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- Abstract

A basic result of ‘Doob states that, under very weak ﬁeasurabilityv
assumptions, Bayes' estimators .are censistent for -almost all parameter points.
First it iS'shown'tﬁat-even wheh this exceptional set is finite, the ‘effect of
putting positive prior mass on each point of the:set may result in creating a
vnew excepﬁional~set,»larger than the original one,_rgther than in eliminating
‘the ‘lack of consistency;;-The:posterior denéitiquare‘then studied and it 1is
shown thak'under'fairly strong regularity conditions-thgvcorresponding postefior
»distfibutions tend, - in the limit, to concentrate’their~mgss-on a particular
point in the parameter set. - If in addition, distinct'parameter-points
correspond to distinct probability measures, then it is shown that both the
maximum likelihood- and the Bayes' estimators.- are consistent for all parameter

‘values.
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O.'~introduction-

As angappli¢ation of martingale theory to problems of estimation, updér
. fairly milq meaSurébility conditions, and under'qertain restrictions-on the‘
“nature of the sample épacesgnd of the paraméter'épace,vDQob (1] shows ‘that
the Bayes'festimatesrare consistent except on.an exceptibnal set of‘prior
measure 0. - In 3] , under“Doobisrassumptions,‘and’supposing the'exceptional
»set~to_be‘fihite,~Scﬂwartz construcf;-a new prior measure:ascribing pésitive
mass to thé'elements'of the exceptional sef; and she qonjectgreS‘that’the.
Bayes' estimates corresponding to the new measure are consisfent'for'every
element of the parametervspacé.~ In [h]‘, under rather sfringent continuity
conditions on’the prior'measure:as weil:as-on'the density fUnctions,-Bbev
‘exhibits the’tendeﬁcy for the=po§tefior densities, K to concentrate at a certain
point of the barémeter space, as “the number of observations-increases indefinitely.
.Aftér‘recalling“Doob'snassumptions-and results, we egamine in seme detail
the new measﬁrexprqposed’in (3] , and we show that when the Bayes' estimates
are not cbmpletely specified with respect to theﬁériginal prior measure, it is
ssometimes*pOSSiblé to‘define them-in such-a way'that'the~excepti0nal:set
éorresponding to the new measure is non-empty. - In thg example givén, the -
Bayes; solution Wﬂiéh is determined-almost everyﬁhere.isltaken to be the
\estimatorvfor‘evéry sample’point. This leadS'to an estimatérrwhich.is consist-
ent:except:atTdhé-point:for the original priér distribution. -- The effect.of
altering the'prior-distribution is to shift the exceptional set from.thevset
With»q‘sing;e'point to one -containing seyeral.points. - The estimatiég choéen
is natural in a maﬁh;ﬁafical-sense:vif.has'fhe same ‘form thfoughout tﬁe;
sample space; bﬁf itlisrintuiti§ely‘unnatural'ér'naive from the+rpoint 6f
vieﬁ,of solving the-estimation probiem.:~If this latter view is~conside;ed, a
Vdéfinition of the-estimatér~on a8 nhull set:ig readily obtained‘whichAyields

-a'Baygs' solution-COnsistént at 8all parameter values.



' Subsequently, modifying Boev's assumptions somewhat, we set his
conclusions on what we feel to be-a firﬁer basis-and we show first that these
conclusions ‘provide for the consi;tency of Bayes' estimates whenever the
maximum_likelihood.estimates are.consistent and converselyf - Thence, we
conclude in proving that underlBoev's;assumptions, the-existen;e-of a
consistent procedure is-a necessary and sufficient.condition for the

‘consistency of makimum4likelihood»and of Bayes' estimates.



-Section 1.

1.0- The Underlying"Probability Models.

Let N be the set of natursl numbers, and’ let {X : JeN} be a family of
completely ‘independent 1dent1cally dlstrlbuted ra.ndom variables, each w1th
range-space X on W’hichAa ¢ -field 'GL is defined. For every poin’g © of a
paraméterl' space ® , a probability measure F’e is defiged on the si:ace,
{X;;, 0.} ..~ If for ~every .j ¢ N, X.j is.a replica .of the:space _X_ ., then

for évery ne N., and for -every 6 e @® -, we state

‘Definition 1.0.1 ,

The triplet { x"',,a", Pe"} ‘is a p?‘obability space, where X"= H 36 f(f(n
1s the smallest ¢ -field over.gll the sets-of the form fT"A)_ where A; £ A
forj = 1,2,...,n, and Pe" is the -produ;t measure ;oln the 'n-dimensionql sets
in A" . |

) In matters’-of convergence this-definition is"_unsatisfac‘;ory: for -our -

‘purpose. & sample -sequence -of size n,: say, is merely the~projectiori in the

space X" of some . 1nf1n1te sequence in the space TT XJ . .Accordingly, let
le . : : -

= TT)(_ ; for-every n & N let A, be the smallest ¢ -field over all

i . . . : : , .

the sets of the form A"k X" where A"g¢ X" . Now {an}nLN is an
.aécendingséquence’.of 0 -fields in the space x> ; 1f we let AL, denote
the smallest ¢ -field contalnlng UAL. , then it is-shown in [2] -and [7] s

jen J
among - others, that for every ©¢® there is.a unigue probabllity measure

P; that agrees ‘with P.g on A" . More ‘precisely

Definition 1.0.2

The triplet’ { X7, ,, F’”} is @ probability épace, where
-4
xX== TT X% , A, is the smallest ¢~ fleld containing U d’; , and
. e JEN .

P‘; is .a measure such that, for every n ¢ N



Po (A, = P2 (AY),

where A, = A"x X~, and A" e A", |

Now, though for any n & N, the spacés {x", 4"l ena { %= 41,,} -are
distinct, there is between these two a one-to-one mapping embodied in the
relation

A= A" x X7

for every ;A" £ A" , and in this sense we: regard the measure F’e" ‘on
QN as the contraction of the measure P;’ to the space { X% 43,"} .

If for every 0.L® -, Pe -1s absolutely continuous with respect to a
measure Y on {X 4} , by the Radon-Nikodym theorem, there exists-an
a.-mgasurgble function pe(-) s -uniq_ue ‘up to a ?--equ;valence, such that,  for

-

every A &AL

Pe(m) = ipécm v (dx) ,

Formally

Definition 1.0.3
‘If P9 ‘18 absolutely continuous with respect to the measure V on {X,fa},
there exists a density functiohl P9C~) for the measure Pe with respect to

the measure Y , unique up to & ¥y -equivalence, such that
Pe-(') = (.j) Pe (~x) ,ﬁ\/ (ddx) .

‘Moreover, if ¥" iis'the.product meesure on the n-dimensional space {X", 1"}

obtained from V .on each of its sides, then the function pe (-)on X;,
. ‘ : LI

up to V" -equivalence, satisfies -

PS(A) = "{ﬂpe(";) Vn(d”."n"u“?xn))

fof-every Ae A" , and for every ne N,



On the parameter space @ , sometimes called the space of the possible
states of nature, a ¢ -field 0 is given together with a finite measure A\

Without loss of generality, we may assume that
AMe)= 1.

