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ABSTRACT

Let U,V be two vector spaces of dimensions n and m,
respectively, over an algebfaically closed field F; 1let
U®V be their tensor product; and let Rk(U®V) be the set of
all rank k tensors in UQ®V; that is R, (U®V) |

- k
= {Z = Z:xi@byi | xy3 1=1,...,k and y;; 1=1,...,k
i=1

are each linearly independent ian and V respectively}. We
first obtain conditions on two vectors X and Y that they be

members of a subspace H contained in Rk(U6§V).

In chapter 2, we restrict our consideration to the
rank 2 case, and derive a characterization of subspaces con-
tained in RQ(UQDV). We show that any such subspace must be
one of three'typeé, and we find the maximum dimension of each
type. We also find the dimension of the intersection of two

subspaces of different types.

Finally, we show that any maximal subspace has a

dimension which depends only on its type.
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CHAPTER ONE

1. INTRODUCTION

Let F be an algebraically closed field; let U be an n-
dimensional vector spacé'over,F;“let V be an m-dimensional
vector space over F; and let UGDV be the tensor product space
of U and V. An element X, of U®V is called pure if X can
bé represented as X = x®y for some x € U'and y € V, and,
any element in U®V can be represented‘as a sum.of pure
tensors. The definition of each of the above terms can be
found in any standard algebra text such as [1]%.

For any element Z € U®V,-Z is said to be of rank k
if Z =‘§'XiC)yi, where xl;...,xk are linearly independent and

i=1
Yqs+0+sYy are linearly indepehdent. This.definition,‘taken
from [2], page 1215, is used throughout this thesis, and is the

basis for the ensuing material.

We define Rk(UCDV)p to=be {Z € UDV | rank (2)=k] ©{0};
and, for any Z € R, (U®V), Z = T'xiCDyi, we define 7

o>~

i=1

u(z) = < Xysie.sX, > and V(Z) = < Yyse-es¥ 2. In lemma 1.2

1 Numbers in the square bracket refer to the bibliography at
. the end. ’



we 'show that U(Z) and V(Z) are well defined. In chapter one,
using some elementary theorems of algébra, we obftain some

properties of the elements of Rk('U®V).



2. RANK k

First we note that the maximum rank of any element of
U®V is at most the minimum of n and m. The following theorem
is a useful criterion for finding the rank of an element X, of
U®v. |
‘ S .
Theorem 1.1: Let X =Exi®yi € U®V. iIf XyseeesX
i=1 ‘

linearly independent, then dim < Yy «--5 Vg > = rank (X).

are

S

Proof: Suppose dim <yl,...,ys> = t < s. Without'loss of
generality, we can assume AR form a basis of <yl,...,ys>.

Then each Vi t <1< s, is a linear combination of YyseeesVy-
: . t ‘

Thus for i = t+1l,...,8, yi = E:aijyj' Upon substituting these

in X, we have ‘ j=1
¢, s t
X = ilxjébyj + Z xi() Z:aijyj
j=1 A=t+1 J=1
t ' S t
<
= ij®yj + Z Z aijxi®yj .
Jj=1 i=t+1 j=1
Interchanging the summation signs we get
t s
j=1 i=t+1



t 5 .

Suppose _La.(x. + ) a ) = 0
IV J L iJ i

Jj=1 Ci=t+l

t . ]

g r Z |
then L;ajxj /, @ 3 oy x O. .

J=1 j=1 i= t+l

Agéin; by interchanging the summation signs we have

t s t
N < _
Z 5% oL ('Z, J 13) = 0.
J=1 i=t+l = =1
t
Let ‘Z ajaij = Bi s 1 =1+t+1l, ..., s , then the summation becomes
Jj=1 ot s
E;ajxj + Z ﬁixi = 0.
J=1 i=t+1
Since Kys+eesX are linearly independent, eachlaj and Bi must

be zero. Thus {x + Z alJ j 2 d= l,...,t} is a linearly

i=t+1
independent set. By assumption Yys+--sYy are 1inearly independent,
and thus :
rank (X) = t = dim <yl,...,ys>.
We next show that the subspaces, U(X) and: V(X) are

independent of the representatlon of X.

Lemma 1.2: For any X € Rk(UGDV),'X # 0, U(X) and V(X) are

indebendent of the'represehtation of X as a sum of k pure tensors.

k
Proof: Let X have two representations as X = E:xiébyi and
k - i=1
< . :
X = ) x{C)yi ; and let U(X) = <Xy5...,%> and U'(X): <x{s. e sxp>.



Suppose U(X) # U'(X). If U(X) n _U'(X) = 0, then Xy,... X,

’ xi,..., k are llnearly independent and so
k ko

Z - Z‘xiéayi . Theorem 1.1 implies

i=1 i=1

dim <yl,...,yk, yi,...,yk> = 0, and thus ¥y and yi ére all zero

for i =1,...,k. Hence X = 0, which is a contradiction.

I

H:

U(x) N Ur(X) # 0, let z z, be a basis of U(X) n U'(X).

l,.'o’

We can extend z;,...,z, to a basis of U(X) by v >V and

r+l1’°°°

Each xi‘can be represented

to a basis of U'(X} DY U, q5--+ sl

as r k T _ ,
Y E; ] . '
Xy L.Yijzj + 'Yijvj 3 for 1 =1,...,k
Jj=1 J=r+l
and r k
- Y . .
xi = E,nij?j + /. hijuj s for i = 1,...,k .
J=1 J=r+l1

It follows that

k,r k k r

S S VY
0=t Z,mXiJ'ZJ' T LYYy )®y = L) MagEg anJua)@)y' P

i=1 j=1. J=r+l1 i=1 §=1 J=r+l1 N

k r k k k r .

