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ABSTRACT

The purpose of this thesis is to give a survey of the methods
currently used fo solve the numerical eigenvalue problem for regl
symmetric matrices. On the basis of the advantages and disadvantages
inherent in the various methods, it is concluded that Householder's
method is the best.

Since the methods of Givens, Lanczos, and Householder use the
Sturm sequence bisection algorithm as the final stage, a complete
theoretical discussion of this process is included.

Error bounds from a floating point error analysis (due %o Ortega),
for the Householder reduction are given. In addition, there is a

complete error analysis for the bisection process.

I hereby certify that this
abstract is satisfactory.
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CHAPTER I
Introduction and Summary

According to Lanczos[ 9] , matrix theory has its origin in the polution
of simultaneous linear algebraic equations. Oﬁce a complete symbolization of
algebra was introduced, a general solution 6f a system of equations by
Cramer's rule was discovered. However, the emphasis was still on arithmetic.
During the nineteenth century, interest in the operational aspects of
methematics came into focus. Cayley (1859) extended the realm of algebra by
showing that a matrix can be regarded as one single algebraic operator. The
theory of the characteristic equation was developed by Sylvester and Weierstrass
and finally, Frobenius gave a complete algebraic theory. Fredholm (1900)
extended the algebraic theory of the characteristic equation to the case of
infinitely many vafiables, thus laying the foundation for the geometric
treatment of linear differential and integral operators.

The characteristic equation with the associated eigenvalueé and elgenvectors
has many fields of application. These include vibrations, atomic and molecular
oscilllations of particles, boundary value prdblems, and factor analysis.
Evidently then, a knowledge of the methods available for the numerical solution
of the eigenvalue problem is important.

The purpose of this thesis is to give an exposition of these methods for
real symmetric matrices. The essay has two main sections. We begin Chaéter'II
by discussing, briefly, the determinant and "serial" methods for obtaining
eigenvalues. The shortcomings of these methods are pointed out. Then, the
more successful methods of Jacobi, Givens, and Lanczos are described in some
detail, and, we complete the descriptions by giving a détailed account of
Householder's reduction algorithm. Reference to detailed accounts, proofs of

convergence, and error analysés are provided where available, The last



section of Chapter II deals with the Sturm sequence algorithm which is used
as the final stage in the methods of Givens, Lanczos, and Householder.
Originally, we had planned to obtain a floating point error analysis
for the Householder reduction and to present the details in Chapter III. 1In
addition, several numerical experiments were planned. Before this work was
completed, James Ortega's paper [lO] appeared and we discovered that he had
treated, in detail, all that we had planned. As a result, in Chapter III,
we first present the basic preliminariés necessary for any floating point
error analysis and then limit ourselves to statimg the results obtained by
Ortega. For completeness of treatment, we also give an error analysis for
the Sturm sequence bisection algorithm. In the last section of this essay,
we justify our emphasis on the Householder algorithm and indicate an area

for further research.



CHAPTER II

METHODS FOR REAL SYMMETRIC MATRICES

Classical Methods

Here, as in the rest of this chapter, we let A = (aij), with ajj = aji

for i, j = 1,2,...,N, denote a real symmetric matrix. From a theoretical
point of view, it is apparent that the eigenvalues of A could be determined

by finding the N real roots of the equation
det (A-ANTI)=0

which is an N-th degree polynomial equation in A . Unfortunately,.a satisfactory
realization (i.e. on an automatic computer) of this theory is not yet feasible
for matrices of relatively large order, say N~100. The details in support
of this statement are to be found in a paper by H.H. Goldstine, F.J. Murray,
and J. von Neumann.[h]. We sketch, briefly, some of their results.

The direct use of det (A - NI) involves two problems. These are to

~determine the coefficients C:; (i =1,2,...,N) of the equation.

1

dget (A - NT) = N+ c; AN, NN2  ep -0

and then, to determine the N real roots. Goldstine, Murray, and von Neumann
divide the known methods for determining the Ci into three classes Eh; p.60] .
One of these classes is rejected on the grounds that the number of multiplications
required is of the order of o [h; p.6d} which is a prohibitive figure for
N~100. The methods in the other two classes are rejected by giving an example
where the ratio of the largest to the smallest coefficient is of the order
lO)+3 [L; p.61} . They conclude [14; p.6l} :

It is very difficult for us to see how any procedure

which gets all the coefficients C,,...,Cy at one time,
V., can give results with any acceptable precision



unless a very large number of digits are carried
throughout.

The authors next discuss the problems inherent in root finding algoritlms.
Again it is shown [ 4; p.62] that accuracy would be obtained only if a large
number of digits are carrded throughout.

The authors go on to discuss the "serial"™ methods for finding the
characteristic values of a matrix. They point out that most of these methods
depend upon the spectral decomposition of the matrix A. An example is
the power method.(see e.g. [;6} , P+33).. The authors also point out that
these methods are costly in matrix multiplications and that to get an
accuracy of 10-5 in the largest determined eigenvalue, 15 decimal digits
must be carried to allow for loss of precision due to the inherent instabilities
of these methods [h; p.65] .

Another difficulty of most of these schemes is that, in case all
eigenvalues are desired, we must be aware of the fact that the approximation,
A i » to the i-th eigenvalue is contaminated by the errors in the previous
oneg - namely, >\l ,>\2 geeesy >\i-1 \-_)-I-; p.65] .

Thus, with regard to the classical and serial methods, we believe, as
does Givens &3; p.3] , that Goldstine, Murray, and von Neumann have shown
that these methods are unsuitable for use with automatic computers if all

eigenvalues are wanted and the matrix is of relatively high order, say N~+100.

