ROUNDING ERRORS IN DIGITAL COMPUTER ARITHMETIC SUBROUTINES

by

GARY JOSEPH LASTMAN
B.A.Sc., The University of British Columbia, 1961

A THESIS SUBMITTED IN PARTIAL FULFIIMENT OF
THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF ARTS

in the Department
of
MATHEMATICS

We accept this thesis as conforming to the

required standard

THE UNIVERSITY OF BRITISH COLUMBIA
March, . 1963

In presenting this thesis in partial. fulfilment of
the requirements for an advanced degree at the University of
British Columbia, I agree that the Library shall make it freely
available for reference and study. I further agree that permission
for extensive copying of this thesis for scholarly purposes may be
granted by the Head of my Department or by his repfesentatives.
It is understood that copying orbpublication of this thesis for

financial gain shall not be allowed without my written permission.

Department of MATHEMATICS

The University of British Columbia,
Vancouver 8, Canada.

pate 8 APRIL 1963

. Abstract

-In this thesis we investigate arithmeticlsubroutines and round-off
procedures.. An error analysis of siﬁgle operations in normalized floating
poiht'arithmetic leads us to‘the construction of an improved form of addition-
subtraction éubroutine. .In.addition,;the properties of several types of
round-off procedures are examined (addingl%; adding random digits; dropping
digits). |

The experimental work (using the ‘above mentioned subroutines) with the
system x = y, & = -x shows that the systematic accumulation of round-off error
observed by Huskey is due to the type of rounding-off procedure used.
Furthermore, Har£ree's explanation of this-effect.is found to be inadequate
because carrying extra digits throughout the calculations does not eliminate

the systematic round-off.

iii

I.wish to thank Dr. T. E. Hull and Dr. Charlotte Froese for their helpful
suggestions in the preparation of this manuscript.
The financial assistance of the Defence Research Board of Canada (grant

number DRB-9540-03) is gratefully acknowledged.

‘-_ Chapter I.

 Cﬁaptér IT-
Chapter III
Chapter IV

Chapter V

Table I

Table of Contents

" Introduction.

Computing Schemes and Round-off Procedures
Error .Analysis of Normalized Floating Point Arithmetic

A Special Subroutine and Round-off Procedure

Descriptions of Particular Arithmetic Subroutines

Table II Execution Times of the Subroutines

Table III Experimental Results

FPigure I

Figure II

Chapter VI

Bibliography

Conclusions

ii.

1
20
'21
22
23
2l
2l
28

29

- Chaptexr . I

For the numerical solution of a mathematical problem on a digital computer
we should provide some sort of error analysis to account fbr round~off errors,
which are usually present. The propagated round-off error may be given in
terms of a maximum upper bound or an expected value and variance: the
statistical estimate is much more satisfactory. Henrici [y] strongly
advocates the usage of statisticél methods, but Huskey cautions against
their application on the basis of some experimental results, [7] ; it is
our intention to try to explain Huskey's resultsiby examining.various.types of
afithmetic subroutines énd rounding-off procedures; in addition,. we will show
that Hartree's explanation [7] of Huskey's results is not sufficient to explain
the observed effect. For this purpose we first discuss computing schemes and
rounding-off procedures 'In Chapter II. In Chapter III we give an error
analysis of single operations in normalized floating point arithmetic. A
special.fofm of subroutine and a special rﬁunding—off procedure are described

in Chapter IV, while in Chapter V we present some'éxperimental results.

" Chapter II

In general, errors are introduced when any mathematical problem is sol&ed
by numerical computation on a digital computef. We wish to determine the
effect of round-off errors on the numerical solution to a problem, so
henceforth we shall ée concerned with the arithmetic operations of addition,
subtraction, multiplication and division. -Since these operations are
dependent upon the manner in which the computations are performed, we
first discuss Various computing schemes.

| ‘Numbers in a digital computer can be represented as an ordered pair
(m,e) where m is the mantissa of word length f,digits.and e -is the exponent;
both ére expressed in the number base b of the machine. .A machine number
(m,e) is actually m.b€. If the exponent e is a preagtermined constant for
all calculations we have the system known»as fixed point arithmetic. If we
allow e to vary between fixed limits, say -a <€ e < a , then we have
floating point arithmetic.