Furthermore, without regard to any philosophical implication, we shall often
refer to A " as the "prior probability” or more simply "the prior". But we
do refrain from making this a formal definition.

Turning momentarily to .a general situation, when two spaces Y and'Z are
‘given together with their associated ¢ -fields € and 9 , respectively, we
state

Definition 1.0.4

For -every ye Y , -let 'f (-) be.a numerical set function on Z ; then
. . b _
if AcZ , the function -F()(A) ~is 6 -measurable if, and only if, for

‘any real number h,

{y:fyiw<hledb.

By ‘extension, if the range of f(.)(A) ~'is a metric space and ® its Borel
field, we say that f(.) (A) is - measurable if, and only if, for.any

element B & 0

ly: fy-(A) e Bt e 6.

1.1 Preliminary Notions

If {X, f} 'is -any metric space, for Ac X ‘such that A7’=¢ , define

d(A)y = sup ¢(xy)-
| (By)e AnA
- Throughout this paper, both X and ® .are taken to be complete separable

‘metric spaces, unless otherwise noted; moreover, it is assumed that for .every



Ae a, , ‘P(f') (A) is a @ -measurable function, where -, and @
have the meaning defined in the foregoing subsection. Bearing this in mind,

‘

and with the understanding that anx ™ is the smallest -¢°-field ovér the
| ' i 0
sets of the form A x B, where A ¢ @n and B¢ ® , we define the measure

M, on A _x & by the relation
(1.2.1) s, (AxB) = j Pg (AY A (de)
B

for every A&, , every B¢ M -, and for every ne N . letting B = ®

in (1.1.1),.we obtain the so-callled'marginal probability measure.

(1.1.2) P (A =" PO(A) A(d0) = m, (Ax®)
: ®

Furthermore, when Pn:_(A).# 'O, the.conditional posterior probability of

the set pt ® given A Edq, .is -expressed by the relation

AL, 4( AxB)
P, (A)

If B e¢® is held fixed, then M, (- x B) . 1s.a measure on an_, absolutely

(1.1.3) Q" (8/A) =

continuous with‘-vrespect to Pn ; hence there exists, by the Radon-Nikodym
theorem, & function Q':)( B) , unique up to-a P_ -equivalence, and

satisfying
(1.1.4) ., (AxB) = J Q: (B) P, (dx)
_ AT

for every . A ﬁ»&'h .

The function Q:.)CB) oy defined P, a.e. , is one version of the

‘conditional probability of the set BEL® , given the o -field 4% .
If fhe sequence x = (x')xz)...)_ belongs to the dn set on which Q:)(B)

is ‘defined, the latter may be obtained in the following manner:



select an arbitrary descending sequence of sets {AJ‘}juJ such that

P

. . n : -
A= TT A xX™, where A e, for j=1,2,n

-

-
©
[ -
-

Ix

€ A‘j..f'or.all jen,

P.(A) >0, for all jep,

[irm d(rrA )=
jiN [EY]
then l
(1.1.5) Q:(B) = ll:;\’ Q" (B/A)
£ j

When representation by density functions is. available (see Definition
©1.0.3), the fact that P('?J (A) is OB -measurable for all AE a, ‘ implies
that ]:Tl p()(x) is (b -measurable -f"or y" almost every sequence (X, X, ..., X,),

and 4 -measurable for A -almost all Be® .

By the Fubini theorem then, if A"Ne A" and A= A"x X%,

LT e 9P @ e 2o A (de)

A =
Pawy = 1)1
= f f m Po (¥ X(de) Vv A X, Ry X))
AN® i= .
‘Hence -any 'an ‘set, . on whose projection in X" , f TT pe(x ) A(a8) =0
. | & i
- is a P, -null set; in this case
n
[ 1T p, (x> A(do
(1.1‘.6)_ Q_; (B) = n}s ,;. e " , a.e- P
| T ) A (ol
® J F’o("j (1)
’ n
T—\ p(.,(") ' o
-The function is commonly called a posterior density
f fir P &) M6 |
® =

function.



It is -a trivial matter to show that CQ:(') is F% -equivalent to a
probability measure on the space il,@, 6?)} . We now define, Pn a-e- ,

the Bayes' estimate

(L.1.7) B, () = ng?_)(dg),
' ®

and - thence:

Definition 1.1.0

The relations (1.1.2), (1.1.4), and (1.1.7) define a Bayes' estimation

system { ), P, Q,RY , and this system is said to be

(I) Partially specified, if and only if, C};L is unspecified on a non-empty
Pn -null set, for some N& N.

'(II) Completely specified, if '‘and only if, Q?_) is defined everywhere ‘on

X" for every ne N
(III) -Con;istent, if-and only if, it is completely ;pecified~and
P’; C{x: ﬁn(i_t) ;>~9}) = 1

for all 6£® . |

It should beAélear that'Bayes’ estimation systems are not unique, in
geﬁeral,.and that prOpefly speaking, unless \ be discrete with'positive
mass at each point, we are dealing with a complex of systeﬁs. For, from a
fixed completely specified éyﬁfem { AP Q, pj'“_,_anothe'r may be thained
by-aitering‘the méasqres (QZ)QH F;-null'sets. This will be quite évident “in

the construction .of a counter-example.

1.2 Miscellaneous Conventions.

The effect of 'iaen*éifying the measure Pe" on A" with the restriction
of the measure P:-to Q- fSi«-aﬁy ne N, is that for practical purposes we
»dro -n'ot distinguish between " -measurability -and ﬁn—measurability. For this
reason, both an infinite sequence in X°° and its ‘projection in the space XN

are répreSenfed by the.samevsymbol~§'when no confusion need arisé; for example



the subscript n in the Bayes' estima#e ﬁn(.) describes the latter as a

function on .x°° that depends only on the first n coordinates of sequences Xx,
» ..and:for -any such sequence the value.. pn().t_) is obtained by computation in the

spac;e { 36,", 43_"} . By the same token,v for any 6e® , we view the function

with value” T1 'Pe(x;,)-, as.a ‘mappingion &-+to X 3-by defining
) L Sw | J K . K .
h T i
| (%.) = x,
j = Pe J j=| J 2

where

R
1

Po (%) Foy=1,2,...,Nn,

= 1 o, 0] j=one,nez, ..

' for'ever.y x=(x,, XZ, re s ) & x>,
Howevér, when reqﬁired, web do 'represent the projection '..O'.f the s:equenc'e X in
the space xn ‘k-ay the sy‘mbél xm

For sirﬁplicity of notat‘ion, we let

N " n ‘
PaCf, x)=T1 PyCx)
J=1

x)

qax) = Pnls2 - .
& pate (0

By a rectangle in "an ; e “;rﬁean a set of *.:,he form

A=A"_&;3€°'b

i ‘n \
where A"=T1 4}, and A.e4 for j =1,2,...,Nn.
ey J :

In general any set C cdn can be represented in the form

C=C" x 27
where. C" & A" . Ve refer to C" as the prajection or image of C in the
space X".