Recent Methods

We now begin the description of methods currently in use. These methods
do not require computation of the coefficients of the characteristic equation.
Moreover, they yield the eigenvalues in such a manner that any error in the
approximation, %‘i: to the i-th eigenvalue of A is not contaminated by

e N

a paper by Paul A. White {13].

errors in )\l, A Most of the descriptions were taken from



The Jacobi Method

In 1846, C.G.J. Jacobi [7] introduced a method of reducing A to diagonal
form by means of a sequence of simple orthogonal transformations known as
(r)

plane rotations. If we let Uij be the r-th orthogonal matrix, then we

obtain a sequence of transformed matrices A(r) with A(O) = A and A(r) =

Ui(r) A(r'l) U.(r) where (’u.. = cos ©
J ij ii r
ujj = sin er
(r) uia = sin er
u,., = g

1] uJi = COs er

Upp =1 s k=1,...,N k#1i,]

L_uij =0 otherwise,

the angle, ®., being chosen so that the elements in the (i,3) and (j,1i)

positions become zero. That is, Jacobi's method depends on the choice of

U.. such that
1J

RO Y ) ) (r-1) (x)

Ipdp Uir—l Jpe1 tC Uiljl A Uiljl e Ui jr-l

(r)?

where D is a diagonal matrix and Uirjr is the transpose of Uj;

(r) :
.- . Jacobi
rdr
annihilated (i.e. rotated to zero) the maximum off-diagonal element at each
stage, and he was able to prove that after some finite number of steps, M,
all off-diagonal elements would be less in magnitude than any preassigned
€> 0. J.H. Wilkinson [17] gives the details for this method and also
discusses the practical details for actual numerical work. Goldstine, Murray,
and von Néumann{;hl give a thorough theoretical discussion of the Jacobi
method.
There are two evident drawbacks to this method. The first is that

scanning the matrix for the largest off-dlagonal element at each stage may

be time consuming. The second is that the nature of the orthogonal



transformations in no way guarantees that an element once rotated to zero
will remain zero throughout successive stages. Hence, the scanning must be
done over the entire set of off-diagonal elements. There is, however, a
complete error analysis for this methodEu+l. Because of the drawbacks,
White notes that this method has been replaced, in practice, by two
variations which we now describe.

The first of these is known as the cyclic Jacobi method. This method
removes the first drawback by systematically reducing to zero in turn each
element of the first row, regardless of size, provided of course, the
element is not already small enough; then, the second row, and then, the
third, etc. Because of the second drawback, this procéedure is iterated
until all off-diagonal elements are sufficiently small. With sufficient
restrictions on the rotation angles, G. Forsythe and P. Henrici [21 have
been able to prove that this method converges.

The second variation }s really a modification of the preceding method
and is due to Pope and Tompkins {12] . We start with some threshold value
1>t5 0 and reduce to zero first, only those off-diagonal elements whose
magnitude exceeds t. Iteration is done until all off-diagonal elements are
¢t. For the second stage, the threshold value is t2. This procedure is
continued until t2 ig sufficiently small. The advantage of this method is
that it is faster [13; p.398] than either the classical Jacobi or cyclic
Jacobi method. Probably the best of this class of methods would be some

combination "eyclic-threshold" procedure.

Givens' Method

A detailed account of the theory and a complete error analysis for
Givens' method occurs in an Oszk Ridge National Laboratory Report(:3} .
This method is based on the reduction of A, not to diagonal, but to triple-

diagonal form. This form is reached after N-ILZN_E) rotations. The



first rotation is made in the (2,3) plane and the angle of rotation is chosen
to make the element al3 zero. Then, systematically, the elements in positions
(1,4),..., (1,N) are made zero. Then elements (2,4),..., (2,N) are made zero,
but the zeros in the first row and column remain unaltered.

Since the rotation may be omitted if an element that is to be made zero
is already zero, Givens' method has an advantage over the classical Jacobi
method; also, the rotation angle is easier to compute for Givens' method.
Moreover, one system&tic sweep through the matrix A results in the triple-
diagonal form. A drawback, of course, is the necessity for computing the
eigenvalues of the resulting triple-diagénal matrix. This is done by a

Sturm sequence proeess which is described in the last section of this chapter.

Lanczos" Method [ 8]

Lanczos' method, like those of Givens and Householder, reduces a
symmetric matrix to triple-diagonal form. The following description is
taken from a detailed treatment by J.H. Wilkinson [l?J. Starting with an

arbitrary vector El’ we construct a sequence of orthogonal vectors 91’22""’EN'

b

5 is taken to be the component of Ab, which is orthogonal to El - that is

T
By ey
T
b, oy

T
bp = Ay -y b,  The requirement that by by = O implies Xy

The vector 23 is determined from the equation

b. = Ab -
by = Mo, . A b, - By

under the conditions that p_th% = 0, 1_0_2Tg3 = 0.
o T T T
h b Ab
This gives 0(2 = b, A, 1’_31 A1_32 b, ’9_2
and B:2==-—————- = =t
T T
b b T
% 22 2R )

In general, the vector Er+l is determined from

b = - b - b - b .-
“r+l Agr dﬁ- - pr—r+1 Y —r-2 &% El



such that b
—r+

1 r-1"" =-1-
b T
This gives a(r = . A’Qr
b T b
-r -
pr - B
ro= —r',i"_—r s, with the other constants being zero.
E1”-1121'-1
The last two constants, & __ and B , are obtained from b =AM~ b -~ b
N N N+l N NN N "N-1
by choosing b db 3
Y & —N+1 orthogonal to 1—3-1\] an —N-1. It can be shown \_.17,' p.l39} that
BN+1 is necessarily orthogonal to EN-Z" v El and that EN+1 is the null vector.

The process terminates at this stage.
The above description tacitly assumes that no Er is the null vector.
Such an assumption is not valid [17’ ; pp.l39-l)+O] . In case gr is the null

vector, we replace Er by an arbitrary vector Er which is orthogonal to

2.1 b ,***, b,» and continue the process. The only change introduced is
r -Tr-2 =1

that ﬁ =0 [17; p.lLLOJ . We now form the matrix B defined as
r

B = (P‘lf 132;....2_131\])
or
B= (E‘lg -922 e e ;_C_r; :-'-E-EN) - i.e., the

matrix B has column vectors equal to the above constructed orthogonal set of

vectors. It can be shown [17; pp.lhl-lh2] that



of B
B-l AB = 1 2
1 Ao B3
1 ol 3 By
y.y B
1 oy
— ]
or —

if, for example, 33 = 0.
Thus B-l AB is similar to A. The eigenvalues of A are found by determining
the eigenvalues of Bt AB . We can, with a little work, consider a symmetric
triple-diagonal matrix C instead of B-lAB which is not symmetric. This
matrix C is obtained by normalizing the vectors Ei Ijrn pp.lh?-lBl].
Consequently, the Sturm sequence method for symmetric triple-diagonal matrices -
also applies here.

This completes our descriptions (other than Householder's method) of the
methods used for finding the eigémvalues of a real symmetric matrix. We
point out that the above are descriptions only and that for numerical work

these descriptions hardly suffice. We now consider in detail the method



10.
due to Householder.

