CHARACTERIZATION OF TRANSFORMATIONS PRESERVING
RANK TWO TENSORS OF A TENSOR PRODUCT SPACE

by

CAROLYN FAY MOORE
B.Sc., University of British Columbia, 1964

A THESIS SUBMITTED IN PARTIAL FULFILMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF ARTS

in the Department
of
Mathematics

We accept this thesis as conforming to
the required standard

THE UNIVERSITY OF BRITISH COLUMBIA
September, 1966
In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission.

Department of MATHEMATICS

The University of British Columbia
Vancouver 8, Canada

Date September 30th, 1966.
ABSTRACT

Let $U \otimes V$ be a tensor product space over an algebraically closed field F; let $\dim U = m$ and $\dim V = n$; let T be a linear transformation on $U \otimes V$ such that T preserves rank two tensors.

We show that T preserves rank one tensors and this enables us to characterize T for all values of m and n.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER ONE</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>2. Some Properties of Rank Two Subspaces</td>
<td>2</td>
</tr>
<tr>
<td>CHAPTER TWO</td>
<td>9</td>
</tr>
<tr>
<td>[T(R_1) \subseteq R_1 \text{ unless } m = n = 3]</td>
<td></td>
</tr>
<tr>
<td>CHAPTER THREE</td>
<td>13</td>
</tr>
<tr>
<td>[T(R_1) \subseteq R_1 \text{ when } m = n = 3]</td>
<td></td>
</tr>
<tr>
<td>CHAPTER FOUR</td>
<td>16</td>
</tr>
<tr>
<td>Characterization of Transformations Preserving Rank Two Tensors</td>
<td></td>
</tr>
<tr>
<td>BIBLIOGRAPHY</td>
<td>17</td>
</tr>
</tbody>
</table>
ACKNOWLEDGEMENT

I would like to thank Dr. Roy Westwick for the many hours and valuable assistance he gave to the writing of this thesis. Also, to the University of British Columbia and the National Research Council, I give thanks for their financial assistance.
1. INTRODUCTION.

Let U and V be m-dimensional and n-dimensional vector spaces over an algebraically closed field F. The tensor product of U and V denoted by $U \otimes V$ is the dual space of the space of all multilinear functions mapping $U \times V$ into F.

An element $x \in U \otimes V$ has rank k if $x = \sum_{i=1}^{k} x_i \otimes y_i$ and x_1, \ldots, x_k are linearly independent and y_1, \ldots, y_k are linearly independent. We define $R_k(U \otimes V)$ to be $\{ x \in U \otimes V \mid \text{rank of } x = k \}$. If $x \in R_k(U \otimes V)$ and $x = \sum_{i=1}^{k} x_i \otimes y_i$, then, by definition,

$$U(x) = \langle x_1, \ldots, x_k \rangle \quad \text{and} \quad V(x) = \langle y_1, \ldots, y_k \rangle.$$

$U(x)$ and $V(x)$ are well defined by Lemma 1.2 of [1].* If $x = \sum_{i=1}^{k} x_i \otimes y_i$ and x_1, \ldots, x_k are linearly independent, then the rank of $x = \dim \langle y_1, \ldots, y_k \rangle$ by Lemma 1.1 of [1].

The subspaces in $R_2(U \otimes V)$ are of four types, by Theorem 2.4 of [1].

Type 1: $U(x)$ is constant as x ranges of H.

(H is a subspace in $R_2(U \otimes V)$)

* Numbers in square brackets refer to the bibliography.
Type 2: $V(x)$ is constant as x ranges over H.

Type 3: There exists $u \in U$ and $v \in V$ such that each element of the subspace has a representation of the form $x \otimes u + v \otimes y$ where $x \in U$ and $y \in V$.

Type 4: Those subspaces which are referred to as "special type 3 subspaces" in [1]. In Lemma 1.1, we show that every type 4 space has a basis of the form:

$$u \otimes x_1 + y_1 \otimes v$$
$$u \otimes x_2 + y_2 \otimes v$$
$$y_1 \otimes x_2 - y_2 \otimes x_1$$

where $\dim \langle u, y_1, y_2 \rangle = 3$ and $\dim \langle v, x_1, x_2 \rangle = 3$.

The maximum dimensions of type 1, type 2 and type 3 spaces are $m-1$, $n-1$ and the minimum of $\{ m-1, n-1 \}$ respectively; by Theorem 2.5 in [1]. These maximum dimensions can always be achieved. Except for a pair of subspaces of types 3 and 4, the intersection of two different types of subspaces is at most one-dimensional, by Theorem 2.6 in [1].