With fixed point arithmetic we usually deal with fe—digit numbers of the
form>(m,o),“wi£h -1 <m<«1 . This system is very inflexible since one
must rescale numbers so that the results of numerical computations will lie
within the open interval (-1,1). Also, the programmer must keep track of the
decimal point throughout the calculations. But, by using a floating point
arithmetic the progrémmer is not required to locate the decimal point at each
step in a program, or to rescale. Because of these advantages over fixed
point, floating point arithmetic is now used in almost all computers.

In constructing a floating point arithmetic we become aware of two
facts: _(i), that although we can perform calculations using numbers whose
magnitudes vary over a considerable range, the maximum number of digits we

can retain at any stage is the word length of m, the mantissa of our floating

poipt number; (2), the represéntation for a number x, (m,e), is not unique(*).
For uniqueness we must turn to a normalization convention éuch as b'ls;mu.< 1.
Even so, the representation for zero is no£ unique; hut we may define zero

as (o, -a), where -a is the lower bound for e . By restricting |m| to the
range ot < |m} <« 1 we retain a maximum number of significant digits at
each computation step. However, now we are uncertain as to the number of
truly significant digits retained in a long series of calculations. - This

loss of information can be partially -eliminated by the use of an unnérmalized
floating poing or significant digit arithmetic, [l], [2] . But now we must
forfeit the obvious procedural .conveniences of normalized floaﬁing poiﬁf
arithmetic. Because of this the latter system is more commonly used in
computers.

In summafy:‘ floating point arithmetic is extremely useful for comput-
ations where the magnitudes of quentities may vary -widely. With normalized -
floating point it is possible to represent numbers in a computer by storing
in memory only the first ,g significant digits and an exponent. ' The floating
point system has two obvious disadvantages: ‘(l), more complicated computer
hardware is needed to handle both the mantissa and the exponent, and (2);lfewer
significant digits can be carried because a portion of a word must be used
for the exponent. In spite of this, floating point is an effective and.
efficient method of representing numbers within a computer.

Now that we have some practical arithmetics that can be harnessed to do

(%) This is immediately evident since we could have mb®= m*b®* with

m # m* and e # e*.

our numerical Work,‘we are in a position to give a qualitative description of
rounding errors.

Tﬁe process of rounding-off 1s that procedure by which low-order digits
are eliminated in a number. Consequently round-off error -is the difference -
between a finite precision number (after the low-order digits are eliminated)
and the corresponding infinite precision number. Bearing in mind the
computer and its arithmetic unit we classify as round-off errors those
errors induced by special representations of numbers and also those errors
resulting from arithmetic operations. Both are caused by rounding-off.

| Several schemes have been proposed to implement the round-off process.
In‘eéch a numbef'x iénéhanged_to E; its roundeq form. Let R denote the
rounding-off operator (R: X —> ;) : if x > o we round x itself; if
X < o we round the absolute value of x, |x| 3 1f x = o we do not round
at all. Let O be the error in the least significant digit retained in lxl 5
after rounding-off; § gives a measure of the accuracy of a rounding
procedure.

For every definition of R we obtain a different rounding scheme :

(1) Add /2 to |x| at the position which is to be dropped.(*) A carry

will result if this digit is b/2 or greater. { —(Zl)b 2§ < (Z‘L)b}
(11) Make the lowest-order retained digit of |x| equal to b/2 regardless

of the correct value of that digit and the digits in lowér orders.

{ b§ < & ‘}
2 2

(iii) Add a "O"™ or "1" randomly into the lowest-order retained digit regard-

less of the values of the digits of |x| . {“'4-8 < | }

(iv) Discard low-order digits. The error is {C)é g < l} .

(*) b is the number base of the machine.

Every one of the preceding schemes has its own merits: +the final
selection of a particular rounding procedure ié a compromise between the
desifedbaccuracy for .a result and the computer time required to achieve this
accuracy. For example, procedure (iv) is the least time-consuming but gives

a large biased error, while (i) has the minimum error but takes longer.

