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Abstract

_Supervisor: Dr. Colin W. Clark,

| This thesis investigates the Green's functions for
'the ‘operator T defined.by

DT} = ﬁ};(E)s n (£ e By(E) | Afe Lo(E)]

<

Tf = -AT for £ e JT).

fHefé'.Hé(ﬁ)flié*éﬁSﬁanﬁardeObolév space; A .is the Laplacian,
and E 41s &a domain in R =~ which is taken to. be "quasi-bounded”".
' In particular we assume that E 1ies in the half-space x; > O
aﬁd.is‘béuhdédfby”thefsurface;dbtained‘by‘rotating @(xl) about
the x,-axis, whére o 1s.éontinuous, ®(x;) >0 and er«Li(o;4a)
for some k > O.
~ The Green's function G(x,y,\) for the.operator T + i
15 obtained as the 1imit of the Green's functions for the well:
known problém on the truncated domain Ey= EN [x; < X): Most
'of the expected propérties’ of the function are developed including
the inequality
0 £ &(x,¥;1) < K(py~X) p = |x-y|
where. K 18 the fundamental Singularity for the domain.

_The eigenvalues and eigénfunétions are constructéd, .and

it.1is ‘shown that


http://to.be

114
lx;n‘~ Ay a8 X - o | for each n,
o wherep';xgh and ;Ah are the eigenvalues for the problem on - EX;
and E  respectively. Farthermore, it is showh that the eigen-
values’ {Xﬁ} are positive with no finite 1imit point, and the

corresponding ‘eigenfunctions are complete.

A detailed ‘calculation- 1nvolving the inequa,lity displa.yed
ﬁabove shows that some iteraté (G(k°)) of G(x,y,\) is a
Hilbert Schmidt 'kernél. From this property of G(k°) it follows;
that the se;iesp Y ln Ko 1s convergent. From the.convergence .
‘of this series three results are‘derived. The first one is an
expansion formula in terms of the complete set of elgenfunctions,
and the second 1s that some iterate of théxGreehis;functicn tends
to zero on ‘the boundary. The”Iaétione 18 the construction of the

‘solutfon H(x,A,£). for the boundary value problem

A(x,2,1) =0 a8 x =3E

for a sufficiently regular f on E.

Tne‘finalxproperty_of_the;Greenvs function, ﬁameiy;f’
that G(x,y,x) tends' to Zéro on the boundary, is proved using
the fact that G(ko) 18 zero onrthe boundary, and.certain
1nequa11tites'estimatiﬁg”thefiterates,‘G(k{ ¢(x,y,\) 1s also

‘shiown to. be . unique.



iv
_The .asymptotic formula
No(A) ~ 2 [ r(x) ax,
a generalization of the”usQal'QSyM§totic formala of Weyl for the
elgenvalues, first given by C. Clark, is derived for these quasi-
boﬁhded'dbmaihé;'"Fihali&; the usual asymptotic formula due to

Carleman for the eigenfunctions is ‘shown to remain valid.
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1. Introduction

The:eigenvaluefprOblem for the Laplacian (-A), namely

Au(x).+fxu(x) 0 x¢eE

u(x) = 0 x € JE,

' has been theIEubJect-bf'much'discueeien‘in‘the”literature. codfant,'
”and Hilbert [5] extensively investigated the problem when the

domain E ig bounded Titchmarsh [10],'when he discusseéd the
:Schrddinger equation gave an alternate treatment ‘of the problem

'and-extendedamany_ofvthetresults.to the,whole plane.
Rellich [9] was the first to'obtain results when the domain
'E‘was unbounded but different from the whole plane. He ‘showed

~that when the domain Wag "narrow at infinity" along a giveén ray,

%tné?ﬁréﬁﬁmfhéa*a’Hiﬁbréte*éetfbf*éi&éﬁ#éiﬁ%%ﬁ Méi&éﬁéV‘[S]”géﬁérL
'falized Rellich's reeult to. include domains which were "narrow |

;at infinity" in a wider sense, specifically, those domain’s ‘which

‘a6’ not containgﬁinfinitely;many‘disjoint;spherieal ballsrcf ‘equal

- posttive radius. Glazman in his recent book (7] gave a discussion
idf?pibbléabiciégélyféﬁﬁﬁecteﬁ“téythéteigenvAIuéﬂiibblemifor”uﬁbbaﬁd-.
“ed domains. Still more recently, Clark [4]{pﬁbliéﬁed-a’pebér“"An
“éﬁbeaainggthedrémainjfﬁnctibn;sbaceé?‘whiéﬁ,éliowﬁfthe.tréatﬁént

“of an’ arbitrary elliptic.operator instead of the Laplacian.

The preseént ‘discussion will center around the existence
- “and ‘properties of the. Green's function (GF) for the problem.

*The;geﬁerél'metﬁnaféfféttackvéﬁd_the.ergﬁneﬁtsfin“many cades’
' §



 follow those used by Titchmarsh [10].

fThe,finéfjfeéﬁlt,[whohefproof'iefanfaﬁplicationOfwthe
'Ascaii:kfiéla‘ﬁﬁeérém”%offhé’ﬁéii“ﬁhbwh case when the domain is
‘bounded, ‘1s the existence of the GF It*is'iﬁﬁortant*to"ﬁbté”that
"although this" construction gives many of the properties which a

szF must possess, it does not show the GF . tends to zero at the
':boundary. From this: construction a basic ‘result’ easily follows,
’neﬁelyftﬁat‘the GF is bounded by the fundamental singularity

£or the domain. - The fundamental simgﬂarity (a Bessel function)

s the GF for the problem on the whole space. This relation,
which 18 ‘hot needed in Titchmarsh's development, forms a crucial -

,linkginfthejﬂrébentférsﬁﬁenﬁ;

In Part 3 we discuss the ‘eigenvalues and eigenfunctions
'*ofmthégﬁioblén;&orfﬁoreQﬁieeieeiy;'tﬁbSéiofftﬁé?oﬁefetor;~T_

. defined by

éQ(?}{éegé@??zn {ffkaz(F)el.AffeﬁLecgij

_Tf'= -Af  when f e I(T),
‘lwnefeg4Ef'§atisfieS'the‘"narfowness atfinfinity"'CGndition given
‘by‘CIerk7f41 ~The'" main result to be proved in this séction is
that the eigenfunctions of T ‘are . contained in H (E) .From this

"result ‘we conclude that

-% . as “Xi=w  for ea .
n Ty a8 X:i= for each . n,

‘where the ‘leh ‘are the eigenvalues for the truncatéd domain



'Ex,j(sée~£srt;II) and the A ‘are’ the elgenvalues for T defined
fon‘nE;-fThisfreéult;appearsﬂto;be'new}but"notjunexpectedfr This
o seeﬁibh¢éaﬁbluaés?wiph;game;aigauasfah:abbufvtne eigenfunctions

near the boundary

At Verioﬁs”bointSEin the argument restrictions are applied
'to*the“domainl Most ‘of these restrictions are smoothness conditions
for the boundary, however.the,most 1mportant1restriction5mwhich
18 introduced in Part 4, 1s an assumption about the rate at which
the domain narrows at infinity. This condition is ag follows:
f&%?éiémblé,wﬁhén?a{&éﬁ%fbh*éf iﬁié; let the boundary of E be
ifthe positive - xl-axis and ‘the set {ri, @(riX];“giﬁzgog ‘whéféf“s‘
i1g a positive continuousvfunction;i %ﬁén?we;Aséﬁme that there’

exists 'an integer k such that P (xl) is'integrabie'tofinfin{t&}

=N1£”aaé%‘ﬁét‘é%éhﬁﬁdssib1é7t6btf¢st thé?‘QE,sairectly“es"
‘;Titchmarsh ‘does; iﬁ%tédeIn”PErt?4“ﬁérc6ﬁsidér'thexitératéséof
- the GF ‘wnich are much. smoother. 'ﬁn"iﬁﬁortshtftﬁéorehﬁinhthis
ftrespect 18 that ‘there  exists” an 1terete of the GF’"Whichfis*e
.;HilbertTSchmidtwkernel. From the Hilbert Schmidt property we
;ohteingthat the Eéries?' ZAxﬁ 'converges for séme k which is
' 'dependent ‘on the narrowness of - E;,;pnceyit;is_known_that this
iéériésicéhteﬁéesfWéican?snow;thaﬁ“the,iﬁeraté*which fs Hilbert-
;scnﬁibt;détualiY7ﬁéhdsfta%ééréjén\tne Boundary. This result, as
f%wéiénéwsiﬁﬁpértfs;“in tufn*imbiiés;fhatf;ne"eg“ itself tends to

" zéro' at the boundary and that it 1s unique.



4,

' The last section, Part 6, discusseés application‘of the
GF to asymptotic problems for the eigenvalues and eigenfunctions.
The first application is a'proof of the asymptotic formula

nO s gy [0 e

(see Theorem 6.1 for notation), which reduces to the well known
fortula of Weyl, i.e. | |

N(A) ~ A . area E
when the domain E has finite area. This asymptotic formula
ﬁaéffirét giVen By;@i&fkif3],f6r‘afsmaller'Ciessldffdbmains. -@he

v Carleman forwthegeigenvalues extends to unbounded E.

fThrOugheut.thé*ﬁbfkféii*ieﬁmdé?énd4theeréms.are‘nuMbered
, éucéeﬁbiveiY;;fbfTé#ample,fhédreﬁ 2.4"méaAS‘Théarém thdrﬁ 2.
-Wiﬁhiﬁ;a’é%éﬁidﬁ‘édﬁétibﬁs*aﬁd definitions are‘feférred“%c“byfé
Kﬂnumber but if we wish to refer to" equation 6 of.. Part 4 then" we‘
"'would write eqnation (4 6).. References are referred to by ‘the
‘author's name and a number corresponﬁing to ‘his paper in the

bibliography at the ‘end.



‘Part 2. Construction of the Green's function and

" gome of its elementary properties.

In this section we shall give a construction of the
Green's function for the Laplacian on domain which will be- defined

below.
Notations:

‘Let R, denote Euelideah‘n—space? let x=(xl,'x2, Cees Xn)
denote a typical point in Rn and  let |xy| be the Euclidean
norm. Let E denote a simply connected unbounded domain R,
with boundary aE. For & given E. define

= {p e E| d(p, 3E) 2 b},
‘where b 18'a fixed positive constant which determines E',
and d ‘denotes‘'distance. Furthermore, let
L;{xuﬁIMgK,&ﬁJMngvmimwgemL
where - K and v are fixed ‘positive constants which determine L.

We will sometimes write LéL(v) to indicaté the dependence of L

‘on v. Finally we set
BEy'= {xeE | |x]| <X, 1=1, 2, ... n] X >0 .
Consider the boundary value problem

pul(x) + xu(x) =0 x. € B ‘
, : (1)
0 ‘X € JE :

u(x)



6.
where A derotes ‘the Laplacian. We define the operator T in
Lo(E) - by: |

Ty

‘Tf;;';Af" if f e JQ(T)»

Lo e -
'HG(E) n {f e LQ(E)-[ Afee“LQ(E)}
(2)
5whefe°.H§(E)l denoﬁés*the”standard Sobolev space (see e.g. Dunford
and Schwartz [6; p. 1652]) with the norm
el = 1 J Y In%s(x) | 2ax1*/2 (3)
' la|<m . ’

in’Wﬁiéhfwé"use'tne'sténdafd”ﬁdtatiaﬁsl‘

.. aen S o
i "o el e n . a .= :"':(als _ae) ces an)

%
,
Jué

"_J

)

NEON

_ The classical. theory for .problem’ (1) states that if B is{
.bounded then .T i8'a self adjoint operator in the Hilbert | o
VSP§Ce¢;Lé(E), “and. has’a discrete spectrum consisting of isolated
-éiééﬁ%dfﬁésﬂ*xn; n=l;=2,-3,..;; etc.,_each eigenvalue corrés=

ponding to an sigenfunction u,(x).

Let us assume ‘that EX is sufficiently regular to’ alicw
Us® to construct a Green's function Gx(x,y,x) for" problem (1)
iin,the sense of Titchmarsh [10, Ch 147. Tn the présent section
we' shall need the £ollowing propertiss of Gy(xysA)t



fGX(XsY}X)‘,haéfa*SfahdérafSihgﬁlarity for = x=y.
_(éée’Lémm3'2"75: |
If x e EX’ A€ some L, theén GX( X,751) féndé £6'
:zero as y approaches ‘the boundary of EX . If we
‘define the_operatcr -Gx;l by -

%, 20x) = [ oylmy,d) ) &y reiyE)  (5)

By |

‘then we neéd two theorems:
Ry

Gxil:ﬁﬁ(i)5=4(xn- X) T (x) for A non real ~(6)

‘and
- HGx}ifH;§l§'1 Il | wnéré?‘X‘eﬁL(v). (1)

All these résults are proved in Titchmaréh'[IO,'Ch 14] except for .
(7), which is’our first lemma; '

‘Lemma 2.1. Sippose that elther |Im A| > v> 0 ‘or that
Re A < -2y then ©

Toy el < v Dl ®

,Pfééf We know from the classical theory that Gy is the.

X,
.'resolvent operator of a non-negative self- adjoint operator T .in |

,2(EX? i.e.

i =1
_»Gx A =(T'u) .