2. SOME PROPERTIES OF RANK TWO SUBSPACES

Lemma 1.1: Let H be a rank 2 subspace of dimension three.

A/ If H is not of types 1, 2, or 3 then H has a basis of the form:
\[X_1 = u \otimes x_1 + y_1 \otimes v \]
\[X_2 = u \otimes x_2 + y_2 \otimes v \]
\[X_3 = y_1 \otimes x_2 - y_2 \otimes x_1 , \]
and \(u, y_1, y_2 \) are linearly independent and \(v, x_1, x_2 \) are linearly independent.

B/ If \(H \) is a type 4 subspace and \(X_1 \in H, X_2 \in H \) then \(H = \langle X_1, X_2, X_3 \rangle \).

Proof: (A) From the proof of Theorem 2.4 in [1], we can write \(H = \langle X_1, Y_1, Z_1 \rangle \) where

\[X_1 = u \otimes x_1 + y_1 \otimes v \]
\[Y_1 = u \otimes x_2 + y_2 \otimes v \]
\[Z_1 = z_1 \otimes z_2 + z_3 \otimes z_4 \] and \(u, y_1, y_2 \) are linearly independent and \(v, x_1, x_2 \) are linearly independent.

Now, \(u \not\in U(Z_1) \). If \(u \in U(Z_1) \) then \(Z_1 = u \otimes z_1 + z_1 \otimes z_2 \). This implies that \(z_2 \in \langle x_1, v \rangle \cap \langle x_2, v \rangle = \langle v \rangle \), by Lemma 2.1 of [1]. Then, \(H \) is a type 3 space. This contradicts the assumption that \(H \) is not of the types 1, 2, or 3. We use, \(u \not\in U(Z_1) \) to show that \(U(Z_1) \subset \langle u, y_1, y_2 \rangle \). First, we show \(\dim(\langle z_1, z_3 \rangle \cap \langle u, y_1 \rangle) = 1 \). Suppose, \(\dim(\langle z_1, z_3 \rangle \cap \langle u, y_1 \rangle) = 0 \).

Then, for \(X_1 + Z_1 \) to be rank 2, \(\langle x_1, v \rangle = \langle z_2, z_4 \rangle \). By Lemma 2.3 of [1], \(H \) is type 2. This is a contradiction. Suppose \(\dim(\langle z_1, z_3 \rangle \cap \langle u, y_1 \rangle) = 2 \). By Lemma 2.2 of [1], \(H \) is type 1. Therefore, \(\dim(\langle z_1, z_3 \rangle \cap \langle u, y_1 \rangle = 1 \) and similarly \(\dim(\langle z_1, z_3 \rangle \cap \langle u, y_2 \rangle) = 1 \). This implies, as
u \not\in U(Z_1), \text{ that } U(Z_1) \subset \langle u, y_1, y_2 \rangle \text{ and similarly } V(Z_1) \subset \langle v, x_1, x_2 \rangle.

Now, U(Z_1) and \langle y_1, y_2 \rangle \text{ are both } 2\text{-dimensional subspace of } \langle u, y_1, y_2 \rangle \text{ and therefore they intersect in at least one dimension, say } \langle y \rangle. \text{ Let } \alpha y_1 + \beta y_2 = y.

Then, we can form

\[
X_2 = u \otimes x_1 + y_1 \otimes v \\
Y_2 = u \otimes x'_1 + y \otimes v \quad (Y_2 = \alpha x_1 + \beta Y_1) \\
Z_2 = z_1 \otimes z'_2 + y \otimes z'_3.
\]

By Lemma 2.1 of [1], \langle z'_2 \rangle = \langle x'_2 \rangle. \text{ Let } x'_2 = x,

\[
z'_2 = \lambda_2 x, \quad x'_1 = \lambda x_1, \quad y'_1 = \lambda_1 y_1, \quad z''_1 = \lambda_2 z'_1, \quad z''_3 = \lambda_2 z'_3.
\]

Let

\[
X_3 = \lambda_1 x_2 = u \otimes x_1 + y_1 \otimes v \\
Y_3 = Y_2 = u \otimes x + y \otimes v \\
Z_3 = \lambda_2 z_2 = z''_1 \otimes x + y \otimes z''_3.
\]

Now, \(z''_1 \in \langle u, y, y'_1 \rangle \). \text{ Let } \(z''_1 = \alpha u + \beta y + \gamma y'_1 \).

We can assume \(\beta = 0 \) since \(Z_3 = (\alpha u + \gamma y'_1) \otimes x + y \otimes (z''_3 + \beta x) \).

