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Abstract

The units in the group ring for 83 over the integers
are investigateds It is shown that the only units of finite
order are of order two, three or sixe Infinite classes of units
of each of these orders are constructed as well as an infinite
class of units of infinite orderx,

The equation G = AAT, where G 1is a unimodular group
matrix pf rational integers and A a matrix of rational integers,

is investigated in the ring of group matrices for S It is

3"
shown that A = CP, where C 1is a unimodular group matrix of
rational integers and P a generalized permutation matrix. It
is also shown that if H is a positive definite symmetric uni-
modular grpup matrix then H = H1H§ where Hl is & group matrix

of rational integers and H 1is of infinite order except in the

trivial case when H = Ia

I hereby certify that this abstract is satisfactory.
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le¢ Group Rings
Let G be any multiplicative group and Z the ring

of rational integerse The set of all finite formal sums
n .

————

i=1 9j 93

Xx_ 95+ %, €2, g; €6 will be denoted by Z2(G)e
%2(G) can be made into a ring by defining addition (+) and

multiplication (e) as followss

n
Suppose x, y ¢ Z(6); x = 2 x

s
!V'
-

then (a) =xeoy
(b) =x+y =‘Z__(xg‘ +y_ Jag,

It is not hard to verify that 12(6), , °} is an
associative ring with identity le, where e is the 1dent1ty

in Ge

Definitione 12(G), +, °} is called the group ring

for G over 2Z or simply the group ring for G,

In what follows the identity matrix will be denoted
by I. The phrase Wif and only if"™ will be abbreviated to

Wi f e,



2e The left regular representation of & finite group

Let G be a finite group of order n and suppose
the‘elements of G are (gl, cae, gn) in some fixed prd¢r¢
For each g_ € 6 consider the ordered set (gsél,'-an, gsgn)o
This set is some permutation of (gl, ess, gn) 50
(g,9y0 ***s 9.,9,) = (g7, ***, g )P(qg,) where P(g,) 1is a
permutation matrix‘aSSOCiated with gg. The (i, j)‘elemenﬁ

of P(gs) is 1 if 9y = 99 and is O otherwisees De-

fine the symbol
-1

i9; 7 9%

, 1 if g
gS(ic j) =5
' O otherwise
tien P(g.) = (g (i, j)) and P(gS)P(gt)'= P(g_g,) since

?;; gs(io r)gt(rl j) =,gsgt(i’.j)' for. gs(i'AI) = 1 iff

- ~1 oy L . _
g, = 9, 9; and gt(I, i) = 1 iff gy = 949; SO
_n ‘ -
> g (i, r)g (r, j) =1 if g g, = g.gil and O otherwises
r=1 ° s S st i%3 |
It is clear that P(gi) = p(gj)» iff g; = g,.

Define a map f: G o M_(Z), where M (Z) 1is the ring of
n-square matrices over Z, by f(gi) = P(gi). It is clear

from the above discussion that f is an isomorphisma

Definitionse The set of n~square permutation matrices

P(gi), i = l,§-°,n, g; € 6 is called a lgfj reqular

representation of 6 4in Mn(Z).



The matrices P(gi) are linearly independent since

gs(i, j) = gt(i, j) = 1 for some i, 3 implies

-1 _
g R

9¢ T 959 5

i
n

——

Let x = 2 x_ g, € 2(6) - and define a map
-7 9, ¢
t=1 “t .
n

—

F: z(G) - Mn(z) by ng) = %&ixgtp(gt). Then ?(x? = (xgiggl)

since the matrices 'P(gt) do not have non-zero elements in

gommon positionss Since the matrices P(gt) are linearly

O iff x = O so the map is 1 - 1,

L}

independent F(x)

(x. -1+y_  ~-1) = (x_ =1) + (y_ =1)

‘"Further F(x +y)

F(x) + F(y), and F(xy) = F(x)F(y) since F(gigj)
= P(gigj) = P(gi)P(gj) = F(gi)F(gj); Hence F is a ring
isomorphism of 2(G) into Mn(Z) and the image of F is

the set of matrices of the form (xg g—l).
i%j
n

Definitione Let x = )L_x g, € Z2(G)sa The matrix
t=1 9¢ ¢ | B

X = (xg g-l) € Mn(Z) is called the group matrix for xe
17



3. Units in & group xring

Definitions Let G be a group and 2(6) the group

ring for Ge An element x.¢ Z(G) is a left (right) unit iff

there exists a y ¢ Z2(G) such that Xy = le (yx = le) * where

le is the identity in Z(G)a An element x ¢ Z(G) is a unit

iff it is both a left and right unit.

Definitione Let X be an n—squaré matrixe X 1is
unimodular iff det X = £ 1,

Theorem l. Let G be a finite groups If x ¢ Z(G)

then x 1is a unit iff the group matrix for x 1is unimedulare.

Proofe Suppose x is a unit in 2Z(G)s Then there
existé a y e Z2(6) such that =xy = les Let XW and Y be the
group matrices fof x and vy respect;velyo fhen XY = I so
det XY = det Xedet Y = la Hence det X = det Y = & i. since
det X, det Y are rational intégers.