A more compact notation for sets is also desirable; for example thus

{ fs_h(§)f§6}% {x:p, (x>0} .
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Now when a system {_}\ P Q_ ﬁ} is completely specified let B°=
{e: P"({pn(x)-)GD-,é 1}« The set Bo -shall be referred to as the exveptional
set; often, we shall say thet the sysﬁem {')\, P,-Q,ﬁ} is-consistent except
on the set Bo. ., that .t‘he .'Bayes" es‘timates are not ‘consistent for 8¢ B, ,

or that the Bayes' estimates 'fé.iil.'td“-c@ri‘/ver‘ge to © g.e. Pe ‘on’ B é .
The indicator of a set C is.a point function Xc'such that

XG(t) = 1", l“F teC .
= 0, otherwise.,

In Sectlon 4, the metric propertles -of the spaces 1nvolved being more
-in-,evidence » we -shall .adhe're , without f}lrlther ‘reference, to the following

cenventions; opén’ ephere,~ closed sphere, and neighborhood system of any

point x in eny metric space {X, f} ‘are denoted ‘thus
I,ed= {y:yeX,and plxy) < e},
I(x,e)= A,{'yA:'ygx,anof" § (x.y) < €},

V(x) = {V: vex, and 3 €>0 3 T(x.e) <V},

-Again, the class of open sets, and the class of closed sets, in the space

{X,f} a.re, respectively denoted by
, g(x) {qg:igexX, and af Atq then e V(N},
FWO = {FiFex, and X~F € €00} . |
Flna.lly, a set Ac X is bounded if, end only if,
d(A) < oo |

where. dﬁ(.),has ‘the meaning defined in the previous.:'subsection.

-1.3 Doob "'S,' Assump‘t';ion;s and’ Results.

(A.1) {I.,'a} ‘afnd.”~ {@,ﬁ} -are bath isomorpﬁic to Borel sets . in & complete
separable metric Sbec'e.

(A.2) »_For -evei"}; At @A, P(.) (A) is a (P;--measurable‘ f‘unci?ion.

(A.3) The measure. A on ® - has finite first and. second moments.
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(A.4) If 0+ e2 -, there exists .a set A€4X such that PGCA) * Py (A) .
. : : _ ] 2

Theorem ‘1.3._1;__

Under the assumptions set forth: above:
(i) Thei‘e»exist_s-ap ﬁw.-measﬁrablé function f such that
| PT(lft=0b= 1,
“for-all Ot ® | |
(i1) Ale: PTCiQ(B) —> X (0); for all Be® 5 A(B) >0} =1}=1.
(iii) If the posterior densities exist; ,i.e: if
Q;(B) = { qn(g,:_s) A(dey, for all Be®,

then~ ‘

Ao : PYliq (a,x)>0, A ae , a0 =1}=1.

(iv) ; Ale: POUL (>0 =11=1.

The proof of-this ‘theorem'is given in L) a.nd[3] , the asbsmnptions ‘being
more :shaz’piy ‘delineated in [3] ‘and [5] . t'.I'o ‘return now to the -comment made :
‘following Definition 1.1.0, if Doob's vassumptiép.s-z;re met, and @ -is
discrete with positive A --mass -at each point, a co'mpletely specified’Bayes'
syste)m‘ {r,PQ, ‘5) 1s consistent.

Now for the -existence of ‘a consistent procedure, in: particular ~fof the
-eXist_éncié‘ of -a consistent '-gstimé.tion- system, it is necessary that _théfamily
{ Py 8¢ ®} satisfy assumption (Al&), ;i‘f it does not then no -conSiétent
p'chedureﬁ'exists, andt for” this reason, we refer to assumption,,(A.h). as the -
"Minimal-Consistency Requirement". We shall. enlarge_ ‘on-this matter in

‘-S'ect_ion i
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Section 2.

2.0. The New Prior Measure A

“Doob's -assumptions being fulfilled, suppose that

B = {e')ez).oa)eki a &n

[+]

Define a new prior distribution A on ® b)’

A (BY=(Cl-€) A(B) + ¢ $(B), for Be (B,

where € & <OJI>, ‘P(B) =kO when Bn 8°= ¢ ;, and ‘P({edj) = a.). 7O
for j: ',2,,..)K, with Z aJ: 1.
J=t
Then
A(B) = €

2>

X (O~3))=0-¢€).

In general, for every B & 50

’ K
A(r) =(-e)a(’) + ¢ Z aj’XB(eJ.) .
. : J=l
. The measure QA is c_onstructed in [3] ,-and it is cenjectured that the
~system {)-\};)C_),ﬁ} is consistent, at least when Q(':’) is ‘déf._inéd properly om

a Pn =null set.- But in Section 3, without disproving this cenjecture

.entifely, we do devise a system { X, 5,(3‘5} ‘that is not consistent.

2.1 The Bayes' Estimation System { A, P, @, B}

By definition, for.-any n ¢ N

B.(a) = § PP(A) X (d®)
. ®
for all A ¢ an .
Therefore

: k
F->n(A)= (;—e)ng(A)A(o{e) + eZaJ_Pg(A).
®~B, J=! J
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whence

(2.1.1) 5,, (A) = (I1-e) P, (A + ei a, Pe (A)
‘ : : J=1 J

for all At an

If Be A, and At , and provided the denominator is non-zero,

Q" (s /n) - @J X, () PG a) ) (cl0)

J Preay3 (e
® |

Further, upon dividing both numerator and denominator by the factor PH,(A) ,
if non-zero, in the right-hand side of the above equality, . and then expanding
in terms of the prior A , we obtain

k
2.

i=

(ml- €) Q"(B/A) t-r{Pn (A)}"f €

'ai X, @) P" (A
(2.1.2) QUB/A) =" e T

» —
(1-e) {P (AW} e a Pl (A}
J=I 4 )

A direct computation of pesterior probabilities, and Bayes' estimates
by means -of 'limiting processes-applied to the relations (1.1.5) .and (1.1.7)
is postponed momentarily; we -prefer to assume the existence of density

.functions, in which case:

k
. (1-¢€) {pncg,px(de) + e._z aJ.XB(OJ) Pn ®.%)

J=t

k
(:-e)@g Pn (8 2)A(d6) + ¢ J_Z‘l a Pn (e, 2)

for -each x for which the denominator is nen-zero. Dividing beth the numerator
‘and denominator in the right-hand: side of this equality by é’ Pn(6,x) A(de),

if non-zero, we obtain



1h.

4
(I-)QE (B + € > a,9,0,,% X, (@)

=t

(2.1.3)  Qh(B)= -
(1—e) + e; ajc]n(éj,é)

For the Bayes' estimates, by successive steps, as for the equalities

-

(2.1.2) and (2.1.3), we obtain in turn

5 8p,(8,x) A (de)

En(é)? C'Dj 5
L (8, x) A (de)
5 p (
k.
_ (1-¢) feP (,%x) X(do) + € 2 6.3 p.(6.,x)
P"(’—O — ® n j=104 1ty .
k
(1-¢) @jfpn(g’ x)a(de + € JZ_:' a,-Pn(‘?,",‘i‘-)

Thence, provided épn (6,x) X (d@) # 0,

K
(1-e> g, (x) + ¢ > ©.a.q.(o. x)
(2.1.’-{-) Eﬂ ()-()_‘= P Jj=1 J Jc"" i’ = . .

. k -
-e) + € X :
(1-¢) 3 ?_:‘aJc,n(eJ,é)
It should be noted again, that the relations (2.1.2), (2:1.3), and (2.l.h)

ére valid except on & Pn -null set.

