of the six R’* s (which can be done in~6 ways) and

, _
then,to complete the set of six R!'! s corresponding to six v's, we

- : ,
functionally independent of the five retained R! s,

=

(2

R! "2

n

(3eke35

>
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Assuming Réh to be the smallest, we do away with it and replace it

by (3.4.36). Then, with the help of (3.4.34) where R3ﬁ is left out

and of (3.4.38), we find:

3 3 3/2 t 1 H | 1

; _'( Alhg) 8R'dR’ AR 3dR 143" 55dR s
I I avyy=—3 - (3.4.36)
i=1 j=1 N \/ R (LTR 1o - BBy, ‘/3123

Finally making use of (3.4.34), (3.4.36), (3.h.13), and (3.4.30), the

distribution (3.4.33) reduces, after integrating out R' from O to

NN
%» 12(or -ﬂ——»Rl2),again as 1n (3. h 12), to

B Py
61 dlin dbod exp[' 5 Z Z ] de2de3dR1hdR23d32h
()) te-‘;r) =l s-ril (3.4.37)

VENRENES

where, by using (3.4.7) and (3.4.8), R3h is determined from the

' quadrilateral formed by the points (1,2,3,4) and is substituted in (3.4.37).

Furthermore, the variates R Rlﬁ’ and Reh are all positive

12’ R13’ R23’.
and it is easy to prove that RlE’ Rl3’ apd R23

12°Ryy

do not assume values

outside the cone 8123 2 O and that R

values outside the cone Sleh z, o.

and R2h do not assume

The Distribution of the Largest Distance:

Let us further restrict the problem by assuming that Nl = N2 = N3 =

Nh'z N, say. The joint distribution (3.4.37) then becomes:
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3 L
1
613 1 exp[- 5 E E Rrs] de2dR13dehdR23dR24
(DG 2 r=1 s=

TH (3.4.38)

NERRNERS

]

where again the vériates R and R2 do not assume values outside

3
th and th do not assume values

12? R13

the cone 8123 2 0 and also R

outside the cone S

12’

124 2 0. Furthermore the distribution of

£( R21+) is alvays positive.

Ryps By3s Byys Rogy | |
We can assume without loss of generality that R12 is the largest

of the five R's and further that they are ordered as:

O & Ry3 £Ry3 2Ry <=

and O £ Ry, «By, £ Ry | (3.4.39)
The density of the ordered variates is 5(2!)(2!)f(Ry,, Ry3s Rpgs Ry Rpy);

and the probability G(t) that R, <t is

. . 3 i
y . 1 exp(-2- Z Z R )dengl3deudR23dR2h
&(t) = (G2 N20)(5) o2 W  r=l s=r#l

j-s;:as VA
(3.k4.k0)

where V 1is the region:
SRt (JR - JR )2 < R < R
S 12 Y13 = 23 <713

I]:Rlé <« R, «R

IN

2
VR, - VRy,) Rou < By,
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1=
B«
I~
2v}

12 1 £ T12

12

0 < .t ~ =<

Gﬁﬁtﬂ can be evaluated by some numerical methoed.

Case iII: Por k = 5

TFéllowing the similar steps as in Case II for k = h@'rom (3.4.29)

to (3.4.32 )) we finally cobtaini~s the distribution of Rrs(s = (r#l) to 5,

=1 to 4)As:
10m/AA, N a > T
—-————-ns c25 exp [—5 Z Z RrsJ H’ I dv, (3.4.41)
r=1 s=r+l i=1 j=1
N,N.N.N, N
where, from (3 L, 2), 25 = 123 g/g L 5 (3.4.42)
( A (2m) . ,
and from (3.4.3), ng = N) + Ny + Ny ] + Ny | (3.4.43)
" N,N.N.N,N _
Letting N = _}_§_§_E_2 , we obtain as in (3.4.34) the following:
, g o ‘ .
2v oy
. 112 . N V212
Rjp = N3 NsR)p = Al( 75) )\1( 75 )
3v

322

' | , N N
Ri3 = MoillsRys = 3 (Fho P <L ‘7‘ 76
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811 322 n Yo 2212
NN =y (B - 75 X ()
by by

. V12 Vo2
Ry = Ny 351&‘A1(,/2 JeF Jle) *1 (Je \]6*\/12)

t
R23

S
_— 11 Y12 by N 21 22 V23,2
Ray, = Nyl 5 Roy = ,\l( J6 :3* ,\" - TR
o v 5v v 5v
¢ 13 1,2 23 2k 2
Ris = NpNslRy5 = (72 J6 + 712 720) *‘X (T J6 + 715 * 750-)
Ry = N NR cn_ e N3 SV11';)2 N2 _ Ve o3 oVal, 2
25 ~ 4725 '\1\/ - J6 V2" 207 T}, »‘72_ J6 ~J2 T ,720
‘ v h 2 by
t ‘lll_ 22 23
B3y = NyNoleRy), = Al(UE‘ 7“‘ (w7~ - 712)
‘ ' 2 5v v 5v,
__— V12 13 k2 N Voo 23 _ 7 2ky2
B35 = MMl Rys = ,\1 76 7 7 Ao (\7 "2 " g0
3v v 3v, 5V, "
v 13 k2 N 23 2l 2
R’+5 = N1N2N3Rh5 7—— JEO—' -;‘-2 (-\7r2' - 75_6) (3.&.)4—)4-)

Again from the ‘geometric representation of the five ﬁoints, we
see that seven of the ﬁ' s are independent and the remaining three can
be found with the help of the known seven. So again we discard any
three of the ten R' s (which can be done in (lg) ﬁays) and then to
complete a set of eighﬁ ﬁ; s corresponding té eight v's; ve bring in

another R', functionally independent of_the reméining seven, defined as:
Ty

R! Ak

\MT (3.1.45)
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Thus, assuming RBL’ R35 and R,+5 to be the smallest of the ten
Rt:s, we discard them and then with the remaining seven R! s and R!

in (3e4e45), we conclude that:

(A A ) dRiz d:&_!_3 dR}, dRY R dRis @55 dR!

dvi 3 T - -
371 W ? 160Nh [R'( R ’R')Jlfs_{zs“ 124, Vsi25

(3oholib)

Making use of (3ekehh), (3ehek6), (3+4013) and(3e4.42), we get the
joint- 'density of thé seven"R' and R' As waé done in (3;4.12), we

integrate out R!, where O <R' 1+ RiZ o This yields

. exp [" z Z Z R.g | dBtydRy 5dRogdR, ) dR,dR, ;AR5
(130)(?_2._)5*1(_2_127)5- rzl s-ral

P23 oo s
(3eksalsT)

Here RBA-’ R35 and Rln-5 are functions of the other R,  and should be

éxpressed in terms ofvthese 6ther Rpg in (3ehel7)e RBA’ R35 and RAS

can b‘e detefmined from the quadrilaterals formed'by joining the sets of.
points (1 2,3,4), (1 2,3,5) and (1,2,4,5) respectively. The variates
12, 13, 23, Rll-;’ 21, RlS’ R25 are all.positive, and the sets of
variates (R,, Rys, R23) (Ry,, R 1 2h) and (Rl.?.’ Rys, 325) do not
assume values outside the cones 3123> o, Sl?.l.. 0 and 5125 2, O respective~

ly. Thus the density in (3.4.47) is always positive.

The Distribution of the Largest Distance

We again restrict the problem by assuming that Nr= NO (r=l, 2, eee, 5)o



The joint distribution (3.4.47) reduces to:
L

exp [- : Z > RrSJ 4R, ,dR, 3R, AR, AR AR, AR,
(1(; )(%)6- (ng)3 r=1 s-r+1

‘/:23 \/_:21» 125

where again the sets of variates: (R

(3.4.48)

(R

120 By3s Bpz)s (Bip) Ry, Ry )

and (ng, RlS’ R 5) do not assume values outside the cones 8123 2, 0,

121+ 2 0 and 81257, 0 respectively,

We can again assume without loss of genérality that 5812 is the

: »
largest of all the seven R s and further that they have been ordered as:

[
0 < R23 < R13 < Rl2 <
< o
and 0 = R25 < RlS < R12 <

The density of the ordered variates is 7(2!)3f(R12, Ry3s Rp3s Ryyy Ryys

RlS’ ), and the probability G(t) that RlE <t is:

r=] s=r4#l

‘/_é-;23 J-§—£2h ‘/5125

' -5 dR, ~dR, .dR,....dR, .dR
G(t)—(lo) 7(2} )3( )(25)3j /exP[ Z Z ] 127713772377 15725
1

. _ (3.4.49)
¥V is the region:

2
where (~/R12 -JR13) < R
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Generalization. For any k

An inspection of (3.&.26), (3.4.37) and (3.4.47) enables us to
generalize the joint distributidh of R;é for4any k - the number of
~ bivariate normal populations, To sjbarﬁ with we shall have (12c) R's
from which (2k -~ 3) geometrically independent R's denoted by R12, B13, en

B'ik’ R23, R@, ...;. R2k can arbitrarily be chosen to complete the k point

2

figure. It should be noted that such a choice can be made in (k k - 1)“"‘75' |
2k - 3

The remainder ['(g) - (2 - B)J of the R's denoted by Bg), «.., RBk;
Rh5’ ddd.y th; cees 3 R(k—l)k are again assumed to be the smallest and
are discarded. Thus we coné¢lude that the generalization of

(3.4.26), (3;4.37) and (3.4.47) is the density



«7Gw=

k-1
, kgk-l) k+l -2 exp[ - = Z Z J deEde3dRQ3 . .dedezk
2 ( ) r=1 s=r¢l

2k - 3 —_—
8103 I8y oS
(3.4.51)
where R3h’ ceey R3k;‘Rh5’ ooy th; cess R(k-l)k can be determined
as shown in (3.4.7) and (3.4.8),and where the line joining the points
1 and 2 is the common side of the quadrilaterals (l, 2, 3, 4), (l, 2, 3, 5},
ey (1,2, 3, k)5 (1, 2, 4, 5) ...(1, 2, b, k); ...; (1 2, k- 1, k)

respectlvely. Again the variates Rl2’ 137 *°*? lk’ 23, ceey R2k

are all positive,and the sets of variates (R12’ 13, R23), cees

R2k) do not assume values outside the cones S 0,

(Ryps Byys 123 ¥

S121+ % 0, ..., S12k 3 O respectively.

The Distribution of the Largest Distribution

Assuming again the equality of sample sizes, that R12 is the largest

and.that the variates in each of the sets (R12, Rl3’_R23)’ ceny

(R12’ Ry o ng) are ordered as in the previous cases, we conclude finally

the probability G(t) that R, &t is
k

1
exp[ 5 Z Z R ]dezde3... aR,,
k(k-1) | Lyk#l, k\k-2 k=2 r=1 s=rtl
> | (3T GR) T (2-3)(2) =
| V8ip3 IBpp) oo By

2k - 3
(3.4.52)
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V is the iregion

2 .
where (JR12 -JR13) € Ryy ¢ Ry,
Lq <« R R
T 12 € M3 &£ o
(JR, -R, % ¢ R, < R
N2 1k < 2L = ik
Lr R R
T T2 € o fyo
(R, -VR.® < R, <R
12 1k € T & i
lg < R. < R
L 12 = Mk = T2
0 & R12 <« t

0 £ t o= (3.4.53)



CHAFTER FOUR

ASSIGNING A POPULATION TO ONE OF THE CLUSTERS

E;; We propose a method for assigﬁing any other individual or
population to one of the clusters obtained by any of the methods
described in Chapters Two and Three, where the prior fact is known
that the individual or population being assigned belongs to one of
the clusters. Two alternative approaches have been suggested, both
of them being based on the assumption that the populations concerned
are normally distributed, The first approach deals with'the method
of likelihood functions as already discussed in Section (1.3), and
the second with the use of T2 values. Finally an illusfration is

presented to demonstrate their use.

E;g. Since, by definitien, all the populatioﬁs included in the

cluster have identical mean vectors, we can consider the cluster as

one population whose mean vector is estimated to be the grand mean
vector ef that of the populations ipcluded in the cluster, Thﬁs, if
there are C clusters, we shall imagine them as C distinct populations
with their estimated mean vectors as the grand means of those populations
which are included in the respective clusters. Let the estimated mean

vectors of the C (so-called) populations be given in matrix form as:
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— . . 3

-t .
Z (C X p) s Zu, 221, (XX ¥ Zpl
z Z ) eeey Z ,
12° 22 U7 Tp2 : (4e2.1).

Z Z .y eeey L

To get the corresponding significant discriminant scores, we post-

e t
multiply Z (C x p).by the matrix K  (introduced in part (d) of
Section (2.25 and Sbtai'n the corresbond_ing matrix ffb defined as:
L - b 1=1,2, cae, P!
U(Cxp')= (Uit) .
. .. . t

]

([&02'02')
1‘, 2’ LA ] C . .

Further, if [fl, ceny )-fp] be the mean vector of the sample from
another new population which we are trying to assign to one of the
clusters, then the corresponding significant discriminant scores can be

similarly obtained. We denote them by

A, 1, . fp,) | | ' (492.3)

1’

Le3:

Discussion of Approaches

(é,): Approach I: Use of Ii—function_s

o Siﬁée the “C -so-éalled bopulatiéns are normally distributed, we use
Rao's procedure for assigning an arbitrary population to one bf the
‘mult;ivariate normally distributed populations. We first compute £-—
functions in the form already defined in Section (1.2) or in the foﬁ

obtained below by the use of significant discriminant scores , namely

p! p!

E?Eﬁf-li'ﬁztz
t ” it "1 2 iv? =1, ""’C.‘

izl isl © (4.341)



A

nn ﬁMen, following Rao, we would assign, ignoring the a priori
probabilities, the new population to the Ath (A €) "so-called

population” (or cluster) if

~ ~
L. -L 2 0 forallt=1,2, ..., s-1, s#l, ..., €

(v) Approach II: Use of 72 Statistic

In the previous method we have not been able to assign “az
probability to our decision. To achieve this aim we propose the

following steps:

Step 1. Let the size of the sample drawn from the new normally
distributed population be N and try including it in each of the
clusters so that the number of populations involved in each cluster

increases by one.

Step 2. Compute the statistic Ti 4 fort=1,2, ..., €,end
—_— ¢ | o :
where kt is the number of populations in the t-th cluster.

Step 3. Include the new population in the $th cluster if
. 2 )

(1) T & all 72
k o+l

k_t‘a-l fOI‘ t(# S)=l, 2’ eeey 5"‘1’ s‘E‘l, ecay C

and (ii) computed Ti'*l & tabular ?i
s ks+l

Note: Since we allow oveflappings, we shall include the population in

each cluster for which the computed T2 is non-significant.
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L.4 Illustration

To demonstrate the above approaches we continue with the
illustration discussed in Chapter Two.

The B.C. Forest Laboratory obtained later a shipment of
7 trees of black cottonwood from some locality. To assign it teo
onﬁ of the clusters on the basis of its static bending property,
the same four measurements Xl, X2, XB, and Xh were taken on
different locations of each tree, and the following results were

obtained:
Sample Size Xl X2 _ X3 X!

61 982 L4470 2287 1102

The corresponding significant discriminant scores are:

Sample Size Yl Y2 Y3

61 0.4794140 1.1417523 0.45L0478

Demonstration of Approach I

Considering each clusﬁer to be one population whose mean vector
is estimated as the grand mean vector of the populations (species)
involved in the corresponding cluster, we write below the mean vectors

of each of the seven clusters by use of (4.2.1) and (4.2.2):



(g)
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Size ?i : Eg ?i

(a) 931 0.66968541  1.2760k8k2 o.6é721413
(b) 984 0.76536770 1.19428189  0.714k9228
(c) 368 1.08072219  1.17054579  0.58144678
(@) 587 1.01019297 0.92978089  0.42782876
(e) 1266 1.2046HT9  1.30553089  0.70800378
(£) 264 0.94597083  1.72039748  0.34593229
158 1.74328671  1.21889759  0.50048469

(k.4.2)

Note: These clusters (a) to (g) have been . written in the same order

as shown in the end of Chapter Two.

Usingl(h.3.l), (%.%.1) and (4.4.2) we obtain L-functions as:

L(a) = 0.82768514 i(a) = 0.6944316k
L., =0.79361765 Tisy = 0-58770051
%;, = 0.72048219 i(e) = 0.4918386k

’\
and L(g) = 0,06075676

A ' '
Since L(a) is greater than all the remaining ﬁ-functions, we would

assign the black cottonwood to the cluster (a) i.e. to (2, 5, 6, 8).

Demonstration of Approach II

Combining the new species of black cottonwood with each of the
sets of populations already in clusters, we compute T2-values by the

formula (2.2.4) and obtains:
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'Tg (for 2, 5, 6, 8 and new one) = 24,70
Tg (for 2, 7, 8, 10 and new one) = 29.91
Tﬁ &for 2, 9,.10 and new one} = 30.94

T§ (for 2, 4, 10, 11 and new one) = 34.39
Tg (for i and new one) = 37.LL

Tg (for 9, 12, 13, 1u.ana new one) = 43.99
Tg (for 3 and new one) = T7.66

Clearly Tg (for 2, 5, 6, 8 and new species) is less than all
the other computéd Te-values and also is the oniy one non-significant
for 16 D.F. and for l: = .Oﬁ,since the corresponding tabular value is
26.7251. Hence thevblack cottonwood would naturally be assigned to

the cluster of species 2, 5, 6 and 8.

Remark: We have plotted the point representing the new species
'plack cottonwood' in Figures 2, 3 and 4. This giraphdical:
representation also shows that the new species!is close to

2, 5, 6 and 8.



CHAPTER FIVE

DETERMINATION OF CONFIDENCE REGIONS FOR NON-CENTRALITY PARAMETERS

CORRESPONDING TO Dg AND Tﬁ

ahd

ANOTHER EXPRESSION FOR Ti

5.1 In multivariate analysi.s of variance, when the hypothesis of the
 equality of mean vectors in the case of two or more populationsvis
rejected, the need arises to set up confidence limits for the non-
centrality parameters corresponding to the statistics used for tests
of hypotheses. In Chapter One, Sections (1.1l) and (1.2), we have

2 and T2 for testing the hypotheses

2 k
of equal mean vectors. 'Now we discuss the problem of setting up

considered using the statistics D

confidence regions for the corresponding non-centrality parameters

Qz and Z‘i Lastly we shall give another expression for ‘1'12(

in terms of the sum of weighted Mahalanobis distances.