Householder's Method [15]

Householder [6] suggested that the orthogonal similarity transformation,
used in reducing a symmetric matrix A tq_triple-diagonal form, be obtained
as a product of simple orthogonal matrices, P, given by the form
(1) P=I=2wuw"

where w 1s a column vector such that

T
(2) vy o= 1.

It is easy to show that P is symmetric and orthogonal. The symmetry is

obvious, and the orthogonality then follows since

Ty

I

T
(3) PP (I-2ww D) (T-2vw
= T-bhww sl yy?
= T.
In order to make Householder's method explicit, we begin by defining a
column vector w_ by
2
(4) v o (o 0,X
e = R R R S ) X'N) ’

so that W  is a vector with its first (r=1) components equal to zero. We

then take Pr to be a P matrix as given By equation (1) with w = w.. The

transformation of a given (N x N), real symmetric matrix, A (eij), to

triple-diagonal form is effected by (N-2) successive similarity transformations

Pss P3,---, Pyl + If we let A = A(l), then A(T) is defined by the equation
(5)  alf) _p alr-1)p

r r
where A(r-l) contains (N-r) elements in row (r-1) each of which i's to be

reduced to zerd by the transformation with matrix Pr. This gives us (N-r)

equations to be satisfied by the (N-r+l) elements of w. . From equation (2),
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as applied to Y. e obtain

2
+ 2
X Xp57 + -0 + Xy =1.

These (N~r+l) equations determine the (N-r+l) elements of V.. but, because,

as will be shown presently, there is a square iavolved, we are able to choose

a determination which will give the greatest numerical stability or convenience.
Before we consider in detail the algebra that is involved, we prove two

simple facts about the transformation with matrix Pp. The first of these is

Result 1: The transformation with matrix P, leaves undiéturbed the zeros in

rows and colums 1,2,...,r-2.

This result is routine once the form of matrix P, is shown. Evidently,

r-1
/\/\—————'——\' _
E
1 0 ©0
O 1 0
PI‘ = r-1
0 O 0 1 0 0 0
)
0 © 1-2X,  ~2XoX 4q , -2X Xy
-2X 4% 1 2x2 2X
r+1°r Tehpt] -2Xr+1Xy
(1-2x2 }-2%X . X
N-1 N-1°N
- )
2K Xy 1-2%
. -

Thus premultiplying any (NXN) matrix B by Pr leaves the first r-2 rows and columns
of B unaltered. Now suppose

A 7
Bo % Pg 0
B = Pro %o Peal o 0 _ ax-1)
#r—l X X . o ... X
0 X X . . ... X




and we post multiply by Pr'

first to be altered.

The second simple fact is:

Result 2.

12.

It is clear that row and column (r-1) are the

This verifies the first result.

e al) . 120 alr-1) P, vhere A(r-1) ang P_ are as before, then

t%e sum of the squares of the elements of row (r-1) of A(r-l) remains invariant.

Proof. Because of the gbove discussion, it is sufficient to show the result

for
ra
11
A =
!
[ 1
0
P2 =
0
L

Since PoA Po= (I - 2 Wy

(6) PoAPp = A - 2

where
(1) a=2aw,
with

T
(8) k = (w

12°

-2X X, -

A—EHQ

1N

aNNJ

0

—2X2XN

2
1-2Xy

-

, with 8y

wp' ) A (I-2 wp wpT )

wol A - (gt A p ) wp T

-2 A Yo o~ Wy (w Taw

-2 -2

T

T
o4 -2g s

)

W

-2

T

)

3 = aji’ and
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Consequently, the first row of P2AP2 is

(897 s 81p =29y X5 5 &3 - 2a) X35 vv 5 @y - 29 Xy )

Thus the sum of the sgquares is

2 2 2

(all) + (a12 -2q X2) + ... 4+ (.alN -24q XN)

2 2 2 2 2 2 2 2 2]
=all+a12 +...+8.1N + Ll-[qu2+ qu3’+.'.+quN

- U [312 ql‘X2 + al3 43 X3 + oo +age q XN]
_ 2 2 2
= all + al2 + ... + alN

. B 2 2 2

since gy = a)oX, + 213 X3 + ... + ajy Xy and X2 + X3 + ...+ Xy = 1.

This establishe§ the second result. (It should be noted that Wilkinson
[15; p.EM] states that the sum of the squares of the elements in any row must
be invariant.)

Because of Result 1 above, the details of the transformation with
matrix P.. will be illustrated for any stage r, if we provide the details for
A(r) = A and P, =P, - i.e., the first stage. Let A = (aij) i,j = 1,2,..., N
and let wol = W' = (0, X, X3, +--» ¥y), SO that

Xg + X§ + ...+ X§ =1".

We wish to determine P, such that PoAP, has zéros in positions (1,3) , (1,4),
oo, (1,N) and in (3,1), (4,1), ...., (N,1) . Since left multiplication of
any (N x N) square matrix by P2 leaves the first row unaltered, P2 APo
has the desired zeros if and only if AP, has the desired zeros. Thus ¥ must

be chosen accordingly.

Since AP, = A(1 - 2 wp woT)

1t

A-2p, Wt

the following set of equations must be satisfied



1h.

al3 -2 P, X3 =0
g1y " 2P Xy =0
Moreover, from Result 2
1
(10) a1, - 2 Py X2 = + s® where
2 2 2
S = 8.12+al3+ [P +alN

If we multiply equation (10) by X, and the successive equations of (9) by
X3, X, -+- , ¥y respectively, and then add the resulting equations we obtain

by using equations(3) and (l)
1

- >
(11) »p, = ¥ X, 8
Substituting (11) into (10) and solving for Xze , We have

(12) X = % |17 i%_g , and,

putting (11) into equations (9) we have

(13) X = +*

where k = 3, 4, ... , N. The upper and lower signs go together in equations

(10), (12), and (13).

From equation (10), we see that

@2=a12-2p1X2= * (s%) and
(1%) o

fl

17 811
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where we denote the final resulting triple-diagonal matrix by

l(l 6, X 7
Br oy By
.. Ps s, Py
i Bra ¥pa By
Py “x
i i

The above choice of signs means the Xi's are not uniquely defined (we
referred to this before) and consequently, for practical work, we are free to
choose that sign which gives greater numerical stability.