Chapter IIIX

Regardless of the numerical scheme that we choose to perform our
computations, the rounding-off process may introduce errors. For a
gquaentitative descripfion.of these errors we now give an error analysis of
single operations in normalized floating point arithmetic. The error
analysis will tell us the accuracy. of the individual arithmetic operations.

In the discussion, real arithmetic operations will be denoted by their
usual symbols +, -,. x or . , = j the corresponding machine operations will
ve ® ,0,®,®; also, x,y,z shall be machine numbers. The machine base
will be b and the mantissas will have /@ digits. Zero will be of the form
(o, -a) where -a is the lower limit on the range of values of the exponents.
Errors Ed 5 E& will be errors in the least significant digit of the
resulting 4Z-digit mantissa. In the following error analyses we shall assume
that neither exponential underflow nor exponential overflow occur.

‘The area of computer memory in which a numerical result .is formed is
known as an accumulator. In the error analyses two different types of
accumulators are used: the single-length JZ-digit accumulators, and the
"extra-digit" accumulators. In the usual.zg-digit accumulator the "decimal"
point is considered to be immediately to the left of the first (most significant)
digit. An LZ#J) - digit accumulator is formed from this by providing an
extra digit position to the left of the "decimal™ point. This form of extra
digit accumulator is used for addition, subtraction and division. . A second
form of the extra-digit accumulator is the double-length one used in .
multiplication; multiplication of two L -digit numbers gives a product of
241 digits. We form this double-length accumulator by using two single

length accumulators.

A. Addition - Subtraction

X®Y = (mme\) ® (m;_, ea)

Let | €.l

(1N

)
>
-
"
N

If x = -y. then x@y = (o, -a);

x(®Dy - (x+y) =-x.

For |e2 -el|é L-1

s

. (L +1) - digit accumulator

(m:?ﬁ es)

suppose ep 2 €1, if es 2 e +,Q,, then

(a) We must shift mj to ~&lign the decimal points: we form a new

mantissa V, of,Z digits.
€ - -L
vV =mb
(V has |e:L - e2| significant zeros)

(b) Addm, and V @ m, +V

(c) Form the ﬂ-digit mantissa of the result.

(1)

No carry on the addition of No and V

m, = (M, +V) i

es"ez’j‘

j=0,0,2,...,4-)

where J 1is the number of significant zeros before normalization.

Thus

X@Y

H
O
w
S
N
+
<
U-
i
1]
(o
[XY
S
1,9
+
3
T o
®
|,
+
m
U';-Q
U‘;}

[X]
To
+
S
N
Ton
N
+
= M
O
ey
C
~

= X +Y -+ 6,5 bez
2 e
Xx®Y -(x+v)| ¢ &bb

Notice that we do not have an error bound in terms of the exponent of the

final result. If we wish to use 633 we have that

-2 ea*“?
X@ Y -(x+v)| b b° 7.
But we do not know é— . All we can say-is that .jré,Z -1 , and therefore

IX®Y - (x+Y)]| < b

However, for almost all additions and subtractions, this bound grossly

over-estimates the error. We conclude that the only realistic bound is

-£ e,

Ix@Y -(x+v)]| « &b b

If we had performed the error analysis using €, 2. €,

we would have

obtained an error bound

X@Y - (x+Y)| ¢ e b5

Therefore, the most general error bound in this case is

—l hﬁ“x(e.,ea)

IX®Y - (x+Y)| < ¢,b°b

(ii) Carry on the addition of mp and V .

Since (u, + V) has £+1 digits we must shift it one digit to the right.

-1 -L
M3 = b(m2+\/) + t‘-:'zb -
e3 = €, +|

X@Y = X+Y + ea-i[e +b€J
|X@Y—(X+Yl B be3_l[|+bJ

Here the error is given explicitly in terms of the exponent of the final

result.

2. ,Z - digit accumulator.