Con&ersely, suppose ﬁhat X 1is the group matrix for

an element x é Z2(6) and X is unimodular. Let
n : n

X = (x —1),>>x = ZL_X "g,s . Let y = 2;_y g be any other
9195 . t=1 9% ¢ o r=1 9y
, n n

-ly
r.

element of Z{(G)e Then xy = 2 2, 9g where 2, = j

X
s=1 “s s r=1 959

So



I zA = X
(1) % y g |
]
° .
2
gn ) ygn
Take z_ =1 if g, 1is the identity and 2z _, = O otherwisea
gi i . gi
Since X Y is a matrix of rational integers the above system
of equations (I) can be solved for Tg.o "ot Vg in integersa
. . . . ! 1 n .
Then xy = le € 2(G)e Let Y be the group matrix for ys. Then
1 1 1

XY = I so Y =X and since XX =X "X =YX =1 it follows

that yx = lee Hence x 1s both a left and right unita

The above proof can be found in [6].
| If ¢ is a finite Qroup then every left (right) unit
is also a right (left) unit. Suppose .x is a left units. Then
there exists a y such that xy = lee Let X and Y be the
gfoup matrices for x and vy respectively; Then |
XY = xx =X x = vr -1 so yx = le and x is a right unit.
A If G 1is any finite group-then the set of units in
Z2(G) form a multiplicative groups Suppose .x and y are

unitse Then there exist x—l, Y’l such that x-lx = xx-l = le

-1 -1 _ -1 -1 -1 -1 "
and y 'y = yy = le S0 ¥ "X "Xy = xXyy X% and xy 1is a

unite



Lo The existence of non-trivial units in a group ring

Definitione Let & be. any group and Z(G) the
group ring for Ge A unit .x € Z(6) is trivial if it is of
the form +* lg for some g € Go If x 1is not of this form

it is non-trivials

Definitions If x ¢ Z(G) 4is a unit then x 1is of
finite order iff x" = lee for some pogsitive integer n. If

n 1is the least such integer x 1is said to have order he If

no such integer n exists x 1is said to be of infinite ordez.

If G is a finite group the guestion of the existence
of non-trivial units in Z(G) has been completely solveda

Higman [1] proves the following theorems

Theorems If all elements of a group G have finite
order, 2Z(G) has non-trivial units unless G is either
(i) aﬁ Abelian group the orders of whose elements all
divide four |
or (ii) an Abelian group the orders of whose elements all
divide éix | |
or (iii) "the direct product of é quéternion group and an

,Abélian group, the orders of whose elements all divide twoe

In these cases Z(G) has only trivial unitse



5. The group ring for 83

Let S be the symmetric group on three symbols and

3

Z(SB) the group ring for S If the elements of S are

. 3° 3
97 = (l)l g2 = (123)1 93 = .(132?0 gll- = (12}1 95 = (13) and

(23) then the group matrix X (x. -1) for an

%

9.9,
6 | i
element x = Z_:_xg.gi € Z(Sj) is (letting Xy, = xi)
i=1 %i : 1 :
X] X3 Xy X, X5 xb\
Xy Xy X Xg X Xg
X = x3 X, X x5 Xg xl+
X, Xg X5 X3 X, )
Xz Xy #6 Xy X, X

Suppose the elements of S are taken in some order

3
other than (g,, °**, g,), say (g. , ***, g_ )Je Consider the
i 6 ry ry
matrix X' = (x g'i)' Let P be the permutation matrix
. R S '
1 J

with a one in row i, column s i =1, eee, 6o Then

pTxtp = x.

Definitione Let A and B be square matrices and

. let C = (g g) e Then C 1is called the direct sum of A

and B and we write C = A % B,



AT BT) where A, B, AT, and BT

Note that X = (
' B™ A

are 3-square circulantse.

Let U=—42 [ w1l 0 0 0
3

0 0 0 o w1

0 0 0 w 1

w w10 0 0

-Q -0 -0 a¢ a Q

where W = =1 *5/3 4 . Q =‘7% e Then U is unitary and
A
UXU—1'= Y $ Y 3% 81 3 €2 where ‘
Y = (xi - x, +L0(x3 - x2) X, = X * u(x5 - x62 )
X, = %X ¥ wz(x5 - x62 X - x, * wz(x3 - xz)
81 = X, + Ay + x3 - xh —.x5 - Xy
82 = xl + x2 + x3 + xh + x5 + x6-

Dgfinifion.‘ Let X be a n—séﬁare matrixe The trace
of X, denoted by trX, 1is the sum of the main diagonal elements

of Xe

Let E2(xi' xj, xk) = xix:j + XXy + xjxk. Then
2 2 . 2 2 :
3 - (xh + xs + x-) f Ez(xl, XZ' x3)7

Lyt oEp v ox
+ E2(xh' X5 s x62
.tr Y = 2xl - X, = x3.

Since x; (i = 1, ees, 6) is a rational integer, det Y,

tr Y, 81 and 82 are rational integerss



6. Units in the group ring for 83

Theorem 2« The only units of finite order in

Z(SB) are of order two, three or sixe

Proof. By theorem 1, to determine the units in
Z(SB) it is sufficient to determine the unimodular group

‘matrices for SB. If X = (xg 4 ) is a group matrix for
i%3]

X € Z(SB) then X is similar to Y ¥ Y % N ? €,, where

Y, 81 and 82 are as in Section 54 If det Y = + 1,

, : 2 .
€, =2 1, 82 = + 1 then since det X = (det Y) €i€pr X is
unimodulare Conversely, if X is unimodﬁlar then
det Y =21, €8, = % 1, 82 = + 1 since det Y, El and 82

are rational integerse Since X is similar to’

viyvte te x* =1 iff Y" =1, €' =1 and €

1T Far 1 2 = 1

Lemma le If det X = + 1 then
Ez(xl,'xz,,xB) = EZ(XA' x5, xé) where
EZ(Xi' xj, xk) = xix:i + X5 Xy + xjxk.