- A

Now if X=a#iB, o < -2v <0 and  [B| < v, then



Je-xzll 3 lwsastl - lozll
> lmsaar] - v

But since T>0, T+2vI-> 2vI, 8o that ||T+2¢vI|| > 2v. Hence
;HTQXIHWZ'Q,"and'therefdféf

Tog ,I = M ™M ¢ v,

which is equivalent to (8). One can ‘easily show, using the
résults of Titchmarsh [10, Ch 12], that (8) holds for

WIm_ll,z'v,>”O, 'cbmpletinglthe lemma..

'Thé'fbiipwing_cqnsﬁrﬁctidn;§f thé Green's function for
tné‘ﬁrbbiéﬁj(i)‘wiiiﬁﬁé?givén“dniy for the plané. A similar
constriction s available for higher dimensions. The argument,
,up‘6o-afp61ht;“wiiigbé“similafﬂfb“witchmArén?é’afguméﬁf,fér‘théi
‘ﬁn&féiéﬁéée 'Rédr'noﬁévér;'thejbféééﬁee;of”fne”bbundéry'bf E°
- requires us 6 be much hiore precise about the naturé of the

convérgénee -
Let
&(x) = g(xu) = - | | |
o - if r > 'R»’f

WKéfe"rélX~u|' We remove the singularity from GX(x,y,x) by

fsubtracting ‘the function. g(x), we 56t

Tylxysn) = Gy(mysd) - e(my) (9)

:Note: [ﬂX1 i's dependent on R, since g is.



;Tﬁééféaﬂeﬁé}.iThé'ééte [X/%50] has ‘a subsequence (X1, XE~.w;
‘such that thé"ééﬁﬁéﬁéé [G (x,y,x)] édhvergee'pointwise'to*a‘
function G(x;,y,A) for all %,y €E and all A not on the *
'néﬁénégative‘ﬁertiof the. real axis. Pirtherfiore, given Er-cIEW
L(v) and X > 0, the sequence []“Xk(x,y,h)] converges uniformly
 for’ x,‘y_e_Ej_ and A € L(v). |

“Pro6f.

FIGURE.1

Let 2(x) = Gx(kgy;i)f and g(x) be as above; for
X, ¥, u.é;EXC§Qrife-”fe='|x-ﬁ] “and  r' =|y-ul; as is figure 1.
Let thé’éiféie [x-ul = r<R- be contained in E,. By Green's

: formula for the’ region r<R (cf Titchmarsh [10, p. 34]), we

,have,

Gy(u,y,1) - g(u,y) ~l§ j X(x,y,x)dx +
- TRY x¢R g
A , (10)

+ A f g(xsu) Gy(x,y,0)ax .
<R |



10.

Let [ 4 (x,y,%) = Ge(x,y,1) - g(x,y) for this R, and
1 R2 4 ag(x,y)  1f r <R

o ~ 1f'r > R.
Substituting these relations into (10),:we obtain
Ty = [ aglnyan) Bwax

= (Gah)s Bu)

The first problem in the proof is to show that ['y(u,y,A) is

‘unifornly bounded for u, y € Ef - and 1\ e L(vo) (where X
and 'y, are arbitrary fixed constants). We first apply the

SéhWarz'inequality to ij to obtain

—

Mgy | < gyl IR (11)
Eof"thé_sécond'norm’in (11), ﬁé.have
E(- )12 5—§—¢ [ ax 2|A|2 I lexuw)]?ax,
e R |

£rom the definition of F(x,u). Therefore

Te¢-w)l® < >K(u';R, Ixl)s

‘where K(u,R,|A|) 1is bounded if u and A are bounded, the
distance betwéen the boundary of E and u 1is greater than R,
‘and R. is Bounded away from zero. The first ferm;inj(ll),

namely flag(-,752) [, 1is more difficult to estimate. One proceeds
‘as follows: Obserfing that the form of f*(u,y;k) s&tiéfiesf



11.

Lemma 2.1 (note - Px(q.,y';'.x) = GX_’_XE(&,&)')‘, ‘we have’
I Pyas > 12 € 972 TF(- w12

| o (12)

<V EER(uR, D . |

where either |[Im A|> v >.0 or Re A < -2v and v > 0. From
the definition of [’y 1in'(9) one has:

-f_!_lcx(j_:u,.r-_,x)fn? <2l Pylase ) 12+ el )%,
,frém‘whith[it;fbllbWs that

Teylu, 5012 < (14v7) K(u,R, 1D » (13)
In these formulas it is important to note ",that_ K 1is independent’

‘of X. Combining these with the Schwarz inequality above, one
obtains the final estimate: |

| ‘f"X(';;»}'A,"S?s_ NI (1+v'2) K(y,R, | A) K(w,R; ] 2]) e,

Where y and u cannot be closer to the boundary of .E than

the distance R. We can shorten this’into’
| Pg(usys) | € K(usysR, [A) . (1)

where K is bounded if for some given E@;;Xé and ftb, u, yeE
4 _ - Lo g

We now:apply the ‘same argument as Titchmarsh [10, p. 351,

to arrive at



12,
I Mglataya) - Pelwyan] <o (15)

‘where. Jur-u| < &'= 5(;) 7indépendéntfdf‘J(X); "In order to:do
this,one just needs to consider the representatiocn of My
u‘équatiOﬁ_(ib),aand7méke épprQbriate‘eStimatés_uSing the X-uniform

bound (14). By ‘symmetry a similar result holds for the. 'y  variable.

We now have the desired equicontinuity in° u and v,
‘but we must al&o have it.in the A variable, in order to apply
fthefﬂéébii}ﬁrééia'thQQféh}‘”This:isfacnievedfééjfbilbWSé,_by”the

‘resolvent equatipn known for Gy(x,y,X) ~we have
DX r‘x | =" Dx : GX = (GX(U.,',)\) s G’x(}»” ,.y':‘.)\)--')v.-‘.-

The ‘rignht hand ‘side is bounded, as X tends to infinity, for
u, y €Ef and A'€L_s; by the estimate (13) and the Schwarz
-iniequality. Since .the partial derivatiVe;Qf-fjxg with respect to

A ”isﬁdhifdfﬁiyﬁbdﬁhdedg- IjX ”ﬁillibejunifdrmly;cbntinuous in .

The above calculations and remarks show that the set of

“functions [}ﬁxgx,y;X)1 fa§"x'~-o, for X, y;e.Eko’ and X €L,
[(E!Q'Xo 'ahdf*pévﬁbeing fixed)3 iS»eQuiéontingous in each of the
threei&ariablesjsébaréﬁely, -The'Ascoii;Ariélajthébrem says that
such a set is ‘compact, i.e. Aﬁherégéxists”a fuhctiOn'f“(k,y,i)
‘such that- ‘Fkk(x,y,x)’ tends,to'[ﬂ(x;y,i),,ﬁnifbrmly'fbr'sdmé

X .

‘subsequence . {Xk} tending ﬁbfinfihity;‘When( X, vy € B, and
| SRS R o ' y o)

A egpb,

NOW,byaajQiﬁp1é aiag6haiizatidnfpf6ceés;Twé“can»bbtainfa
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‘sequence - [ ka(x,y, )] which converges: (pointwise, for all
X, vy €E, and % e with A rot on the non-negative real
“axis. ;Nemeiﬁ;'iet |

PERS A

El cEf c ... =E

Ly €Ly € oun ;..-v{x | Im M0 or A<0},
We could: choose for example Eiv-to”be -EVE=“{péE ' d(p,aE)>h_l}
ete. . Let [X(O n)] be a sequence approaching infinity such that
[,ﬂX(O n)] ,converges uniformly when X,y and A are restricted |
to’ E'v 'Xs ‘and L Let [X(l n)] be 'a’ ‘subsequence’ of [X(O n) ]
such that [IﬁX(l n)] converges uniformly for. - x, ¥, A restricted
tO'_El, X1 and Ll’ and 80 on: Then the. diagonal sequence;

‘g‘[X(n}n)]'~is such that [ljx*] converges;pointwise for

dééifedMValﬁeQ“of:3X;;&; Ao We note that this ' sequence also has
' the property that,. given any E' X and EL(v), [ Fk] converges
uniformly for X%, y.-€ EX' and A € L(V). Thie’eémpletes-thejpfébf~

fof Theorem 2.2,

' A consequence of the above theorem is that we have a

Gréen's function for E with the representation
‘ G(-ﬁ,'y}k) = F(Xsy,l) - g(x,y‘) .
fFurthermbre; r sétiéfiee'fhe‘integrai-eQuaﬁion_

[(w,y,8) === [ G(x,y,A)dx + 1 f g(x,u) G(x,y,r)ax  (16)
- TRT R ' r<R |
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where r=|x-u| and R 1is so small that the circle |x-u|<R is
‘contained in E. We shall now examine some of the elementary

‘properties of the[Green's functibh;

Theorem 2.3. &(x,y,\) 1s continuous for .xky -and it is such that
v 1.1 |
_ G(X:Y; ) el log.p

whére p = lx-y|,' and also

+0(1) as p =0

n

B6(xy.n) _3;1;.+_o(1) as p - 0.
op ‘ | )

Tneorem 2.4. G(x,y,1) has continuous partial ~derivatives

up to the second order except at =x=y, . and
{8 +12} 6(x,y,0) =0 if xfy .

The above two theorems are proved in the same manner. as in-the

‘case of bounded E.

"GKu;;;x)HQ < v%é”K(ﬁ,R;lXI)

. O -

Proof. By inmequality (11) we have
W<, 012 & v 2 B(u,R, [A])
__X_ s s 2 . ekt .'
‘Then for E' and X. fixed - (E*=E', )
. e v XO. :

[ Irgey ey« v2R@END (X))
‘E* '

First.let X = o +through the sequence defined in Theorem 2.2.
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‘We then have
S L
[ Ir(wy,)1%ay < v2 K(u,R, (1))
BE*

where the right hand side is independent of E*. Thus, letting

E* tend to E, one has by Fatou's:lemma

” P(u:":k)”,e £ V—g K(uvRsI)\I) .

If we combine this inequality with the definition of [' and the
‘result Hg(x;')“2‘=:AR2, then Theorem 2.5 will follow.

Wé define the operator GX as follows

Gy £(x) = .I. G(x,y,\) £(y) dy £ € Ly(E).
. o E
The integral -exists:in view of equation (13) for all x¢E- and

all A contaired in some L.

Theorem 2.6. . If H(x,\,f) = -G, £(x), where f{e'LQ(E) and. A
is not on the rion-negative real axis, then |
lmCnelh < v llel,
{A+)} H(x,A,f) = £(x) and

H(x,1) = o(|1|1/2v’1) uniformly for x € EJ,
o]

I\] >8>0 and Im A =v o0,

We shall prove the first result and remark that the other
two are proved by thé'usdal’methods, (See Titchmarsh [10, Ch 12]).

 Proof. The first item to show is that Hy(%51,7) = H(x, X,f)
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uniformly fx;e-g%;;‘ where’ Hy(x:1,8) = -Gy 4f(x).  Now
EeE = [e(y,x) £(3) 4y - [rey(xys) £(y) oy
U If we set Gy=0 outside E, we have

Hy-H = 'f [6(x,y,%) - Gy(x,¥50) ] £(y) dy +
| ~ E-E#* - : | |
R [ la(x,y,0) - og(xy,0)1 £(y) dys
E*
for any E* equal to some Ej . By the Schwarz inequality the
‘second term ténds to zero as X - o since- GXK tends to G
uniformly ovéf.»Ef; Applying the Schwarz inequality to the first
term, one has |
S ae e ST . - . 2. .
Itirst term| & [ [6(xy.n) - Gglxy,0)1Pay - [ Iel%ex
o tallare A2 Al f o Al el 2
< fella(x, 012+ 2llag(x 0017 [ lel%ax,
. S e g |
This term then can be made small uniformly in X by noting
£ € L,(E), x'¢E' ‘and the results of equation (13) and Theorem
2.5. We now have the desired convergence for Hy.
If A e L(v) and E* cEf, we have by Lemma 2.1
I IEgne)Pax ¢ vB [ (2] %ax
E* | - By
< v 1£)%ax = 72 |Iell® .
o

" If.we let X = @ through the séquence defined in Theorem 2.2,
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' we have by the uniform convergence for _HX;  proved above,
]I e ¢ v R

o |

If we'let E* tend to E, we have by Fatou's lemma

R < v el | B

»;;Réﬁéﬁka ‘At this’point in the argument we d6 hot know the boundary
’L%éﬁaﬁiéﬁf?bf**G(iQY;X)l Although we krow that for esch fixed X, -
Gye(x,y51) go8s 10 Zerc” on the boundary as |y tends to the

boundary , ‘our convergence theorem (2.2) is not strong enough to

imply ‘the result for G(x;y,i).

,Wéfnaw'tufh_oﬁ?*éfﬁéﬁtidﬁ”to theruﬁdamén£a1'singﬁléfity
‘fér the domain and its relation to the Green's function. Here we

cénsider the case of a general dimensién n.

‘Lémma 2.7. (Brownell [2, p. 555, Lemma 2.17).
Theré "exists a real positive function H +,(r) ~defined
“for all real, positive r and w, and all integers n>l, which
1 réal-analyticiin r, and such that the following holds:
B Ep () = e Hy ()

Wm [m () ) e ] = -
$3%+'[?n,w(”) . %) !

o ¢ H () < My r B enpaura) py

L+ Tog(l+(wir) ™7) ey yr),
2 1 4 o

0 X Hz;w(r)'kg, M
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‘where the. M_'s' are constants independent of w and r, and g,
e R
"is'called the:fundamental singularity for a-uw?.
‘For the detalls of the proof see Brownell's paper

T2, p. 5551.

