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UCHSIAW GROUPS ASSOCIATED WITH CERTAIN

INDEFINITE QUATERNARY QUADRATIC FORLS

‘1, Introduction.

The object of this paper is to present a method of de-

termining all integfal solutions of the eguation

(1) xF+ oz = D(xI+ x2) = l,’
where D is any integer. The procedure follows closely that
of Dr. Ralph Hull in his paperl! "On the Units of Indefinite
Quaternion Algebras". - For the particular cases, D = —l,.
D = 0, the solutions are trivial. For small positive values
of D it is easy to determine actual solutions by trial. We
shall show that, in the general case, all solutions may be
determiﬁed from a finite number of special solutions or
generators,

We begin by assocliating our problem with that of finding
generators of a corresponding Fuchsian group of linear [rac-
tional transformations of the complex plane. In Section 2,
we show how this is done and we also develop certain formulas
which will be used later. For this Fuchsian group a principal
circle and a fundamental polygon can be constructed, and when
this 1s done it is bossible to determine the generators of the
group. The method of procedure ié shown in detalil for the
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1. American Journal of Mathematics, vol. ILXI, no. 2, April,
1939, pp. 365-374.



four cases, D= 1, D= 3, D= 5, and D = 7, and these cases
illustrate the different situations that.may arise,

-From the general theoryz of Fuchsian groups it is known
that the structure of such & group is coupletely determined
by'the numbers of 1its classes of elliptic and parabolic
transformations and the genus of the associated Riemann
surface. It will be-shown in Section 2, that the Fuchsian
groups involved in the present problem contain elliptic
transformations of order 2 only; way contaln hyperboliok
transformations; and may, or may not, contain parabolic
transformations, according to the form of the integer D. 1In
accord with a restricﬁion on D; deécribed in Section 3, we
shall deal chiefly with fhe case in. which no parabolic trans-
formations occur., For these restricted values of D we have
only,to determine the class number: of elliptic transformations,
m,'énd the’genus number, h. However, in Section 4, we use
formulas -of Humbert5 and Klein4 to show that h can be computed
from D and m, Hence our fundawental problem becomes the
determination of m for a given D,

In Section 5, we evaluate m by actually listing, accord-
ing to certain congruential conditions, the possible classes
of elliptic transformations for the restricted values of D,

Ve firstvobtain an upper limit to the nuwber oflthese4class§5,
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3. Humbert, Comptes Rendus, vol. 166, 1918,

4, Fricke - Klein, op. cit., vol. I.



and then prove that this number is actually attained.

In the last section the results obtained are summarized,
and, as a further illustration, canonical generators are
exhibited for the cases D = 3; and D = 7., These are the only
twé, of the four examples of Section 2, that are glven by our

restricted value of D. -

2. The corresponding Fuchsian group of transformations.
Later in this paper we shall have occasion to consider,
along with solutions of equation (1), those of the equation

(2) x*+ xf - D%+ x2) =W,

/ ’

where W may have integral values other than N = 1. The quat-
ernary qgadratid form on the left of (2) may be regardéd as
the norw form of a certain generalized quaternion algebra,
and with this connection in mind, we shall refer to a set of
nuwbers X = [X,,xz,xs,xuj as an element; tnat'is, an eleument
of the associated quaternioh,algebra. In alwost all cases, the
coordinates, x,, X,, X5, ahd %y, Of the elements ewployed here
will be rational integers, and we shall henceforth use the
word "element", without a modifier, in this sense; When the
coordinates of an element X satisfy the relation (2}, we call
N the norm of X, and write W = f(X) = f[x,,xz,xs,x¢]. The
solutions of eqguation (1) are integral elements of norm N = 1,
which we shall call units.

In order to define the product of two elements it is
convenient to represent them as matrices. Then, to the

element X =[x, ,%,,%;,%X,], we let correspond the matrix



(3) X<e—|| %+ iz, Dz 4Vix‘})"l‘, i2 - -1,

| \x + ix, x, = iz,
The determlnanf of this watrix (3) is the norm form~(‘2)‘ By’
means of thlS reprebentatlon v.e obtaln the product of two
*‘elemen,ts X cand

(4) Y = [y .5 .9s5,5%]< ||y, + i Dl - i)

‘ y3'+~iy4 | Y, - iyz
by matrix multiplication. The prodUct of these ;mat}rices,' (’3)

and (4), is the matrix

H z, + iz, D(zs - iz,) ,
zy + iz, Lz, - iz,
where
(Y 2, = %Y, = Ky + D’(xsyv,, + KV, )
Z, = &Y+ XY, T D(x 4y3 - Zy¥y) ’
Zy = XY, — KV, + K ¥y + % y4 ,
Zy = XY o+ gV, iKYy ot K Yy -
To this. matriz we let correspond the element Ziz?[zt,zz,z3,z4]

and so formulas (5) define the product Z of two elements X
and Y’wheré,~ ’ |
[J(/ » Ky s yfi.,cj [IYr »J2 s Vs :y4 LZ' :Zz;zsr 4_]

,Thls product formula holds true for any value of N for ‘we - know
that, since the norm is the determinant, the product of two
norms is equal to‘thé,horm of the product. | |

| “The Sum,of two-elements, X and Y, is.readily'defihed by
this~matrix‘représentation‘also, but we do ﬁot*have.occasion
to use it dn thé paper.

