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HAUSDORFF MEASURES ON TOPOLOGICAL SPACES

ABSTRACT

Given a non-negative set function ¥ on a family a
of subsets of a metric space X, an outer measure V
can be generated on X as follows:

for BCX and &> 0O,

VAB = inf { Z TA; BCU A; and for iew,
1eWw 1EW

4,60 and diam A; €6}

and

4YB = lim tzBa

§—0

The Hausdorff s-dimensional and h-measures are
special cases of this measure. A number of processes
have been suggested for generating a measure on an arbi-
trary topological space, which generalize this Hausdorff
measure process in a metric space.

In this thesis we introduce and study a process for
generating a measure on an arbitrary space, which
abstracts the essential idea behind all the Hausdorff
measures and their generalizations, and contains them as
special cases.

In chapter I the concept of a measure generated on
a space by a gauge and a filterbase is introduced. We
show that with any such filterbase is automatically
associated a topology for the space, the filterbase top-
ology. We then impose different conditions on the filter-
base and deduce resulting properties of the filterbase
topology and of the measure. Measurability and approxi-
mation properties of the measure are obtained for sets
defined in terms of the filterbase, and then for sets
defined in terms of the filterbase topology, such as
closed, compact, etc,

In chapter IT we consider measures generated on a
topological space. We show that previous measures are
special cases of our measure and that known measurability
and approximation results can be obtained for them from
our general theory. The relationship between the given
topology and the topologies of the filterbases used to
generate the various measures is examined. A number of
additional processes for generating a measure on a topo-
logical space are investigated and relations among the



various measures are studied.

In chapter III we consider several processes for
generating measures on a quasi-uniform space, showing
that a number of the previously studied measures are in-
cluded. 1In particular, we study the measure generated
on a uniform space, and obtain .some measurability
properties by applying our general theory.

In chapter IV we work in a compact Hausdorff space
and generate a measure using the uniformity for the space
and the process of the previous chapter. For the first
time, restrictions are placed on the generating set
function T . We examine some consequences of this re-
striction and then introduce a partial ordering on the
family of such functions which generalizes the usual
ordering on the h-functions .in Hausdorff h-measure
theory. This ordering has been used.in connection with
studies of non-¢ - finiteness. We show. here that its
interest is essentially limited to the metric case.
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ABSTRACT
Supervisor: Dr, M. Sion.

Given a non-negative set function ¥ on a family A
of subsets of a metric space X, an outer measure v can be
generated on X as follows:

for BCX.and 6 >0,

%B = inf{ 3ea; : BclUa; and for 1€w,

i€w - lew _
A4€A and diam A, €4}
and o

vB = 1lim 4 B.
§—>0

The Hausdorff s-dimensional and h-meaSurés_are special
cases of thls measure. A number of processes have been
suggested for generating a measure on an afbitrary topo-
'logicai space, .which generalize this Hausdorff measure
process 1n a metric space, |

In this thesis we 1ntroduce and study a process for
generating a measure on.an arbitrary space, which abstracts
the essential idea behind all the Hausdorff measures and
thelr generalizations, ahd contains them as’speciél caées.

In chapter I the cqnceptvof'a measure génerated on
a space by a gauge and a,filterbase-is'1ntrdducéd. _We show
that wlth any such filterbase 1is éutomatically assoclated é
topology for the space, the filterbase topology. We then

impose different . conditions on the filterbase and deduce
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resulting properties of the filterbase topology and of the 
measure, Measurabllity and approximation. properties of the
measure are obtained for sets defined in.tepms of thé
filterbase, and then for sets defined in terms of the filter-
base topoiogy, such as closed, compact, etc.

In chapter II we conslder measures generated on a
‘topological. space. Welshow:that preVious measuréslare
special cases of our measure and that. known measufability
and approximation results can be obtained for.them. from our
general theory. The relationship between the giVen topolégy
and the topologles of the fllterbases ﬁsed to generate the
varlous measures 1s examined. A number bf additional prd;
cesses for generatling a measure on a topological space are
investigated and relations among,the-vafioﬁs measures'ére
studied.

In chapter III we conslder several processes for
generating measures on a quasl-uniform space, showing that
a number of the previously studied measureé‘arevincluded._
In particular, we study the measure’generated on a uniform
space, and obtaln some measurability propertiés by applyling
our general theory.

In chapter IV we work 1in a compact Hauédorff space
and generate a meaéure using the unifofmity for the sbace
and the process of the previous chapter. For the first time,
restrictlions are placed on the generating set function <.

We examlne some consequences of this restriction and then.
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introduce a partial ordering on the family of such functions
which generallzes the usual_ordering,on the h-functiOns in

Hausdorff h-measure theory. Thils ordering has béen used in
connection with studies of noh—w; finiteness. We show here

that 1ts interest is eésentiallyulimitéd to the metric case.
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Introduction

Given a non-negative set function 7. on a famiiy A of
subsets of a metric space X, an outer measure v can be
generated on X as follows: N

for BCX and >0,

9B = inf{ > ep; : BC\JA; and for 1€w, #,€ & and
lcw lew ' ‘

diam-Aié §},
and

¥B = 1lim 4B.
6—>0

F. Hausdorff [6] introduced this abstract measure (a
generalization of the linear measure of C. Carathéédory

P5,D, and proved a few basic résults for 1t. He considered

in some detall the measures obtained<When various restrictions

: were placed on the sét»function T, in parﬁicular when ©B =
h(diam B) for some continuous increasing function h: R%4>R+,
with h(0) = 0 énd_h(t):>0 for t>0. _The measure generated
‘using this function isﬁcailed the Hausdorff h-measure, and
in the case that h(t) = t°, the Hausdorff s-dimensional
‘measure . In these forms i1t has been studied,extensively.
Two recent-papers~by W. W. Bledsoe and A. P. Morse (2],
and-by C. A. Rogers and M. Sion,[l2], have_suggested pro-
cessés for defining a measure on a.topologica1>space which
generalize the Hausdqrff measure process 1n a metric space.
They obtain some.(in general, different) measurabllity -and

approximation results for these measures.



In this thesls we introduce a process for generating
a measure on an arbitrary space, which abstracts the essential
ldea behind all of the above Hausdorff measures and generall-
zatlons. Results are obtained which can be speclalized to
give many of the known results, and which throw some light
on the relation between measures 1htroduced before. 1In a
secondary study, using some results from the abstract approach,
we extend some speciflic theorems first thained in a metric
space to a compact Hausdorff space. |

In‘chapter I we 1ﬁtrodﬁce the concept of a measure
generated by a gauge and a filterbase. We show that with
any such filterbase is automatically assoclated . a topology
for the space, the filterbaseAtopology, independent of any
existing topology. We then lmpose different conditions
on the filterbase and deducé resulting'propertiés of the
filterbase topology and of the measure, Measurability
and approximation properties of the measure are first
obtained in terms of the filterbase. Additional conditions
on the filterbase are then applied to give results, stated
in terms Qf the filterbase topology, on measurability of
closed, closed 45 , and compact J5 sets, and on approxi-
mation by &5 , Fe , open and closed sets.

In chapter II we consider-measures.generated on a
topological space., We show that the Hausdorff measure in a
metric space and the measures of Bledsoe and Morse [2], and
of Rogers and Sion [12] are encompassed by the general theory
of chapter I and that some of the measurébility and approxi- |

mation results can be specialized to yleld existing results



for these measures; The latter tWoief the ab@Ve3measure§_ane=_
defined in an arbitraryvtopolegical space; we,examine~1n |
each.case the relation between the gi§en.£opo1®gy.and:the,
topology assoclated with the filterbase,used_to,generate

the measure, .and. point Qut some censequencee'ef theirxequalas
ity or difference. |

A number‘of additional pfocesses are suggeeteduforv
generating a measure on a topeloglcal speee, some varlations
of processes already studlied, and one a different approach.
Again, all come under -the theory of chapter I,.and results'
from 1t are applied to give propertiee}ef theSe‘meésures;v
Relations amongethe various_measures of the chapﬁer_are
examined,

" In chapter III, we consider several processes for
generating measures on a=Quasi-uhifefm spéce, We show that'
these measures include a number of th@se‘sfudied.ihe_
chapter iI. In particular, we study the meaéu#e generated
on a uniform space, and obtain some‘measurability prepertieé
for i1t by applying results from chapter I. | ‘

Chapter IV is devoted.t@_an“ekamineti@neef ﬁhe;pos— 
sibiiity.of extendihg some specific resulte‘@btéinedfih;a
compact metric space by M. Sion and D. SJerve‘tl3J fegée'f
compact Hausdorff space,_considered,ae a uniform‘space; e
'using the measure of chapter III. For the first time,”
restrictions are put on theAgenerating set,function T.

We examine some consequences of this restricti@n.and.ﬁhen'

introduce a partial ordering on such functiens T which -
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generalizes the usual ordering in a metric spacek(Sée Sionzgnd
Sjerve [13], section 6). This ordering has!been used in |
Hausdorff h-measure thedry:in'connection with studies of
non-¢- finiteness. We show here (theorem 21.3), that.its

interest 1s essentlally limited to the metric case.



CHAPTER O
PRELIMINARIES
In chapter 0 .we collect definitions; notation, and known
or elementary results in set theory, topology, and measure theory

which will be needed later. The only new ldea 1s the concept.of

property Q (2.2.4),

1. Set theoretic definitions and notatlon.

.1 O denotes the empty set.
.2 w denotes the set of natural numbers.
.3 A~B = {x : x€A and x¢ B}.

Let & be a family of sets. Then

A B = (:l A
il

5 o6 = U &

e

A€
6 687 ={A:A= o8 ~B for some BEB};
T B ={A:A-= W, B, for some sequence B of sets
new :
in (B}v;
.8 @é = {A': A.='fﬁw B, for some'sequence B of éetsv_
new v B '
in 23 }_;

9 By = (B ) 5 Be= (B )y

.10 @ 1s a cover of A iff AC &6 ;

.11 A 1is an a-.'M of A 1Fff B 1is a cover of A
and 8CQA ; |

.12 A refines 8 or (A is a refinement of @ iff for.

each A€l , there exists BE B.such that ACB;



.13 8 1s ac-field iff B7C B and BCB ; and

.14 Borel 8 = m{d: A is a ¢-field and BCA} 1is
the smallest ¢-field containing @ . |

.15 If [) is a non-negative function on X)<X§and ACX,

then ’ |

diamph = ( sup {p(x,;y), : XEA, yEA} If A ,-éz'

{O,if A= . o
.16 X 1s a filterbase 1ff ¥ 1s a non-empty family of

sets such that for every MEX and NE¥, there exists HE ¥ such
that & # HCMIIN,

M is a filterbase in X i1ff ¥ 1s a filterbase and for

every HE¥, H.is a family of subsets of X and JEH.

If X is.a filterbase in X, then 7 1s a subfilterbase
of ¥ 1iff 7 1is a filterbase in'X.and for some a ,
W ={HNA : HEN¥} . | |
.17 (A,,xED) denotes a net. The ordering directing D
will be dencdted by » . (see Kelley ,'[7]; chapter 2)

2. General topological concepts.

Most of our topological concepts are based closely on

those of Kelley [7] (hereafter referred to simply as Kelley).

2.1 NOTATION. Suppose (X, ) is a topological space and
ACX. Then _ |

.1 &4 of course denotes the family of open Sets,fFvwill
denote the family of closed sets; and  the family of differences_
of open sets, i.e. | | ‘

H={ACX : A =06~Gp for some Gy, GpE€ S} ;



.2 & or ClA denotes the closure of A ;
.3 A denotes the interior of A ;. and

U bdry A = E~A° is the boundary of A.

2.2 DEFINITIONS. Conditions on a topology.
1 If 8 is a family of subsets of a.spaceuX,‘and
x€X, then the star at x of @ is the union of the members of
& to which x belongs. |

A cover (A of X 1s a star-refinement of 8 1iff the family

{

of stars of ( at points of X is a refinement of & .

A topologlcal space is fully normal 1ff for each open

cover B , there exists ém open cover (A which 1is a star-
 refinement. of & . (Tukey [16])
.2 A family of subsets of X is point finite 1ff no

polnt of X belongs to more than a finite number of members
of the family.

A topological space 1ls metacompact 1ff for each open

cover B , there 1is an open cover which 1s a point finite
refinement of 8 . (Kelley, p. 171)
.3 A family A of subsets of a topological space 1is

locally finite iff each point of the space has a neighborheod

- which intersects only finitely many. members of .

A topological space 1s .paracompact iff it is regular and
for each open cover B ,.there is an open cover which is a
~locally finite refinement of 8 . (Kelley, p.. 156)
c.4a tépological space has property Q 1ff for any open
cover ( of X, there exists an open cover & refining A and

such that for every x€ X, w{GER : x€G} is open.



g
2.3 REMARKS. Relations between conditions on a topology.:
.1 Metric spaces are fully normal. (Tukey [16])
.2 A regular space is paracompact iff it is fully
normal. (Stone [14]) | '
. .3 A paracompact space i1s metacompact and a meta-
compact space has property Q.
.4 A topological space may have property Q without
belng metacompact.
Let X =R, , 4 ={[0a) : a>0}. Then (X,4) is a
topological space which clearly is not metacompact. To see
that 1t has property Q, let Q. be any open cover of X. Set
B = {[O:,in) : nEw}. Then B 1s an open cover of X which
refilnes 4 , ahd for any x€X,

w{GEB : x€G} = [oyn) for some nEw.

3. Quasi-uniformities and uniformities.

We consider now. concepts assoclated with quasi-
uniformities and uniformities. For a fuller exposition see

the two papers of W. J. Pervin [10,11] and chapter 6 of Kelley.

3.1 DEFINITIONS. |
.1 AeB = {(x,z) : for some y, (x,y)EB and (y,z)€e A}.
.2 If X is a space,
A= {(x,x) : x€X]}
is the diagonallof the spéce XXX.
The following are immediate consequences of the
definitions.
3.2 LEMMAS
.1 (AXA)o (AXA) = AXA,



.2 If AC XXX, then AoA = Ao A = A,

.3 If I and J are any 1ndex sets and

a=Uay, B=UJ By

. lel jed
then

ao3 = (Uaje By = (Uago By
iel jeJ Jed iel

3,3 DEFINITiON.' If X is a space, U a family of subsets of
XXX such that for every U€ U and VE U,

1 ACT,

.2 WDU and WCXXX = WelU,

.3 UNVe Y , and

.4 there exists WE YU such that Wo WCT,

then U 1s a gquasi-uniformity for X.

. If, in additioq to the above fequirements, for every
veu,
.5‘U‘1 = {(x,y) : (v,x)€U}e U,
then Y 1is a uniformity for X.

.6 (X,U). 1s a (quasi-) uniform space 1ff Y 1is a

(quasi-) uniformity for X.

3.4 DEFINITIONS, If U is an element of a quasi-uniformity,
.1 U[A]

{-y : (x,y)€ U .for some XEA}:.
Ul{x}1].

The following lemmas are immediate consequences of the

.2 Ulx]

definitions.

3.5 LEMMAS. Suppose U 1is a quasi-uniformity, Ue€U,

VeEU, and for each 1€ I, V;€ Y . Then
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.1 for each A,

ual = L ulxl;
.2 for each A,

(UNV)[A] C ULAT N V[A]
.3 .for each A,

U[V]A]] = (UoV)[A]; and
.4 for each x

ML v Ix] = () valx]
el 1

el
3.6 REMARK. A quasi-uniformity U for X generates a
topology 7& on X conslsting of all subsets G of X such that for
each X€ G, there exists UE U such that U[x] C G, For x€X,
{ulx) : UEU} 1s a neighborhood system for x. (see Pervin
[11])

3.7 DEFINITION. A topological space (X, 4 ) is (quasi-)

uniformizable: 1ff there exists a (quasi-) uniformity U for X
such that T =4 . »

3.8 THEOREM. Every topological -space is'quasi;
uniformizable.
Proof: (see Pervin [11]) Let (X, 4 ) be a topological
space, For eachAGEJ let | |
Sg = (@Xa) U ((x~a) XX),

d

and let = {Sg : GEH} . Pervin shows that (A is a subbase

for a quasi-uniformity Y for X (hereafter referred to as

Pervin's guasi-uniformity), and that To =.4 .
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3.9 REMARK. Pervin points out that non-comparable quasi-
uniformities for the same space X may induce 1dentica11topolbgies.

The same 1s true for uniformities. (see, for example, 19.5)

3.10 REMARK. For a given topological space (X, 2)
there 1s a maximal quasi-uniformity U such that 7& =5 .
‘We take as a subbase for Y the union of all quasi-uniformities
V such that T, =% . Then Y is a quasi-uniformity by
theorem 6.3 of Kelley. To see that Tu =4

Suppose Ge,ﬁ .and X€ G. Choose U from Pervin's quasi-
~uniformity such that U[x])CG. Then UEU and so GE Ty ..
Now suppose G & 'J’u and x€ G, Then for some veu,

Ulx] C G. But there exists WEU , WCU, such that

n
W = m Vj_ b)
1=1

where Vi[x] is a neighborhood in 4 of x for 1 =1, ..., n.

Hence by lemma 3.5.4,

Wix) = (v (x] = (valnd

and so W[x] is a neighborhood in & of x. Since
wix] C Ulx] C a,
we coneclude that Ge 4.