5.2 Distributions of the Two Statistics in the Non-Central Case

The distribution of Dg,

is summed up in Section (1.1l) for the non-central case a2 #o0. As

both for Studentized and classical cases,

regards Studentized Ti, ﬁe dé not have its exact distribution in compact

known standard form even for the central case. The asymptotic
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expreséion of a percentage point of the central.Ti-distribution in
tems of corresponding percentage points of central chi-square with
p(k~1) D.F. has been given by Ito (1956)3.* this’ we have already
given in Section (1.2). We again write it below but in a different

form suitable for our purpose as:

2 3 4
2 , 2 2 2 ‘ 2
Ty 2 € X7 #C,(X7) +05(X7) + ¢ (X7) . (5.2.1)
. 2 2
p-n +1 Tp +12(l-n)p+(7n - 12n, + 1)
1 L 1 1
where C, = 1 # + : :
1 2n 2
2 2hn
e
. . 2, 2
p+nl+l 13p +2hp-lln1-ﬂ-7

¢ = )
2 " 2n,(n)p 42) 2lm§(nlp +2)

. 3 2 2 3 > 2
o . lmlp + 2(3“1 +3n, + 10)p° + 2(2n1 +3n) +17n, + 18)p&4(5n1+9nl+2)
3 | 2hn§(nlp *—2)2(nlp + 4)
C'6w-1xp-m@l*nmi*m,
o 2hn§(nip + 2)’(nlp + &)(nlp +6)
. _ (5.2.2)
n, = k -1,

and n, is taken so large so that the cubes and higher powers of 1 are

2 o,
negligible.
Although Ito considered only central Ti, thére is no difficulty in

deducing the approximate distribution of non-central Ti. If wve go

carefully through the procedure Ito (1956) followed in arriving at the
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distribution of central. ‘Iﬁ, we can easily deduce the distribution
for non-central Tﬁ. We have only to replace the central chi-square
by the non-central chi-square with the same degrees of freedom and

non~-centrality parameter Zi defined in Section 1.2. Thus we write

for lec’ when Zi #0, |
Rao K2 4 o XD+ o XD+ o (XD (5.2
k 1 2 - 3 . 4 : o
where xlz is non-central chi-square with p(k-1) D.F. and parameter
zi, and C,, C,, Gy, C, are defined above in (5.2.2). Further, in
the classical case, Ti is again x'z distributed with p(k-1l) D.F.

and parameter zﬁ'

5.3 Tabular Values of Non-Central F-Ratio and Chi-Square

The pércenta.ge points for both the non-central F-ratio and chi-
square with appropriate degrees of freedom and non-centrality parémeters

are then needed for the above purpose and so we refer to the following:

Non~Central F-Ratio

4

Wishart (1932) and Tang (1938) have evaluated the probability
integral for the nén—central F-ratio. Patnaik (1949) has -also computed the
_ tables by an easier and approx:‘mate-method by fitt-ing an F-distribution
with the exact f’irsﬁ two moments of non-central F-ratio. Thus, for the
use of tabular values at the required confidence level, any of the tables

given by Wishart, Tang or Patnaik may be referred to.
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Non-Central Chi-Square

Fisher (1931) and Garwood have each "cémputed tables of ,the 5%
signiflcant points of non~central chl-squa;re for 1 to 7 D.F. and Z'z
= f— o(o 2)(5. o) Patnaik (1949) has also evaluated them by
using varlous approx1matlons to non-central chi-square, which are
guite close to exact ones. Thus, for finding the confidence intervals,

any of the available tables given by Fisher, Garwood, or Patnaik may be

referred to.

5.4 Description of the Method Used for Confidence Regions

We ﬁow give the method for deterx'nining the confidénce regions for
either of the parameters A2 or Zil. Since the method used is the
same for both, we shall take up only one statistic - Studentized Ti
We shall describe fully the procedure for this statistic, ~and the
same technique can be made use of for tpe other also.

To do this we shall follow Mood's method (Art. 11.5) given for t.>
functions not dlstrlbuted independently of the parameters.

. Le_t, for a pre-assigned [ , the confidence level be lOO(l LY.

Since, for a given value of ‘(:i = tk(o)' the demsity of T2

K’ which

2 2 Lo
is g(Tk, tk(o)) is completely specified, we can find numbers ¢1, 552,

such that:

%

Pr[ T, < f‘i/zi;zi(o)) = / 8LTi, Zi(o)] d?i* 1

0



and P_ T > 4, /Ck zk(o] j [k, Zk(o)) ar’ =4,

(5 h.1)
where '[1 + L, = L (L, L, are two predetermined numbers)

Similarly, for every value of zi, the pairs of numbers ¢l’ ¢2 can be

found which enable us to write ¢ as functions of (i i.e.

1’ ¢2
¢l( Zi) and ¢2( ‘Ci} respectively, and finally ve state:

v

[ - (z? o) € observed T 952(1 )] =1-4L (5.h.2)

Writing (z5) =12, 4 (5 =12, (5.4.3)

we invert them to obtain respectively:
‘/’(T ), zk ‘I’(T ) (5.4.4)

and then rewrite (5.4.2) as:
2y 52 2y ] _ |
Pr[v;(zr MERAEIS AN Tk)J— -4 (5.4.5)

which determines the region for Z‘i for a known value Ti at (1 -L)Yb
confidence. .
Thus to compute the interval for ti scorresponding to a known

value of Ti ;.'we refer meanwhile to the Fig. 5 below and explain the
k) |
procedure as follows:
Suppose we have computed Ti on the basis of kl pbpulations.
' 1

* Through the point E[ Ti , O] on T2-axis , erect a perpendicular to the
: 1 '



L,
[o 'Zhw]e

[0 To)®

o

-92-

7°_axis and let it cut the curves Yo(T 2 Y ana Y, (T 2 )
2 kl 1l kl

respectively at the points A and B. Take A' and B' reépectively to
be the images of A and B on the t?-axis. Then, if the distances of

. ) ' ) '
A’ and B' from the origin are respectively Zzifl) and Zji (2) we
/ 1

have:
2 2 2 2 2
Pr[zklu)f Cr* Tkl / ! =Tk1] =1-L (5:46)

which determines the region for a known value ‘Ti of 2 with 100(1-4< )%
1
confidence.

z" | Fig- o

N
P
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5.5 Example

To make the procedure clearer we present below an example for
P =4, ny = k-1 =1, n, = 29, and construct the 90% qopfidepce region
for T 3 corresponding to known value of Studenjoizéd:‘“Tg = 25,

' Both lower and upper 5%‘significant points (Fighéf and Garwood)
of non-central chi-sqnare for D.F. = 1(1)7 and\/j(.(=‘¢/z;§>.= 0(0.2)5.0
have ldng since beénvéomputed; but, sincé they were not immediately
available to us, we have preferred to compute them by the approximate |
method suggested by Patnaik (1949), for A= tg = 0(2)36 and D.F,
£ = p(k-1) = 4 as follows:

(i) We first select an appropriate percentage poiﬁt of chi-

" square as tabled by Hartley and Pearson (1954) and use the 4-point

. Langrangian formula to get the same percéntage‘point for chi-square

. A2 . PR
with D.F. -(f * W)’then multiply thg result by ,’ = (1+ m).

The appropriate lqwér and upper 5% points obtained by the method afe

recorded respectively in the second and third columns of table 14.

(ii) Then we find the values of C 02, 03, and C, defined in

1’ 4

(5.2;2)'for appropriate values of p, n and nz’which in our case are

1.07432, 0.0197, 0.000198 and 0.0000037 respectively.

(iii) Lastly, substituting the values, obtained above in steps (i)
and (iij , in formula (5.2.3), we obtain the corresponding lower and
uppei' 5% tabular valués of Studentized T‘; and record them respectively '

in columns 4 and 5 of table 14.
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Having obtained these lower and upper 5% tabular values of T2 s

we plot them on the graph corresponding to respective values of

i.e. Zg, and obtain the two curves ¢1(C§) and ¢, (zg)as shown in

Fig. 6.
Finally, to find 90% confidence region for computed Tg = 25, we
erect a perpendicular through the point' E(25 ,0) on the Tg-axis and

2
let it cut the curves ¢2(t2) and dl(tg) respectively at A and B.

We then take A' and B' réspectively the images of A and B on zg-axis.
Reading their distances from the origin respeétively to be 3.9 and 29.1

.approximately, we conclude that:

Pr[ 3.9 ¢ zg P 29.1/T§ = 25] = .90 (5.5.1)
which determines thus the region for a known value 25 of Tg with 90%
confidence, |
Note: The‘ nop-centrality parameter Zi involvés sample sizes.

In order that the non-centrality parameter should contain
population constents only, ‘we have to resort to the

assumption'that the sampie sizes are equal i.e.

Ny = Ny=eo. N = N (sgy), in which case
2 ? 3 &
z2=m Y D N Y (S ol ) (55e2)
i 3 r=1 o '
k



or alternatively that "ti =N Vi (5.5.3)

P k ‘
where "]i = Z Z ,Ll'j Z: (’./ir - /"i)( /':jr -/’:j) (5.5.4)
i J :

r=1

Thus if we suppose N = 15, say, we can deduce from (5.5.1) the following

for "‘]g as:
P[y26sz§5 L%/T2=§]:.% (5.5.5)
Table 1k
A 5% chi-square values o 5% Tg-values
T Lower g Upper., Lower’ Upper
0 0.7L 9.49 0.773 12.168
1 0.93 ' 11.72 1.005 15.676
2 1.2k 13.72 1.362 19.090
L 1.77 17.31 1.965 25.859 |
6 2.83 20.77 3.202 33.275
8 3.80 2k .08 L.379 41.302
10 4.85 26.97 5.698 49,146
12 5.98 29.93 7.176 58.079
14 7.15 32.85 8.770 67.878
16 8.36 35.69 10,493 78.440
18 9.64 38.44 12.396 89.731
20 10.91 L1.29 14,375 102.635
22 | 12.2k 43.96 16,547 115.935
25 k.26 b7.9% 20.053 138.136
30 17.77 54.55 26,792 ' 182,128
36 22.12 62.24 36.432 2u6. k3
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5.6 An Alternative Expression for Tz

———

We have already givén three expressions of Tl?; in Section 1.2 .
We now give below ancther expression as the sum of weighted Mahalanobis

distances as: ‘

2 NN, 2 :
"rk= Z_ Z “x l21‘3) (5'§°l)

.1$r<8£k Z_(Nr)

.where D(rzs) is the Mahalanobis distance bétween the 'rth,“'and the sffh_.
popula’l;ions. - The statement (5'.6.1‘) is proved as follows: |
Consider the set of numbers ur, Vo ‘and the set of integers N,
(r=1, 2;'.,., ke

. o k
Let N = Z N,, and NG = Z Nou, &= 3 Nv.
r=1 r=1 r=1

Let S(u,v) = Z Z NrNs(ur - us)(‘vr -v_).

s
l‘n‘sd{ )

k k

Z Z NN (a, - hl_,,“_)‘wrr -
n

k

Then S(u,v)

1]
Bb‘

1l s=1

. kK :
- %N_ Z Z N rNs}:(uT_;‘)_v@s:EdE(vr—a—.(vs-x'r'?}

1l s=1

=



k k ' :
R i

« () (vs-'f)} |

EZ N (u; D) -?)(Z_ N+ (Z N )ZN (u -u)(v -?)j

Thus S(u,v)— Z Z NN (u =u )(v -V )= Z N (u —u)(v -v)

s’ 5’
lerc<ssk * r r=1

Now we apply this relationship, taking up = Xjp, vp = er, so that

T= i’i’ V= J'cj. In the Studentized case
P P k f
2 Z_ Z igis ) = (o
T = W N ( . .—)&)(x. .-i’.)
, ri &y i} o
k™ e ja rel - Ir Y

P P ij'l L | | o
Z Z W EZ Z levs‘xir'xis)(?{jr'xjs?

=1 j=1 - lsnesck

Rl

e

<

P | :
Z' Z— N;f-"' Z Z WlJ( is)(ijvr"'i,js?

leres <k i1 j=1

1}

2 = NKNs 2



N + N
ThenT Z Z N. (rs) Z X N' (rs)

lsras sk ~ lsrces sk

2 ) : ..
The same argument works for classical Tk’ which will be expressed
ij ij

in terms of classical D and T, _, where «o— " replaces w

(rs) (rs)

The same argument works for the parameter

P p | :
}-_— Zq-la Z_ N(/w:l.r )(/”Jr /’)-ZZ' NN (rs)’

throughout .
2

i=1 j=1 r=1 lsressk
2 P P ij :
where & (rs)= Z Z. v (//ir /"is)(/’:jr ‘s
o =1 j=1 '

Again the relation (5.6.1) can also be expressed in matrix form as:

K
2 . » 2 2 2 ‘ t
[ Z Nv} T 2 (v Moo meJfo DI, D5 eeedyy [Nl_’ Npseees M)

ral’

N
N
N

D 0 D +eeD
: 2%

D D D XY ) O

(506416)



CHAPTER SIX .

DISTRIBUTION OF THE DETERMINANT OF THE S.P. MATRIX IN THE NON-CENTRAL

LINEAR CASE FOR SOME VALUES OF p

6.1 Let k? be the non-centrality parameter for the linear case.
Then the h-th moment of the determinant |A] , where A is the S.P.
matrix with n D.F,, is rewritten from (1.3.3) as:follows:

. -. n .

| p-1 r(—-—-+ h) | = 9 2" (3

E [)A(]h = II ol n-i ex (- = 2) 2 lj o

: - & -3k 29 51 {2+ )
Jj=0

i=1

(6.1.1)

The right hand side of (6.1.1) can be interpreted as:féllows:

11“n-i
27, > 4+ h

(i) ‘zn'i : is the h-th moment ?f fi(ui),
= .
_JﬁL -1

where fi(ui)g Lo n, ° exp( - %»ui) - i=1,2,...,p-1

B

2) ikigeh r( +j+h?
0 T+

moment of fo(uo), where

1
k2j 2 :
1 0. 1
folug)z E [exp( - E exp(- 3 ug ]
3t 29 %n - ,

(6.1.3)

(6.1.2)

and (11) exp( is the h-th

N

wna
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Thus: (i) from (6.1.2), fi(ﬁi), i=21, 2, sesy p=1, are
Aqentra.l chi-squares, which wé can take io be independently distributed
with (n-i) D.F. for u;

and (ii) from (6.1.3), fo(uo) is a non-central chi-square which
we take again to be -indepéndenﬁly‘distributed..viith n D.F. and non-
centrality parameter k% . |

Since the momént of a product of independent variables is the
product of the m§ments of the variables, it follows that:

E[IA‘hJ = E(ug? E(ul;:) X E u : E [(uouluz...u l)hJ .

Alternatively, therefore, the h—th moment of {A| could be directly
determined by multiplying respectively the h~th moments of independent
u(i= 0, 1,72, oeu, p-1) variétes defined above from which one con-
cludes that if one wants to determine the distribution of |A| , one
can do so by finding the distribution of the. product (uéull...u-p_l).
Since Uy, W, .., u ) are independent, their joint distribution
can be written down and the distribution of (uguyeeew, ;) can further
be determined for p «2, 3, and 4 as followss .

The ,)o:.nt. distributlon of the independent variates us (1- o, 1, eee p-l)
can be written ase

p-l | =i

“i ) 2

(- 312 -1
- ]zr;___lz g
~1 V -

- (%)
- R

2
k 2 O, 6. 0 '
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where 0 € u; < oo : i=0,1,2, euoy poL
After a little manipulation and setting n = 2m + p+1

(p ¢ n), the joint distribution of ui(i =0, 1, 2, ..., p-1) becomes

oL =3 p-2 p-1
m um.é. u 2 u 2 u 2 p-1
1 p-1 Jp-2 "% 1 0 I
DH3 3 T SXP( - 2 2_‘ Uy

2P[mf°rT) I-(?n“)_ [GH*E) "'Vm*'pg__) | i-o
. : 2 2 2,12 -

L s [ u, (9/2) oy (x5/2) LSt
exp( - 5 kl) 1+ 1T m + 5T CoipL ) (2rpi3) + - U dui (6.1.5)_

‘ : - < i=0 :

where O ¢ u; <oo i=0,1,2, «v., p-1.

6.2: Preliminaries

' (i) We make use of Legendre's duplication formuls for the gamms,

functioh , namely of

BTN IS =ﬁg§nf’1? O (6.2.1)

(ii) We list below the standard integrals, derived from various
books of integral tables, of which frequent use has been made:

(a) Larsen's book of tables (p. 254) gives

exp [-(x2+a2 352)]61}:. =2\/-—n—- exp(-2a) ' | (6.2.2)

oo

0

for a ) O.
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(b) Bierens de Haan gives in his Table 98 (pp. 143-1Lk4) two

integfais numbered (5) and (17) as follows:

1 | a
/ 2 exp [-(px + qX—l)} dx = (%)2 exp( -Qflﬁ) »

0 oo _
/E Z[(a +1 - n)2n/l]

: (6.2.3)
St 222 (/5" , .

o
a

and ) '
1 ‘
/ x2 "z exp[-(px + qX-l)] dx = E 2 exp (-2/—51)

0

ey
' (6.2.4)

2" 2(a/‘ci)

~ Note: 1In both of these Kramp's notation is used, namely

xn/h 2 x(x+h)(x+2n) ... (x +0-1h)
(c) From Whittaker and Watson's béok, we quote two integrals

(p. 116, ex. 6 and p. 243, ex. LL)

] exp (-t)-eXP(-tZ) dt;/eXP(‘t )‘eXP(‘Zt ) dt = log z (6.2.5)

.t
0] ' 0
where the real part of z 1s positive,

1

o |
j exp‘-u )+ exp(-'—u.) -1 au=Y =

5772157 ... (6.2.6)

- u
o)

where Y is known as the Euler constant.
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(4ii) Evaluation of Certain Integrals by the Use of Differential Equations

(a) BEvaluation of I, where
A ® .

I-= J x exp(-2x~2ax"1)dx, (‘6.2.7)

Setting x: Lu™l and b= 4a in I, one obtains the integral

2-
@
K(b) = 21; / w3 exp(-u- -bu)du (6.2.8)
5 :
Ir
k() s £ 3 exp(-u-l) (6.249)
then
1 dk ' ,
and (e o]
K(b) = j k(u)exp(~bu)du | ‘ - (6.2,11)
The function K satisfies a diffeiential equation of the form
2 , . ' ‘
d<K dK -
(cl* dzb) 02 (cy#dyb) T (cg*dgb)K = 0, (6.2.12)

which after some simplification reduces to

2 | |
p &K _ &K _yga g (6.2.13)
db2 - db . o
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Solving (6.2.13) by Frobenius method of series, we get:

K(b)- ;[A,«Blog b][-‘*‘ﬁz“; B2 . _ bk }

2111 311 4l2!

(6.2.14)
'+B[l-b+l'-§b2+ll2 b ... ]
2 3 2
To find A and B we proceed as follows:
Set b =0 in (6.2.8) and in its derivative to get:
K(0) = -K'(0) = 1 | (6.2.15)
o Lk _
Now setting b = O in (6.2.14) and then using (6.2.15), we get:

However, the substitution of b = 0 in the derivative of K(b) defined

in (6.2, lb,) ‘does not help since by using (6.2. 15)

K'(b?' + %[1 +blog b + log b(%-é-!.}f 3?2! + ...)J'+ 0(b) |

-A=1It
b0 b
which is indeterminate.