- T = =
0=) L nayns®vst Lo ) vagy®yi- ) ) veg@vi

i=1 j=I ' i=1 J=r+l i=1 j=1

Xk
r ‘e i=1 Y=rI7
c T}_c k k k k k
- = 2

O = Z K3 3 ;’. . ! 0) -

.L J®( ./_J Yinl ) n13y1)+ Z VJ®Z Yi‘jyi L u ®zn13 1 .

Jj=1 i=1 i=1 J=r+l i=1 J=r+l i=1

i OO.‘ e e : i
Since 215 ’?r’ Vigpoe sV ur+1""’uk are linearly



independent,

k k .
\ t . d
( ElYijyi - L,hijyi) 5 d = l,...,n
i=1

i=
k
ZYinl s J =I‘+l,...,k
i=1
K
Zhijy;.. ; J. = I‘+l,...,k
i=1

arexall zero. But‘since X has nank_K, Yqs++-2Y) are linearly
independent and yi,...,yk are linearly independent. Therefone
Yij =03 1i=1,...,k; J = ;+l,...,k and nij =0; 1i=1,...,Kk;
j =r+l,...,k. Hence x; = z:yijzi; for i = 1,...,k and

J=1a

r
xy = Z n..z. ; for i = 1,...,k. This implies that

Y(X) ¢ U(X) n U'(X) and U'(x) c U(X) € U(X) n U'(X) , and hence
U(x) '

l

U'(X). An identical argument holds for V(X) and V'(X).

The next theorem gives a first step in characterizing

the'subspaces.

Theorem-1.3: Let H be a subspace of U®V contained in'Rk(Ué)V)

and let X,Y be two elements in H. Then dim(U(X)nU(Y))+dim(V(X)n(V(Y22k

k
Proof: Suppose dim (U(X) n U(Y)) = 0, and X = Z'uiCDvi,
k , ' o _ i=l

Y = E:xiC)yi . Then ul,;..,uk,xl,...,xk are linearly independent.
i=1 ‘

For-all a and B € F, aX+BY € H, i.e. aX+BY has rank k. Therefore



=

X+Y= ) w®v, + ) x,Qy, ¢ Rk(U69v). By Theorem 1.1,

1 i=1

e
i~

dim‘<v1,...,vk,yi,,...,yk> = k. | But dim <yy,...,¥,> = k and
dim-<vl,...,vk> = k since both X and Y € Rk(U®V). Therefore
dim(V(X)-n V(Y)) =

Suppose dim - (U(X) N U(Y)) =1 > 0 and let zy,...,2

be a bas1sof‘ U(x) n U(Y) We can extend z,,...,z, to a basis

of U(x) by e, q5--

Then we can represent each u. and X; as uy = Z 1JZj + Zal‘] j 5

.>2,, and to a basis of U(Y) by b, li...,bk.
1

J=1 J=r+l

for i = l,".,k.

r k k k

LZ O>a V + Za ®Za13vi + Z ®2513 1 +Zb ®L613 i
Jj=1 i=1 J—I‘+l i=1 J=1 1i=l J—~I‘+l i=1

Comblnlng terms we have X + Y
T k k k k

\ J @ (>a1;1v1 + ZBJ.J‘Y Za ®Za13 i + ij@) EBi,jyi
J= l i=1 i=1 - J——I‘+l i=1 J=r+l i=1

Now X and Y are in Rk(U®V); by lemma 1.2, we have that



k k '
< . —
C[o3gvis 4= Laeesk = V(X) and < 2By g5 d=lse. k> = V(Y).
_ k | K
For convenience in notation let Sj-z, Eﬁlavl and fj =‘;ﬁijyi5
l"‘l . i:l
for j = 1,...,k. Then we have - .7 =
3 k k
= 'Y . . . . + . N :: .
X+Y ZFJGQ(SJ+tJ) + ZaJQQSJ ZpJ()tJ,

J=1 : C J=r+l J=r+1

Let A = V(X) + V(Y) and let k+t be the dimension of A. Then

dim (V(X) h.V(Y)).l dim V(X) + dim V(Y) - dim A

k +k - (ktt) = k-t .

Since we have assumed dim (u(x) A U(Y)) = r, in order to prove
the theorem we must show dim (V(X) n V(Y)) k-t > k-r or
equivalently that t 5 r. To thls end con31der the space
B = <Sl+tl,a Sr+‘l,.'.’sk,tr"‘l,.'.tk)-. BiS a k"
_dimens1onal space, since X + Y € Rk(UQ§V). Let C = B+v<51"":5r>'

9 sr+tr s

Then dim C < dim B + r = k+r. But now each 5 4 énd\each-tj R
Jj = 1,...,k is in C and therefore A < C. Thus k+t < k+r or
t < r and dim (V(X) 0 V(Y)) = k-t > k-T. Therefore

dim (U(X) N u(¥)) + dini (v(x) N V() > k.



CHAPTER TWO

1. SUBSPACES OF RQ(UCDV).

In this chapter we restrict our discussion to the case
Where»kﬁQ. We consider only those subspaces Which are contained
in R,(U®V). We begin with three lemmas which will enable us

to characterize the three types of subspaces.