;mnépiemiéﬁs; _Supposé. that = G(x,y;X) 1s obtained as a pointwise'

11mit of funetions e&(i;y;X);-:géfin Theorem 2.2:for n=2. Thén
0 < 6(x,¥:0) & Hy (p) £ K(pw
2.4 - Pn,

‘where! ‘p=|x-y|, K(pw) is'the bound for 1Hh.¢(9) "given in
K(pw) 1s’ CHp el

Lemma’ 2.7, and A=-uw° . wWhere w3 0.

Proof. Since': EX - 18 bounded the maximum principle 'ué‘a.‘n.bef'app]‘.'ied o
“to prove
0 < Gglxysn) & Hy o (p)
‘but for fixed x; y € E, 1G§(k,y5X) tends to G(x,y,\) as X-
goes through thé ‘sequence  defined in Theorem 2.2. ‘Thus
o n, m

0 £ 6(x,ys\) & Ho (D) all X, y € E.

Note that this relation implies that G(x,y,\) tends to zero,

_for fixed x and i, 4as y tends to infinity.

ﬁTnébremaé;9} 6(x,¥7,1) = &(y,x,1) X,y €E.



Proof. We know ‘that
Gg(x,350) = Gy(ysx,n)

for X,y € E and X 'sufficiently large:. Since the 1éft hand’
“side tends to' G(x;y;X) and the right hand side tends to' G(y,x;1),
as. X tends®to ‘infinity, the result follows.

‘The. final Tesult in this section 1s ~

Theorem 210 ,.‘D.x,‘Q(_'J’fc';ﬁf",‘){)’*é_'G(_Q)-'(Jisy ,A) and -

D a(xy,n) = nt 6P (xy0)
for x’a:gé@df1v§¥humbéffana -x5{y*;;E;,
_Pfobfi".Fiﬁéf'wéfmdﬁﬁfééﬁabiiéh the "rééﬁi&éhﬁfeaﬁatidﬁ"é
(X-l')(G(,X,l),G( ,y,k'))= a(y,x,1) - ‘G(x;y';:X'F)V | | | (16)
for A and x*v.ﬁégétiVét

‘The usual proof of (16) requires that G(X,y;A) be zero"
“on the boundary; however we want this lemma independent of “the

boundary” result s6 weiproceed differently’
We have’

() [ Gglam) ylsv,An)ds = 6y(y,%0) - Gy(xyia) (A7)

By

by-Gféénstfhéoréagfsiﬁéej"Ei .isvbbuﬁded; ‘Let x, y e E*. where
t < E. The right hand side of (17) convérges -

"E* is some fixed E
= R o8
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_to the right hand side of (16) by Theorem 2.2. Thus we need to
‘show that the difference (18) ternds to zerd as X - =. - (Here we

extend  Gy(s,y,1) by zero to s ¢ Ey.)

(G(75%,1) ,:,G'(_“i?' VA1) = (Gx(}-" SX5A) 5 Gx( “5¥5A1))
(G( ,X,)\) - G'X( ,X l): G‘( ,y,)\')) + L * C (18)

-+ (Gx( s X )\): G’( :Y3)~ ) - X( ,Y,X ))
'By.theiSéﬁﬁdri'iﬁéQQaiity the first term of this expréssion is less
‘than |

l6-x:3) = ay(-oxa) 12 =l a2 (19)

'Tﬁg’éébdﬁd”faEtOf'af”(ig) 1s bounded since y € E* and A' 1is
*fiﬁé&f'JNdw'éaﬁsiaéfﬁtne firét‘féctar of5(19),rWhiéh:eqna1sri
"I 16(s;, x,i)»- Gx(s,x,x)lzds o+ I IG(s X,A) - X(s x x)l ds. (20)
‘E-E* i , - Ex
'The Tatter term of (20) g068 to zéro’ for ‘each fixed E* &8 X °
"goes to infinity, since GX ‘convéergés uniformly on Ex, anei-
result will now be complete if we' ‘can show that the first term of

' 5(20) can be: made small independently of X by an appropriate

choice of E*

|1st term of (20)[ <2 I |6(s,x, x)|2ds ve | | ey (s, x,1) | %ds
| B_E® E-E*

<4 [ Ix(pw)|%as
EéE*

by Theorem 2.8, where p = |s=x| and A = -0°, ® >.0. Thus the
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first term.of (20) can be made small by piéking E*, and the
‘choice of E* "will be independent of X. A similar argument can’
‘be ‘applied to the second term in (18), so that (18) approaches
‘zéro as. X = ©, .and equation (16) 1s proved.
ﬁﬁ}&ﬁﬁédﬁatibﬁ*(ié)'wé‘ﬁa%e
(@ TA), B(ya)) = (R THEEEA) - a0xnysan) .

TIfwe let X! —ox, . the theorem is proved. - Note that G is
“symmetric 'in x. ‘and y. by Theorem2.9. Similar proofs will

‘show ‘the résults for higher iterates.
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‘Part 3. The Eigenvalues and Eigenfunctions

"of the Problem.

. In this section we shall introduce conditions on E
that will allow construction of eigenvalues and eigenfunctions
£or problém (2:1). Tt turns out that 'a certain condition on E -

“calléd “n&iiSWhéss}atfinfihity"jWill;beﬁsuffibient,ipfoﬁided"'E;
“gatisfies’cértain regularity conditions. Rellich [9] and
uMéiééﬁév5[81fga#éﬂ?héirdwhéésfat“infinity"'cbnditiéﬁS“suffiéiéhtﬁ
forproblem(el) to have a discrete spectrum . Clark. [4] gave
‘a ‘sondition which we shall use to cofistruct the elgenfunction and
eigenvalues. The‘éandition»(caliédlcqnditiéﬁgi)ﬁfs‘és“fbiibws:.
I Corresponding to each X30 ‘there exist positive numbers  d(X)
and. 8(X) satisfying = | |
ﬁé)w'°d(§)§+,a(x).a;b a5 X =
b)) d(X) / 8(X).<M < e ‘for'all X
c) for. eaci’i"' : x-;-’e_‘:"E.-'EX ) the‘z"e"e'xi'st's?' a point y 'such
| thatn'[k4yl_€jd(xx'-and;;Ejn {z |]z-y| < 8(X)} = 4.
Condition I implies that E -is narrow at infinity in the
following sense: | | |
The set E 18 said to be "narrow at infinity" if
21im p(EéEX) =0,
o
where p(A), for A an arbitrary set in R,» 1s defined by

p(A) ='sup d(x;34).
L s
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“It is clear that - p(A) 18 “the ‘supremum of the radii of
‘the spheres 1nscribab1e in A |

When Theorem ‘5 from Clark’ [4] is’ applied to the operator
T (equation 2. 2), with condition - I .on E; We,ean,conclude:

gﬁémmeQB?lg T is’a se1f~adjoint.operator in the Hilbert space.

Lé(E)}f,tﬁe,spectrum"o(T) -13<diserete and has no finite limit.
" points; f&f"X*%fo(T) ‘the” resolvent operator RA(T) (XI—T)*l

is completely continuous

f&ﬁéﬁéﬁk:memgib;reéuit géneralizes the result of Rellich [9,'p. 335]

 to a.larger class of domains.

Let o(T) = [1n], ‘where . X{ < A5.< A§ ... etc. Let
;xX n -and uX n(x) be the eigenvalues and eigenfunctions for the

problem: |

|

su(x) + A u(x) =0 wemy

(1)
u(x) = 0 xe a EX '

'Ewhich are known to ‘exist since EX is bounded Sineef Ex;cfEl

. we' have by.elementary,variational_principles;(ef.‘e;g}jGiaéman.[TI),
fxx > x i*'In"'ifi“'éw*fo'f‘the'f'a;"(':t‘ftha,’c "%w _ 18 a non-increasing

. n X,n, : ’

ﬂfunction of X for each fixed n,.TWe.HéVe.
xx}h_e_xé;z;A£;, as - ,Xfﬁﬁe ‘for ‘each . n. (2)

*:ﬁﬁﬁmaijfé (Titchmarsh [10, p. 334] theorem 22.1%4).

For p=1 2, 35 L let Hp(x have continuous partial,



2l

‘derivatives up to the second order and satisfy the differential
“equation

(a + )\b -’q)ﬁéf = f,

where f and q have continuous partial derivatives of the first
order. As p — @, let Hp_”ténd to a limit H(x) uniformly over
some. glven region, and let A, tend to a limit A. Then H(x)
‘has continuous partial derivatives up to the second order, and the
equation
(A + % - q) HZ) = £(x)

1s satisfied.

The same result holds if wé are merely given that H, - H
in medn square. |
‘Lemma 3.3. There exists a set of functibnS‘:{un(x)}, ‘such that
Uy _(x) tends to u (x) in L,(E) for each n and some sub-

X,n*"’ n 2b
‘sequénce of {X} tending to infinity (this subsequence can be
picked from the subsequence given.in Theorem 2.2);  moreover
A,un(x)'+'_xn un(x) =0 x € E;

u, has continuous partial derivatives up to the second order;
‘the u, are orthonormal, and A are positive.

Proof. Extend u,  (x) by zero the E-E,. Since
X,n*™ X-

Yo o2 = g 212 + [ 1wy 1%
e .E : 4
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 We have.
© ‘and if we take X > X, we have:

w; by theorem 3 of Clark [4], the eubedding map HL(E) c Le(E)

e3is completely centinuous Since by (3) the” sequence uX n is
”?!bounded in" H (E), ‘1t must. therefore,have a ‘subsequence convefgéhie'
'ﬁgin LE(E) Let u (x) ‘be the. 11m1t ‘of this:convergent subsequencef
”fWe shall remove, by a diagonalization procedure, the restriction
.jthat the;sequence,chosen may depend on n. For example, find a
,ﬂgﬁbggQﬁéﬁééj:xi-egﬁghvfﬁat [u 1’1] converges; then f£ind a sub_.a o

‘géquence. X5 ‘of X. such that [u, -,] converges, and 8o on.
| ) 21 Hxg,27

i
1

Qwépﬁhen'take"thé5aiégéﬁélY°ffﬁhis?pfoééséeto1éﬁ6wﬁthe;fe§u1t"
Magx) -ug (0l w0 as X-w  foreaen n.  :(H)

jéfﬁ&e&ﬁéséiéb“haﬁé2‘xx?nafxn,jfbr'each n, we tan apply Lemma 3.2

to’ obtain
'Aﬁﬁﬁ(x)l+’lh“ug(x);=zo; ~ x€E,

ifLemma - also says that u will Have continuous partial

7;derivatives up to the ‘gecond order., Furthermore un.*a%e

‘Eorthonormal ‘since’:

(v vy) = Um (uy ps Vg ) = 8y
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Since
I low. 124 = ¢ =
T 1o ug pl%ax = Mon S 1 X2 %
Ex

gf inside E, Fatou's Lemma shows

|
i

. 0. -
Jolvuglfex <oy (5)
E v ° |
" If wé now recall that xX.n: \,»> We can sharpen the result (5)
LELTRN ' Co
to |lv u"g_s;ln_"by‘a simple contradiction argument. From this
it follows that all the A ‘are non-negative.
Theorem 3.4.  Let E: be such that through every point of the
.boundaryipESSeSja‘circlefwhich“lies“otherwise entirely inside E -

i

- (roughly; this means that the point is nmot the vertex of an
‘outward-pointing angle). Also, let E be "star-shaped". Then

the héigéhfuhétibn"5{unevis‘containedfihffHé(Eﬁ';

- Remarks:
1. The proof will be given for dim E=2, but holds for all
dimensions. |
-2, Tpejhypbfhéérﬁjthat; E 1is Wétér”shApédﬁ.éaﬁ‘be'diéﬁénéédz
*ﬁith“éﬁtiiéiy“byﬁﬁéiﬁgjé;pahﬁiﬂiaﬁﬁbf‘uniﬁy.r
3. The'hypothesis that the boundary of = E “has interior

" cirélés; étc., c¢an be weakened.

The "proofs of the above: three remarks will not be giVen éInée

Theorem 3.4 will be: sufficient for our purpose as it is proved.

__Proof of Theorem 3.4. Write' u=un' for the present. Wg'noteﬁfhat
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u'e ﬁl(Ef” by;inéqué1ityi(5). ;The'pfoof‘that Titchmarsh [4, p. 99]f:
~ glves to show that u_(x) =0 ‘a8 x - 3E for the case of E |
"bouﬁdeawarks for our case also. Thus; telcémpleté,the'prbof,i

| we'ne"edf:_t‘d show that u can be approximated by C>(E) functions:

in the ""1' norm. We shall approximate u in several steps.

“Let’ g(B) be a function such that g(B) ¢™(Ry)s

0L e(B) g1y g(B) =0 for B> 1; and g(B) =1 for B <0,

then ﬁéfine"gR(k)':as. gﬁ(ﬁ)‘é’g(|x|-R). We want to show that

“ﬁ;gﬁg“i ‘¢anJBéfﬁadéfsﬁail'for'sﬁfficieﬁfly‘largé.‘R, Now

o llu-ggully =_flu-gRul-dx:+ flv(u-qu)l dx. .