Again, making use of L'Hospital's Rule,

-A" -l-= -J; ‘
g, (e )

- @
or -4A -1 = %’t;o / [_u‘l exp [-—(ufl + bu)) du + log b)

o0

| = b—+ exp [-(' + bu)] du + Ie‘xP('u) ~exp(~bu) duJ

(by using 6.2.5)
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oo

= It / exp(év.-l — bu) + exp(-u) - exp(-bu) du]

u . .

b=0| 4

is continuous

exp(-u-l'- bu) + e:gp(-u) - exp(=bu)

Since (i) f(b,u) = a , .

on the right at b=z 0 and (ii) for 0 ¢b s 1
’f(u,b)‘ < max [‘f(u,O)I s \f(u,l)l}
o " L
¢ | exp(u ) ‘.'—’SP-(-—L—e =u) +l for O gusl
u S .

-

) ' -1
exp(-u) . 1 - exp(-u )
a . . u

for I ¢ u < oo

where each term in the last expression is integrable over the given inter-

val, the order of limit and integration can be interchanged and one:gets:

O
-1 '
- LA =12 exp(=ii )+ exp(-u) - 1 du
0
i Y
D) s exp(aw) =1, (v )+ exp(v) -1
. ) s, | smeDe e,
0 1
Now setting‘v: 1-];"- in the second integral, we dotain by using (6.2.6)
1 -
-1 _
- 4A -1z 2 ey )+ em(u) =1 gy =2Y
0
A= Lt 2Y

A  (602417)
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Finally from (6.2.7), (6.2.8), (6.2.14), (6.2.16) and (6.2.17), ve get:

o

2:0% 3 1
0

2 3
Lfg? +...],+§-[1-(ua)+(“zg ’;1(1:‘) #..n)

(6.2.18)

(v) Evaluation of Lr(a) =2 ‘/’ K2TH exp(-x2 - ax-l)dx (6.2.19)
, 5 . .

for a real and positive and r =0, 1, 2, ...

The values of successive derivatives at a = O are:
_ ‘o) Ly eco) -
L (0= {r+1), L(0) = -[r+), w(0) = [(0)

(o) = [t -, %0 <[t - 1), 1700) <[ - B, ee.

(6.2.20)
Setting x = u-l, we get from (6.2.19): “
Lr(a) =2 ‘[ w 2r-3 exp(—u-z -au Jdu (6.2.21)
: o , . A
Consider Qf(u) =2 w23 exp(-u-z) ' (6.2.22)
Its differenéial equation is:
; ' 2
1 abr _ 2 - (2r + 3)u
TR = | (6.2.23)

r

Now Lr(a): J'Qr(u)exp(-au)du is the solution of the differential equation:

0
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3 2 dL
(c cg #d a) L. +—(c +4d a) 2r + (c c# d;a a) _r + (cO +doa)Lr =0

da3 ’ da da
(6.2.24)

/[(-cu +c22-cu+c )-ﬂ-a(-du +du2-du+d )Je(u)

exp(-au)du s 0
Proceeding as before, as in part (a), we obtain:

c, = 24 = =2rd

3=23, ¢ 30 9340

and | cl = c3 = do = dl = 62 =0

Thus Lr(a) satisfies the differential equation:

Ad3Lr | d2Lr | SR
3 da2 r _

" To solve (6.2.25) by Frobenius method of series, let:

Lr(a) = ac(bo #+b.a 4 bac + bad Foeea) ' (6.2.26)

1 2 3

Substituting it in (6.2.25), we obtailn the following:

(1) from indicisl equation, ¢ = O, 1, 2(l+r) | (6.2.27)
(11) by = by = b, = ee = Doy = eee =0 (6.2.28)
and (1i1) b, = -2by)
A (c#2)(c#l)(c=-2r)
22&6
Pl = T#h)(c#3 (w2 Wewl N(c-2r )(c-2r42 )
. : !. v N
-2y

% = . (c%6)(c+5)...(c%i)(c-Zr)(c-Zrﬁe)(c—2r*4)



U , etc. | (6.2.29)

Evaluation of Lr(a) for Particular Values of r

(i) Setting r = O, the differential equation (6.2.25) becomes

d3Lo o
5~ #2L; =0 (6.2.30)

da
Making use of results (6.2.26) to (6.2.30), ve get:

h 6
Lo(a) [A + B, log a][ 2, +1+—2 2?2h+"')

*BoY_l"’ 5 5 2". ﬂa'lg%l'r'e' ah*"']

2 l Y- 37271
-ﬂ;C [a-‘...?....a34!» —h'--—a5 -I 8 a7-a— ] (6.2.31)
0 3! 5113 7135 T VeIt

With the help of (6.2.20) and remembering that r = 0, we easily obtain

from (6.2.31): Bé = Rl), c, = . R%) o (6.2.32)

To find A, we differentiate twice (6.2.31) with respect to s,

and then, setting a = 0, we obtain:

_ "
- oA = Lt [Lo(a) +2 log a)
a— 0
- -2
= Lt [2 ju exp(-u = - au)du + 2 log aJ
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N

Settingu =t we obtain:

l
= Lt [J exp( -t - at )dt + log a2]

a0
0

Finally, making use of (6. 2, 5) we get:

l
[] [exp(-t - at ) + exp (-t - a2t })dt‘)
a—'O

‘Again an interchange of limit and integration is possible, so we obtain:
. M v
-1 ~ : -1
- 2A, = l t [_exp(-t) + exp(-t ") - 1] at
O .
Now proceeding as before in part (a), we get:
-20,. =2Y, s0A_ = -Y s -the: Euler constant.

0 0
Thus

. , 5 6
2
Lo(a) = (¥ - log a)(;:l - ta 6§Z T eee )

23 2  L(i2k) L
+ (1+—-_._a - a oo )
) 22 12 h2'32'2E-12 ,

-#r‘ (a - | 83 + 3?%73- 85 - 7TIQ§T§'87 *-.;.) (6.2.33)

(ii) Setting r = 1, the differential equation (6.2.25) becomes:

g #2L =0 (6.2.34)

Proceeding as above and similarly evaluating the constants with

the help of (6.2.5), (6.2.6), (6.2.20) for r = 1, we get:
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2 3
1 2} L 2 6
@ -[(¥+ D -0sa) (F & - ghm O grEr - )
+(l+%-a2+1jﬁ—au+...)
Ve 2 3 22 5 23 ¢
-é—-(a-%3—,.—a -gf- a +-7—,.—a —...? | (6.2.35)

(iii) TFor r = 2, the differential equation to be solved is:

3 -2

dL2 . dL2
-4
da3 : d32

a + 2L, = 0 | (6.2.36)

Again with the help of (6.2.5), (6.2.6) and (6.2.20) for r = 2, the

solution of (6.2.36) 1s.

1(a) - [(w—)- (05) 106 a][m . 2

6 8
W 2‘3. -Pr...]

'ﬁ‘r3) [1+Ea + r au-ﬂ-g———' a6+...J

o .
-‘-E‘g‘) [a +-3-?:'§- a3 -H--é',.—i—.‘:{ 35 + ...] (6-2-37)

6.3: Distribution of the Determinant of the S.P. Matrices A up to the Order

4 in the Non-Central Linear Case
Case 1: For p = 2, i.e. when A is of order 2 and is positive definite.
Substituting p = 2 in (6.1.5), the joint distribution of u, and u;

is:
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1
-2( 5) Tt 5 , '
2 mﬁ: 10 exp [- %(u0+ul)] expé-;‘—k?)[l-!-

Vma-l) Rm— %) .

u, K¥/2  ub (k§/2)2 '
T 593 ¥ 3T ET)ET) + ..o ]duo duy (6.3.1)

0 s'u u, L o
where 0’ "1

2
Set wuy =¥, uy = 2v§ | (6.3.2)

-1 .
so that duodul = 11-\71\?2 dVldV2

Making use of (6.2.1) and .(6.3.2), the distribution (6.3.1) reduces to:
ompl ,_ 2 2 2

v : A : \'s k
2 1 1 .2 N VRS
j;— W2m—[}2) exp( 'E.:‘kl) exP( --).|.V—2. 'VQ)[l'ﬂ"—f.r.ém—-‘H*,
2 E .
Bk
t 3T Gee3)Ems) "‘]dvldva (6.3.3)
where 0 ¢ Vl’ V2 < oo

The distribution of vl( = ./uoul) is then:

1.2 m#l
exp(-gkl) vi av

2 1 (7 r Vi C P2 Vg ki |
N N T B [ f exp- W 2?[1*'1'!' w3
: =0
2
Vk kh' ’
+ 2 _1
a7 )dvz (6.3.’4—)

(emt3)(2mt5) * 0t

where 0 ¢ VlL°°
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v I
Now using (6.2.2) .J exp( - —15- - V22)dV2 = — exp(-V,) (6.3.5)
L 2 L
V_=0 2
2 oo
ve
For r #£ 0, Ve ='t, the integral I_ = ver exp( - SRS V2)dV
2 r 2 )-LVQ 272
V.,=° 2
oa -
1 2
1 =2 | Vi
reduces to I =3 t | exp(-t - EE-)dt, and now using
-
- (6.2.3) we have: oo
' v : Z 2n/1
_ 1, _1yr (r+l-n)
Ir - 5( 2 )" exp(- vl) - oB 2 v
) ’ ’ n=0 1
. Jﬁ- R .
= exp( - vl)Tr (6.3.6)
v ~ " \2n/1
n
where T = (_];)r Z rtlon)
r 2 2n72 V2
’ n=0 1
Thus the distribution of Vl( = J uoul) is
VL n(- V. - £ °) B T K
1 L2 1 1 2 2o+ 2 1 + av
ﬁzm ¥2) 1T Zm3 27 (Gem3)ems) T occt) 1
(6.3.7)
n=3 ’
where 0LV, =2 and m = ——==
~ 1 2
Note: For k° = 0, and m = 223 6 :
Note 1 =0, =5, (6.3.7) becomes:
1 n-2
1) v, exp( - Vl)dVl (6.3.8)

which is a gamma variate with parameter (n-1).



Case 2: For p = 3

Substituting p = 3 in (6.1.5), the Jjoint distribution of
uo, ul, ?2 is:
mm~ﬂ»l mfl 2
3 u, 2u ‘ .
T T IR T4
\-(‘mﬁ-l)‘zm-&é—)"(m-ﬂe) :

2
i=0

u, (k /2y i (/)
[l 4 —'r "R" Eﬁ: (2m*)+)‘(2 as) F eee ] duoduldu2
where 0 Uy ul)_ Uy & =2 | (6.3.9)
Setting u,u u,=V,, ulug = Vg, u,= 2V§' ~ (6.3.10)

-1
so that duoduldu hv l\r dVldvadV3

and then making use of1(6.2.l), we obtain the distribution of v, after a

little manipulation as:

1 5 1) exp(_ 3_ 2 av‘?)[n
JT o+ L f(m17‘?m3) a3

z 3
A
1! 2—,,;1; + o (2m+h)(2m6)+ ...]dV3dV2dVl ‘-6.3.11)
where 0] évlcw

Making use of (6.2. 2),

2 v2 ve | fi
f exp( - —2—-3- -é;E- ) dV2 =2 Vg exp( - 3,'—— 12’_1_ )
0 P 3 -3 |

Then (6.3.11) reduces to:
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v exp(- l-k2) ( V3 k2 V2
1 2 1 3
2™ [(ms1) [ l2me3) ol -g‘/—l " )[V *I ma
' 0
L
1y .
(2n#s ) (2m35) + -..‘ ]}dVSdVl (6.3.12)

Now making use of the integral (6.2.19) for r =0, 1, 2, ...
given respectively in (6.2.33), (6.2.35), (6.2.37), etc., and

remembering that a in (6.2.19) is equal to XE., the distribution of
: , ./ 5

v ( =u ) is:

0 1“2

S e P

2™ 11 rmﬂ) r(zm-s) +5T Gyt e

2

where 0« Vl<.0° , and m = —%E- (6.3.13)

Note: Substituting kl =0 and m =E§£-, the distribution in the.central

case becomes:

n-b
= _
- 1 l N
. L (J—- ) (6.3.14)
n=2 - : o 2
2‘2“?52‘—-1)Rn-1) - :
for : 0 ¢ Vl~<'—°

\
where Loelii) is defined in (6.2.33)

Case 3: For p = L:

Substituting p = 4 in (6.1.5), the joint distribution of Ugs Uy Uy

and u., is:

3



1
h I umum*:éhum*lu 3
p-i(me 1)~ 7372 130 - xP(-é];Z “1":2L’k§)"
Ree1) Rm@)ﬂm&e ) (me2) o ,
{_. u (ki/z) : ug (k /2) :
where - 0 €Uy, Uy, Uy, u3<°o
Setting uaunU,) U= Vl’ u U, U= EVS, u u= V§, u,= 2Vﬁ (6.3.16)

so that du.du,du,du.= 8(v u) -1 av dV av

37429 %% dv),

3
~ and also miaking use of (6.2.1), we obtain the distribution of v,

afteralittle manipulation:: as:follows:

12 |
vy exp$- 5 K7)av, j / / exp(_ i Vg 3 N V /
7 [(2ns2) {(oms) W2 V¥ wE !

_O v —O V —O

2

v2 K vl‘ kh
[1 +—h— — + : L + ]dV av dV (6.3.17)
1t 2m#5 2V (2M5)(2nl-ﬂ>7) I <3e

where 0 ¢« V1 <« o

Making use of (6.2.2), we integrate (6.3.17) first with respect to v,

and obtain:

oe o)
V™ exp(- = k%) av i
1 exp_ 2 1 1 v exp(-ﬁ) exp( - 3 Vﬁ) ¢
T ((oms2) [Comst) 3 7, -
. . V.=0 VL‘_=O
x -}i Lo 2 1 ves)dv. dv 3]
(} ' 1r 2w5 iy (em+5) (2m+7) * 37h (6.3.18)
where : 0 &V, ¢ w0 -

1
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To integrate with respect to Vh’ we evaluate again the first integral as
before by using (6.2.2), while in the others we set Vi = t and then,

using (6.2.3), we obtain in place of (6.3.18):-

o0
7 exp(- £ 12) av : v, I, K
- e Covgesm(- g VI [1H T amy t
2 Y?ém +2) Y?Em ) V.20 3 ) *
‘ . 3
T kh .
+ = L + av (6.3.19)
5T T o) 4 -3¢
for 0 5Vlgeo
; (r+1-n)2n/l
where I = O——) Jr—exp(—V ) ZE; o T Vm (6.3.20)

Further to evaluate (6.3. 19), we have to use either (6.2.3) or (6.2. h)

for p =1, g = Q/V and suitable value of a. This determines the

distribution of'Vl(= ugu lu2u3) where it should be remembered that m = —(n 5).
Note: For the central case we set kl = 0 in (6.3.19) and then’making use
of (6.2.18), we get the distribution of v, e "

n- . ) ,
vy Todvy ‘ (142%) - log a a° + ad + enlL +

[-3) (1) B stor Y3t F o )

2 R 2 2.2
) 2 32

where O3 VlL oo and a =,/Vl



CHAPTER SEVEN

STATISTICS PPOPOSED FOR VARIOUS TESTS OF HYPOTHESES I, II AND III

AND THEIR DISTRIBUTIONS IN PARTICULAR CASES

T.1: We list beiow the statistics,based simultaneously on the roots
of both the determinantal equations (1.4.5) and (1.4.6),which can be
used to fest the hypotheses I, II and III with the suitable use of
independent S.P. matrices A and C:

(i) Ro&'s statistics of largest, smallest and intermediate eigen-
—roots based on the determinantal equation (1.4.5). We can simultanepuély
propose to include that of the eigenrqobs; based on the determinantal
equation (1.4.6).

(ii) Hotelling's Ti-statistic defined es:

7% = nytr(cTA) = n Z (2 s) = m Z (¢,).

i=l
(iii) Wllks-jﬁp-statlstlc defined as:
o ¢
=lc|/|A+c\ = H (1-0)_H(1+¢)
Ci=1 i=1

(iv) The Wilks-Lawley U-Stata.stlc definedyas:

U=|A]/ +C| = H(&)_Z(l+¢

i=1

(v) Pillai's V-statistic defined as:

tr[(A+C) A Z (6,) = Z (%i)
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- (vi) We propose another statistic Y defined as:

=_L&'_=]T ﬁ ()

¢l _ i
i=1 i=1l

Of course, the distribution of any of the statistics, under the null
hypothesis, can be found from either of the joint distributions (l.4.7)
and (le469); but it will be more convenient to use (l.4.9) for -i‘:"LndingA
that of A s U, V, and either of the two for finding that of Roy's
statistics, |

We have taken in Section 7.2 the statistics lec and Y and have been
able to give their distributions for é - 2, 3 in the form of definite
integrals. Since the procedure is guite similar for the remaining
statistics, we have only listed at the end of the Section 7.2 their
respective distributions in the form of definite integrals, again for_
the cases €= 2, 3.

Nanda (1948) gives the joint limiting form of (l.‘l;.'?), which we
have listed under (l.4+10)s Following him, the joint limiting form of
(Lehs9) is easily proved also to be (Le4410) by setting ¢i= -Cﬁ:-L- in
(1.h 9) and then letting n tend to infinity.

The fact that the l:un:l.tlng forms of both (1. I+.7) and (le4e9) are
the same enables us to conclude that limiting distributions of _the
- statistics Y and U will be the same and also that of le(‘and V except
~ for the constant multiplier. The same can be said in the case of

5

Roy's statistics, Y
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In Sections (7.3) and (7.4) we.have given another method,
different from that of Nanda (1948b), of finding the limiting
distributions of Roy's statistics. | Further, to demonstrate the
method of iptegrétion, we have solved;sdmexarticular:cases, giviug
various values to m, for ¢ - 2, 3, and k.

| Lastly, in Section 7.5, we have first found a new form suitablé for
‘finding the limiting distribution of Uer Y. Since ﬁhiS'form is quite
similar to phat,élready obtained in Chapter Six for finding the
distribution of tﬁe determinant of S.P. matrix, we have only effected
certain substitutions ;n the results obtained in Chapter Six and
have been able to deducé the limiting distributions of U or Y for

P = 2, 3 and L.