Lemma, 2,1: Let X and Y be independent elements of H, wheréaH
is a subspace of U®V contained in RE(UQDV) Suppose U(X) # U(Y)
and'V(X) # V(Y) Let <w = U(X) N U(Y) and <v> v(x) A V(Y)
If we have representatlons X = uC)x +ylGDv' and Y = uC)x +y2C>V"

then v! and v" e <v>.

Proof: Since U(X) # U(Y) and V(X) # V(Y), it follows from
‘theorem 1.3 that both U(X) n U(Y) and V(X) n V(Y) have dimension

equal to one. Since X and Y € H, aX + BY € H for all a,p € F,

aX+BY = uQQ(axl+Bx2) + ylGDav' + yé@sv".

If <v'> = <v">, then v' and v" are both in V(X) n V(Y), i.e.,

V! énd v" € <v>. On the other hand, suppose <v'> £ <v"> If
L ax +Bx2 € <v',v"> foritiﬁ then <xl,x2> = <v! v"> But then,
_31nce <xl> % <v'> and <x2> £ <v'> we have <xl,x2> = <xl,v'> V(X) =
v,y = <x2v"> = V(Y), contradlctlng the hypothesis V(X) # V(Y)
If ax +Bx £ <v',v"> for some a,fB, ‘then for such a and B,
oX,+Bx,, v',v' are linearly 1ndependent. Also s;nce u(x) # u(y),

U, ¥15¥p are lineérly independent. This implies that rank(aX+BY)=3

for this choice of o and B. Therefore v', v" must be in <v>.



Next we prove a lemma which characterizes another type of
subspace. But first we note that if X e Ry(U®V), X # O and if
{u,v} is any basis of U(X), then X has aL repi‘esentation_ of the

form u®y; + v®y,.

Lemma 2.2: Suppose U(X) = U(Y) for some palr of 1ndependent
elements of H, where H is a subspace in R2(U®V) Then for any
Z € H, U(zZ) = U(X).

Proof: Let X = u®x + v®x2, Y = u@yl + v®y2.' First, we
show v(x) # V(Y) Suppose v(x) V(Y) If x, = yyy» then

X - YY = v@(x2 yyg) -is rank one, and if x5 = Y'y,, then

X - y'Y = u@(xl- v yl) is rank one.” Therefore <Xp5Xp> = <_yl,y2>
implies <xl,yl> = <x2,y2> Let A: <xl,yl> - <x2,y2> be a
linear transformation where Axl- Xo and Ayl— Voo Let x = axl-i—Byl

be an eigenvector of A with eigenvalue \/ Then

aX + BY = u®(ax;+ By,) + v® (ax,+ By,)
- uEx + vOAX = udx + v@kk
= (u+ 2v)®x 1is rank one.
Therefore V(X) # V(Y) |
Now let Z = z ®22 + z @zu We must show that
dim (U(Z) n U(X)) = 2. PFirst, we assume dim (U(Z) n U(x)) = 0.
Then since U(X)= U(Y), dim (U(Z) n U(Y)) = 0. By theorem 1.3,
dim (V{2) n'V(X)) = 2 and dim (V(Z) n V(Y)) 2. This implies
V(X) = V(Y), a contradiction.

Next, suppose U(Z) n U(X) = <u>. Then by theorem 1.3,
dim (v(z) n v(x)) = 1 and dim (v(z) n V(Y)) 1. Therefore

X, Y, and Z have representatlons
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X = ué@xl + vCDx2
Y = u@yl + v®y,

7 = u@zl + w®22

where u,v,w are linearly independent. Note, since X5 and Yo
are linearly independent, that Zp cannot be a multiple of both
Xs and Yoo Therefdre, if Zp and Yo are linearly.independent,

<y, ,¥p> = <zy,2,>. Since V(X) # v(Y), zZ1,25> # <X{,Xp>.

This proves that z, = ox, (lemma 2'.1) and z, #£ AXq .

Thus our representations become:

X

1l

u@xl + v@x2
Z = u@zl +'W'®X2
~Consider W =X + Y + Z.

W= u®(x;+ yi+ zl) + v (x+ ye) + WO,
where X1521s%X, are linearly independent and <yl,y2> = le,x2> =
<y2,x2>, since Yo # aXn. It follows that X15Yps and X, are
linearly independent, and_hence xl+ yi+ Z1s X+ Yo and X5 are
linearly independent, since yl‘and'zl are in <x2,y2>. But this
makes rank W = 3, a contradiction. Similarly if Zo and X, are
linearly independent then {zl,z2> = {xl,xé>, Zy = -9'y2, and
29 ;é X'yl. Using the same arguments we can derive a rank three

tensor from X + Y + Z. Therefore dim (U(Z) A U(X))# 1, and
u(z) = U(x) = u(Y). |
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In lemma 2.2 we used the condition U(X) = U(Y). A
similar result is true for V(X) = V(Y). We state it without
proof in | | |
ILemma 2.35: Suppose V(X) =,V(Y) for some pair of independent
elements of H, where H is a subspace in R2(U®V). Then for any

V(X).

i

7 € H, V(Z)

We are now in a position to give a characterization of

the subspaces in R2(U@V)b.

Theorem 2.4: The subspaces H, in R2(U®V) are of three types:

1) U(X) is constant as X ranges over H.
2) V(X) is constant as X ranges over H.
3) If dim H # 3, then there exists x ¢ Uand y € V
| such that for all X € H, X has a répresenta’cion of
the form x®v + u@y; where v € V and u € U. This
is the géneral type 3 case. _
If dirﬁ H = 3, then there are spaces‘of a type distinct from the
above three types. The following is an example of such a space:
H = <X,Y,Z2> where X = u@xl + x,®v,
Y

i

u@yl + y,®v,

and Z = x2®y1 - ¥®@x,.