Proof. det X = # 1 iff det Y =11, € = 31

2 2 2 2 .2
1 + Xo + xS - Xh - x5 - Xg

and 82 =+ 1, *+ 1 =det Y = x

- Ez(xl'XZ'x3) + Ez(xu'XS'xé)
= 2 2 2 2 2 : '
:’ 1 = 8162 = xl + X2 + X3 - Xl+ - XS_ - Xé + 2E2(X1, X2’ x3)
- 2E2(xh, x5, x62.

So £&,€, - det Y = 3[E2(xl,x2,x3) - Ez(xh,x5,x6}] =0, * 24



10
Since Ez(xl, X50 x3) and E2(xh, X5 xé) are rational integers
the only solution is E2(x1, Xye xa} =,E2(xh' X s xé).

Lemma 2 Let X - be unimodular with integral entriesa

Then Y = ¢l i1iff X = cl.

Proof. Suppose Y = ¢l Since Y has algebraic

integers as elements ¢ 1is an algebraic integers. Since

i}

tr Y = 2xl - X, - x3 2c¢ 1is rational,v ¢ is a rational

integers Then det Y =+ 1 = c®° implies c = + la The

condition Y = ¢l implies Xy = Xge X T Xg T Xg, and
xi - X, = Ca " Since X 1is unimodular
El = x; + X5 + x3 - xh - x5 - Xy = * 1 and
Ey = X * Xy v Xy v x txg +tx =4l
E. + E
1
Hence X, + X, + x3 = ‘-3'—2 (= 0, 2 1)
- 2= %1

and x, + X5 v X, = “‘E—f‘.( =0, # 1)o Since X} = X, = ¢

_ El + 82_ °
and x2 = x3, - c = x + x, + x3 - (xl - x2) = 3x2°

N + € : ,
But -2 “AC =0, * 2. ‘Hence X, = Os Since xh = 35 = Xge
X, + x. + x, = 3x, = 82 - Ela But eg " 81 = 0, & la Hence
X, = C> Thus X, = x3 = X, = X5 = X4 = O, Then X, = E; = E,

81 + £

and O = - ce Hence X = ¢ and X = cls

If X = cl then, since X is a matrix of rational

integers, if X 1is unimodular ¢ = + 1, Since

UXUTt = eI =Yt YYe +e,, Y=l
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Lemma 3s Let m(A) be the minimal polynomial for
Ye Then m(A) is a monic polynomial with rational integers
as coefficients and is of degree one or twoe If m(A) is of

degree two it is the characteristic polynomial for Y,

Proofs If m(N) is linear then Y = cI so by lemma 2
c =+1 and m(AN) =N % 1,

If m(h)l-is of degree two then since it is monic
4and divides.the characteristic polynomial A2 - (tr Y)N + det Y
of Y, m(A) = e - (tr Y)N + det Y. Therefore since tr Y
and dét Y-'are rational integers m(A) has rational integer
coefficientses

Since m(A) divides the characteristic polynomial the

degree of m(A) cannot be greater than two.

Lemma Le Suppose x ¢ Z(SB) satisfies xP = le,

‘where p 1is a prime greater than threes Then =x = lea

Proofe Let X Dbe the-group matrix for x« Then
'¥° = I. Let wn(A) be the minimal polynomial for Y. By
lemma.3 m(\) isva'mphic polynomial with rational integer
vcoefficients'of degree one or twoae |

Case (i): m(A) 1is linéar. Then Y = ¢I so by
lemma 1 X = cI ‘and c'= *1s If ¢ = ~1 then P = -1
contradicting X° = I, Hence X = I and x = les

Case (ii): m(A) is of degree two. As XxF = I,

YP = Is Hence AP - 1' is an annihilating polynomial for Y
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and m(A) divides AP = 1, The unique factorization of
AP -1 Qver the rational number field into irreducible factors
is [5]): _

AP e 1= (v )P v ees s 04 1),

1

°1,.p-1 ®1
Hence m(A) = (A = 1) (P  see + A+ 1) where e
‘and e, are O or 1. If p>3 there is no choice of
exponents e1r €y that makes deg m(N) twoe k

. e,
Suppose Xx ¢ Z(SB) is of order n and n = \ ipil
' . i=1

(ei > 0) is the canonical factorization of n into prime
. k . ) ‘ e )

e, P.
power factorse Let m = l.[pil then (x7) 3 = x" = lea
i=1 .
ify
Hence if. x* = le and p|n for some prime p > 3 then
xm = le where m = §<. Hence if a unit of order n exists

then n = 213J-

, ij
Lemma 5. Suppose x2 37 . le, 1 > 2«4 Then
27137 = e
i=2

J
Proofs Let x! = x2 3 « Then (x')h = les Let

X be the group matrix for x' and m(\) thé'minimal poly~-

nomialAfor the associated Yq. Then deg ﬁ(h)~ ié one or two.
Case (i): m(N) is linears Theh 'Y = ¢l so by.

. lemma 2 vX ; ci ‘and c'= 3 l.v Hence X2 =vI and (i')2 = les

ond
tTigd

Since (x1)% = ¥° this implies the result.

Case (ii): m(A) 1is of degree two. Since X* = I,

vk

i

I so A -1 is an annihilating polynomial for Y. The
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unigue factorization of kh - 1 into factors irreducible over

the rational number field is A% = 1 = (L= 1)(n + 1)(A% + 1),

By lemma 3 m(A) = A2 - (tr Y)A + det Y has rational coeffi-
cients so we have two possibilities (a) m(A) =‘K2 -1
(b) "m(n) = A2 + 1.