(i) Without carry, the results are the same as for the ,0,+l ‘digit accumulator.
(ii) Carry

Now we must shift both m; and m, (assume en 2 el)

(a) Shift my and form V,

| -4
Vo = mab + E,b
(b) Shift m, and dlign decimal pojints

e-¢e -4
v,= mbb T +egbl

¢) Add V; and Vo ; both have only £ digits.
1 2

My=Vi+V, - -

XOY = x+Y + Blt?a[emez]
Ix@y -(x+Y)| < 2e, b b

If we compare this error bound to the corresponding error bound in 1. above,
we see that this bound is larger by a factor of f = 2 b/(l +b)
: N)
For b 22 y l<:‘f < 2. b =2 %?
b=10 ¢

1

4/3 =133
20/11 =1.82

i

e lOo

Therefore, if possible one should use an (,e+l) digit accumulator for addition

and subtraction.

B. Multiplication

X®Yy = (m,) e|)®(ma ’ez) =(m37es)

Let

If either or both x, y are zero

.then x@y - (O,“Q.)

1. A ,21, -digit accumulator

(a) Form the product M,*M,

(b) 1If Bzé |m,-m2| <5|

S
i

b(m,-m,) + &b

€, = €, +e, -|

x
®
<
1]
X
£
+
_m
(O

®
w
(
%
+
(]
n

11.

In both cases we have the error bound in terms of the exponent of the result.

The most general error bound is

2@
X®Y -xv| ¢« g, b b

2. An ;Q-;digit accumulator

(a) Form c
-1 >
Vi =M + E,
- =%
Vo, =M, + E,
where C|+ CZ - ,Z

If £ is even, take C,=C, = 4 /[2

1t 4 is odd, take €, = (£-1)/2 o €, = (L+1)/2

(b) Multiply Vl and V2 to get an ,e-digit number
-2 -1
() b e |Vivy| « b

b(V,-v,)

e,+e7_—|

ms

€3

@ - ~C - =% __ -2
XY = XX + ,bsﬂ,[mze,b '+ m E, b s,ezbJ

- ¢

4
IX®Y - xY| < g, 5" (b + B+ é‘MB'e)

@ B[vy«

m3 = V"VZ

‘ e -C - -C - - "y
XY XY + bs[mzéub + miszbz"'éne b]

_ & 0« -C, -L_
|x®Y -x-v| < E,b [b +b +beM}
In each of (c¢) and (d) the error bound is proportional to

for a double-length accumulator the error -is proportional to

Clearly a double-length accumulator is the better of the two.

C. Division
X@Y = (m|7el)@(mzo ez)=(m39
We must havey,-éd. If x = 0o then XY = (o’-a_)

Let lﬁ;_.lf: Er Iéilé ép 5 4= 1,2

1. A+ 1 digit accumulator (a quotient of £+1 digits)
(2) 1z |m/my] <b
m, = B'(m/m,) + e b"
€, = e, -€, +|
@y = (x+v) + &b5°b°
Ix@Y -(x:Y)| 2 €, Bl:?
w) b < I»m,/m7_| « y
- ma= m/m, +§&b

€3 = €, -8,

X@Y = (X+Y) + e, bihb

)
P4
|
<
e’
([N
m
o
O
Y
O
(1)

IX@©Y
The genveral error bound is

X@y - (x 7|

-2/2

.,cbea

€;)

bea

12.

13.

2. An ze-digit accumulator

())¢ |m/m,| <b
Shift my and form Vi
- - _ -4
V, = k)t11| + 81&3

My = (Vl(:"mz) + E,br’
e,:=(1+¢6) - e,
XY = (X+Y) + 52 be, [(—.é m,) + €,
x@Y - (x=1)| « B°5° [e, « be,
o b o< Im,/m,| <1
This is the same as the corresponding case for (4 +1) digits.
The preceding error bounds characterize the specific machine arithmétic

operation. In the next chapter we examine further characteristics of these

machine operations.

1k,

- Chapter IV

Automatic programming languages must use permanent machine language
subroutines to perform arithmetic operations. Since the accuracy of
calculafions is vitally dependent upon these arithmetic subroutines, we should
use routines whose maximum error is as small. as possible.

Iet us consider the normalized floating point arithmetic procedures
discussed in.Chapter IIT (those for extra-digit accumulators). Define t as

follows:

_ (X s Y) = (X ~Y)
t = max =

where x~y # 0

Nad denotes a real arithmetic operation,

~ denotes the corresponding machine operation.