We will' call this the special type 3 case.

Proof: Let X and Y be two linearly independent eiements of H,

fhen for all a,B € F, aX + BY € H. By theorem 13., {7 :

aim(U(X) A U(Y)) + dim (V(X) 0 $(¥)) > 2. If aim (V(X) n ¥(Y)) = O,
then U(X) = U(Y) and by lemrﬁé 2.2 we have case 1. If | -

dim (v(x) N v(Y))= 2, then V(X) = V(Y) and by lemma 2.3 we have
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case 2. If dim (v(x) N v(y)) = 1, then dim (U(X) n U(Y)) 3 1.

If dim (U(X) A U(Y)) = 2, then U(X) U(Y) and by lemma 2.2 we
again have case 1. If dim (U(X) n U(Y)) = 1, then we have case 3.
If dim H = 2, then by lemma 2.1 we have the general case 3.

If dim H

3, dim (V(X) n V(Y)) = 1 and dim (U(X) n‘}U(Y)) =1,
then H = <X,Y,2>. By 1emma.'2.l, we know that X and Y have‘
representations

X

u®xl + X,®V
Y = u<£<)y:L + y2®v
and Z is such that dim (U(z) n U(x))= 1, dim (U(z) n U(Y))

]
[

Also dim (V(2) N V(X)) = 1 and aim (V(2) 0 V(Y)) = 1. 1f

I
i

u(z) n U(X) = ¥(z) n U(Y) <u> ‘then by lemma 2, 1,

il
il

v(z) A V(X) V(Z) n V(Y) <v> and we have the general case 3.

If U(z) n U(X) # U(Z) n U(Y) then U(Z) C <UyX,5,¥,> and
u £ U(Z) Also v(z) n V(X) # V(Z) n v(y) gives V(z) c <v, Xy5¥7>
and v £ V(Z) This case can arise. 1In fact, let
Z = x2®yl - yp®x,. We show that oX + BY + vZ has rank 2 for
all choices of @, B and y. We can assume B # O.

AX+BYHYZ = u® (ax,+By; )+(ax,+By,) OV + YXQC)yl- vy, ®x;

Bu @(-%xl + y1}+(%x2 + y2)®[3v + yx2®yl- yy2® Xy

+ YX2®%XI - yX2®%xl

a a
(Bu + Yx2)69(_6)_cl + Yl) + (‘ﬁ,‘xg + y2}®(5" - YXl)
which is rank two.. Suppose aX + BY + yZ = 0, then either
, - a = a - . - =
BuLr + oYX, = 0 and Bx2 + Vs = 0 or Bxl + y1 0 and Bv \241 0.

In either case y = O implies o = B = 0. Therefore X,Y, and Z are

linearly independent, and H = <X,Y,Z> has dimension 3.
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(It can be shown that spaces of this exceptional type must have
a basis of the form given,but we do not include the details

here since we do not make use of this fact.)

Now, if dim H > 4, let X,Y,Z,W be linearly independent
in H where H is not type 1 or 2. By lemma 2.1 there exist
representations such that

u®y1+ yo®v and

X u®x1+x§Ov R Y

it

W

I

u®@ Wt w2®v'., Z = u® Zq+ z2®v‘ .
If <u> = <u'>, then <v> = <v'> and we have thé general case 3.
Henée>sup§ose <> # {u'>, >Then <u',w2> o <u,x2y2>, and -
<u"z2> c‘<ulx2y2>. Therefore <ﬁ2z2> c <u;x2,y2>‘since Wo # Oze.
Therefore u'e <u,x2,y2> and thefe exists a and bAe F such that
u' € <u,ax2+-by2>. Similarliy u € <u',w2,22> and fhere exist
¢ and 4 € Fhsuch that u € <ut, Cw, + d22>.
Consider U(aX+bY) =.<u;ax2+-by2> and

U(cw-l-dZt)f’fi’;-_;-Q_l <u, et dzp> . |
Both spaces equal <u,u'> and we have two linearly independent
vectors in H which—have the same U space. By lemma 2.2 we have
case 1, a contradiction. Therefore <u> = <u'> and <v'> = <v>,
Thus wé have a characterization of e?éry,sﬁbspace cdntained

| in,.,ARg(U$V).
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2. DIMENSIONS AND INTERSECTIONS

First, we recall that n and m are the dimensions of

U and V respectively.

Theorem 2.5: The maximum dimension of type 1, type 2 and’

general type 3 subspaces is m-1, n-1 and minimum (m-1,n-1)

respectively.

Proof: Type 1

Let X; = xl®u1 + xg@v:L

X

2 xl® u, + x2®v,{2

Xk = Xq @uk + x2®vk

be an independent set of elements of H. If k=m, then since

ul,.. .U, are linearly independent, théy form a basis of V;
and VyseeesVp form another basis of V. Let A: V - V be a
linear tfansformation such that Aui =V for i =1,...,m.

m
Let u =-§- a;uy be an eigenvector of A with eigenvalue ).

i=1
m m m _
. _ < T . _ -
Consider z aiXi = xl®L asu; + x2®z a3vy - xl® u + x2®Au
i=1 i=1 i=1 '
= x;®u + X, ®\u = (X; + A\X,)@u which is rank one. Therefore

k < m-1. Similarly k < n-1 for type 2 'subspaces.