7.2: Distributions of the Statistics T and Y for & =2, 3; and

Further Results

Case I: For Q =2,

The joint distribution of ¢ and ¢2 from (l L 9) is
e(m, n, 2)(d 4, )" [(1 +4,)0 ) 2) ““‘“‘3(¢ - 4)ag8d,  (1.2.1)
for O ¢ qfls ¢2<~=

(i) For Y-statlstic. Let,

§ $iBom w (L4 41+ 4, Y= v | (1.2.2)
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so that (;&2 - ¢l)d¢ld¢2 = du dv, and the relation (7.2.1) becomes:

c(m, n, 2 " v-2(m+n-&3) du dav (7.2.3)

Now the roots gﬁl, ¢2 of the quadratic:

xe-(v-u-l)x—ﬂ-u=0 (7.2.4)

are real if (v -u -’l)2 Y hu

i.e. if (1 -a\/u)e‘c v
Then the limits for v and u are given by:
(L2Ju)l ¢ ve
0cuceos _ | - (7.2.5)

The distribution of u(= 751952) or Y is given by:

o

c(m, n, 2" du/ vIE3 gy

v=(l-l0;/u)2
‘where | A 0cucoo
’ 2mfl
2c(m, n, 2) ) '
or by ——=2—2 -2 da¢/u) (7.2.6)
m+ 0+ 2 (1-&/u)2(m*n*2) . '
wheré 0 £u cow

Further, for any test of hypothesis, we need to make two forms of

substitutions: o
’ n. -3 . n,=3
1 . 2
pr=2(\‘nl)) m = 2 14 n = 2
n2-3

If nl=2(gp), m:-fP;3-, n = | (7.2.7)
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Effecting these changes in (7.2.6), we have:

For p = 2(5:5), the distribution (7.2.6) reduces to

Rnl + n2 - 2) (\/u) T
(o -1)[{n,-1) (1&/u) .-

a(yu) | (7.2.8)

vhere 0 2u<ceoe
which states that /Y (=\/ZIB;) is distributed as F-ratio with

2(nl-l) and 2(n2-l) D.F.

For n, = 2(< p) the distribution takes the form:

[e-Dlop)  (1%/w) .

where 0 <u '<°'°
which states‘that JY (=,/¢1¢2) is also F-distributedeith 2(p-1),

2(n2-1) D-F»a

(i1) For Ti-statistic:

Considering now the change (¢1*¢2) = u, ¢1¢2 =v (7.2.10)

and proceeding similarly as above, the joint distribution (7.2.1)

becomes : .
e(m, 0, 2 (L +u *_v)—m-n-3 du dv (7.2.11)
. ’ u2 .
<
where. 0O cve ey
0<% ueac®

Then the distribution of u is:
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2

e(m, n, 2) j vm(l oy + v)_-m-—n—B du dv (702012)

1
4
v:-0

where 0 ¢ u < oo

Setting v = (1 + u)Vo, we get in place of (7.2.12), the distribution

of u as: 2
u
, h.ilous _
e, m, e WP [ v )T @y (702.13)

where 0O sucee

Again, effectirfxg the changes in (7.2¢13) as indicated above in (7.2.7)

we have:

Forp= 2( ¢ nl) the distribution of u = Ti for two roots is:

2
r( ) Hll—l-*—lf)' ;Ll..3 nl+n2’
1 M % | v % qa) 7
o - (ew) g? : (7.2.14)

where 0 2 u < oo

The integral involved is an incomplete beta function which can be easily

évaluat ed,

2
~For‘nl= 2( ¢ p) the distribution of u(= Tk) for two eigenroots is:

e ng 2
L(T : 2
1 \“(ng'* 1) du b VB? (1*V; R
L N " n-p+3 0 0 0
Rp-l) an-p 1) 22 - S
’  (1ew) V=0

0 (742.15)
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where ' 0 & u «o0
and again the integral involved is an ineomplete beta-function which

can be easily evaluated.

Case II: For -

The joint distribution of ¢l’ ¢2, ¢3 from (1.4.9) is

c(m,n,3)(¢l¢2¢3)m [(1.+ 51)(1 + ¢2)(l *_¢3)J-m-n-h

-1 3

T[ M, -6 T o8, (7.2.16)

1-
.2 ] ‘ i=1

13
s = gy, 24y <=

For finding the distributions of both the statistics Y and Ti for

(@]

for

three elgenraobs, we effect the follow1ng changes.
so that (¢3-¢2)(¢2-¢§l)(¢3-¢l)d¢ld¢2d¢3 = du dv aw

Then (7.2.16) reduces to:

é(m,n,3)wm(l +u +_v,*_w)-m-n-h du dv dw - (7.2.18)
where ¢l’¢2’¢3 are the roots of the cubic:

% - ux® +vx -w=0 (7.2.19)

(i) For Y-statistic:

In order for the roots of the cubic (7.2.19) to be real and"

positive, we know, from the Appendix B, Form II, the limits on u, v,
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and w respectively Hust be the following:

0 £ Wea oo and O ¢W aoe

3w2/3

In

v s 3w2/3(1 +4/3) 3w2/3(1+,/3)_¢v4 oo

, , ,
P3 £ u sﬂu A, g;’.g.‘fﬁﬁ L

_ - (7,2420)
Thus the distribution of w(= ¢l¢2¢3) =Y from (7.2.18) and (7.2.20) is:

c(m,n,3 )" [ / (le_w)-m-n-k du dv aw (7.2.21)
v . u
where u, v, w are defined as in '(7.2..20).

Effecting another change in-(7,2.2l) asfollows:

ve=(L+wlV, u=(+ w)(1 + VU (7.2.22)
so that du dv = (1 + w)e(l + Vl-) v, du,, ve get in place of (7.2.21):
m ’ .
. av du «
c¢(m,m,3) __ " 1 1
- —_— —_— av (7.2.23)
(L yEEH (147 YT (140, et |
, . -
1 1
for A 0w & oo and 0 ¢ Wweee
2/3 - | . 2/3. ./ 2/3
3w 3w £1ﬂ3) 3w’ 7 (1+/3)
W <1 T _1_»&"1— € Tpees
B3 < Py - B3 3 B,

£ U ¢
) < U < TN,y (R 1% [Te(Tvy)

Further, for any test of hypothesis, we need to make following two ‘kinds

of changes for m, n in (7.2.23) as @iven:below
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: n. -k n,. -l
If P = 3(& nl)} m = 12 b n = 22
-l ny-h
and if n, = 3(¢p), m= 3§—~, n = (7.2.24)

(ii) For Ti-statistic:

In order that the roots of the cubic (7.2.19) be real and
positive, we write down the conditions respectively for u, v and w,
derived in Appendix B, Form I, as:

(a) 0 su=<==
2

(3

m‘“ 4?‘::

0O =sv

and 0

In
>
In

(7.é.25)

and (v)

e}
n
e
p
{

L2 ey el

(7.2.26)

Thus the distribution of u(= ¢1.+~¢2 +43) = Ti for 3 eigenrqohs;-from
- (7.2.18) with the help of (7.2.25) and (7.2.26) 1is:

(1) e(mn,3) [ jwm(lmm)'?"'n'“ avdvan  (7.2.27)
. ‘ v W

and (ii) c(m,n,3) / [ wm(l-!i-u-!‘v-!!-w)-m"n-LL aw dv du (7..2.28)

v v
with limits in (i) and (ii) given by (a) and (b) above, respectively.

Effecting another change for both (7.2.27) and (7.2.28) as:

v

(1L + u)V2

s.
0

(1 +u)(1 +-v2)ue- (7.2.29)


file:///-m-n-4

we get respectively as the distribution of u = 'I‘2 for 3 eigen-roots:

k
Uﬂ'l
(1) ¢(myn,3) ~  n#2 du_av,
2 (7.2.30)
where Ocu <« o°
. u2
0 ¢ V2 < h—(—ﬁ ™
B |
0 £ U2$ m?)—(-m (7.2.31)
2 - o
and where v -used in Pl and P2 is equal to (l-i'-u)Ve,‘ and
o 4 e
(2) (" e(myn,3) u 2 au_av
Vo Uy | (7.2.32)
where 0 2u< =°
2. 2
u v <
Ry 2 * 1w
P  p
T,y ¢ V2 TTm,) (7.2.33)

Finally, for any test of hypothesis, we need to make 2 types of changes

as indicated in (7.2.24) for m and n in (7.2.30) and (7.2.32).

Distributions of Other Statistics

Since the method for the other statistics is quite similar to

thateused above, we give below only the final results.
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Case I: For P =

(i) For U-statistic

The distribution of: u(= 016'2 or U) for Bwoigigenrootsiis:

2elmm2) (™1 - )P a( ) (7.2.34)
" where o O fu <1

(11) For V-gtatistic

The dlstribution of u( 6, + 86, or V( )) is:

1
| c(m,n,e_)(lfu)’“*n*l du / v’;' (1 + v3)n dV3 | (7.2.35)
3
where - 0f£u 1
u2
& < .
0 -V3 s m . (7-2~36)

(iii) For A- -statistic

‘The distrlbution of u(=1 - 6, 1 - 92) or j\_fﬁmtﬁoweigearoots K

is:

where 0 fu =1
Further, for any test of hypothesis, the changes of the type indicated

n (7.2.7) aije possible.

Case 1II: For 0 = 3

(i) For U-statistic

The distribution of w(= 819263 or = U,fthrée réigenvalues) is:
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o(m,n,3 (1w )" / / (1+vh)n*1(1~uh)" av, au, aw - (7.2.38)

Y
where | ‘ 0O «w €1 .  and 0 ¢ w < 1
: 3W2/3 <V < 3W2/3(1 +v3) 3W2/3(1+~/3) <V, &

l-w = kT 1-w 1-w
. i ’
B 3 <U Py B3

¢ U gpoo 2
_ (7.2439)
Where P3 and F y are defined in Appendix B, Form II. and v used in - .

them is equal to (l-w)Vu.

(i1i) The distribution of u(= 6, + 6, + ©, or V) is:

1 2 3

. (1) e(m,n,3)(1-u)"* gy / f U?(l-US)n(.l-W,S-)Ml aUaV

Vs Ug - (7.2.10)
. where 0O g£u =1
u2
© Vst
Afgz‘ : | '
0« U5 _m)—(i.*—vs—)' (7.2.’4’1)
and (2): . _.
c(m,n,3)(1-u)™* gy / U{;‘(l-us)"(1+v5)””’"“"'1 aUaV,
V5 Uy L (7.2.42)
where 0 £u =1
2 2
U eV & —o
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pl /3‘2

T)(+,) < Ug € T(w,) (7.2.43)

where further /31 and FE are defined in Appendix B, Form I, and v

used in them is equal to (l-u)VS.

(1i1) The distribution of w{= (1-01)(1-92)(1-03)Jor I\ for three

eigen-roots is: .

c(m,‘n,3)wn(1-w)m*2 f [ (1W6)MI(1‘U6)m av, aug aw
| Vo Ug (7.2.4k)
where O>sw-:l and 0 <w ¢ 1

l-w - 6 l-w ’ : 1=t

P . | p / Ve
ey 4 Ug x . __P3 . U 7Bl
T (1, (T )(T,) T=w)(FVg) & 6F (Lon) (T vg)
. ’ (7-2-h5)
where again P 3 and P y are defined in Appendix B, Form II, and v
used in them is equal to (1-w)V6. |

Finally for all these thfee parts, under any test of hypothesis,

the suitable changes for m, n indicated in (7.2.24) can be effected.

7.3: Distribution of the Smallest Eigen-root in the Limiting Case:

The Jjoint limiting dist'ributipn of the eigen-roots ¢ i of the

determinantal equations (1.4.7) and (1.4.9) given in (1.4.10) is

re-written as:
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¢ ¢ i
" K(2,m) H c? exp( - ci) H” (c -c, ) H de,
i=1 1223=] i=1
0sec, < c2 ces L Cpeee ol = min'(Pj.nl_,)
where K(¢, m) = ]] RZMi+1 }_ )

i=1

The distribution of the smallest elgenrcot ¢y is:

>0

. _ Q |
P (cl>l x) = K(Q,m) / f~ - - H exp(-c

-x c -c i=l
051 ¢
un«i cep I o,
i=2 j=2 i=1
Set cc = clulu2 ...ue_zue_l

cl-l = clu.lu2 cee u¢_2

C3 = Icluluz

c2 = clul

Then:

(L1)(l-2) L
P(c b x)—K(@m) ’ j /[tm+ = =

=X u,=l ue -l

[ n@e-1) + $20(¢E1)

(7.3.1)

(7.3.2)

(7.3.3)

(7.3.u)

exp(-c12]

1 : (u2 -1) exp( - 0y )J X
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.x[u:: - 2 - (u2-l)(u -1) exp(-c 1% u2)] [

_ . ,
(uc __2uv¢_3 -1) ...(ue_2ue_3 ooy fl) exp(-clulu2 ...ue_2)][ue_l(u¢_l-l)
(u.e_lue__2 -1)(ul_1ue_2ue__3 -1) ...(ue_lu.e_2 ceoly -1) exp(-clulu2 ...ue_l))
du(-ldu(-Z ...duldcl , - (7.3.5)

We have evaluated below the integrals for =2 , 3, and k4, The same

method can be extended to any value of § .

Symbols‘ and Notations

(1) T (n,a) = / 2 exp(-ax):il-%-(;a—)[lv-}-2—+;n—(-ag—-]-’—)+...9—g—]

1 a
oo (7.3.6)
(ii) T(n,p,q,7,...58) = jxnexp(-éx)dx[ fypexp(-axy)dy
' ‘ 1 — 1 |
/zqexp(_-axyz)dz(v...)J (7.3.7)
T -
(iii) T(‘{(pl,pz;aX) 1-*]'(ql,qe;axri'- ) ’
P
= } %" exp( -ax)[ [ yfl exp( -axyl) ( / y22 exp(-axyly2 )dy)dyl

1

1l 1

o dz| 0’21_)
* f z exp(-axz )(/ exp(-axz1z2 ¥ ] dax (7.3.8)
1 1 | |
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= T(o,p,m,58) T Tn,q) 0,500 ... | (7.3.9)

and ete.

Case I: Substituting € = 2 in (7.3.5):

. | “ .
. _2me2 : m
Pr(cl ) x) = K(2,m) f f ey exp(-cl) ul(ul-l)exp(-clul)dcldul
¢, =X u;=1 B | (7.3.10)

. a
Making use of (6.2.1), (7.3.2) and after little manipulation, we deduce

| from (7.3.10): oo - :
' 2m¥l : : '
P (c. 9 x) = W_jz = [ E™2 exp(-c )| T(meL,cp)- T(myeplae,
i ' s | [ e ]

Using (7 3.6) and simplifying, we get:
m(m-1) l)

P(c % x) f T exp(-2¢. ){1+22 %3 E
1 c 2
‘[ 1 c—x . . 1 )

. 1 '
+ (m#l) Eénlsdpiq (7.3.11)
c
e " .

which can be easily evaluated for successive substitutions of m=0, 1, 2, ...

Case I1: For [

Substituting { - 3 in (7.3.5), we get:

o0 O

P (ey ¥ x) = K(3,m) j [ yexn(-c )][ 2“**2(111-1)

c—xu-—lu

exp‘ -clul')J [u?(ua-l )fuluz-l )

exp(-¢ “1“2)J duyduyde; (7.3 10)
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Making use of (7¢342) for( = 3 and then (6.2, l), we obtain from

(7.3.12) after re—arrangement of terms:

oo

2m+3
y X)= 2 / cimﬁ exp(=c, )

N LA

l: X

P (c

2m+4,

‘1

T E'J (m+2; ulcl? - ]"nﬁl, ulcl}
T Ez(m;ulcl).- T(m 2, ul(ﬁ?}

2u+3 : : s

°1
+ T [ ]'(m+l;ulcl) - a‘(m, ulcl)j} dcl (703013)
2m 2 : |

Now we explain below how to make use of (7.3.13) to get the probabilities
for particular values of m,

(i) Form=0 oe
. Cl
Poley 3 x)= & / c35_ exp(~c, ) [T 5_7(2,‘1101) - I(l,ulcl)]
) clzx ’ ’ ' » ‘ ' ’

. 'T‘ [‘:](O,u c ) 7(2uc )3 ’T‘ [Z(l,u c ) - H’(O,u c )3] e

(70‘30:“4»)
Using (70306) we obtain:
: ' K exp(-ulc ),
Ifz’ulcl? - I‘l,ulcl? < u:L l (l 'El—-]-:
2exp(-u, ¢, ) 1
T(Omey) - 7(2upe)) = ——5 5= 1+ oo

T
uc .
11



T(ue) -FOue)) = —52= (7.3.15)

Again using (7.3.6) and (7.3.8):

¢y ~ exp(-2c
T@(Q,ulcl) - 7(1, uy )) —— (1 # 2—1 + -2-;3—2—)
' 1l

¢1 exp( -2¢ ) 3

"\;Q(o,ulcl) - (2 w e )) -~ - (2 +E-l-)

¢ exp(-2c )
and T@'(l,u ) - 7(0, s e )) -—-—-———-— (7.3.16)

2 ]_ ‘ :
Substituting these in (7.3.1k) and simplifying, we get:

1:’;[.(0l > x) =3 f exp(-3c, Jac, = exp(-3x) (7.3.17)

c, =X

1
(11) For m = 1

Substituting m=1in (7.3.13) and again ufollowing the steps

of the type (7 3 15) and (7. 3 16), we obtain:

ﬁ. .
Pr( e, ),x) = [ (ci + Sci + scl)exP('3cl)d°l (7.3.18)
| L 3 ,2 . .
= exp(-3x)[_x + 6x° + 9x + 3_) /3

(iii) FPor m = 2
. Substituting m = 2 in (7.3.13) and agsin vfollowing the steps

of the type (7.3.15) and (7.3.16), we obtain:
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[ -]
6 2
Pr(cl ), X) = -3% j (2cl+ 20°:5L+ 80c§ + MOci - lO5cl)exp(-3¢l)dcl
clzx

| A 6 :
= exp(=3x) [Zx + 214.1:5 + lZOxh - 300):3 + h05x2+ 270x + 90]/ 90  (7.3.19)
. ’ etc.

-Case IIl: For'f =

Substituting § = 4 in (7e3.5) we obtain:

o oo

Pr(cl >, x? = ?{(h,m? J ] / / [clim“? eXp(—cl?] -

cl=x ulzl u2=l' u3=l

[ toy-Demptecy) L5 2yt oy Demateeyng)] [ ey
(u3u2-l) (u3u2u1-l? exp ( -c1u1u2u3) ] 4dcldgldu2du3 (7.3+20)

Making use of (6.2.1) and (7.3.2) for 0 - 4, and after re-arrangement

of terms, we obtain from (7.3.20)-:
- - ]

s " c;
Pr(cl>,'X? = = 2 . . / c‘;’-‘ 'gech(-cl? (-]r [’F}

R&n;Z) (2m+4) 3m+8 2n 4
. . ¢, =%
1
| ‘M
((T (m+2, cyuquy) - 7 (m-1, cluluz))* ;I—; (J(m-»l, °1u1u2) -
- c 49 (4%
ﬂm"3’°1“1“2))" ;l: (7 @s3,0p070,) - 7(“‘*2"’1“1“2))] ‘31; ;};
’ B clul ‘ . .

(](m,cluluz)'~ J(me2, cluluz?)f 2:1: (J€m+3,glulu2? - ]?m,cluluz?:) ,

b kst

+ | (@ 2,0pmuy) - 7@ 3’61“1“2))}

2m+6
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1151

‘1™
TT Q’(m-n-l »Cq U 2 I(m,cluluz))-l» T (T(m,clulug) - ]'(m-l!»B,cluluep
3m+6 ey omih

1
AT G(m*3’°1 1%)- T(""*fl"’lul“?_))} E G(m’ﬁ 1%)
3m#5 QHWQ
“1%1
T(m*l"’l“l“e))" T U(m‘"’z"’l 1%) = T(mepy 2)) T
2me3 o . omult
(Fem1,0p9,0,) - T(m-&e,clulua))} ac, (7.3.21)

Now we explain below how to make us of (7.3.21) to obtain the

probabilities for a particular value of"m.