~We call. that element which, when multiplied by the ele-



ment X, gives the identity elewment El,U,U,O], the inverse of
elewent X, and write it as X'= (%, ,%,,%,,%,] . This inverse

exists if and only if f(X) ¥ # 0, and then from relations

]

(5) we can verify that

[#, %55, 7,] = [:énziz_zt_sﬁ&],
NOXW WY W
where N 1s the norm.

Consider now the set of ali elements of norm N = 1, that
is, the set of all units, It is easily verifiea by relations
(5) that the product of any two units is itself a unit, and
that the inverse of any unit is a unit. X¥rowm these facts it
follows that the set of all units forms a group with respect to
the type of multiplication defined above. TFor each value or D
we will obtainVa different set of solutions and so a different
groﬁp. We propose to find the strpcture of theseyéroups, and
so we let any be the group G(D).

This group 1s easily related to a group of linear fract=-
ional transformations of the complex plane. To férm the ass=-

ociation we make the following correspondence,

(6) [X) y Xz 1 &5 ’X4] > 2z =_(x, + ix.)w + D(XE - i%y)
- (z;, + ixy)w + =z, - 1%,

where z and. w ére complex variables. This set of transformat-
ions of the complex plane forms a Fuchsian group, different
for different values of D, which we shall call ¥(D) to dis-
tinguish from our 5foup of solutions G(D). In case D > v,
F(D) is an infinite group. Transformations of such. a group
fall into three classesb; hypérbolic, elliptic, and parabolic,




|

From Ford!sé work we have necessary and sufficient conditions

that a transformation e of any one of the three types. We

find that a transformation (6) is elliptic if, and only if,
=, + ix, = x, = 1lz,| < 2.

Siﬂce X, 1s an integer this means that x, = 0, and so we have

the type of elliptic<unit Y, where

(7) Y =[Oy .ya.], v - DE + ya) = 1

Fauations (5) will show that for any elliptic unit

YZ::[O,yZ,ys,y4]2: [wl,0,0,0].

Again, a transformation is parabolic if and only if

X, + 1x, + x, - iz, = X2,
that is, x, = #1. But from (1) this would mean that
(8) D= ( ‘szz )2+ ( Ko Ky )z’
x2 o+ 2 xZ + X2

or that D must be of the form u2.+.v2, where u and v are

rational. All transformations which do not satisfy the above
conditions are hyperbolic transformations.

The Fuchsian group F(D), of thé last paragraph has a cowmwon

3

fixed circle, or “principal Circle“v, wiven by the eguation
(9) w W = D, where W is the conjusate of w,

and the transformation (6) carries that principal circle into
itself, its dinterior into its interior, and its exterior into
its exterior. We are ahlg to draw the isometric circles

(10) s + izy)z - x, - ix,|*= 1,
of the transformation, which we shall denote by I{X) =

6, Ford, op. cit., theorem 15, p. 23.

7. Ibid., p. 67.
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I:[x,,xz,x3,x4]on the accompanying illustrations. These iso-
metric circles are all orthogonal to the principal cirole8.

In this way we can construct a fundamental region for the

group F(D), where we take the definition of fundamental region
frém Fordg.

Definition 1. Two configurations, (points, curves, regions,
etc.) are said to be congruent with respect to a group if

there is a transfbrmation of the group other than the identical
transformation, which carries one~configurétion into the other.
Definition 2. A region, connected or not, no two of whose
points are congruent with respect to a given group, and such
that the neighbourhood of any point on the boundary contains
points congruent to points in the given region, 1is called a
fundamental region for the group.

With this region we wmay associate’a Riemann surface in wuch

the same way as a torﬁs is defined by identifying the sides of
the fundamental parallelogram in the case of edlliptic fun-
ctions. An important nuwber associated with a Riemann surface
is ‘1ts genus numberi® which we shall require later. In our case
the fundamental region is enclosed by arcs of the isometric
¢circles, and so we call it a fundamental polygon. Any one
isometric circle of the polywon is carried into another circle
or into itself, by a suiltable transformation, and these trans-
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8. Ford, op. cit., p. 67.

9., TIbid., p. 37.

10, Ibid., p. 227.



formations yleld a set of generators ana relations for the
group F(D).

We illustrate the method of determining generators and
relations from the fundamental polygon for the cases D= 1,
3;~5, and 7. The method of procedure is to assign such in-
tegral values -- O, 1,'2,.... ..... ., 1in that order -~ to
x;~+ xi as will yield integral solutions of equation (1) fdr
the given D, and then to determine those solutions. Then we
draw the principal circle, and the isometric circles corres-
ponding to the different solutions or transformations. It 1s
to be expected that in this way the whole of the principal
circle will be closed off by using relatively swall values of
X; + Xj. In certain cases we find a solution whose corres-
ponding isometric circle does not contribute to the closing,
off" of' the principal circle. This is so whenever the Céntre
of the isometric circle lies within a previously determined
isometric circle. This happens for the unit [6,'0, 2, ~1],
of D =7, for the éentre of its dsometric circle falls within
the isometric circle of the unit [5, 2, 2, 0]. Waen this
happens we proceed with the next valug of X§-+ xi. When the
fundamental region has been completely closed off we are able
to determine units carrying dne‘part into the other. These
units, indicated by arrows in the saccompanying figures, foru
the set of generatofs for the group F(D). The arrow indicates
that the isomwetric circle where it starts is carried by the

unit into that circle to which it points.The vertices of the

polygon are divided up into complete sets of congruent vertices



9
which we-shall call cycles. In some cases the cycle has a
single vertex, but in others there are several vertices.
The sum o0f the angles in the ordinary sense ol any one cycle
may add to 27, 7, or O radians. On multiplying toseﬁner
units necessary to-complete the above cycles we will et
units which are hyperbolic, elliptic, or parabolic 1n the
respective cases. The three typés are illustrated by thue
following units:

A, of case D = 7, where «=o,

C,GC)B™ of case D = 7, where ¥, P S r e v, = 2T

B),0f case D = 5, where (4,=0.