Case (a): If m(N) = A -1 then v = 1 so

v° 1 Y? 4 e} ag = I, Hence X% =1 so
i-1

(x')2 = x2
- 5

Case (b): If m(\N) = A + 1 then since

33

= lee

n(A) = A% - (tr Y)A + det Y it follows that
tr Y = 2xl - xz'— x3 = @ and det Y = 1l. Since
tr X = Bxl = 2 tr Y + € * €, fr Y =0, €, =21, E, = 2 1

implies tr X = 0 so X, = O and El = -82. Since
81 = x x2‘+vx3 - XL - x5 - Xg and
82 T X v ox, # x3 + xh + x5 * Xgos El + €2~= 0 = xl,* x, * x3

and xh + x5 + X, = * ls Hence X,

= ~x3. Using lemma 1 and
the above results gives
P 2 _ 2 2 2y _
(1) det Y = 2x (xh t x5 o+ ox ) 1

(2) Ez(xl, X5, x3) = -xg = XX * X Xt XXy = Eé(xh, X5 xé?o
Multiplying equation (2) by two and adding it to equation: (1)
'gives | | |
Ll x XE? v 2lyxg + o xg oxgxg] = -Llx 2o x)°1 = 1
5

case (b) cannot occur and the proof is completea

but this is a contradiction since -~ (xh‘+ Xz + x6)2 < 0O Hence
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' i3 .
Lemma 6« Suppose x2 37 . le, j > 2, then

i -1
X23 = les

" Proofse Let x' = xziBj—Z. Then (x')9 = x213j = les
Let X be the group matrix for x'. Then X’ = I. so Y = I,
Let m(A) be the minimal polynomiél for Yav Since h? -1
is an annihilating polynomial for Y, wm(A) divides A’ - 1.
The unique factorization of h9 - 1 1into factors irreducible
over the rational number field is £5]

A R (R N Gl W DT S AR O
. S8ince by lemma 3 m(\) is a monic péiynomial with rational
integer coefficients éf degree one or two it.follows that
2

n(A) =A =1 or m(A) = A° + A + 1.

Case (i): m(A) = A= 1o Then Y =1 so by‘lemma_z

) i j?l
X =1 s0 x' = les Hence (x')3.= x2 3 = lea

Case (ii): m(A\) =A% + N+ 1, Then Y® + Y + I = o,

(Y- I)(Y2 + Y+ I) =0 =Y - I. Hence Y = I. Since

X9 = I, 52 = EZ = 1 so0 that since 9 1is odd 81 = 82 = 1(
) : i j=-1.
Hence Y2 ¥ Y2 4 el el =% = I, Therefore (x')? = x* 37 "= 1.,

2
Combining lemmas 5 and 6 it follows that if

X g'Z(SB) is a unit of order n = 213j then i, j = O or 1.
Hence thé only units of finite order are of order two, three or
sixae

We will now proceed to find infinitely many units of
each of these orders as ﬁell as infinitely many units of infinite

orderes
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The following equations will be useful in further .
investigation of units of finite order. Using the same nétation

as before,

E. + € o
' e, = €,

(2? x, * xg + xg =.—2—3+—— (=0, # 1}

(3? bx; = tr X =2 tr Y + g, % £,

(A} tr ¥ = 2x, - x, - Xge

Suppose x is a unit of order two and X the group

matrix for xe Then Y2 = I and m(h)lkz - l. Hence

2

m(A\) =A -1, A+1 or A* -1, If m(A) is linear then by

lemma 2 X = * I since Y = % I.

Suppose m{(\) = hz -~ lo Then by lemma 3 m(A) is

2

the characteristic polynomial for Y, A = (tr Y)A + det Y.

Hence tr Y = O and from (3) tr X = O, X, = O« Since

tr Y =‘2x1 - xé - x, = 0 it follows that Xy = X From

3 3*
(1) and (2) it is CIea: that xh'+ x5 + Xg = + ls Hence if

> ) Ny
X" Xy X, = k, x3_= -k, xl+ = m, . Xy

Xg = *+1~-m~-n, where k, m and n are rational integers,

i

= Q, = RN,

I either

or 1X = ~Js, Since 'x is a unit, det X = % 1. by Theorem 1l

Hence by lemma 1 EZ(O, k; -k) = Ez(m, n, +1 - m=n)s Hence
k, m and n must satisfy (I) k2 - m? - mn - n? tmzn = 0.
Conversely suppose k, m and n satisfy (I)es Then

if Xy = 0, %, = k, x3 = =k, xh = m, x5 =N, X = ' 1l-m~- n;
Ez(xl, x, ‘XB? = E2(xh' X5 o x6) 50

’
2 2 2 2 2 2 _
1Y Xt Xy = X T Xp < Xg = -1,
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tr Y = 2x1 - Xy - %3 = o, €1 % % + x, ¥ Xy = X, = X o= X o= # 1,

€y = X * x, X5 + X, * % vox, =2 le Hence
. det X = (det Y)2€l€2 = -1 and hz - 1 1is the characteristic
polynomial for Y. Therefore Y2 = I so X° = I and x is

of order twoe

If m =%k, n=-k equation (I) is satisfieds Hence
infinifely many . units of order two are'given byv X3 =\O,
bx2 =k, x

-k, x, =k, x5 = ~k, X, = * 1, where k is

3 L

any rational integerad Since the choice of two of xh, x5 and

X, was arbitrary, two other infinite classes. of units of order

two are given by Xy = O,.-x2 = k; x3 = ~k, xl+ =4+ 1, x5 = k,
R -k and Xy = O, Xy = k, x3 = -k, xh = k, x5 = + 1,
x6 = -k.