(i) Form=0
m First we substitute m = 0 in (7.3.21), and then by using (7.3.6),

we obtain the following:

exp(-clulug)
T(1equyu,) = F(0,equy 2) =27z
: 1%
- : 2exp(-c.u.u,)
p R A 1
](2"112) 7(1“112)' 555 ‘ (l*cuu)
) clulu2 . 17172
- exp(-c.u.u,)
1 2 2
7(2°112 7(1"’112: 535 A+ )
lulu2 1172
3exp(-c,u u,)
_ 1M1% 2 2
3'(3,c1 1 2) 7(0"’1‘11“2)- T T PRdR 1+ RN + 5575 )
‘111% 1 %%
: 2exp(~c,u u,)
: _ 17172 3 3 .
T3seqwywy) -F(L,euu,) = 222 1+ cIuu, + 222 )
. » 1172 ._l "%

and
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exp( -cl i 2)

L. 6
§ 3requywy) - F(2,0muy) = —5 2 1+ cjwu,t Z 27
' 1% % €M%
(7.3.22)
Again, using (7.3#6) and (7.3.8):
Cc,u,
i exp(-2¢c,u, )
@ T (TQeuu,) - (Ocuu)) —
5 L»’ll2 d(0,c uu, 2cu oo
171, \ exp( 2clul) 3
@) T (W(Q 2ok 2) - T(0eyuyuy)) 33 (1 + Boyuy)
. 3 )
c.u ‘ . \
171 - exp(-2c
) T @(2’%“1“2) - 7(1"31"1“‘2))= N 3l = (1+ 3 3 i 22)
1% ' "~ 3exp(-2c.u
| .(D\) T (3'(3”1“1“2) - 3(°’°1“1“29= 303 L =
- . ’+ . . l 1
(- °i“1 anH‘-’"’Z »2 )
) 2c.u;
‘11
iy exp(—eclul)
() (](3,clulu2) ](l,clulue) —~S 3
.. / ciu
11
9 15 15
(a+ 2clul. * 2c2u2 * hc3u3)
~ 1% 1%
c.u s
11 : exp(-2¢c,u, )
®) T (7(3”1“1“2) - ](g’cl“l“e»: ""3"3_1"L
- 6 : - » cIu
1%
6 15 15 15
(1 * clul * c2u2 *c3u3 gchuh )
1 Gt 4™

(7.3.23)
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Finally, using (7 3.6), (7 3.8) and (7 3.23), we obtain:

(-3¢,)
T [ (A) + (B) - (c)] eﬁg—c——
1

'T[(A>-(D>+‘(E)] f’fffé-fc——(u—)

1 :
‘ | 3exp(-3¢, )
Fl@e - @)= 2200 o b L3y
7 S ‘hc 1 e,

r"\"\ ' exp( 30 ) 6 9
[(c) - (E)+(F)] T——(l-ﬂ-— +-—é-+——) (7.3.24) -
1 1 cl .
Hence from (7.3.24), (7.3.21) for m = 0, ve get:
Pr(cl & x)=h [ exp(-hcl)dcl = exp(-lbx) o (7.3.25)
] . ol . ‘ . ..

(ii) Form =1,

Foklowing the similar steps like (7.3.22), (7.3.23) and

oD

(7.3.24) for m = 1 in (7.3.21), we gef:

Pr(‘cl < x) = % f (30cl+h5ci+18ci+2cl{ Yexp( -Ltcl )dcl
: o c.=xX o - ' ’
- 3.2
= exp(-ltx) L’2x + 20x° + 60x” + 60x.+! l--SJ?- /15 (7.3.26)

e%.c .
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Generalization in the case of m = O

We can make a generalization for Pr(cl % X) in the case of
m=0. Observing for m=0, the relations (7.3.11), (7.3.17) and

(7.3.25), ve can conclude for any @ that

02

Pr(cl Y, x) = ¢ exp(v-cll’.)dcl = exp(-x{ ) (7.3.27)

7.4: Limiting Distribution of the Largest Eigenrool '

From (7.3.1), the distribution of the largest eigenvaliie= ¢ .

is: % c c : ,
( 2 0
I?r(cc 2 x) = K(¢,m) / o f gl cI: exp(—ci) :
ce=0 ce_l=0 c1=
¢
1) j=2 - =
(7.4.1)
Set | c, = cculu2...U(_3b\[ _euz_l
¢, = cl,ulu2"'“£ 3% o
-2 PN
%1 T SM | | (7.&.2)

then the distribution (7.%.1) reduces to:
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X 1

1 1
P (c < x) = K((’.,m) j / [ [
E

=0 u¢_2 l_
[.‘:Ta T exely ))[ ”

n(t-2) + &-_3_)!_3_)
u, o (l-u2 )(l-ulu2 ?exp‘ -t U, )] veo [“12-1

(l-u )exp( -c, )J

(ZL-ue__:L )(1--u‘,—‘_lu¢__2 ) eee (ll-ue_lue_e. .ouy )exp( ~CplyUse ety )] de,

-1
I[ duy ' ‘ (7.%.3)

Here below we give the method for evaluating (7.lt.3) for particular

values of € =2, 3, b which can further be eid:ende_él for any @ .

Symbols and Notations
‘ 1

(1) l(n’_a) = I x"exp(-ax)ax = - ?i‘g:i?. 1 4 _z.,a_ n‘.n;l,) ...
; : A
+ 22 ] P2 (7.4.4)

. 1 ) 1
(11) I (nypyqr,...58) = / xexp( -ax )ax [ / yPexp(-axy )dy
1 .
j quxp(-éxyz)dz(...)] (7.4.5)

0]

a , s
(1ii) \_L [I(PPPQWLX) * I(_ql,qegax)f cee ] =
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1 1l 1 dos
n P Py +
= x exp(-ax) v, exp(-axy, ) v, exp(-axy,y )y, =
0 ' 0 ‘ 0 '
1 1
qu exp(~axz. ) z e (-axz )dz s ]dx
1 5XP 1 2 ©¥P dzy = .-
S )
° (7.14.6)
Case I: Substituting E 2 in (7.4.3):
- L
Pr(ce < x) = K(2,m) cgm%Q ekp(-cz) u?(l-ul)exp(-céul)duldc

=0 =0 ' (7.k.7)

3

Making use of (6.2.1)‘and (7.3.2), (7.4.7) reduces to:
. 2 .

Pr vq-———-y— : 2m*2 exp(-c ) [;I(m,c ) - I(m%l,c )Jd c,

Using (7.k.4) ana simplifying.

, 56
L 2mEl : exp(-c,) ,
' 2 2mi2 2 m
Pr(c2 & x) = ﬁ-e—m_—*e—-y 02 exp?-cz? [T Q. + 2 E‘; +
B c?=0
m!m-l! my ‘m! b (m#1 )t ‘
3 B 2 . + ...(m-ﬂ-l) m "“‘ _"‘-m+1 - _—"‘"W dc2 (7.’4’.8)
02 . C2 02 ' C2 -

which can be easily evaluated for successive values of m.

Case II: For € =

Substituting € = 3 in (7.h.3), e have:
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1l 1 1

e deaom [ [ ey

c3=0-uf0 uz0

[ul&ntz(-]_—ul)exp'(--t':Bulv)][Fux;1 fl—uz)g;-uzul?exp(-cBUIgzﬂ chduldu2

(7e44e9)
Using (7.3.2) for ¢ = 3 and (6.2.1), we obtain from (7.4.9) after -

re-arrangement of terms:

X

2n 3
2 3m 5 .
P (c, ¢ x) . c exp(=~c_)dc_ x
27 V) [laes) j > 33
. CB=O

Cq ’ c ‘
‘L (I (m fl,uch) - I(m+2,ulc3»+ i (I(m+2,ulc3) - I(m,uch))
2mel, ‘ T 2m+3 ‘ ‘ o

c3 _ . :

+ J_, (I(m,uch) - I(m+l,ulc3))J . (7+4410)
2me2 _ : : _
which can be easily evaluated for different values of m by repeated
use of (7.4e4)s In fact, we have to use the same steps as in (7.3.15)
and- (7.3.16),"using repeatedly (7.4.4) instead of (7.3.6). Following
this procedﬁre we have canputed_probai)ilities form= 0, 1 and 2. The
results are as follows:

(1) Form= 0, <

x
o 2 ‘
Pr(c3 ¢ X)= =3 / exp(-BcB)ch + h/ cq e;cp(-2c3)dc3
. 0330 » %:o
x _
+ / (2c§ - <’>c3 - BJexp(-cB)ch y (7.!...11?
0320 ' '



(ii) Form =1,

T 4

P.(cy ¢ X)» - (c3 + 5c2 + 5c')exp(-3c Jdc

3 "3 73 T T3S
03'-'0 '

X

W,

A cg exp‘-ZcB?dCB
73
x
* / (c'3 - 5c2+ 5¢,)exp(-c_)dc (7ek412)
‘ 3 3. 73 33 _
c3=0

(iii) Form = 2

X
6 2
Pr(c3 ¢X)z - -3% / (203 + 200§+ BOcI;ﬁ lhch + 10503_)efxp(-3c3?dc3
c3= 0

X

-
v cq e}cp( 2c3?dc3
03:.
x
+ % / (2°g.' lucz + 21c§)exp(-c3)dc

c3= 0

3 (7.4.13}

Case III;: For l- 4

Substituting €= 4 in (7.4.3):

. x 1 1 1
Pr(ch ¢ x) = K(4,m) / / / / [cﬁm’g exp(-ch)J
’ . c,= 0 u,=0 u2:.0 u3s0 '
_ ‘-uim (1-u1)exp(-ulch)) [ugm (l—uz)(l-uluz)exp(-chuluz)_]
‘u? (.l-u3?(l-u3u2} (l—u3u2ul?exp$-u3u2ulch?] dchdulduzdu3 (7.4.14)
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Using (6.2. l) and (7 3.2) for € = l& we obtain after re-arrangement

of terms
x
hmeS5 : °y [ %
Pr(chf x) = ‘2121&&2)“21&*4) / cim*g exp(-c) ) [ J_, {\.L:
o =0 3m#8 | 2myb
b ' - .
cuu
LICEXRDED (CERRRS J, (Tmecm) -
21!1-9—5 '

cut
(m-ﬁ-l,chu ) _L, (I(mh?,-cuu u ) - (Ml’chuluz)
2mih _

L ‘
I (m3,cpu0,) - I(mé,chu
3mi7 | 2m#6 '- ' ) "'L
o,y
(I(m,chulug) ]'_(mﬂ»3,cl+ulu2) l (I(m-&Q,chu u,) -
/ ome3 .

ch cb,“ _

. I(m’chulu?.’g (l(m-ﬂ-l e), Uy, ) - I(m&?;,cuuluz»-k
, oS _ ;

chu |

(I (mﬂ-3,c,+ulu2) (m,cbf ) J’ (I(m,cuu u,) -

2ml
‘ ch. Chu
1 (mﬁ-l,chuluzy] J_, \_L, (I(mﬂ-Q,cuulue) I(mﬂ»l, c) U ))
' 3r_n+5
ey chu
\_L' (I(m,chulue) - I(m—ae,cuu ) L (]_(mﬂ—l,cb{u w,) -
2mi3 2m#2 .

1 (m,cuu'luz) } de), (7.4.15)
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The procedure for evaluating (7.4.15) is the same as we used in
Case III of Section (7.3) deaiing with smallest eigen-roots.
We have to fiollliow the same steps as (7.3.22), (7 3. 23) and (7 3.24)

and have to make repeated use of ("{ L ll-)

7.5: Limiting Distribution of Uor Y for ¢ =2, 3 and k,

The moment generating function of (l.h.lO) is:

m(t) = J‘“"f K(l,m)(clc2 -esG ™ exp[ 2__ c; +t Z J
0 o tl 5 | =1 _l i=1
Cy-o) U aey (750
1=2 j':?]_ ’ i=1 ’

from which the h~th moment /// h about the origin is:

Kam) ﬂr2m+i+l*h)

R%Ef""f’ bod ‘1(2m%1+1)
Y(?P—*g?+h\ (‘2_%3_* n) ‘—L——:—ﬂ-e-h)

e ey e U7

This h-th moment shows that the moments of the limiting distribution

or

of the product of the roots (clc2“’cg ) can also be determined from

the following: ,
. OmEe -1 2m#3
1 v 2 —_— 2 exp(=v,)av
Y\(zme) 1 1R2m3) 2 2772 77
2 2 : '

éxp( vy )av
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ol L4
x Ly, 2 exp(-v, )av,
‘*(2m-n—£+ l) (4 €7
2 Q : :
exp( - Z vy ) 1 me £51
or from ‘ i=l3 : e_*i ‘VT vgﬁz'v?*l A e &vi..d
r(ml)nm-é') --.Y(m'ﬂ'- '_'2 ) ) ¢
ey (7.5.3)
where 0¢ v,ae2, i=l, 2, eesy @

Case I: For Q = 2

_Substituting & =2 in (7.5.3), ve get the joint distribution

of v, and v, as:

1 2
= 2 (-v,-v,) | (7.5.4)
v,V exp(-~v, ~v, )av.dv T5.4
3 12 17724719, |
[me1) Pme) S e .
where 0 s vye=o =1, 2,
2 .
which is the same as (6.3.1) for kj =0, uy =2v,, u =2v,.

Hence from (6.3.7), the distribution of'Vl = 24/v,v, or of

2 ./clcg fér ki ¥ 0 is:

1

F(em&E)“
o . : O;-Vl¢°~° .

yoml exp(;Vl) '

av, (7.5.5)
where
which is a gamma variate of parameter (2m+l). Further, for any

test of hypothesis,we need to make the‘two fypes of substitutions

for m, We proéeed as follows:
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n, -3 ’
(i1): When p =2( & nl), set m = ;' in (7.5.5),and get the

éiétribution of 'Q'l(= 2;/c1c:2) §S‘f2follOWS: ‘

1 By -2 | | ‘
5, I) v, exp(-V, Jav, (7.5.6)

where ' Oe V=

which is a gamms variate with parameter (nl-l).
v(ii) When n, = 2(e p), set m = %3 in (7.5.5) and obtain:
1l p-2 '
W Vl exp( ‘Vl )dvl . (7'5'7)
O <& oD
£V«

which is a gamma variate with parameter (p-1).

Case II: Forl = 3

Substituting 2 = 3 in (7.5.3), the Jjoint distribution of

'vl,ve, and v, is:

3
exp(-v,-v.-v m#3/2 :
- L § 3~ VT v, vr;*l dvldv2dv3’ (7.5.8)
{me) [(med) [Cme2) , . |
where 0 ¢ Vl( o= i=1,2,3,
, 2
.w1.1:i.ch is the same as (6.3.9) for ky =0, uy =2v,, u =2v,, uy = 2v3.
Hence from (6.3.13 ), the distribution of V1(= 8viv2v3 or = 8clc2c3) ,
where k?_ = 0, is: ,
v - /v
1 1
LO( ' )dVl (7-?'.9)

2™ {(m1) (Tome3)
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v .
where Lo(a),-for a =,/-§}- , 1s defined in (6.2.33). Again,
for any ‘;.eét of hypothesis, we need to maké the following two

types of substitutions in (7.5.9) -
' , n, -4
(1) if p=3(£n)), set m= —=— in (7.5.9)

B4 (7.5.9).

(i1) if n, 3( cp), set m 5

1]

Case III: For ¢ =1y

Substituting for f = 4 in (7.5.3), the joint distribution

of Vis Vo V and v),is:

3
‘exp( =V VYRV, ) o
Rot) [med) o) [Gme2) &

1
?2 3 ll ZHB/Q av dv dv3dvu’ (7.5.10)

where 0« Vi < oo i=1,2,3,4,

which is again of the type (6.4.15) for k?_ = 0, uy = 2v., u, = 2v,,

ul = 2v3 and v, = 2vh.
Hence from (6.3.19) for ki

1Yo 3vh or l6cl o 3°h) is:

2 3 . L :
a da (lﬂ2¥)-loga) a a
2m-¥}1+) [ ( ( orir v o3 *tormor 4 )

3 .
.p,!é.. (1 -a 4 a® 4 o8 */'_.)] (7.5.11)
2
- . .

0, and making use of (6 2. 18), the

distribution of V ( 16v.v

where a =‘/Vl and 0 £V, <=2
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Again, for any test of hypothesis, we need to make two types of
changes for m in (7.2+,11) as:

. : nl"5
(i) Forp= 4( s nl), set m = —5—

(ii) For n, = 4( ¢ p), seb m = 232

Note: For e 5, 6; a similar method was applied but we were

confronted with the following difficult integrals:'

For { - 5

The integral in this case, is:

Jme 8 '
2 Vv / / V. v
11 1
V, exp(m = = =~ = 2, )dv dv
Paen) [ () r(ms) W2l 3 o7 - TN,
Ezo Vh=0 2 .
' ' ﬁ7.§.12)

The integral is:

<3

ém+ll _m ’ |
2 W j ] exp(-2 = -2 -3- -2V5)dV3 5
| tae2) | 2t r2m+6)
T VS0 Vg0 :

3

(7. 5013)‘

for Vl'-!- 0102 oee c6 and O = Vl<°°
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APPROXIMATE DISTRIBUTIONS OF THE NON-ORTHOGONAL COMPLEX ESTIMATES

8.1: In the case of unequal sub-class numbers in Anova of Model II,
we run into the difficulty of defining the distributions of the mean
squares or the sum product (S.P.) matrices respectively in both the
univariate and multivariate cé.sés. In such situations, as pointed out
earlier, for the univariate case the mean s'quafes are d_istribﬁted.as sums

: 2
like z ( A r xr), where the Ar are functions of the variance components
r :

2
and the number of observations, while each Xr is distributed as central
chi—square' with 1 D,F. Similarly, for the miltivariate case the S.P,

matrices, as proved below, are distributed as sums Z(Wr) of independent
U _
Wishart matrices with different parameter matrices 1 r and one degree

of‘ freedom for eachs

Thus, we try to approximate Z (A X.r) and Z (W ) respectively

r _
by A X and a Wishart matrix W with rev:Lsed D.F. To do this we determine

first what are the }\ and Z and then use Satterthwaite's technique to

appfoxima:be the sums Z (A x ) and Z (W ) respect:.voly by A X.
r

and W to find the respective corresponding D.F.
For finding A r and Z p? Ve begin below with the multivariate case,

from which the univariate case is deduced, and thé corresponding D.F,

detemined for both.
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l‘ j ] 2" L) .prj

Zi 0 Zop ...zni) for L =1, 2, ..., N, are made on (p + n) variables.