It will be found that two distinct cases arise according
to the nature of the integer D. Theﬁexamplés D= 3% or 7, and
D= 5, illustrate the two situations. The groups F(3), ¥(u),
and F(7) can all be generated by a'finite nuwver of units.

The group F(H) will contain parabolio, as well as elliptic and
hyperbolic units, but the groups P(2) ana ¥(7) will have no
parabolic units. The vertices of the polygon for F(3) sive
rise to elliptic cycles only, while those of the polygon for
F(7) have elliptic- and hyperbolic cycles.

From the foregoing discussion we have the following

Theorem I, If D is any positive integer, the Fuchsian group

F(D) can be generated by a finite number of units, satisfying
certain relations. These units may be hyperbolic, elliptic,

or parabolic, the latter occurring if and only if D is

expressible in the form w? + v?, u and v rational.

2

When the generators of F(D) are obtained, the corres-
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pdndenoe 16) gives the like for G(D). It must be noted
however that the two units [1,0,0,0] and [-1,0,0,0] both give
the identity transformation in (D), but are distinct inG(D).
Hence when the generators of F(D) have been determined we
st adjoin the unit [-1,0,0,0] to obtain the group G(D).
This gives’ |
Theorew TI, The sroup, G(D), of integral solutions oif equation
(l), is obtained from the associatedvFuchsian sroup F(D),
‘according to the correspondence (6), by adjoining to Lhe 

generators of F(D) the unit [-1,0,0,0].



FUNDANENTAL POILYGON

F(D) = F(1)

Generators. ’ ‘ Relatiohs.
A:[0,1,0,0]" ® : A= -1

B:[1,1,1,0] ' p = Parabolic



 FUNDAMENTAL POLY GON

F(p) = E(S)

 Generators. . : s . Relations.

A: [o,1,0,0} ', s «: A% = ool

B [2,0,1,0] 5 S o 0 S
C: [0,»2»1,0] | I 7 (CETP = -1

o: Bzd  e: (@'F = 4

E: [2,3;2,0]5' ; i s (DB)? = -1

’ e (BA) = -1
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FUNDAMENTAL POILYGON

a’F('D) = F(5)

L:[5,0,-1,-2]

1.g5-14]

Lisi-2 el

PR

T, [‘7,0,-1/)6 [?)01,1,,0]
Génerators. e : ~ Relations.
A: [0,1,0,0] o ;A2 = -1
B: [-1,5,1,2] @ i Parabolic
I . : ‘ 'v AT o ‘
Blf [1)5)2)1] ) s ! ¥ .‘C | = l ‘
‘B: [-1,5,2,-1] s : (DAY = -1
B: [-1,8,1,-2] e : (B/BJCE/B;D’)" - -1

c: [0,9,4,0]

p: [9,0,4,0]



FUNDANENTAL POLY GON
F(D) = F(7)

Z[’z’-z_,/)_ﬂ : ; ;- ,I:[!;)Q,Ll-)—‘#] :
:"[V:[.'y;:,o,-z]' f\ I,[S,o,o;ﬂ / . I:[J,-).,O,"Z]

14

Tifn, 9,4 12,79,4-4]
L{ofo] 50]
e

' ,G'e‘nekra,tors, L - Relations,
a: [0,1,0,0) P |
B: [8,0,3,0] ; [a" : (BA') = -1
G [9,12,4,4] : R C, GC3B” '= -1
C,: [~9’,12,4,-4]f | | s ¢ (D0, FCI)® = -1
: [5,2,2,0] | e: () - -1
: [2,2,1,0] : Ar (F)P - -1
: [2,5,2,0] B (€5 R

¢: [0,8,3,0]



e 3. A restriction on D.

It is the purpose of the rewainder ¢of this work to detér-
mine the number of generators necessary to give the group,
F(D), for a given value of D. To this ena we find it conven-
ieﬁ& here to introdﬁoe a restriction on D. We shall hence-
forth'consider only those cases for which |

(11} D = p,.Pas --vv-. Dr, Ds prime, p,= 3(wod 4),

| r =1, De # Py for 1 # J.
This omits all cases in which F(D) has parabolic transfori-
ations and in particular the case D = 1. We shall show,
however, that if is the principal case to be considered,

We shall first look at some trivial cases. For all
values'of D we have the solutions for equation (1) siven by
the units [il,0,0,0] and [O,il,0,0]. For D < -1, or for D= U,
these are the only solutions. For’D = ~1 we have eight

solutions only; [¢1,0,0,0], [0,%1,0,0], [0,0,%1,0], and

'[0,0,u,tl]. Hence we need not consider further the case in

which D has negative values or the value zero.
Next, suppose D 1s expressible as the product SD', where
S can be written in the form &%+ pz, « and g integers, and

where D' is defined as we have defined D in (11). Tien frouw

equation- (1) we have

Xf + Xf - SD'(X: + xf) = 1,

KP e x2 - D« # p?) (xf w =) = 1,

x" v x5 - D'{(&Xg ~,5:r:,+)2+ (pzy + «xq)z} =1,
g2 yF =D e v ) = 1,

where



V) = Zys Y2 = Zg, Y5 = XEg mBEy, Y, = fX; + XX,

Thus every solubtion of
2
%2 4 xf - 8D (x2+ x2) =1,

1) H-

corresponds to a solution of

2 2
Iy + Y2

3 - D'(ys + 3/'42) = 1.