Suppose x 1is a unit of order three and X 1is the
group.matrix for xs Then Y3 = I and m(k)l?x.3 - ls Since
kB -1 = (A - l)(?\.2 + N + 1) +this implies, using lemma 3, that

m(\) 2

AN-1 or m(h) = N° + A + 1. It was shown above that

2

m (\) A=-1 then X I Suppose m{(A) = A° + A + 1. Since

. deg m(A) = 2, m(N) is the characteristic polynomial for Y,

kz -~ (tr Y)N + det Yo Hence tr Y = -1l. Using this together

with (3) it follows that %, =0 and €, =&, = 1. From (1)

and (2? it now follows that. Xy + X, + x3 =1, xh + x5 + Xy = O,
Hence if x is a unit:of order three, Xy = o, x, = k,

x3 =1 -k, ‘xh =m, X5 =1, X, =-m=n; where %k, m and

n
4+
[

n are rational integerse« SBince x is a unit det X

so by lemma 1 kX, m and n must satisfy
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(11) k(1 - k) + m° + mn + n° = O.

Conversely suppose k, m and n satisfy (II)a

If X, = o, X, = k, x3 =1 - k, xh = m, g =N, X4 = -m--.n,
then Ez(xl, Xy x3) = E2(x4' X5 xé) so
_ .2 2 2 2 2 2 _

det Y = Xy + Xg + x3 .xh, x5 Xg = 1,
tr Y = 2xl - X5 = x3 = -1, El = x5 + X, + x3 - XA - x5 - X4 = 1,

= . _ : _ 2
€, = Xy % x, + Xg t X, xR xS l« Hence det X = (det Y) €€,
= 1 and kz + AN+ 1 1is the characteristic polynomial for Y.

Therefore Y- + Y + I = O. Hence (Y - I)(Y° + Y+ K) = Y2 - I =0,
3

Y2 = I so I =Y &Y el g3 and x is of order

1 2

threes
Suppose x ¢ Z(SB) is such that for some rational

integer k, X = o, x2'= k, x, = -k, x

3

and X = 2 ls Then as was shown above x is a unit of order

twos Recall 'g2,= (123) ¢ s Consider y = Xg,X, ¥y = o,

3.
: a2 2 -

yo = =3k%, yg =3k +1, y, =-3k" £k y;=7%2k and.

Yg = 3k * ke Clearly vy # le and

v

fl

(xgzx)3 = Xg,XXg,XXg,X = le so y is a unit of order
threece This.gives an infinite class of units of ordér th:eeg
Using g5 will give another class as will ‘using different
classes of units of order twoa

This technique for obtaining units of order three
from units of order two is discussed in Taussky's paper [6].
Supbose x 1is a unit of ordef.six ané _X is fhé group

L 6 _ 6 6
matrix for xe. Then X =1I, so Y =1 and m(h)lk - la
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Since fhé.- 1

=102 ¢+ 1)(0+1)A2 - A + 1) this

2 2

X - 1, X + 1, A *'h + 1 or

implies m(A) -1, A

2 - A+ 1, If m(A) 4is linear then by lemma 2 X = 2 I

so X is not of order sixe. If n(\) = -1 then as above

X2 = I and X is not of order sixa Suppose

2

A

m(N) = A° + A + 1., Then since m(AN) is the characteristic
polynomial for Y, tr Y = -l. Using this together with (3)

it follows that
2

Xy = o, €, = 82 = la Since

m(AN) = A + A+ 1 it follows that

(Y = I)(Y? + Y+ I) = Y2 = T = 0s Hence X2 = Y2 % y3 i e{ i SZ
S 2

= I, a contradiction. Suppose m(A) = A - A + 1, Then since

m(AN) is the characteristic polynomial for Y, tr Y = 1, Using

this together with (3) it follows that x, = 0, €, =€_ = =1,

1 1 2
Since (Y + I)(Y? - Y+I) =Y +1I=0 it follows that

2

unit of order threeo If Z ié a unit of order three clearly

%3 = y3 13Y3'i'e§ i€l = -I, Hence (-X)3 =1 so =X is a

T —Z. is a unit of order sixe. Hence every unit of order six is

of the form =-Z where 2 is a unit of order three.

There exist infinitely many units of infinite order
Suppose x € Z(S3) is such that x =0, x, =k,

= k, = -k, X, = + 1 for some rational integer

x) X5
ke Then x is of order twoa Let X be the group matrix for

Xo Consider the unit y <corresponding to the group matrix

_ T _ 2 6 _ 2 _ 2
Y = X" Xe If y -‘ i=1 ylgl then yl = L‘_k + 1' y2 = =2k ’
2. 2
= =2k = k -+ = k
Y3 2k, yh 2 ks 2k( y5 2

all units vy 'of finite order except * I have vy, = O, v

T2k, v, - -Lk°. Since
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cannot be of finite order unless %k = 0, This gives an

infinite class of units of infinite order.
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7 The egquation 6 = AAT ;A_igg_gigg‘gi_ggggglmagriggg for’S3
| Let H bé any -finite group and'suppose G is a

unimodular group matrix for He If G = AAT, where A is a

matrix of rational integers, is it possible to find a group

matrix C ‘such that G = CCT? This question has been answered

in the affirmative for cyclic groups by Newman and Taussky [4]
and for abelian groups by Thompson [7]s This question will now

' be investigated for the group SB.