Addition-Subtraction

(a) No carry

_/e MQX(en,eL) - e3

&b max |2 = kb

Car

where e, = max (e, ,¢e,) —1,' 5 F20,0,...,4

15.

Multiplication | _{;M - R3 b"

Division {'.D - k b"e

The maximum relative -error, t, is proportional to b-,(’. for multiplication,
division and addition-subtraction wiﬁh carry. - "No carry" on addition-subtraction
can produce a large value of t (proportional to b). From this evidence we
conclude that the usual pr_ocedures for addition-subtraction are so inaccurate
that we must develop a procedure which always gives a value of t..proportional
to b"z

Suppose that we have a (2.2 +1) .- digit accumulator available, with one

digit position to the left of the decimal point. The analysis is similar to

those given in Chapter III. Suppose e, < e-z

It ez_>. e. +£ +l ,then x@Y - (X+ Y) :-x s
For lez —- e.l $£
-1. Shift my
e-e,
Form Vi = m b

V, nas £+ |€-€,] aigits

2. TForm V2

Add eI - eZ' " non-significant zeros onto the end of m,,

thus V2 =My |

v, nas L +|e -6 aigits

3. Add V, and -V,

16.

(i) Carry

3
w

]

N
—_
<

+
<
~—

+
m
LS

)
w

'

]
n

-f

(ii) No carry

-
m3 = b(V, +Vz) + Ezb s d,:o,l,...,‘z

“Error Bounds

-2 ez
(i) Ccarry |X@Y - (X +Y)‘ < £Ab b
' . -L e
(ii) No carry |X®Y, - (X 'i’Y)I < EAb b3

Advantages of this method

1. We avoid the rounding error in my before the addition operation.

2. - The final error bounds.are-explicitly in terms of the final exponent.

3. For this method we obtain

t.kE:

This satisfies the requirement on t.

17

The maéhine.language arithmetic subroutines, for use .in conjunction with
an automatic programming 1angﬁage,Ashould be those witﬂ a (24 +1) digit
accumulator for addition-subtraction, a 22-digit accumulator for multiplication,
and an.(2(+i)vdigit éccumulator for division. We are lead to these conclusions
before we h;ve considered the choice of a rounding-off procedure. ILet us now
turn to the problem of choosing a round-off procedure.

In Bhapter II we gave some examples of typical rounding-off methods: the
most commonly used are
(1) the dropping of digits, and
(2) +the addition of (%)'b in the last retained digit.position.
We shall discuss this choice insofar as it affects the more significant prohlem
of giving error estimates for a sequence of calculations. For example,. if we
are performing a repetitive calculation in which a round-off error at one step
affects the results at successive steps we can give an estimate of the
propagated error in terms of ‘the rounding error .at each step. The step errors
are expressed as a combination-(usually linear) of the individual arithmetic
errors (the €'s). By using the above maximum error bounds for individual
arithmetic operations we are able to obtain an error estimate at every step in
a series of calculations. But this is a maximum error bound and is unsatisfactory
because rarely does the‘propagated error become equal to its upper bound. It
has been suggested that one give a statistical estimate for the propagated error:
we would ealculate an expected value and a variance. The validity of the
statistical estimate ultimately rests on whether the E's can be considered
as independent random variables. |

Huskey'[7J gives an example where, for a particular arithmetic subroutine
énd rounding-off procedure, the errors systematically build up. Forsythe [3]
has suggested that one could avoid effects similar to systematic round-off

by adding random digits to the digit positions which are to be dropped. We

180

shall examine such a procedure. Our results are somewhat different from those
given by Forsythe.
Let m be the absolute value of a floating point mantissa m which we wish

to round-off at the kth digit. Define a new number M such that
R ' ’

M= bm
Consider M - [M] =V
. Where [M] - 1s the greatest integer less than or equal to M.. Obviously
0<€ V<1 ; 'V consists of those digits of m which are to be dropped after
rounding-off. We considef V to be the probability of rounding up (adding 1
into the kth digit of m) and 1-V to be the probability of rounding down (dropping
the k+1, k+2,... digits). Now suppose we add a random number n,(o ¢Mn < |)

into the k+1, k+2, ... digits of m. LetN be unifoxﬁly distributed on [O,l).