Let us digress a moment to ascertain what aspects must be considered so that
we obtain accurate results. We refer specifically to a paper by C.T. Fike [l] .
In this paper, Fike defines the P- condition, Pk(A), for any real, N-square
matrix A and its proper value o(k . He says that " Pk (4) can be regarded
as a measure of the practical difficulty attached to the problem of computing
the proper value O(k ." Using this P- condition, Fike goes on to show that
real symmetric matrices are well conditioned - i.e., there is not too much
difficulty in computing a proper value(Xk of A and that "similarity transformations
made with orthogonal matrices cannot cause a deterioration in the conditioning
of the problem.” Fike also refers to Householder [5] and Householder and
Bager [6] who suggested that orthogonal similarity transformations are
particularly stable in numerical work. Wilkinson [15] also says that it is
essential that the matrices, Pr’ be as accurately orthogonal as possible.

As Wilkinson goes on to point out, this means that, since we determine

X3 Xh 3oy XN , for example, by dividing by X2, we should choose the sign
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: . 2
in equation (12) such that X,” is as large as possible. If we do this, the

resulting equations are

2
(15) X, = 3 [1 + 8o SGN(alz)]
2 —s -

g2

873 SGN( 81p)

(16) X,

3
2X S
2

with X2-= x22 ;, since the sign 1s not important, and
an B :

= - SGN S

2 (al2)

where SGN(a,,) = 1 if a,2 O

-1 if a12<0.

If we use equations (12) and (13) then, according to Wilkinson.ElS; p.2h] 5

the equation

X2 + X2 + + 2 1
5 3 ‘o XN =

is very accurately satisfied. As a final practical detail, we point out that the

transformed matrices A(Q), A(3) 3 ey A(N-l) are obtained by using equations

(6)) (7)) and (8)'

Bisection method for the Eigenvalues of a Real Symmetric Triple-Diagonal Matrix

It is evident from the sbove descriptions of the methods of Lanczos, Givens
and Householder, that we need a method for obfaining the eigenvalues of a real
symmetric triple-diagonal matrix C = (cij)’ where

iy = - J=1 ,
0 |i-31>1

and

1,141 €141,1 B Bi+1 i=1,2, .... , N-1
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We shall consider in detail the bisection method for computing the eigenvalues
of the matrix C. This method depends upon the Sturm sequence associated with
the matrix (C -)\I), >\ real. Ortega[ll-] considers the theory in detail. He
even gives a grivial example to show that the theory in Givens' Oak Ridge paper
is not quite correct [ll; p.26] . We consider the special case where none of
the Bifs are zero. In case there are any ﬁ)i's exactly zero, they are
replaced, in the program wtitten, by the smallest positive number recognized
by the machine. According to Wilkinson [137; p.l301 » exactly zero Bi's are
very rare and in case there is aﬂi = 0, he feels that it is not worthwhile

to separate C into two matrices. Givens [13; p.hOi} has apparently shown that
such a change can cause a change in the eigenvalues of not more than twice the

magnitude of the non zero term replacing the zero. As the error analysis given

below will show, such an error is indeed of no consequence to the accuracy of

the method.
For the matrix C - AI and i = 0, 1, 2, ..., N, we consider a sequence
T3 of the upper left principal minors defined by:
1 if 1 =0
(27) £ (N) =
(£ -N) if i=1
2
- - i<
(; )\)fi_l Bi° £, for 2¢i<mW.
Definition 1. For i # N, put
SGN [fi(X)] = (+1 if fi(>\)>o

-1 if £, (N)<o,

and for i =N .
+ 1 it fy (N)>o

SGN [fN (X)] = -1 if fN (A)<O
-SGN[fN_l(A)] iffN()\) =0 .
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Definition 2. Iet A (>\) denote the number of ‘agreements in sign of the
sequence {fi (A )} (i =0, 1, ... , N ) calculated by means of definition 1.

Theorem: Iet a real symmetric triple-diagonal matrix be given by C where none
of the Bi's are zero. Then, for any real )\)the number of eigenvalues of C
that are greater than A is given by A ()\) .

Proof: We first establish the following properties of the sequence {fi (A )B :

(a) Two consecutive f; (A) cannot both vanish for the same A .

(b) 1If £, (AN) =0, then fi_l(>\) . fi+l(>\-)<l for i =1, ... , N - 1.

(c) £y (A) = 0 has no multiple roots. Property (a) is proved by induction.

Obviously, both fO and fl cannot be zero. Hence, we assume the result for

k<N and show that f, and fk+l cannot both be zero. If

2
£, (N) = (ot -N) £ o (X)) -B, £, 5 (N) =0, then

I

2
Tren (M) = (Kyeg =AY 5 (V) By £y (A)

-pkil 1 (A)# O , since

Bk+l # 0 and by the induction hypothesis £, , (A ) # 0. Property (b) is

esteblished by using property (a). If £; (A) =0 then f (A) £0 and

consequently, (fi_l (\ )] . {fiﬂ- (X)] - - ﬁii [fi-l (>\)] < o.

To prove property (c), we first note that fy (AN) = det (C - NI). By

|

property (&), if iy (AN) =0 then fy1 (A) # 0. Therefore C - NI 1is of
rank N-1 since Ty (A) is the determinant of the matrix obtained from
c - )\I by deleting the last row and column.

C - AI is symmetric implies that there exists a unitary transformation U such

that U2 (C - AI)U= U CU- NI is diagonal. That is ,
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X Ul-x 0 0
U™ (C- NI)U-= o )\2_)\ o o

0 o>\4 -A
N

-

Since C = A I 1is of rank N-1, at most one of (>\i -N) is zero for
i=1,2, ..., N. Thus Ais a simple eigenvalue of C and a simple zero of fN'

To estgblish the conclusion of the theorem, we assume

N N-1
) L (N, (N g (M) 2y (/\>>
is & classical Sturm sequence for A , not a zero of f That this is the case

will be proved later. Thus the number of zeros of fN greater than A is equal

to the number of variations in sign of (*). If we rewrite (*) as

<fO s =Ty, v Iy, - f3 I > then there is an agreement of signs in
{fﬂ if and only if there is a corresponding difference of signs in (*).