Let G = AA be a unimodular group matrix for S

3

‘where A 1is d matrix of rational integerss As discussed in
section 5 the group matrix depends on the numbering of the

elements of S_,e If another numbering of elements is used

3

the matrix X in section 5 is converted to PTXP, P a permuta—

T _ ,T,nT T

tion matrixe Since if D = P'cP, DD = pTecTr = PTGP, with-

out loss of generality ¢ may be taken in the form (A BT)

BT &
T T . .
where A, B, A and B are 3-sfuare circulantse
Let P, = (0 1 0 . P,= [1 0 0
0o 0 1 o 0 1
1 0 0 ©o 1 O
Q = (pl o) , sz(o P2) .
o P P, ©

Definitions The permutation @ = (12ess(n=1)n) € 5,
is the n-gycle. The matrix P ¢ M _(2) defined by

Plj = Eijéio"(j) (Eij = + l) ls a nerxr ized n-gygle‘.
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The following lemmas will be neededs

Lemma 7« If € 1is any 3-square circulant then
T

Proofs The result follows by direct computations

Lemma 8« The matrices Ql and Q2 commute with

the matrix Ge

Proofe The result follows by computation, the fact

that Pl commites with all 3¥square circulants, and lemma 7,

Lemma 98 The matrices A—lQlA, and A“lQéA are

orthogohalo

Proof. For i =1, 2; (" tq. Folcy 1. A)T =

= A (AT) -1

A”lQiAATQf(A'l) = aa"1a Q Q (A = I by lemma 8.

Lemma lOu There exist generalized permﬁtation matrices

M and M

1 5 such .that QlA = AM and -Q2A = AM

1 2"

Proofs The only orthoganal matrices of'rational

integers are the generalized permutation métrices so by lemma 9
there eiist generalized permutation matrices Ml and M2 such

' -1_. . ‘ -1
that A leA,= “Ml and A Q2A M2n

Lemma 1l Let: M be a generalized permutation matrixa
Then M is similar, via a permutation matrix, to a direct sum

of generalized m—cyclesa
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Proofs The result is obviously true if M is a
l-square matrixe Assume the result true for all r'< n and
suppose M 1is a n-square generalized permutation mafrix» If
there is a non-zero entry in the (1, 1) position of M the
‘resuit follows by induction on the matfix obtained by deleting

1Y

is 'a non~zero element in the first row of M. Suppose the non-

the first row and first column of M, If M = 0 then there

zZero element'is Mlja. By post.multiplying.M ﬁy a permutation
matrix Pl interchange the second colgmn and the jth,column.
Since left multiplication of MP, by P’ does not affect

the first row of MP,, pzlmpl has a + 1 in the (1, 2)
positions If PIlMPl hasla'“: 1 in the (2, 1) positién the
result follqws~by inductions If not, then theré exists a + 1

in position (2, j) for some j > 3s Interchange columps 3 and

j and roﬁs 3 and js Then either the (3, 1) element is a z 1

in which case the cycle closes off and the result follows by
induction, or there is a non-zero elément (3, j) for some j 2 Le
In this case repeat the abo§e processe. Since M is a generalized
permutation matrik a +1 must eventually appear in column 1la.

If this happens for some i < n the result follows by induction,

If this happens for i=n M is similai to the n-cycleeo

Lemma 12« Let R be the ring of matrices over 2
generatedbby 'Pl and P2. Then

- 2
R=1{Xe¢ My(Z): X = x T+ xpPy * xgP) ¢ x Py v xgPi Py

1 271 371 4
+ x-P2 x, € 2}
67172 i *
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. 2
Proof. .Clgarly R contains I, Pl'-Pl"PZ’ PlP2
and PiP2 (= P2Pl)° Since these six matrices form a represen-

tation of S3 in -MB(Z) this set is closed multiplicitively.
Since R is a ring of matrices over Z it must contain all
linear combinations.-of the above six matricess. The set

"+ x.P° + x P 2

'ix.e MB(Z): X = %1% x,P) 5P] N 2'+ xP Py + x,PTP,
x5 EIZ}
is a'ring. Since R is the smallest ring containing Pi and
P2 it is of the desired forma | |
Let A, .denofe the i#h rowvof A and write A
as a matrix of its rows: ‘A = Al
Ba
A3
By
As
N
Then QA = Az\ _ - BMp =AM
AB . v Ale
Ay : A3M1
A5 _ AhMl
\ Aé : A5M1
By BgMy

, by lemma 10, A&, = A M,
5 L

= = = 2 . p
agd A5 = AhMl' Aé —.ASMl Ahle' hence

so, since QlA = AM

A3 = Ale = AlMl
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" By lemma 11 there exists a permutation matrix S

such that STM

(S =P, %¥eee ¥ P where P (j =1, evs, k)
1 'k j :
is a generalized n, cyclee Hence Q.AS = AS (P T e 3P ),
j 1 nl nk.
. T T.T T _ , '
Since (BS)(AS”) = ASS™A™ = ABA~ = G we may assume without loss
of generality that M, = P_ % 0ea 2 P .
, o1 ‘ k
Since Q2 =1, (A710.8)3 = M = P23 % see ¥ P2 =1
» -1 1 1 n n
, ST 1 k
so Pﬁj = 1 for all j. If nj > 3 Pﬁ # I so none of the
. : b
Pn are generalized 4, 5 or 6 cycles. If nj = 2 for some j
then pnj = (o o'l) o, =21, C,=1zx1
Gé 0
and Pi =+ P ¥ I, Hence M, cannot contain any 2-cyclesa
'] ]
Sincer ni = 1 or 3 and ‘nl 4+ sen 4+ n, = 6 if Ml contains a

l-cycle it must contain threes

To show Ml " cannot contain an& l=cycles a technigue
due to Newman and Taussky is used [4]e Suppose M, contains
a l=-cycles Then it contains three l;cyclese Two l=cycles must

appear either in the (1, 1) and (2, 2) positions or in the
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(5,.5) and (6, 6) positionsa Without loss of _generality
assume they appear in the (1, 1) and (2 2) p051tlons. Then

(mod 2) has the follow1ng form.