Theorem 2.1.0

' Suppose that a Bayes' estimation system {2 P, Q, p} is constructed from
the assumptions (A.1), (A.2), (A.3), and (A.L4); if B, is the exceptional set
for the system {1,P, Q, (gj such that
B,= le,,06,,...,6.1,
if furthernore; for every © € B,

P ({qn(e, ) —>0, for j= 2. kD=1,
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then the system {2\, P, 5, E} is consistent.
‘Proof: By theorem 1.3.1 (iv), A(B.)=0, end the system { A, P.Q.B}

is consistent for 0 ¢ (@~ B, - Further, if % =1,2 .z

k
£ 3 (g — . o S
ng A(dg) = e Z’QJ a, +. (1-¢) @2 x(de)

therefore since A satisfies. (A.3), so does A

-If @ 4 B, ;-then by :assumption,

| ) _. ) |
PZ(Llim 2 8,a.q,(8,x) = lim 2 2,9,(6,,x) =0} = 1

Hence, by (2.1.4),

PECim fy (o0 = i Pate) = o) = 1.

-If 6t B_, then )—\({e)) > O by construction; hence by the theorem 1.3.1:(iv)

PT({Fa(x)>01)= 1.

The question naturally arises whether the convergence to 0, "with probab-

11ity ( P2 ) 1", of the posterior densities evdluated at any point o+ @ insures
<] ‘ )

the convergence of Bayes' estimates to the point. 0 ; i.e., is it true that

{,L:qn(u,y—> o, forall w# 6} {x:p(2>0} 7

"In a later section, we shall undertake to answer this -question, at least
;~.partially, At any rate, in the counter-example lmmediately follewing,the
"i_nconsistency»of the system {X T-° 5 r}-} '1s derived frem the-non-

convergence ‘of “the posterior densities for the .appropriate values -of © .
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-Bection 3

.0 Description and Notation for.a Particular -Probability Model

(U8)

(0,1 , forall JE&€ N .
(0,11

' the Iebesque measure.

12
For é7é 3, Py(A)=1,1f 8¢ A ,

2 Y @ X

I

the Borel sets -of [0,1]

e

0, otherwise.

[\
-

. For @=3, Pe- ({0])
Pe({1}). = 4 |

ED <3 any infinite-sequerice with identical'coordinates x € {011 .

o™ . the diegonal in X" ; i.e., {5(1';) :xe [o,11}.

¢ -t the n-dimensional preduct of any Borel set Cc< [0,1)]

E(") : any n-dimensional cube ﬁ| ¢. , such that: for every 14N, CJ. is a

. 4=
Borel set in [0,1]., A (C,) .is constant, end. D™ A T = ¢ ]
J B

For any set A&’@(n 3 A= A"x x> :
D"(A™) = DM A A",

D(AY= { x: _)_K_":)L DA™} .

 Remarks
(a) For any Borel set Cecloll, c™n D(n) = )_Cg:); xecCtl.
(b) 1If C(") = ] | C then ﬂ C ¢
J=1 . J .
(c) The choice of Borel sets ‘rather tha.n the subsets of [O 1] for the

. -field d, is ‘made to satisfy assumption (A.2).

3.1 Characterization .of the Measures fi,:_

For © == 1: 1r CeAXL , then

(3.1.1)_ ' Po (™M)= {Pe @y 1, if 6¢C,

0, .otherwise.

[,
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If C™ is . an "off-diagonal®™ cube, then
(3.1.2) Pg Cc)=0.

In general, if A 1s-any 43," subset

(3‘13) pS(An) =1, if Q‘g’e An’
= 0, otherwise.

Note that

(3.1.4) -~ PY{x"~0™) =0,

PA(D™ =1 .

For 8. =4 : IfAe, then P, (A) =0, 4, or 1, according -as A contains
2
respectively none, one,.or both of the points {0} and {1}

-If-A is a rectangle in 'ﬂh , and A" = TT A_j , it follows readily that
: A mi
(3.1.5) P_; (A") = O,'V if at least one of the faces Aj contains neither

{0}7 nor {1},

Q-k, for k.= 0,1,2,...,n, -if %k.and (n-k) of the faces -

A, contain, respectively, -one and beth of the peints
i .
{0} and {1} .

Now if we let D°*°

{ x: xWe D™ forail n e N} ,

(3.1.6) PJ(D*) =1, it O%F %,
 PT((x™~D™1) - 1.
2

- 3.2 The Measur‘es P,

If Ce¢4, then
(321) P, (c™m = J PR Acdde) = Sx (0) A(d0) = ACe

® -

for every n¢t N .. Moreover, for -any cube ’C’(n) B

(3.2.2) - P (T =0,

/
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Observe that

Prem = 1, if o 1,

)

but

P, (8") = O, for any 6t@®.
Furthermore, for -any “’;off-;diagonai" subset B.c { x"~ p™}
(3.2.3) P‘,{( B) = O.

Be it noted that the relations (3.2.1), (3.2.2) and (3.2.3) are particular
. iInstances of the followiﬁg facts. If A is-any rectangle A" x x” in 4'9"1

E n .
such that. Al = TTAJ ,. then by (3:1.3),
izt

\ " .
P, (AN = J E%Aj(e) A(de) = j)(,AA(g) a(de) = A (JQ.AJ)’

=t J

élearly
' A A ={e6:8%eD" (AN} = Di(A).
= b
‘Therefore
P, (A" = A(DW).
In general if A ¢ 2.,
P, (A = [ PI (AT A D) 3 (dE) + L Poan=om 2 de) ;
8 |
but, by (3.1.k4),
 J P (an~D™) X (de) = O
therefore

poam= JX (9 awe.

{o: 9_‘;’ £ bnCaAY}
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Hence, for-every A & /@Ln

(3.2.4) P, cam = X (pla) .

Observe ‘again, how the dual role of the measures Pe" is reflected in
the measures P, ‘5, We write

P, (A7) = ) PI(A") J(de),

J
- ®
yet we mean :

P (&) = P (A x™) a(do),
®

But ‘we shun the latter notation on the grounds that it is decidedly too’

cumbersome .

3.3. The-Posterior -Probability Measures

For ‘e,very Be 6 , the ‘equality (1.1.4) defines, almost -everywhere P,_' R

1

the function Q?)(B) as a version of the Radon-Nikodym derivative -of the
measure M.n( * X B’) with respect to the measure Pn , for-any ne N .

For »eve-ry_ A C,»a,h
(3.3:1) mn CAxB) = J Quie) P (do .
By definition, and by (3.2.4),

(3-3.2) mo Ay = X (e PL(A A(do)

I

J?LB (6) X, () 3 (de)

= XN (B ~n DC(A).
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.New, by (3. -2 L)

JX/C.&) P (dx) = 'Pn (B(")f) An)

B™x X2

ACD(RMx XN A)) .