3.11 REMARKS on uniformities. '(see chapter 6 of Kelley)
.1 A topological space is uniformizable iff it .is
completely regular,
.2 There may be non-comparable uniformities'induéing
the same topology on a space.
.3 If Y 1s a uniformity for (X, ) such that
‘Z& =4 , then UEY implies that U 1s a neighborhood of A

in the product topology on X XX.
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4 U 1s symmetric 1ff U = U™,

For any uniformity
U, there 1s a base of open symmetric members of U , and a
base of closed symmetric members of 'Z,{
5. Suppose U 1s a uniformity, UEU, VEY, and V
'1is symmetric. rI‘ihen for any A, if A XACU, then
V[A]XV[A] CVoUoV .
.6 A family 8 of subsets of XXX 1s a base for some
uniformity for X iff '
a) UeE® = ACUTU ;
b) if UEH , then -l contains a member of B ;
c). if UEA , then for some VEB , VoVCU; and
d) .the intersection of two members of B contains
a member, . |
| .7 A uniformity U 1is characterized by the gage of
U, 1.e. the family of péeudo—metrics on X which are uniformly
continuous on XXX relative to the product uniformity derived
from U .
.8 For a given completely regular space (X,4 ) there
1s a maximal uniformity U such that Jp =4 The
demonstration is analogous to that in 3.10 for quasi-uniformities
(or see Kelley, problem 6G). Note that i1f a uniformity consists
of all neighborhoods of A , then 1t 1s the maximal uniformity Dby
remark 3.11.3,. |
.9 A paracompact space is completely regular and the
maximal uniformity oonsiots of all neighborho-ods of A . (Kelley,
problem 6L) |
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.10 If (X,U) 1s a uniform space and (X, Ty, ) is
compact, then U 1s unique and consists of all neighborhoods of
A |

11 If (X,U) 1is a uniform space and (X, Ty, ) is
compact, then'each neighborhood 6f a compact subset A of X
contains a neighborhood of the form U[A] for some U6521.1

.12 If (X,7U) is a uniform space and ACX, then the

closure of A in the uniform topology,

= ()ulal .

Uey
.13 If (X,U) 1s a uniform space and MCX XX, then
the closure of M.1n the product uniform. topology on XXX,

M = F\UOMOU.
veu

4. Measure theoretic concepts.

4,1 DEFINITIONS.

.1 uu is an outer measure on X iff/x is a function on

~the famlly of subsets of X such that

i) /uQ= O, and

11) OSpA< SuBy whenever AC UB Cx .

new new (
‘As all measures discussed.in this thesis will be outer measures
we will hence forth‘drop the qualifying word ‘outer’'. |
.2 For u a measure on X, a set A‘is/i—measurablé

iff ACX and for every BCX.

MB = u(BNA) + u(B~A4A).
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.3 For u a measure on X,
M. = {ACX : A is p-measurable}.
4 pla, the restriction of w to A, is the function v

having the same domain'aS/.,L such that for every B in the
domain' of u, ¥B =/,4_(BﬂA).
.5 v 1s a finite submeasure of/u iff for some A with

pA<oo, U= ua,

.6 For M 8 measure on X, X is M6 finite-v, ' or ¢-finite,

iff there exists a sequence A such that’XA = UAn , wWhere for
each n€w, puAp<oo, nee

.7 If 8 1s a family of sets, T 1s a gauge on & iff
T 18 a function on BU {@} to the extended non-negative real
line, such that © @& = O, |

.8 For u a measure on X, M is a regular measure 1ff
for every ACX, there exists B€E %, such that ACB and uA = uB.

The following theorem is well known. (See, for example,

corollary 12.1.1 in Monroe [9].)

‘4.2 THEOREM. If u is a regular measure on X and A is

an ascending sequence of subsets of X, then

/’L(UAﬁ) = lim uAp .
NEW —> 00

n—>
The following is.a form of the well known lemma of-

Carathéodory.

4.3 LEMMA. Suppose u is a measure on X, and ACKX,
If for every € > 0 and every TCX such that uT<oo there

exlists a sequénce DAof-subsets of X such that
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1) Dpy1 € Dp for every n€Ew;

2) (D, CA ;
new

3) /J.(TﬂA)S}.L(T.ﬂDn). +€ for every n€w; and

4} for every PCT and n€w,

14 (PADns1) U (P~Dp)) = w(PNDps1) + u(P~Dy),
then A is u-measurable. |

Proof: Let £€>0, TCX, uT<oo, B = [ )Dp . We show
' new i

MTNA) + m(T~A) < uT + 2¢,
wiqich.implies that A 1is p-measurable.
We obtain first
5) There exists NEw such that
J(T~B) < u(T~Dy) +e.
Setting P = TMND, we have

MTND,) = uP > W (PADpy2) U(P~Dpy1)) by 1)
= #(PNDp+2) + pu(P~Dpy1) | by 4)
= p(TNDpy2) + W(TNDa~Dps1) by 1).

. Hence for any Mcw,

M M - o
nZOP(TﬂDnNDnﬂ') < 3 (uTNDp) - p(TNDay2))

- N=0
;P(THDO} + u(TNDy) -)i(TnDM+1) -}L(TﬂDM+2) ‘

< 2}).(TﬂDo) <00 ,
.and M

00 : o
TN Dy~D = 1im 2. w(TNDy~Dpiy)
ngo)-‘( n~Dn+1) oS00 .n=o}l n n+l)

< 2}1(TﬂDo) '< éo .
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Choose Néw‘so that
o0 | .
' Z}J(TﬂDn'”,DrHl) <€ .
n=N ' '
Since

(rApy~B) = (U (TNDy~Dpy1) by 1),
n2N v

. we have ‘
M(TNDy~B) < € .
But | .
(T~B) € (T~Dy) + w(TNDy~B) & WT~Dy) +€,
which establishes 5). Now _
J(TNA) + pu(T~A) Q)u(TﬂA) + p(P~B) since BCA,
< }A(THDN+1) v JA(T~DN) +E by 3) and 5),
= W (TNDy1) U(T~Dy)) + 26 by 4).

< ).AT + 2¢ .
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CHAPTER I
THE MEASURE GENERATED BY A GAUGE
AND A FILTERBASE

- In this ehapter we start wlth.an abetract space X, a
filterbase ¥ 1in X (see 1.16) and a gauge T on some family A
of subsets of X such that @Ea (see 4.1.7). From these we
generate a measure and a topology on X, and then investigate
properties of the measure and of the topology. In particular
‘we obtain conditions under which certalin topological sets, such
as closed, closed.zz » and‘compact Az sets, are measurable
(section‘9), and also results on the approximation of a given
.set from above and below by measurable sets of by topological
sets (section lO)e The proof of theorem 9.5 wés'suggested by
the development in section 2 of Bledsoe and Morse [2]); theorems
10.3 and 10.4 are based on theorem 'l and its corollary in Rogers
and Sion [12]; and the proofs of theorems 10.9, 10.10, and
10,11 are_essentially contained in those of theorems 13.5 -
13.7 of Monroe [9]. The topology itself is studied first
(section 8) and the key result, used repeatedly later, 1s
theorem 8.1.2, which establishes conditlions under which a
certain natural family forms a base for the neighborhood system
of a point. From this we determine when the topology 1s
regular (8.1.4), Hausdorff (8.1.5), or generated. by a
uniformity (8.2). -

5. The measuferv.

We now introduce the measure generated on X by the

filterbase X 1in X and the gauge ¥ on . We may assume
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without any loss of generality that d CeN.

5.1 DEFINITION, For HEW and ACX let

.1 Ué%’t) A=1nf {t : t = Z B for some countable
' Be®

B CHNA such that AC rB}.
(note: inf & =00 )
(%,) A = sup 1/1({%’7;) A.
HE¥

L2 YV

If no ambigulty can arise as a result, we will drop one

or both superscripts on V.

5.2 THEOREM. %/ is a measure on X.
Proof: VH is constructed.by Method I of Monroe [9],
pp. 90,91, and so, by theorem 11.3 in Monroe, is a measure.

Since ¥ is the supremum of such measures, 1t 1is agéin one,

5.3 REMARK. % is a set directed.by inclusion, .so
(Vyh, HEH¥) 1s a net. It is an. increasing net, i.e. H,NE ¥

‘and HCN implies VA 2 Vy A, so we have

YA = sup YyA = 1lim VyA.
HeX He ¥

6. The filterbase topology.

We now use the filterbase ¥ in X to introduce a

topology on X, closely related to the measure V.

6.1 DEFINITIONS
.1 For HEM, x€X,
H{x] = {X}Ud‘{hEH : xeh}.
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.2 For HE¥, ACX,
H[a] = \JR(x] = aUc{ner 5 nNa £ 2 ).
.3 The 9¥-topology, x%y ='{GCX : for every x€G, there
exlsts HE M such that H[x]CG}. The subscript ¥ may be dropped

- 1f no ambiguity can result.

6.2 THEOREM. The M -topology is a topology for X.

Proof: Clearly z%v is closed under arbltrary unions.
Suppose B,GE Jy and x€BNG. Then there exist H,NE% such that
H[x]CB and N[x]CG. Since ¥ is a filterbase, there exists
ME ¥ such that MCHNN., Referring to definition 6.1.1 we see

M{x]C (H[x] NN [x})c&BNG,

so BNGESy. Finally, & , XE 4.

We note that. if for.a point x€X there is HE¥N such that
XQECH, i.e. no element of H covers x, then {x} is both open
and closed in the ¥-topology.

Remark. Throughout the remainder of this chapter all
topological concepts refer to the ¥ -topology.

The following lemmas will be needed later.

6.3 LEMMAS. If H, I, HgEE?%; for each i€I, AiC:X;
and ACZX, BCX, then

ikéJI = %H[Ai]:

2 HyHp(a)] = YehHi[Ha[x]], and

3 H[AINB =g iff ANH[B] =& .
Proof of .1: Let x€§€% H[Ai]. Then x€H[A;] for some i1€I.
But AiCikgéAi,.whence H[Ai]CZH[§§{Ai], and so

Hl {e7h1] D{etHlA1].
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On the other hand,

u s 1C Sduta, 0,

for

XEH[kééAi] = for some Y€§€%Ai: x€H[y]

= for some 1€I, there exlsts y€A4{ such
that x€H[y]
= for some 1€I, xe€H[A4]
= inke)IH[Ai].
Proof of .2: -
0 (HlAl] = Bl dbelx]] = SehmHalx]],
by definition 6.1.2 and lemma 6.3.1,
Proof of .3: By definition 6.1.2,
H(AINB =@ 1iff ANB =& and there exlsts no fEH
such that fNA # & and FNB £ &

iff ANH[B] =& .

7. Conditions on a filterbase in X.

.We now infroduce conditions on ¥ which will allow us to
draw conclusions about the M-topology and about. properties éf
the measure v .

(7I) Glven x€X and HEN, there exist Hj, Hp€ ¥ such that
Hi[Ho[x]]CH[x].
(7II) Given HEW, there exist Hy], Ho€EN¥ such that for
every xeX, | '
Hyp[Ho[x]]CH[x].
(We note that by 6.1.2 an equivalent statement would be

that for every ACKX, Hl[Hg[A]]CZH[A].)
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(7III) If A is closed, B is open and ACB, then there
exists HEM¥ such that H[AJCB.

(7IV) There exists a sequence H in ¥ such that for every
NE¥, there exists nE€w such that H,CN.

(7V) Given an open cover of X, there exlsts HEN which

refines this cover,

7.1 REMARKS,
.1 If ‘¥ satisfies (7II), then it satisfies (7I).
.2 If ¥ satisfies (7V), then it satisfies (7III).

Proof: Suppose A 1s closed, B 1s open and ACB. Then

€ = {B,X~A} 1s an open cover of X. By (7V), there exists HEN
which refines &€ . Now any element of € , and hence also of H,

which intersects A is contained in B so H[A]CB.

8. Properties of the ¥ -topology.

In this section we deducé properties of the 2¢-topology

which result from imposing conditions (7I) and (7II). on 94,

8.1 THEOREM. Suppose ¥ satisfies (7I). Then

.1 If HEN, ACX, then there exlists an open G .such
that ACGCH[A].

.2 For x€X, {H[x] : HE N} is a base for the nelghbor-
hood system of x. (H[x] itself may not be open. See example
8.4.)

.3 for ACIX, the closure of A,

A = mH[A],

Hex
and if for some sequence H .in ¥,

A = Hy[A],

new
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then A is closed.
.4 The M -topology is regular.
.5 The ¥ -topology is Hausdorff iff

(Mu[x] = {x}] for each xe€X.
HeX ‘ ‘

Proof of .1: Given x€X and HEMW, we show there exists
an open set G such that x€GCH[x]. Let
6 = {yex; for some NEW, N[ylCH[x]}.
Clearly GCH[x]. Let yE€G. Then for some NE¥, N[ylCH[x].
Choose N, No€E¥ such that
Np[Ne[yllCNly].
Then for any ze€Ns[y],
Ni[z]CNi[N2[y]]1CHIx],
so No[y]CG., Hence G 18 open.
. .2 follows immediately from .1 and the definition of
the ¥ -topology.

Proof of .3: "-A'CmH[A] : Glven HEN, suppose x¢H[A].

. HE¥

Then {x} N H[A] = & , whence by lemma 6.3.3, H[x]NA =& . By
8.1.1 there exists a neighborhood of x free of points of A
and so x¢ Tx' 'We conclude that‘KCH[A] for every HEWM.
'A_DmH[A] : - Suppose xé¢ A. Then since X~A 1ls open,
there exislges%HE’}s{ ‘such that H[x]NK = @ , by definition

6.1.3. Again using lemma 6.3.3 we have x¢H[A]. But

H{E)DH[A]D [ |H[A],
He¥ o /
and hence x¢ (u[al.
He¥

If for some sequence H in ¥,

a = [ VHL[AT,

new

22
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then
AC(H[AIC( Hy[A] = &,
He¥ ' NEW
and A = K. |
Proof of U: Let A be closed, xdEA By definition there
exists HEX such that H[x]NA = Q . Choose Hl, HQEW such that
H[Ha[x]]CH[x].
Then |

Hy[Ha[x]]1NA
and so by lemma 6.3.3,
Holx]NE (4] = @ . | |
By 8.1.1 there exist disjoint open setstg and Gy such that

<z,

- X€EGpCHp[x] and -A_CGlc_Hl[A].
- Proof of .5: Suppose the ¥-topology is Hausdorff and
xeX‘. For any y # x, there exists HE¥ such that ve& H(x].
Hence M$r~]H x]. (This does not use condition (7I))
Now suppose (WH[X] {x} for each x€X. Then by .3 and

u the M- topology is Ty and regular, and hence Hausdorff,

8.2 THEOREM. If ¥ satisfies (7II), then there is a
uniformlty for X such that fhe uniform-topology 1s the
N -topology and hence the A -topology 1s completely regular.
Proof: Let M = {{x} : x€X} and set
Uy

c{hxa : henUm}
and |

U

We now check:

{Uy :+ HEN}.

a) If UEU, then ACU.
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b) If UEW, then U = U"' since every Uy is symmetric.
¢) If UEU, then there exists VE’?ji-such‘that VoVCU.
Suppose UEU. Then for some HE N, |
U =¢{hXh : h€HUM]}.
Choose Nj, Np € % such that for everslr}x.e X,
Np[Na[x]]CH[x].
Now:let NE %, NCN;N Ny to get
N[N[x]]CH[xj for every. x€X,
and . set.
V = o{fXf 1 £ENUM].
Suppose (x,y)€ VoV, Then for some z, (x,z)€ V.and (z,y)€EV. By
definition of V, there exist f1, fo€ NUM such that x,z€f; and
z,y € fp, whence xelN[z] and z€ N[y]. But {z} C N[y] implies
N[z] CNIN[y]]CHly] S
and hence x€H[y]. By definitlon then, there exists heHUM
such that x,y€h, and so (x,y)enxhCU, and VoVCU.
d) If, U,VEU, then for some WEU, WCUNV.
Suppose U,VEU. Then there exist Hy, Ho€ % such that
U = c{hxh : héHlU M} - |
V =¢{xh : hEHQUM}.
Choose Ho& ¥, H3CHyMNHp and set
W = cihxh : h€H3UM}
Now 1et (x,y)EW. vThen for seme h€Hg UM, (x,y)ENXh.

.and

But h€HgUMC(H; NH,;) UM, so h€Hy U M-and heH,UM. Hence
(x,y)EU and (x,y)EV, so (x,y)E UNV. We conclude that WCUNv.,
| By theorem 6.2 of Kelley, YU 1s a base for a uniformity

for X. We show now that the uniform topology is Jjust the



W -topology. Let GCX. Then
G 1s open in the uniform topology
- 1ff for each xEG, there exists ﬁE?i such that U[x]C:G
1ff for each x€G, there exists UEU such that
{v + (x,y)ev}Ca
A1ff for each x€G, there exists HE¥ such that
{y : (x,y€hxh for some heHUM}C G
1ff for each xXE€G, there exists HEN¥ such that
{y : x,y€h for some hEHUM}CG.
~1ff for each x€G, there exists HEX¥ such that H[x]CG
1ff G 1s open in the Q%-topology.

8.3 LEMMA. If % satisfies (7I) and (7IV), and A 1is
closed, then there exlsts a sequence H in 9¥‘such-that
= (V). |
Proof: Using (7IV). let H be a sequence in 9¥ such that
for every NEN , there exists n€w such that H,CN. Then since

A is closed we have by 8.1.3
A=F= (N[A)D( \H,[2]DaA.

Nex new
8.4 EXAMPLE, Let X =R, Hp = {{x,y} : [x-y| $r}‘U {2},
N= {H, : r>0]. For AEEH let
A =(diam A if A £ &
{O ifA=0.
Then ¥ 1s a filterbase 1n'X; the M¥-topology is the
usual topology; for any x€X, . r>0,
Hp(x] = [x-r, x+r],

a closed neighborhood of x; ‘N satisfies the four conditions

25
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(71) - (7IV) but not (7V); T is a gauge on 6&¥; and for ACX,

(¥, <) |
v A ='{O if A is countable

o0 1f A 1s uncouhtable.

8.5 REMARK. Even for a given fixed gauge T, the filter-
base ¥, the measure v(%t) and the W-topology are not neces-
sarily in one-to-one cbrfespondence. We will see laﬁer
examples of | |

1) different filferbases in X giving the same topology
and measure (14.5),

i1i) different filterbases yielding the same topoloéy but
different measures (14.6), and
iii) different filterbases inducing different topologies

but ‘the same measure (14 7.

9. Measurability»theorems.

The following definition and lemma are taken from apaper

by Bledsoe and Morse [2].

9.1 DEFINITION. For ¢ a measure on X, A is P-compact
1ff ACX and given any €>0, finite submeasure O of ¢, and
open cover @ of A, there is a finite subfamily € of § such
that |

eA<e(ANECE) + € .

9.2 LEMMA, A closed suﬁset of a ?-compéét set 1s $-compact.
We first state two theorems and a corollary on
1) -measurability of sets characterized in terms of the filter-
base,?#i | |
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9.3 THECREM, If for some sequence B,

A= mB.n,,

NneEwWw
where for each n€w there exlsts Mn+1E% such that
Mn+l[Bn,+i]CBnCX’

then A is Y-measurable.