M, = /1 OF (mod 2).
1 ] O
. . .

o 1. .
o =
o-

+ P

where P 1is a 4-square permutation matrch"Since A ﬁ'A M

2 o

hy = A M2 hg =AM and A = A M, A (mod 2) has the

171* 41 471

follow1ng forme

A = all'Aa12 815 8y, 85 g (mod 2)
all 6.12 »* +* %* +* ) ’
3y 3, O *r%
1 %42 %u3 o Cus o w6
a1 Mz % *
an a0 * g " »

The elements in rows 2 and 3 and columns 3, asa, 6

are just (a 3ay,r 8157 6) permuted by P and P2 'respeCf.

13’
tivelys Similarly, the elements in rows 5 and 6 and columns

2

3, #ee, 6 are just (a ahé) permuted by P and P

L3* ana'_aus'
respectiVelya '
The determinant of A 1is now computed modulo twb.

First add column 4, 5 and 6 to column 3. This leaves det A

(mod 2) unchanged and
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det A = det / * x % (mod 2)

al;.l ab,2 c, *  x #
3 *
a1 3,2 2 * O F

where éi = a4 f ap, + 515 + ajpr Sy T 33 o + 3,5 + aéé‘
all sums being modulo twoa

Now add row oﬁe to rows two and three and add row
four to fows five and sixes  Then det A (mod 2) is ﬁnchanged
and |

det A

LA (mod 2)

det / a4 alz. c,

Columns 1, 2 and 3 are essentially 2-vectors oﬁer
the field of residue classes modulo two. Since there are

three such vectors they are linearly dependent. Hence

det A = O mod 2. Since G = AA' is unimodular, det A =1 (mod 2),

cannot contain any

il

det A = 0 (mod 2) is a contradiction and M

l-cyclese
Since M; cannot contain any 1, 2, 4, 5 or 6 cycles

Ml = Rl 3 R2 where R1 and R2 are generalized 3-cycless
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= = g
Let R1 0 11 0 ’ R2 0 1 0
12 (o) 62
T 0 0 g
3 ¢ 3 o 0

where 7& = + 1, '01'= * 1s

Since I = (A—lQlA)B =M =R +R2 and

1 1 2
3. vrv«wx 3 - .o €ttt = s o o =
R? (%Y1, R) = 60,001 Y% =1 and 00,0 = L.
Let 8, = (1.0 0\, §,-= 1 0 0 .
o
0o % o 0 o o
¢
o 0 %7, 0 0 0o,0,
Th sTr.s. = p a sIig s - p Let S =85, %8 th
S R L] 1 en 2%2%2 S 1 27 en
sTMls =P ¥ P =Q. Hence QAS = ASQ;. Since

G without loss of generality let M, = Q;

(as) (as)T = aaT 1

sSO QlA = AQl.

Let A ('All A12> Where the Aij are

VBay Bap
3~square matrices of rational integersa  Then
Q8 = (PlAll P1A12> = (Allpl Klzpl) = ARy

P1A21 P1A22 A11P1 A22Pl

Hence PlAij = Aijpl (i, §j = 1, 2) and since any matrix that
commutes with Pi is a circulant, each of the A ., 1is a

3-square circulantas

Since A-l is a polynomial in A and the sum and

product of circulants are circulants, Aﬁl, when considered
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as a 2-square matrix with 3~square matrices as elements, has
elements that are circulantse. Also A-l has rational integer
elements as det A = % ls Every 3-square circulant of rational

integers is a linear combination of I, Pl and Piq‘ Since

\

- ' -1 =

Q, = <o P2> and A7 QA = M,
P, ©

M2 may Be considered as a 2-square matrix with elements in

the ring R of 3-square matrices over the rational integers

generated by Pl and PZ’

Let M2 =-('Mll' Ml2) wheré Mij = (i¢ i=1, 2)
M21 M22
is a 3-square matrix of ratiqnal integersa
Consider the first row of M24 Since M2 is a
generaliZed permutation matrix there is a + 1 either in
Mll or M12° Suppose it is in Mll° If the non-gzero element
is not in the (l, 1) positien of M11 by post‘multiplying M2

bring

by a matrix of the form P % P, where P = P, or Pf,

the non-zero element to the (1, 1) positiona
Note that since (Mu _Mlz) (p o) i (MllP lep)
le M22 o P M21P M22P
post multiplication by P % P does not shift elements from
one block Mij to another, and since Mij € R, Mijp € R
‘Since Mll € R, the ring of matrices over Z generated

by P and P by lemma 12

1 2
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M,.P = x. I + x.P

2
11 1 2F 3P1 PPy + x PYP

Lo2 T %5152 172

= xl + xh x2 + xé x3 + x5
x3 + xé xl + X xl + xh
x2 + x5 x3 f X xl + x6

Since M2 is a generalized permutation matrix there

is at most one non-zero entry in each row and column of M, ,P.

11

X, * x, =% 1 this observation

A

results in the following equations:

Since it was assumed that

(l) Xl + xh.v‘_‘ + 1 (h) xé + X6.= 0
(2) x3 + Xg = 0 (5)_ x3 + x5 =0
o .