Type 3.

As shown in theorem 2.4, there exist 3 dimensional sub-
spaces which are maximal. These are considered as a special

case of type 3 subspaces. In the general case, let Xl,...',Xt
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be an independent set of vectors in a subspace H, where H

is the general type 5 subspace. Assume m > n > 3. By lemma

2.1 and theorem 2.4, there exist representations of XyseeesXy
such that
’X1 = X, ®vy + ulébyl
Xp = %)@V, + ueOyl
Xt'= xlcavt_+ utCDyl
Here ul,...,ut are linearly independent, for, if some
w, = E;qiui, then
i#r -
¢ - Y N s
Xp = 1, 4%y = O (vp- Z oy vy I+ (uy - ), a;1; ) ®y,y
ifr ' ifr i#r
= xlC)(vr - E}&ivi) is rank one.
ifr '
Similarly, Vis«e.sVy are linearly independent. Next we show
that Xy £ <Upsensud.
t t t t
iy : Ny » < \
If x; = )a;u;, then )a;X; = x,®)asv; + PR
i=1 i=1 i=1 i=1
t .
= X1C)(~Zpivi + y,) which is rank one.
i=1 . ’
Using a similar argument we can also show that ¥y £ <vl,...,vt

>.
It follows that the maximum dimension of a type 3 subspace is
less than or equal to min(m-1,n-1). If m > n=3, then the

special case 3 subspace gives a maximum subspace of dim=3.
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These maximal dimensions can be achieved. For example,
for type 1 subspaces, let Xqs%Xp be independent in U and let

e <€ be a basis of V. Then set

1, LN ]
X, = x;Pe + x,0¢e5
1 :
X1 = leDem_i + x@e .
m-1 m-1 - m~1
T _N . .
If ) a;X, =0, then O —-iJai(xlC)ei)+ E:ai(x2C)ei+l>’
i=1 ~ i=1. iEE
and each a,;= 0; i = 1,...,m-1 as XiC)ej’ i=1,2; J=1,...,m
are linearly independent in U®YV. Moreover,
m-1 m-1 m-1
2, a; X; = leDE:aiei + ng)E:aiei+l. If not all a;= O, then
m=1 m-l
Z‘ aje; # O and Z,aiei+l # 0. Choose J to be the least integer
i=1 oi=1 m-1 B
such that oy # 0. Then >.aiei = ogey + Z a;e; and
i=1 i>J
n-1 ' : m-1l
< T . . . X
[ %i€441 = ajej+l + ), ®4€4541 which implies that Z}aiei
i=1 i>J ‘ . i=l
m-1 _ m-1

. s a \ .
;8541 BTE linearly independent. Therefore L.aixi is

and ‘Ela.e

always a rank two tensor. In the type 2 case an example of
the n-1 dimensional subspace is readily given in a similar

fashion.

For the special type 3 case, we have already shown the
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3 dimensional maximal subspace. In the general type. 3 case, we

can assume m X n > 4. TLet eys...,€, be a basis of V, and let

fl,...,fn be a basis of U.
‘Set X, = f,@e; + £,0e
X, = £ ®e, + £,0e
X 1 =f,®e _; + fn-lc)em'
n-1 | n-1 n-1
If 2_ a;X; = 0, then 0 = ai(fnC)ei) + Ej ai(fiC)em) ;

i=1 i=1

and each ay

linearly independent in U®V. If not all a; = 0 then

A=1 n-1 n-1

0 as ijDei; i=1,...,m; jJ=1,...,n are

Z ini = fnc>> as;e; + < aifiC)em ' is rank two because
i=1 i=1 i=1
£ ¢_<fl""’fn-l> and em‘ﬁ <epse.vsep 9>

The next theorem is concerned with the intersection of

two different types'of subspaces,

. Theorem 2.6: The intersection of two different types of sub-

spaces 1s at most one dimensional.

Proof: Type 1 and type 2 intersection.

Suppose Xl and X2 are in the intersection and linearly independent.

Since X, and X, are in a type 1 subspace, U(Xl) = U(X,). Since

X, and X, are in a type 2 subspace, V(Xﬁ = V(Xg). In the proof
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of lemma 2.2 we showed that if U(X,) = U(X,) then V(X;) # V(X))
for any pair of linearly'indepen&ent elements of H. Therefore

Xl = A X2, and the intersection is one dimensional.

"Type 1 and type 3 intersection.

Suppoée X, and X, are in the intersection and X, # aXs.
Since Xl and X2 are bqth in a type 3 subspace, there exists
representations such that X, = x®y; + x,®y and
X2 = x@)ye + xechu Since the intersection is a subspace,
aX,+ BX, = x®(ay;+ By,) + (axq+ Bx,)®y 1is in the intersection
for all o and B € F. Since both elements are in a type 1
subspace, U(X) is fixed for all elements in the intersection,
i.e., <X5Xy> = <X5Xp> = <X,axq+ Bx,>. If dim <xq5Xp> £ 1,
then <xl,x2> = <X1¥1>’ and there exist a and B-such that-

[

ox,+ Bx, = X. ‘This choice of a and B makes aXl+ BXy =i

xC@(ayl + By, + y), a pure tensor. Therefore <x;> = <x,¥ or Q}>
X = ©X,5; but then X,- €X, = x@(y,- 9y2) is rank one unless
yi = éwz. ‘But this implies Xl = €X2, a contradiction. Therefore,

the intersection is one dimensional.