_(6)

s il 24 C ef 2.0
= :I [u-gRul ax + I lv(u-gRQ)l ax.,

| |x|>R | x| >R |

The first integral in (6) is less than «4_[ u?dx, since

- | |x|>R o

0 & gp(x):< 1. Thus ‘this integral can be made small for large R

~since. u € L,(E). ‘Consider ‘now the second integral in (6)

f | v(u-ggu) _|.-dx.;~§_,.2~ J' | ou| “ax + 2 J' | v(ggu) | “ax.

R EL > S FA TS S Ix]2

' The first integral here can'be»made“small'31n¢ev |va] e Lé(EY;
Consider the rémaining integral
Ni2al. | 2

[ Ietgg) Faxe [ (eleg| e
I'x| >R ) R+1>| x| >R

: o (7)

L2 2., | | 2 2 |

<2 I’ nglyuI dx + 2 . I. u Ing] ax.

[x[ >R RS | x| <R+
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‘The first integral in (7) can be made suall, for suffictently
N AN S
‘of gy(x) we have |

“max: Ing )I 'T, IVS(IXI'R)I
R<|x|<R+1 | [xl

i

‘Rélxl il Ig (IXI-R)I "Qggfﬁ-[éf(sll-

ffHence IngI ig" lese than 8 constant which is independent ef R
Thus ‘the last 1ntegral in (7) can be made arbitrarily small; from.
"which 1t follews “that.’ "u—gRuﬂl ean ‘be made ‘small for sufficiently
"large *R- Thus we may assume, without loss of generality, that

u has bounded support

WTﬁé’ﬂeiﬁ'§EEﬁ“ierfeiéﬁ6%*tﬁet“‘u ‘can be appreximated

in the- H "1 norm, with functiohs whose supports are compact
inufEf; We;know from.abeve that u=0"for xe3E or " |x|3R+l. Define
‘u. towﬁeﬁiéfdff&fféilf6%ﬁ€}5ueiue5”of"i'fdhﬁSidei E. Since' E
:15'"star shaped“, ‘we have that if x € E;, then (l-&)x°€ E
for. 0 e 1.. This’ can be ‘achieved by translating (0, 0) into
E . if necesshry. _Let -u;(x) =u((1-€£)x). By uniform continuity

u((1-£€)x) ~u(x) as g-0 if |x] <R+ 1.
_ However, since ‘u € Gl 'we have; by a further application of the
- principle”of uniforn dontinuity,
1 1.

Dy u; =Dy u as £=0  1=1,'2, .i.,. n’

This means’ that
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» 2 )2
fuy-ull; = .f lu-u, | dx + I |v (u-u,) | “ax
Er1 Epn1
can be made small, for sufficiently small € , and hence we

can assume, without loss of generality, that u 15 in ,Cé(E),

To complete the proof we need to show that ~u(e‘Cé(E))
fcan“be”approximated in the norm of Hi(E), To do this, let
Je be the mollifier function. (ef. Agmon' [1, p.5]). A standard

 result (cf. Agmon [1] Theorem 1.5) shows that Jc u(x) e C7(E)
. i ey 5

" for sufficiently small & . A further result (cf. Agmon [1]
Theorem 1.10) shows that J. u tends to u, as &= 0, 1in the
-norm of ‘Hi(E) since u has compact support in  E. This

completes the proof that wu_ e HL(E).

‘Lemma 3.5. (The Parseval formula).

If 'f e L,(E) and C_= (f, u,), then

lel® = ) feql® .

n=o
Lemms 3.5 can be proved by slightly modifying the proof
in Titchmarsh [4,“p.104]; 

ﬁRém@rk:"If~ f ‘and - g_,are»in.,Lé(E) we can show, by applying

the Parseval formula to f'+ g, that

(f"’g.)-y"": 2 a’nb,,n‘ g
n=o :



fAsﬁa?summary“of‘tﬁe?pfeééeaing;resultsﬁweﬁmay;stateche'

following theorém:

fTQEBFé@f3;6ﬂ.TLét“théTdbﬁéin“.E;'bej“haffowTAt)infiﬁity"“and
“ﬁéﬁisf&”éé&ﬁéfﬁ'fég&i&ffty“éahditidﬁé;‘théﬁ‘thé”éiééﬁfuhctioﬁs
iconstructed in Lemma 3 3 constitute a complete set of orthonormal
functions in Hl(E) 'satisfying the equation ‘A u (x) + l (X)‘z,ol
Por % e E and the boundary condition . u_ 2d'von‘the bounddﬁj

of E. |

!

In future, when we refer to the eigenvalues and eigen-

7functions“of (2 1) we mean the eigenfunctions and” eigenvalues of

fT“ con“tructed in Lemma 3.1 and 3 3 Note° ‘since the eigenf'
 funct1ons are complete we have shown’ xﬁ '._(cf:*équatibh
TCRE

1

In the next theorem Wé prove the important inversion’

© property of the Green's function.

Theorem 3.7. If A .1s niot oh the non-negative real axis, then
B RV SR | S
6y uy () = (07 ug(x) o’
{éiéﬁf}_‘We;éh&ilfﬁf&%é*(a)vby'1ét£ins"Xj,é67ﬁb”iﬁfiniﬁ&”ih’

1L, | o
X luX n(x) (xx n" 3% ) ux;ﬁ(x) . [€)
1§ii§€*£he*right-hand7gidéfdﬁ?(9) converges to the Tight hand side

1;6:3(8)"By“the?résﬁ1ts‘31Véﬁieafliérgin'tﬁis'part.

. Now ‘consider the differerice
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:(Q(x;?,X);qu)'-‘(Gx(x;f;X),‘uxgnjL i (10)

We can consider uX n and Gx(x,y,x) to be zero outside By
'fand thus we are able to use E . as the domain of integration in

Jtheiseeond"inner;product;,-Egpreseion.(lo) 1svnow,equa1 to
((G' X)(x: ’X)a u ) + ~(G§(X}9;1);~u 1“X'n) . 1(11)
v}By the Schwarz inequality the second term of (11) is bounded by

R CERV RN

fTﬁe”fiiﬁt,term}in ‘the - above 1g’ bounded by Theorem 2.2 ‘equation
'”éiIBF(indE§éﬁdent_qf X),v Since "u “Uy n". goes<to zero as X
_goes to infinity, tﬁe""é‘éébnd térm of - (1.1) goes to zero as. x N
| goés to infinity. If we Tet E* = E)'( . where E' and X, are
'"arbitrary, then the first term. of. (11) can be written as

I [G G] u, dy #+ I [G - @] u, dy A i(ié)
o -E* ' : E* o . ‘
The second term in . (12) goes to zero for fixed E* by Theorem 2. 2
By the__;S_‘_chwarz,.ine.quality ‘the first term in- (v:lv.2)_'.1_s,;:‘l.es's,, than

{ I IGX- ¢l%y - f | uﬁ dy}}/e

E-E*
< \l(G -G)(x, ,;‘)" {I 2 dy}l/e
, o

* Now since HGX(x, ,l) G(x, ,A)” is bounded independent of X

‘(Theorem 2.2 and 2. 5) and the’ remaining piece ."I' u (y)dy ‘can’



" e made as small as we please (since wu.-

¢ Ly(E) ), we have
im GX n U, n(x) ='.Gxﬁyh(X);
x-m N

completing the ’fb’zf‘o‘éf ‘of Theorem 3.7.

' We'shall finish this part with two lemmas on the eigen-

.. fodetfons.

 Lemna’3.8.. u(x) -0 as X ~ = where. u is any eigenfunction

" corresponding to an eigenvalue \A.

“Proof. u " has the representation (cf. Titchmarsh equation
22.9.3)

) =25 [ umax + 2 [ e(xy) u(xdx (13)
TR 4 r<R S

where. g(x,y) - 7 Lo 2ta-

~ana'“ra= |x=y] . %If'ﬁéiapply the Schwarz inequality to;(lj);‘theﬁ

1/2 REF

Tuly)| 5__% [[ax- [ w2ax)”" sl ] wlax- [e 2(x,y)ax)/2
TR T¢R TSR | r<R. - <R |

/2 | ()

g 1 -

Vlgf[t’l/efR' + MR] [ I uZax] s

r<R.

‘glhce J' .ga(xl,y)_d-_xz.-j(‘AR)z ‘where A 1s a constant.



Consider the following diagram, where T < RcE :

L -(yl’ y3)‘:'

4 3=(¥,5|75)

“stnce” u(y,,ys) =0, ‘we have
| vy
“ulyys ¥po) = - I D, u(y,, t)at.
L y2. . .

Therefsre

' ‘ MR ,
L iy | 3
alry v12 I (r5 - vp) [ DD ulyys 010
| | V2

¥ |
< ® [ p, ulfas.

‘Now, integrating this inequality with respect to y; from a to
b,  we 'get’ !

Ilu(yl: ¥5) |_'dY,1 LR
a ; '

.,.[Pt?(yi:' t) 17dt dyy .

pe oo

If we now'use the fact that |vu| e L,(E), we'have.



Ca S o ' ' _

'If this expresion 15 now 1htégfa'fq"éd' with respect to  ¥p, one
‘"has |

" B '

I utys y?_)l dy; dy2 < Ro()(a-e) £ %2 o(1).
ca . 4

?fThus, making the sides of the square touch the circle 'r < R

,(see figure 2), we' have‘

I Iu(x)lzdx < R o(l) ag 'y = e,
r<R . ' :

Combining this result with ‘(Al".* ) s we get
@l ¢ BT 2R B2 )12 es -
"Hence 1t féiipﬁs.th&fi u(i);q”o ag X i

Fbr‘theupurpdééchjtﬁefhext‘ﬁfbbf{Weﬁassﬁmeg(x;y)§i31

& 'point in .32;

‘Lemma 3.9. Suppose that the boundary of E " 1s given:lscally by
'y = F(x). Then for f(g;y)?finfa1regibnfwni¢hfiﬁélh§éﬁﬂa;piécé“bf
the boundary [x; F(x)1, |ug(x;y)] <K X, where K  is indepen-
dent of (x;y) and n, and dim E = 2.

Remark: The proof of this'lema is 'a detailed proof of Titchmarsh's
" remark [10, p. 108]..

“Proot. Gérlsider the following disgram
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FIGURE 3.

‘where § is sufficiently small, i.e.*we:afe considering a
‘small piece of the lower boundary of E. Since uy . 1s zero
b

on the boundary, we have

y o

v : : 2

[ j Dy ux,n(x,y)dt ] E
Y | ”

12
uX’n(x’Y)

Thus
y
ug o(x3)% <38 [ D uy (x,1) 1%at,
¥q '
by the Schwarz inequality. If we integrate thils expression with
respect to y from F(x)+ to F(x)+26, then

F(x)+26 OF(x)+28 ¥
ug o632y <38 [ ay [ 0D ug (x,8) 1Bk (15)
F(x)+6 . F(x)+8 ¥y '

If we now interchange the‘order of integration in the last
integral, we -see that y varies over a range not exceeding 36,

'~ thus the last integral is less than -

Yy
982 j [ Dy ug n(x.t) 1%4t.
Y1



26,

_Next integrate (15) with respect to X over [x;,X,]; this
“gives | |

]'xé F(x)+26 ' X5 ¥

Jax [ w1y < 952I [ D, u xn(xt) 1Pav ax. (16)
xp F(x)+8 X ¥y

Let us f£irst consider the last term of (16) We"knbw"

‘from the. case: of bounded EX that
Py Rau
-'Iflv “x,n|~dxv'—

Ex

‘musir X2 X, then:

.Ivlv;ux;ﬁ|vdx-\<:
X

‘Hence

1§mﬂs2p I Ry uX n| dax ¢ _5? }ngnm,
Ey . |

_ but since X is arbitrary

: lim sup I | v uX hlzdx

X-om
AEXi

In
>

XX .xn asf X = @, Thus the right hand. side of (16)
’ . : :

1s bounded by 9 6 x "an X tends to 1nfinity, but since

fsince

TuX;ZE' in the ‘mean, we ‘have by Fatou's theorem -
ANl n



37

Xy F(x)s2s
.j ax ~f L, 1 24y <98
R<E F( x)+6

SE --(17)

We are now in a “b‘d&i’.'ti'dn to make the réquired éstimate

- on u.. By Titchmarsh _4['”_1?(':)‘,"'~"‘é<"1i1ati_éﬁ '22.9.3] ‘we have

uy(6) == | oup(sas + 5= J' [ log" 2o (1- —7) Tuy (s)ds, (18)
TRTeR - r(R 7
where r <R 1is a circle [s :[s-u] < R] which is contained in
E, Now suppose that for x  in [xi,x,1 we ‘have | |F(x+h)-F(x)|
&M[n|. Thus'if |x-x,] <.¢, then

F(x) + 6 F(xg) + M ;,"4"' 5,
“which: 18 in turn less than. F(x ) + 58/4 - A C 'llI/M Likewlge
,,1?'(-.:;)7 +262F( xo) - Mg+ -_25:"2"'1"_‘“-,(-;;6;);-.(-' 4,:6

Hence the circle, ‘center (xo, F(x )+ 36) -and radius
-4-6 min (M 1), ‘lies between the: curves. y =F(x) + & and
F(x) + 26.5% Now, in expression (18) set u- (xo, F(x ) + 36)

‘and R = ,,75 min (1 ;1) xl/ 2 \; 1/2 . Note that the circle r & R

will be in the region of interest since  §/2 AL /2 ¢1 for all n.