(3) =x, + x5 =

3

Equations (2) and (4) yield Xy = x and equations
(2) and (5) yield ,x5 = xé. Using these facts MllP has the

form

MllP = .xl + X, o 0
(o] + +
X, X5 ) X,
0 x3 + xh X, + x5
Ir Xy X5 = 0O and x3v+ xh = 0, the;e.equations
together with equation (5) above yield X v x, = O, <contra-
dicting x; + x, = * l. Hence M;P =+ I or 3 P2' and
T - 2 i 2
since P =1, P or Pl' Mll =+ I, % Pl' * Pl,‘: P2,

LR

* P1P2 or % P

matrix M, # O implies M12'=.M2'1 =0 so M,, is a 3-square

P2. Since M2 is a generalized permutation

generalized permutation matrixe Similarly if M21 £ 0
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My, = My, = O and My, 1is a 3-square generalized permutation
matrlx.  Hence M2 = El 0 ) or Mé = 0 El)
0 E, E, O
where E, (i =1, 2) is a 3-square generalized permutation
matrixes
Suppose M2 = (El 0 e By lemma 6
© E
QA = [Fohyy P2Al2\ AiaFr BigBp) =AM
Py Pohyy Bo1Ey  ByoR,
so A21 = P2A11E1 and A22 P2A12E2. Then
A= [I 0 Biq A, .
O FPy] BB} B0E,
Consider det A (mod 2)e Since det I 0\ = 1(mod 2)
o P,
det A = det (A, By, (mod,z).
A..E A..E

111 “"12%2

Post multiplication of A by E interchanges the

11 1

columns of A,, 1in some way (mod 2), since E is a permutation

1

matrix modulo 2. ©Similarly post multiplication of A by E

12

interchanges the columns of Ay, in some way (mod 2).

2

Add columns 2 and 3 to column 1 and columns 5 and 6
to column 4e The determinant of A modulo 2 is unchanged

and
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det A =det [C, * # D * *\ (mod 2)
%*
Cl ¥* Dl * *
Cl % * Dl * +*
g ¥* » L3
¢y D, *
% +*
Cl Dl * %
* % * %
¢ D,
where Cl dénotes the row.sum of éll and Dl the row
sum of 'A12° Since» Ali and A12 are circulants the row
sums are the same for each row of All- and eacH row of A12'

Now add the first row to each of the others to obtain

det A = det * = D o® » (mod 2)

1 1

C

0 0

0 0

0 ®* % 0 * %
0 0

0 0

CoYumns 1 and 4 are essentially two l-vectors of the
‘field of integers modulo 2 so are linearly dependent and

det A = O (mod 2) which is a contradictione. Hence M is of

2
the form ( o} El) °
E2 0
By lemma 10 M2 = A—leﬁ and since Qg =TI
2 172
0 | E2El

»(A-IQZA)Z = M° = ( E.E. - O ) - I,
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_ =1 _ T
Hence E2 —-El = El'

Since QlA = AQl and Q2A ='AM2 it follows that

Q1908 = Q 080, = QAM,Q) = AQ)M,0Q,« Since Q,Q,0, = Q,

this implies Q2A

AM2 = AQleQl and since A 1is non-
singular,
QM,Q, = ( 0 PlElPl) = ( 0. El) = M.
, PlElP .0 . El 0

It has already been proved that E

17171 1° 1
. : 2 ’ 2 ]
is one of + I, + Pl' * Pl, + P2, + Pl PYA- P1P2. Since
. ' ~ 2 .
P1E1Pl = El' E1 cannot bg any of + I,.i Pl' + Pl. Since
_ 2 52 N » - i
P1P2 = P2P1 and P1P2 f PZPl it follows that E, =2 P2P1
(1 €35 3)a Hénqesigce (PZPi)T = ngi, -
_ ]
M, =t ( 0 P2Pl)
- 3
P2Pl 0]
By lemma 6,
= . ] j X J = .
Lok ,(PZAZI P2A22) ,3~( BioPoPy B PRy = AN
: ' J J
Phi1 Pohipn BaaPoPy B PoPy
\ . == j | = . A j
Hence A21 * P2512P2P1 and A22 + P2A11P2P1.

Recall Ali and A12 are 3-square circulants so by lemma 7

By, = # Aszi and B, =+ Aflpi. Since 81, and K], are

circulants they commute with P{" so Ay = PRI, and

By, = * PlAY. |
Choose k such that j +k = 3, then PJ'% =1,

Let K = &+ I 0 ) « Then
» k
0 P
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AKX

]
H
(@)
=
s
|
e
s

11 12 - 11 12

o bl \elal, welT Vel e,
= ‘All AlZ =‘Cs
Bl, AT
Sinée .All and 512 are circulants C is & group matrixa.
Further ccT = AkkTAT = 24T = ¢, since X is a generalized

permutation matrixe

Theorem 3+ Let G be a unimodular group matrix for

the group 83 and suppose 0 = AAT where A 1is a matrix of
rational integerse« Then there éxists a group matrix C such
T .

that 6 = CC™»

Definitions Sﬁppose X € Z(SB) is a units Then x

is positive definite symmetric iff the group matrix for x 1is

positive definite symmetrica

This definition is independent of the order in which
the group elements are taken.since it was shown in section 4
that group matrices for a fixed element x ¢ Z(SB) corresponding
to diffefent orderings of g:oﬁp elements are simiiar via a
bermutation matrixe |

Since it is known [2] that ahy n-square unimodular
positive definité symmetric métrix of rational intégers is of
the form AAT if n < 7 (this is false if n > 7) the following

result is also clear.
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Theorem L. If H is any unimodular positive definite
symmetric group matrix of rational integers for the group S3
then H = Hle where Hl is a group matrix of rational

integers for S_.

3
It is known [3] that if H is positive definite then

11

It was established in section 6 that the groupAmatrix for a unit

H,, > Os Since H 1is a group matrix Hii = Hyy, 1 = 1,%%e,6,

of finite order has a zero diagonals Hence the following result

is cleare

Theorem 5« The positive definite units in 2(s;) are

all of infinite orderes

There are infinitely many positive definite_units of‘
infinite orders Explicit formulas for an infinite number of.

positive definite units may be found on page 18,
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