The error € is now a random variable, and is given by

€ = [M] +| - M»-‘- | -V (rounding up)
€ = [M] - M= -v (rounding down)

The probability density for € is

- € (rounding up, € >0)

b (&)
P(E)

| + € - (rounding down, & ¢0)

(]

. t
Expected value: E(e) = 56(""6)(16 + fé(l'&)dﬁ
- (-]

0
0

Variance: V(E) H EEZ(’I'*E)dE o+ '(Ei(l‘ﬁ)de =
=1 0

M-

(The probability that |E| & 3 is 3/4)

19.

A subroutine using random digits, while being theoretically ideal, would
be, in practice, quite costly in computing time. - The procedure by which we
add (%)b would be faster and may give just as good results. In the following
chapter we présent some'experimental.results that we obtained using different
types of arithmetic subroutines; of these, two incorporate the special
properties described in the first part of this chapter, and another two

use randomldigits for rounding.

20.
-Chapter V

Our experimental work -will be with arithmetic subroutines written in the
IBM 1620 (machine number base_is‘lO) machine language, and to be used with the
automatic programming language, FORTRAN. Fortran uses an.eight digit floating
point mantissa. A later version of Fortran, FORTRAN 2, has the advantage of
variable word length (2 to 28) for floating point mantissas.

- In Table I we list the properties of the subroutines: Table II contains

the execution times (in milli-seconds).of the subroutines.

Table I

2l.

Type of Fortran 'Addition-Subtraction "Multiplication Division
(1) Drops the low order Rounds to 8 Forms a 9
FORTRAN digits on the smaller significant digits digit quotient.
8 digits number before adding. by;adding(% into Takes the most
If there is a carry, the 8th place. significant 8
.the lowest .order digit digits.
is dropped.
(9 digit accumulator) (16 digit accumulator) (9.digit
.accumulator)
(2)- L4 where As in (1) but varisble Takes the most As in (1)
£ =2,3,...28 A significant £ but varisbled
FORTRAN 2 digits of product.
' Drops the lowest
order digits.
(3) Subroutine is the Same as in (1) " Rounds by
FORTRAN special one described above. adding % to
8 digits in Chapter IV. -Rounds the 8th
by -adding % into the gignificant
8th place. digit of the
guotient.
(%) Same as (3) above Retains only the As in (1)
FORTRAN except that low order most significant above.
8 digits ‘digits are dropped. 8 digits; drops others.
(5) Rounds the smaller - Same as (1) Same as (3)
FORTRAN number by adding 3 in '
8 digits the last retained
digit. - If carry,
rounds result by adding
L into 8th digit.
(6) Same as (5) above Same as (5) above Same as (3)
FORTRAN except that we add except that we add
8 digits random digits. random digits.
(7) Same as (3) above Same as (3) above Same as (3)
FORTRAN except that we add except that we add '

8 digits

random digits.

random digits.

22,

The random digits used with subroutines (6) and (7) were obtained from a

random number generator of the form x, = 101 x,_ 1 +C (mod 1012)

(see [6]).

- Table II
Subroutine "Addition-Subtraction Multiplication "Division
Time ' Time Time

(1) 8.29 15.8u42 50.518
(2)-8 9.512 16.572 h9.51h
(2)-9 9.778 19.868 59.712
(2)-10 10.0k4k 23.530 70.950
(2)-12 10.576 31.952 96.546
(2)-16 11.640 53.188 160.218
gs) 12.80 15.842 55.906
L) 11.85 15.042 50.518
(5) 11.Lk 15.842 55.906
(6) 15.322 '20. 462 55.906
(7) 17.121 ' 21.392 55.906

Description of the Experiment

Choice of experimental problem was motivated by the interesting results

observed by Huskey [Z] in the integration of the system

X =1y
[
= —x
by. the Heun method
x*¥ = . + hy.
3 31T Va1
= . -+ h({-x. :
yf : Iy-1 (33-1)
- h .
xg = %5y + S(yyqr V)
Ty
o= oy, o+ Hex, oo+ (-x¢
vyoo= vyt Fexg g+ ()

over the range .5200 £t £ .52900 with step size, h, of 2xlOf5. Huskey found
that the round-off errors systematiéally‘accumulated to such an extent as to
contradict the assumption that the individual errors (the € 's) were independent

random variables.