Hence, if A is not a zero of Ty, A (A\) gives the number of roots of £ (A\) =
that are greater than >\ . Now suppose >\O is a zero of fN' Then by property
(b) end the fact that fy-1 is a continuous functdon, we may conclude that there

is some €- neighborhood of )\O, say N (/\O, €), such that fN—l (N) # 0 for
A€n ()‘O’ € ). Consequently, SGN [fN-l (A )] is constant for NEN ( )\O, €).
Moreover, since fy_j ()\O )‘,40, the number of agreements in sign is constant for
the sequence <fN-l (N), - 5 fo> provided AE X ()\o, € ). Since >\O
is a simple zero of fy (N), A (}\o - 2) - A (AO + S ) =1 for a gsuch
that 0< < € . Therefore, SGN [fN ( Ao- 5 )] = SGN \:fN_l (Ao - § )]
In the limit, as B-—>O , we have, using definitionrl, that SGN [fN ( )\O)‘J

SGN [fN_l ( )\O)] . Thus A( Ag) =A ()\O-S) - 1. That is, with our

choice of signs, A (A) gives the number of eigenvalues of C greater than A .
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To complete the proof, there remains to show that.the sequeuce (*) is,
for not a root of fiy (A) = 0, a Sturm sequence. This is verified by
induction, but before doing so, we give an illustration for the sequence
<:fo, - f1, T, - f3, f4;> - Let us consider the following diagram where
the horizontal lines represent the A -axis and the heavy vertical bars the

roots of f5 (i =0, 1, 2, 3, 4).

hif

o * + + + + S
_% - - —_ - I+ +  +  + o+ 3
f2 + 4+ + + + | = ——= | +++ + + + 5
_% ————— |¥++ f — — = — — | + + + + + 3
Q T T I e s T e i i 5

Cledrly, if the zeros of fi are in the relative positions shown,

<:fo, - 11, f2, - f3, f£> is a Sturm sequence. Consequently, for the
general sequence (*), we need only show that this relative rositioning is
necessary. For the initial induction step we consider <fo, - fl>. From

the above diagram, this is clearly a Sturm sequence. Assume that for K N,

K even, <fO, - fyy, oo, - Ty s fK>
has the relative positioning mentioned. We wish to show that
<:fo, - fl, ceee gy .- fK-l 5 fK, -, - fK+l>>

also has the desired relative positioning of the roots of fi =0
(i =1, 2, ... , K+ 1).
By the induction hypothesis, the zeros of fK are positioned relative to

those of 'fK-l as follows;
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—fK-l‘

___[+++‘___|++;;___.J+++ l—-—|+++ N

fK:

T L e I R el

“Tge1

- - " [F++
(K+1) e

Consider the largest root, , of (N) =0. For A large enough

- Tk

-~ fK+l (>\) > 0. Hence, to the right of )\J(_K+l),the sign of - T is positive.

K+1
For /\1(-1{) we have that [— fK-l (>\§_K) )‘_\ . "- fK+]_ ()\(If) )] ( 0.

Consequently - £y, (A](_K) ) € 0. Thus _>\1(K) < }\l(K"‘l). Similarly,
)\(K+l)< X(K)
K+1 K
Because of property (a), we know that no root of B (A) =0 is a root

of fyuq (N) = 0. Consequently, the remaining K-1 roots of Trel (N) =0 are
distributed withia the K-1 intervals determined by the K roots of fjy ()\) = 0.

Because of properties (b) and (c) and the induction hypothesis, we may say

tnat £ (NE) o, g, (NED) >0, 1, ( )\%K))< 0, «vv s Fpy NEIDO,

in the interval[}\(ﬁ) s X(I:E)]

That is, there are K-1 distinct zeros of fK+l

Clearly, the only disttibution satisfying the conditions is obtained if two
consecutive zeros of fK+1 straddle a zero of fK. The argument for K odd is
obtained by an obvious variation in the above argument. This completes the
induction and we may conclude that (¥) is a Sturm sequence. Moreover, the
proof of the theorem is now complete.

We now give a description of the bisection procedure. We assume that

the maximum modulus of the °<i's and f)i's is less than 1 - i.e.,

max {\o(\ s I ﬁ'} { 1. We find the eigenvalues >\ (i =1,2,...,N)
i i i i
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of C starting with the largest and ending with the smallest. Theoretically,
this is accomplished by evaluating A(X) at the points P-i, P-2,...,P-k until
a k-value is reached such that A (P-k)> 1, where P is given by mitxﬁﬁll + | il
+ | @iﬂ\} (i =1,2..., N). By the above theorem, A is such that P-k< A &
P-k + 1. The interval of unit length (P-k, P-k + i} is divided into two by
adding % to P-k. ILet us put P-k + 1 = X\ so that the interval we congider is

A -1, >\] . To determine whether >\‘ € N\ -1, A - %] or (N -3, )\-] ; we
evaluate A(A - %). Suppose >\| E (A-13, )\]—i.e., A (N - )> We now divide
(X- 3, >J by adding (% ) l to A - % and evaluate A (A - % ) to determine
whether )\I € (A- %—,‘ - E:‘ or >\' € ()\ - )zl ,)\j. Continuing this process, we
see that at the j-th stage >\L (1)< )\‘ < >\u_(l) where A (1) ‘>‘l.(l) %)
In the program written, we stop at a stage j=J such that

(2)) £ 200"

where t is the number of digits carried in the mantissa of the floating point
number format. To continue the process, we now put )&L(l) = P and repeat the
above procedure requiring, of course, that the choice of intervals be made by
having A (A)>2. Thus to straddle )\rLby appropriate )\L (r) and )\u'(r) , we
begin by putting )\uSr-l) = P and reQuire that our choice of intervals depend

upon A (A ) being greater than r. The process ends when we have straddled A\ N

A word on our scaling is in order. It should be clear that if we do not
scale then, instead of subtracting 1 from a P-value, we would have to subtract
a 1 scaled by lOs, where s is determined so that in P-10°1 we are subtracting
a 1 from the first decimal digit of P. And, instead of adding powers of %, we
would be adding 105 (%)J for j - 1,2,... . Since the initial scaling method
is simpler to code, it's use was adopted. The relative metits of the two
methods beyond the coding were not considered.

This completes our descriptions of the more successful methods currently-in
use. We next give the results of Ortega's error analysis of the Householder re-

duction and following this, we give a complete error analysis of the bisection

procedure.



23.