Let \(X_4 = X_3 \), \(Y_4 = Y_3 \), and \(Z_4 = Z_3 - \alpha Y_3 = \gamma y'_1 \otimes x + y \otimes z''_3 \),

where \(z''_3 = z''_2 - \alpha v \). \text{ Let } \(z = y'_1, z_4 = 1/\gamma z''_3 \) and we arrive at a basis of the form

\[
X_5 = u \otimes x'_1 + z \otimes v \\
Y_5 = u \otimes x + y \otimes v \\
Z_5 = z \otimes x + y \otimes z_4 \quad (Z_5 = \gamma^{-1} z_4)
\]

By Lemma 2.1 of [1], \(z_4 = \lambda x'_1 \) for some \(\lambda \in F \). \text{ Therefore, letting } x'_1 = w, \text{ the basis is}
To prove (A), it remains to show that \(\lambda = -1 \). Consider
\[
X + Y + Z = u \otimes (w+x) + (z+y) \otimes v + z \otimes x + y \otimes \lambda w
\]
\[
= u \otimes (w+x) + z \otimes (w+x) = z \otimes w + (z+y) \otimes v + y \otimes \lambda w
\]
\[
= (u+z) \otimes (w+x) + (z+y) \otimes v + (\lambda y-z) \otimes w.
\]

Now, \(w+x, v, w \) are independent. Therefore,
\[
dim \langle u+z, z+y, \lambda y-z \rangle = 2. \quad \text{This implies that}
\]
\[
z+y = \mu(\lambda y-z) \quad \text{for some } \mu \in F. \quad \text{Therefore, } \lambda = -1.
\]

(8) To prove B, we assume \(X_1, X_2 \) are in the basis of a type 4 subspace, \(H \), and show that \(H = \langle X_1, X_2, X_3 \rangle \).

From the proof of A, \(H = \langle X, Y, Z \rangle \). Also from A,
\[
z = y_1 = \lambda, y_1
\]
\[
x = 1/\lambda_2, z_2
\]
\[
y = a'y_1 + b'y_2
\]
\[
w = x_1 = \lambda_1 x_1.
\]

Therefore, \(Z = z \otimes x - y \otimes w \)
\[
= \lambda_1 y_1 \otimes \lambda_2^{-1} z_2 - (a'y_1 + b'y_2) \otimes \lambda_1 x_1
\]
\[
= y_1 \otimes (\lambda_1 \lambda_2^{-1} z_2 - a'y_1 x_1) - y_2 \otimes b' \lambda_1 x_1.
\]

Therefore, \(H \) has an element of the form,
\[
y_1 \otimes w' - y_2 \otimes x_1.
\]

To show \(w' = x_2 \), first consider
\[S = \alpha(u \otimes x_2 + y_2 \otimes v) + \beta(y_1 \otimes w' - y_2 \otimes x_1) \]
\[= \alpha u \otimes x_2 + \gamma y_1 \otimes w' + y_2 \otimes (\alpha v - \beta x_1) \]

Now, \(S \in H \). Therefore, \(S \) is rank 2. This implies, since \(u, y_1, y_2 \) are linearly independent and \(x_2, x_1, v \) are linearly independent; that, for every \(\alpha, \beta \neq 0 \), there exists \(\gamma, \gamma' \) such that \(w' = \gamma x_2 + \gamma'(\alpha v - \beta x_1) \). Obviously \(\gamma' = 0 \) and \(w' = \delta x_2 \) for some \(\delta \in F \). To show \(\delta = 1 \), let \(X_1 = y_1 \otimes \delta x_2 - y_2 \otimes x_1 \). Now let \(X_2 = y_1 \otimes x_2 - \delta^{-1} y_2 \otimes x \). Use \(X_1 + X_2 + X_3 \), as we used \(X + Y + Z \) in the proof of \(A \), to show \(-\delta^{-1} = -1 \). Therefore, \(\delta = 1 \) and \(H = \langle X_1, X_2, X_3 \rangle \).

Corollary 1.1: Distinct spaces of type \(4 \) intersect in at most one dimension.

Lemma 1.2: Let \(V_1 = \langle \{ u' \otimes x_1 + v' \otimes y_1 \} \rangle \) \(i = 1, \ldots, m-1 \rangle \) be a type \(1 \) subspace. Let \(V_2 = \langle \{ u'' \otimes z_1 + v'' \otimes w_1 \} \rangle \) \(i = 1, \ldots, m-1 \rangle \) be a type \(1 \) subspace. If \(\dim \langle V_1 \cap V_2 \rangle \geq 1 \) then \(\langle u', v' \rangle = \langle u'', v'' \rangle \).