Now, 1f D is any positive integer, we way write D = 8D',
where S can bhe written as “2+U52» x and s integers, and
’where D' is 1 or is of the form (11). These considerations

"lead at once to

Theorem III. If D is any positive integer we may write

D = SD', where S = “2*‘P2» « and g being Integers not voth
zero, and Where‘D' way be 1 or of the form (11). Then the
group G(D) is a subgroup of the group G(D').

It must be noted here that we do nbt attewpt, in this
paper, to show now to determine the generators for any values
of D other than those of the form (11). However when the
present case has been cowpleted it shoula be a4reLatively
simple matter to exfend it to cover«all other cases.

In Section 2 we have included the conplete polyson and
generators for the special case D = 1, since Theorem 3 shows
it to be an important case not covered by our restriction on
D. 1Its group of solutions F(D) = ¥(1) is generated by the
two units A= [0,1,0,0], and B = [1,1,1,0], where A% = -1,

and B is a parabolié unit.
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- 4. The invariants of the Fuchsian groupn.

We have already mentioned thaﬁ the structure of the
group F(D) is determined cowpletely by the number of 1ts
classes of elliptic units and the genus nudber., Let m be tne
nuber of classes of elliiptic cycles, n the number of classes
of hyperbolic cycles, and h  the genus of the associated sur-
face. The values m and h are invariants of the group F(D),
depending only on the group and not on any particular way
of representing it, The value n on the;éther nand 1s not
invariant, ana 1s only used to establish a relation connecting
mw and h that we require.

Displacements of 'the interior of the principal circle
brought about by the linear fractional transformétions are
displacemwents ol hyperboliic gSOMetry. Frow this consider-

ation the non-Buclidean area, @
i1

, of our fundamental polygon
is given by

a = (2t - 2)7 - Z,
where 2% is the number of sides to the polygon, counting the
X axis as two sides, and Z is the suwm of the angles. But by
an. analytic proof ~of Humbertl2 the non-Ruclidean area 1s

also given by
a = #oll(1 - %) =mo(D),
2
where ® is the usual Buler function. Combining these two

results we have
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11. Coolidge, J. Lowell, The Elements of Non-Ruclidean Geo-
metry, 1909, ftheorem 5, p. 178.

?

12, Hu1ﬂ3ertw op. cit., p.370.



‘But' Z= mm™ + 2nm, since the sum of the angles of each cycle
of elliptic vertices 1is T, and the sum of the an.les of a
hyperbolic cycle is 2T, Then
(2t - 2)T = uT=- 20T =17 0(D),
(i2) 2(t - n) = (D) + 2 + m.
Now the genus nunmber h, of the associated surface is piven
by the formlald

2h = 1 =t - n - m,

Hence
t -n = 2h - 1+ m,
and on substituting this value of t - n in (12) we have
2(2n - 1 + in) = ¢(D) + 2 +m,
(13) 4h = (D) + 4 - m,

~ This formula (12) <ives us the required relation, since
it enables us to evaluate h when i has been determined. To
find the number of generators for the group F(D) we o to the

general theoryl4 of Fuchsian groups. The linear fractional

N
1

group, F(D), has a canonical set of m + 2k generators

(14) U, U, e Uy Vi Voo AN A A
where U, or V% represent the units U, = [uu,uh)uhquw] and
\% = [gﬁ’?1’§3524]° These generators pust satisfy the relations
2 2
UF=0U= ... = U, = -1,

A
U, U, ... U [TV WV .v"JJZ -
{ 2 m[ j=r 7 ; 7 7

n A e e e n e wm e h wm e WD Om e A e e M am Ge S e o MG W e e e W G R G s e e G e S wm O s e e Sm e b S e e M b e e Om e  mm we

13, TFricke-Klein, op. cit.

?

chapter 3, formula (2), p. 262,

14, 1Ibid., pp. 186 - 187.



5. The determination of the numter of classes oI elliptic
units.

The vertices of an elliptic cycle are rixea points of
elliptic transformations- of F(D)lb all of which belon, to the
sa@e class. We recall that two elliptic substitutions of a
Fuchsian group are said to be in the same class if one is
the ftransform of the other by a substitution of the sroup.

In other words, two units, A and’B, of the group ¥(D), are in
ihe sawe class 1f there exlsts & unit X, of the group such
that XTAX = B, Our task is to determine how many of these
separate classes exist for a given D.