53,

We performed a series of experiments which consisted of integrating the given

system using the subroutines (1) to (7).

At every fifth integration step the

computed result for x was compared to a 25 digit result obtained with Fortran 2,

using the same integration procedure. An . error analysis of the method, by

Rademacher [9] and quoted by Huskey EYJ , glves for the propagated error rg ;

E(R) =0

o(r.)

o ()

QE IO-l uniform distribution

n -L
'5-|O

distribution for random
digits

‘assuming the individual rounding errors are independent .random variables

uniformly distributed between -a and a 3

n is the number of integration steps, and & . is the standard deviation

of ' .
Table III
Observed Results Theoretical
. Error at Errgr Range Error of Maximum OSvéndard
Subroutine 450th step x10 Absolute Value Deviation
Occurs at Step n a(n\)
(1) - -223x10:g 0,-223 450 12.2x10:2
(2)-8 -223x10 " .0,-223 450 12.2x10 g
(2)-9 -25.6x10 0,-25.6 450 1.22x10
(2)-10 -2.85x10"8 0,-2.85 450 .122x10-8
(2)-12 -223x10°12 0,-.0223 450 12.2x10712
(2)-16 -225x107Y0 0, -posx107 450 12.2x10716
(5) -1.36x10°% 2.05,-5.3 330 5.25%100
(3) 1.36x10°0 2.05,-5.3 330 5.25%10"0
(L) -227x10° 0,-227 450 12.2x10"
at n=450
(6) - 3.17,-11.9 - 8.66x10-8
(7) - 10.6,-8.8 - 8.66x10™8

ighth digit

=

y
I

Error in tih

Error in the eighth digit

. 94.

Figure I

-~

_ I . R : A _
: T LS . 1 R 1 1 r -
e 100 200 350 400 '

Number of Integration Steps

Figure IT

o ioo 200 300 400

Humber of Integration Steps

25

Comments on Experimental Results

Relevant experimental results appear in Table IIT and in Figures I and II.
Figures I and -II are graphs of the observed errors,
f; = (Jz-dlglt result after n steps) - (25 digit result
after n steps)‘
1. Rouﬁding by‘ldropping digits (see‘Figures I and II).
We obtained almost identical results with subroutines (l), (M) and
(2);8; ail three exhibited the systematic accumulation of round-off error.
- In their cohstruction subroutines (l) and (2)-8 differ only in the
multiplication operation: a computed result in (l) is rounded by adding
% instead of dropping the lower-order digits. This indicates that the dominanf
contribution to rounding error accumulation was due to the addition operation.
The use of special subroutine (4) did not give us any advantage over the
usual subroutines. |
2. Rounding by adding % (see Figure I).
| Subroutine (3) (of the type.described in Chapter IV)‘and subroutine (5)
produced identicael results in which systematic round-off was absent. Of
the»tWO foutines, (3) is the better since it has the lower value of the
“4" parameter (see Chapter IV).

Comparing the results of (3) and (5) with those obtained with the
corresponding routines (h) and (2)-8, which round by dropping digits, we
conclude that the elimination of systematic round-off in the former results
was due to the rounding-off process of adding 3. The choiqe of round-off
proéess is obviously critical.

3. Rounding by adding random digits.

We performed several experiments with different initial values x5 and

constants ¢ for the random number generator X, ,; = 101X, +c (mod 1012)

-8

The maximum absolute value of observed error was ll.9xlO-8 andle.6xlO

26.

for subroutines (6) and (7) respectively. In all cases,. neither routine
gave results which‘exhibited the systematic round-off.

Further experimental work with other types of problems is necessary
to fully evaluate these subroutines.