Proof: Assume without loss of generality that
\[u' \otimes x_1 + v' \otimes y_1 = u'' \otimes z_1 + v'' \otimes w_1 \]. This means that
\[u' \otimes x_1 + v' \otimes y_1 - u'' \otimes z_1 - v'' \otimes w_1 = 0 \]. If \(\dim \langle u', v', u'', v'' \rangle = 4 \) then \(x_1 = y_1 = z_1 = w_1 = 0 \) which is a contradiction. Suppose \(\dim \langle u', v', u'', v'' \rangle = 3 \). We may assume that \(v'' = \alpha u' + \beta v' + \gamma u'' \). Therefore
\[u' \otimes (x_1 - \alpha w_1) + v' \otimes (y_1 - \beta w_1) + u'' \otimes (-z_1 - \gamma w_1) = 0 \]
This implies $x_1 = \alpha w_1, y_1 = \beta w_1$, and therefore x_1 and y_1 are dependent. This is a contradiction. Therefore,
$\dim <u',v',u'',v''> = 2$ or, in other words, $<u',v'> = <u'',v''>$.

The next Lemma is analogous to Lemma 1.2 for type 2 subspaces.

Lemma 1.3: Let $V_1 = \langle \{ x_i \otimes u' + y_i \otimes v' \} \rangle \ i = 1, \ldots, n-1 > \ be \ a \ type \ 2 \ subspace. \ Let \ V_2 = \langle \{ z_i \otimes u'' + w_i \otimes v'' \} \rangle \ i = 1, \ldots, n-1 > \ be \ a \ type \ 2 \ subspace. \ If \ \dim \langle V_1 \cap V_2 \rangle \geq 1 \ then \ <u',v'> = <u'',v''>$.

Lemma 1.4: Suppose $n \geq 4$ and $m \geq 4$. Let $X = \langle \{ u \otimes x_i + y_i \otimes v \} \rangle \ i = 1, \ldots, \min(m-1,n-1) > \ be \ a \ type \ 3 \ subspace. \ Let \ Y = \langle \{ u' \otimes z_i + w_i \otimes v' \} \rangle \ i = 1, \ldots, \min(m-1,n-1) > \ be \ a \ type \ 3 \ subspace. \ If \ \dim \langle X \cap Y \rangle \geq 2 \ then \ <u> = <u'> and <v> = <v'>.

Proof: Suppose $<u> \neq <u'>$. Without loss of generality, assume

$$X_1 = u \otimes x_1 + y_1 \otimes v = u' \otimes z_1 + w_1 \otimes v',$$

$$X_2 = u \otimes x_2 + y_2 \otimes v = u' \otimes z_2 + w_2 \otimes v'. $$

Then $<u,y_1> = <u',w_1> = <u,u'>$ and $<u,y_2> = <u',w_2> = <u,u'>$. Let $y_1 = \alpha u + \beta u'$ and $y_2 = \alpha' u + \beta' u'$. It is essential that $\beta \neq 0, \beta' \neq 0$; otherwise, X_1 and X_2 are rank one. Consider,
\[\beta' \beta^{-1} x_1 - x_2 = \beta' \beta^{-1} (u \otimes x_1 + y_1 \otimes v) - (u \otimes x_2 + y_2 \otimes v) \]
\[= u \otimes (\beta' \beta^{-1} x_1 - x_2) + \{ \beta' \beta^{-1} (au + \beta u') - \\
\alpha' u - \beta u' \} \otimes v \]
\[= u \otimes (\beta' \beta^{-1} x_1 - x_2) + (\beta' \beta^{-1} \alpha - \alpha') u \otimes v. \]

This is rank 1 which contradicts the assumption that \(X_1 \) and \(X_2 \) form a type 3 subspace. Therefore \(\langle u \rangle = \langle u' \rangle \). Similarly \(\langle v \rangle = \langle v' \rangle \).
CHAPTER TWO

In this chapter, we assume T is a linear transformation and $T(R_2) \subseteq R_2$. We show that $T(R_1) \subseteq R_1$ for all cases except $m = n = 3$. The latter case is dealt with in the next chapter.

Lemma 2.1: (a) If $\dim V \geq 4$ then, for all $u \in U$, $v \in V$, $T(u \otimes v)$ has rank ≤ 2.

(b) If $\dim U \geq 4$ then, for all $u \in U$, $v \in V$, $T(u \otimes v)$ has rank ≤ 2.