‘By’thézs¢hWari?iﬂéqnaiity'thé first term in (18) is 'less
than |
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" ‘which in turn less than
o —L e 2 12

‘by inequality: (17) : ;?'rﬁué the first term of (18) is less than

'Mé.?ﬁ;' where M 13 independent of 6§, u and n.

] Again by the Schwarz inequality the second term of (18)'
_uis 1ess than

AL - -
§$~[ I [ 1og-_i- (1 -J_g) ] dx . I u° (s)ds ]1/2
SR | B I<R

AL .
"M P 2. 1/2 1}\n[5 )\n Xn»ﬁ

D
W'fﬁhéfé"fcgfci ]éré”eonstanteFin&epeﬁdént‘6f3fu, n, and &.

Combining all these results, we have lu (x)| M, xn'}

Gy A, 8. If we now assume that & < 1, we have the desired

result Iiin(it;y') | <K \, where K 18 independent of (x,y)
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{Part 4. The iterates of, the Green's function

.aﬁd\ﬁheirfﬁfépertfééﬁ

_For the sake of simpliéity wé’assumé in this part that
thejdomaiﬁ E ﬁas:aﬁbdﬁhdafy formed by the x -axis and a function
_'§(§i); [whéfé “9(0) =.0, @(xi) >0 if ﬁ*if’ 0, and o(x;)

“satiﬁfléé?the“éﬁddtnnéés”cbnditiansjin”yneoremj4;2. We alsSo asgime
a1l conditions in part 2 and 3, saithatiwe:shail haive a Gréen's '
~function 5@(i;y3x)'”f¢fﬁ{3%' eigenvalues A, for T, and eigen-
fgnétioﬁé:faﬁ(x);‘ |

-ng'Wéfaré;wafkiﬁgzin a dimension n'> 3 ‘we shall consider
E' to be the domain in R fbrﬁedﬁby'revéiviﬁg”"¢(xi)?_;ﬁbugﬂthéj'
x;-axis. o |

‘Definition. ‘Let the iterates 'of the Green's function be defined

' as fOIIOWS°
:"f (1) (x,y,)\) = G(X,y,l) a.nd
:;;f.le(i”l)(x,y,X) =(6(x," ,x), G( ; ‘,x)) (131).

_ Theéé‘iteratés*aréﬁwéll defined.by Thebrems 2.5 and 2.6."

" Theorem 4.1. The iterate G(2)(x,y,k) for dim E:= 3 18 continuous

i

 ‘on E;xfEE'ahd“satisfies

0 ¢ 6@ (x;7,0) <M exp(-0lx-y|/8) (1)
‘whére A=-0°, w> 0, and M is'a constant independent of ®,

x and y:
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Lemma. Let E be an open subset of a cylinder (of finite cross’

‘section) in R . Then, as & =0,

{Iim"'ﬂf':'iimgx;; :é = - 0(1) | 1f a+B <n
u =y plx-ul?|x-y|’ | '

W

0(logl/s) if a4+ B =n.
o _O(Sn—a-B) 1f o + B8 > n,
‘where a +B>1 and &= |u-yl.

Proof. If. u,y e’Eiz,.then the integral we are intéreétedfin‘cdh
be broken up as follows: ‘
I e P T eeil®

(2)

Exa1 s 551
_Sinée'_Ei¥1 ‘isfboundéd;Tﬁé'éaﬁjapﬁiy;TifchmarSh [10, p. 323];
' to the £irSt intégral in (2) to obtain

e [ =y = o) a+p<n
e NP P |
B €51 ¢ = 0(logl/8) a+B=n

= o(PF)  aspsn.

To complete the proof we need only show that the last integral in
. (2) i's bounded. To sée this we note that, for 'xté.E:Ex¥I,”

Ix-u| > 1 ‘aﬁd‘f[x;yl,zﬁlg, EJ;4Ei+1 fistOﬁtaiﬁéd_in“a tube of

finite cross section;, and o + B > 1.

{.ﬁfﬁbfﬁo?VThéaiéﬁfﬂ;i; By thée property of the fundamental singularity.

’for vE:"(Thé6rém’2;8),‘WehhaVé.
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@ xy,0) ¢ [ K(alx-z]) K(oly-z))dz,
. . E . .

‘where K(wp) =M, p exp( wp/4) “If Wé'ﬁdw?apply the triangle.
irnequality to the integrand ‘of G(z) then

RO ER RV

exn(- lxyl) - [ iy - ew(- Hxal ¢ l2wl) )

A

D a4 o dz .
M® exp(- w|x-y|/8) j:m_-z_lw;z_l
< M exp(- w|x-y|/8)
by the Lemma, since o + 8 =2 < n = 3.
_Reﬁatﬁéf“ For dim E = 2 - (proof below), we have

'G(_"’?(x;y;x) & M exp(- w/x-y|/2) 1f w>1 . (3)

'However 1f dim E = 4, and we try to use the same method of proof
"asin dim E = 3, we get |

(2) (o 0y o M oeral— ol xie] /8Y e il "
G(st:)‘) LM exP( wle|/ ) 198 Tf_‘y‘r . ()
ﬁ;insteAQTof_(k)’Wé.can'snoW'

BN (xy,0) ¢ M oexn(- ulx-yl/25) ~ (5)
1f k>n, and’if dim E'=n > 3. One provés this by a repeated
'aﬁﬁiiéétioﬁ“bftheﬁmethodfﬁsed tﬁ}prdveﬂ(i)m
“Proof of (3) £ér dim E = 2. Since the Leémma does not apply to

this case we proceed as follows:
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‘We have

0 <@ (xy,0) ¢ [ K(ulx=z]) K(uly-z]) dz
SR |

where K(ur) = f(wr) e~ ¥F, “and

£(5) = M(1 + log(1 + &) / (1 + £/?)
by Lemma 2.7. |

Consider: the iri‘t’égfation' above over three Sets, namely
fufk;mflay,fm(y,wT?s) ‘and’ E*'= E-(N(x,w 18) U N(y,uts)}, where
‘m(x;a):e-{i;;*{gi21.<”a}, *ana,'5'<;1'.is*éﬁch'théf x=y] > 28
We need the folloitng estimates for f£(f): 1f g §, then
£(8) CM(1 +10g(1 + 871)) =My, and 4f g <1, then £(g) &

, 5 | 1

M,.Tog g1, Now consider the integral over N(x,n™'8), which

"is bounded by
exp f(;-‘w'lf#%*l,),v f (wlx-z]) £(w|y-z|) az .
N(x, 0 "6) , o
If z € N(-x;‘:'w*ls’)»,r then w|x:z| £ 8 < 1, from which it follows
_that - f(wl-‘kézl);ﬁ'ﬁ_.’Mé:‘loglx.-’ZI'1, if we assume w > 1. Also.

s or ‘wly-z| > 8(20 - 1) $' 8, from which it

]y—zl 225 N A
follows that 2(wly-z|) ¢ My. If we sub'stitut"e these inéqualities
into the integral over the set _N(x;mfib), then that integral
15 bounded by |

BT D) £ | x=z] -
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which 1s bounded independent of ® and x, ‘as long as w3 1

By symmetry a similar result holds for ~N(y,w 'b).

Corisider now the integral over E*. If z ¢ E* then
w/x-z| > 5 and w|y-z| > §. Therefore the integral over ,E%f'is
less than

) . . 2 . L , .

exp(-w|x=y|/2)M] f~-exp(+wCIX-z|'+~szYF)/2) dz

. '.”m» E* .
by an argument similar to that above. Hence the integral over E* -
1's bounded independent of w, x and y 1if w;iil;h- 8 5w1; and
|x-y| 3 25. Combining these integrals, we have
@50 (x,¥,1) < Mpexp(-w|x-y|/2) if w31 (6)

“and. |x=y| > 25, where M, is indépendent of x, y and w.
stnee a(®(x;y,1) ’ is continuous at x=y, the resalt
:(j)fisfﬁroVédi

:Tﬁééiéﬁﬁuze; ‘If E 48 a plane reglon such that

"(a). there exists a t >0 such that

o(t)

(b) for every B > 0, there exists a kg >.0 such that

sup - '

U < ®_  and
L

ey S R

o(t) > kg ePT E> 5, o
‘then there exists a constant .w  Ssuch that for > w, - and
integers k> 2,



Bl
e T § 3,~3 Mn .;.
~I?_I»[G(?n)(;,y?;)12 dx. dy \g%)Mmifqu(s)[gkds;;
wmere k= -0® and N, isaconstant depeniding only on @,

-Remark: The proof of this’ theorem for ‘dfm E'='2 1sdue to Clark.

;Pr?of ' First Tet us show the theorem for ko=l tpat 1s,
ﬁfconsider‘ G(u)(x,y,x) By applying ‘the definition of the iterates
of" the Gre n's" function, and Theorem 2. 9 (symmetry of G(x,y,x) ),
fﬁone can ShOW°'

oMy = [ 6Bz ol (zyex.

o - E: - .
By Theoren 4.1 (Equation (3)) we have

By u | em(-allxzl + [z2y])/2)ee.

FIGURE 4. T y=(y157 )

- xe(xpng) n

za(zl,zz)

' By considering figure 4 and’ applying the triangle inequality, we’

' can see that . .
(4 /)4_ R CP(Z Yy
)(x,y,x) < M e-wr I I exp( mlx -z1|/4)dz2621
0. 0

| If we carry out the integration with respect to z, we get
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n BP r v e g e .
( )(X:Y:l) ( M e wr/ f fp(Zl) .exP(“w!-xlfz]_!_/Z’f)d'zl . . (7)
0 - .
The remaining integral must be snalyzed in two parts,
the first part being over To, t,] ‘and phe'secoﬁdfpart"dver
[td,gw), whére t is the positive coristant given in hypothesis

(a). Let x

12t and consider:

Jo.

* olzy) exp(-ulx;-2, | /) dz;

[y LV

o . o y :
B T PR e V2

e [ em(-nlxy-2y|/4)azy <wy e

& My (%)  using hypothesis (D).

LM, My,

1 and M ‘Jaré?ééhétéﬁtsfdépénding”ohlyibn'_w,

We tiow examine the second part of the intégral, namely the-one

over (1, 42).

) First we note that hypothesis (a) implies that: for
By ’sufficiently large” K, ) '
(%) max g(t) exp(-K|t-t1]) = wlt)) for any by > b .

To 'see this consider.
Dy [ o(t) exp(K[6-ty]) ] = exm(Kle-t, ) o(5)Ka(t) 1o

"and. Kﬂ%iS“sufficiently large, and
exp(~K|t tll)f w'(t)¥K¢(t) o

if tof§;£i< t, ‘where K is’ oufficien+1y 1arge
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‘This:proves: (*),

Apﬁlyiﬁé (*) to the integral over [tj, =), ~we have
 ate) emelnxl/) ey
- 'Iﬁﬁ(%i)fé3P(‘mt?ifxi‘/8) exp(+flg1:x1l/8)'62i

I~

Co(xy) [ exp(-alzy-x;1/8)az, < M o(x))
, " %
iﬁﬁibh*héidsﬁférféﬁffiéieﬁtiy large - w,
. Tﬁﬁs?behéVé; Céﬁbiﬁing'theJtﬁo7¢sti@étes zor the
_integrals, | | .
G (xy,) <My, o(x;) exp(-wr/H) i
for x; > t, and sufficiently large w.
For ‘reasons of simplicity we introduce the following H
| w(t) if t.>t .
' Now by inequality (7) we have.
NG - NP IR -
EU(x,y,1) & M exp(-wr/H) 1f x <ty . (9)

,mTﬁus°We'haﬁe;'becbmbiningf(s)-and‘(9)3

oM (x3,2) € g Fxy) ex(-ar/h), (10)
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where -

Cary e (MOl + Y ML\
\,GéﬁSiﬁérfﬁbﬁl%hefihtégralgof;(iQ)idvér“ R, L ghdpect
Cto ix. | | '

[ 16 (v Pax ¢ w0 [18:(x)) 1% exp(-ur/2)ax
Bl | B

'S}iMfI{TEK#i)JB"GXP(%wlxi?Yil/E)d?i““

" If ‘we'apply théféamé.aﬁalysfsftbjthisﬁaéfweﬁaia[to'éduatian»(jj,g

"we have .
I |G(4)(x,y,x)| ax: < Mllm(yl)l

| f‘c‘s"r-'ij‘_’s‘ﬁffié‘féﬁt;ly,“1arge* “w. If we integrate ‘this expréssion again,
_this time "ﬁm:th..':'f_eéﬁéCt~' to 'y, ‘we have’
il 2 :
_[ f IG( ) (xy,0) | dx 4y &My f lcp(y1)|36y
< My fx-w(yl)l--;ayl <M f’lep(.zsl)l ds .
o0 0
Thus we have shown that there exists a positive number w; such
that | | |
T 1eW g %axey ¢ ow I lo(s) | “as

EE

fcr“'w~Z$@o“'



‘It is now a simple matter to extend the result to

" higher values of k. For example:

O (x,,0) = [ o (x2,0) oD (ayy,0az .
By equations (3) and.(10) we have -

.G<6?‘(x;y§r—x) <M ['§(xy) exp(-wry/¥) fe:ep'<“-.wr‘1‘/-’é)fd?z‘f'

< Mf'%g(#is [ exp(~w(rgtry) /4y az
B R

_{_ M- cp(x1 _. exp(—wr/ 8). >

" and therefore’

T 11658 iy Paxcay < [ ] 150k ) 1 Hexo(our/4)ax ay

< [ oe)1as 5
]

by the usual arguments. The same calculation applied to larger
‘values'of k, and the proof of Theorem 4.2 is complete for

 dim E:.= 2.

