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ABSTRACT

Enclésure theorems for the eigehvalues_and‘representa;
tional formulae for the eigenfunctions of a linear, elliptic,
'secbnd order paftial differenfial operator will be establiéhed
for specific dohain perturbations to which tne‘classical theory
cannot be applied. 1In particular, the perturbation of n-dimen-
éionalquclidean space En. to an n-disk Da. of radiué a is
'cohsidéred in Chapter I and the perturbation of the upper half-
space u? of ER t@ithe upper half of 'Da’ Sa* i1s discussed in
Chapter I;. In each case a general self-adjoint boundary
condition is adjoined on the bounding surface bf the perturbed

domain.
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INTRODUCTION

Let. L Dbe the linear, eiliptic, self-adjoint partialv

differehtial eberator defined by

: no. . .
Lu =~ 3 :Di(aij Dju) + bu

| 1,3d=1
where Di denotes partiel differentiatibn with respect to the
variable Xi"‘ The assumptiehs to be made on the coefficients
are as folieﬁsf

(1) the coefficients and b ‘are continuous real valued

%13

functions of x = (x1 s +eses 5 X ) in n- dimensional
Euclidean space E' and b(x) > O for all x € EP .

(11) iJ = aJ for every 1 and J and the aij‘ possess
uniformly continuous first partlial derivatives in "

K .
. n n . . _
(ii1) =z 2 4 &y EJ > v Igil for some positive -
. i:J=1 : i= .

real number cy and for every € ¢ ET .

Our purpose is to establish variational formulae for
the eiéenvalues and eigenfunctions of L for two specific demaih
perturbations.. These are:  the perturbation of E?  to ah h-disk
Da of radius a , considered in Chapter I, and the perturbation
of the“upper half-space HT of E" to the upper half ef D, >
Sa R dlscussed in Chapter II The beundarv condition adjoined

on the boundlng surface of the perturbed domain 1is



(1) Uv= 0
where U 1s the linear boundary opérator defined by

n

Uv =0, T 3y 4 DJV cos(v,xi) + o,V
i,J=1

and vy denotes the outer normal to the bounding surface. It is
assumed that the functions ol(x) and °2(x) are defined on the
bounding surface, are piecewi se continuous and nonnegative , and
that the sum oq(x) + OQ(X) has a positive lower bound. It may
be noted that additional, compatibility conditions for the special

case =0 are not necded here since the coefficient ©b(x) of

o}
2
L is required to be positive, ([5], p. 95) .

A solution u of Lu = 0 1s assumed to be of class Cl
and all derivatives involved in L are supposed to exist, be

continuous, and satisfy ILu = O at every point.

‘Let P, . ¥, ., and ¥ denote the Hilbert spaces

which are the Lebesgue spaces with respective unner products

(u,v)1 = j u(x) v(x)dx
En

(u,v)2 = [ u(x)V(x)dx
1

(u,v)a = j u(x)v(x)dx
D,

(u,v)S = f u(x)v(x)dx
S

a



-.and‘réSpective norms HﬁHl s ﬂﬁ”z R “h”a and Jlull . For

x ¢ B® , |x] 'denotes the usual Euclidean norm.
Thé’éigehvalue problem for L on EV
Iu = Au

u e?fl B

(2)

Wiii be Qalled‘the bésic problem in Chépter I; The eigenvalue
problem for, L on H®

CLu = wu
(%) |

u_e}fg ,

Uu % O on the (n-1) hyperplane P = {x[keE? , X = 0}
”.wiil be called the basic pfbblém in Chéptér IT. The correspond~
ihg‘pérturbed eigénVélue problems wili'be défined in Chapters
T and II.

In génefal it is nét true that thé‘eigenvalués of the
pefpurbed probléms tend to limits as a = ® s 'evéh'ﬁhen the
spectrumn of ﬁhé basic pfoﬁiém ié entifely discrete, for'examble,
in the éaég ‘n'=1 and o, F O in (l) » When the singuiafity
»at © Ais of ﬁhe‘iimit circle type in Weyl}s classification [9].
The'oni& aséumbtion reqﬁred‘iﬁudfder to obtain the énélosure
theoféms and rébreseﬁtational formulae is that fhere exists at
ieast one eigenvalvé of the bééic:problem.whosé cérresponding
eigéhfunctions satisfymébmé iihit prbpérty.‘ Fbr gxample,

Theorem 1 in Chaptér I éﬁbws that if the.eigehfunctibns corres-



pohding to the basic eigenvaluz 3 bf'multiplicity m éatisfy
condition (1.2), then at least m eigenvalues of the pertufbed
problém' (1.1) 'éonverge to A as the radius, a -, of the n-dick

‘D, tends to infinity.

The prihdiplé difficulty in this estimation prbblem
is in‘estéblishing a reasonable condition on the basic eigen-
functiohs in téfﬁé of a simple soiution, g, 'of .Lg = 0 so
‘that the norm of the function f = Rau - &u R donstructéd in
Lemma 2 , remains small even though f(x) may beb@me 1arge
fbf large  x . Fdf exampie, in Chapter I this cbndition is
characterized in terms of the "L - measgure" ?(1.3) which is

indébendent of the basic eigenfunctions.