Type 2 and type 3 intersection.

We can use an argument similar to that given for the type 1

and type 3 intersection. In this case the V(X) space is constant.

This completes the proof of the theorem. The remaining
intersections to consider areithose of subspaces of the same
type. The special type 3 subspace'cén have a two dimensional

intersection with a general type 3 subspace but it can have only
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a one dimensional intersection with another special type 3

subspace.

Theorem 2.7: The intersection of two different subspaces of‘

the same type can be at most m-2, n-2 or min(m-2,n-2) for type 1, .
type 2 and general type 3 Subépaces, respectively. These

maximums can all be achieved.

Proof: Suppose X.,...,X, are a set of linearly independent

l:
vectors in the intersection of two subspaces, Hl and H23 of

type 1 such that H, # H,. We know that k < m-1. We shall.show

that k < m-2. If k = m-1, there exist X;,...,X , which are

linearly inclependent.~ Since Hl and H2 are both of type 1,

dim H, = dim H2 = m-1l, by Theorem 2.5. Thus Xl"'u"xm-l forms

1
a basis of both Hl and H2; and Hl = H2,‘a contradiction. Thus

k.{ m-=2, Now to show that k may equal m~-2, let u,v be linearly
independent in U, and let e;,...,e_ be a basis of V. :

Set : , X u@el + v®es,

1

X2 = u@e2 + v@ze3

.

Xm-'l =.u(>§)em__l + v@em
’
and X, =u®e , + v@(em+§l_).
) '
Let Hl = <Xl,..., m-l> and H2_ = <Xl,...,}gn_2,xm_l>. As shown

in the examples following theorem 2.5, both Hl and H2 are m-1

dimensional subspaces. To show H # H2 we need only show
' m-1 ' rg:l :
X1 # Z aiXi. Suppose X 1=

i=1
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m:l m;l .
u®e  ; + vO(e + el) = u@Z aze; + v@Z aje; 1. This implies
@ i=1 i=1

m-1 m-1

that{ae:e andvlcce = e + e This is
1%1 = ®m-1 L %3%i41 = Cm* ©1-

i=1 i=1

impossible, however, since the first equality gives am_1'= 1

and a; = 0, 1 < m-1; and the seconq becomes e= eyt e .-
Therefore H; # H, and dim(HfEﬁHe) = dim'éxl,}.., o> = m-2,

by construetion.

The proof for type 2 subspaces is exactly the same using
U instead of V. This gives an intersection of dimension at

most n-2 for type-2 subspaces.

For the general type > subspaces we can assume that
3 <n < m Suppose Xl"""xk are linearly independent in the
intersection of H, and Hy, and H, # Hp,, then, by an argument
similar to that for the type 1 case, k _g n-2, To show k may
equal n-2, let £;,...,f be a basis of U and €1s---2€ be a
basis of V. Set
= fn®el + £,®@e

X2 = fn®e2 + f2®em

fn® e -1 + fn-l® en

Cond e e
I

n-1
' ,
and X1 = fh®en-.1_ + (£ + fn__l)®em.
= X,,.5.5% o> and Hy = <X,,. X, i
Let Hl - < l’ e o 5 p-l> an H2 - l, LN 4 , n-2’ n—l> . SlnCe

fi® eJ.; i=1l,...,n; j=1,...,m are linearly independent in.



e2.

U®V, the subspaces Hl and H, are both n-1 dimensional. To
n-1
show Hy # H, we need only show X -1 # Z a;X;. Suppose

i=1
n-1 .
!
X 1 = z a;X;, then £ ®e , + (f,  + £, )®@e =
i=1 o
n-1 n-1 n-1
" <
fnCD Z’ ase; + L‘aifiéaem. Since £ # \21 a;f; and
i=l i=1 - i=1
n:l ‘
e, # 2, aiéi each side of the equation is a rank two tensor.
i=1
n-1 :
T _ _ c .
Therefore ), 485 = nri and Z‘ oy f fn + fn-l' But this is
i=1
impoessible, since - - i . 'f' . f £ <Fpseeesfy 15

e

Thus H # Hys and by constructlon, Hlﬂ H2 = <Xl ces n-2> has

dimension n-2. This concludes the proof of the theoremn.

For the spécialvtype 5> subspaces, the intersection of
two special type 3 subspaces is at most one dimensional.
If X = u@xl + x2®v and Y = u@yl + y2®v' are in two ‘special
type 3 subspaces, then Z = xgébyl - ngDxi or -Z must be the
third vector in both subspaces; and the spaces coincide.
Therefore two distinct sﬁbspaces can have at most one dimension
in common. The intersection of a general type 3 subspace and a
special type 3 subspace can be at most two dimensional. Again,
suppose X = u®x, + x,®v and Y = u@yl + y,®v are in both
spaces. Every vector in the general‘typelesubspace must now
have a representation of the form u®x + y®v but any other

vector independent of X and Y in the special type 3 sﬁbspace
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C)xl).
. -3, .
C)yl

or f Y(xg

form

the

ﬁtation of

rese

a rep

have

must
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5. DIMENSIONS OF MAXIMAL SUBSPACES.

In this section we prove that any maximal subspacé in
R2(UQ§V) has a dimension which is dependent only on its type.
in particular, all maximal subspaces of type 1 have dimension
m-1, and all maximal sﬁbspaces of type 2 have dimension n-1.
In the type 3 case,‘all maximal‘subspaces have dimension 3

or min(m-1, n-1).