.2 Suppose N is greater than p or n. Observations (X

The overall set of assumptions is JL :

ﬂllzl.{ + ... F ﬁln n.’._ﬂ' e 4 {8.2.1)

for i =1,2, ..., p; &£ =1, 2, ..., Nzand furthermore:

(i) the z (r=1,2, «c., n; d =1, 2, ..., N) are non-random,

rd

and the matrix Z(n x N) = (Zr.L) is of rank n. (In the case
we are most interested in, the case of Anova, some of the z's
are zeros and the rest are ones)

. ‘ c ‘ ) ‘ .
(ii) the vectors e,z (el.b cee, "ep.() are independent and normally

. . . o . .
distributed with mean vectors and error covariance matrix
n .

Z(pxp),le.E(e )-OandE(e ej£)= e i
, 2
for i, j=1, 2, ..., p and L: 1, 2; «¢., N, so that
Z(pxp) (e, i) (8.2.2)
2 -
(iii) - oo "Bir"( oo

Let us introduce éome :t"ur’bher notations as :ffollows:

ﬁ(Pxn)E ir _[ﬁ 17 FJ forn-&n'—n(823)

where ny and n' will be spec_lfled below.

X (le)‘ (Xll’ Y ERRE XPL)’

so that  K(p x M) T (X;,) z [_-}51"?52’ e gNj (8.2.14)

T
E‘i (Lxn)=s (le.’ Zogree e an)

"“57'

[ X4
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so that Z(n x N) = (Zr.l.)i[z-l’ Zoreees _Z_N] (8.2.5)
Bia v Bppim .
A(n x n)=s | -==-- Lmmmeee = 22 - (8.2.6)
Aoy Popf
ny n'
and C(pxn)= [ c; CQJ = xzt (8.2.7)
. f ’
n, n

Under the overall set of assumptions JL , the matrix B (p x n)

which is the least square estimator of P (p x n) is

-1
B Xxn) =CA 8.2.8
a (pxn) ( )
and hence the S.P. matrix QJ\. (Anderson, pp. 181) is:
S £
Q. =X -:.BAB (8.2.9)

If a hypothe:sis H specifies ﬁl(p x nl), then the distribution of
Q’H’ the S.P, matri)-c, due to deviations from hypothesis, depeﬁds oﬁ the
nature of the pir (i=1,2, vee, P; T - 1, 2, ..., nl). The
overall set of assumptions can be completed in two uséful ways as:follows:
(i) The columns of ﬁl are independent, normally distributed
vectors with common covariance ma‘_crix Ez_ (p x p) of
rank p,. and are all quite independent of thepcolumhs of
pe(p x n') and of 9_1 . ﬁ o MAY be either random or constant.
(i1) Pl is constant.
Case (ii) is the usual régression problem considered in standard texts.
Iﬁ what follows we consider only case (i). We let w denote the subset of JL
for which the following hypothesis holds, H ;- X = 0, which implies

B
that E( Pl )= B 1.0 » @ matrix of constants.
2
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t t
Then Q= (X - ﬂljo l)(x %;ozl) - By AxoBs
t t
=XX" - B, AB{H (B - Byl 5B - puo)
, (8.2.10)
where B, = (C, - B110A12)A (8.2.11)
and eod Ay 2(n x 0y ) = A Alg.cx;2 Ay (8.2.12)

Hence from (8.2.9) and (8.2.10), we obtain:

Qp xP) = Q - Qu
‘ o t
= (By - pl,O)All.E(Bl.nf pl,O) (8.2.13)

in

Now there exists an orthogonal matrix U such that

UAll.éU# = re(nl X nl) ' (8.2.14)
where (i) r2 is a diagonal matrix with elements

\62 (r=1, 2, ..., nl)

- 2
and (ii) A ) r and U are all non-random and each

of order (nl x nl).

Therefore Q,H(p X p) = (BLIL - ﬂ

1,0)Ut [‘2U(BUL- B o)t

1,

= [(Bl.fl - ﬁl,o?Ut] e (Bra - ﬁl,o)Ut]t
| L '(8.2.15)

‘Sefcting (Bl& - ﬁl,o)Ut = (D1J1 - Al,o)’ ' (‘8.2.16)
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£ —_ PaS
twhere E(Dl a) 0’
wewobtain from (8.2.15):the following:

(e x P) = (D n =B ) 70, -2 ) (8.2.17)

Its (i,j)th element can be written as:

n
1
2
Q’H,ij = Z [xr (dir - 811',0)(d,jic' - {11‘,0)] . (8.2.18)
» r=1 ’ ’
so0 that its expected value is:
!
' 2
Boyi) =) (Tt ¥ I ug) (8.2.19)
‘. . el , ,
which enables us to write 1l'b.hat:
n
L 2
Q’H_,ij = E ( v-é,ij + Yr v_/;:ij)uiru,jr’ (8.2.20)
r=1 ‘ ' '

whereithe u, (i=1,2, «.., p and r._-' 1, 2, eeey nl) are normal
variates with mean zero and variance 1. Thereforé , for the univariate
case, as also proved by Nash (1956), we obtain:

n

1
N _ 2 2 2] 2
Q’H (for univariate case) = E {v—e + \‘r 75 u
' r=1
' (8.2.21)

where u2 are independent central chi-square variates each with one "D.F.
Thusthé’]r (r=1,2, «ouy nl), ‘indicated earlier,are obtainede:i:l .. -
They -ares | |

2 2 2
A - o + Y 07; r=1, 2, ooy By
(8.2.22)
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Similarly from (8.2.20) we can deduce:

n ng
1
- 2 t
(P x »)s E u (Y +YT 2/3 uo= P W (8.2.23)
r=1 . Y
where ¥ = gr( ﬂ_ et \li 2773 )1_1;, r=1,2, ..., o, (8.2.24)

so that er = E(Wr) = 2 e + Yf- zp = (V;,ij +Y’f‘ VTI ij)

(8.2.25)
8.3: Approximate Distributions
(2) Univariate Case .
Weconsider again the relation (8.2.21) end write:
. n :
; 2 2 2, 2 .
QH(l x.1) = i{ (v--e + Yr = )ur i (8.3.1)
SR ' o 2 Moo - ~
‘Since the h-th cumulant of ( et )ur is:
o ohel, 20 g2 2w
k =2 (h-1)'( o e ¥ ‘Yh % >, , (8.3.2).
it foﬂ.’lows;’-",that the h-th cumulant of Q,H(l x 1) is:
n, - ‘ '
hel; - 2 U2 __2:h S
277 (h-1) Y (LAY v ). (8.3.3)
‘ 1 . .

~Hence: the first two moments of Q,H(l X 1) about the origin are:

/ ! 2 u2 2
/ylz Z (v-e 'H{rvﬁ)

P r-—-ln ) o
Vo= 2 Zl(q—i +x§v—/-f ) 8 (8.3.1)
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‘Following Satterthwaite, we approximate @, defined in (8.3.1), by

A X2 here 7('2 is a central chi-square with f D.F., so that the first
. . v ' 2

two moments of Qﬁ(l x 1) are respectively equal to those of AX

Therefore, making use of (8.3.4), we obtain:

n

1
2 2 2
tA= D (o= +¥_v7) | (8.3.5)
r=l1
| !
26 A% = 2 Z (v—i +Yiv7,2)2,, (843.6)
=1 ' .

Q.. 2 _
since E( X ) = f and var ( X ) = 2f,

F:Lna.lly, from (8.35) and i8.3.6) we obtain:

n n

i 2 4222 1 2, 2 2 2

f = (q—-e =+ Ny ) Z (v‘e + b q—ﬁ )
r=1 : ’ r=1 -
(80367)

2 2 L :

Since w— e and v-p are not known, we shall substitute for them
2 2 oo

their respective estimates é—e and é:?& and write:

. ny 2 ny
Z ,\2Y2,\2 /\2*1{2/\22
f = (q-e+ rv-F:) Z (v‘e rv—/@)
o r=1 -
(86348)
which thus determines the approximate distribution of a mean squafe

2 2 .
in the unbalanced case to be A X , where X~ is the new chi-square

with estimsted degrees of freedom defined in (8.3.8).

Note: In 6rdinary analysis of variance with a ba.lqnced design the eigen-
\fé.iues .é.re all equal, say Xz. A balanced design occurs for example when
the number of observations is the same in each sub-class. Then we obtain

from (8.3.1) the simpler result:
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n

n

_ ;2 2 __ 22 _ 2 2 __2 2

Qﬁ(lxl)-z (omg + XT3 = (o + X vz‘)i .
=1 ’ : ©orel
2 2 2 2 ‘

or Qy(lx 1) = (-cr—e +« ¥ V"fs) ;an (84349)

: s 2
Thus, Qﬂ(l x 1) in the balanced case is distributed as A Xn
, . 1

2 2.
where A =q—§+‘6 Sy i

-(b) Multivariate Case

We approximate the sum E (Wp) or Wr[ Z o l) r=1,2, ooy 0y

r
by a Wishart matrix W [2_ s f] or order (p x p) where £ is to be
determined such that: | -

(1) The expected matrix of the approximating maﬁrix is equal
to that of the sum of the W
(ii) The elements of the approximéting Wishart matrix have an
éilipéoid of concentration (Cramér 1946) whose volume is equal to
the corresponding voluﬁxe for f.he sun of "the given'Wisha:rb matrices,
.Condiﬁion (i) gives:
| BG) = ) E(W)

r

tee £ = S % 2,4 e +§Z_nl - (8:3.20)
Further, if p(r)[ (pél)‘ x (p2~l)J be the matrix of the covariances of

21 1
elements of W, and P that of W also of order [(pz ) x <p; )] s

condition (ii) gives:



Det.(P) = Det.( )_ p(7)) (8.3.11)
. . r !
Thus to find f', one should find from (8.3.10) by comparison the
elements of Z in terms of these.of Z r and should substitute
them in the left hand side of.(8.3.ll). For instance, in our case

from (8.3.13), we have:

n.
1
f‘ U s = V—. s ' 8. 012
i Z ( 1J(r)? (8.3.22)
r=1 '
2 g R
Where q-—j—.j(r) - v;,ij ‘ﬂ' Yr . #,ij’ l,j - 1, 2, ¢ e ey P

- (8.3.13)
and, following T.W. Anderson (p. 161), from (8.3.11) we have:

n

det'(.f (5% T+ T Y x )]= det'[ Z
| r=1
;‘r'ik(f) ETICY) + Tie(r) V'E;(r)i) ‘8.3.1&)

for 1, 3, x,0 =1, 2, ..., p.

Finally, making use of (8.3.12.) and (8.3.13), the relation (8.3.14)
becomes: M A | . .
(Y 3
det.[ _ ik(r))( 2‘.’1 l( )) + ( Z !(r))( Z Jk(r))]

T or=l
p(p+l)

s
=f det. % (o (r) () MTIS v-j-k(r))}

r=1 e . (803015)
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Again, since the ™ 's are not known, we substitute for them their
respective estimates'and then dbtain appropriate degrees of freedom

f, where it should be noted that the T ii(r) &F° defined as in (8.3.13).

In this way the distribution of the S.P; matrix is approximated by

the Wishart; matrix with the estimated D.F. f and the estimated parameter

N
matrix Z .

Note: In ordinary multivariate 'analysis of variance with a balanced
_deéign the eigenvaliies: are all equal, say ‘&2. A balanced design
occurs for example when the number of observations is the same in each
sub-class, Then we obtain from (8.2.23) the simpler result that

Q,(p % p) is a Wishart matrix with the density

| . [22; :Yzzzé, o 2]



APFENDIX A

EVALUATION OF THE EIGEN-VALUES AND EIGEN-VECTORS OF THE MATRIX Bw-l

We need to solve, for \- (pxp) and L(pxp), the system of equations:
| L(Bi )- r L (A-1)
where W and B denote symnetrical'matrices » positive definite and at least
positive semi~definite resbectivel,;y, and \—‘2 denoctes a diagonal matx_:'ix.
Since the matrix (BW- ) is non-symmetricél, the calcuiation of eigen-
vélues ard féj;'genx}ecﬁofs for this matrix is much more difficult than
that for a symmetiical matrix. To solve the matrix egquation (A-1), the
step-by-step procedure due to Naéh and Jolicoeur is as f ollowé- '.
(1) Solve, for J\ (diagonal) and U (orthogona.l), the matrix equation:
S W= Ny . (A-2)
(1i) Obtain the mtrix JV T, -
(:Lil) Compute the matrix product:
¢ = lusu® Nt (A=3)
This matrix _is theoretically symmetrical, If the computed matrix is hot.
quite symmetrical due‘tov» round-off ermrs, symmetrize it by replacing
&3 and 39 each by their arithmetic or geometric mean,
(iv) Solve for (dlagonal) V (pxp) and orthogonal V(pxp), the matrix
- equatlon' ' _
= 4 (A=ly)
(v) Obtain the matrix L of co-efficients of the discriminant A

function as follows:
Cn=v - (a-5)
Thus both the matrices r‘z(pxp) and L(pxp), the solutions of (A-1),
are known respectively from (A-4) and (A-5) o



APPENDIX B

FINDING BOUNDS FOR THE CCEFFICIENTS OF CERTAIN CUBIC EQUATIONS

We take the cubic defined in (7.2.19) and re-write it:

x3-ux2+ vx.-w:O. | - (B-1)
We want to def.ermine'bounds for u, v, w so that the roots of
equation (B-1) are real and positive,
Referring to a..mr standard book on theory of equations, such as

Burnside and Panton, the discriminant & of (B-1) is found to be

‘v — 'EY_ -—2— ’ 2 u 3
Srl-Fege)l -3 2
22 ' 2
or LT = Lmu3 -uv = 18uvw + (27w + hV3)~ _ (B=3)

Furthermore the equation (B-1) has real and positi\fe foots if &

is negative, i.e., if

27 = I.nwu3 - 3 - 18uvw + (27w2+ hv3) €0 (Bb)
2 | | |
and v - 33- £ 0 ‘ i.e., if J—B—V <u (B-5)

Now we deduce the bounds for u, v, w from (B-4) and (B-5) in the
following two forms: | |
Form I:
We re-write (B=4) as:
PaN 3 wé - -3% u(v - % u2)+ %;(hv - u2) £0 (B-6)
Solving & = O for w and making use of equation (B-5), the range

for w is obtained as:



cwoLloo 22y 2,2 _ 43/2
Max . £ W < Eu(v 3¢ )-H—E,?(u 3v)v
(B-7)
Further, -:;-'-u(v - %ue) - %(ua - 3v)3/2 is positive
if [9u(v --g-ue)] 2 -Ih('ug - 3v)3 2 0
2 . .
i.e. if v (-8)

Thus, from (B-5), (B-7) and (B-8), the following two parts of the
bounds of u; vV, W are: “
(1) 0 £ u <«

0 .« v £

oD
b

Or-‘.wﬁﬁ2

and (ii) 0O £ u & ©°
L2 o . l.p2
L= F = 3
Py £ Vv = B, (B-9)

vhere f3 1 and ﬁg are defined as:follows:

3/2
2_3v?/

?) + 2P - 302 (B-10)

Note: When the roots of (B-1) assume values between zero and one,
we have to change the range O £ u <« == - in (B-9) into

0O ¢ u ¢ 1, and the bounds for v and w remain unaffected.
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FormI¥:

Applying Descartes' rule of signs to. & = 0 in (B-3), we conclude
that the cubic in u, for known positive real values ofvv,_w, has at most

two positive roots and one negative root. Setting:

2 .

y =l - - (B-11)

in (B-4), we obtain: |
3 2 L 3.2 v6 Ay
fly)z y° - 3y(2hvw™ + §-—) + 2(216w 4 20v7w“ - -é-,-(-) €0 (B-12)

Now two cases arise:

L 3.2 6 . .
Case I, 216w + 20v'w" - v /27 is positive (B-13)
Case 1I, 216wu + 20v3w° - v6/27 is negative _ (B-13*')

Further applying Descartes' rule of signs to (B-12) and using the case of
(B-l3), we conclude that the cubic in y, for known.positive and real
values of v, w, has again at most two positive roots and one negative
root. Thus, for known real and positive values of v, w, the negative
root of (B-12) shall correspond to the negative root of (B-k) and the

two positive roots of (B-12) to the two positive roots of (B-k).

Similarly (B-13') ensbles us to conclude that the largest positive
root of (B-l) corresponds to the only positive root of (B-12) and the
smallest positive root of (B-4) corresponds to the largést négative root

of (B-12).