9.4 COROLLARY, If % satisfies (7II), ACX, and for

some sequence H in ¥,

A = [ HylA,

new

then A is V-measurable,

9.5 THEOREM. ' If % satisfles (7I), A is v-compact, and

for some sequence H.in ¥,

A = fA\Hn[A],

new
then A is Y-measurable.
| We now relate the restrictions on A in fhe above theorems
to topological properties of A and, using additional conditions
on M, we obtaln a number of theorems on the measurabllity of

purely topological sets,

9.6 THEOREM, If % satisfles (7I), then compact

sets are ¥v-measurable.

9.7 THEOREM. If W satisfies (7II) and (7III), then

closed J% sets are -measurable,

9.8 THEOREM. If ‘¥ satisfies (7II) and (7IV), then

closed sets are y-measurable.
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9.9 THEOREM., If ¥ satisfies (7I) and (7V), then closed

J; sets are v-measurable.

9.10 THEOREM. If ‘¥ satisfies (7I), (7Iv), and (7V),

then closed sets are V—measurable.

9.11 REMARKS. We note that if there 1s any subspace
X:"C X‘which is such that for any-xeX', t-here is some HEX¥ such
that no element olelcovers x, 1l.e. x¢o‘H, then for every
AC:X', YA =00 ; and by the comment at the end of theorem 6.2,
g%» 1s discrete on Xf. Thus the discrete topologyvon X'
reflects the fact that all subsets of X' are Y-measurable.

Now it may happen as a result of the nature of the family
(A that the class of measurable sets 1s larger than that given
us by any of the theorems 9.6 to 9.10, using the fillterbase
% . (For example, if 1 1is the family of singletons, then all
subsets of X are y-measurable, a result which 1s independent
of the filterbase .) . In this case, it may be of some
advantage to conéider the subfilterbase of ¥,

n={HNA : HE N |

Evidently the measure Lxﬁ’t) ='ch’t), but- the Oy—topology,
2%7, may be strictly larger than xzv. If this is the case,
and if 77 satlsfles the requisite condltions, we may be able
to apply one of the theorems 9.6 to 9.10 with the filterbase
9? to obtain a stronger result than that_bbtained using ¥ .
(For example, if in the case above of (4 the family of singletons,
we form the filterbase 77 , then trivially 7; satisfies (7II)
and (7IV), and gﬁh is the discrete topology. Then by theorem

9.8, all subsets of X are ¥-measurable.) - However, ‘7] may not
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satisfy enough conditions to allow us to apply any theorems
from chapter I (see example 11.6), so we cannot automatically
use 92 to get stronger meaSurability results.

Again, i1t may happen that although,?? 1tself does not
satlsfy enough conditions, another filterbase %7 can be found
such that

1) % is a subfilterbase of % , so that ¥

1/(')7) _ v(%) ’

11) an 1s strictly larger than ﬁ% , and

111) % satisfies conditions allowing application of
some theorem glving a stronger result than that obtalned using
%. (see example 11.6) Unfortunately, we know of no general
method, in suchué case, of choosing a filterbase in X, optimum
in the sense that using 1t we obtaln the largest possible class
of measurable sets,

We note also that the nature of (I may result.in a large
class of measurable sets at the same time that the 7z-topology
is no larger than the ?(;topology, i.e. the 7 -topology may not
be large enough to reflect the class of measurable sets. (For
instance, if in example 8.4 H, consisted of all sets of
diameter € r, while { consisted of all doubletons, thé same
measure would be obtained, under which all subsets of X are
measurable, while both the ¥ and 77-topologies would be the
usual topology, and the best theorem obtainable would be 9.8,

giving closed sets measurable.)



30
PROOFS
9.12 LEMMA. If ACX, BCX, and there exists MG’)\‘
such that M[AJNB = &, then v(AUB) = vA + ¥B,
Proof: Suppose ME %, M[AINB = &, and ¥(AUB)<0w,
Let N€ %, NCM. Then also N[A]JNB = & . By definition
6.1.2 no - h€ N can intersect both A and B, so any cover of AUB
by elements of N(\A can be separated into disjoint cevérs of
A and B, Checkling 5.1.1 we see that
YN (AUB) 2 Ygh = Vy B

Since vN‘is a measure, we have the inequality the other way

also,. whence

'VN (AUB) = YA -+ VNB

for every N€ ¥ such that NCM. Hence by remark 5.3
v (AUB)

1im % (AUB) = 1im (Vb + ¥B)
Ne%yN NeM N N

lim YA + 1lim VNB VA + ¥B.
Ne¥ NeXM

Proof of 9.3: We use lemma 4.3 with D, = By for each
nE€w. Let £€>0 and TCX such that 4T<p0. To check 4) note
Mny1(Bpsal N (X~By) = @ for each nEw,
from which 1t follows that for eaéh new and PCT,
Mn+l[Pr1Bn+l] N (P“Bn)
Applying lemma 9.12 we obtain
v((PNByyp) U (P~By)) —v(Pan+1) + v(P~B,)
for all n€éw and PCT. . »
Proof of 9.4: We show first that A can be put in the

form

A =(fWNn[A]’

new



where N is a sequence in ¥ and for each n€w

Nn+1[Npt1[A] C Nu[A].

We construct the sequence’N‘By recursion,
Let Ny = H, and suppose Qe have Ny€¥ for 1 = 1,..., n
such that
Ni[A] C H[A] for 1 =0,...,n,

and

|

Ni4+10(N341[A1) € Ng[A] for 1 =1,...,n-1,

We choose Np,; as follows:

using (7II) choose ME % such that
M[M[A]] C N,[Aa].

Then choose Ny 1€EN¥ such that Np,y) C MNH,,;. We have
1) Npi1[A]l € Hpig[A), and
11) Npy1[¥ns1[A)] C NplA].

Now 1) and 11) will be true for all n€w. From 1) we have
AC(N[A] C (HL[A] = &

new new

and so

A = ()Np[Al.

Setting B, = Nh[A], the coneclusien follows by application of
theorem 9.3,

Proof of 9.5: Let TCX, ¥T<ow, £€>0, and O = v|T.
We employ lemma 4.3 to show thath,iS'V—measurable. Sedquences
C, D, M, and N are constructed by recursion. -To start we set
Co =01 =A; Mo =M = Hy; HoDNy = NJ€EW; Dy = X; and
Dy = M[C1] = Hy[A]. Having obtained C;, Dy, MjE¥ and Nje¥
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satisfying

‘a) Cy 1s closed for 1 = 0,...,n, (Cy = A is closed by
8.1.3) |

b) C441CC4CA  for 1 = 0,...,n-1,

¢) 6¢Cy.1 €00y + &21-1 for 1 =1,...,n,
d) Dy = M3[C1]CHy_1[A] for 1 =1,...,n, and
e). Ny[Dy]CDy_; for i =1,...,n,

we construct Cpnt+i, Dpyls Mp41, @nd Npyp as follows:

For each x€Cp choose, using (7I), Hyx1, Hyxp, Hy3, and Hxl€ ¥

such that

- Hyq [Hyo[Hy3[Hyy [(x1]111C M, [x]1CTMy[Cp1C Dy,
By a) and lemma 9.2, Cp is Y-compact. Since X satisfies (T7I),
for each x€Cp there is by 8.1.1 open Gy such that

X€Gx C Hyely [ %]

Hence {Gx : X€Cp}..is an open cover of Cp and by definition 9.1
there is a finite subset QCCp such that

ocn € o(cpyNUJay) + &28
XEQ

and so

6Cn € B(Cn NI JHeylx]) + €27 .
XeQ '

Now set‘

Cn+l

H[C H = c1(¢c,, N JH ,
I@[ nﬂ}%xg[ﬂ] (Ch XLGJQ x4[x1)

and choose M, .1€ N, Np41€ ¥ such that

Mn+lC:(r~)Hk2)r1Hn ’
XEQ

Nn+lC:rfWHX1 ’
XEQ
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and set
Dn+l = Mp41[Cpyql.

We now check:

a) Cp+1 18 closed.
b) Cpn+1CCrC A since Cp 1 C Ty = C,CA,

c) 6C,<6Chy + &2 since cn+13(cnnxL(_:JQHx4[x]).

d) Dn+l = Mpy1(Cp+11CHL[A] since C, 1 CA, My 1CH,.
d) Npt1[Dn41]CDp ¢ - first,

c . = H[ |
n+1c:}@wH[}%m[xu }%@H[M[xn

- UHX3[HXLL[5<3]-
Xeq _

The equality 1s obtained using theorem 8.1.3 and the fact that
the closure of a finlite union 1s the union of the ;ndividual

closures. Now

Nn+1[Dny1] = Npy1[(Mpyq[Cpyq 1]

C Nn+1[Mn+1[(UHX3[HxLL[X]])]]
o xX€Q ’

= Ny g (Mg (g [Hyy [x11]]
xXeQ - ,

C k,)Hxl[HXE[HX3[qu[X]]]]CZDn.
XeQ '

The second to.last. inclusion follows from the chéice of Mn+1

and Npy1, and the equality from lemma 6.3.1. .
The completed sequences satisfy-a), b), c), d) and e)

for each ncw, We now check that the sequence D satisfiles the

hypothesis of lemma 4.3.
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1) D€ Dy by e).

2) (\D,C( H,[A] = A follows from d).
- NEwW new

3) Using A = Cy, c¢) and. induction,. we have
OA<0C, + €(1 - 1/2n-1) < 6Cy + & for every n€uw,
or

v(TNA) € ¥(TNC,) +€ for every n€w.
Since CLCDp by d), we have finally
V(TNA)<Y(TND,) + € for every new.

4) It follows from e) that
No[PODL1 N(P~Dn-1) = @
for any PCT and n21, Lemma 9,12 then gives us
V((PND,) U(P~Dn-1)) = ¥(PNDy) + ¥(P~Dp-1)
for every PCT and n21.

Proof of 9.6: We show that for any compact A& set A,

there exists a sequence H. in X such that

A = )Hp[AT,

new
where for each. n€w,

Hpy1lHpeq [ATIC HL[A].

Then setﬁing B = Hn[A], we apply theorem 9.3 to obtain the
conclusion,.

Suppose A 1s compact, . and

. A= (\Gn »

new

where for each n€w, G, is open.
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We assume G, = X, set Hy = {X}U ¢¥ and construct Hj,
recursively as follows:

For each x€A, using (7I) choose H €N such that
Hpx[Hpx[x]11CGn and
an[an[an[XJJ]C:Hﬁ-l[x]'

Now each_an[x] contains an open set containing x by theorem
8.1.1 and since A 1s compact, a finite number of these open

sets and hence ofvthe sets an[x]"éovers A, 1l.e. there exlsts

finite QCA such that

Ac:kgéan[X]'

Now choose HnC:i;anx » HiEe¥. Then

HolAJCHL (U Hy (%)) = () Hp[Hpy [x]]
X€Q : XEQ _
by lemma 6.3.1. Since HnCHp, for each xe€Q,

HoAl1C U Hpy[Hpx[x11Cay,.
X€EQ

Similarly,
Hn[.Hn[A]]C%an[ﬂnxfﬂnxfx-]]]CHn'-l[A]--
Then
AC(MH,[ATC( e, = A
new new
and so

A.=rﬂ1Hn[A]'

new
Proof of 9.7: We show that for any closed J; set A,

there 1s a sequence H in N such that
A =(MH_[A],

new
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‘and apply corollary 9.4,
Suppose A 1s closed,

A = (\Gp,

new

where G, 1s open for each n€w. Using (7TIII), choose H €W

such that
Hn[A],CZGn for each n€w.
Then again !
ac(E[alc( e, = A
new new '
and |

A = ()H,[A].

new
Proof of 9.8: We know by lemma 8.3 that for every

closed set A, there exists a sequence H in 9¥‘such that

A =( YHp[A].

new |
The conclusion follows from corollary 9.4, » -
Proof of 9.9: 1) By 7.1.2 W satisfies (7III). |
11) If A 1s a closed g set; then for some sequence

Hin % , |
A ="(H,[A).

nNEW |
The proof is contained in that of theorem.9.7.
1i1) X is vy-compact.
Let TCX, vT<eco, O= v|T, >0, and £ be an open cover
of X. Using (7V), choose NE%, N refining ):’, . Now choose
MEM such that o

vT < YyT + €/2.
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Choose HEN¥, HCNMNM, so by remark 5.3,
a) YT< YT + &2,

Since YRT<®, choose countable 8 C HNA , @ = {B1} 1cws

such that TC¢® and

YuT € 2 <B4 < 00,
lew

Now choose K&w such that
0o |
>, By < ¢/2.
1=K+1 _
Sinc‘e N is a refinement of X _and’ HCN, for each 1 € K choose

G4€X such that ByCGy and let .

€={G1 : 1 <K}

Now . _
(T~c€) C ¢{By : 1>K]}
ahd so - |
Vy(T~c8) < /2.
Hence | :
yHTéyH(Tﬂc‘e) + UH(T@G‘E)SVH(THO‘B) + &2
| C<y(TneR) + &2,
and by a), |
vT < VU(TNe€) + € .
Hence

X <OB(XNel) + €
and by definition 9.1, X is V—compact.
The desired conclusion now follows from i1), 1i1),

lemma 9.2 and theorem 9.5,



Proof of 9.10: We:know from the proof of theorem 9.9
that. 1f ¥ satisfies (7V), then closed sets are v-compact, '
and from lemma 8,3 that if W satisfies (7I) and (7IV), then
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for every closed set A, there is a sequence H.in'ﬂf such that

A =(Hp[A].

nNew

The conclusion follows by épplicatipn of theorem,9.5.

10, Approximation theorems.

We consider first severalltheorems on approximatioh
from outside in which the only restriction on the set to be
approximated is that its measure be finite.' The restriction
that elements of A be V-measurable sets 1s necessary 1in all

the theorems of this section but the first.

10,1 THEOREM, Suppose ¥ satisfies (7IV) and ACX,
If for every HE¥ there 1is a countable subfamily of HNA which
covers A (in parti’c‘ular'if YA< ), then there exiSts BE Qgg

such that BDA and VB_= YA,

10.2 COROLLARY. If % satisfies (7IV) and AC My,

then v . 1s a regular measure.

10.3 THEOREM. Suppose aC’};;v, yYA<oo, and ECA.
Then given e€>0, there exists Béar such that ECB and

Y(ANB) € YE + €.

10.4 COROLLARY. Suppose AC %, VA<w, and ECA,
Then there exists DEdg such that ECD and ¥(AND) = ¥E.
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10.5 C»OROLLARY. If X = UAn where for each n&w,
Ap€ %,v and VYAp<o0o, and AC ’}hy,niﬁen_v. is a regular measure,

By putting further restrictions on the approximated
set, we can get the following results on approximation from

inside.

)

10.6 THEOREM. Suppose ACBC %y, , AE(B4 Y, (see 1.6)
vA<00, ECA, and EE%,. Then given >0 there exists CE(Bq )

such that CCE and Y(E~C)<E.

10.7 THEOREM. Suppose CZCBC’)% , AE(Bgs Vs
YA<oo, ECA, and EE %, . Then there exists CE(Bgy Y~ such

that CCE and ¥(E~C) = O.

10.8 THEOREM. Suppose aCBore16C Ty s A€Borel®
(see 1.14),'and vA<oo, Then for each ECA there exists
BE Borel® such that ECB and vE = ¥B; and for each
yY-measurable ECA, there exists CE Borel® such tha‘t C.CE
and ¥(E~C) = O.

If 1t happens that the sets.of A have some topological
prbperties and are v—measurable (e.g. the open sets'in the
classical Hausdorff” measure_theqry),.we'obtain in the above
theorems approximating sets which also_have topological
properties. If:ih our hypotheses we restrict (L to open
sets, require that open.sets be y-measurable and put
additional restrictioné on M and X, we obtain some'sharper
results. (Recall that 4 and % denote respectively the

families of open and closed sets.)
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1

10.9 THEOREM. Suppose AC.HC %, , W satisfies (7I)
and (7IV), ECX, ¥E<00, and EE P,. Then there exlst Ae
such that ADE and v(A~E) = 0, and CE%. such that CCE: and

V(E~c)_= 0.

10,10 COROLLARY. Suppose AC JC%h, , ¥ satisfles
(7I) and (7IV), ECX, EE%,, and X.is ¢-finite. Then the
conclusiens of theorem: 10,9 still held.

‘It_is not the case that the existence of a J; set
covering ECX and having the same measure impliés that given
€50, there exists GES such that GDE and ¥G<YE +€. It may
“happen that. all non-empty open sets have infinlte measure (as,
for example, with counting~measure‘on R or on the rationals, and
Hausdorff %-dimenéional measure on R), To obtain this -con-

clusion we need an additlonal restriction. on the Spaqe.

10.11 THEOREM. Suppose AC.HC %, , N satisfies (7I)
~and (TIV), ECX, E€%,, and X = (_JA,, where for each n€w,

. new : '
VYA,<00 and A€ 4 . Then given €>0, there exist open GDE such

that ¥(G~E)<e and closed FCE such that Y (E~F)< & .
PROOFS

Proof of 10.l: Using (7IV), choose a sequence H in ¥
such that for every NE %, there exists n€w such that-
HnCN. For each n€w choose countable 8,CH,NA such that

ACao®Bp and

(cB,) € D D&V A+ 1/n.
VHn n V, DeBn Hn



Let _
0
B={ N(06,)€ deq -
n=0 .

Then B2OA and

anstHn(o‘(Bn),Q Y, A+ 1/n for every n€w.

By remark 5.3, taking the limit as n—>w gives ¥BSwVA.
Since BDA, we have vB2vA, and so 4YB= VA,
Proof of 10.2: 10.2 1s a direct consequence of 10.1.
Proof of '10.3: Choose HE’¥ such.that
vA < YA + &2,
Suppose BCX is vV-measurable. Then
V(ANB) + v(A~B) = A<y A + €72
<y (ANB) + Yy(a~B) + &°2

< Uy (ANB) + ¥(A~B) + /2.

Cancelling v(A~B) in the first and. last expressi@ns"gives
a) v(ANB) <vy (ANB) + €2 for v-measurable B.