Theorem 2.8: All maximal subspaces of type 3, have dimension 3

or min(m-1, n-1).

Proof: Since we are deéling with fank two elements both m and

n must be greater than or equal to tWo. Suppose min(m-l,n-l)=l,
then either U or V is two'dimensional.‘ Suppose U ié two dimén-
sional and {u,v} is a basis of U. Also, wiézut 1oss of generality,
we can assume dim V > 2{ Let X ahd”Y be in a type 3 subspace,

then X and Y have representations such that:

X

il

u@xl_+ X, ®y

il

Y u@yl + y2®y.

We have U = <u,v> = U(X) = U(Y), and therefore either x2=9y2

or <Xpy,> =y, If <X5,¥,> = U, then there exist a,b € F such

that ax, + by, = u and aX + bY = u@D(ax1+byl)+(ax2+by2>69y =
uGQ(axl+byl+y) is rank one. If x5 = By,, then X - 6Y = uﬁXxlfGyl)
is rank one or X ='Qy1. Therefore X = ©Y and all subspaces

of type 3 are one dimensional. If min(m-l,n-l) = 2, then the
dimension of U or V is 3. Suppose U is 3 dimensional and

dim V > 3. Let <u,v,w> = U and suppose X and Y are in a type 3.

subspace Hl in Ré(UC)V). Then X and Y have representations
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such that

X u@x1 + v®y

Y

i

u @x2 + WOV

and X and Y are linearly independent. This subspace is not
maximal since, by theorem 2.4, we can add Z = v@x2 - W@x1

n
to get a large subspace.

If min(m-1,n-1) = 3, then we can assume m > n > 4,
Again, as shown in théorem 2.4, there exist maximal subspaces.
of dimension 3. Suppose H is a general type 3 subspace,
dim H > 5 and H is maximal. Suppose Xl""’Xk is a basis of H
and k < n-1 < m-1. By theorem 2.4, there exist repfesentations

of Xl,...,X such that:

k
X

n

1 .u®xl + yl@v

X

5 = WX, + YOV

Xk =‘u®xk + yk®v.

We know that VsXqs...5X, are linearly independent, and that
UsYqsee-sY) are linearly indepéndent. Since k < n-l, there

exists yk+l € U such that Vsl £ U, ¥ seees¥ >3 and there exists

X1 €V such that xk+i £ <V3Xy,...,%>. Consider \
Xy = u®x o + ¥y, OV, Now k+1 < n and thus k+2 < n,
i.e., <u,yl,...,yk+l>§ U. | |
k+1 k+1 - k+1
Suppose >_ a;X; = 0, then 0 = u®z agx; +. z a;v; O,

i=1 i=1 i=1



26,

k+1. k+1

- T .
Since \ # ), agXy and & # Z} 0y, we must have oy = 0;

i=1 . i=1

i=1,...,k+t1. This implies that H is not maximal, a contradiction.

Therefore, k = n-1.

Theorem 2.9: All maximal subspaces of type 1 have dimension

m-1.

Proof: Suppose H is a maximal type 1 subspace with basis
vectors X;,...,X, where k < m-1. By theorem 2.4, Xyseoes Xy

have representations such that

X

1 = u®x; + vy,

X

I

o u@x2+v®y2

X

I

kT UOXg t VOV

We know that xl,...,xk'are linearly independent, and that
Yy2++-sY), aTE lineafly independént. We' now show that
<xl,...,xk> # <yl,...,yk>. Iif they_were equal, then there would
exist a linear transformation A: <xl,...,xk>*§<yl,...,yk>

such that Axi = ¥y5 i= l,,..;k; ahd as in Theorem 2.5, we

could construct a rank one téﬁsor in H. - Next consider the
space <x1,..,,xk;yl,...,yk>,. If this space is not equal to V
then wé can choose Xyl £ <xl,;..,xk,yl,...,yk>, and yk+ivsuch
that ¥y, € <Xps...,X%> and ¥ £ <¥yjse.. ¥ 0.  Set

Xp1 = uGka+l + v6©yk+l. Theﬂ.
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K+l k4l
Then ) a.X; = u®> a;X; + V®) a;y; = O implies a; = O;
i=1 i=1 i=1

i=1,...,k+1, since ué@xi and vC)yi; i=1,...,k+1l, are

linearly independent in U®V.
k+1 k+1

2 oy X is always a rank two element, for if > X is rank
i=1

k+1 k+1
one, then since <u> # <v>, zla X5 must equal > ;Y- If
i=1 i=1
®i4q = 0, then <X ..,X > contains a rank one vector, contrary
to hypothesis. Therefore we can assume Q541 # 0. Obviously
k+1 k+1
Ot ¥k + E:aixi and E}aiyi are linearly independent by the
i=1 _ i=1

choice of Xpea1® This implies H is not maximal. Therefore, we

can assume <Xl""’xk’yl""’yk> = V,

Now we can renumber the Xi and the corresponding X5 and Y5 such
that Xy,...,X¥75.-.5Yg 18 a basis of V (where kis = m). b
After this has been done we can relabéi Yys+-+s¥g DY xk+1;...,x
and the fepresentation becomes:

X, = u®x, + v&®X

1 1 k+1
XS'= uéaxs + vOXx
Xgypp = UOXG ) + VOy

Xk= u@xk+-v®yk .