Proof: Assume $\dim V \geq 4$. Let $u \otimes v$ be any rank 1 tensor. We can express $u \otimes v$ as $u \otimes (\alpha' x_1 - x_2)$ where $\dim(\langle x_1, x_2 \rangle) = 2$, and $\alpha' \neq 0$, $\alpha' \neq 1$. Extend x_1, x_2 to a set of four independent vectors x_1, x_2, x_3, x_4. Consider the following two spaces:

$S_1 = \langle u \otimes x_1 + v \otimes x_4, u \otimes (x_1 + x_2) + v \otimes x_3, u \otimes x_3 + v \otimes x_1 \rangle$ and

$S_2 = \langle u \otimes x_2 + v \otimes \alpha' x_4, u \otimes (x_1 + x_2) + v \otimes x_3, u \otimes x_3 + v \otimes x_1 \rangle$.

Any linear combination of tensors in S_1 is rank two.

Consider $X = \alpha(u \otimes x_1 + v \otimes x_4) + \beta(u \otimes (x_1 + x_2) = v \otimes x_3)$

$$+ \gamma (u \otimes x_3 + v \otimes x_1).$$

If X is rank 1 or 0, then either $\alpha = \beta = \gamma = 0$ or

$$\langle \alpha x_1 + \beta x_1 + \beta x_2 + \gamma x_3 \rangle = \langle \alpha x_4 + \beta x_3 + \gamma x_1 \rangle.$$

The latter implies $\alpha = 0$ since x_1, x_2, x_3, x_4 are linearly independent and αx_4 occurs only on the righthand side. This implies $\beta = \gamma = 0$ for similar reasons. Therefore S_1 and similarly
S_2 are rank 2 subspaces. Extend S_1 and S_2 to $(m-1)$-dimensional rank 2 subspaces. Now, T maps S_1 and S_2 into $(m-1)$-dimensional subspaces. Also, $\dim(S_1 \cap S_2) \geq 2$. Therefore, T maps S_1 and S_2 into subspaces of the same type. (When $\dim V=4$, S_1 and S_2 cannot be mapped into type 3 and type 4 subspaces. This is proven at the end.)

Now, $T(u \otimes (\alpha'x_1 - x_2)) = T(\alpha'(u \otimes x_1 + v \otimes x_4) - (u \otimes x_2 + v \otimes \alpha'x_4))$. By Lemmas 1.2, 1.3 and 1.4 we know $T(u \otimes (\alpha'x_1 - x_2))$ can have rank no greater than two.

It remains to show that if $\dim V=4$, S_1 and S_2 cannot be mapped into type 4 and type 3 spaces. Suppose $T(S_1)$ is a type 3 subspace and $T(S_2)$ is a type 4 subspace. Then,

$$
T(u \otimes (x_1 + x_2) + v \otimes x_3) = u' \otimes x_1 + x_2 \otimes v'
$$
$$
T(u \otimes x_3 + v \otimes x_1) = u' \otimes y_1 + y_2 \otimes v'
$$
$$
T(u \otimes x_1 + v \otimes x_4) = u' \otimes z_1 + z_2 \otimes v'
$$

By Theorem 1.1, there exists α', β, γ such that

$$
X = T(\alpha'(u \otimes (x_1 + x_2) + v \otimes x_3) + \beta(u \otimes x_3 + v \otimes x_1) + \gamma(u \otimes x_2 + v \otimes \alpha x_4))
$$
$$
= x_2 \otimes y_1 - y_2 \otimes x_1. \text{ Obviously, } \gamma \neq 0.
$$

Let $X' = T(\alpha'(u \otimes (x_1 + x_2) + v \otimes x_3) + \beta(u \otimes x_3 + v \otimes x_1) + \gamma(u \otimes x_2 + v \otimes \alpha x_4))$.

$$
= u' \otimes (\alpha'x_1 + \beta y_1 + \gamma z_1) + (\alpha_2 x_2 + \beta y_2 + \gamma z_2) \otimes v
$$

Consider, $X' - X = \gamma T(u \otimes (x_1 - x_2) + v \otimes (1-\alpha)x_4)$

$$
= u' \otimes (\alpha'x_1 + \beta y_1 + \gamma z_1) + (\alpha x_2 + \beta y_2 + \gamma z_2) \otimes v'
$$

$$
- x_2 \otimes y_1 - y_2 \otimes x_1.
$$
Since \(\lambda \neq 0, X' - X \) is a rank 4 tensor. Therefore, \(T \) maps a rank two tensor into a rank four tensor. This is a contradiction. By a similar proof, \(T(S_1) \) is a type 4 subspace implies \(T(S_2) \) cannot be a type 3 subspace.

By application of Lemma 2.1, we have proved the following Lemma.

Lemma 2.2: \(T \) maps rank 1 tensor into tensors of rank \(\leq 2 \).