" The unit [0,1,0,0] is present for every D and it de-
termines one Clasé which 1s represented by a single vertex.
It will appeaf that any elliptic unit, B = [O,bz,bs,bqj, can
be transformed into this one by some element X = [x,,%,,%X5,%],
of norm W. It is necessary that we determine the different
values that N can assume for our group F(D). Then by studying
certain congruential conditions imposed on b, we can determine
m,

Suppose then-that A and B are two units such that B is
the transform of A by some element X of norm N > O, Then

(15) X'AX = B.
This means that

[:& "&)"&1—& . [a’l vaz 9.8‘3’3'4]‘[7;! »X?_)Xj :Xq-]
N N N N

= [0, ,b;,b5,0,].

- o v - D m s - . = 4o e e e A e e mr o e o

15. TFord, op. cit., pp. 60-61.

1v



(16) Nb :kl\Ta

Then on multiplication as defined by the relations (H) we
have |
[ o Lobj=a

Nb, - ,{x12+ x, +D(xf + x,f)} a
-2D(x, %5 + x,%x,)a,, ,

'ijf; 2(x/xy + xlxj)al + (z2 - xj - Dx,+ Dx,)a
-2(z, %, + ijxy)a¢, | |

Nb,'::E(leq - X, %y )a, + 2(x, x, - Dxaxq)a3

+{@2f§z+D%2—D§7a%.

We wish to determine the minimum value of N—to‘give an element

‘X which transforms ahy unit A into a unit B. Since the unit

-~ 10,1,0,0f is present for every value of D we simplify our
- 10,1,0,04 is ¢ y ; i

A= '[a;,,a,,aj,a#] = [0,1,0,0].
We must ndw‘détermine thé minimum value of N to sive integral
solutions x,, xl; x3,fand x¥;of (2)5 satisfyi@b:the‘new rel-
ations obtained from (16),
(17) B b, = 0O, |

, : 2 2 2
Wb, = %%+ x; + D(x; - %),

[avl

ij =

Wby = 2(3134"'X/K3) o
From,relationS'(lV) it follows that, for B to be in.the saue
4

claés'as~A, that is @ = 1, we must have

‘b, = x/2+ Xj + D(Xﬁéf xj)::_kl + 2D(zf‘+ x#) .
Then it follows that

b, = 1(mod 2D), Db, positive,

Now consider any elliptic unit B = [o,bLQbJ,bdj,’Wnere



’ 2

(18) by = D(v 4+ b)) = 1.
Then

{19) b;ha=l(mod D).

Since D is defined as in (11) the above congruence is equiv-

alent to the set of congruences

(20) b= 1(wod p), i =1, 2, ce......, T
Hence
(21) b, = 1 or -1 (mod p,),
b, = 1 or -1 (mod p,),
b, = 1 or -1 (mod p,).

We then have 2¥ distinct possibilities for b,. But we have
also tite further two possibilities
b,= 0 or 1 (mod 2),
and so in all we have 2F*+ 1 possible ways oi choosing by.
Frow formulas (17) a necessary condition that X'AX = B
is that
(22) M, = 1, x4 D(xS e xl).

Since N is chosen positive then b, is also positive. Frouw

equation (2) we have tnat

and so we way write Tor (22)

Nb, = W + 2D(x7 + x1),
(22) N{v, - 1) = 2D(x,t+ =),

Now suppose that
(24) D = D,Dy,

where D, = D, .Das +voovnn- Ds, Dy = Dy, Uspg ovcvev- Da s



and also sup, ose that
(25) b, = 1 {mod D,), b, = -1 (mod D).
Then b, + 1 is divisible by D, and b, - 1 is prime to D,. 1In

such a case'equation (23) shows tnat W must be divislble by

D, . In the case b, = ¢ (mod 2), bz - 1 is odd and so N wust

2 2
be divisible by £2D,. In the case b, = 1 (moa 2), b, - 1 is

éven and we can only say that W is divisible by D,

Before we can continue with a theorem regardins the ex-~
Listence of elements X Qf norm N satlsfying the previous éond—
itions, we wust prove a lemwa which is essential to thne proof
of the theorem. The lemuwa and proof follow.

Lemmz. If m and n are relatively prime posiﬁive mntegers, and

if %, and %

. - K 4 ’
y 2 @re 1ntegers such that x, "+ xf:: mwn, then there

exists a set of integers ¥, ,y,,2,, and z, such that

. 2 - 1 . . a 2 5
(26) vior Fg = i, 2, + 2. =10,
(27) K, = Y, B, + Y%, Ky = YaZya = ¥,%,

Thig lemma 1is a conseyuence ol the extensive theory of
the representation of positive integers as suws of two inte-
sral-squares. It may also be provealﬁ as kollows by the umeans
of the ideal thneory of the quadratic nuwber rield R(1), wiere
i® = -1, R is the rational field. The slven integers x, and
%z, determine a principal ideal ((x,4+ iz,)) of the fiela R(i),
of norm mm, The greatest comson divisors of the laeal
((x, + iz,)) with the ideals ((m)) snda ((n)), respectively,

are ideals of norwms w and n. Since all ideals of R(1) arc

- vt > e e e e A mm We m re e e e s e Gn M am e e T e R Am e e Mk e M3 AE e e MM e wm M e e WM e e WA m e e oo Sl e e e e e S

16, This proof of the lemme has been sug.,ested
Dr. Ralph Hull.