However,
Dn( Bn> " AN) = 'DHCB(")) if) Dn(An))
hence
D(B™Mx X* n A) = B ~ D(A).
“Therefore |
(3.3.3) j XB(Qx)x P Cc(x) >\ C B Al DCA)) |
, Mo X%
- It follows, by-(3-3-l), (3-3-2)zand:(3.3.3) that
{ XBCS,’;"B‘,, P, Colx> { QL (B) P, (dx) |
for every A &'ﬁL , thence by the Radon leodym theorem,-
(3.3:4) Qe = ?Lsé»f)r = chn)Cén) , are- B

for-any B & ® .

‘We now specify the system { AP, @, p } .completely thus:

for every X ¢ )L°°, , for every BE Y -y and fer -every ‘n&N ‘,~letA

- o (m
Q;(B) = ’X’ch-(én)‘

. o0
'This defines Q: .as.a proper distributien en {@, B}, for every X & X s

and for -every ne N . In particular

(3.3.5) _Q;bCB) = XL ’)(/ (x)

. for any x £[0,1]’. On the other hand, if X_ 4 D® , then there exists
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a J ¢ N such that for.all n 3 J, é‘"’d, D" . Consequently, for any fixed
n y J, there exists a number € > O such thatn if Be B , and d(BX<€,_,

then x4 B , and hence
(3-3.6) Q= 0,
for all Beg ‘05 such that o (B) < €, -

3.4 The Exceptional Set of the System L A,P,Q.B}

By (3.3.5) and _bvy"(l‘.l.7)
(3.5.1) | B, (2 = ({D QQ;_D(dgu = x.
Forany x ¢ D%, 3 J(x) e N >  by(3.3.6)
(3.4.2) . B> =0,

for-every n 2 J(&) .
Therefore, if © 7 %, by (3:1.3) and (3.5.1)
Py (ip.(x>>0eh = PUp,(xp—>eh)= 1.

If 6 =3, ‘then by (3.1.6) and (3-4.2)

PL (L pa(xx>0}) = 1.

| .
Therefore ‘the system is consistent except on B° = {3} where 2 (Be) =0,

3. 5 ’I’he Sys'tem { } . E; 6 ) E-}

In ‘sub-section 2.1, we avoided an explicit representatien of the posterior
'pro’babilities .and Bayes' estimates by means -of limiting processes.  We proceed
to. such a” I"ép'r'e"sent‘a;t ibn for “this. particular case .

The vers:}.on of relation 2.1.2 appropriate to the present - -situation is

C-e) Q" (8/a) +{P, (M} (e X () A (w

(3.51) Q"(B/A) =
. -1
| C-e) + [Fa)) e P}
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provided P, (A)# O ; if in addition PJ (A)¥* O , then
' 2

= QR(B/AF, M {Pr (M} + e X, (3)

(3.5.2)  Q(B/A) = _
(1- € ){P,,cA)eLP;'(A)}"+ ¢

Now "let .C'J"_' [O‘e‘.‘), -0 < ej,.ﬁe_; <1, and lim e.=0.
. HLN

‘Then, by (3.5.2),.(3.2.1) and (3.1.5) |
C1-€) Q"CB/C‘JT"x x) {2""&..!} +e %B("i)

(3.5.3) Qn(B/e " x™) .
C(1-€) {2"69 + €

for every ne N . Therefore, by (1.1. 5)
R Ci- e)Q"(B)iz" lcme}-'-e’)c(l-
(3.5.4) . Ql(e) = :
e, .
(I-'e) {2"lime.t + ¢
. JG.N J
But Qg is well defined for-any ne N , and
“p
”m e. = 0O 5
"~ JEN
hence it is quite clear that
v = _ L
(3.5.6) Q" (er) = x (=z),
. : 9.!: R
for every B &€ B , and for-any n £ N
By ‘a similar -argument, it can be shown slso that .
Q" = (%D
(3.5.7) Ql (B) = X/B =z,

-»
for every Be (3 , and.'forla.ny he N

Now let {"PL} Lo N ' be a sequence of Borel partitions of the space ®
such that |

sup d(B) € 7T .
Be P,
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‘Then, for.any ne¢ N , by (356) ’

Lo
Z

n

4
v

o g ' Ao
pn(gb) = é{) g Qgp(dé) <7T*tT

for .all L € N .; and hence

for every n & N

.8imilarly, by (3.5.7)

for every ne N

It follows immediately that, by (3.1.3)
PR (LB (x> %hH = PP{B—>Th=1
B o ) N . ‘
This last relation shows that the system {_R , I;, 6, B} is not consistent.
It should be emphasized that the validity of this counter-exampl‘e; rests

on a particular choice of the-probabilities @ '; for the-"off-diagonal"

sequences. .- A more reascnable -estimator -would be
hncﬁb) = X , for any x ¢ [O, 1],

if x™g¢g D™ for some neN.

)
[
1%
N
I
-

Here hn(‘) is a Bayes' estimator that agrees with P,” () , @-€&- Pn ,

néinely on the diagonal, but which is consistent for.all 6 ¢ ®
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.Section L

4.0 Orientation

Boev's paper, which we now consider is devoted to the study of the
asymptotic behaviour of the functions Cin (,%x) , but hins ‘results seem to
have been gotten without proper foundations. .We -proceed to -refomulaté his
initial assumptions, thence to describe the behaviour of the functions Cln (s %)
and finally to -e»xa.mi»ne the behaviour of the Bayés' -estimates -in the- light

of Boev's conclusions.

4.1  Assumptions.and Basic Lemmas

(B.1) ® and X -are two ¢ -compact -subsets of the real line {R,f} ,
where f(x,y)= [x=y| , for -all (%, y) € R » R
(B.2) Forevery 6e ® , P, -is gbsolutely continuous with ‘respsect to a

fixed measure Y , so that there exists a density function p, (e, )

»satisfying
Pe(x)r= ip‘-(e)x_) v (dx)y= 1.

The functien. PI (*,+) is continuous and bounded in the product topology-
of the space ® x ¥ - ; moreover, there is-a function 6*: x >® satisfying

(1) - _ . Sup pl({, x) = p, (8, (), x) ,
fe® - \

(i1) +there is & constant Y > O ., and for every x £ X , there

‘exists a neighborhood \/XE.\/(G*(X))‘ such that
p, (&0 2 Ci-l§-6,001T) p, (B,(&), %)
for all § & V_  , and such that

inf d(V)=m > o.
xe %
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Furthermore, given € > O , there exists two compact subsets K < ® -and KQ_C.)L
such that ... .
p,CE.t) < € ' -

for all pairs (£, t) 4 K, x K, .

A pan e

(B.3) A has & continubus density ‘p-with respect 7/:0 the lebesgue measure lu. R
such that P(~) is bounded on (® and vanishes -only -afL isolated points. '
Moreover A(@) <o , and the first moment of A is finite -also.

(B.4) For v" almost every sequence x™e xn, Whéfe V" is the"n;dﬁmensiona'.l
Y . -measure, and ne¢ N is arbitrary, there exists a mapping 'y”: ® - X

‘satisfying

(1) n Py ) =P, (5,0 = pN (L, Y, (L),
- (i1) for.any £ & C*D)‘ lim }’n(f) x) exists in X
neN '

-Throughout this. section, unless .othverwis‘e " 'noted, it shall -be ‘unders.tQ‘(Dd
that the above »&ssmnptions -are fulfilied in .every statement -of propésition.