;E-ﬁéiﬁ_é;fﬁis'?i.‘bn i‘e'xtfénsioﬁ";,df_ Theorem 4.2 to dimensions larger than two.
The case dim E = 3
If we apply the 'same procedure to “G(.--L,‘)»(:di'miv_:E’ =3) as"

“(3), we can show |

M kg0 e 8 [ exp(-ulx, -2 | /8)az.
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If wenowrecall ‘that in threedimensions 3 E 18 the g0141d ‘of
“révolution f’brﬁi‘edl?fbﬁ""rvd‘tét'in.g._"vc'p'"(_x'l) “about ‘the x;-axis, then'by
& change Gf varisbles in the Bbove equations “and the usual
‘calculations, ‘we. have
2 o(zq)

: J‘J‘ exp( WIX1-21|/8 rdrde dzl

0 o

oM (x,5,0) < &0/

80°--ﬁ8

2
f_M ‘”r/8 J‘ I exp( mlxl-zll/B) -—(-23'-)-— a e dz1

‘If ‘we integrate with r‘ésp'e_'c't to x, we have

T1aM (xy,012%ax < u [ $xg)* exp(-ur/d)ax

my [ B(xg)® exp(-ulx -y | /4 ax;
4 ¥

<My $<?’i')6' .

- If we 1'nt"e‘gra*cé‘ again, then

II IG(u)(x,y,A)lzdx ay . < M, _[ Icp(s)| ds .
EE.

"By "si"miia‘r' "argithiént‘ we ‘céﬁtfshéw ‘that

[J IG(EK)(x,y,x)dx dy <M I Icp(S)Iuk
"EE |

where ® > wy, for séme w  and k >'2. Similar results hold

for dim E > 3.

 Henceforth we consider only domains E  which satisfy
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‘the conclusion of Théorem 4.2. Thus there must exist a constant
 k, 'such that
f f IG(k°)(x,y,k)| dx dy < =,

EE

~that 15 .G<F°? ;mﬁst be a.Hilbert-SchMidt Kernel for some K.

. Note that, although Theorem 4.2 is stated only for domains which
1ie avaertﬁe‘xieakis,7itfeI36 holds' for domains which havévé
-axis, for example, one described by

Similar plece below the x,

';¢i(xl)_'whereu P ‘satisfies the same conditions as .

, The riext step in our investigation ‘of the boundary
behaviour: of G is to6 show that’ G(k)(x,y,x) tends to zero at
the,boundary for some} k. In ordér to prove»this result we;shali

rieed the properties of A anq‘.ﬁ;xg) ‘aéveicﬁéa-iﬁ;ﬁart 3.

Unfortunately it does not seem possible to useé the
compactness of G(k)4 alone to construct the eigenvalues and
eigenﬁunctlons;’:Eyen.thoughfone can»show the,exispence of An
aha?‘ﬁg(g).“Subhﬁhai au (%) + AU 4x) = 0, 1t does rot séem
'peééibieffO“ehéﬁffhét" uﬁ(#) is zero on the boundari;'and'ﬁhefeby

avold the ‘calculations in Part 3.

Using Theorem 3.7 (Green's function 1nversion) and the
definition of: G(k)(x,y,l), ‘one can easily see that

(05w = O 0 Ry

“Wﬁéfé.-{uﬁ(x)}j'and.'{xh} are.as constructed in Part 3. Combining

!
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thie with Theorem 4.2 we can prove thé following reésilt.on the.
‘eigenvaltes. |

Thesrem 4.3, Theﬁséfies z x
- . n=0
k. 18 defined by ‘the remark following Theerem 4 2

converges 1f k> kj, where
e}

gP?obf; For any " set of" orthonormal functions, for- example {uh(?)};

'the‘Bésseliinequality holds. 1.e.
, i i |
= | !

By the inversion resﬁltifoi ;nglgj wé-ﬁéié”f
en:sf(}n;i)?k:uh(&) | when f(x) = G(k)(x;yQX)
Trus for k=K |
P e KRR L TERRV
ﬁhere,-N iSfasalergé;ae'we;pléaée;
Integrating this expression with respect to y we get.

len—xl”a“ H IG(k)(x,y,x)l ax dy,
n=0 N E ‘E.

which is finite by Theorem o2, 4F A u_-m2‘ and w is'large.
'enough, and ig. independent of N ‘Hente: T Ixn- [-QK @ ’eiﬁce-
. L - . n=0_
Ay ey 2k converges, which completes

Theorem 4.3,

thig implies that . Z A
, n—o

O,

Theoren 4.}, (The expansion formila). Tet k = k., and Tet £(x)
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have ‘sufffcient derivatives o that. the functions  f, Af(x),
'A(Af(x)), A A(k)f(x) ‘are all continuous, contained in L2(E)

and ‘tend to : zerq at the boundary of _E:
 Then
f(x) z:dn un(x) 1Nhe?§ fc£‘gﬁ(f,;un).

n—O

Proof. Lé£ vch(i?jéj(f(i)s uh)'"whéféf
"f{‘.(;‘-1<,)"(‘5t’)_'='- tx) "

(M) -V 10

By Glazman [7, Theorem 3%, p. 90]'wé‘have (Au, v) = (Av, u)
”where A € LQ(E) "and ‘both u and. v  are 26ro on aE Thusfif

we set v un and u = f(i), ‘we have

(f(i+1), u, ) (1 u s f(i)) “or. <i+1) k c(i) ; lni%lch‘

et g(x) = Xnun(x) -.{ (k)xn u,(x) (11)

n=0 n—o

_The method of proof will be to show that (ll) converges and defines7
a functlon which is identlcal to f£(x). |

We £1irst must show that for some constant C we have

VL 2, ., |
Z (xn )"t uBx) <o )
‘ ~ n=0 a ’ P ‘ _ ‘

uniformly for <X € Ek‘. As' in Theorem 4~3 we”haVé

: i

g |‘2k u B(x) llG(k)(x, A2

‘n=0
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We .h;é‘_'ve' b‘§ Ti_i’e"brém ‘2 .6
N6 00 < v G(k R |
-if 1 €. L(v)' and 1ikewise
o k><x, ,x)ll < \rkﬂn e(::, SV
,;sinée' ”G(x”,l)" £ K fbf X € Ek;_;and[ A § Lé?' We:haie
ZIA -2k ‘2(x)<K'

 n=0 _ _

forall X e Efc“" ':andji, xeL ‘Since A~ 'oo',v' (*) follows.
c ,"°' , R o o ' ‘
We now consider the tail end ‘of the series (11)
MRN+1 1, then by the’ Schwarz inequality

Z (k) ’m o (x) < [ 2(0 (k))z Z "aﬁ(X2¥‘+1‘).':1§‘:ué(x)”]'l/,e"‘,-
n—N+1 n=N+1 - n=N+1 ‘
Whe’re’ a, = (x +1) x 2K < éon'sta;nt Note that the“serié‘é'
”2 [c (k)] converges, being the "Fourier" series of f(k) which
:is in L2(E) by hypothesis. "In view" of (*) and f(k) € L (E)
the tail end. of the" series can be ‘made small by the choice. of N

,uniformly for 'x € Ek . Hence series (11) deflnes a continuous“-f
) o
'function 1nside 'E: "Also

£2(x) < Z[c “‘)1 2 o2 w20,

) n—o n=o
,from which it follows

| llg(.JX) H?-f’g_» z -[cn(k') 2. z 2
o ‘n=0

' n=0
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~ which is bounded by Theorem 4.3 (riote. k‘;;.'-.fi_kb,) .

A"gimile?“argqment'showsjthat

m
1k -
gm<x) DAL 25(%)

n=o , . o
converges, in’ mean square; to g(x) ‘over E. Hence, by the

,fSchwarz inequality, for’ any n

18m. (u s &- gm)

m-oco

However we know that (un, g.) = on, (m > n);» from Which it follows

*that (un, g) ='c . Thus the ' function f(x) - g(x) is an LE(E)-j

n°

function,-all of Whose "Fourier coefficients“ vanish Henoe‘by
fthe Parseval Theorem “f - g" . Since the integrand is contin-
-tuous inside E, it must vanish everywhere inside Es This

7completes,theﬁproof of.Theorem 4b4.

We are’ now in a position to prove the main result in
this’ part namely ‘that G(k)(x,y,x) tends to zZero ag X = aE -
,fThe proof will depend directly on the knowledge that G(k) isiﬁ
inlbert Schmidt and thus the. series T ln e;convergent, LT@é-
fmethod is derived ‘from Titchmarsh [10, p. 106]

fTheorem 4 5. For fixed 'x € E. and Pixed. l e C not oh the

“ron= negative real axis, G(k)(x,y,l) tends to Zeéro as y approachesﬁ

" the boundary of E, (k>k, +2 and dim E= 2_5,.)_

_Proof. Let r = |x-u| 'and define
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1

F(x,u) = - 5= log g &(r)

- where R 1is'such thét the circle |x-u] < R 1is inside E - for
fixed u, and g(r) has the following properties: |
g € dz(E) , .g(r) =1 r < R/2 and
g(r) =0 r>R.
_Since G(k)f is not singular, we have in the Green's

formula  for G(k)(x,y,x) _and F(x;u) as functions of x :

Il (G(E)(x,y,x ) AF(x,u) - F(x,u)'AG(k)(x;y,x))dx
r<R |

(k)

= G(k)(u,y,k) + I (G(k) %ﬁ - F aG ds, (12)
r=R’ S

the singularity of F(x,u) at x =u giving rise to the term

G(k)(u,y,x) Consider the boundary term: F(r) =0 for r =R,

3F . 3F
and -a—i ar

boundary term of (12) vanishes. Upon substitution of

=0 for r =R, by the definition of F. Thus the

AG(k)(x,y,x) ='41G(k)(xsy,x) ~~G(kf1)(x;&;x) (k>1),

‘which follows directly from the definition of G(k)' and Theorem
2.6, into (12), we have
o xyn) = [ FGu) + AR 6 (x,y,0) ax
| r<R : )
+ f F(x,u). gk 1)(x y,x) dx. - (13)
‘<R -

Recall theé result nzo a b = (f,g) where a é_(f,qh)( and
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bn'='(g, un), which followed direétly from the Parseval Theorem.
Let

| dagu) = (43(},u).+ XF(-,g), uh) and dn(u) = (E(-,g), uh)}

and recall that (e{®) (,y.0), u) = (A - N7E u(y)

Applying these results to (13) we get

) = T ey 0 0 a0
n“O |

¥ z a_(u) (- )7y (y). (14)
c |

We want to show that G(K)(u ¥s\) 'goes to zero &as y -~ JE.

'Consider the second series in (14); & similar result will apply
-to the first. By Lemma 3.9 we have Iu (¥)] <K A, for y

near to the boundary:. First consider the tail end of the series

‘on the right hand side of (14)-,"na'me1y

zd (u)(k - )" k+1u (y) < (Zd (u) - z IA -al” _2k+2 2(y))1/2
n=N n=N 7
< (,Z&ﬁ(u') z lx 2k+2 ,2 \2)1/2
- nEo n*-N

IA

: T L <2k+h\1/2

€ (1#(-,u)l (Z A2k 1/2

‘ ' I n=N :

sincé >lnf'w. Now by hypothesis k;z‘ko + 2 and so,thefSeriesm
-2k+4 L

T x converges . Thus given any & , £€> 0 we can find an

N ISOrlarge that

| T apt) (pm 0 u 0)] < 2
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uniformly in 'y, ¥y 1in a nelghbourhood of the boundary.

If y 1is sufficiently close to the boindary of E . we

hate
[45(0) (ag= M7 up () | & v

'fdr"neo;"l'f.. +s N-1, “since’ u and A are fixed and u (y)

tends to zero for each n. Combining all these estimates we get

| Za () (3 ) k+1u (y)| l Z a(0) (a0 (y)l
«| Zd (@) (g 2" e a ()
n=N

< N( £/2N) + 6/2 . £ .

Thus (k)(x,y,x) goes to’ zero as ¥y tends to the boundary of

E,' when x and x are fixed

’We5can‘prove'the-feiieWing'thedrémeiin_a,similar

manner.

;Thébrem‘u 6. The function H(X,A, f)'Q-'(G(x5”5A)5f) satisfies

the equation AH ; \H = £ and the boundary condition H(x,l £)=0
‘as " x = 3E, as?ldng-as f, Af, A(Af); 45 .y A(k)f are all contin—
uous, contained in LQ(E) end tend to zero at the boundary of

E, 'Where:fk'='ko,_ A is afcomplex”number,neton’the”nonénegati?ej

I

real axis.

‘Proof.  H(x,;\,f) satisfles the equation AH + M = f by Theéorem
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2.6. By the definition of H(x,\,f)  we have
i L n Bk LA s DIt v '

where',chbﬁ”(f3jun)‘ by the Parseval Theorem.