principal. ideals, these coumwon divisors are principal laegals,
say ((y, + iy,)) and ((z, - iz,)), respectively, where y,, J,,

z,, and z, satlisfy (26), Moreover, since m and n are relative-

2
ly prime, ((z, + ixg)) = ({y, + iy, 1) ({2, - iz,)) =
((ylzl b VaZ, 4 1y,2, - 1y,z,)). Frow this eguality of laeals

it follows that

x,+ 1z, = ely,z, + y 2

2 J2 2y + Lg%, - lylz|)"

where € is one of the four units 1, -1, i, -i of R(i). Ife =1

we have (27) as desired. If, for example, € = i, we obtain
(27), without altering (26), by the replacement of y, ,y.,z,,

and z, by ¥, ,¥42,%,,and -z,, respectively. Siwilarly, i1 € = -1
or -i, we obtain (27), without altering (26), by suitdble
interchanges "of y, ,v.,2z,, and z,, and thelr signs. This cou-

pletes the proof of the lemma.

We are now ready Lo prove

Theorem W. let D'=D,D,, where D, = D, .05.--. Dy, &R0
Dy = B,-Be++Dpe If b, >0, b, =1 (wod D, ), ana b, = -1

(mod D.), there exists an element X of norw N > 0, which
transforms the unit A = [U,l,U,O] intoAthe unit B = [U!bz'b?'hj’
such that ¥ = £(X) = D, when b, is odd, and ¥ = f(X) = 2D,

when b, is even. |

Case I. Db, odd, i.e., b, = 1 (mod 2).
let b, = 1+ 2kD,, where k > 0 because b, > 0, and k 1is

prime to D,. BSince B is a unit we may write

b, - DIbF+ b5y = 1,
Db, +1,") = by - 1 = 1 « 4xD, + 4D - 1



DD, (b, by) = 4k, (1 + XD, ),
D,(b + b,) = 4k(1 + kD,).
Since D, 1s odd, by -+ b: is diviéible by 4. let b, = 2bj,
b, = 2b). Then i

4
- 2 2 .
Dalby +0]) = k(1 + kp,).

Since k is prime to D,; then 1 + kD, wust be a wultiple o D,

D,

rte br?o k. 2ESY,
) 4 ’ D,

Here k > 0, (,Cifﬁm)>0,‘and the two are relatively prime.. The

S0 ( 111&_9:)_ is an integer. Then

a

lemica that we have just proved oives the existence of integers

Y, Va,2,, and z, such that

vor v = %M*)k :
S N
AR zzl =k,
bl = ¥,2, + Va%,, by o= Va2 " ¥, %y
Take %, = D,y, , ¥, = D,¥a, xé‘:VZﬁ; K, = 7,
Then
b e x? - D(J§;+ x1) = 'Dj(yff- yf) N D(ler z2)
: | - D, = N,
22 e x e Dlx, s z)) = Da(l ¢ kD,) + Dk
. l " = D,b, = b,
2(x,x, + Z,%x,) = 2D2'(;,r/ Z, + Yo 7%,) =‘;3D2‘b; = Nb3,
2lx,x, - x,%,) = 2D,(y,2, —’y,zl) = 2D, 1! = Nu, .

‘Hence the‘relatiCHS (17)’are'satisfied and so in this case we
have proved the existence of a unit X, of norm N = f(X) = D,

which transforms A ‘into B.

Case II., D, even, i.e., b = G (mod 2).

o

Let b, = +D, + 2KkD,, where k 2 0. Since B is a unit we have



[T
]

D(b s b)) = b - 1-D,(D, + 4K'D, + 2 + 4k +~ 4kD,),

3 R 2

D (b} + 1) = D, (1 + 2k} + 2(1 +~ 2k)

| = (1+ 2x)(2+ D, + 2KD, ),
Wow obviQusly 1 + 2k 1s prime to D, or we should have‘bz -1
divisible by D, in contradiction to our hypothesis. Hence:

2 + D, + 2kD, nust bE'ajmultiple of D, 3o we write

Z
b2eb, = (1 +2x)( 2D+ 2kD ).
b« by, T

Since k,E O, the two'factors are positive. Also

-D, (L + 2k) + (2 + D, + ﬁakD,') = 2,
so the greatest common divisor of (1 %+ 2k) and (2 + D, + 2kD, )
is‘l or 2. But (1 + 2k) is odd. lL'encér‘the two factors are
‘reiaﬁively_prime;  The‘oonditiohs here“are ih acCord with the
hypotheses of theklemma450 we have the’existence of iﬁteaers

Y, 2¥2,2,, and 7, such that

(28) S S (2 + Dy + 2XD,§
s D, o
vzf¥+z:f:l,+2k;'
b;‘) = yl Z‘a ks yazl s b,/‘;: y,zz_z - y’ Z”'l'.,";‘: N

X, = 2,, and we can easlly

Take KI: Dly/ » X’\ = 'Dlyyq ] X3 = 2z o

I
show that‘relatiohs (17) are éatisfied by the unit X¢=[%;“4H%)%J
of norm N,:‘f(x)=sv2Dl;"This compietes the proof of Theorew 4.

There ré@ains'nbw ohly‘theldeterminatiOn of'thé value m. |
Let B = [0,b.,b,,0,] and B' = [O,b;,bg';,b‘;] be two élliptic uf;its.
of the groﬁp F(b). By the previous theorem there exists a
unit X and a unit X! sﬁch that |
| N = £(X) = £(X') = D,, for b, odd,

¥ = f£(X) _ f(x') = 2D,, for b,even,

transforuing B and B' into A. This means that



O
[ep}

xV'BIX - 4.