Theorem 1: Except possibly when \(m = n = 3 \), \(T(R_1) \subset R_1 \).

Proof: From Lemma 2.2, \(T(R_1) \subset \{0\} \cup R_1 \cup R_2 \). Now, if \(T(x \otimes y) = 0 \) then; if \(m > 1, n > 1 \); there is a rank 1 tensor mapped into a rank 2 tensor. Therefore, it is sufficient to show that no rank 1 tensor can be mapped into a rank 2 tensor.

Suppose \(T(u_1 \otimes v_m) \) is rank 2. Extend \(u_1 \) to a basis of \(U \); say, \((u_1, \ldots, u_m) \); and extend \(v_m \) to a basis of \(V \); say, \((v_1, \ldots, v_m) \). Consider the space \(S = \langle S_1, \ldots, S_m \rangle \) where

\[
S_1 = u_1 \otimes v_m \\
S_2 = u_1 \otimes v_1 + u_2 \otimes v_m \\
S_3 = u_1 \otimes v_2 + u_2 \otimes v_1 \\
\vdots \\
S_m = u_1 \otimes v_{m-1} + u_2 \otimes v_{m-2}.
\]

\(T(S) \) is a rank two, \(m \)-dimensional subspace. This is established.
If every linear combination, \(\alpha S_1 + \alpha_1 S_2 + \alpha_2 S_3 + \ldots + \alpha_{m-1} S_m \), is rank two unless \(\alpha_1 = \alpha_2 = \ldots = \alpha_{m-1} = 0 \). Consider

\[
X = \alpha u_1 \otimes v_m + \alpha_1 (u_1 \otimes v_1 + u_2 \otimes v_m) + \sum_{i=2}^{m-1} \alpha_i (u_1 \otimes v_i + u_2 \otimes v_{i-1})
\]

\[
= u_1 \otimes (\alpha v_m + \sum_{i=1}^{m-1} \alpha_i v_i) + u_2 \otimes (\alpha_1 v_m + \sum_{i=2}^{m-1} \alpha_i v_{i-1})
\]

If \(X \) is not rank 2, then

\[
\langle \alpha v_m + \sum_{i=1}^{m-1} \alpha_i v_i \rangle = \langle \alpha_1 v_m + \sum_{i=2}^{m-1} \alpha_i v_{i-1} \rangle.
\]

Now, \(v_{m-1} \) does not appear on the right-hand side. This implies \(\alpha_{m-1} = 0 \). This means \(v_{m-2} \) does not appear on the right-hand side and \(\alpha_{m-2} = 0 \). By this method it is shown that \(\alpha_1 = \alpha_2 = \ldots = \alpha_{m-1} = 0 \). Therefore, no linear combination of \(S_1, \ldots, S_m \) is rank 1 except \(\alpha (u_1 \otimes v_m) \), \(\alpha \in F \). Since by assumption \(T(u_1 \otimes v_m) \) has rank 2, \(T(S) \) is a rank two \(m \)-dimensional subspace. Unless \(m = 3 \), there are no such subspaces. This is a contradiction. Similarly, consider the subspace, \(S' \), spanned by

\[
\begin{align*}
&u_1 \otimes v_m \\
u_2 \otimes v_1 + u_1 \otimes v_m \\
u_3 \otimes v_1 + u_2 \otimes v_m \\
&\quad \ldots \\
u_n \otimes v_1 + u_{n-1} \otimes v_m
\end{align*}
\]

\(T(S') \) is a \(n \)-dimensional rank 2 subspace. This is a contradiction unless \(n = 3 \). Therefore \(T \) maps no rank 1 tensor into a rank 2 tensor, with the possible exception when \(n = m = 3 \).
CHAPTER THREE

In this chapter we assume \(m = n = 3 \) and show in this case also that \(T(R_2) \subseteq R_2 \) implies \(T(R_1) \subseteq R_1 \).

Lemma 3.1: If \(m = n = 3 \) then \(T(R_2) \subseteq R_2 \) implies \(T(R_1) \subseteq R_1 \cup R_3 \).