We can also éssume that <ys+l, ...,yk>C<xl,...,xk>. For, if not,
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) : 1
we can replace Xi; i = s+l,...,k by Xi as follows.
' | . m 1
Suppose vy =¥y t 5 o Xy where y; € <x1,...,xk>;

i=k+1 - ‘ ‘

k+JXJ and we get

for i = s+l,...,Kk.

' . 1
Clearly éxl”"’xs’xs+1”"’xk’xk+l"'"Xm> = V and

1 1 ) r 1 .
<ys+l""’yk ><:<xl,...,xs,xs+l,...,xk>. We can now drop the

primes.

Suppose some X, € {xl,...;xS} is not in <ys+l,...,ykﬁ,

then we can set Xk+l = u®xk+i+_ v®x'j R where‘J £ 1.

K+1 K S k

., Kk

Z a;¥; = u®( jasx; + apy k+ )+v &®( L“1Xk+1+ L“ Vi T O q¥ J)
j=1 i=1 i=1 i=s+1

If o

k4l = 0, then we are back to Xl,...,Xk,_and thus have a

rank two vector. Therefore we can assume et # O , in ﬁhich
case ak+lx £ 0 1mp11es aJ = Oy since xj appears in Z@ix
i=1

as a.x.. This implies, however, that X, ,. has coefficient
3*3 . B < B o

Qi1 # 0 in >a1xk+1 and xk+j_does not appear in Xy

i=1 ' i=1
k+1 kt+1
Therefore Z‘ aiXi is rank two, and ), aiXi = 0 im.plies‘oci = Q3
i=1 ' i=1

i=1,...,k+tl. This implies H is nol maximal. Hence we can

assume <Xq,... e . o
! *1s :XS>53st+1,...,yk>. By renumbering X .;,...,%,

we can assume <yg+1,,,,,y98> = <X1’°‘=’Xs> and
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S : ]
1
X5 =" Eﬁa JyJ for 1i =1,...,8. Let XS+1 = E:aijxs+j for‘
Jj=1 j=1
s
i=1 Th x' u@rY X .+ VE @x' .+ v®
J=l

for i = 1,...,s8. Again, since (aij) is non-singular,

' ;
l,.--,x S+l, .».,X2‘S,X25+l,...,?(k,xk+l,...,Xm> = Vn

Dropping the primes, the representation now becomes:

<X

X

f

1 u@ml4-v®xm&

>4
]

u@xs + v@xm
X 1 = uC}xS+l + vC)xl

Xpg = ué@xzs + vC)xS

Xpgp1 = U®Xpg iy + VOV,

Xk = u@xk + v@yk .

Now we can repeat the arguments. First, we édjust X s X

23+1’

t0 make sure <y25+l,...,yk> c <X .,xk>. Then we check

s+1°°°
XS+l,oon,X2s to see if <Xs+l,...,xes> E <y2s+l,-'-’yk>. If nOt,

we can set_Xk+l = u@ka+i+ vEx > where j # i, and again show

s+J

s+l""’x23> = <y2$+1,...,yk>
then by renumbering X25+1""’Xk’ we can assume

that H is not maximal. If <x

,;‘,;:‘"’\\__ 3 P X
<y2$+1,...,ygs>,- <xs+1,...,x28>7 By altering X25+1: . 3
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we can obtain the representation:

ﬁ_=u@§L+v®ﬁwl
XS='m@xS+-v@xm
XS+l = ué@xs+l + vGDxl
Xpg = U®Xxpg + V@xs

1 ) 1
Xogt1 = u69x25+1 + V®xs+l

1

o
X38 = u‘®x3S + V®ng |

Xzgpy = U®Xz 4 + VEOYzy

.

X, = u@xk + v@yk .

We note that at each step if there is not a sufficient number
of y's remaining, then some xj is not in the space spanned by.

the remaining y's, and we can construct X _After a finite

k+1°
‘number of steps, each timé considering the next sxj's, we can

find the required xj. The representation becomes:
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=
i

1 u6§xl + vGka+l

N LY
i}

s u®xs + v@xm

X = u@xs+l + v®x1
Xk—s = u@:ck_s + V®xk-2s

Kpmstl = UOXy o1y + VOX ooiq

%{=u®ﬁ<+v®x

k-8 *
Choose X, .| = uGka+l + vQka_S+2 . Suppqse
k+1 k : 3 k-s
Z a;X; = u®( Z $Xi T O X)) VO Zaixk+i + Z Os+i¥i

i=1 i=1 i=1 i=1
+8x+1¥k~s+2), has rank 1,

We can assume a4 # 0. By comparing the coefficients of

Xy gto in the two terms we conc¢lude that Oy g4 # 0. Similarly,

it follows that Qe _ogpp2e > %o are all non-zero. This gives

Xyyo @ non—zerokcoefflcient in the second‘term,‘and XD

{ a.X.. Hence at each stage we have a rank two

Z_‘ 11

i=1
element and Xl,...,Xk+l are linearly independent. This implies

does

not appear in

H is not maximal. We conclude that k = m~1.

A similar argument gives the corresponding theorem for0
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type two spaces:

Theorem 2,10: Every maximal subspace of type'two has dimension

n-l-

This:concludes the characterization of the subspaces

contained in R,(U®V).

Further research could be doene in extending the work of
chaptef tWoAto the genefal rank k case. Another directioﬁ.for
research would lie in characterizing linear transformations
of_UGDV which send rank two elements into'rank two elements.

In such an investigation, maximal éﬁbspaces would play an impor-
tant'role in the determination of the types of transformations

allowed.
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