It

‘ X'BX = A

H

{

Then A= X'BX = X'"'B'X*', and so
B'= X'X'B XX = (m"’)—/B(L'“’).
If we can show that (XX’d) is a unit then we have shown that

B and B' are euuivalent, Now

XX = S0 I S S+ S
. EK”’C Ka %y [N’ FOTW T

/ o 1 [ ] [
- L %)+ x,x! = Dlzryz) + z,%)),
N
-5 -t k) - ¢ . 1
X, RS A+ KR D({ xy - x,xy ),
- ot - st S R e |
K, &'+ R K, £,X KKy
e O B | et
K Ky + X %, KA+ K &Y -],
This product is of norm N = f{XX'”’) = 1, so all that rewains
L . \ ?

to show that it is a unit is to show that each of the coordin-

ates 1s divisible by N, where N =D, , for b, oda, and N= 2D,,

~ o - . _ . o 1
for b, even. 1In the proof of Theorew 4 our integers F O SR

N
and X

5 Were chosen to be maltiples of Dz. Hence 1or the case

b, odd, the coordinates are divisible by D, and so X' is a

2

unit, In the case of b, even we must show also dilvisiblility

of each coordinate by 2. It follows from relations (28} tnat

if by is odd, by even, then y, = 7,, ¥y, = 2z,(10d z)f Then
for the coordinates to be divisible by 2 we must have y,' = z',
v, = z} (wod 2), i.e., Db odd, b) even. Tuis condition is

expressed by

(29) bs= b , b, = b (Moci 2).
This then is the cfiteria thet XX'’' be a unit in the case b,
even. This allows two distinct possibilities for tnils latter
case for we have one unit if b, and b} are both oda, b, and
b'! Dboth even, and another unit when bjand b! are both even

while b4 anad bJ are odd.


http://ca.se

We nave therefore, shown that for b, oda or even there
ezists & unit transforming B into BY., ‘Hence the two uniis B
and B' are in the samwe class of elliptic units.

Wow if b, is oad we have the 2" possibilities to choose
frém and, since there will be a. class of elliptic>anits assoc-
iated with each choice; we have 2% possible classes of elliptic
units, On the othef nand if b, is even we have 2 classes of
elliptic units, distinguished by certain congruences (2v),
associated with every qne of the 2% choices of b, ... Hence in
this case we have 2.2h/possible classes of eiliptio units.

In all then we have 5.2” possible classes of elliptic units
and hence m £ 3.2"7,

We have here acgulred én upper limit to the value of .
We shall show that this limit is aotually attaliined by proving
the existence of solutions of equation (2) where N =1, 2,

D,, or 2D, ; Dy defined as in (24).

Solutions of eguation (2) are easily obtained for the

for in these cases we have the units

cases N = 1, or 2

2

[0,1,0,0] and [1,1,0,0] respectively. The cases for N=0D,
or N = 2D, are more difficult.
We shall first prove the existence of solutions of the
equation |
(30) x4z, - Dzl + %) = v,

p; defined as in (11), 1 = i € r. Write D = p,D'. Then

E3 2 . 2 1
(31) x5z, - D%, + x) = v,
X,L oK, = pt-{l + D'(X;‘+ x:)},

27+ x = 0 (mod p.).

s
it

27



Since p, is a prime = 3 (wod 4), we may write

~ R - R
X z), Xy = Ky o

Then on substituting these values in (31) we get.
2 z

+ X:z' ) - p,z;D'(X‘;‘Z Xy ) = D>
pox! ™+ x2T) =Dkt + x)?) =1L

If we can show the existence of solutions of (3s) the transior-

mation (32) will give the solutious of (31) and of (30).

We now make use of the work of Humbertl7 on the binary

Herwitian form
. aKZv+ by + by + cyy,
in which a and ¢ are real, and where X denotes the conjugzate
of z. Humbert proves that all such forws, having the saie
discriminant 2 =bb - ac > 0, are equivalent. 1In other words,
anf two such forms, naving the sawme discriminant, can be
carried the one into the other, by a linear transforwation on
the veriables. Our quaternary quadaratic foruws (l}‘ana (32)
are of this form with ‘
a=1, b =20, ¢ =-D, & =0,
and
a=p, b=0,¢c= -bF, b = p, L' = D,
in the respective cases. The discriminants are equal and
positive. ﬁencekthe two forms are eqgquivalent. Then there
_ekiéts a linear transformation of the form
(34) X' = a,x, + oa X+ a,x, + a,xK,,
Kl = aX oAk tayg azf(l/- 7

17. Huwvert, op. cit., vol, 166, 1918, pp. 86b-37v.
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—”t - .
,_X.J. = 8.3/ X y + aslx 2 8.531{3 -+ 8}‘/.2(4 .
1 - - o - -

= -+
.KL/ 8;;/1{/ am,{_,a -+ d’ysx_-? -+ 82(4.2{‘/ 5

whose determinant is not zero, whica will carry (33) into (1).
But we can deterwine a solutiuvn [x,,%,,x,,%,]o0f (1). Sub~
stituting these values for x,, x,, Xy, and X, , in (34) will
give values x/, x], x}, and z! which will form & solution
[x!,%),%,%x}] of (33). Hence we have proved the existence of
solutions of {(33) and so of (30) as desired.