»H,AEQWefebcweé in\thétbrccffof ‘the expansion theorem
(Theorem 4. 4) e = k s
substituting this result into (15), we'get

'where Z [c (k)] < C I Thus,

e : ,
H(x x f) =T "(k.) .lx;lf‘;kﬁ(x;_-'r ;h)'l u (x) .
3 - n—o g |
We now agply ‘the saue analysis to this equation as we did to
equation (14) 4in the previous’ theorem, to~ conclude that H(x,l £)
goes to zero on the boundary. .ycte; 1kgafko will be sufficient

'to'carrytout-the cglculations.

Remarik: Note that Theorem 4.3 (z Ay %k ¢ w) holds for a domain

E which lies in the’ half space ‘x> 0 .and is bounded by the “sur-

X
face obtained by rotating a m*(xl), where ¢*bJsatisfieS'the
"conditions.gf,-m,f about the x,-axis. This follows from the fact
that the eigenvalues'of E dominate the éfgenvalues of the. sur-
face of revolution (see»Giaiménf[7,,p;229])} _Furthérﬁofe'Thecrem
'4,3-nch‘1mpiies;tngtthexother,théorémséof;tne;éection, namély;'
Theorem 4.4, 4.5 and 4.6 hold for such a domain. Some ‘modifications
‘are necessary for example the singularity of the function F(x,u)

in Theorem 4.5,
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’Part15 Boundary behaviour and uniqueness
-of the Green's Function.-»

- We are now in“a'positibn to-prové'that*the\Greenfs'
'function tends to zero at the boundary of E. We continue to
;make the assumptions of Part 4, so that some 1terate G(k)(x,y, A)
'satisfies Theorem 4 5 L ) |

‘”Theorem 5. 1 - For'“x~'”-w2, w>0 and ‘x < E; ‘G(Xiy;x) ‘tends”
*"to zero as y tends to the boundary of E |

-:Pfabf;a‘The:praaf isﬁpefformea*stép’byfétep;”'Onegp:cceedsjaéf

'folloﬁs;‘qubpose;for‘example that

_ G(B)(X,y,)\) -0 L a.s | y -*bE -
'Letfusiassumetftéot is negative) thetoﬁ~ |

:_G(Qy(x}y,igjf 0 | 'ggV »*f,;iaﬁjt.
t?pus’thereanists:efséoieod{a;séqﬁenoef yﬁi~ezfeiaEfesuéh that

W@y 2850 forail m (1)
ands’ | |

'fk¥yntj2‘ai>'0.g |

‘Recdll the estimate (similar résults’ holding for other

iterates and dimens1ons) for dim E'= 2:

0 SQG(?)(ﬁ,Y;"We)‘S.M exp(+wlx4yl/é)f»
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‘Thus we have .
0 ¢ al®xy ,-0?) <M exp(-ulx-y,[/2)

1,$fM7ex9(%m'a/2)"*’
where. M is a constan’c. 1ndependent of w (see equa.tion 4.6" of
vTheorem 4 1) Frorn this it follows that there exists a ]

(= —ad) R e o
xl(f,iwl) such ‘that S _

_O'SQG(Q)(x,yn,xi),$;6/4 ~ forall ‘n. (2)
By theorem 2.10 we have

D, 6{D(x,y,0) = &l (x;3,0)

if A 1s negative, from which it follows that )

G( 2):(3"37'11"‘11) - G(- 2)(x,yn, )\o).l' = ‘[ v'G(-.B.}.(.X,Yn',, 8) ds. j (3)
: . )“0" )

Since the proof of Theorem 4.5 clearly shows that
6(3)(X;yn;i).1_o Es  y, =z ek

<8< A, <O, we have
:')‘1. . ‘
Clim f-"&‘B)(x,y';s)GSF= 0 :
bl n
Y, = 2. e QE :
n o ,

uniformly for Xl
‘Thus from (3)}it'fdiidwé that as n =7
IG( )(X,Yn, A--_‘_) - G.< )'(X,‘yn,ld) | =0, (4)

‘which contradicts equations (1) and (2)-  Thus G(E) (x;7,1) tends
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‘to zero, as. y. .- 3E, for each . x and negative 1.

To prove the final result we use the following argument:
By Theorem 2.10 and the same argument used to. prove equation (%)
1t follows that | |

16(%,7.500) = 6%y 50 ) - (=) 63 (xpy ,a)| =0

as n - =, ‘The arguMéﬁt prbCéeds3in*éiacﬁiy7thé”éaﬁé"ﬁéﬁnér,
except for the introduction of the term - (A~ xd)‘fa(??(x,yn;x6)
whiéhfwé‘alféady*khéw“gbes fonef6 as n = . ﬁpf nigher values
of k the procedure: is clear, that 18, reduce the result one

Step at a time until one has G(x,y,\) =0 a8 y - 3E.

‘ThE6féﬁ.5ﬁél'3Thé Greéﬁ}§-fﬁnctibnf‘d(x;y;X);fié?uhiqﬁe'fdr E

1f A is negative.
 Proof. Let G, and G, be two Gréen's functions for the same
negative ) and set
£(x0) = Gy(x,y,0) - Gu(xoysa) (€ L(E). ).
By_the‘fesuiﬁsfongart 2 we have |
S (8 +2) £(x,0) =0 x '€ E:

if A 1is not on the non-negative real axis.. If A 4is real and
:negatiVe;Wé:canTSnaw“vf(xgx) = O; by the maximum principle. The
maximuﬁzpfincipie;sﬁatés'fhat 1f pu(x) # a(x). u(x) =0 for x
in a botunded open set X, if a(x)_g;o  oh ‘¥, and if u(x)
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attains its maximum at'anfinteribf{pbiﬁt'df'“x;_;thén' u(x) =
constant on .M;. To apply this to 'f(x,x)_*suppésé”that‘

£(x,1) #.O":on Eé 'SQg*withbut loss of generality, there is a
point x; € E with f£(x_,1) =0 > 0. Let "gf; E, where X 1is
- chosen SOulargé;that-(cf. Theorem?2@6) 'xéfeyEx ahd '{ffx;x)l £.
~o/2 for IXI~§;X, ‘Then |ﬁ(k,k)|'<76 for any X-€ ax;
f(ié,x)ﬂgiq; 'and theréf6r¢f:f(x,X)k;mhétzachiévé’its.maximﬁh‘at

an.intériér_pé;ntfof_ ¥. Consequently f(x,X)'s constant on ¥,

‘and this f£(x,)) =0 on X = Ey, by Theorem 5.1. Since X may
be chosen arbitrarily large, f£(x;d) =0 on E.
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Part 6. Applications of the Greén's Finction.’

ixn,thigfpaffiwé“snailjﬁf6Vé'ﬁwovasyﬁpkaﬁic%prdpérties;
foﬁe”fof5theﬂeigenvaiuesfand”one“for°the?eigénfﬁﬁéfioﬁe”esidefinéd
in part- 3 Throughout this part we shall assume that E satisfies
Call the conditions of the previous theorems 1n order ‘that ‘we shall
have a Green's function which 1s zero ‘on. the boundary of E

;Furthermore, we: assume that the dimenSion of E is é‘v‘
F(X) F(X3Y3)\) i H (1) (p'\/)‘-) = G’(X9y,)\) o (1)

'wﬁere'e] lx;y[ The first term on the right hand side s the
'Green's function for A in the whole plane W(x) is continuous
at-»x=y since a11 Green's functions have the same type of singularity'

| Our first task is to obtain bounds»and?asymptotic
estimates for the fanction F(x,y, u) and’ its derivatives with

respect to .
If we set X == where p,'fe“reeijend?positive; then
AF(x)' = u F‘(;i)' .

Now we wish to apply the maximum principle to - F(x),. owever,
since E 1is not bounded ‘we ‘néeed to know that F(x) =0 a8 X = ®,
By Theorem 2.8 we have that 5G(X)-“-Q, a91 X = o for fixed 1

and’ yi~“Furthérmofe. Hd(l) goes to zero as. p ~'®, S0 we' have .
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the required result that ‘F(x) -0 as X - o. Now if we apply
the maximum principle in the usual manner (see Titchmarsh [10,
p.169] we have that‘,F(x)"must“assume its maximum on the boundary

“of E.

If % 16 interior to E and y 1is on the boundary,

G(x,y,-u) g’O, and so’
o o v Ly o (1) o —y -1
F(x,y,-w) =51 5D (o) = (207 & (o)
in the usual notations of Bessel functions. . Now K (t) isa
positive, strictly decreasing function of t. Hence the right
hand side lies between 0 and .(éw)fl Ké(aJﬁ),- where a  is the
distance from x~'tégthe‘hearést pOint'dn'tﬁé boundary. If we now’
| regard x as fixed and y varying, we obtain |
0 L F(x,y,-u) < (2r) " K (avid) - - (2

for all x and y. Since F 15 continuous at x=y this is true

for x=y.
| If we‘again apply the results in Titchmarshv[lO,'p. 1701}
_wéfCah show |
- max {(2rw) ™} K (avi), (427 8 k) (avi) )
'SFJ;m)go'

‘where F =-%:.F. The next. ‘step is to extend these results to

highér derivatives.
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Let Py e DkF " From Titchmarsh [10, p. 170] we' know
S, /- ST e
Fl". u(x,y‘,"-u)_ = .:",;ff,‘%rl'""u . / Kl ( PA/IJ) o y.€ :_’BE, :
We wish to show that

'yvétég»; (2)

D

i S

PR =R - (0

(W
Equations. (4) ‘can bé’faund“ih‘WAtsbn‘[ii;‘p579"SéC-’3'71]. ‘The
5next step is to differentiate ‘“the: 1ast term in (1), but by |

Theorem 2.10
D G(x,y,}\) (k+1) (X Y )\)

‘and- thus for V€ aE the. derivative of the term G(x,y,—p) will
_ be zero since . i is real and G(k)(x y,-p) ‘= 0 for y € aE

This completes the calculation for equation (3)
vﬂFfoﬁféQﬁetionjﬁ4)‘itfis casy to see that

Dy ($ R (8)) = - e (8)

,However, since K is'a; positive function, it follows ‘that

K 1Kk(t) 18 a’positive. strlctly decreasing function of t - Hence,
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if y € 3B, then

0_ (x,y"'U) _5_'8.’-1. L e———— T, (5)

where a .1s the distance betweén x ahdgihe‘neareSt'bdundafy

.point,
" In order to apply the maximum principle to P,y e
ﬁﬁst,firétjsﬁbwffﬁét‘”

A Fgy =

F, - K Froay .. - 6
4 Pt K F(e) (6
ﬁSihCe”thh_}ng) aﬁdJlG,‘afeijeenfSffuthiQﬁs (see,equatioﬁ (1)),
F .satisfies the distribution équation

A,Ff= uF + 8 v
We obtain equation (6) by differentiating the distributisn equation

k- times with respect to u, and observing that_,mDu 8y1=go,
As ‘a special case of (6) we have

By =uFp +2F, | (7)

2:u M-
We shall work.with (7) in order to obtain a bound f£or Fouy
using the bounds already known for _Fu' and F. Higher résults can

be shown by induction.

Suppose .Fé.u has a negative minimum inside E (note

F '>"O.ion 3E and it tends to zero fdr;l&rge"'x), Therefore -

AFy 20 wFy,, <O and F, 40,
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.’but this contradicts equation (7), so F2 " _is nonenegatiVé'

on E. Suppose next that F takes on a value, inside E,

2. M

‘greater than the right hand'side,of“equétionf(B), then F2-',u

‘must have a positive maximum inside E.
el
<0,

‘and herice -

F_ & may -f; (Solat) 2 Kl(a“/*l)-

F, o & =
STE 2y l/ 2

el

‘Thus we have '

K, (aJh) ,a’Ki(a&h), ‘52f§é(aJp)

0L F (x v -u) < max{ - ; . ;jui
S T | vu2 Toar w’? 7 8wy

By an inductive argument we have -
598 a‘ Ki(a»\/u)

JF . (x5y,-p)] € max {2
"k i s - ‘ ’ ' k-1
Eeu 1=0;1,...k 4! A+ k172

We are now in a pésition to extend the asymptotinfdrMﬁla:
':for,the'eigénvaluesgugivgnfby Clark. in [3];;go our~domain ~E.
‘Let t(x) be any function such that

where A and &£ are positive constants; a(x) 1s the distance
betwéen x . and the nearést point on the boundary, and k 1is’a
-integer such that the.integral of a(x)®' ‘over E 1s‘finite and

I I IG(m)(x,y,x)ledy dx < ® where 'm ='[E%]
E E
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is also finite. Furthermore let

o ¢"¥ 7 o+ T
w () = ot J

0

where 1 = (Tsalun[g); u, being the usual eigenfunctions defined .
“in Partf3,

Theorem 6.1. If dim E = 2, and N_(A) and r(x) are as

‘defined above, then
W)~z [l ax .
B ,

‘Proof. ‘If A and. \' are niot eigenvalués, then
- - .
,, | - cu (x) uw (y) (A= At)
G(x,5,1) - G(x,¥;1') = Z 2~ D —
| nos” (gm0 (o)

by the results of the previous sections. If we let A = -p and
Xf5=,?ﬁ': iwhere. p and u' are positive, then

u, (x) u ()
‘(.t - ) n n v =L[K (J) -K.( ‘/')]
Y go (Ata) Oty %00 T e

- “F(XQY:‘“).,+-F(x,Y)'|~1') i

'If we divide both sideés of this expression by u' - u and let
pt ‘tend to u, we.have (1f we can show the series converges

uniformly with respect to p')

(-]

2 e (%) u(y) .
n?_:o (r;n R ur;e =% D, Ko(pvh) - Ep(x,y) , (8)
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’TO'tjf_,Sﬁow_“j the $.é'r‘°ie‘s ‘c‘a,nverg'e'sj‘unif.é.rmly‘; consider the tail “end.
[Of the series: |
n—-N (kn+u) ()\n:}-u
42 |
< EI un(x) }: nly) ]1/2
2 2 e
~ nan ()7 g (xn+u )

‘Now ‘since. u!. tends o

|zu(x) u(Y)l(

M, =p' can be”contained in a set L

(see.Part 2), ‘and thus N
© 2,
Z- un(y)

by Lemma 3.5 and Theorem 2.5 (noté y is fixed), where K 13

‘independent of y and p' o Thus the”éeries'is uniformly convergenp

-since the tail end ‘can be made small - (by choice of N)

indepen-
dent of '

Since

o o Ki(pu)
Kook =

T W
‘and K (t) ~:t™" as t =0, we have
) : 2
. u (X)
Z‘ == - F(x,x) (9)

by 1etting Yy =-x in expression (8), i.e. p = 0. We prove that

the series iSﬁuniermly convergent in y by a method similar to

that which was used before.