The function ’\P ) (‘ >0) being continuous and 'bopmdéd in ‘the product
topoliogy ‘of the space ® X x . and. the component ‘spaces ‘of this Cartesian
product being 6 --compact with the proviso following assumption ®Bd.2¢y) |
for every £ & ® , and for every x € 36 ‘» the projection mappings v'P| (¢, )
-and \ FI' (:5 x) are uniformly continuous lin their respective domain. - But
more -ensues, ‘spec'ificaliy

‘Temma L4.1.1

Given any open set (]'t'. 5(@) , rempty or non-empty, fer every X¢ X »

thgré exists a point te€ ®~q such that
p,(t,}o= Sup  p, &%)
(e @G
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Moreover, the function

ho ()= sup p (§

| £ @~
is continuous in X%
" Temma L4.1.2
For every x & X _» and for any Ve W/(G*(x)), there exists a

number € » O -such that

Ssup p (4% <U-€) p, (6,(x),x) ,
e ®-V,

and hence the functien 6‘ (‘) is continuous in X .
- Proof: Suppose on the contrary that for some X & ¥ , 3 Ve ’\[(9“ (;‘))
such that for all ¢ €& (O,1)
(1) sup p, (LR 2 (e p, (6,06, %
te@-V |

let te®~V . satisfy

(2) 'PlCt,x) = sup ..P‘(E)x)..

e~V
Choose .a decreasing sequence. | { EJ }J ¢ N 3
(3) | €, & (0,13 , for all jeN,
: ' ne N J

. Now by.(l) and- (2)
P, CE.xD > U-€) p (8,00, %),

for -every JEN . Thence, by (4)

(5) | | Bt x) 3 P, (8,00, %)
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But this is . absurd since L 4. Vv , and 6* (x) is unique.
-Now let x°£ X  Ybe chosen arbitrarily and let
6* (x,) = 6,

Choose any VE_V(B*) ; then by the foregeing argument 3 ec Co, 1) 3

h, (%) = sup  p(f.x,) < (-€)p,(8,,%).
v ’geG%wP P

'Select~twc? numbers O(' and (3 .s0 ‘that
h, (xo) + « < G-e) P, (8, %) = gl

But by Lemma 4.1.1, HV(.) and indeed P, (6,(),*) being continueus in ¥

there -exists .a W¢ ’lf(xo) such that, simultaneously,

h, (x) < Hv(x,)-ro( 5

v

Pl(e*sz) _(5 < p« (e*(x), x) >

and therefore

h, (0 < p o, (0,%),

for all X €W .- But the last inequality implie_s»:clearly ‘that e* (x)eV,

for -ail X¢& U ; since V was chosen arbitrarily we conclude that e{ ) -is -
continuous in X . |

. Lemma 4.1.3

Iet x& X -, otherwise arbitrary, and suppose- that
6,(» = 6,.

‘There exists -a fixed 0 >0 ., and.-a X> © that may be teken arbitrarily

1

small- such that for-all h¢ N

@gb? (£,%x) A(de) > Lzé: Pf(é;»X) {1-67"
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.P;oof: )
Let P(Q*) >0 ; by -assumptions (B.2) end (B.3), there ‘exists &
VE '\,/(9*) such that
P b0 > U-e-6,1") p, (8, x),
inf p(g) = 0 >0,

. tev
for.all § €V . ; and hence

(1) (éto."%x)_,\cd b > ophg.x JO_{)?-%)*}"M@'%)- |
_Assume that p>o is: chosen:so wth»a.t

I1Ce,, p) = V

“Therefore, for .any d < {5

(1)  [e,-8,6,-41 c I, p)
or (11) [e*+v(_§_) 6, +8]1c I(e,,p).

~The argumerit“being theé same in.either case, we show it for :case-‘(‘i),only: by

-8 change of -varisdble.

() J U—,lé-mﬂ)” Mm(d€) > J Cr=1g-0,IM" pldt)
Y '[ef'g’ efé:] o

Cr-tM7dt » 8 (1-8M"

Il

- Thence, by-(1) end- (2)

Lpraoadp > ol preo (180"

JIf p(e")= O ,.ve may by "assumption_(B.3),'-choose B such that
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-for -any g:& [_e;-&e*—_(g] 3 and for -any 5( }2,
» (4

- ind pt) = o,
selosb0,-d]
‘The argument thence proceeds-.as before.

Lemma'h.l.h
If xne X -and
e*(x) = 0 ,

then for .any . o 7é e

"(ax, %)
lim P = Q.

ne N '
Lpnes, o > )

“Moreover, the convergence is uniferm on {@'V V} , ferany V ¢ ”!/(6*) .

-Proof: Choose Ve '\[(9*) 3 o 4, V "3 by Lemma. il&.l.2. 3 e ¢ (0 1)>

(1) Pl 0 & hIGo < (1= " ple, %) .
On the other hand, by the‘prevvious ‘lemma,
A c{> pr(E, ) A(dE) 2 op" (e, %) { E{(,_- SN},

where ¢ > O .is fixed, . and S may be as small-as desired. In 'ﬁarticular,
if
Y
$¥< e,

by (1) and:(2), we -obtain, after simplification,

lo:"(o(,x) . hc (x) < ’Z | — ¢ 'ln

(3)
i @J)P."(!,xﬂca%) cé) p"(E,x) A(dE) cd LI~ S’S

N
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But, by choice of. S .
| | — ¢

| -8 )

lim | - € : = O
el |y - §Y

the conclusion is immediate.

< 1,

therefore

4.2 The Main Convergence-Properties

It should be noted that the function 6* (*) -evaluated at the peint
Yn (€, x) .is independent of § ; L-e- if x‘ is held fixed then
Pn (6‘ (7n (f,g)) CX ) is constant for-all é £ ®., and for any nNe N

Recalling the notation in -assumption (B.4(i)), we have

T RO = P lhe) = BICE g ()

To use a well-worn statement: e, (]n(f‘ x)) is the value of the parameter
[a]

g " which ma.)fimizeS‘the product TT pg(x.) , for-any fixed sequence X(")';
. j v faly

. . =1 .
in other words, it is the maximum likelihood estimator of the-parameter. -In

line with the established notational conventions, let
8 (x) = 6 _(vy. (- x)
t = % Ynt X220 -

Be it noted also that byv»asswnpt,ions'(B.E) and- (B.h), and by the Intermediate
Value theorem, the maximum likeliheood estimators do exist for every X & X >
and- for ‘every he N .
Lemma 4.2:.1
If x ¢ X 1is such that lnm’ yn(f)'g) -exists for every gt@ ,
. nea :

A
then |im en (x) exists; if in additien
' neN
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then for every o =+~ 8, >
lim (o, x) =0
. neN In -
" Moreover, the ‘convergence is uniferm en {@-V} for any V.e U(Q,‘) .
“Proofs » For-simplicity of notation, let
A — —
8, = 6,(x) = o, (y, (L)
for any ¢ ® '; by -assumption and by lemma 1-&..1.2,.“
N A B . .
lim 6 = 6, ( lirm )’n“"i))'
neN n ’ neEN
.Choose & # 6, ; there exists-a V € '\[(9*) , such that o« § V.
‘Now by ‘lemma L4.1.2, there -exists € €(0,1) 9 if
lim Y, (%) ="y,
hLN n -] .

then
bv(\/o) < (-I‘E) Pl(e*)\jo)'-

A
~:8ince hv () , and p‘(‘,-) are continuous, .and since en—> 6* ‘independently

of fe® , 3 JeN> forall n»J

(1) p, ey, (2 € sup P, (é,y,,k«,p < =6 p By, Y, (%0 -
' fc ®V

On the other hand, by assumption (B.E(ii)), we can find a neighborhood

un ¢ '\/(6'1) _and. s number ﬁa.(“o,lj 3 forall ¢e un , and. for all ne N

@ p Ly (L) B G- 18=80Y P, (8 y, (20,
.and |
3 L (é‘n, p) © W
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Thus by (1), (2) and (3), and by assumption (B.4), for-all n > fJ'l

(1) Pnl0® ¢ SRy P
- g P (£ A(dE) é S IFORICES
(l"é)n Pn(gn)’—‘) | (,' Q)n

~
!