Now gilven ECA,. choose countable 8 CHMNA such that

EC¢B = B and

D <WE + &2,
s HE T

But Bead. and so is y-measurable, whence by a),

v(ANB) <oy (ANB) + £/2€V; B + €2

< > tD + €2 (since @ 1s a cover of B)
Ded ' ‘

SY4E +e<YE +€.

10.4 follows immediately from 10.3, and.l10.5 directly

from 10.4. '

4y
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Proof of 10.6: By theorem 10.3 there exists BE (j such
that A~ECB and
y(ANB) < Y(A~E) +¢.
Now A~E is y-measurable so
Y(ENB) = v((ANB)~(A~E)) = p(ANB) - y(A~E)<e.
Setting C = A~B we have by definition 1.6, CE(B),
and since EMNB = E~C,
v(E~C) < €.

Proof of 10.7: The proof is identical to that of 10.6
except.that the result of theorem 10.4 is used-instead of that
of 10.3. |

Proof of 10.8: We obtain B from corollary 10.l4 and C
from theorem 10.7.

Proof of '10.9: 1) Use theorem:10.l to choose A€QC 4

such that ADE and vA

vE, Since E 1is v-measurable and

yE<c0, .we have y(A~E) = O,

11) We show now that if BE€.J and ¥B<oo, there exists
DE %. such that DCB and y(B~D) = O. |

By ‘lemma 8.3 and theorem 8.1.1 we have FC J;, so

JC Fp and we may set, for BEJ,
' 00 00
B=() U Fni),
n=1 i=1

where for -each n€w and. iew, F(n,1)e%.

We may assume that F(n,i+1)DF(n,i) for each i€w. By corollary
-10.2, ¥ is a regular measure, so by.theorem 4.2 we have for each
nEw,

VB = v(-BﬂC_o)F(n,i)‘) = 1im Y(BNF(n,1)).
i=1 1
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Hence for each n€w there exists a sequence i, such that f.‘or'b each
kew,

v(B~[BNF(n,1p,)])= vB - V(BHF(“’ink))sﬁ ’

since ¥B<oo and BﬂF(n,ink) .1s v-measurable.

Let
(0,0]

F(k) = [ ) F(n,i,,) for each ke€w.
n=1 'k
Then F(k)E% .and

v
F(k)C ) F(n,1) for every new,
c1=1

whence F(k)CB and

vB - yF(k) = y(B~F(k)) = v(B~q'~F(‘n:ink))

= V(U[B (BNF(n, 1nk))]),by de Morgan's 1éw,
00

< 20 P 1/k.
n=1 k2@

Set

00
= U rx).
k=1

Then De %, , DCB, .and

- y(B~D)

vB - yD<£1/k for every k€uw.
Hence |

y(B~D) = 0,
Now  let Ee%y, YyE<o0, Using 1), choose Be.ﬁé such that BDE
and ¥B = yE. Since ¥(B~E) = 0, we choose QE g such that
QDB~E and ¥Q = 0. Using i1), choose DE % such that DCB and
v(B~D) = 0. Now

YE = ¢yB = 9D = ¢yD - ¥4Q = ¥(D~Q).
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Set C = D~Q. Then CE%,. , CCE, ¥C = ¥E and so
Y(E~C) = 0.

~Proof of 10,10: Let X = UAn where for each.n€w,
new ’

YAp<00. By theorem.10.1, choose for each new, BhE such that
Bn DAy and ¥Bp = vAp. Let 'En = ENBy, 5o E,E%,, and vEy <o .
By 10.9 choose for each new, Cn€ Fp such that CnCEn and
WEp~Cp) = 0. Set ' '

c=Uec, .

new

Then Ce€ %, CCE and

E~cC U (E,~Ch),
. New

. whence

Y(E~C) & V(E,~Cp) = O.

3
i

We now apply. this result to X~E to obtain AG% ‘such that
ADE and Y(A~E) = O, |

Proof of-10.11: For each n€w let En = EMNAy and . using
+10.9 choose Bn€ ¥ such that BhDEj, .and-.y(Bn~En) = o.  Let

Bn = ( )Bn, >

lew

where for each 1€w, Bnie"& and BniD Bni-i—l . Then

00> vEy = ¥By 2 ¥(AnNBy,) = '1_%;“00 V-(Ann,Bni) .

Choose 1€w such that

v(Ap ﬂBni) <VE, + g/2n+1

and set

Gy = Ananie .



Since E, 1s v-measurable and vE,<00,

Y(Gp~ Ep) <&2n+l

Set _ .
G =7.UGnE"b"
h‘ew
Then ECG,
(¢~E)C U (a,~E,),
. NEW E
and

YG~E) € 2 G,~Ep) <E.
hew '

To obtain FEF, FCE, WE~F)<E, apply the above

result to X~E,

457



CHAPTER IT
MEASURES ON TOPOLOGICAL SPACES

In thils chapter we start with a topélogical space
(X, ) and a gauge T on some family (A of subsets of X such
that € 4. Our aim is to study measures on X generated by
T and & through processes which are genéralizatiohs of the
wéll known Hausdorff process 1n a metric space (See Method II
of Monroe [9], p. 105).

We first conslder the Hausdorff process 1tself, showing
that the standard results can be obtéinedlby_application of
the general theory deveioped in chapter 1. Generalizations
of the process were introduced by Bledsoe and Morse [27 ahd
by Rogers and Sion [12]. We_show that each of these cases cah
be obtained as an application of the theory 1n chaptér I, More
specifically, in each case we conslder a filterbase N in X
and see that the known measure 1is 1ﬂ%ﬁt). Since propertles
of VCN,t) are stated in terms ofAthe.?¥—topology, it 1is
lmportant .to study the relation between the giveh topology
xﬁ‘ and the 9¥—topology: In particular we determine_how con-
ditions on & affect the Qv-tbpology énd its relation to &,
thereby throwing some light on the role played by such con-
ditions. |

We suggest variations of fhe processes used by Bledsoe

and Morse, and Rogers and Sion and determine some relations

between various of these measures.
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Finally, an approach from a somewhat different polint. of
view 1s introduced, and shown to:include all the measures

studled previously, as well as ylelding another measure.

11. The measure ¥ 1in a metric space.

In thils section we suppoée that the topology & 1s
induced by some metric‘p on X. All metric concepts refer to
The standard metric measure Y generated by a gauge ¥

on a family (I /(Method II of Monroe [9], p. 105), is given by

11.1 DEFINITION. For ACX and >0

f A =1inf{ 3 %By; : A C (JBj, for each 1€w,
- iew €W

B; €A ana diam By < &}

YA = 1im ]EA.
§—o0

To.see that the theory of chapter I applies to f, let
11.2 DEFINITIONS.

Hp = {ACX: diam A<r},
% = {Hr : I’>O},
h=1{rna : meN}.

Then M and % are filterbases in X, % is a subfilter-
base of ‘¥ , and f = '1/(77’"5) = V(w’t.). The well known proper-
ties of ¥ will follow from the results of chapter I and the

following easily verified lemmas.

11.3 LEMMAS.

.1 The ¥ -topology 1s the metric topology, 1.e.
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.2 N satisfies (7II) and (7IV).

Sﬁecifically, we have the following theorems.

11.4 THEOREM. If A is closed in & , then A is
f—nmaéurable.
We note that stronger measurabllity results may be

avallable (see remarks 9,11 and example 11.6)

' 11.5 THEOREMS. Suppose AC & . Then

.1 JF 1s a regular measure.

.2 If fE<bo and E€ 7%,, then.there exists D€
such that DDE and Y(D~E) = 0, and CE ¥, such that CCE
and Y(E~C) = 0. |

.3 if X is y-¢-finite, E€ %y, then there exist
D €4 such that DDE and f(D~E) = 0, and C € F. such that
CCE and F(E~C) = 0.

4 If X = (UG,, where for each ncw, Gn€ & and

new

Jep<oo, E€ 9’73- and € >0, then there exist open GDE such
that fF(G~E)< € and closed FCE such that FP(E~F)<E.

PROOFS

Proof of 11.4: Use 11.3%and theorem 9.8.
Proof of 11.5: .1: Use 11.3, 11.4 and corollary 10.2.
.2, .3, and .4: Use 11.3 and then:respectively;theorems

10.9, 10.10, and 10.11.

11.6 EXAMPLE. On obtaining a.stronger measurability

result by cholce of an appropriate filterbase.

Let X = R°,
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D
I

{A: for some x,€ R, yER, and Kew,
A= {(x,y) : x = X, or for some n >k,
Xo & 1/2n}}'

Let ¥, & be defined as in 11.2. Then by 9.8, closed sets in

X

the usual topology are f-measurable. Now ’}7 doesl not .satisfy
(7TI), so we cannot get any measurability results using 77 Let
6 = {A: for some XxoER and yER, AC{(x,y): for
some 8 >0, |x - x.|<s}},
and
M =3{HNB: He N}. |
Then % 1s a subfilter base of %, f= v | P satis-

fies (7II) and (7IV), and so closed sets in J% are

]’-measurable. Clearly 17% strictly contains "9% .

12. The measures <%, \Pl, and Po in a topological space.

The 'méasures ¢ and Po below were introduced and
studied by Bledsoe and Morse [2] and by C. A. Rogers and

M. Sion (unpublished) respectively.

12.1 DEFINITIONS
.1 Famllies of.open covers. ,

cover§ = {8: &CH , ¢B =X, and FE B}.
cover 1 ={@ :pCH, B 1is clountable, rB = X,
and JE€ B} .

{6: BCH, B 1is finite, B =X,

| and FEB}.

.2 For ACX, & a cover of X.

cover 2:21

fA = inf { > zB: € 1is a countable refinement of
' BEE '
®, BCA, anda ACc€}.
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.3 For ACX,

PA = sup P A.
6 € cover J

P1A= sup GA.
® € coveryd

PoA = sup GA.
®c cover'g,b

To apply the theory of chapter I we set

12.2 DEFINITIONS.
Hg = {A: ACB for some BESB}.

b
i

{HB ® € cover F}.

»
Il

{Hg: B € cover; J}.
%, = {Hgt B € coverpdj.
J° = H-topology.
v, B ¥, -topology.
J2 = M p-topology.
Then ¥, M, Mo are filterbases in X, and

P = Av(w:t) ,» P = V(%’Z), CPQ = ‘VW2”:) .

The relations between the given topology ab ang the
induced topologles 49, él, J2, and properties of the filter-
vases M, M, N> are indicated in the following theorem,

12.3 THEOREM.
1 E%CHl C 4°c 4.
If & is regular, then
2 42 = 4t - 8 -4,
.3 N, XNy, Mo satisfy condition (7I), and
.4 M satisfies condition (7V).
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In general, & # 4° as we show in 12.6., On the other
hand, regularity of & 1s not needed for J = ,52-’ as we show
in the proof. In view of 8.1.4, <9.==x9c’and N satisfies
(7I) 1ff & 1is regular. |

Applying the results of chapter I we then get the

following measurability theorems (already known for ¢ and @2).

12.4 THEOREMS.
.1 It 4 1s regular then closed Jg sets are
¢ -measurable and compact éh sets are ?1,<P2-me§surable.
.2 If & 1is normal, then closed g sets in 4 are
¢, 1, $o-measurable. |
(Since singletons are not assumed closed, normality does
not imply regularity.)
Again, stronger results may be avallable, as 1ndicated
in the discussion in remarks 9.11.
To obtailn approximation results we require that
aAC ’77;? or aC%q,l or AC 7}1(?2 . In any of these cases we
can apply directly theorems 10.3 to 10.8.
In general the three measures P, ¥1, Pp are distinct,
as is shown 1in 12.7. It follows immediately from the defin-

itions, however, that we always have

12.5 THEOREM. o< ¥P1< 9P,

PROOFS AND EXAMPLES

Proof of 12,3: ,1: Let GES° and let x€G. Then for
some HE N, H[x]CG. But for some ® € cover , H = Hg -and
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Hix] = e{ceB : xealed.
Hence GE 4, and J4°C 4.
Clearly HpCH C ¥ and so dec Hlc .
.2: We need only show that & C 42,
Let €4 and x€G. By regularity choose closed C
such that xe CCG, and set

®
Then letting H = Hy , we have H[x] = G. Thus, for each

{G,X~C} € coverp.d.

X € G, there exists HE %o such that H[x]CG, i.e. G is open
in the Mo-topology. ’
Note thét in thils proof we need only that Cl{x}CG.
Thus, if 4 1s a T; topology, then . = B2,
.3: Suppose x€X and HE X . Then for some B € coverd,
H = Hy. Now x€ G, for some Goé & , and

Go C H[x] = ¢{GEB : x€C}.
By regularity choose Gy, Gp€ 4. such that

X€EG2 C G, C G C G C Gg

and let
B, = {Go, X~T1{ € coverpd,
&> = {61, X~_§2} € coversd ,
H1 = Hg € , and
8 € X
Then
HQ[X] = Q1:
Hl[Gl] = Go:
and so

Hp{H[x]] C H[x].
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.4: By .2, any cover ® consisting of sets open in
the N-topology is a cover of sets open. in b, 1.e. BE
coverd , and so Hg€ ¥ and Hg refineé 8 . o ,

Proof of 12.4: ,1: Use 12.3 and. theorems 9.6 and 9.9.

.2: The result follows from theorem 9.3 after it has

been shown that if A is a closed J; set in &, then there

exists a sequence B of subsets of X such that

A= mBn’

new
‘and for each nE€w, there exists N, , € Mo such that

Np+1[Bp+11CBy.

Suppose A 1s closed in 4 and

A = ()G,

new
where for each n€w, Gph€ & . The sequences N in '}(2 and B are
defined recursively. To start, set B, = {G» X~Aa}, N, = Hg,,

and B, = Gg. Having obtained Bi and Ny such that
a) Ny[B;] C By_1 for i=0,...,n, (take B.j = X)
b) By 1s open for 1=0,....,n, and
C) ACBiCGi fOl" i=o,o-o,n,
we construct Bp,; and N,, ; as follows: Let
Dny1 = Gn+1mBnE 4.
Using normality choose open Bpy; such that
ACBn11CBp41C Dy
Let ,
Bpi1 ={Dn+1, X~Bp )€ coverpd,

and Np,3 = Hg,, 0 € Ho. Then the only element of N, ; which



54

intersects Bn+1 is Dphyy» SO
Nn+1[Bn+1] = Dn+1CBp.

For the sequences B and N, a) and c) hold for every n€w.

c)’ assures us that

A = ()Bg.
new
12.6 EXAMPLE. 4 ° does not always coincide with & .
Let X = R+,‘*9 = {[O,a) : a:>O}. Then for any open
cover @ of X, and XEX, Hglx) = X, so 4° is the trivial

topology. ‘

12.7 EXAMPLES. We can have P # ®; # ¢.
.1 A case where 5 # ¥;.
Let X = Ry; ¥ ={[0,a); a>0}; for ECX,
ZE={({01f E=Xor E =¢
{1 otherwise
Then for any ACX, @ € coverpd, we have fzZA = 0, since any
finite open cover of X must include X as an element., Hence
fo 1s Just the zero measure.
On the other hand, for any unbounded ACX, and 8¢
cQ'verl.ﬁ such that X¢ @ ,.w‘e have ‘PB'A =00 and so P1A =00 .
.2 A case where P71 # ¥.

v Let X .be any uncouﬁtable space wlth the dilscrete tqpo-
logy and ¥E = O for any ECX. Then for any ACX.and B€E
coverrﬁ’ , A can be covered by a countable refinement of @&
and 80 f4A = 0 and ¥; 1s the zero measure. (By 12.5 ¢,

is also the zero measure.)



On the other hand, if ACX is uncountable and 8 ‘is the
open cover consisting of singletons, then ‘PGA_ = 00 and so

too PA =00 .

13. The measure A in a topological space,

. The measure 7\2 defined below was studied by Rogers and
Sion [12]. We‘recall that & 1s the family of differences of
open sets (2.1.1).

13.1 DEFINITIONS. |
.1 cover1 = {(B : 8 1s a countable disjoint cover
of X consisting of elements of cf)}. |
cover,® = {® : 6 1is a finite disjoint cover of
X consisting of elements of P}.
.2 For ACX, 8 a cover of X,

AghA = inf{ > zB : € 1s a countable refinement of B ,
: Beg :

€Ca , and ACc€j,

.3 For ACX,
AjA = . sup A
(Becoverlf) ’
Aol = sup  AgA
ﬁecover'gg)‘B

The process above breaks down 1f we attempt to use
arbitrary  covers, If the topology'is Ty, then a cover
consisting of singletons would be offthis kind and the |
resulting measure would be infinite on. any uncountable set,

regardless of what gauge T was used.
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To apply the theory of chapter I we set

13.2 DEFINITIONS.
={A : ACB for some BE #}.

fe

¥ = {Hg B € covérlﬁ} .
Mo = {HB : @ € coverpD}.
&t

il

‘ Nl-tqpology.
192

]

M- topology.

Then ¥, and M, are filterbases in X (the intersection of

two sets in D 1s again a set in H ), and Ay = ‘V(%’T’) ,
A = y5T), |

13.3 THEOREM. A5 = A,

- In view of this theorem, subscripts on A will be dropped.’

13.4 THEOREMS.
.1 For any He'}(l and x€X, H‘[H[x]] = H[x], and
so ¥, ¥ satisfy (7II).
2 SCH2 = FL .,
.3 42 is completely regular.
.4 If A is closed in &, then A is both open and
closed in 4%,
.5 If 4 1is Ty, then B2 1-s. the discrete topology.
Theorem 13.5.2 following was obtained by Rogers and

Sion [12].

13.5 THEOREMS. Measurability.

.1 Compact J’f sets are A-measurable.
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.2 If GeH , then G. 18 A-measurable,
Again, as discussed in remarks 9.11, stronger results
may be avallable.
To obtain results on approximation we require'thét o
Qa C'));A. (For example, suppose ACH . Sets in H will be
A-measurable by theorem 13.5.2.) In this case we can apply

theorems 10.3 to 10.8.
PROOFS

Proof of 13.3: Lemma: Gilven a topological space
(X, 4). If Dy,...,Dy are disjoint sets in ® , then
deLﬁ)Di caﬁ be covered by a finlte number of.disjoiht
seti=}.n D .