CHAPTER III

ERROR ANALYSIS

Preliminaries and Notation

The notation used follows that of Wilkinson{:lh] .  Exact mathematical
operations will be denoted by their usual symbols: "—" , "+", "x" and " ".

b

The corresponding floating poiat operations are denoted by fl (x - y), f1 (x'+ y))
£f1 ((x . y), and 1 (x y) or £1 (*/y) where x and y are floating point

digital numbers. The floating point arithmetic subroutines used give the

result of each operation as the correctly rounded standard floating point

number. This implies the following relatioas for the relative errors that are

introduced:
introduce fl(x+y) = x(L+€)+y (1+¢€)

1 (x.y) x.y (1L +¢€)

x (L+€) .y

]

x (1;6)% .y (1+E_)%
["/y] (1 +€)

x (L +€) [y

X[y (1 +€)

1-
where \é\ é% 10 K with t being the number of digits being used in the

Il

£1 (*/y)

mantissa of the floating point representation. It should be noted that separate
uses of an € do not denote, necessarily, the same thing. For example, the
meanings of the two €'s in the addition equation are related only by the
requirement that both be bounded above in magnitude by i lOl°t . Each of the
above relations implies that the result of each floating point arithmetic operation
on two floating point digital numbers x and y is the exact result for one or

two slightly modified numbers.

For an extended product we have

F1 (%) - Kpe oo - Xy) = Xy . Xpe -ee o Xy (104€1) (1 +€5).. . (1 +€y)
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with €| € L 10%% fori=1,2, ..., N. That is, the extended product
of N floating point numbers is an exact result for N slightly modified numbers

> (1 + Gi). A though for an extended sum there are no useful bounds for the

expression
£1 (% + Xp ¥ oee +oy)

X1+X2+...+X,N

with the additions done naturally from left to right, it is still true that
the calculated sum is the exact sum of modified numbers Xp, Xp, ... , Xy
diffeping from the corresponding xj, Xp, ... , Xy Dy small relative errors.

To verify this we start by assuming that

£1 (xy + xp b e my) = oxg (L€M) e gy (1 €M)
= A, say.
Then
£1 (gl + KXo b e+ Xy +XN+1) = 1 (A + Xy41)

A(L+E€)+xgq (1+€)
and a little computation shows that

(1 -3 lol—t)l\] <. El(N+l) < (1+1 lOl-t)N

and for i = 2, 3, ... , N+l

(1 - %108 5We-i g g, éi(N+l) < (1 + 4 10b-byiNeR-1

That is,
fl (Xl + X2 + ... + X-N‘f'l) = Xl (l + él(N+l)) + X2 (l+ é2(N+l)) + ..
(N+1 (N+1)
Sy (L €y 3 + Xy (14 g"7~N+l) .

Consequently, if we assume that the operations take place in the natural order,
the last equation implies that the calculated sum is the exact result for

numbers X4 such that

xp o= ox +e™))ioa,2 i, w



29.

For an inner product caslculated in single precision floating point,

we have
F1 (%) - Y1 + Xp ¥p + cove *+ Xy - Yy) =
(W) (W) (W)
X, - ¥y (1 +€) ) + Xy Yy (1 + 62 ) +o.+ X+ Iy (1 +-€N )
with
(1-%210"%% <14 El(N)é (1 + 4 200-t)N

and for i =2, 3, ..., N,

(1 -4 10t HyWe-i o +€§N) < (1 + 410t HyWer

—~— S~

j=

For an inner product accumulated in double precision and then rounded, it is

clear that
fl (xl CYpfoeees XYy ) = X - ¥ (L +€) + ...
C Xy - Yy (1 + €)
with 1€l €31 101t

-For the square rcoot subroutine used, we assume that
f1 («/?) = 1/? (1 +€&) with
\ és, £ 2 (2 10%%) - 101-t. A detailed analysis of the Newton-
Ralphson method for the square root is given by Goldstine, Murray and von

Neumann.[l;] . Using an obvious but crude approximation, we may write
7
£1 (Fx )NVx (1 + 2és) - that is,

the floating square root subroutine gives a result which is,approximately,

the exact square root of a slightly modified number.

It can be noticed that in all of the floating point operations
considered so far, we can give a "backwards" error analysis in the sense that
we can always say that the result of an operation is, at the worst, a close
approximation to an exact result for slightly modified numbers, the
modification being given in terms of some multiple of a relative error

As a clarifying example, let us consider the operation fl (xl + Xy + X3 ),
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the additions being done in the natural order. We have

[xl(1+e)+x2(1+€)] (1+e)+x3(l+€—)

fl(X1+X2+X3)

X

LA €2, 1r €)% x (1r €)

= X (1L+2€) + X, (L+2€ )+ Xy (1.+ €).

Consequently, we can claim that the result is very close to an exact result

for three modified numbers x; (1 +2 € ), x5, (1 +2 €), and X3 (1 + €).

If we now combine various operations;. then, in a rough but natural way, we

can give, in many cases, a "backwards” analysis by simply counting the

operations. Such an analysis was first attempted for the Householder reduction.
The precise statement of the problem may be illustrated by the first step

in the Householder reduction. Let A be the given matrix and A(e),thé matrix

that results after applying the algorithm to A. Because of rounding errors,

A(e) is not an exact result. Using the "backwards" technique, we would like

A
to ciliaim that there exists a symmetric matrix A such that if we apply the

N
algorithm to A then we get exactly A(z). Schematically, we have

N
A
exact
A —calculated—s A( 2)

There are two conditions that must be met. First, the elements of ﬁ are to
be related to the corresponding elements of A so that'ﬁij differs from aij by
simple multiples of a rounding error. Second, the algorithm must not be
altered. There are some difficulties and we now illustrate two of these.

The errors introduced in calculating

2

Xp =4 |1+ 212 SOV (ap)

C L
S2

cannot be gtiributed to the elements aij of A in a simple straightforward

ol

manner. let us see why. In accounting for the error made in computing 852,
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we may say that if we used aj; (L + € ) for i =2, 3, ..., N then

1
[(:alculated 82.] is an exact result for these modified numbers. Iet us

put. T = a;, SGN (ayp) - Since the 1 and 1 occurring in the formula for

[calculated Si]

X2 is part of the algorithm, we want to attribute all‘crrors made -in
calculating Xg = %—[1 + c] to the quantity T - i.e. calculated xg =31 +7L
The errors occur when we divide [alej by [calculated S%] , then when this
result is added to 1 and finally, when the last result is multiplied by %.
The first and last operations give rise to the following problem. If we

modify a12 to account for these errors then we have

aj, (L+ €) (1.+ €)

a1, (1.+ €) 2 +oon

and we want to claim that the computation is exact for 81, SO modified.
Since the three €'s may stand for three different nonzero quantities, some
objection to the claim for exactness may be made. We do not know whether
this objection is valid or not.