.Longer word-lengths (see Figures I and.II)

Subroutines (2)-9, (2)-10, (2)-12, and (2)-16 all exhibited systematic
round-off. The results obtained with the 8-digit routines, (3) and (5),
were generally better than those of (2)-9 and (2)-10. This seems to
indicate that by carrying one or two extra digits £hroughout the
_calculations we may not counteract the effects of such a poor round-off
process as the dropping of the lower order digits.

Hartree [7]~attributes systematic round-off to the fact that the "leading
digit rounded off remains the same in a number of successive contributions
to the integral™; on this basis he develops a criterion to determine
Qhether systematic roun@—off is iikely to occur. According to his analysis,
for step size of 2){10"15 and .52 & £t 4 .529, we might avold systematic
round-off if we take the word length 48 greater than 12. Our experimental
results showed aAsystematic accumulation of round-off. error for both the
12 digit and 16 digit word lengths (subroutines (2)-12 and (2)-16). We
conclude that Hartree's analysis is not sufficient to account for the
systematic buildfup of errors. The effect is due to the type of round-off
process (dropping digits).

Statistical estimation of errors.

Table III shows that the theoretical standard deviation,cr(rn), does
not give an accurate error estimate for those subroutines which rounded by
‘dropping digits (the maximum obserfed error -was larger by a factor of
approximately,lB)L On the other hand, the statistical estimate was

sufficiently precise for the routines which rounded by adding % or by

27.

~adding random digits. This shows that.a statistical treatment of round-off
error can give reasonable error estimations provided the round-off process

is accurate enough.

Chapter VI

Conclusions

- Our experimental results emphasize the fact that a designer of an
arithmetic subroutine should approximate a real arithmetic operation as closely
as possible. ' The form of subroutine best fitting these requirements was the
one which utilized a double precision (Ehﬂ-digits) product area, an (E +1)-
digit quotient area, and a (E,e +1)-digit area for sums and differences(¥),
in conjunction with;a'roundiﬁg#off process of adding % into the-last digit
posiiibp retained.

The systematic accumulation of round-off error was found to be caused by
the type of rounding-off process: the effect was observed .in results obtained
with those éubroutines which rounded by dropping digits, but did not occur with
‘routines that used % or random digits for rounding. Statistical methods gave
us accufate error estimates for data obtained with the latter subroutines. As
a consequence, we conclude that statistical methods may be applied to the
propagation . of round-off error provided the arithmetic subroqtines-are

sufficiently accurate.

(*) As described in Chapter IV.

Bibliography

1. Ashenhurst, R.L., and Metropolis, N.,
"Unnormalized Floating-point Arithmetic",

J. Assoc. C.M. 6 (1959), 415-428.

2. Carr, J.W., III.
“"Error -Analysis of Floating-point Arithmetic",
Comm. of A.C.M.. 2 (1959), 10-15.

3. Forsythe, G.E.,
"Reprint of a Note on Rounding-off Errors",
S.I.A.M. Review 1 (1959), 66-67.

4. Henrici, P., :
Discrete Variable Methods in Ordinary Differential -
Equations,

J. Wiley & Sons, New York, 1962.

5. Householder, A.S.,
"Generation of Errars in Digital Computation®,
Bull.Amer.Math.8oc. 60 (1954), 234-249.

6. Hull, T.E., and Dobell, A.R.,
"Random Number Generators",
S.I.A.M. Review 4 (1962), 230-254.

T. Huskey, H.D.,
"On the Precision of a Certain Procedure of Numerical Integration”,
With an appendix by D.R. Hartree,
J. Research of Nat. Bur. of Stand. 42 , (1949), s57-62.

8. von Neumann, J., and Goldstine, H.H.,
"Numerical Inverting of Matrices of High Order",
Bull.Amer.Math.Soc.. 53 (1947), 1021-1099.

9. Rademacher, H.,)
"On the Accumulation of Errors in Processes of Integration on High-Speed
Calculating Machines",
Annals Comput. Labor. Harvard Univ. 16, (1948), 176-187.

~Bibliography - cont:

10. Richards, R.X.,
 Arithmetic Operations in Digital: Computers,
van Nostrand Co.,:Inc., 1955, '

11. Wilkinson, J:.H., ,
. "Error Analysis of Floating Point -Computation"

Num.Math. 2 (1960), 319-3L0.

30.