Proof: We note first that we may assume for any set
inH, D=A~B; A, BEH, that BCA.,

The proof 1s by induction. _
n=1: D} = Aj~By, Al,.Blexﬁ. Then X~D; is covered by
. By and X~A;, both elements of O . |

Now suppose that for every set Dj,...,Dpn or disjoint
sets in H y X~ }Z{Di can be covered by a finite number of
disjoint sets in O , and let Dj,...,Dp;y be disjoint sets
in D . By hypotheslis we can form the following finite

cover of dlsjoint sets ind
{Dl;ooo’Dr, _Cl"";’Ck}'

Consider now the family Dj,...,Dp, Dpyl = Apy1~Bryy, and
CJOBII_{.:L, CJm(XNAr+l) fOI‘ J= l,..l’k.
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1) It is obviously finite.
11) It is a cover, for any point not in Dy to Dn, must
be in some Cj;and in either B,,; or X”'Ar+1'
ii1) Iﬁ 1s a disjoint family since the Dy, 1 = 1,...,r+l
are disjoint, and for any Jj, 1<£j<Xk, CJmBm-l is disjoint
from CyN(X~Ap;1) (since Bpy3CAL 1), and elther of them 1s
disjoint from any Dg, 1=1,...,r, or Cp, m£J by hypoethesis, |
and from Dpi y by construction. | |
iv) Finally, it consists only of sets in £ for, since
(G~Gp) N (G3~a) = (61N63) ~ (UG,
the intersection of two sets in ® 1is again a set in & .
This completes the proof of the lémma.
Now Aj2 Ao since cbverl«b D coverpd .
A1&Ap ¢ Let ACX, a<XjA. Choose B € covery .
such -that |

)BA:>a.
Let & = {D . Then
{ J}jew
Aph = S A (ANDyY)
b JEW b J
§ince AC:LVJ(A(\DJ) and any cover of A which is' a refine-
JjEw '
ment of 8 can be broken into disjoint familles covering the

Djr\A, JEw. Hence for some NEw,

N

Consider now

| | N
& = {Dl,...,DN}LJ{XﬂvkziDi}.
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By the lemma above, choose £ € coveréﬂ, L refining &, and.
= 4F where Fs = Dy for 1 =1,...,N.
{- 1} i=l, k ) R i i b .,

e o 0 )
Now as 1n the case of ABA above, we have

Ak = Z)\x(AﬂFJ)

Also, for 1< J<N, Fy = Dy so ANF; = ANDy. and

since any set contained in'an element of £ or & and inter-

secting Fy = DJ‘is contained in Fy = DJ. Hence

N N :
A ?glxx(AﬂFj) = El)\a(AﬂDj) > a.

Therefore
and so

AoA 2AqA.

Proof of 13.4.1: Let x€X and HEN¥,. For some B€
coverlﬁ , H = Hg, and for some BEB® , X€ B. Now BE® .'
implies B € Hy so by definition 6.1.1:r ’

BCH[x]. |
But any element of H containing X must be contalned in B,
since H refines & and the elements of ® are disjoint, so
we have H[x]CB. Hence H[x] = B and |
H[H[x]] = H[B].
But H[B] = B by definition 6.1.2 and an argument similar to

the one above. Hence

H{x]] = H[x] for each x€ X.
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Proof of 13.4.2: Let GEH and set 8 = {G, X~G}.
Then ® € coverp,® and Hy € ¥o. Further, for every x€G,
Hb[x] = G, Hence GE 4°.

| Clearly H°C S

Suppose G € 41 and x€ G. Then for some H € cover, ® ,
H{x]CG. But for some A~B = DEH, H[x] = D. Then

® ={D, B, X~A} € coverpd, | |

Hp € No, and HB[X] - DCG.. Hence GE,&z.
Proof of 13.4.3: TUse 13.4.1 and theorem 8.2,
,_P;_r_o‘if:_@ 13.4.4: A is closed in 42 becausé 5 CH2,
" Let (B = {4, _X~A'}. Then @ € coverzog, and Hg € N,
For every x€A, Hds[x] = A, Hence‘A_E ,&2.
Proof of 13.4.5: If & is T,, then points are closed in
) and hence by .4 above, open and closed in .&2.
Proof of 13.5,1: TUse 13.4.1 and theorem 9.6.
Proof of 13.5.2: Suppose GE . and let
8 ={a, x~a}.
Then @ € coverpd and HBE’}(Q. As in the argument in the
| prodf of 13.4.1, we show HB[G]v; G. The conclusion folloWs

from theorem 9.3, setting B, =G for every ncuw.

13.6 EXAMPLE. 42 may be strictly larger than J .
Let X = R,, & = {[0,a) : a>0}. Then .4° is the half-open
interval topology, which is not only larger than J, but
larger than the usual topology on R+ as well. (Compare

12.6)
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13.7 EXAMPLE.' Theorem 13.5.1 cannot be strengthened to
closed 2%2 sets.

It was shown by Rogers and Sion ([12]; theorem 8) that
the measure A defined on the real line, with the gauge T
on the subsets of R defined by tA = diam A is juét the measure
Y, which in this case is known to be the same as Lebesque
measure. But the %%-topology in this case is discrete by

13.4.5 and so all subsets of R are closed ,ﬁf sets.

14, Relations between measures,jexampies.

In this section we first establish some relations
among some of the measures we have studied. We then provide
examples showing the lack of one-to-one correspondence
between the filterbase ¥, the measure'vcy), and the |
M-topology mentioned in remark 8.5.

The following result was obtained by Bledsoce and
Morse [2].

14.1 THEOREM. If (X,.4) is a metric space, then ¥ =X

14.2 REMARK. It was shown by Rogers and Sion ([12],
theorem 8, and in some unpublished work) that if (X,;&) is
a separable metric space, and T is well behaved in a certain
sense, then.)\= T = ?2. In this case then (which includes
Lebesgue measure and the classical Hausdorff measures)

T=A=Fo =% =% by theorems 12.5 and 14.1,

14.3 REMARK. In the example in 12.7.2, the space is

metric and it 1s easy to see that =7, as is assured by
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theorem 14.1. On the other hand, by 12.5, ¢, 1s the zero
‘measure, and since covereﬁ = coverg:ﬁ, we have also that

A= P5. We have then
F=P#r=P =¢5.
In this sense, ¥ is the most successful of these measures in

generalizing from the metric case.

14.4 REMARK. We note that . in example 12.7.1, A is
counting measure, different from both ¥ and ¥5.
We now consider examples of different fillterbases,

measures and topologies;

14.5 EXAMPLE. Different filterbases may yileld the same
topology and measure. Let X = R; for ACX, A = diam A,
Let H, = {ACX: diam A<r}, M, = {(a,b) : b-a&r] and

N ={H. : v>0}, Ty = {M, : r>0}]. It is well known that
() |

Y =1 18 Lebesgue measure, and it 1s clear that

diag = B -

14.6 EXAMPLE, Different filterbaées may give the same
topology but different measures. In certain cases of
Hausdorff s-dimensional measures Besicovitch [1] has shown
that unlike the case above, a different measure is obtailned
if the covering sets are restricted to open spheres. Again
it is clear that the topology is the usual one. (Another
example may be constructed easily from the case in example

8.4.)
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14,7 EXAMPLE, That different filterbases may induce the

same measure but different topologies is Jjust the point of
the remarks in 9.11. For agother example, let X = R;

for ACX, zA = diam A. Theh by theorem 8 of [12], is=f,
which 1in this case 1is Lebesgue measure. By 11.3.1 the
X¥-topology assoclated with ¥ 1s the usual topology while
by 13.4.5 the ¥-topology associated with A .is discrete.

15. Measures generated using non-negative functions.

A weak metric on X (sometimes callgd a quas?-metric)
1s a non-negative function p on X§<X satisfyinéAp(x,x)_= 0
and the triangle inequality p(x,z) ép(x,y) + p(y,z) for
x,&,ze;X. Any topoiogical space (X, ) has a canonical
family of weak metrics {p; : GE ] associated with it
(see definition 15.1.1)., This family in fact generates a
quasi—uniformity which induces the topology & (see Pervin
[111). It‘is natural therefore to try to generate measures
using this famlly and the standard Hausdorff process.b

In this section we expiore several avenues along this
approach:and consider heésures'generated using non-negative
functlons on XXX. We obtain again the measures of
sections 12 and 13 and an additional one, n , which is very

similar to the measure ¢.

15,1 DEFINITIONS.

.1 For ECX,

Pr(x,y) = {1 if x€E and yEX~E

-0 otherwise,
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.2 For 8 a family of subsets of X,

qB(X)Y) = Eggfh(x:y)-

.3 For G:a sequence of subsets of X,

sG(x,y) = }:1/2nfbn(x,y).

new

We note that Prs Ty s and sg are all weak metrics which

-may fall to be Symmetric. In general, r, is not likely to
& |

be very 1interesting. For example, if X is

the real 1ine and

B 1is the family of all open intervals with rational end-

points, then rB(x,y)_= 1 iff x # y and the measure generated

by the Hausdorff process uslng sets of r-diameter less than 1

8

will be infinite for any uncountable set, regardless of the

function . On the other hand, if ® is finite and G is any

-ordering of the elements of 8 then, for sufficiently small

§ >0, diamp, A<§ 1ff dlamg A< §. For this
) G

only s~ to generate measures.
G

reason, we use

We note also that taking the infimum rather than the

supremum over a family of the weak metrics PE does not lead

to anything of interest, as lncreasing the
the family increases the family of sets of
In fact, if two sets of the family ® were

all subsets of X would have zero dlameter,

15.2 DEFINITION, For any countable
-be any ordering of the elements of & , and

é)O [)

number of sets in
zero dlameter.

disjoint, then

family & , let G

for ACX and
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Y A =1nf{ > 2E; : AC{UE; and for i€w, E;€ A
G, €W 1€W '

o

and dlamg Ey < 8},
e

Yol = 1im Y A,
G §—0 G4

15.2.,1 REMARK, If D 1s any other ordering of the

elements of & , we have Y3 = ¥p .

Hence, we shall write ¥, instead of Vg.,

15.3 DEFINITIONS. For any ACXK,

V1A = sup "PBA
@€ cover

QQA = ~ 8sup NBA,

: Be covery

We then have
15.4 THEOREM. Y, = "{‘2 =A.
Next, we conslder another family of non-negative.

functions on XXX which may fall to be weak metrics.

15.5 DEFINITIONS.
.1 For BCX,
dp(x,y) = (0 if x,y€B
{1 otherwise
.2 For 8 a family of subsets of X, ACX,

80 = inf{ > 2By : AC{JE; and for 1€w, E€Q
iew lew: '

and inf diamd E,; = 0}.
Be® B
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BA = sup . A
s Becoverd o
‘A = sup A -
h Bec overl.& %
A = sup A.
32 @€ coveryd §B-

In thils cése, taking the supremum rather than the
infimum over a family of the functions%.does nét lead to
anything interesting. If we have two disjoint sets 1n the
family 8 , then | |

sup diam9 (x =1 1if x
sup B( »Y) AV,

and again we automatically get infinite measure on uncountable

sets.

15.6 THEOREM. &=, § = 1, o= P,

- In definition 15.2,
1/20 diam Ey <4
> fbn i

new

can be substituted for diamsG Ei<35(without affecting the
measure Y) = VY,). We have already used the fact that the
former implies the latter,; ‘Although the converse does not
necessarily hold, 1t is not hard to show that the measure
obtained using the first is less than or equal to that
obtained using the second; the pfoof“is almost 1dentica1 to
that in- 15.2.,1. _ _ |

In the case of the function bB’ using the infimum,
this situation does not hold. If we change the position

where the infimum 1s taken, we may get a different measure.
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15,7 DEFINITIONS
.1 For 8 a family of subsets of X,

.db(x:'Y)_ = éggbﬁ(x:y) .

.2 Por ACX, e a famlly of subsets of X,

ngh = inf{ > 2B, : AC\UJE;, for 1€w, E4€A and
. iew iew R

- diamg By = o}.

nA = sup Ne A
Becoverd &

MA = sup NeA
1 &ecoverl.b &

NoA = sup Ngh -
@eccovernd

We compare the p-measures and the ®-measures

(section 12).

15.8 THEOREMS. |

.1n&?P, VL1$ CPl, no<Ys.

.2 I (X,&) 1s fully normal (2.2.1) then m=9.
Since metric spaces are fully normal (2.3.1), n=¢% in any
metric space, and hence n = ¥ in any metric spacé, by
theorem 14,1, Although there are cases in which n# Y (see
example 15,12 below), N has many of the same properties as
¢, To see. this we let W? be the X of 12.2 and consider

the filterbase ¥, associated with n.

15.9 DEFINITION, For B € co‘verﬁ‘,
Mg = {ACX : diamg A = 0}
Wy = {Mg: B E cover b .
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15.10 LEMMA. Given xE€X, ® € coverd , M = M€ ¥, ,
H = Hg€ M, then H[x] = M[x].

It follows from 15,10 that all results which depend on
the concept H[x] are the same for the measures n and ¢.
Thus results analbgous to these in 12.3 and 12.4 hold also

for n, and the M,-topology 1s the same as the M, -topology.

PROOFS
Proof of 15.2.1: Let G and D be different orderings
of the same countable family. We show that for ECX,

’\PGE = "PDE .

Let §>0, and choose NEw so that

. 00
1/2N<§ ana + D> 1/21 <.
1=NF1

Let
L ={61,...,0y}
and choose Méw such that
{D1s....DM}D L.

Clearly M2N. Let &< 1/2", Then for ECX,

diam. E<€& = 'sup ( 1é3 (x,v)) <¢
D X, yEE JEL / PDJ )_

sup 1/2J A (x,y) <& for j21
X,yeE J

=
= 1/2J diampDJ E <e for j21

i diampD E = O fOI‘ j = 1,...’M
J .
= -diamp, E =0 fori:l,...,N.
1
o |
= > 1/t atamp E <4
1=1 Gy

= atamg E <é,
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the last implication following from the'fact that the sum of
suprema 1is gréater than or equal to the supremum of theVSums.
We have then |

ﬂfJD’eE > '\PG,é E,

since by the above result, . any covering set used to define
the first can be used for the second, and so in the latter
case the infimum 1is taken over a larger set. It follows that

YpE 2 Y,E

since & was arbiltrary.
The reverse inequality is proved in an analogous manner,
Proof of 15.4: Clearly Y >VY,. We show
P2, 2. ” |
Y22A, : We show that given & € coverpy®d, there
exists ® € coverp and § >0 such that for some ordering G
of B,
| Yasg 2.16.
Suppose €& € cover29 ,
€ = {03~0Cy ., ¢ i=1,,'...,n}.
Let < 1/2°" and
®=0a-= {Gi : i=1,...,2n} € covernd.
Now suppose diaWsGB<<6. Then for 1=1,..:,2n, diéﬁfhiB =0
and so BCGy. 1ff BNGy; # @ . Hence for some D€ &, DDB.
Thus for any family 9 of 'elements of sG-diameter.less than 4,

9 refines & and we have

Ya,5 = e
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Ao 2 Y, : Let & € coveryd, € =G = {Gi} ACX,

iew’
and a < WgA. Choose 6 >0 such that

Ya,6 A>2s

and NEw such that
. . - 4
1/2%<6 and 2. 1/21 <.
i= N+1

Let

§ = {Gl,...Gﬁ, X} € coverp

and

& - {A~B : A =€ for some LCg, A2,

and B = ¢(g~L)}.

Then @& € coverpd for |

1) 8 is clearly finite,

2) B . 1s a cover of X since 9 1s a cover of X,

3) for any (A~B)e ®, A and B are both open,
and

4) elements of 8 are disjoint. To see this,
suppose x€ A~B for some (A~B)€@® . Then x is a member of
eéch.eleﬁent in the intersection forming A and of none of
the elements 1n the union forming B. Thils 1s clearly the only
decomposition of g ‘into two families for which this is true,
i.e. x can be invno other element of B .

Now suppose DCA~B for some (A~B)E® . Then for |

1=1,...,N, DCGy iff DNG; # & and so

atamp D = 0 for 1=1,...,N.
1



Hence

o
2. 1/21 qlamp D <4
and so
diamg D <4,

G
Thus for any famlly which refines 6 , every element of that
family has s,-dlameter less than 4, whence
Aeé’\PG’6>a.
Since € was an.arbltrary element of coveri< , we then have
Ao 27 o

Proof of 15.6: The conclusion follows from the fact

that inf diam9 B = 0 iff BCG for some GE B .
GeB G '

15.11 LEMMA. For ACX, 8 a cover of X,

atamg A = 0 1ff AC r{0€ & : x€C} for each x€A.

Proof': diamy A = O
- 8

iff sup de(x,y) =0
X,yEA

iff de(x,y) = 0 for every x,yEA

1ff ing d; (x,y) = 0 for every x,y€ A
Ge ’

Aff x,ye G for some GE® for every x,yEA
 Aff ACe{ce® : xe€G} for every x€A.
Proof of 15.8.1: If @ € coverd or coverd or
coverg.&, _then BCG fof some GE® implies diamdBB = 0, by
lemma 15.11.
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Proof of 15.8.2: Let 8 € coverd and choose an
open cover € ,.a sﬁar-refinement.of ® . Then by lemmé 15.11,
diamdeB =0 implies B 1s contalned in the star at x of &
for any x‘E B. Since € 1s & star-refinement of  , BCG for
some GE® . Hence
g > T
and since B was an arbitrary }_element of coverds ,
n Y.
Proof of 15.10: Suppose @€ coverd and Hp € My,
M€ M, , and x€X. We know from the proof of 12.3.3 that
H[x] = c{Ge & : xea}.
By definitions 6.1.1 and 15,9, and lemma 15.11,
Mg [x]

Il

F{ACX : x€A and ACT{GEB : xeG}}

c{Ge® : x€G} = Hglx].