To find the bounds on u,‘v, w, in both these cases we proceed as

follows:~



~165~

Case 1
To find the bounds for ¥y, v, w for £(y) in (B-12), we first

draw its curve and from its shape we conciu&e whét thé bounds for y are:

Consider:
f(y) = y‘3 - 3y(24vw + %;) 4 2(216wA-r 20v3w - %7 ' (B-14)

(1) Wheny =0, £(y) » O.
(ii) By Descartes rule of signs £(y) has at most two positive roots and
- bnevnegative root -

(iii) Finding £'(y) and £"(y), we conclude the following:

(a) vy = 2Avw2-b %; gives a minimum of £(y).

| L
(b) y = - \/ghvwz . %7 gives a maximum of £(y).

and (¢) y=0 is a point of inflection,

Thus the shape of the curve (B-14) is as shown below,
| )

Hence, in order that f(y) be negative for real and positive values
of ¥y, y must take the values from A to B, i.e.:

OA « y ¢ OB
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2 2
and from (B-11), 1%(0A+%—) cu & ,%—(OB+-‘35—) (B-15)

Thus to have positive zeros of (B-lh),i.e. OA and OB, we follow

Todhunter or Burnside and Panton and write the zeros of (B-14) as:

L
2(2hvw2‘ﬁ-%—) cos

3 3
' 2 4 ¢
~-2(2hvw ﬂ-§—0 cos — 5
y
—2(2bv® 4 19’—) cos 7—'%-“—‘- , (B-16)

where ¢ is defined by the relation:

3
B - 9)/2

2(2(6»1)+ +»20v3w2 - v

taﬁ g = -

a
and, where real value of 4 is possible,
~

3 -

if . > 9w

w|<:

i.e. if 3w2/3 < v | (B-18)

-

Since tan ¢ in (B-17) is negative, ¢ will be an obtuse angle
~which will make the first two roots of (B-16) positives and the

last negative. Therefore, OA and OB are obtained as:

' I
2 v
OA = 2(21+vy + §-—) co; % ,

and OB

-2(2hvw2 +_—;-) cos'f—gi, . (B-19)

which enable us to write the reduced form of (B-15) as f6llows:



: L 1 2 . L 1
11-&- [2 (2Ltvw2 -&"%—)2 cos %‘-+ %—] s u é[flﬁ? (-E(E’lww2 + g— )2
.cos(lLtJé) v J
or, making use of (B-5), we get:
/33' s usfp o (B-20)
: L 2 vu % é_ v2
where ,33 .= Max[ \/3v,ﬁ(2(21+vw +.§—-) cos 3 -ﬂ-?—)] .
a B, =4z (é(euvwe & 1’—Li) cos(—E2 ) +3’-2—] 1 (B-21)
- T . 9 3 3T |
L 32 v6 '
Further, 216w 4 20v7w - =7 is positive, if
2 3 . .2
2w (10 - 6./3) & v £ 27w (10 + 6 /3)
i.e. if 3W2/3(1 -J3) &2 v & 3V2/3(l +/3)
But v cannot be negative, Therefore
0 &£ v 2 . 3w2/3(l + J3) . (B-22)

Finally, from (B-5), (B-20), (B-21) and (B-22), we obtain:

0 & w £ oo
w23: v < 3230 s ¥3)

Py ¢

In

A, - (B-23)
where ,6’3 and ﬁ»h are defined in (B-21).
Note: When the roots of (B-1) assume values between zero and one,

we have to change ’vche' range 0 £ w £°° in (B-23) to

O £ w £ l,and the ranges for v and u remain unchanged.
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Case 11

Pfoceeding as before, the graph of f(y) in (B-12) is as follows:

1Y)

71

Hence, in order that £(y) be negative for real and positive values

of y, y mist take the values from C to D and thus from (B-11),

h—tf(co»f %) <u él}";"(OD + Z;—) | | (B-24)
To find CO and OD, we proceed as in C;se I, and donclude thé.t the same
felationé as (B—16) , (B-17) and (B-18) hold. Further, since tan ¢ in
(B-17) is positive, # will be an acute angle, Noting this fact and
éduation (B-13'), we can easily obtain the bounds on u, v, w, for this
case also; Fiﬁélly the bounds obtained for both of the cases are

written down '-as follows:

0 ¢ w « oo and 0 & wa o0
3w2/3.< v £ 3w2/3(1+,/3) 3w2/3(l*/3) £ Voo

) ] ' 1
335u5ph pB.&u&ﬁA (B=25)

where L 95 2
_ [ 2 1/2 m+ |
p;: ME%[-Z(Z&W + 19-) / cosff-é-—;+ %—] s JBV:J)

and

. b g 2 |
,Bh = & [2(24vw2+ %}1/2 cos ?l- - %} (B-26)

where 9‘1_13 the supplement of # used in Case I,



)

A—lvhwohx C

_ \ Upper I00{,Percentage Points of Xl
{=.05 and L, = I-{I-<)*".
D-F R a 3 _ 4 ) 6 7 3
I 3.84LI46 2.74605 2.I50I1 TI.75364 I.46490 TI.2430I I.06704
2 5.99147 L4.65590 3.89530 3.36943 2.97266 2.65677 2.39686
3 7.8I473 6.30923 5.43433 4.8I934 L4.348L7 3.96832 3.65I23
Lo |9.48773 7.843I5 6.87534 6.18829 5.65765 5.22577 L.86276
|5 |11.0705 9.305I0 8.2570L 7.50787 6.92580 6.449LT 6.04700
6 12,5916 I0.7I79 9.59808 8.79351 8.I6561 7.64970 7.2I2I5
7 14,.0671 I12.094, T10.9092 I0,050k 9.38445 8.83250 8.36304
8 15.5073 ~ I3.4428 12,1970 II.295I TI0.5869 I0.00I6 9.50270
9 16.9I90 Ik.7685 13.4660 T12.5205 TI1.7762 II.1599 10.6334
I0 {I8.3070 16.2966 Ik.7I9L .I3.7328' 12.9546 12,3091 I1.7567
II  |19.6751 17.3664 15.9598 1I4.9342 I4.1238 1I3.4504 12.8735
I2  |RI.0261 1I8.6438 '17.1889 16,1261 15.2850 1I4.5852 13.8950
I3 [22.3621 19.9092 18.4080 I7.3096 I6.4392 I15.7I42 I5.09I5
Ih  [23.6848 2I.1643 19.6I87 I8.486I 17.5875 16.8382 I6.I940
|15 |24.9958 22.4I00 20.82I5 19.6560 18.7302 ‘17.9575 17.2927
16 [26.2962 23.6473 22.0I73 20.8II0 19.8680 19.0727 .I8.3879
I7 |27.5871 24.87I0 23.2070 2I1.9789 2I.00I5 20.184h 19.4802
18 |28.8693 26.0999 24.3909 23.I330 22,I3I0 21.2927 20,5697
I9 |30.I435 27.3164 25.5699 24.2827 23.2568 22,3978 2I1.6567
20 31.4104' 28,5272 26,7436 25.4283 24,43792 23.5002 22.74i3'
21 [32.6705 29.7325 27.9I31 26.5703 25.4985 24.5999 23.8238
22 (33,9244 30.9330 29.0785 27,7088 26.6IL9 25.6973 24.9043
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APPENDIX C

Upper I00 £, Percentage Points of X

. h~t
L= .05 and £n=I-(I-4) - Contd,
4 5

6

7.

I.2960

23 35?i725 331287 30.2L0T  28.8L4T  27.7285 26.7923 25f2829
2L 36;@151 33.3202 31,3982 29.9765 28.8397 27.8854, 27,0598
25 137.6525 34.5076 32.5524 3I.I060 29.9486 28.9764 28.135I
26 [38.8852 35.69TT 33.7042 32.2328 3I1.055I 30.0654 29.2087
27 40,1133 36.87I12 34.8528 33.3573 32.1I596 ‘31.1530 30.281I1
28 |L1.3372 38.0479 35.9986 34.4793 33.2622 32.2387 31.3520
29 |42.5569 39.22Th 37.I4I8 35.5992 34.3630 33.3230 32,4217
30 [43.7729 40.39I2 38.2824 36.7I70 35.4620 34.4057 33.490T
L0 [55.7585 51.9581 49.5762 47.8005 L46.3717 45.1660 L4h4.II89
50 |67.5048 < 63.3355 60.7II0 58.7506 57.1704 55.8345 54,6717
60 ;79.0819 7445791 7I1.7368 69.6095 67.8920 66,4380 65,1708
70 [90.53I2 85.7220 82.6795 80.3988 78.5550 76.9924 75.6293
éO I01.879 96.7848 93.5562 9I.I329 89.I7I7 87.5082 86.0559
90 II3.I45 1I07.783 1I04.379 1I0I.822 99.7505 97.9922 96,4562
I00 (11I24.342 118;726 I15.I57 II2.473 TI1I0.298 1I08.450 1I06.834
X |I.6449 I.0686 0.8945 0.75I4 0.6283 0.5196
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Appéndix C

Upper I00 £j Percentage Points or X*
v boms
L=.05 and.[#: I-(I- L) - Contd.

=

DF 9 lo W 14 13 14 1S
I [0.92376 0.80490 0.70494 0.6I989 0,54904 0.48403 0.42935
2 |2.I7786 1,98989 -I.82634 1.68238 I1.55476 I.94048 I.33761
3 [3.38059 3.I4536 2.938I5 2.7535h 2.58790 2.43980 2.30I02
4 |L.55064 427748 4.03522 3.8I794 3.62I7I 3.44275 3.27864
5 5,69931 5.39360 5.I2I26 L4.87595 L.65347 LoLL9T3 4.2621I3
16 |6.8328T 6.49816 6.19909 5.92886 5.6830L 5.45726 5.24877
17 |7.95493 7.59396 7.27058 6.97769 6.7I064 6.464L83 6.23734
8  [9.06802 8.68277 8.33697 8.023I7 7.73656 7.47226 7.22724
9 |10.1739 9.765I0 9.39925 9.0659L 8.76I05 8.47948 8.2I8I0
I0 |I1.2739 10.8446 T0.4581 T0.I06L 9.78433 9.48651 9.20970
II |I2.3686 II.9I9I II.5I40 II.I44L9 I0.8065 I0.4933 10,2019
I2  [I3.4586 12,9901 '12.5672 12,1816 1I1.8276 TI.4L998 II;I945
I3 |I4.5454 I14.0582 13.6I83 13,2168 12.8481 I2.5062 12,1876
IL |I5.6285 15,1237 I4.6674 I4.2507 13.8677 13.5123 I3.I8I0
I5 |16.7085 16,1867 I5.7I47 15.283L4 I4.8866 I4.5I83 I4.I747
16 |17.7858 17.2475 16,7604 16.3I49 1I5.9049 I5.5241 15.1686
I7 |18.8607 18.3065 I7.8046 1I7.3454 16.9226 16.5297 16,1627
I8 |19.9333 19.3637 18.8476 I8.4752 17.9399 I17.5353 17.1572
I9 |21.0038 20.4I92 19.8893 I9.4040 18.9567 18,5406 I8.I5I7
20 [22,0725 2I.4737 20.9300 20.432I 19.9730 1I9.5459 I9.IL64|
21 23.1395 22,5261 21,9696 BRI, 4595 20,9890 20.55I0 20.I4I3
22 [24.2048 23.5775 23.0082 22,4862 22,0045 2I.5560 21.1363
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Appendix C

2
Upper 100 .C&Percentage Points of X

N h -
L=.05 and .[&z I-(I-J4) -‘ Contd.

N

skl 9 10 " - 13 14

23 |26.2686 24.6278 24.0460 23.5123 23.0198 22.5610
2G4 |26.33I0 25.6770 25.0830 24.5379 24.0346 23,5658
25 |27.3921 26.7251 26.II9I 25.5629 25,0493 2L4.5705
26 |28.4519 27.7722 27.1545 26.587h 26.0635 25.575T
27 129.5106 28.8I8L 28.1893 27.6IIL4 27.0775 26.5797
28 [30.568T 29.8638 29.223L 28.6350 28.09I3 27.5841
29 [31.6247 30.9084 - 30.2570  29.6583 29.I049 28.5886
30 [32.6803 3T.9522 51.2898’ 30,6810 30.II8I 29.5929
4O [43.I906 42.3544 4I1.5922 . 40.8904 40.240L 39.6329
50 |53.6393 52.7080 5I.8580 5I.O7I+5 50,3479 49.6680
60 |64.04LL 63.0273 62.0982 6I.2408 60.445T 59,7000
70 |74.4I661. 73.3207 72.3187 71.3935 70.534k  69.7293
80 |84.7629 83.5936 82.524T 8I.5358 80.6175 79.7567
90 {95.0879 93.8498 92.7166 91,6692 90.6956 89.7824

| 100 |105.395 104.092 102.898 I101.795 100,769 99.8067
X [0.42I8 0.3325 0.250I 0.I733 0.I0I4 0.0335

22.5610
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Appendix C

' 2
Upper 1004, Percentage Points of X
h-t
Az .05 and £,= I-(I- L) - Contd.

NS IRTS 16 17 I8 19 20

I |0.42935  0.38171 0.34003 0.30333 0.27092 0.242283
2 |1.33761 TI.24457 I.I60I7 I.083I0 I.0I246 0.947680
3 |2.30I02 2.17582 2.06087 I.95466 TI1.85616 TI.76474
L [3.27864 3.12745 2.98779 2.85793 2.73677 2.62363
5. [4.262I3 14,0886 3.92769 3.77748 3.63679 3.50491
6 |5.24877 5.05538 4.87553 4.90720 4.549I0 k.4OO5I
7 16.23734 6.02588 5.82882 5.64400 5.47005 5.3062%
8  |7.22724 6.999I0 6.786I3 6.58607 6.39750 6.2I964
9 |8.2I8I0 7.97438 7.74657 7.53229 7.33005 7.I3904
I0 {9.20970 8.95I30 8.70953 8.4L8I86 8.20667L4 8.06337
IT |I0.20I9 9.92960 9.67458 9.43422 9.20691 8.99182
T2 |TT.T945 10.9090 I10.64I4 .10.3889 I0.I500 9.92378
I3 |12.1896 II.8895 TII1.6098 IT33458 I1.0957 I10.8588
I, |I3.I810 12.8707 I12.5794 1I2.3043 12,0436 II.7964
I5 |I4oI747 I3.8527 1I3.5503 13,2645 12.9935 12,7364
T6 |15.1686 1I4.8353 I4.5222 I4.2260 I3.945I 13.6785
17 |16.1627 15.8185 15.4950 T15.1888 14,8983 I4.6225
18 |17.1572 16.802, 16.4687 I16.I529 15.8531 15.5683
19 |18.I517 17.7866 I7.4431 I7.1179 16.809T 16.5156
20 |19.I464 I8.7II3 I8.4I83 1I8.0839 17.7663 I17.46LL
21 |20.I4I3 I9.7564 19.3941 19.0508 I8.7246 I8.4ILL
22 |21.1363 20.74I9 20.3705 20.0I85 19.3657

19,6839
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Upper I0O LhPercentage Points of X

wr)

Appendix C

h-
Ad=.05 and L, =TI-(I- L) - Contd.

P 15 16 17 18 19 20
23 22.13I5 2I.7278 21I.3475 20,9871 20.6443 20.3182
24 [23.1267 22.7I39 22.3250 21.9562 2I1.6055 2I.27I7
25 24. 1221 23.7605 23.3030 22.9261 22.5675 22.2262
‘26 25,1175 24.6872 2A.281h 23.8965 23;5303 23,1817
27. 26,1131 25.6742 25,2603 24.8676 24.4939 '24.1380
28 |27.7089 26.6616 26.2397 25.8394 25.4583 25.0953
29 28,1047 27.649T 27.2i9h 26,8115 26.4232 26,0532
30 29,1004 28.6368 28,0161 27.7841 27.3886 27.0II9
40 [39.0623 38.524k 38.0I61 37.5330 37.0722 36.6327
50 |49.0289 48.4257 47.8552 47.3123 L6.T943 46,2996
60 |58.9990 58.3369 57.7I62 57.II35 56.5435 55.9990
70 |68.97Ik 68.2551 67.5767 66.9305 66.3I30 65,7227
180 |78.9460 78.1994 77.453T 76.7602 76.099T 75.4662]
90 [88.9221 88.1082 87.3368 86.60I4 85.8981 85.2253
100 |98.9994 98.0409 97.2270 96.4507 95.7081 99.9976
X |-0.0309 -0.0922 -0.I507 -0.2067 -0.2606 -0.3124
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Appendix .D
Upper I00 [& Percentage .Pobints of X *
A= +61 and '(bz I-(I- L) - ¢C

k| a4 3 4 5 6 7 g

T |6.63490 5.4207k 4.726L7 L.24329 3.87492 3.57869 3.29841
2 [9.21034 7.834I6 7.03308 6.4,6767 6.03136 5.67655 5.337I6
3 IT.3449 9.84847 8.96928 8.36409 7.85922 7.46260 7.08I30
L |13.2767 I1.6797 10.7359 I0.06I4 9.5360I 9.10502 8.68933
5 |15.0863 13.4008 I12.3998 TII.6825 II.T221 10.66I2 I0.2I56
6 16.8119 I15.0464 I3.994L,1 I3.2382 1I2,6461 12,1584 II.6860
7 |I8.4753 16.6362 I5.5368 I4.7453 Ik 1243 T3.6I20 I3.T15I
8 |20,0902 18.1825 17.0394 16.2I48 I5.5671 I5.03I9 Ik.5I23
9 |21.6660 19.6938 18.5095 I7.6540 16.98TT 16,4246 TI5.8836
10 |23.2093 21.1759 19.9527 19.0680 I8.37IL I7.7946 17.2335
IT  |24.7250 22.6336 21.3734 20.4608 I9.7415 I9.I457 I8.5655
12 |26.2170 24,0701 22.7746 2I.8354 2I.0945 20,4804 I19.8820|
I3 [27.6883 25.488I 24,.I586 23.I940 22.4325 2I1.8008 2I.I849
I, |29.I4I3 26.8897 25.5277 24.5385 23.7571 23.1085 22,4758
I5 |30.5779 28.2768 26.8832 25.8705 25.0699 24.4050 23,7562
16 |31.9999 29.6509 28,2269 27,1912 26,3720 25.69I4 25,0269
I7 |33.4087 3I.0I31 29.5595 28.50I7 27.6646 26,9687 26.2891
18 [34.8053 32.3646 30.8823 20.8030 28,9485 28.2378 27.5439
I9 133.706I 32,1960 30.2242 29,4992 28.7905

36,1908

31.0957




Appendix D

i)

Upper I00 £, Percentage Points of x*
h-
/-.0T and £ = I-(I- L) ~' Contd,

sk 2 3 4 S 6 7 g
20 [37.5662 35.0387 33.501L 32.3807 31.4927 30.7536 30.0310
21 38.9321 36,3628 34L.7990 33.658L4 32,7543 32.0016 3I.2654
22 [40.2894 37.6792 36.0895 34.9205 34.0097 33.2436 32.4942
23 |4I.6384 38.988L 37.3734 36.I94L 35.2592 34.4801 33.7I77|
24 42,9798 40.2907 38.6509 37.4535 36.5032 35.7II4 34.9363
25 (44,3141 4I.5867 39.9227 38.7070 37.7420 36.9377 36.I502
26 |45.6417 42.8768 4I.I890 39.9555 38.9761 38.I595 37.3598
27 L6.,9630 L4, I6IT AZ;ASOO LI.I990 40.2055 39.3769 38.5653
28 [48.2782 45.4402 43.7062 42.438T 4I.4307 40.4903 39.7670
29 [49.5879 46.7Ihh L4.9678 L43.6728 42.6517 LI.7997 40.9650
30 |50.8922 47.9838 46,2051 44,9035 43.8689 43,0056 42.I595
L0 [63.6907 60.4606 58.4783 57.0242 55.8661 54,8981 53,9480
50 76,1539 72.6399 70.4781 68.8895 67.6226 66.5625 65,5208
60 (88.3794 84.6085 82.2843 80.574T 79.2088 78,0655 76,9411
700 |100.425 96.4I78 93.9443 92,1223 90.6666 89.4467 88.2462
180 |112.329 108,102 I05.48T 1I03.563 102,022 I00.73I 99.4598
90 124,116 119.682 116.939 II4.9I5 113,296 I11.978 IIO.6CO
100 |I35.,807 1I3I.I77 128.3I0 126,193 1I24.500 123.078 IéI.678
X 2.32630 2.05584 1.88523 I.75766 TI1.65455 1.56729 1.48Q68
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Upper I00 L Percentage Points

(1)

Appendix D

O ® 3 6w o W M®

of
L= .0I and 4,=I-(I-4 f Sonta.
q. 10 " -} 13 14
3.09254 2.9I302 2.75429 2.6I264 2.484L9L 2.36892
5.08536 14.86380 L4.66620 L.48823 4.32639 4.17817
6.79703 6.54588 6.32102 6.I1768 5.93209 5.76I54
|8.37850 8,9031I8 7.85608 7.63206 7.42720 7.23849
9.88I71 9.58543 9.3I905 9.07720 8.85561 8.65I23
I1.33I4 II.0I64 10,7327 I0.4749 10.2384 10,0200
127417 12,4095 I2.II0I 11,8377 1I1.5875 II1.3563
I4.I2I3 I3.7732 I3.4593 1I3,I733 12,9106 12,6676
T5.4763 15,1133 T4.7857 Th.4871 Ih.2I25 T13.9584
I0 |16.8I07 1I6.4336 16.0931 15,7827 15.4969 1I5.2324
II  |I8.I280 1I7.7376 17.3849 1I7.0630 16.7669 16,4924
T2 |19.4304 19,0274 18,6629 18.3303 18,0240 I7.740I
I3 [20.7199 20.3046 19.9290 19.5860 19,2700 18,9771
T4 [21.9979 21,5710 2I.I846 20.8317 20,5065 20.2049
I5 23.265é 22,8276 22.4309 22,0684 2I.7343 2I.4243
16 = |24.5245 24,0753 23.6686 23.2969 - 22,9541 22.6361
I7 25,7750 25.3I52 24.8989 24.5I82 24,1671 23.8412
I8 [27.0I80 26,5480 26,1222 25,7328 25,3736 25.0402
19 |28.2542 27.7742 26.94L,I5 26,5743 26,2335

27.3393
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Appendix D

2
Upper IOO Jh Percentage Points of X

b~
A=.0I and '(h: I-(I-4) -_-' Contd.