Proof: First, we show that no rank 1 tensor is mapped into 0. Suppose \(T(u \otimes v) = 0 \). Extend \(u \) and \(v \) to bases of \(U \) and \(V \) respectively; say, \(U = \langle u, x_2, y_2 \rangle \) and \(V = \langle v, x_1, y_1 \rangle \). Choose any \(\alpha \neq 0 \) and consider the family of subspaces, \(S(\alpha) \), with the following basis:

\[
\begin{align*}
& u \otimes y_1 + x_2 \otimes \alpha x_1 \\
& y_2 \otimes y_1 + x_2 \otimes v \\
& x_2 \otimes y_1.
\end{align*}
\]

\(T(S(\alpha)) \) is a 3-dimensional, rank 2 subspace if every tensor in \(S(\alpha) \) and not in \(\langle x_2 \otimes y_1 \rangle \) has rank 2. Suppose \(\alpha' (u \otimes y_1 + x_2 \otimes \alpha x_1) + \beta' (y_2 \otimes y_1 + x_2 \otimes v) + \gamma' (x_2 \otimes y_1) = (\alpha' u + \beta' y_2 + \gamma' x_2) \otimes y_1 + x_2 \otimes (\alpha' \alpha x_1 + \beta' v) \) is not rank 2. Then, \(\alpha' = \beta' = 0 \) and we have \(\gamma' (x_2 \otimes y_1) \). But \(T(\gamma' x_2 \otimes y_1) \) is rank two as \(T(u \otimes v) = 0 \). Therefore, every linear combination of tensors in the basis of \(S(\alpha) \) is mapped into a rank 2 tensor. This implies \(T(S(\alpha)) \) is a type 4 subspace. Since all \(S(\alpha) \) intersect in 2 dimensions, \(T(S(\alpha)) \) is the same space for every \(\alpha \neq 0 \).
Choose \(\alpha \neq 1 \). Now \(T(S(1)) \subseteq T(S(\alpha)) \). This implies, for some \(a, b, c, \in F \),
\[
T(u \otimes y_1 + x_2 \otimes x_1) = T((au + by_2 + cx_2) \otimes y_1 + x_2 \otimes (a\alpha x_1 + bv))
\]
This implies,
\[
T(((a-1)u + by_2 + cx_2) \otimes y_1 + x_2 \otimes ((a\alpha - 1)x_1 + bv)) = 0
\]
Therefore,
\[
((a-1)u + by_2 + cx_2) \otimes y_1 + x_2 \otimes ((a\alpha - 1)x_1 + bv) \text{ is not rank 2.}
\]
Therefore, one of the following three cases must hold:

Case 1: \((a\alpha - 1)x_1 + bv = 0 \). This implies \(a\alpha = 1, b = 0 \) and \(T(((a\alpha - 1)u + cx_2) \otimes y_1) = 0 \).

Case 2: \((a - 1)u + by_2 + cx_2 = 0 \). This implies \(a = 1, b = 0, c = 0 \) and \(T(x_2 \otimes (\alpha - 1)x_1) = 0 \).

Case 3: \(\langle x_2 \rangle = \langle (a - 1)u + by_2 + cx_2 \rangle \). This implies \(a = 1, b = 0 \) and \(T(x_2 \otimes (cy_1 + (a - 1)x_1)) = 0 \).

Now, \(T(u \otimes v) = 0 \). Therefore, Case 1 must hold with \(c = 0 \) and \(T(u \otimes y_1) = 0 \). Since the extension of \(v \) to a basis \(v, x_1, y_1 \) is arbitrary, we have that \(T(u \otimes y) = 0 \) for all \(y \in V \).

Now, the problem is symmetric with respect to \(u \) and \(v \). Therefore, \(T(x \otimes v) = 0 \) for all \(x \in U \). Now choose \(y \) independent of \(v \) and \(x \) independent of \(u \) and we have a contradiction; namely, \(T(u \otimes y + x \otimes v) = 0 \).
This shows that no rank one vector is mapped into 0.

Suppose a rank one tensor, call it \(x_2 \otimes y_1 \), is
mapped into a rank 2 tensor. Extend x_2 and y_1 to bases of U and V. Let $U = \langle u, x_2, y_2 \rangle$ and $V = \langle v, x_1, y_1 \rangle$.

Then, by considering the spaces, $s(\alpha)$ as defined above, we arrive at cases 1, 2 or 3 as above. Therefore, we have the contradiction that a rank 1 vector is mapped into 0. Therefore $T(R_1) \subset R_1 \cup R_3$.

Lemma 3.2: Let $m = n = 3$. If $T(R_2) \subset R_2$ then $T(R_1) \subset R_1$ or $T(R_1) \subset R_3$.

Proof: Assume $T(R_1) \not\subset R_1$ and $T(R_1) \not\subset R_3$. Then, $T(R_1) \subset R_1 \cup R_3$ by Lemma 3.1. Now, we can find $x \otimes y$ and $x' \otimes y'$ such that x, x' are linearly independent; y, y' are linearly independent; $T(x \otimes y)$ is rank 1 and $T(x' \otimes y')$ is rank 3. If this is not the case then $T(R_1) \subset R_1$ or $T(R_1) \subset R_3$ and we are finished.