Now’we know that there éxist solutions, [x,,xl,xa,xi]
and [y,,yl,ygiydj, of norms p, and ?? respectively, of the
two equations

2 2

. L, 2 .
x o x" - D{xgr w1 = by,

!

'_.37-_/:L+ YJ.l - D(yal * y;;l)

it
&

Then the product [x,,xl,xg,xd]-[y,,yl,yi,y%] according to

the forwula (5) is an element [z,,zl,z3,z4] 0ol' noru p;py

which satisfies the relation

z;"+ 2,1 - D(z25 +2l) = PPy

By proceedine in this way we can show solutions of the eyuations

a2 Lo, Ay -
x+ x5 - D(x,"+ x) = D, or 2D,,

where D, is a product of the form (24). Then this completes

the proof of the following

jheorem V. If D= p,.DPae oo Pp, ¥ =L, p # ?% for i # j,
and p; = % (mod 4), then the Fuchsian group F(D), of transfor-
mations

\ o A=+ ixo)w + D(xs - ixy,)

(%5 + iz, )w + z, - 1z,
of the complex plane, has exactly 3.2 distinct classes of

2

elliptic transforisations.



6. Conclusion.
Ve have now completed the discussion for the case that
we have chosen. We have determined the number of canonical

enerators for the Fuchsisn group, F(D), of trensformations of

0

thé complex plane, where D 1is subject fo the restrictions of
formulae (11). From these generators we can detsrmine gener-
ators of our group, G(D), of solutions of the equation (1)
by the use of the correSpondence’(6), and by aujoining the

one unit [Ql,O,O,O]aS mentioned previously. We may sum up

our work in the form of

The oren Y;. If D= p,.Dase voeve Dy, Tz, Dy # B for 1 +# |,

and p, prime = 3 (mod 4), then the group G(D) of solutions
in integers of the equation

2
£

S 2
+ % = Dlx, » =) =1,
is generated by a set of units consisting of the single unit
[-1,0,0,0], and a set of w + 2Zh canonical generators, U,, Ug,

A b ,“T. s e e s Vi, V', V), L0 V), subject to the

U, .Uan. e Un [ 77' Vi"ngvf Vf"’ ] = -1,
where
mo= 3.27,
4h = © (D) +4 - m.
To illustrate this final,result we shall refer te our

illustrations of the cases D = &, and D = 7, which fulfil the
hyvotheses cof the theorem. On the illustrations we listed

generators of the Fuchsian groups, F(D), but these are not
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the required canonical generators of G(D). We shall actually
show these special Senerators anc show how they are determined
from the given ones.

Case -- D = 3.
D=p, =3, s0r=1. m=3.2 = 3.2 =6,
4h = @(D) + 4. -m =2 + 4 —’6=O, so h =0,
Then we rmust have m + 2h = 6 canonical generators. By actual
trial we are able to obtain these from the units ziven. We
find tﬁem Lo be
U, = A = [U,1,0,0],
v.= 67 Jo,-2,-1,d],
U, = CHL- [0,4,2,1],
U,}L; m":'[@,c,z,z]?
U,= DB= [0,4,1,-2],
U, = B&'= [0,-2,0,-1].
Since h = 0 there will be no V.'s. These generators satisiy
the relations of our théorem for
2 2 2 2

A 2
U, =0, = U, =0, = Uy = U, = -1,

and

U, .U, .Us.U,.U..T, =ACT.CE”.ED”.DB7.BA™ = -1.

To the canonical generators we ada the unit [}1,u,u,o] . Hence

‘we have the wroup G(D) piven by
a(3) = {L-l,o,o,OJ ,[v,1,0,0], [0,-2,-2,0], [0,4,2,1] ,

[0,5,2,2], [0,4,1,-2], [u_,-z,o,-lj f .

th= @(D) +4-m=¢6+4-6 =4, 50 h = 1.

8 canonical generators. Six of

i

Here we have m + 2h = 6 +
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these will be elliptic and the other two hyperbolic. Again by
trial we find thew to be

U, - G = [0,-8,-3,0]

u, = &7 = [0,6,2,1]

U; - BD7 o= [0,6,1,2]

U, - DC, T s [0,-27,-2,-10]
Uy - BAT - (0,-8,0,-3]

U, = & = [0,1,0,0]

-1
2 -

1§

V, = C [-¢,-12,:4,4]
v, = 6% = [-2,-16,-6,1]
Again these canonical generators salisfy the relatiuvns of the
theorem for
U, .U, .U, U, U T, v

= ¢ FR7.ED”.DC,FC . BAY A.C, GTF.CLFTG

= 7% ¢, F70’BC,G7RC TG .
But frow the relations on the illustration we have that
G7’B = GC,/, and so using this we have

= ¢PC,Fee 0, ¢TFe TG = -1,

Tc these eight canonical generators we ada the single unit

o
0

[-1,0,0,0] and we then have the group G(D) deterumined as
follows
a(7) = ,{ 1,0,0,0], [0,-8,-3,0], [u,6,2,1], [0,6,1,2],
- [U,-8,0,-3],[0,2,0,0], [e,-12,-4,4], [027,-2,7],

[-2,-16,-6,1] } .
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