15,12 EXAMPLE. A case in which PA>nA.
Let Gy, Go, G3 ‘be subsets of X such that

X = UG UGs; |
G ~(G2UG3) £ D, Gp~(GUG3) # 2, G3~(UG) # & ;
G NGp~G3 # @, 6N G3~Gp # T, GpNG3~G AT .
Let {Gl, Go, G3} be the subbase for a topology for X.
Let ,
2B =(0 1f B =
{1 iIf B AJ,

and

A = (G Nap) U.(6aNa3) U (a3Na6p).
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Now any open cover of X must have 91’ Go, and‘G3 as elements.
Since two of these are necessary and sufficient ﬁo cover A,
we have

f4yA = 2 for each B € coverd ,
and hence '

PA = 2,
On.the:other hand, by lemma 15;11, diamdBA = 0; and so

ngA = 1 for each @& € coverd

and

na = 1.



CHAPTER III

MEASURES ON QUASI-UNIFORM SPACES

In this chapter we consider three methods of generating

a measure on a quasi-uniform space, and so, since every
‘topological space is quasi-uniformizable (3.8), on any topo-
logical space. We shbw that these measures include ¥, A, and
®>, and in certain cases ¥. When we restrict the. quasi-
uniformity to a uniformity, the three methods result in the
same measure‘p,and we apply some theorems from chapter I to
obtain_measurability properties of/;. Theorem 18,3.2, on
measurability.of closed z% sets, 1s an important result for
-the development. in chapter IV,

_ Throughout'this chapter we assume given (X, U), a
quasi-uniform space, and T, & gauge on A, a family of

subsets of X such that FE€A.

16. The measures Mo /ﬂ) and}ﬂ#.

We now define three types of covering sets in terms
of the quasi-uniformity ‘U, and use them to generate the
measureslx,/if, and)l#.

Recall the definitions in section. 3 of chapter O.

16.1 DEFINITIONS.
For UCX XX,



’_!
a
it

{ACX : AXACUY,

(=]
-+
|

= {ACX : for some x€ X, ACU[x]},
v - {ACX : for some VEU, AXV[A]CU}.

For ACX,
.2 MgA = inf{ 3 *B : B 1s countable, B C rna ,
BeB
and ACG“(B}.
A = sup
sk 5
3 A = 1nf{ 5¢B : B .1s countavle, 6 C UTNA,
BER
and A C ¢ 8}.
= sup
T
M}L#A = inf{ > %B : &  1s countable, BC U#na,
U Be®
and ACG‘&}.
#A su
= p .
pn = supylon

16.2 REMARK. The same measures are obtained if the
supremum. is taken .over a base for U, it.e. if U 1is a base
for the quasi-uniformity ‘U, and for ACXv,'

6A = supuA
Ve'l/uv ’

then 0O = e
Proof: Since Y CU, we have }.,L?G.

Given any U€ U, there exists V€ U such that VCU. Hence

* k.
VCU and so

0 2 My 2 My

and since U.was an arbitrary element of U,

02}1..

75
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16.3 REMARK. Pervin [11] points out that two non-
comparable quasi-uniformities for X may give identical
topologles for X. They may at the same time yleld different
measures. In the case in 16.5 below, we note that T3 (3.6).
.18 Just the metric topology. In the case in theorem 17.1
- below, applied in a metric space, ?&’ 1s by construction
again the metric topology, but we have seen that ¥ and A do

not always agree on a metric space (see remark 14.3). -

16.4 REMARK. The same situation 1s true for uni-
formities. TLet (X,d) be the set of all ordinals less than
the first uncountable ordinal, with the discrete topology.
Let

Qll

I
——
>
L e and
-

and

U

il
—
g
[
1]

o AUX~{x : x<a}) X (X~{x :

x<a}) for some a€ X}.

It is easy to check that 241 1s the base for a uniform-
ity for X. Clearly ‘Uz satisfies.a), b), and.d) of}3.11.6.
By lemmas 3.2, for any Uue 712, UoU = U, so c¢) 1s satisfied
also.

The topology induced by each of these uniformities 1s
obviously the discrete topology. Now for BCX, let

TB = (0 1f B 1s countable
1 otherwise

Let }Ll be generated using '2(1 and }12 using 2(2.
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Now sﬁppose ACX is uncéuntable. Then }J&A = 00 and
=Yo) /.xlA =00 . On the other hand; ‘fo'r any U€ Up, }LIQIA =1,
since '
U =AUEX~{x: x<a}) X (Xx~1{x : x <a}) for
some a€ X, and A can be covered by {(X~{x : x<a})}U{x: x<al.

Hence })?A =1,

16.5 REMARK. 4 1s a direct generalization of ¥.
Let X be a metric space with metric d. If we set
Up = {(x,y) : d(x,y) <),
and
U = {u. : r>o0},
then 24 1s clearly a base for a {(quasi-) uniformity for X.
Since AXACU, iff diamgA<r, we have Jfn = My for r>0.
Using remark 5:.3 we conclude
= p.
17. Properties o_f}A,).J', gpg_j).#.

We conslider first some properties of these measures

when % 1is only a quasi-uniformity.

17.1 THEOREM. If U is Pervin's quasi-uniformity,
(see 3.8) .for a topological space (X, ), then = A

(section 13).

17.2 THEOREM. If 9 1s Pervin's quasi-uniformity for

a topological space (X,.4), then },J= Y5 (section 12).

17.3 THEOREM, If U 1is a quasi-uniformity for a

topological space (X, ) such that T, = & , then /u.fsﬂf’
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(section 12). If U 1is the maximal quasi-uniformity inducing
J on X, and (X, 4) has property Q (2.2.4), then }J.‘r= ?.

C17.4 REMARK; We can have }ﬂ'f'?_in a space having
property Q. If‘}ﬁ is obtalined using Pervin's quasi-uniformity

for the space in example 12.7.1 (see also 2.3.4), then
M=, £
We now consider some properties of these measures when

U 1s a uniformity.

17.5 REMARK, Unlike the case for a gquasi-uniformity,
the same measure 1s obtained in the uniformity case whether
‘we use covers from U* or from U*,.i.e.‘}k=}Lf.

The following theorem 1s analogous to a Similar well
known result for f-measure (section 11) : fA is the same
whether we require of the covering sets in definition 11.1
that diam B;<é or dlam Byj< 4. (See, for example, the

first sentence on p. 147 of Sion and Sjerve [13];)

\

17.6 THEOREM. If U is a uniformity, then ).A-=}J¢#.

We have seen thaf a uniformity U is characterized
by a family of pseudo-metrics, the gage of ‘U (3.11.7).
The definition of ¥ in section 11 is valid for a pseudo-
metric., The measures generated using the pseudo-metrics

in the gage of U can be used to obtain u.

17.7 DEFINITIONS. Let U be a uniformity for X, G the

gage of U. For PEG’ ACX,
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oCp,nh = inf{ > =By : AC\_B,, and for each 1€w,
lew icw ‘

Bj€ & and diam By < 1/n}.

KpA = supe, A,
P new /7

XA = sup .
peGmpA

.17.8 THEOREM. If G is the gage of U , then « = M
We now examine the relations between )1,'and n and ¥

of sections. 15 and. 12.

17.9 THEOREM. If U .1s a uniformity for a topological
space (X, ) such. that ’J’.u =¥ , then })LSn_'. If further, U

consists of all neighborhoods of A, then )J.= n.

17.10 THEOREM. If (X, ) 1s a paracompact topological
space, and ’U, is the maximal uniformity inducing ¥ on X, |

then P=n = ph.

" PROOFS AND EXAMPLES

Proof of 17.1: Applying theorem‘1.5.1+, ‘we show
A= Yo, the measure defined in 15.3,

p2P2 : Let B € coverpd, 8 =G = {G1,...,Gp},
G4E€SJ for 1 =1,...,n. Let

n
U= mSG
1=1 1

where Sz = (GXG) U ((X~@G)XX). (see 3.8) Then UcCU.
Now for GE€ &,
AXA C 5, 1ff ACG or ANG =¢.
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*
Hence AXACU (A€EU ) iff A is contained.in each G € B
which 1t intersects. But then

diampGiA = 0.for 1=1,...n,

whence
diamg A = O
St T
and so
My Yg,0 =Y
Since 8 was an arbitrary member of coverg.ﬁ, we have
)AQZ“PQ. |
Yo 2}): Let UEU. Then there exists VEU, VCU
such that m
v =mSG
J=1 J
.where GJEJb for j=1,...,m. Let
=G =1G € covern,sd .
6 { J}.J=1,...,m 2

Let § <1/2™, and diamsGB <§. Then for j=l,...,m.

diampGjB = 0 and so BCG, 1ff BNG; # @ . Hence

m
BXBC[ )Sq
3=1 3

LUk
or BEV . Thus any set of sg-diameter less than é is an

element of V. and we have
Yo 2 My 2 My
~and since U was an arbitrary element of U,
Yo 2 u.
Proof of 17.2 : }f)‘(’g : Let & € coverpd, 8 =

{Gl,..-,Gn}’Where GiEJ fOl" i=1,...,n. Let



n
U = ‘mSG e U
i=1 1

Suppose A€ U'. Then for some x€X, ACU[x]. Now x€& GJ for
some GJE ® , and since UCSGJ’ we have '
| Ulx] C st[x] = Gy .

Hence ACGJ,and so EC UT«implies € refines 8. Therefore

>
and
ut>
P> e |
/.J$“Pg : Suppose UeWU. Chose VEU, VCU,
m
V = mSG .where GJE.& for J=1l,...,m,
J=1 °J '
Let

® ={vix] = xex}.
Now for x€ X, eitherkV[x] = X, or

vix] = mGJ for some k, 1€ kx€m,
i=1 -1

and. some function J on {1,...,m} onto {1,...,m} , for:
Suppose x¢ G4 for i=1,...,m. Then
] : A :

(i;;iSGi) [X]

vix]

it

{v: (x,y)e (e61Xey) U ((x~ay) X X)
for 1=1,...,m} :
= X.
On the other hand, suppose xGGJi for i=1,...,k,
1<k<m, and x¢(}j for 1 = k+l,...m, for some function

3 on.{l,...,m}pn‘i‘;o {1,...,m}. Then

81
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(x,y)ev 1iff (x,y) € GJi X GJi for 1=1,...,k

irfe yGGJi for 1=1,...,k

k
10e v oy
i=1 “1i

k
Vix] = m GJ
i=1 =1

We conclude that each element of ® 1s open and 8 1is finite.
Clearly & 1s a cover of X, so 6 € covereb . Trivially, if
ACB for some BE@®, then ACV[x] for some x€X, so &
refines ® implies & C U' and hence
T T
B2 My > M

and

‘P2 > b,

Proof of 17.3: Suppose U is a quasi-uniformity for
(X, ) and T = & . Let UE9. For each x€X, U[x] is a
neighborhood of x so there exists open Gy subh that
X E Gy C U[x]. |
Let '
6 = {o, : xex}.
Then 6 € cover. and if € refines B., é’,CUT‘, so
To 2y
ahd
¢ >/uf.
Suppose now U 1s the maximal quasi-uniformity
inducing J on X, and. (X, &) has property Q. Let €& coverd



83

and let B € c_over.& , B refinihg & and such that
m{ice B: xea} is 'oxﬁen for every x € X.
-Seﬁ '
v={)sg
S
where again Sz = (GXG) U ((X~G)XX). Then

1) for every x€X, U[x] is a neighborhood of x, and
2) UoU = U. |

1): We show U[x] = mic e B : xeacl.
yeUlx] iff (x,y)€U
iff (x,y)€ SG for every GE B

1ff (x,y)€GXG or (x,y)€ (X~G) XX for every
| GEB
1ff x,yEG or x&G for every GE B
Aff Y€ G,'for each GE 8 such that x€G
1rf ye w{ce B : xeaG}. |
2): By definition,
UoU = {(x,y) : for some z,(x,z)€ U.and (z,y)e U}.
Now if (x,y)€ U, then since (x,x) € U, we have (x,y)€ UoU,
and so UCUoU. _
Suppose now (x,y)€ UoU, Then for some z, (x,z)EU
and (z,y)€ U. Hence (x,z)E Sg and (z,y)€E€ Sg for every GE B .
Let GeH .
a) if (x,z)€ GXG and (z,y)€ G XG, then (x,y)€ GXGCS;.
b) 1f (x,z)€ (X~G) XX and (z,y)€ (X~G) XX, then
(x,y) € (X~G) XXC5sq.
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e) If (x,z) € (X~G) X X, (z,y) € GXG, then
(x,y) € (X~G) X XCs;.

d) (x,2)e GXG and (z,y)€ (X~ G)XX is impossible
Hence (x,y)ESG for every GE ® and. so (x,y)€ U and we have
UoUCU..

Now 1) impliles that A CU, and this with‘.a), implies
that {U} is the base for a quasi-uniformity for X. Hence |
by theorem 6.3 of Kelley, UU{U} is the subbase for a quasi-
uniformity ¥ for X. But ‘7;/ = % (the proof,. usihg- 1), is
essentially the same as that in 3.10), and so since U 1s the
‘maximal quasi-uniformity inducing &4 on X, we have V=U
and UEU. ,

Now if ACU[x] for some x€X (1.e. AEUf), then by the
proof of 1), ACG for each GE B8 such that xE€G, and hence

LC ut implies £ 1is a refinement of B . Therefore

My > % 2 e
and we have
}ﬂ?‘f’-

Proof of 17.5: jﬂs}u Suppose UE U, and. let AXACU,
and x,yEA. Then (x,y)€ U and so ye€ U[x]. Hence ACU[x] for
every x€ A and U*C UT, and we have };%é/uU ’
and |

M.
P&l oiven UE U, using 3.11.4 and 3.11.6, c), choose
symmetric VE U such that VoVoVCU. Applying 3.11.5 we
conclude VIC U*. Hence |
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1-
My 2 My
and
1-
/.LZ}.{. | _
Proof of 17.6: )JLQ}JL# : Glven UE U, U#C_U*, 80
# | |

MU S AL

},.,zﬂ# : Let UEU. Chose VEQ such that V is sym-
metric and VoVoVCU. Suppose AE V*. Then AXACYV and by
3.11.5, " |

V{AIXV[A]CU.
Hence AEU# and we have
/*v?};‘ﬁ
and
o2

Proof of 17.8: For peG, let
n = {(xy) : plx,y) € 1/n},
Then by theorem _6.19‘of‘ Kelley |
YV ={Vpn : pes, newf
~1s a base for U. By remark 16.2};‘ may be defined ‘usirj.g V.

Now for ACX,

oA = sup sup ocP n?A = sup | o

PEG nEW (p,n)eGxw P’
= 8u 1nf{ZtBi : ACUBi and for i€w,
(P’ ?eexw i€w lew

Bi€A and diampB; <1/n}

§ inf{ > By :ACMBi and for i€w,
» N )& GXw iew

By€A and B;XB;CV, 1
= sSup /“VA = '

ey
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Proof of 17.9: Suppose U 1is a uniformity induclng
& on X, Let UEQU. For each x€ X, using remark 3.11.3

choose an open neighborhood G, of x such that Gy XG,CU, and :

let
& = {Gx : XxEX}Ecoverd .
If diamg A = 0, then AXACU', for suppose diamg A - o.
Then .
(x,y)€ AXA @de(xz,':y) =0
=> for some GEB, BG(x,y) =0
=> for. . some GEB, x,ye'G
=> for some GER , (x,y)EGXaE
= (x,y)€U.
Hence
Ng 2 My.
‘and
Yl?}..l.

Now suppose further that U consists of éll nelghbor-

hoods of A, Let B € cover. . Let

U=¢{GXG : Ge 8}.
Then UE€ WU. Suppose AXACU. Suppose XEA and let yEA,
Then (x,y)€ AXA and. 8o (x,\y)e G XG for some GE® . Hence

vec{ae B : xéG},
and we have | |

ACGce® : xea} for each xEh.

By lemma 15,11, diamdbA = 0, We conclude that
Fru > g
ials

and
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2299£Jg£'i7.10: A.paracompact space is completely fegu-w
lar and the maximal'ﬁniférmity consists of all'neighborhéods
of 15(3.11.9).; By theorem;17.9, Mm=n.

A regular space is paracompact iff it.is fully normal
(2.3.2). By theorem.15.8.2 then, P=1. (We could replace
'paracompact’' by 'regular and fully normai' in the hypothesig
" of this theorem.) Z

17.11 EXAMPLE. A case where ©= 1N # . In the
eXémplé of 16.4, Qll is clearly a base for the makimumﬁuni-. 
formlty for X. Also the,space'is metric,.and hence pafaQ
compact, so we have ?; Vl=/p} = f. However, we gaw,there
that/p@ £l showing that the hypothesis that U consist. of
all neighborhoods of A 1s redquired for theoremhl7.lo..jIn
'this.1ight we note alsQ that. different uniformities for a

metric space may result in different measures.

18, Measurabllity. theorems.

In this section we restrict our attentien te the
uniformity case and obtainsome measurabllity theorems:for}x.

To apply the theory of chapter Ilwe let

18.1 DEFINITIONS.
Hy = {ACX : AXACU},
N = {Hy : UeUl.
Then ¥ 1s a filterbase in X and }L=‘Vckgt). Properties

of ¥ and the H-topology are indicated in the following

theorems,
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18.2 THEOREMS.
.1 ¥ satisfies (7II).
.2 If U consists of all neighborhoods of A, then
‘N satisfies (7III). |
.3 The M -topology is the uniform‘topology,"ﬂu .
‘Applying the results of chapter I wé then get the followlng

measurablility theorems.

18.3 THEOREMS.

.1 Compact 2% sets are u-measurable.

.2 If the uniform topology 1s compact, then closed
g sets are p-measurable.

.3 If U consists of all the neighborhoods of A,
then closed J& sets are }L—measurable.

.4 If the uniform topology 1s paracompact, and U
is the maximal uniformity, then closed é% sets are

).L-mea surable,

- PROOFS AND EXAMPLES

- 18.4 LEMMA., If UEU, U is symmetric, and x€ X, then
Hylx] = U(x].

Proof: Using definitions 6.1.1 and 3.4.2,
ye€ Hylx]

iff ye A for some A€ Hy. such that xe€A

iff \y‘EA for some A such that A XAC U»,and x€E A

irf {x,v} x {x,y}CvU

Aff (x,y)€U |

Aff ye Ubx].
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Proof of 18.2.1: Suppose HE%. Then H = Hy for some
Ue U. Choose symmetric V, WE Y such that VCU and WoWCV.
Suppose ACX. Then by lemmas 6.1.2, 18.4, and 3.5.1,

H\;[A] = Unplx) = Uvix] = val.
x€A X€ A v

Similarly Hy[A] = W[A] and Hy[A] = U[A]. But by 3.5.3,
Wiw[a]] = (wew)[A]CV[A].
Hence

Hy[Hy[A]]1CHy[A]CHylA],

Proof of 18.2.2: Suppose ACX is closed, BCX 1is open

and ACB. Let |
U =BXB U (X~Aa) X (x~4A).