BPY: 1 Lo I i 13 14
20 [29.48L0 28.99L3 28.5505 28.14LL 27.7697 27.4216
2I  [30.7079 30,2088 29.75%3  29.3422 28,9600 28.6050
22 |31,9265 3I.4I8 30.9572 30.5353 30.I457 29.7839
23 33.ILOO 32.6226 32.15341N3I.7238 3T1.3271 30.9586
24 [34.3489 33.8227 34.3453 32.9083 32.5046 32.1295
25 |35.5532 35.0184 34.5331 34.0886 133.6783  33.2968
26 |36.7535 36.2I0I 35.7I71 ,35.2655( 34.8483 34,4606
27 [37.9499 37.3982 36.8976 36,4390 36,0152 35.6213
28 [39.1u25 38.5827 38.0746 37.6091 37.1789 36,7790
29 |40.3345 39.7639 59-2485 38,7762 38.3398 37.9339
30 |4I.5I75 40.94I9 40.4LI93 39.9403 39.4977 39.0860
LO  |53.2261- 52.578T 5T.989T SI.4493 50.9499 50,4851
50 |64o7286 6LsOI69 * 6343696 62.775L 6242253 6L.7I30
60 |76.0853 75.3T61 74L.6I60 73,9731 73.3776 72.8228
70 (87,3321 86.5099 85.76I4 85.0736 8L.4365 83,8426
80 |08.49Th 97.6201 96.8267 96.0972 95.42I3 94.7910
90 109,580 108,663 1I07.827 I07.058 1I06,3458 105.681
100 IZO:éIO 119.648 1I8.772 1I7.967 117.220 116.523

X |T.4I42I 1I.35403 1.29891 1I1.24800 T1,20058 I,I5617
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Appendix D

2
Upper 100 £ Percentage of X

|73
A=.0I and.l%le-(I- L ) - Contd.

16

DR \5 17 18 1 20

I [2.26275 2,16508 2.07477 1.99093 I1.91282 1.83979
2 LeOLIL9 3.9I479 3.79678 3.68642 3,58286 3.48535
3 |5.60372 5.45695 5,31981 5.I9II6 5,07008 4.95573
L |7.06353 6.90049 6,74787 6.60442 6.46917 6.34121
5 8.46I46 8.28438 8,II839 7.962I8 7.8I472 7.67502
6 ]9.81699 9.62737 9.44O46 9,28I87 9.I2351 8.97336
7 II.ILI3 10,9402 I0.75I4 1I0.5735 TI0.4052 TI0.2455
8 |T2.44T3 T12.2297 12.0308 II.8433 II.6758 IL.4973
9 é13.7218 13.5002 I13.2920 13,0954 12,9093 12.7326
10 [14.9859 I4.7551 I4.5380 T4.3330 IL.I388 I3.9543
IT  |16.2365 15.9969 I5.77I3 I5.5583 I5.3565 I5.1646 |
T2 |I7.4757 17.2273 16,9937 16.7730 16.5639 16.3650
I3 |I8.7039 I8.4477 18,2064 17.9784 I7.7623 I7.5567
I |19.9235 19.6595 19.4109 19,1806 18,9531 T8.7410
I5 [2I.I349 20,8635 20,6078 20.3660 20.I366 I9,9I84
I6 |22.3391 22,0605 2I,7979 21.5496 2I,3I40 21,0897
I7 [23.5368 23,2512 22.9820 22.7273 2234857 22,2557
I8 |24.7286 24.4362 24,1606 23.8998 23.6522 23.4166
19 25.6160 25,3341 25,0673 2L.8ILT  24.5729

2549150
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'Appendix D

Upper I00 ILPercentage of )(l

h-1
L=.01 and £,=I-(I- L) - Contd.

I.9671I

k| (5 B 7 g 1 20
20 27,0964 26,79I0 26.5029 26,2303 25,9715 25,7251
21 2862731 27,9614 27,6675 27o3892 27.1250 26.8733
| 22 |29.4456 29,1278 28.8280 28.5442 28.2748 28.0180
23 | jb.éIhOL 3O.29O2' 29.9848 29,6956 29,4210 29.1593
24 |3T.7788 3I.4492 3I.I383 30.8438 30.564I 30.2975
25 (32,9400 32,6047 32.2884 31.9887 51;7041 31,4328
26 '|34.0979 33.7570 33.4353 33.1306 32.84T1 32.5652
27 35,2528 34,9065 34,5796 3402699 33.9757 33.6952
28  [36.4049 36,0531 35.72I1 35,4065 35,1076 34.8227
29 |37.554T 37.1971 36.8601 36.5407 '36.2373 35,9479 |
30 [38.7007 38.3386 37.9966 37.6726 37.3646 37.0709 }
LO 15000496 49.6398 49.2525 48.8853 48.5390 48.2026 §
50 |61,2330 60.78II 60.3539 59.9486 59.5629 59,1948
60 72,3027 71,8129 7I.3496 70.9I00 70.49I5 70,0919
70 |83.2856 82,7609 82,2646 81,7933 8I.3447 80.9I6I
80 94,1998 93.6427 93.I156 92.650 92.1383 9T.6839
90 I05.058 TI04.470 103,914 103,386 102.883 102,403
100 II5.869 II$.2530'IIA.67O II4.IT5 113,587 I13.083
X |T.II433 I.07476 I1.03717 I.00I34 0.93428




BIBLIOGRAPHY

Anderson, .W. (1946) "The non-central Wishart dlstrlbutlon and certain
problems of multivariate statistics." Ann. of Math. Stat.
17, I-LO9")431 L4
(1957) An Introduction to Multivariate Statistical Analysis.
New York ‘Jonn Wiley and Sons.

Anderson, R.L. and Bancroftl.A. (1952) Statistical Theory in Research.
New York, McGraw-Hill Book Coe. :

Bannerjee, D.P. (1958) "On the exact distribution of a test in multivariate
analysis«" Je. Roy. Stat. Soc. Ser. B, 20, 108-110.

Bartlett, M.S. (193Li) "The vector representation of sample.” . Proc,.Camb.,
' Phil.Soce 30, 327-3L0. ‘
(1938) "Further aspects of the theory of multiple regre551on.“
‘Proc. Camb, Phil. Soc. 3L, 33-L0O.
(1947) "Multivariate analysis."™ Suppe. J. Roy. Stat. Soc.
9; 176‘1970 '

Blerens deHaan, D. (1939) Nouvelles Tables d'Intégrales Définies., Ed. of
1867 - correctede New York,G.E. Stechert and Cos

Bose,}R.C. (1936) "On the exact dlstrlbutlon and mament coefficients
of the D* - statlstlc." Sankhy3a 2, 13-154.

Bose, R.C. and Roy, S.N. (1938) "The distribution of the Studentized D -
statistic.* Sankhy3 L, 19-38.

Bross, I. (1950) "Fiducial intervals for variance camponentsﬁ"
Biometrics 6, 136-1lll. .

Burnside, W.S. and Panton, A.W. (1904) Theory of Equations. Dublin,
Dublin University Press Series, Vol. l.

Cramér, H. (19L6) Mathematical Methods of Statistics, Prlnceton,
. Princeton University Press.

Crump, S.L. (l9h5) "The estimation of variance components in analysis
: of variance." Biometrics 1, 7-1l.

Cuttle, Yvome (1956) "The distribution of extreme Mahalancbis distance
» fram the sample mean.® Master's Thesis, University of
British Columbia, Vancouvers.



wiin

Duncan, D.B. (1951) ®"A significance test for difference between ranked
treatments in an analysis of variance." Virginia Journal
of Sc. 2, 171-189. )
(1953) "Multiple range tests and the multiple cqmparisons ’
test.’ (Preliminary report) " Biometrics 9, 262 Abstract 220.
(1955) "Multiple range and multiple F tests." Biametrics 11, 1-42,
(1957) "Multiple range tests for correlated and heteroscedastic
means." Biometrics 13, 16L-176. .

Eisenhart, C. (194 7)"The assumptions underlying the analyeis ef variance."
. Biametrics 3, 1-21.

Federer, W.T, (1955) Experimental Design. New York, The Macmillan Co.

- Fisher, R.A. (1928) "The general sampling distributions of the multiple
correlation coefficient." Proce. Roye Soc. London, Ser. A,
121, 654=-673. .

(1931) "Tntroduction" in Mathematlcal ‘Tables of the British
Association for the Advancement of Science. Vol. 1.
Cambridge, Cambridge University Press. pe. 26..

(1935) "The fiducial argument of variance components.“,Ann.
Euge 6, 391-398.

(1936) "The use of multiple measurements in taxonomic problemse"
AIm Eugo 7’ 179"188.

(1938) “The statistical utilization of multiple measurements.“
(1939) "The sampling dlstrlbution of same statistics obtained
fram non-linear equations." Ann. Euge 9, '238-24L9, :

Ganguli, M. (1941) "A note on nested sampling." Sankhye Sy hh9-h52.

Garwood, F. "Unpublished table of the lower 5% pOints of the
: noncentral chi-squared”

Girshick, M.A. (1939) "On the sampliné theory of roots of determinantal
equations." Ann. Math, Stat. 10, 203-22).

Grayball F.A. , Martin, F. and Godfrey, G. (1956) "Confidence intervals for
A variance ratios specifying genetic heritability.! Biometrics
12, 99-109. .

Hartley, H. O. and Pearson, E. S. (1954) Biametrika Tables for Statisticianse
Vol. 1, Cambridge University Press.

Hotelling, H.  (1931) "The generalization of Students ratio." Ann, Math.
Stat. 2e 36"'3 78
(1936) "Relations between two sets of varlates.“ "Biametrika
28, 321-377.
(1950) A generalized T test and measure of multivariate
dispersion." Proc. of Second Berkeley Symposium on Math. State.
_and Prob. 23=lL1, Berkeley, University of California Press.




Hsu, P.L.

Ito’ Ke

Keuls, Mo

Kramer, C.Y. .

Larsen, H.D.

Lawley, D.N.

Mahalanobis,

Mahalanobis,

Mood, A.M.

Morant, G.M.

Nair, U.S.

~iiie

a
(1938) "Notes on Hotelling's generalized Te. ." Ann. Math.
Stat. 9, 231-243.

' (1939) "On the distribution of roots of certain determinantal

equationse.® Ann. Eug. 9, 250-258.
(194,0) "On the limiting distribution of roots of a detennlnantal
equation."” J. London Math. Soc. 16, 183-19L.

»(1956) "Asymptotic formulae for thé,distribution of Hotelling's

generalized T, - statistic.™ Ann. Math. State 27, 1091-1105.,

(1952) "The use .of the Studentized range in connection with
an analysis of variances" Euphytica 1, 112-122,

(1955) %On the analysis of variance of a two-way classification
with unequal sub-class numbers." Biometrics 11, Lhl-L52.
(1956) "Extension of multiple measurements to group means with
unequal numbers of repllcatﬂons." Biametrics 12, 307-310,
(1957) "Extension of multiple reange tests to group correlated
adjusted means." Biametrics 13, 13- 18,

(1948). Rinehart Mathematical Tables Formulas and Curves.
New York, Rinehart and Coe. Ince, publisherse

(1938a) "A generalization of Fisher's z teste™ Biometrika 30,
180-187.

(l938b) "Tests of significance for the latent roots of covariance
and correlation matrices." Biametrika L3, 128-136,

P.C. (1927) "Analysis of race-mixtures in Bengal." J. Asiat.-Soc.

Bengal, 23, 301~333.
(1936) "On the generalized distance in statlstlcs." Pro. . Nat.
Inst. Sci. India, 2, L9-55.

P.C., Majumdar, D.M. and Rao, C.R. (1949) "Anthropametric survey

of the United Provinces, 19h1. A statistical study,"
Sankhya 9, 89-32L. '

(1950) Introductlon to the 'Theory of Statisticse. New York,
McGraw-Hill Book Co.

(1951) "On the distribution of the characterlstlc roots of
normal second-moment matrices." Ann. Math. Stat. 22, 265-273.

(1923) "Afirst study of the Tibetan skull." Biometrika 1, 193-260,
(192L) "A study of certain oriental series of crania ineluding
the Nepalese and Tibetan series in the British Museum (Natural

- History)." Biometrika 16, 1-105.

(1926) wstudies of Palaeolithlc mane le The Chancelade skull
and its relation to the modern Eskimo skull.” Anne Buge le 257=276.

(1939) "The application of moment functions in the study of
distribution.laws in Statistics." Biametrika 30, 274-29L.



Nanda, D.N.

NaSh, 3 ..W.
Nash, S.W. and

Newman, D,

Patnaik, P.B.

Pearson, K.

Pillai, K.C.S.

Rao, C.R.

=Ff -

v

(19&8) "Distribution of a root of a determinantal equatlon.“
Ann.. Mathe Sta‘b. 19, )47"57 ‘ :

(1948) "Limiting distributions of a root of a determinantal
equation.” Ann. Math. Stat. 19,340-350.

(1950) "Distribution of the sum of roots of a determlnantal
equation under a certain condition." Ann. Math. 21, L32-439..

(1956) "Contributions to the theory of experiments with many

treatmentse" Berkeley, University of California Presse

Jolicoeur, P. (1959) "Calculating discriminant functions."
Unpublisheds

(1939) "The distribution of the range in samples fram a normal
population expressed in terms of an independent estimate of
standard deviation." Biametrika 31, 20-30,

(1949) "The non-central chi-square and F distributions and
their appllcatlons." Biometrika 36, 202-232,

(1926) "On the coefficient of racial 11keness." Biametrikald,
105-117. :
(1928) "The application of the coefficient of the racial
likeness to test the character of samples." Biometrika 20B,
29L-300, |

- (1953) “On-the distribution of the sum of the roots of a

determinantal equation." Abstract, Ann. Math. Stat. 2k, h95.
(195L;) *On the distribution of Hotelllng s generaliged “n

T - test." Abstract, Ann, Math. Stat. 25, 12, '
(1954) "On some dlstrlbutlon problems in multivariate analysis."
Mimeo, Series No. 88. Institute of Statistics, University of
North Carolina.

(1955) "Some new criteria in multlvarlate analysise" Anne
Math. Stat,. 26 117-121.

(1956) "on the distribution of the largest or the smallest
root of a matrix in multivariate analy51s." Biametrika L3,
122=-127.

(1957) Concise Tables for Statistics. Manila, The
Statistical Center, University of Phllllplnes.

(19h6) "Tests with discriminant functions in multivariate
analysis<* Sankhya 7, LO7-L41lL.

(1948) "The utilization of multiple measurements in problems
of biological classification." J. Roy. State. Soce B. 10,
159-203,

(1952) Advanced Statistical Methods in Biametric Research.
New ¥ork, John Wiley and Sons.




Roy, S.N.

-y*

(1939) "p = statisties or some generalizations in analysis

- of variance appropriate to multivariate problems.“ Sankhyé li,

381-396, -

. (L9Lh2a)"Analysis of variance for multivariate normal populations -

the sampling distribution of the requlslte p-statistics on the null
and non-null hypothesés." Sankhya 6, 35-50.

- (1942b) "The sampling distribution of p-statistics and certaln

allied. statistics on the non-null hypothesis." Sankhya 6, 15«3L.
(1945) "The individual sampling distribution of the maximum, the
minimum and any intermediate of the p-statistics on the null
hypothesis." Sankhyd 7, 133-158. -

Roy, S.N. and Bose, R.C. (1953) "Simultaneous confidence interval estimation.

Roy, S.N.

Ann, Math. State 2L, 513-536.

(195L) "Scme further results in simultaneous confidence interval

estimations® Ann. Math. State 25, 725-776e
(1956) ™Anote on some further results in 51multaneous confldence

interval estimation.® Ann. Math. Stat. 27, 856-658.

- (1957) Some Aspects of Multivariate Ananlysis. New York, dJohn

Wiley and Sons. GCalcutta, Indian Statistical Institute.

Roy, S.N. and Gnanadesikan, R (1957) "Further contributions to multivariate

confidence bounds." Biametrika L, 399-410.
(1959a) "Same contrlbutlons toc Anova in one or more dimensionse.
I." Ann. Math. Stat. 30, 304=317. . -

-(1959b) "Same contributions to Anova in one: or more dimensionss

II.“ Ann. Mathe Stat. 30, 318-3L40.

Satterthwalte, F.E. (1941) "Synth631s of varlance." Psychometrika 6, 309-316

Scheffe , H.

Siotani, M.

4

Tang, -P.C.

(1946) "An approximate distribution of estlmates of varlance
camponents." Blometrlcs 1, 110-31L.

(1953) "Amethod of Judglng all contrasts in the ana1y51s of
variance." Biametrika L0, 87-10L4. ,

(1958) "Note on the utilization of the generalized Student
ratio in the analysis.of variance of dispersion." Tokyo,

" Ahnals of the Institute of Statistical Math., 9, 157-171.

(1959) "The extreme value of the generalized distance of the
individual points in the multivariate normal samples.™
Tokyo, Annals of the Institute of Statlstlcal Mathe.,: 10 183 208.

(1938) “The power function of theana1y51s of variance iests
with tables and illustrations of their use." Stat. Bes. Mem.
2, 126-19 and 8 pages of tabless. : -

Tildesley, N.L. (1921) A first study of the Burmese skull." Biametrika 13, 176-262.



Tukey, J.W.

Whittaker, E,T.

Wilks, S.S.

(1949) "Camparing individual means in the analysis of
variance.® Biometrics 5, 99-11l.,

(1951) "Quick and dirty methods in statistics." Part Il.

Simple analysis for standard designs. Proc. Fifth Annual
Convention, Ame. Soc. for Quality Control, 189=197.

(1952) “Allowances for various types of error rates."
Unpublished invited address, Blacksburgh Virginia meeting

of the Institute of Math., Stat,.

(1953) "The problem of multiple comparisons."™ Unpublished
dittoed notes. Princeton University, Princeton, N.J. 396 pagese

and Watson, G.N, (1927) A Course of Modern Analy31s.
Lith. ed. Cambridge, Cambridge University Preso.

(1932) "Certain generalizations in the analysis of variance."

Biometrika 26, L71-L%lL. :
(1950) Mathematlcal Statistics. Princeton, N.J., Princeton

University Presse