From the expression for Xg, it is clear that T {l; Because of this
fact, it is no longer true that the error made in adding |calculated T]ﬁ%o
1 may be attributed to [calculated T] in such a fashion that the error is

bound by an €. As an example, suppose we are carrying U digits and that

a
___l_lél___ 1. is .0009. Then the exact result is 1.0009, whereas the
Lcalculated SaJ

calculated result is 1.001. Thus, the error is .0001 and we want to say that
.0001 = .0009 (1 + € ), where ‘E, < 5.10'h. In fact, € = - 8/9. Because

of these difficulties, the "backwards" error analysis was abandoned.
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Error bounds for the Householder Algorithm

The principle of Ortega's analysis is based upon the following
observations of Wilkinson [15] . Using the notation introduced in describing
Householder's method let )\i(r) be the eigenvalues of Y_calculated A(r)] with

>\i(l) the eigenvalues of A(l)E A. let \)\l(r) - )\i(r-i-l)‘ $ gi(r)

Then for the triple-diagonal matrix [calculated A(N"l)] , we have that

)\ (1) A (N- 1)\ ‘Z Y (r) Al(r-q-l)\ N-2 3 () | for ai1 i .

The problem now becomes one of obtaining bounds for Si(r) . In order to do
this, let Qr+l be the exact orthogonal matrix which would be derived by the
Householder algorithm applied to [calculated A(r)] . Forr=1 2, ..., N2,

we define

to
[

v [calculated (Pr+l [calculated A(r)] Pry1 )] - [exact

(Qrseq [calculated alz )] Qre1 )]

[calculated A(r+l)J- [exact (Qpsy | calculated A(r)J Qry1 )]
>\i(I‘+l) and,

Then by -definition, the eigenvalues of }|calculated A(r+1):l a

by definition and similarity, the eigenvalues of exact (Q‘r+l [cal A(r)J Qr+l )

are )\i(r) . Thus, by Lidskii's theorem

X (r+1) _ >‘i(r)

i

é max eigenvalue of Er »
and now the problem is to find bounds for the elements of Er , r =1,2,..., N-2.

Ortega obtains bounds for max | )\i(l) - )\i(n-l) I
i

relative to both the spectral norm of A and the Buclidean norm of A, where these
norms are defined by:

Il = e A P

1

t
with Ai being the eigenvalues of A A, and

o 1
[ | 2 (’le 2, z.



29.
The thoroughness of Ortega's analysis may be illustrated by the following

points. ©Since the norms; either spectral or Buclidean, of

[calculated A(l)], e [calculated A(n-l):] do not necessarily remain
that of A, Ortega makes a study of the growth of the norms of [calculated A(r?J

in terms of the norm of A. He also carries all higher order terms (i.e. terms

involving at least €_2) until the final stage and then finds a bound for them.
Finally, he considers both normal and double precision floating point inner
products for vectors. Before we give Ortega's results, a few words on his

notation are in order. He denotes by my,, mg, and my, bounds for the relative

57
errors* in the basic arithmetic operations, square roots, and inner products,
respectively.

The results for thg spectral norm are:

If mg € 2m, Wmy < 107, N2 € 1073, N/2m £ 1072,
where N is the order of A, and € is the maximum error in any eigenvalue then:

]e\ l 55(N-2)mg + (3.2 N5/2 + 9.75 N° + 6.0 N3/2.+ 157.0 N-397)m, ,

Ialls = T s5(n-2)mg - (3.2 /2 + 9.75 W2 + 6.0 N3/2 + 157.0N-397)m,

for normal floating point inner products.

If mg £ 2m, Nm, S 107% , ¥3/2 m, & 1072 then

| € 55(N-2)mg + (6.0 N3/2 + 1611 ¥ - 348.7
Ials -~ 17 55(N-2)mg + (6.0 N3/2 + 161.1 N - 348.7)m,

for accumulated inner products.

The corresponding results for the Fuclidian norm are:

lel < 55.5(N-2)mg + (13.9 N° + 160.9N - 378 )my,
IAl & N

1 - 55.5(N-2)mg + (13.9 N° + 160.9 N - 378 )my,
for normal floating point inner products; and,

el < 55.5(N-2)ms + 174.8 (N-E)mb ,. for accumulated inner products.
lallg  © 1 -55.5 (W-2)mg + 174.8 (N-2)m

(* From our earlier discussion we should keep.in mind that for addition and inner
products we do not generally have true relative errors. )



Denoting the right hand side of these bounds by F (N, M, Mg ) , Ortega

has prepared the following tables for comparisons.

Table 1 [10; p.38]

F(N)mb > Mg ) for my = 5 x 10-12 and mg = 2my,

(Spectral Norm)

N F (N, mp , mg )
Normal Accumulated
10 2.10 x 1078 1.18 x 1078
30 1.63 x 10'5 4.31 x 10'8
50 4.82 x 10'7 7.-65 x 10'8
100 |2.25 x 1076 1.64 x 10°7
200 |1.13 x 107° 3.56 x 1077
500 1.03 x 1o'LL 1.03 x 10'6
1000 5.50 x 1o'LL 2.31 x 10'6

Table 2 [10; p.38]
F(N,m, , mg ) for‘mb = 5.% 10-8 and mg = 2my

(Spectral Norm)

N F (N, m, 5 Mg )

Normal Accululated

10 |2.10 x 107% 1.18 x 1074
30  |1.63 x 1073 4.31 x 10°%
50 |+.82 x 1073 7.65 x 107
100 [2.25 x 1072 1.64 x 1073
200 % 3.56 x 1073
500 " 1.03 x 10~2
1000 —* 2.35 x 1072

* No figures of accuracy



Table 3 [lO; p.53]

F(N,my, m ) for my = 5 x 10712ang m, = 2my

(Buclidean Norm)

N F (N,my,, mg )

Normal Accumulated

10 1.76 x 108 | 1.14 x 108
30 1.01 x 1077 4.02 x 1078
50 2.43 x 10°7 6.90 x 10-8
100 8.32 x 107 1.41 % 1077
200 3.07 x 1076 2.84 x 1077
500 1.82 x 107 7.15 x 1077
1000 7.10 x 1072 | 1.u4 x 1076