Then U 1s a neighborhood of A and so UEU. It 1s clear
that U[A] = B.

Proof of 18.2,3: Definitions 6.1.3 and remark 3.6 show
‘that these two topologies are defined in the same way, one
using Hyl[x] and:the other U[x]. The desired conclusion
follows from remark 3.11.4 and 18.4,

Proof of 18.3.1: Use 18.2 and theorem 9.6.

Proof of 18.3.2: The conclusion. is an immediate
corollary of 18.3.1. b

22222,93 18.3.3: Uée 18.2 and theorem 9.7.

22992492'18.3.4: It has already been observed in the
proof of 17.10 that in this case thevmaximal uniformity
consists of all nelghborhoods of A . The conclusion 1is

then a colollary of 18.3.3.
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|18.5 EXAMPLE. A non-measurable closed J set. The
space of 16.4 is metric and so paracompact. It.is not.compaot.
Uo 1s a base for a unifoermity which does not'consist of all
:noighborhoods of.Zl. Qlllis a base for'the uniformity con-
| sisting of all neighborhoods of A. Wo saw,that¥if ACX was

. uncountable, thenjieA =1, If the complement of Afis-aISO
uncountable, then A is not/u?-measurable. But any{subset of
X 1s a closed 2& set, Any compact subset of X is finite
and so haS)xe-measure zero.and.is’p?-measura,ble.)_xl is a

0-00 measure and.all subsets of X are }ﬂr-measurable.



CHAPTER 1IV.
MEASURES ON A COMPACT HAUSDORFF SPACE

The purpose of this chapter is to investigate the
possibility of extending certain results obtained in a com-
pact metric space by Sion and Sjerve [13] (hereafter
referred to simply as Slon and Sjerve). We work in a
compact Hausdorff space and generate the measure }1(16;2)
using the uniformity for the space and a gauge tfrestricted
as in Sion andVSJerve.- We could‘assume a‘compact regular
space but the Hausdorff assumption simplifies the;develop-
ment. and can be made with.little loss of generality (see
remark 20.3).

After introducing the restriction on =, we obtain
some properties of)x, a major one being‘regularity (theorem
20.6). 1In section 21 the partial ordering >‘on gauges is
introduced. A good deal of work in Hausdorff h-measure
theory has been associated. with this concept'and nonew—
 finiteness. Theorem 21.3 shows that its usefulness. is
essentiall& restricted to the metric case. We conclude with
a theorem and example.which begin.an investigation of a |
theorem on non-¢-finiteness which does not. involve the

ordering ».

19 Preliminaries

Given the uniformity U for X, we now. introduce the
‘topoiogy induced by U on;J , the famlly of subsets of X,
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and obtain some simple facts about it.

'19.1 DEFINITIONS. For A€ d and UE U,
.1 Ny(8) = {BCX.: ACU[B] ana BCU[A)},

2 Uy = fucd : :f_or-some,Ue"lL, WONy (A,
.3 ® ={W : We Y, for each AEW}.

19.2 THEOREM. R 1s a topology for 4 , and .for AE M ,

Y, 1is the neighborhood system of A relative to R .

19.3 REMARK. Michael [8] induces a topology. on the
subsets.of a uniform space by the same process as that above,
except that he sets ,

Ny(A) = {BCX : BCU[A] and BNU[x] # @ for all xEA}.

19.4 LEMMA. Michael's topology on o is Just R .

19;5 REMARK. In the non—compacﬁ situatioen, 1t 1s
possible to have tWo.ﬁon-comparabie uniformities. which
induce the same topology on'X; buf non-comparable topologles
on o . |

In the compact case the uniformity is unique and the

topology on 4 1is determined by that on X.

19.6 LEMMA. If X is compact in Jp, , then the family
¥ of sets closed in "'3'74 is a compact subset of 4 1inR.
We now introduce some results on a particular kind

of convergence in J .
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19.7 DEFINITION. Suppose (Bx, *E€ D) 1s a net in d .
Then
| B =<R—1°1cm By iff BE F and for every U€ U, there
 exists /seb .such that for
«>>pB, B,ENy(B). (see 1.17)

-19.8 THEOREM. If X is compact.in Ty , then for every
net (B, «€ D) in J , there is a subnet (Bg, PEE) and
BE ¥ such that |
B =a—lém Bﬁa

19.9 LEMMA. Suppose (Ax, x€D). is a net _ih J s
A =R-1im Ay, UE Y, U is closed in the product topology,
and A, XA, CTU for every w&€D. Then AXACTU,

PROOF'S

. Proof of 19.2: The conclusion follows from.:propqsition
2, chapter I of Bourbaki [3] after we have.chéCked the
following: _
| 1) If WE ¥,, then AEW, since AE NU(A) for e%‘zery UEU.
2) If WE V,, and YDOW, then Y €Y, by definition of ‘2/A
3) If W,YE€ V;, then WNYE V. Suppose W,Y € V.
Then there exist U&€ %Y such that WDU[A] and Ve U such that
YDV[A]. Hence |
| WNY D U[AINV[A] D (UNV)[A]
.by lemma 3.5.2. But UNVEW, so WNYE V;.
~4) If Wwe V), then there exlsts Y E ¥, such that YCW

~and for each BEY, W& Up.



Since WE Vs, there éxisté U€ U such that WONj(A4).
Choose symmetric V€ %, VoVCU, and set Y = Ny(A).

a) YCW : for let BENy(A). Then BCV[A] and
ACV[B]. But VCU, so |

BCV[A] C U[A}, ACV[B]CU[B].

Hence BE Ny(A)CW. ‘ -

b) For BEY + Ny(A), we héve WE Vgt

Suppose BE Ny(A). Then BCV[A], ACV[B]. Let
CE Ng(B). Then .CCV[.B] and BCV[C]. Hence.

cCvV[B]) C V[V[A]]

(vov)[A]) C TU[A],
and '

ACvVIB) © vIvicl] = (vov)[c]  ulc].

‘Hence C& Ny(A) and so
Ny(B) C Ny(A)Cw.
Therefore WE Upg.
| Proof of 19.4: If U is éymmetric; ~then
ACU[B] _
1ff for all XE A there exlsts yE B such that (y,x)E U
1ff for all XxE A there existsy € B such that (x,y)€ U
iff for all x€ A there exists yEB such that y€ U[x]
iff for all x€ A, BNU[x] ;{Q, | |
and the two definitions of Ny(A) are equivalent. But the
symmetric members of U form. a base for ’Z,-(. (3.11.4) and
hence using.only.symmetric members, we get the same base
for the neighborhood system of A€ J 1in each case, and

the topologles are the same,

Example for 19.5: Let X = (0,00) with the usual

L



95

topology, 2( be the uniformity having as a base all elg_ments_--

of the form _
{(x,y) : |x-y| < r} for some r>O0,
VY the uniformity having as a base all elements of the form
{(x‘,y) : |x/y - 1| <r} for some r>0.
Then Ty = T, 1s the usual tobology’. We show,. however,
that there 18 a nelghborhood 8 of XE'J' ‘in R‘.” (the.
topology induced on d by.?/) .such that every neighborhood
of X in R, (the topology induced by U ) contains points in
J not in @ , and similarly for a neighborhood of X in Ry, .
Let @ = Ny (X), where | |
V= {(x,y) : Ix/y - ‘1| <r} for some r>0.
Now V[X] = X for any VEUV, so | '
Ny(X) = {BCX : XCV[B'-]}.
Suppese P 1s a neighbo'rhdod of X in R.a.- Then fonsom_e
U.in the above base for ‘U, | |
® DNy(x) = {BCX : XCU[B]}. !
But - " |

U {(x,y) : _|x—y|<6f for some §>0.

Choose A = (6,90)., Then U[A] = X and .'AE'NU(.X), but
v = () £ ox B
Hence AE NU(.X), Ad Ny(X). o
The construction for the other case, given 6 = NU(X),
U=1{(x,y) ¢ |x - y|<r} for some r>0, and
any neighborhood ¢ of X in Rq) involves picking ’a set A
- whose points get arbitrarily far apart as thelr numerical

values increase, while A still is an element of @ . It



cannot, of course, be an element of & . |

Proof of 19.6: Theorems 3.3 and 4.2 of Michael (8]
prove the lemma for hils topology on J . The conclusie‘n»
follows by using the féct that our topology aérees W1th;his
(19.4). |
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Proof of-19 8: By-19 6vthe theorem.-holds for any net -

in F. Let (Bm, x€ D) be a net in f and “con51der the net |
(B, ®€D). Let Bﬂ,pEE) \be a subnet and Be'3: such that
B= R- 1}13m Bg. -
Now suppose UE U. Choose VEU, VoVCU, Then there exists
Y € E such that for all p>>X . |
- BCV[Bp] and ByC V[B].
Then Bﬂ C U[B] and using 3.11.12,

BCV[B] = v[ﬂU[B,,]] C V[V[Bp]]

| = (vov)[B] C UlBp).
Hence B = R -1}171 Bg . |

Proof of '19.9: Suppose (x,y) ¢ U. By-3.11.13

U =( voUov,
. VeU

'so for some symmetric VE U, (x,y)¢ VoUoV,
Now A, X A,CU for eVéfy «xE€D. Hence by 3.11.5
Viag) X YV[A‘,‘] C VoUoV for -e’vef'y. x€D.
Therefore for every oe& D, |
(x,y) & V[AL] X V[Agl,
and so by.definition.19.7, (x,y) ¢ AXA.

/
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20. The family T.

In this section (X,d) 1is a compact Hausdorff space,
% 1s the uniformity for X which induces & , J  1is the family
of all subsets of X, v 1s a gauge on 4 , and M is the-meésure
- of chapter III generated by U .and <T.

We now. introduce the.family of set functiens to whilch
we will restrict "t‘, andﬂexémine some'sequehces of this

restriction.

1V2O.1‘DEFINITION. T is the set of all functions T on
J such that
1T = o0; v
.2 1f ACB, then TA € ¥ B < 00;
3 TA =0 = AXACA; | | |
J{‘ﬁ 1s continuous in J with réspect'to;ﬁhé'
topology R (19.1.3); and | o '
.5 7' 1s bounded on o .

/20.2 REMARKS. |
| .1 If (X,4) 1s a compact metﬁic'spaCe then our
family T and measure | are Just the family T ‘and measure
/uﬁr)‘of,81on and SJerve.
.2 The fact that the topology 1s compact guarantees
both that the family ‘T is determined by the topology. on X
(see 19.5) and . that given TET, the measure . is determined

by the topology on X, since there 1s a unique uniformity.
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20.3 REMARK. Suppose (X, ) 1s a compact, regular,
.but -not Hausdorff, and TET. Then a consequence of corollary

20.10 is that for ACX,
ph o= u(aUUc1ix]).

XEA

Thus the measure does not distingulsh between .points and
thelr closures, and so wlthout any real loss of geneﬁality
-we may ldentify each polnt with its closure, glving a ?1,
and hence Hausdorff space since the space 1s regular. For
this reason we assume from the start that the space 1s
Hausdorff.

The next two theorems extend similar theorems for

Hausdorff h-measures.

20.4 THEOREM. If T€T, then the restriction of T to

the family. of open sets generates the same measure (L as vT.

20.5 THEOREM. If TET, .then the restriction of =
to the family of closed J; sets generatee'the same

measure M as T,
20.6 THEOREM. If T€T and X = |_JA,, where for each
- | new -

nEw, AnE M, end MAp <00, then}). is a flegular' measure, .
The property of the pre- measure}iU given in the next
theorem 1s a partial extension of theorem 5. 2 in Sion and
Sjerve. A direct extension would contain no reference to.
V, but V entered as a consequence of the fact'that closed

sets are not necessarily closed . sets, and we were not
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.able to eliminate 1it.

20.7 THEOREM. If v€T; X = (B, where for each new,
: ne® '
By € 9»/“ and }1Bn< 00 ; A 1s an. ascending sequence of. subsets

of X; and U,VE U, then .

< lim wdy .
n ~. . .
Myoyov LJ:‘ - Puhn

PROQFS

Proof of 20.2,1: For the equality of the families T,
we need only check that our - topology &; 1s the same as the
subset topology in Sion and Sjerve. This follows from the
fact that the'uniformity 1s unique and.that there is_a base

consisting of elements of fhe form

{(x,y) + |x-y| <r} for some r>O0.
For the equality of the measures we note that. our measure Y
is Jjust the measure }A,('C-)Lof Sion and .SJe_r've,».ar\ud ‘by

remark 16.5, ¥ = M-

20.8 LEMMA. If T€T, ACX, and €& >0, then there
exists UE WU.such that zU[A] < "cA + €.

~Proof: If A =00, the conclusion is trivial.
Suppose A < 00 By 20.1.4 thefe is aneighborhood V of A
in J such that for BEV, |

|zA - xB] <e.

By definitioh-l9.1.2: and.theorem.;l9."2, -the_re exists UE U
such .that VONyg(A). But

U[A]v_E Nﬁ(A),
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whence, since T 1s increasing (20.1.2),

TU[A] - ©A L €.,

20.9 COROLLARY, If zeT, ACX, then there exists a

.sequence U. in U such that
Th = v \UylAl.

new
- Proof: If vA = 00, the conclusion follows from the
fact that = 1s increasing (20.1.2). Sﬁppose Th <00,
‘Usingqlemma 20.8, choose a sequence U in QL,such that
— 2Up[A] € %A + 1/n for each n > 1.
Then using the fact that T 1is increasing, we havé

za =z U [A].

neEW ,
~ 20.10 COROLLARY. If TET, ACX, then TA = 7A.

Proof: ﬁUsing'20.9 choose a sequence U.such that

A =T \UpylAl.
. new

But

ACE = (ula) C (v, (al.
UeU. NEW -

Again since T is inéreasing,we have 7A =-tK.. _
Proof of 20.4: We use the_factvthat };:}y#i(theorem_
17.6) and definition 16.1.4. Let UV be a base of symmetric
members of ’M Let Ue Y, ACX, .and s_uppose}ﬁf; A <00 ;.the
argument being trivial otherwise. Let £€>0. Choose B;ET i

for 1€ w such that

ACUBi

~lew
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.and

D>.tBy € /L,L#éA + &2,

iew
Now for each 1€ w, by .definition 16.1.1 and symmetry éf‘ U,
there exists Uy € ¥/ such that |

Uy[B1] X Uy[B;] C U.
Using lemma 20.8 choose for each 1€Ew, Vi€ ¥ such that
V30V C Uy and
_‘CVi,l}[Bi] £ TBy + e/2i+2.
Then for each 1€w, choose Gy€ J such that
By C Gy C Vy[By]. |
Then

acUey,

dew
and since T 1s 1ncreasing,

TG4 < TBy + &21%2 for each i€w.

Hence

. # <
2.t3y €& D TBy + &2 < My A+ e
i€w - few | |

Also for each l€w,

VilGy) X Vil6y] C Vilvy[B31] X Vilvy[B1]

C U,(8;) X U[B]C U,

and so Gi€ UFN .4 for each 1€w. We conclude that A 1s

unaffected by restricting T to & , and hence the same 1is true

for }A#

Proof of 20.5:  We show first that for ACX, U.a

sequence 1in U, there exists a closed '—’78 ‘set E such th_at
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ACEC( U, [A
nG(t)

To see this we construct a sequence V in U by recursion such

Set

‘that for n€w, Vy 1s symmetric, V,CU,, and Vov.CV, ;.

E = [ \VylAl.
new

Then

1) ACEC( U, [A] 1s obvious,
T NEW

2).E_ is closed. If x¢E, then for some n€w,
x¢Vn[A]5, 80 X¢Vn+1[vn+1[A]]’ By lemmas v18.4 and 6.3.3,

Vas1lx] N Vniala) = @

But Vn+1[x] 1s a neighborhood of x and ECV,,;[A] so x is
contained>ih an open set not intersecting E.
3) EE "96 . For each n€w choose G,€ 4 such that

ECVp1[A1C 6, C VgV, [A]] C V,[A].

n+l
Then
EC (6, C ﬂv [A) =
NEw neEw -
= ﬂc}n.
new

Now . suppoese UEU , U.symmetric, and BE U#.
Then for some V& U, |
ViB] X V[B] C U.
Choose symmetric WE U, WOWCV. By corollary 20.9 let

{Un}ney be @ sequence in U such that U;CW and

’EmU [B].

new

Using thg result above, construct.a closed ,.bé .set E such
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that

'BCEC( u,[B].
"DNEW

Then ©B = tE and EE U since ECW[B] implies

WlE] C w[w[B]] = (wow)[B] C V[B],
and so

W[E) X WIE] C V[B] X V[B] C U,
Hence for-any set BE U’#, there is a closed J; set E e vt
such that B = <E, and so /u,ﬁ is.unaffectec‘i‘ by the res-
triction of 'c'to- closed ﬁé sets., Since /J.#‘ may be _défiped
using . a base of symmetric elements of QZ, the same 1s then
true of };# = M (117‘.6).

Proof of 20.6: By theorem 20.5, j can be obtained Dby

restricting ¥ to closed &g sets. But,by:18.3.é, closed
,-35 set"é are u-measurable, ‘and’ the conclusion follows from

corollary 10.5.

20.11 LEMMA. If ZET, (Ag,xED) is a net in 4 , and -
1°:lam'cAd__ = 0, thén gi\}en UueU, there exists ﬁeD such that
for > B, AX AC U, | " |
Proof: Suppose there exists U€ U such 'th'at_.fo.r ‘
every BED, there exists «>>B such that A, X Ay U. Then
Ayt A XA U] | |
~1is a subnet of (Au,ocGD), say (Ay, YE C). By theorem.19.8
there exists BE¥ and a subnet (Ap,ﬁe E) of (Ay, ¥EC)
and so also of (AQ, * € D) such that

B =GR -1}3m Ag.
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By the contlnuity of 7,
B = 1lim vA, = O,
’ o
Hence by definition 20.1.3,
~ BXBCA.
Now choose symmetric VE U such that VovVCU. Then' by defin-
»ition.'19‘.7,‘ there exists ﬁ'E E such that for P>>,3"
AﬁCV[B]. Using 3.11.5 and - lemma 3.2.2 we have

Ag X Ay C V[B] X V[B] C VoAoV = VoVCU
But for every BEE, AﬁXAﬁCtU. This contradiction establishes

the lemma.