' The ‘next istep is to differentiate the expression (9) to
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build up the following set of equation3°

@ 2 R
_ (x) . S__l_ Py, (%) - (10)
e oX) -

,Eo( L | |

In order to pass the derivative through the summation sign we must
show’ that the resulting ‘seriés is uniformly convergent with respect
towtheﬂverieble ingqgestion, ~Again censider the tail end of a
‘series like thosé. in ('10)_-- i.e. |

i f:‘(x) « 1 2 2-(x)

n—N( ln"'l-l) ()*N’HJ) - n—N()‘ +|-1)
where'_kﬂ,isjeffrée“index“greaterfthen,zero; Thus as usual
e 2, 4 '

@ (x) 4 o 1
g £ Ne(x, o) < » "k,
nzg(l +i) (X +m)© o A

where . K iéibonnﬁed; since x is fixed and -u € Lo, Thus
’the serfes In (10) is uniformly convergent in u for any | jk > 2,
and hence we. can differentiate (9) with respect to u as many

times as we' please.
Let 'r.v(-x) be defined as in the statement of this
‘theorem. Multiply expression (10) by t(x) and integrate; this

‘glves (if we can pass the integral sign through the summation)

z J~ T(X) w, ](K:‘-)[ ax = lhrku J‘ r(x)dx + L

+ iﬁ%-‘~‘JIT(X) Fk;u(xgx)dx.-(ll)'

We shall show directly that the integral and summation sign in (11)

can be interchanged Let
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- u Q(X)

by ngo()‘n ) +1

‘Corigider

| ‘I[S(x) | Z(-——%M T(x)] ax
ES

. 2 u (x)
()\N + W -t i'f(x) z(l - )k'+l dx
u (x)
-1
< K [ nzg<1—157ﬁ

-sincé: T(x) ’is’eVéntueilyAless than one. If we let mgs.[%i],
théh;tné;tail-éﬁdjiéﬁleséithan | |
,,K""l I |G('“)(x,y,x)| ay ax
- E E ' | '
"which 1s bounded by the hypothesis on k'. Thds"ﬁe‘céﬂ'ﬁeke the_
:original difference as: small as we’ please by a sufficiently large
‘choice ‘of N, and hence we can pass the 1ntegration sign through ‘

'the summation sign in (11) for k > k'~

‘If*wé use the defiﬁitioh”of T, namely T = (T’u )

n’
the expression on the left hand side of (11) can be expressed as
-k-
E: (ny + u) 1,
n-o '

'gWe wish to express this ‘gseries ‘as’ an 1ntegral in order to. apply
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'TafTaubériéﬁ*thééfeai; Consider.
N (2),

J+1
(A+ );E+2 JZ; {

vf;,g§;§39ff'ifj)‘v: R R 1 .
T L +“)k+1 (*J+1+“)k+i |

k+1 z

J=o

(e ) oy B2 (Tet ooe + 7g)

(x + )k+1 -
“Tnusfby'co&bining"thisfresuit“witht(il)_We have
N () o . L
__,m ax = (b k(1)) [ r(x)ax
K. » o :
G [on(x) B, (x,x)ax. (12)
(k1)1 & e T

‘Let us assume"fbritpe_mbment that
o K-Cy ey £y ey
f v(x) Fy <x,x>ax =o(WE) (u =) (13)
E. « ) ' o
.wnere" £ 1is some fixed positive number. This result will be

jproved after the application of the following Tauberian theorem to
“expression (12), (see Titchmarsh [10, p. 364])

o) .Nfg
I (x+y)a R x>

where . g }fl and 0 < B < ‘a, then

'f(x)'~> clﬂ(a) . -a -1
| M(a- B)F(a)

‘Thus we have from equation (12) and the hypothesis, equation (13),
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that

V ~ HO R Y T .
NT(X)5: M(2) M(k)  Mr(k+l)k égt(x)dx i

‘Hencé
Y A
N (A) ~ 2 | w(x)ax
) %g (x)ax

fWhidn<1é;what4ﬁétw1sﬁéd1£bjpi8Ve:

The theorem will be complete i we can show the hypothesis'

(13).. Recall the condition on T(x), namely

O < T(I) < A a(x)k'+5

is integrable over E, where a(x) 18 the distance between; x

"and the nearest point on the boundary .If”We“app;y'thefeetimate
Et) ~ (—1—> et as t oo

which: 1s valid forall 'v ‘(see watson [11, sec. 7.23), to the

'bound we found for F (x,y, u), we see that for aJ/i > 1/2,

(x,y, u) <¢C exp( ~a,/u) max{ ) s s .
. | " u®(a, u)l/,2 'u3/2(a«/u)1/.2 u(aJu)V?

e/ .
-S;C'u,s/ 1a3/? exp( -ay/u)
“since the last térm in the parenfheses3dominatee the. others.
‘The géneral casé for ,Fk.g(x;x) gives

AFy (xsm) | g o (BB GEL/2 el



Th.
where. C - 1s a constant and ‘&Jhﬁzgl/ég

Next wé wish td*éxamiﬁe“_IFk;ﬂ(fo)l for afu < 1/2.

To do this we qse,the'éstimatéSL

Eo(t) = 0([log t])  as =0
and’ . c

Kf(t)s=jg(tf?) as’ t.=0 (L21).

The=first term 1in’ the inequality for Fy, .(x,X) gives rise to
iK (aJh) |

'4”Thsfith

& Cuk |tog aul  for afu < 1/2.
term (L. >.0) glves
, ? K (aJh) e ‘f,fai\r SRR

k 1 -3

. . - k

I/\

'f¢r"“aJ§,<;1/2ﬁ ‘Thus the first term dominates and.we have
'I};fg?_u(x;:s)l < oS ~|:‘1.:_og sl »f"orv au < 1/2

We shall now attempt to estimate the integral in
equation (13)

Let :
Ey = ({xeE a(x)Jh < 2 } m=0, 1y 2, sovun
“If weyﬁée'the;hyﬁbthésis*on »T(x) andfthe,above estimatéfwhich

applies to E (a(x)Jh < 1/2),. thén

I f T(X) Fk, (x,x)dx '”;_C_ AI4a(x)k+8 g+kmll§g é(x)Jhl:dxﬁ

Ey Ed‘



‘wnich is less than

75

c 8 {f a(x)™€ |10 a(x)|ax + 5 [l10g ula(x)* a*}

B,
congidér*the.first'intégrale

_ f a(x)k+£ |1og af x)ldx < C j’ a(x)k+€/2

“Edi B

‘¢ o max a(x) /% [ a(n)"ex,
x € E B -

-1/2

but for x € Ej a(x) " . and hence. ‘the maximum over

£/2 ° 9_'8/

“of a(x) is less. than 5 .

Also

[ 1108 ula(x)*¢ ax
5

iﬁileéﬁ‘than ct ufg/é, iPutting;thésé“togemhéf we have
-k-&/4

| I (x) Fku(x,X) ax. I < Cop s p e,

Consider next the;integra1¢ovgr" Eﬁ;l n

‘m=0, 1, 2,... . i.e.

l I T(x) Fk (x,x)dx <

Em+1 Em

_<_ c u—,‘(ek-sfl)/f?x. . J’ a‘(#").‘k-l-e :a-(x')k’:.'.l./z. e—a(x)ﬁJﬂd#;&.

Em+1 Em

We' know' from the definition of E ~ that*if xeE

-E. for

‘w41 B

then
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Qm-l‘_.( a(x)Jui 2m s
and so our integral over. E .- B, 1s less than

C-h;(2k+i)/4_max: | A{a(x)k+£‘_17§'é'a(x)vb}'f”é(;)kdx;
x'€E 4~ FE - | |

. which in turn is less. than B

o ()t ZSE TR () [a(x)tex s
/'Y E

‘Sinée fa(x)‘ilu*l/a‘ég and a(x))/ > 2m 1 Therefdré.f

€5 Fk.Lfl(i:‘,'-«‘x)_;dxlp.*g_?c'_' k€72 (e~ 1/%@( 20" 1)

Ep¥1- Ba

2.

but”sipce*

IR

“E?EO - m=0 Em+1 m

-we‘nave
J' . Fk u d.x < c u-k &/2 zzm(£+k 1/2)exp( Sm- 1),
E_Eo , m—o
where the ‘infinite ‘séries clearly ;cdm"r_‘e'rg“es . Thus
s -k-&£/2
, ,IAT iju dx < C u o
E-E,
from which it follows that
J' TP, dx < Cr (n

3 o
¢ o e

-k-E/2 k- é“"/u)

as u = o .
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The ‘proof. of the,asymﬁtbﬁiciformula;is“noﬁtécmpleté;

'Rememk'_ Theorem 6.1 18 a generéﬁzﬂdon of the well known asymptotic
formula for the elgenvalues (see Titchmarsh {10y- p 172]) . If E
isa bounded set we can set AT(X) ‘= 1 throughout E. If ¢(x) = 1,
“théen  n 1 Por all n, from this it follows that N (x) =N(r);
: where N(x) is the number ‘of eigenvalues less than A Tbus

for T(x) = 1 Theorem 6. 1 reduces to

‘N(K)'A~.;%_--areafE,
by

“Theorem 6.2, If

i = Y wix
Al
then’
W) = 4 032 for eacn x.
4#1
'Proof. Using the résults and notation: of Theorem 6.1, we have

Cfor dim E'= 2

Fu‘r'thermo're |

)\ da) ‘ n
J‘( Z"(' "

Atp) T

Yk (k41 ) "
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Thus, since Fk (x,x) < C exp( a(x)Jh) 1f a(x)Jh >1 where;

a(x) depends on 'x only, we have
o

I’f&i&lk+2”dk ~ 4%?;3;;4-'

: — as M=o,
‘._0"(k+’u)_-: S 41,-1;(1(.;_1).‘ . _

-t%r*

1If we apply the Tauberian theorem used in Theorem 6.1, then
. S Yor _ :
‘This*fééﬁitiéan“bé'imbfbveajto'
S AL 1/2
o 4ru

by the méthods of Titcnmdféh-tlo,fpuléSJ;



79.

. BIBLIOGRAPHY

 SHMUEL AGMON, Lectures on elliptic boundary value probleris)
_1Pr1hceteh,'New‘JerSey; Van Noétraﬁd’(1965)‘
F. H BROWNELL Spectrum of the Static Potential SchrBdinger

“equation over En. Annals of Mathematics, Volume 54 No 3
~ (Nov. _'19‘51),;1?‘-' 554-594 .

COLIN W.'CLARK, An-asymptotic fomula for the eigenvalues of
the’ Laplacian operator 1n an unbounded domain, to- appear in

the Bull Amer. Math. Soc.

y

COLIN W, CLARK, An embedding théorem for function spaces,

to appear in thefPacific J. Math.

R, COURANT AND D. HILBERT Methods of: Mathematical Physics,
I and. II Interscience- New York (1953, 1962) .

DUNFORD AN_D‘SQHWART-Z, :Line"a,r:o_pe'ra't'orjs,‘ I and II, Interscience:
New York (1957} 1963). -

. TLM. -GLAZMAN,' Direct methods of qualitative spectral analysis

of s1ngu1ar differential operators (Russian), Fizmatgizg
Moscow (1963). | | |

AM. McLéANov, -On. the conditions for discreteness of the |

spectrum of second order self -adjoint differential operators

‘(Russian), Trudy Mosk Mat. Obshchestva 2 (1953), 169 200.



10.

11.

”89§4

. IF. RELLICHM Das Eigenwertproblem of Au+lu = 0 in Halbrohren,ﬁ-

in "Essays; presented to R. Courant"- The Courant’ Anniversary

Volume (1948), p. 329-344.

E.C. TITCHMARSH, Eigenfunction Expansions Associated with

‘Second Order Differential‘Equations,~Part“II,‘Qxforﬁ'Unive:sity
Press: Oxford (1958). | |

G.N. WATSON, Theory.of Béssel Fupétions§3e¢ondgEditign;
Cambridge University Press: (1944),