Let $T(x \otimes y) = x_1 \otimes y_1$ and $T(x' \otimes y') = x_1 \otimes z_1 + x_2 \otimes z_2 + x_3 \otimes z_3$.

Consider,

$$T(\alpha x \otimes y + x' \otimes y') = x_1 \otimes (\alpha y_1 + z_1) + x_2 \otimes z_2 + x_3 \otimes z_3.$$

This must be rank 2, for all $\alpha \neq 0$. Therefore, there exist $\beta, \gamma \in F$ such that $\alpha y_1 + z_1 = \beta z_2 + \gamma z_3$ or $\alpha y_1 = \beta z_2 + \gamma z_3 - z_1$. Let $\alpha_1 \in F$, $\alpha_2 \in F$ and $\alpha_1 \neq \alpha_2$. There exist $\beta_1, \gamma_1, \beta_2, \gamma_2 \in F$ such that

$$\alpha_1 y_1 = \beta_1 z_2 + \gamma_1 z_3 - z_1$$
$$\alpha_2 y_1 = \beta_2 z_2 + \gamma_2 z_3 - z_1.$$

This implies
\[\beta_1 \alpha_1^{-1} z_2 + \gamma_1 \alpha_1^{-1} z_3 - \alpha_1^{-1} z_1 = \beta_2 \alpha_2^{-1} z_2 + \gamma_2 \alpha_2^{-1} z_3 - \alpha_2^{-1} z_1.\]

Now, \(\dim\langle z_1, z_2, z_3 \rangle = 3\). Therefore, \(\alpha_1^{-1} = \alpha_2^{-1}\). This is a contradiction. Therefore, \(T(R_1) \subset R_1\) or \(T(R_1) \subset R_3\).

Theorem 2: Let \(m = n = 3\). \(T(R_2) \subset R_2\) implies \(T(R_1) \subset R_1\).

Proof: From Lemma 3.2, it is sufficient to show that \(T(R_1) \not\subset R_3\). Assume \(T(R_1) \subset R_3\). Let
\[T(u_1 \otimes v_1) = u_1 \otimes y_1 + u_2 \otimes y_2 + u_3 \otimes y_3\]
and
\[T(u_1 \otimes v_2) = u_1 \otimes z_1 + u_2 \otimes z_2 + u_3 \otimes z_3\]
where \(v_1, v_2\) are linearly independent. Let \(A : V \rightarrow V\) such that \(Ay_i = z_i\), \(i = 1, 2, 3\). \(A\) has an eigenvalue, \(\lambda\). Then
\[T(u_1 \otimes (v_2 - \lambda v_1)) = u_1 \otimes (A - \lambda I)y_1 + u_2 \otimes (A - \lambda I)y_2 + u_3 \otimes (A - \lambda I)y_3.\]

There exists \(\alpha, \beta, \gamma\) not all 0, such that \(\alpha y_1 + \beta y_2 + \gamma y_3\) is the eigenvector corresponding to \(\lambda\). Therefore,
\[(A - \lambda I)(\alpha y_1 + \beta y_2 + \gamma y_3) = 0\]
and \((A - \lambda I)y_1, (A - \lambda I)y_2, (A - \lambda I)y_3\) are dependent. This means \(T(u_1 \otimes (v_2 - \lambda v_1))\) is not rank 3 which contradicts the assumption that \(T(R_1) \subset R_3\). Therefore, \(T(R_1) \subset R_1\).
Theorem 3: If \(F \) is algebraically closed and \(T(R_2) \subset R_2 \) then \(T(R_1) \subset R_1 \).

Proof: The result follows immediately from Theorems 1 and 2.

For algebraically closed fields of characteristic 0, the structure of \(T \) is given by the following theorem, which is quoted from [2].

Theorem 4: Let \(T(R_1) \subset R_1 \). "Let \(T_1 \) be the linear transformation of \(V \otimes U \) into \(U \otimes V \) which maps \(y \otimes x \) onto \(x \otimes y \). If \(m = n \), let \(\phi \) be any non-singular linear transformation of \(U \) onto \(V \). Then if \(m \neq n \), there exist non-singular linear transformations \(A \) and \(B \) on \(U \) and \(V \), respectively, such that \(T = A \otimes B \). If \(m = n \), there exist non-singular \(A \) and \(B \) such that either \(T = A \otimes B \) or \(T = T_1(\phi A \otimes \phi^{-1} B) \)."

For algebraically closed fields of all characteristics, Theorem 4 holds; but the proof is, as yet, unpublished.
BIBLIOGRAPHY