20.12 LEMMA. Suppose the setsE,P(1,k)CX, and Vi for 1€w
and «€D, a directed set, satlsfy the following conditions:

i) There exists §G D such that for «>>§,

e UP(1,a);

1A
i1) zP(i,x) 2 vP(i+1, oc.), and

111) V4 = R -1im P(1,x).
: [- &

If TeT and- X 1s-}1,—measurably ¢-finite, then given '_YG?,L,_
for each 1€Ew there exists By such that ' |
ViCByCY[Vy]
7By = V4,
and -

Z‘CVi +/J_(E~UB1) im0 wP(1,x).

o« lew

Proof: Let a = M > rP(1,x)
icw

and suppose a<0®, For each i€cw, ncw, choose open W1,n such

.that



105
and
TWy n € Ty + 1/n+l,
and. such that for each n€ew,
as 1s done in the proof of theorem 20.5 exéept for the descend-

ing requifement, which can'be‘met by taking intersections. Let
Bi‘ﬂ""in'

Given €>0, choose a net (OCJ jeE) in D such that f‘or- every
j, KEE, 0 >> oy 1f k>>j, and for every JEE,

1v) Zzpioc) a+ E.
1€w |

_ Then for each icw, o
(P(1, ij), JEE) - (p(1, B), BecC)
. 1s a subnet of (P(i, «), KED) so by the conti-nﬁity of T |

TVy = lim ‘L‘P(i «) = 1lim P 1p) for 1€w.
7 «eD pec

Hence

2.0y = Zlimc p(1, )e) < 1im SeR(1 p) 8 +E,

1€w 1ewﬂ - pEC &
and since € was arbitrary,
>.tVy € a.
lew
Let
Z?:Vi .
lew

For each 1€w, choose ny€w and Wy = Wi,n, such that
Ty € TV + &2t

Then »,zV4; € a implies lim =V, = 0, whence
1€w - 1 -
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lim twi = Q,
i
Now let U€ U. Then
a) There exists K;€ w such that for 1 2 K;, Wy€ u*.
This follows from lim ’cwi = 0 and lemma 20.11.
, 1 '

- b) There exists K,Ew such that for all BEC and

12Kp, P.(i,p)e u*. Suppose not, then given n€ w there

exist i, > 20 and B,EC such that
: *
P(in, BL) ¢ U .

But for each new,

a+&
<P(in,f) €

since

i, _
2 TP(1, By) € a + €,
i=1

1, > 2 and the P(i,f%),are ordered by decreasing'z values,
Hence '

1im vP(1n, B;) = O, which by lemma 20.11,
n

contradicts the fact that for each n&w,
*
P(in,B,) € U-.
c). There exists K3€w such that

Let K = max {K;, Kp, Ksi.

Now for i€w, there exists pié C such that for p>>ﬁ1
For by theorem 6.33 of Kelley, sirice V1 -1s closed and hence

compact, WiDVi implies there exists MeU such that
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M[Vi]c:wi; and
= R -1im P(1,B)
ﬁ ) .
- 1implies by definition 19.7 that there exists ;€ C such that

for p>>p;,

P(1,p)CM[V].
__Chéésé ¥EC such that ¥>>§, ¥Y>>B; for 1=1,...K,
and such that | - |

K .
>k, - wR(1,7%)] <E,
‘i=o ‘ ’
using
vy = &-’1%m P(i;}é)

"and the continuity of T. Now

E~UW1 c Uer(1,¥)

15K |
and for 1i>K, P(i,‘o’)GU by b) Hence

My (E~Uw1) S My (E~Uw1) > rP(;J)'g

15K

| K K- f N
= STeP(1, r) - szi + chi - DoTR(1,¥) 0+ O Ty
B T _ 1 i=0 ' i>K

< a+ €& - 2tV + & + & £ b+ 3¢,
1€w

Since U was afbitrary, we have

uE~Uwy) <o+ 3¢

1€w
Now for each 1€w, the restrictions on Wy used in obtaining
the expression above are satisfied by Wy on fahmakrhn Letting

N = max{ng : 1<K}
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we have then for any n2N,

(B~ Uy o ~UJwy) <o+ 36

i<K 1>K
Letting

DnV=E~U ~UW1 ’
1<K i,n S1>K

and applylng. theorems 20.6 and 4.2 we have

M(E ~ UBi Uwi) }A(UD ) = 11mw/m b + 3¢

new

whence

/MU(E~LJOB1 Uwi) b+ 3e .

Since for712>K we have w1€ U*, we conciude

g(E~ (B b+3&+ Wy oo
Ui) /“U1L>)K1_

" <b. + 38 + EZzWi b + 56 ,
| 15K - o

and so -

}J.U(E'VUBi b+5e.

lew

Taking the supremum over UE U and letting €—>0, we have

- J(E~ UBi)

icw
Proof of 20.7: Let a = lhn)ﬁ]n and suppose a<a>

Choose sets P(1,n) such that for 1€w, O<n€w,

1) 8,C (JP(13n);
lew

11) ¢P(1,n) > wP(i+l,n);
1.11) 'iév_‘_:»'cP(i;zn) 5/AUAn + 1/n»; and

iv) P(i,n)E U .
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In connection with 11), we note tﬁat for any P(i,n)
with zP(i,n) = 0, by definition 20.1.3 and the fact that the
space 1s Hausdorff, P(i,n) is a singleton or is empty, and
has‘pU.and)uemeasure zero. Thus the countable family of all
such P(i,n) also has measure zero and. so we may without loss
of generality assume that for every l€w a'n'd new, z*P(i,n)>O,
Then for any new, oﬁly a“finite nuﬁber of.the P(i,n) can have
the same T-value and we .can éarry 6ut theordering‘by non-
increasing t-valués,

From-iii).we havé

v). 1lim > zP(i,n) = a.
: n new o

‘We now apply a diagonal process to our sets P(i,n).
Let (f“,.oteD).be a universal subnet of the net (n,n€w)
(see Kelley, problem 2J(d)). Then from i) and the fact that
A 1s an ascendlng sequence we have

a):For each. n€w there exists‘pﬁe D such that for all
x>> B, | -

a,cUr(1,5),
€0 |

and from v),

b). 1im > . zP(1,fx) = a.
*  icw

Clearly for . all icw, x€ D,
c) TP(1,fg) 2 TP(1+1,fx);
d) P(1,f )€ U”. N
For each 1€Ew, by theorem 19.8 there is a ViEQ?' which 1is a

1imit point of the sequence (P(i,n), n€w). Then V; is a



110
1imit point of the subnet (P(i,lfm),'oce D) and sincev (fo, XED)
- 1s universal, by problem 2J, (b) and (a), of Kelley,
e) Vy = &-%m P(1,fx) for each 1€w.
Now choose symmetrlic W€ U, WoWCV. Bj lemma 20,12 for each
1€w there exists By such that =By = tVy, VyCByCUW[Vy],

and since the By .are independent of n, for every new,

ST vy +},4(A ~UBi) 1im > wP(1,fy) = a.

lew Tx lew

It follows from theorems 20.6 and 4.2 that

2TV, +‘}Ll\)A L.)Bi)ééi

ilcw new lew
By d), e) and lemma 19.9,
V3 XV, CTCWolow
and so byv3.1l.5, |
By X By CW[Vy ] X W[V ]C WoWoUoWoWC VoUoV for 1€w
and | "

By € (VoUov)* . for 1€w.

Hence
M L_)A < (L,}A '“L.JB ) + W ‘
VoUon' n )uVoUoV n | 1 V °U° V E)Bi

é/uVOUOV LJA UB )y + Z’C’Bi

new iew Clew

< ptUhn~ LB+ oy <

NEw icw

21, Sets of non—cu_finite measure.

In this section we define a partial order > on the
functions in T and examine some consequences of this order-

_ing. The definition extends that 1n 6.1 of Sion and Sjerve
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to compact Hausdorff spaces.
Again we assume (X,&) is a cémpacﬁ Hausdorff space,
U 1is the uniformity for X whichvinducésJﬁ, J 1s the family
of subsets of X. For any‘gauge z on 4 s por }A.(’c): 1s the

measﬁre of chapter III generated by U and 7.

21.1 DEFINITION. Suppose 7Ty, TQEET. Then 77 » 75
iff given €£>0, there exists UEU such that if AXACU, then
T)A € ETHA, |

| 21.2 DEFINITION. 1If (X, &) 1is a topological space,
then A.1is analytic in X 1ff A = f[x] for some wEKqg and
‘some continuous function f on & to X, where K' is the family
of closed, compacﬁ sets in a topologiqai space (X',,&');,
(Forva goed‘resumé of the theory of analytic sets, see Bressler
and Sion [4].) | |
. In connecﬁion with these conceﬁts, Sion and Sjerve .

proved the followlng théorems.

THEOREM (6.4). Suppose for every new,‘th+l>—th€'r,~ ‘
and B 1s the family of all sets of the form \_JB,, where
. ' ‘ neWw
},E'Cn)/an = 0 for n€Ew. If E is analytic in X and E€ B,

then there exists T € T such that T'>7, for n€w, and

1
E has non-(¢- finite }Jt)emeasure.

THEOREM. (6.5). Suppose TET, E is analytic in X
and has non-¢- finite PJZ)—measure. Then there exlsts a

1?6 T such that-tf%'c, and E has non-¢- finite‘}éf)-measure.



112

THEOREM (6.6) Suppose TET, E is analytic in X and

has non-¢- finite‘pﬁt)-meaSure. Then there exists a compact

CCE, such that C has non-¢- finite }Et)-meésure.
The following'theorem, aloné with lemma 6.2 in Sion
- and SjerVe, shows that the existencé of functions In T
ordéfed by » 18 equivalent to metrizability in a compact

;Hausdorff space.

21.3 THEOREM. If there exlst ti, téEET such that

T, 7 Ty, then (X,4) 1s metrizable, | |
21.4 REMARK. By the above theorem, the hypothesis
in theorem (6.4) of Sion and Sjervé implies,that.the spaée
1s metric, for whi¢h cése that theofém wasApfoved. Howgver,
if theAC®mpact Hausdorff spabe'ié'ﬁon-metrizable then |
theorem 21;3.shows that theorem (6.5) 1is false in this space.
The question remains of whether theorem (6;6) can be
genéralized to the compact Hausdorff case. An essential stép’
in .the proof'of that -theorem in a metric.space was the con-
struction, given‘tie T,.of,a function tée T such that
‘z2>-tl. This cannot‘be déne in a non-metrizable space, as
theorem 21.3 shows, so that the proof does not genefalize.
The following theofem and example are related to the

question.

21.5 THEOREM. Suppose TET. If X is of ¢-finite

’prmeasure, then X 1s metrizable,
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21.6 REMARK. The attractive hypothesis that every non-
metrizable analytic subset of a compact Hausderff space con-
talns a non-metrizable compact subset is false (see concluding

_example).

PROOFS AND EXAMPLE

21.7 LEMMA, If there exists; a descending sequence U
',of symmetric membeps of U closed in the prodﬁct topology.
on XXX, and TET such that for each n€w,

AXACU, = TAS1/n, |

’
s

then {Un} 1s a base for U and (X,d ) 1s metrizable.

-new

Proof: Since Un' is symmetric for each ncw, mUn 1s
' B , new
symmetric. Suppose

(o, # A.

new’ _
Then there exists ACX such that AXAQ A and

AXAC( \Uy,.
new

Since AXACUn for each new, we have A = 0. On the other
hand, since TET and AXA A, we have vA>0 by definition
20.1.3. We conclude that

.'mUn'T—"A.

new
Now since the space is compact, U consists of all
neighborhoods of A . Let U&€ %. Then there exists G, open
in XXX, such that
A CGcCU.

But A 1is the intersection of a descending sequence of sets
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U, closed 1in the product tepology on XXX, which is compact.
Hence for some nEw, |

U,CGCU.

Hence {U,} 1s a base for U and by theorem 6.13 of Kelley,
new: - '
(X, &) 1is metrizable.
Proof of 21.3: Suppose T,, TE_E T, ’Cl>— ’CE. By defini-
tien 20.1.5 there exists K such. that for all ACK,

T, ALK,

'Using d‘efinition 21.1, choose for each n 2.1, closed
‘gymmetric U,€ U (the closed symmetric members of U form a
base for % (3.11.4)) such that U, ;C U, and

AXACU, = A € 2= - 7, A< 1/n,

By lemma 21.7, (X,.4). is metrizable. |

Proof of 21.5: Suppose X is of ¢-finite u-measure.

1) There exist,only countably many points x& X such
that t{x}>>0. Although.singletons may not beji-mgasurable,_
since the space 1s Hausdoerff, any two points x, y'can be
separated by disjoint closed 2% sets, and since closed
zh sets_are’u—measurable (theorem 18.3.2),

{X: }J\X} +M{ }

Since X has ¢-finite measure, there can be only a countable
number of.points x with }Qx}>'o. ’Buﬁjx{x} = t{x}.u

11) Let P = ${x€ % : Tix] = Oﬁ; We show that F is
clésed and hencé compact, | |

Ir (xo,*xED) 1is a net in FA'Wh:Lch converges to yEX

.1In the topology N, , then the net_ ({xm},ote D) in J converges
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to {y} in the topology R. By continuity of T in R,
 zi{x.} = 0 foraeD = 7i{y} = 0
and so y€F., Hence F 1s closed.
111) F with the relative topology ‘55‘ is metrizable.
Let U be the relativiéation of U to F, se .&E = Ty (see
‘Kelley, p. 182). Then for every &€>0 there exists UE Y such
that | o
| BXBCU =>1B < €, |

for otherwlse suppose that for eéch\ Ue Y, there exists
AyCF such that ApXAyCU and

Ay > E.
Then, since F 1is compact, givén the net (AU, UE.?/),
by theorem 19.8. there i1s a subnet (A, X € D) and ACF such
that | | | |

A = R-1im Ag,.

o

By the continulty of =,

ZA = 1im Thy 2 E.
Also AXA C A, for let UE Y and choose symmetric VE Y such
that’» VoVoVC U, By définition 19.7 there exists ¥E€ D such that
for ﬁ>> ¥, ‘ |
. ACVAg . |
Since AUXAU .C U.for each UE YV and (Ay, e D),is: é subnet
of (Ay, UEY/ ) we can and do choose )5>>‘o’ such that

Ap X Ag C V. | |
Then by 3.11.5,

A XAC_V[AP] X V[Ag ]CVovovCU,

“and so AXACU for every U€ Y. Hence
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AXACA.
-Therefore A = {x} for some x€F and so vA = 0, contradicting
A TA 2 € >0,
We conclude that given Ei>O,_there exlists U%EQ/ suéh that for
AXACU, A< €. ©Now choose a sequehce U in % such that for
0<n€w, Uy is closed and sgrmetfic, UnﬂilCUn’ and |
| AXACU, => tA< 1/n.,

Then by lemma 21.7, (F,JﬁF)iis metrizable, We note that
(F, &5) 1s separable since it.is compact. |

We héve then that X is a compact Hausdorff_space which
18 a union of countably mény separable metrizable spaces (F
~and {x} for each xé;XﬂvF). Hence by a theorem of Smirnov

‘(see Stone [15], proposition (B), X is metrizable.

Example for 21.6: This example was suggested by that

in fhe remark fbllowing corollary 2 in Stone [15]. Let
X = §(0,0)} U {(x,y)ERXR : x £ O}.
For (x, y) # (0, 0O) take as a neighborhood system the neigh-
borhood system of (x,y) in the}plane.relativized_to X. For
- (0,0) take as a base for the neilghborhood systemwthe.family
of dpen sets 1in the usual topology»on:the plane which contain
. the y-éxis. Let.ﬁ ~be the resulting topology 5n X. Then
1) J is clearly Hausdorff. |

11) (X, ) 1s not metrizable, since 4 does not satisfy
the first axiom of cduntability. Glven any countable family
of open sets in the plane which conéain the y-axis, we can

construct an open set containing the y-axis which excludes
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points of every member of the countable family, 1.e. the nelgh-
vborhood'system of (0,0) in J does not have a countable base.

1i1) If ACX is compact, then-A is metrizable. X 1is
the union of a countable number of separable metrizable spaces,
and so.the same is true of anylACZX; But since A is compéct,
it is metrizable by the theorem of Smirnov (Stone [15], |
proposition (B)). | |

iv) X 1is analytic since it is the Qnion of a countable
number of compadt sets (see 21.2).

v) (X,.&) 1s normal, hence completely regular since. it

is Hausdorff,.and SO0 by theorem 5.15 in Kelley, can be embeddéd"
in a compact Hausdorff_space. To see that 1t 1is normal, con-

sider the map £ : Ro—>X defined by

£((x,y)) ={(x,y) if x £ O.
- {(o,o) if x = 0.
The Qerification‘that‘f is continuous is trivial. It is also
eaSy to see that the image of an open set in R2 éontaining the
y-axls 1s open, and the image of anopenxsef'ﬁqt intersecting
‘the y-axis is open. Let A, B be closed in J , ANB _ & .
If (0,0) is a member of one of them, say A, then f'l[A], f'l[B]
are disjoint closed sets in R2 and f_l[A] contains the y—axis}
Since R2 is norhai, there exlst open,sets C, G in R2 such that
r~ialce, ri[BlCe, and cNe =9.
Now C contains the y—axis,:SO f{c] and.ffG] are open, disjoint

and

acelc]l, BCrle].
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If (0,0) is a member of neither A nor B, then f'l[A],
f'l[B] and the y-axis are disjoint ciosed-sets 1n'R? and .we
can find disjoint open}sets C and G in R2~which do noﬁiinﬁer-
sect the y-axis and which contain respectively ffl[A] and
£71[B]. But then £[C] are £[c] and. open, disjoint and

acrlcl, BCfUﬂﬁ
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