(6, X J(u—)g—@n\*)” A(df) on—)g-_é‘nn*)" A{dE)
1(6,.p) I(6n,8)

The remainder -of the argument parallels -the proof-of lemma 4.1.3.: if
p(6,) >0 , assume B to be so chosen that, by assumption (B.3)
inf F(&) = 0 >0.

§eI(e,p)
Next choc;se J >0 3

$
: 4_%-_

§¥< e

)

~Thus,  since § =0 3 J. € N such that
n * 7 2 . )

.[én-S‘)é‘n-gg] c[e*-%)e‘—g]c I(e,,p),
inf ‘ P(g) >0,

§c[8-86-41
2
forall n 3 T .

‘Therefore

(5) J(l-lé—énlY)”A(d§) > o fcn-d;

1(6,.8) | | (84,8 - g;

§
- = gl(l—t’()"dt > %&(/-SY)“,
z 4 ’
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for all n » J, .

"By (4) and (5), for-all n » max (J,,J,)

S
Qn@,x) & sup 9 (£x) € 2 i‘ - ey} -
{e@-v : o L1-9¢
The conclusion follows, by the choice of X .
. Again, if P_(Q*)r- O; assume p to be so chosen that
int p(f) >0
fekK '
for -any gompact-subset 'K c [6“(5, q‘), then select g< 'min( e", [_‘.’%_)
such that ' |
inf p(§) = w >0,
{ € [ex——sgi ex'-é—]

~and thence proceed-as before.

. Theorem 4.2.1

. Under the.conditions of Lemma 4.2:1, for -every néighbamhood VE ’\/(6*)

lim {an{,)j) Aldg)= 1.

neN

‘Proof: By definition, if V& V/(,), then

LB = 1 - ) A ().
qundx) §) o v 9, (£,x) 2 (d$)

But

| @J Lan e A & M@ffvl{ ;f£~.\/1w<€>ﬁ>-
‘Since )\ (®- V)'( oo , then by the previous lemma:

lim ) (®-V) Sup C?n(é,é)éo-

ntN O~V
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The desired conclusion follows -at once.

‘Theorem 4.2.2

Under ‘the conditions-of Lemma )+.2.l

lim B, (x) = lim gﬁqn(§,é>A(dg)=e*

neN neN

. Proof: Note that, for-every neN 5
(1) | Bn 00 - 0,1 < (g)lf_-e*lq,,(é,&)/\(de).

Given any € > O , choose a neighborhood V SWB“) ~such that /LL(V) <e
By assumpﬁion (8.3), if ® is unbounded, choose a Borel partition ®= B| v Bz_

.such that B. is bounded V< E>l -, and

(@ {(é\ pCE) p(d;) < 1.
g 2

- . Now

@ Jlg-e1q, )20 = S 1§-61q, (6 %02 @)
. @ v )

+ J le-o sl 9, (6. x) Alal§) + flé elqn(f x) A(d§).
®-v-8,

But -since P.-(V) < e , 'l§"9*| < € ‘onv’; 'he’nc_ev_

(%) jff'e*lqn(ﬁ,é_) Aldly < €,
’ v ' .

for all nt N .3 furthermore,

) J s Ol g, ()2 £ 2 sup |E] f c](é x),\(dé),
®~Vv- B, jeB . O-V

6) S 1g-6,l 9n (LX) A(dE) <K Sup qna,a){'fIHA(d&)He*IA(Bz)}
B B

2 . fe 2 B,

&L Sf:a@ﬁvvqn(z,.?s) L1+ 1o}
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But, by Lemma 4.2.1

(7) Hm o su Cf, x) = fim S C YA(dy) = O.
nenN §&£~V In ¢4 rln'\l ®-v n 5 2 :
Therefore, since 7 sup [§] < oo , by (5) and (7)
feB, |

lim  § lE-6,1q, (6, x) Aldg) =0 ;

h&N @"V'vB?/

by (6) and (7)

lim  § -6, 9, (¢, x) Adt) =o0.

neN 57_
Therefore, by (3) and (h),
lim  lE-6,0 9., x)A(dE) £ €.
neEN ® .
'Finally, by (1) and (3)
lim | (x)— 6 < ¢,
neN F’h *'

Since e was chosen arbitrarily, it is clear that

lim pHC;) = e”E
neN

If ® is bounded, let B1 .= ;5 , and proce‘edas ‘before.

.Remarks:
It is well to note at this point that if we assume boundedné_ss for the
set ® , then we may dispense with the assumption that ) -‘have finite first
order -mome‘n.t. - Furthermore, as has been :shown, there is no needl to assume that
A (@) =1.. In poinf of fact, it may happen that the functions pn(-, x) -and
qn(- »X) meet suqh ;exacting integrability conditions that eur -arguments, except

for slight modifications, will yield the same cenclusions,  even -though neigher



36.
‘A(®) nor-the first moment of iﬁ_finite. This point shall be illustrated

in the example in Section L4.3.

Theorem 4.2.3

If for some ©6¢ ® ,

PE({ pox> —> 0h) = 1,

then

Pe({8,(x) — 61 = 1,

.and conversely .

“Proof: By -assumption (B.4), since P

Py isvabsblutely continuous-with respect

to Yy, and if we let

X = {x: lim yn(g)é) exists ,for any €e®}
neN " »

then
PY(x)y = 1.
If
Ps (Ipady—>oh =1,

for-"probability-one" stateménts, there -is no 'loss of generality in assuming

7

;that
X = { Bn(x)— 61},

“Now if x¢ X , by assumption (B.4) and by theerem 4.1.2, suppose that
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clearly, by the previous theorem

[im B () = ,

neN
‘and ‘thence

‘Therefore

Peo (16,00 >0H =1.

The converse'follews‘directly from theorem 4.2.2.

" 4.3, An Example

e op (50 =@m 2exp [~ (x-0 | xe (-, ).

. -2 ‘
" Then: . palx) = (2m) * exp [-— Z (x, —;)"J

J=1

.Prcgﬁ\\/n(g)l‘-))= (2“)-% exp [-% (\/n_g)lj .

Solving for Y., 1, we: -obtain. .

)’r;=§i\/ Zx-—zr—,j' x.+§2.