Another practical use of the bound F(N,mb, ms) is illustrated in the
following table.
Table L4 - [10; p.hO]

Maximum allowable N so that F(N,m , m )<S for
m, = 5 x 10'12, mg = 2my

§ N
Normal Accumulated
1077 23 N
1076 69 490
1072 190 3.2 x 103
107 490 1.8 x 10%
1073 1270 9.4 x 10%
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Error bounds for the Bisection Process

To complete the error analysis, we now obtain error bounds for the
computed eigenvalues of the symmetric triple-daigonal matrix C. The analysis
is essentially that of Wilkinson [lh; pp.321+-3261 . We recall that .the
elements of C were sealed so that for all i \°<i| < 1 and |pl| < 1; also,
none of the Si's were zero. Referring to the description of the Sturm
sequence bisection method, we see that a sequence <fo, f‘l, ceey fN> is
calculated. We shall show that this sequence is an exact sequence for a
modified matrix (C'- AI). Hence, using Lidskii's theorem, we obtain a bound

/ .
for )\'i ->\i where >\i and >‘i are the eigenvalues of C' and C respectively.
. vy L 2
since £.(A) = (o(,-N) .5 (X)) -BL £, 5 (X)
for any trial value A, we have that

(2. (0)] = [« r00r 0049 A1) (1+0(146) ] 1 (A) -
- B2 e e)(re)e, H(\)

r

where |E| < S.lO't. If we assume that fl(o( r-}\) is not zero, then the
corresponding modified elements O(J!_ of C' satisfy for all >\ B 0(;->\ = (v(r->\)

(1+€)(1+€)(1+€). 1In case f1( X, -AN) =.(1+€&)- )\(1+€_.L) 0, we take &, to be

either®,. or (.(1+€). The former in case b(r=>\ or €1 = 0; the latter, if

/,
€2=O. The ﬂi;s satisfy (pI'.)2 = ﬁ?(l+‘€)(L+€)(l+€) .
Because of the scaling, all eigenvalues Aof C satisfy \)\‘ € 3, since the

relation \)\‘{mzi.x El‘ la l holds for any matrix A. Consequently, l°(n">\\ <y

ey
for all trial values of A. Thus,lv(; -u(rl= \(o(r->\) {(1+€)(1+€)(1+€) - l}‘
<y {(1+5.1o't93 - 1} - S‘
even if fl (o(r-)\) = 0; and
| Fr| _ \pr{(1+e)%(1+e)%(1+e)% ] 1}\

{1. |:(1+5.10’*°>3/2 S1] - Sa.
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Hence, the eigenvalues of C'-C are bound by Sl+ 2 82 - that is,

'o- +
RIERARS RN
This implies that the eigenvalues)\]{_ are in intervals of width 2( S 1+ 252)

centered abqut )\i .

Let us now congider the Sturm sequence decision process. TFor any >\ , the
computed A( )\) corresponds to some C' instead of C, but for a )\ value
outside the above intervals, A()\) ig a correct result for C itself. Moreover,
we necessarily obtain the correct answer to the guestion "are there less than
r roots greater than 7", if Ais not in the interyal sbout >\ " This is
still true ewven if some intervals overlap - for example, in the diagram below,

A(>\) = 3 or 4 whenever the )\i lie in their permitted regions.

I I
5 - s — I, II
——— D+ >
As LA Ay NN, NN
—_——

13
Further consideration of the bisection technique shows that one of the
following necessarily happens: (a) we obtain the correct decision at all steps
and consequently )\r really does lie in the interval terminating the bisection
process; or, (b) there exists a first step at which the wrong answer is given.
By our earlier remarks, this must occur when A( )\) is evaluated for >\ in some
Ir' To make the discussion specific, suppose, as in the following diagram,

that the first wrong decision is made at Q, so that the r-th root, A rs is

placed in PQ instead of QR.

Va I ™
T \ y
J)

WV

'l r
L) L L]

t
Q3 Q T R
From the description of the bisection technique, it is clear that the process

will proceed to Ql, then to Q,2 - that is, it will move toward >\r . The next

wrong step will occur for a bisection point in Ir - at Q3 in the diagram. ..
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At Q3, the r-th root will be placed in Q,2Q3 or Q3Q. Thus, at all subsequent
stages, the r-th root is placed wither in an interval entirely in Ir or in an
interval whose right hand end point is in Ir'

Therefore, the center point A of the final interval in which )\r,is placed

satisfies | )\r X\ & 107t Zl + 2 52
~ 107t + u[_3.5.1o‘t} + 2{% .1o"°]

=68 107°
since the length of the interval terminating the bisection process does not
exceed 2.lO"t. The above bound is noteworthy because it is independent of N,

the order of the matrix C, and of the root separations.

Conclusion

We have chosen to concentrate on Householder's method because it has
certain advantages over the others mentioned above. The big advantage over
the Jacobi method (and its variations) is, as has been already mentioned, that
Householder's reduction requires a finite number of steps whereas the
Jacobil reduction is iterative. This means that we do not have to be concerned
with proofs of convergence and rates of convergence. It can also be claimed
that Householder's method is more efficient than Givens' or Lanczo$! in the sense
that fewer multiplications are required. For example, Wilkinson [;5; p.25]

states that Householder's method requires approximately 2/3N3

multiplications;
Givens' requires approximately h/3N3; and, Lanczos', with reorthogonalizations,’
requires approximately'2N3. Moreover, there are only 2N square roots in the
Householder method compared to %NE in the Givens' method. Heurestically, this
advantage in the number of multiplications means that Householder's reduction
should yield more accurate results than either Givens' or Lanczos'. However,

the major advantage that is hoped to be gained is in the application of

Householder's algorithm to the unsymmetric eigenvalue problem. In a recent
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papex'[;B:\, Wilkinson compared Givens' method with one which used elementary
similarity transformations and found that on the matrices (up to order 30) that
were tested, the elementary transformation method was just as accurate. But
he points out [15; p.26] that the error analysis indicated that the unitary
transformations are more stable numerically. Also, C.T. Fike's paper[:l] R
mentioned before, indicates that such should be the case. Consequently,
since Householder's reduction retains the mentioaned advantages even on the

unsymmetric case, it may turn out to be a very important method. Research

along these lines is planned for the future.
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