Jﬁl J:.. 4

By ‘substitution
B _ | n i 2
P (L ya(h) = CamZ exp [~ SR RN

.Therefore,

log p, (.y,(4,) = -% |°j”2_T|'"‘l'7:i"rT E:

)' _ n
% log pi (£ y, (hxd) = -ai E > x4 28}
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Hence

~Case 1.

i .
Let P(;) = (2m) ngp E—%] , § € (‘°°>_°°) >

then :

L J § ex [J'{Zgi*.—(nﬂ)&“}] d§
(‘*ngcln“”-‘) AldE) = = P-e = Y

exp [Jf{'ZE 2 XJ‘—.(nH)&?’}de
. i=

- 0o

Dt ep I3 {am 2 %, - 113 ot

By computation

.'-Casere._ '
et p(H) =1, § & (me =),

then

{. fexp[% {zgéxj—ngz}]dg

gﬁ) §a|n(§,>:) A(d§)

T e.xp['zl{ﬂixj—n&z}]df
) ‘ Jj=t

§ e,;qa‘[‘ '-}_1 {+ Jﬁ;' x. - E.}zj d§

x.-§}] d§

v 9

exp [‘% {"r'l

T M

oL
I
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Hence

Case 3.

Let pr=eb | § e (e w)

then
@{ 9, (b2 A(d) = -Z: P [J":izg(é.:‘a*’?‘”fl}]di
L exp ['LZ'SZECJ?::‘xﬁ')-h?‘}]dg
_ Z f exp [~%{%(J§;xj+,)—g}2]d§
j: exp [‘%{-'a(éxj;});gﬁjdg
Therefore

r
S
P Co = n <; E%] > +1).
"It is clear, by -application.ef the Law of Large=Numbers, that in all

three cases

Pr({8 (x—>0}) = PT({p,0o—>0e}) = 1.

4.4  The Consistency Theorem

Thus far, we have been concerned with cases of convergence at points.
Next, we conbider a Bayes' estimation . .system {-A,P,Cl‘ﬁ} ‘constructed under
‘the -assumptions (B.1), (B.2), (B.3) and (B.4), and we -ask: is such.a system
consistept? "It turns out that restrictive as these.aSSumptions»are,-they do
not necessarily satisfy'the minimal consistgncy requirement. It,iS'indeed
quite conceivable that two distinct points 9‘ and eq_nmay be found such that
Pi(é',-)_,and f)h“%g):ére VY -equivalent, ~and hence for-all 42°o.qnea3uréb1e
-sets A

Py (A) = P3(A),

[
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in which case no estimation system,.of any type, is consistent. It should

be clearly understood that while Q‘ (x) maximizes P, (> %) uniquely, it is

not assumed that -every @¢ ® satisfied

P‘(S)x)= P,(G*(x),x) ,

for some X € X | .
For the purpose of quick reference, we--noﬁ formalize-a few remarks
-already made, and results 'obtained»in' the previeus subsectiens.
Lemma 4.4.0 '
(i) The maximum likelihood estimates-exist, for-every ne N ', and for
every XM g xn,
(41) 1If

lim x_ = x, & %

o
neN n 2

then
l‘m P‘ (e~ (xh))xn) = F| (e‘(XO))XO) .
_ nen .
(111) If f£® ,and 08¢ ® , then |

.P' (e*(y" (é) 5))7” (g) ,-‘-)) = Pl (e“(yn(e)é) )‘yn<eJ§)))

for dll- n & N .
(iv) If

lim x, = Xo

7 hew

then

lim 6 (x,) = 6, (x5 -

AEN
- Part (i) andvpaft_(iii) of this lemma restate the essence of the opening
paragraph in subsection 4.2; part (ii) and part (iv) are direct consequences

of the lemmas 4.1.1 and L4.1.2.
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Theorem h‘. Lh.0

Under the assumptions (B.1), (B.2),.(B.3) and (B.4), a Bayes' estimation
system {X,P,Q B} is consistent if, and only if, the family { P,ret®}
satisfies the minimal consisﬁency requirement; i.e., if, and enly -if, fer-any
0¢ ® , and for-every § # O, there exists a Y -~measurgble set ’Ai ‘such that

J P, (8, x) v(dx)# S P, (&, x) V{(dx) -
A A
§ , § :
Prooef: Choose 0t ®, and define

P, (.2 | /

(1)' . Xe= {é b, (8,%) —> 0, for dnyé#e};"

.on the assumption of the minimal consiétency-requirement‘ Doeb - shewed in [2]

that
(2) ' i’: (x,)= 1.

As -in the proof ‘of. theorem L4.2.3, we -assume that if x¢ Xe 5 then
lim jn(é,g_) ‘exists in ¥ , for any £& ® |

newN . .
"From (1) and (2), and by assumptien (B.L4), if x¢ Xé ; and if §# 6,

el

then for-any § e -(0,1) there-exists a. J(f) & N \3
(3). Pn (8, 2 < gp,,(e)zs)< Pn (6, %),

and hence

: ‘ | x
(1) Py, (o) < g”p,(e,yh(e,a'» < p,(0,y,(08,%

for every n 2 J({) -

I;et N X . . . ¢

BO N  lim Yo (5 2) =Y,

‘neN
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and suppose,-using Lemmas L4.4.0 (1), (iii) and (iv), that
. .
(6) lim 6 (x)=lim 6 (y (-,%x)) =06, % 6 .
| nen 0 nen ¥ Tt ¥

By Lemma 4.1.2, 3 Ve Wf(e,,) and ¢ €(0,1) such that © gV and

(7) - | pl(e;ye) 4(!—6) p‘(e*,ye) )

Choose two positive numbers o and P such that

(8) : Fl(e)ﬁ) + % & (l—e){[:‘(e*)ye)—p}.

By (5) and by assumption (B.2) i JenN

(9) ,a,(a)\/,1 (6, %)) <.P'(ef'79)‘*°‘
for all n 3.3}.
‘ S
"By (6) and by lemmas 4.4.0 (ii)_and-.(i;i)
(10) | fD, (O*. ’je) = |im =3 Cé};(g'), yn (e, %))

ne N
= lim P, (8,00 .y, (8, %) -

nenN

But by»assumptions‘(B.z)-and:(B;h),.and'by:(6) and_(lO):

(1) ,o,(e*%) = p, (6, L.‘m Yo (8, 220 = lim p (8, ,y,(8,,% -

hNEN

It follows from this latter equality that 3 J, &€ N 2 for n 3 T,

(12) P, (e*‘D)/o)‘ F’ < F)(G#Jyn(a*)l()) 5

and hence, by (8), (9) and (12)

(13) fal(e)\/"(e)y) < P,(e*,yn(e*,z)))



and therefore
(1k) P, < pPp (8,0

for-all n 3 max (J')J,_) . -

E Clearly,  this last .inequality contradicts the inequ@liﬁy- (3) for .all

n 2 ma X CJ")TZ,T(G*))O

‘Hence it must be -conclpded that

6, =-9.
"Therefore, .if x ¢ Xe’,
, A
lim On(&) =0 .

‘By theorem.4.2.3

Ps{B,(x)>04)= 1.

Since 6 -was-chosen arbitrarily, the conclusion fellows.

- The converse 1s trivially true.

K3,
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