The method‘ehbloyed_fér the treatment of this estima—
tion problem invdlving the bdundary‘ébndition (1) follows
aim@ét Qirecfly'frbm that used by C. A. Swanson [7] for the

lspécial'case '015 0.

This problem of esﬁimating elgenvalues and'éigen—
functions for large domains has its'physicai origin inlcertéin
models of‘enélosed quantum mechanical systems ‘[21; [3] dnd
[6] . In the case that the Schrédinger equation is separable,
'(a'special cdse'df L), the problem reduces to-a domain
.perturbatiQn probiem for a sing@lar second order 6rdinatf
- differential Operatbr;‘ In particuiar,'the example cﬁnsidered
in sectibn 1.5 ,reduCés to two ordinary differential equatidns
each of which have a éingularity of the Iimit point type at in-

finity.:



CHAPTER T

THE PERTUEBATION OF E" TO AN n-DISK

I.1 Introduction. Our pufbbse in this chapter is td'thain

variational formulae for the éigenvalues and corresponding
eigenfunctions of the operator L when E% - is perturbed to
an n-disk, D_, ‘of large radius , a , and condition (1)

1s adjoined on the bounding (n-1) hypersphere, B, .

The perturbed elgenvalue problem to be considered is
- Lv = yv

(1.1)
ved,

in - D, = {x|] |x| < a, a> o)}

. where the perturbed'domain, Ig', is defined as the éét'of all

,compléx valued functions v with the following properties
(1) v 1s twice continuously differentiable in D, .

(11) Vv and V! are'contihubuslat thqéé points of the

boundary Ba , at which and o are continuous.

9 2

(iiil) v - satisfies (1) on B, = { x | 1xy = a}
The only assumption to be made here is that there

exists at least one eigenvalue ) of the basic problem = (2)

V-whose corresbonding eigenfunctions, u , satisfy

(1.2) {m%:'lUul} lell, / lull, = O(l} as a -, whefe g



is the'"L’meaéure"
- Lg =0 in D
1.3) .8

Ug =1 on Ba

‘It is known (51, [4] that for the'perturbed problem
(1.1) there existé a dendmerable sequence of eigénvalués
g » O < oy < o S-“B < it ,'Aahq a complete orthonormal
éequence.of éigenfunctions {vi} such'thaf-for some Robin .

© _function, Ré(x,y) , (Green's function of the third kind) ,

() =y By () =y [ RG0y) vi(0ax

Dy

and ‘any vasic éigénfunction, u , satisfies L R U = u in D,
Here 'Ra 'déhoteé the integrél operator whose kefnéi'is
Ra(x,y)g,.y‘nga:. It'may be noted that fpr Os =0, the
'kernel funétion Ra(x,y) is fepiaced by a Netimann function,
Na(x,y) , and for 'ciE O by a Green's function,. Ga(x,y) .
Clearly, the results of this chapter apply to these special céses
‘even thbugh the representations of the solutions of ‘(1.5) may

be slightly different from (1.6) . Ra(x,y) is consfructed in
the usual way as fhe sum of a flxed fundamental solution, {(x,y),
and the solution of aAparticulaf Robin problem, r(x,y) ‘

That isg,
Ra(\csy) = Y(X>y) + I'(X,y) :

where:



(1) +v(x,y) , regarded as a function of x, is a regular ~
- solution of Lv = O except when x =y , where it
has a singularity of order |x-y|2~n for n > 3 .

(11) r(x,y) ,. regarded as a function of x , 1is a solution
of ' ’

Lr = O in Da
Ur =:—Uy on Ba

and .Ra(i,y) satisfies the bodnéary"éonQitionp

(1.4) URa(x,y) =0 on B,. |
Ra(x,y)' is gniqug, symmetric and non-negative for all x and ¥y

in D, , ([4], p.161)

In addition, any solution of the Robin problem,

| g Lf =0 in D,
(1.5)
Uf

h on B
a

has the representation. ;

(1.6) fly) = I Ra(x,y)h(x)dsx for e?ery y €D

' B
... Ta

I.2’ Encldsure Theorems for'The Pzrturbed Eigenvalues , The

following notation will be used

o[l = max|vul} llel, / fall,  (u4o).
Ba'

¢, = sup o [u]
a, uea)\ a :



pa=re,/(1-w,)

where ’GX is the eigenspace associated with the basic eigeh-

v@lue' \ of (2)
Lemma 1. ma=o(l) and paéo(l) as a - a .

Proof. Lep u be that function in @ such that ma[u]=w

A a ’
Since every u € GX has the representation u = I: ay Uy in
- ‘ - i=1

terms of an orthonormél basis. {ui} , where the basic eigeh—

value 3\ 1is of multiplicity = ,

o (0] = fnax 13 oy Va3 el /IS agmll, (u 4 0)

a

1

< §;1<|qil / n§gi diu;“> {mgz vug |} flelt,
< uuiné-lf{mgz_luuil} lel
< m max mafuij-

1<i<m ,
and the proof follows from condition (1.2) and the fact that
the Uy
responding to 2

, i=1 , , m , are the basic eigenfunctions cor-

Lemma 2. For a = 1‘/ A

(2.1) HRau - duﬂa s_a¢a Hu”a for every u € G,

Proof. The eigenvalues.of (2)‘ are positive, In fact, if

A S 0 for some 1 , the maximum principle (111, p.. 326)



iﬁblies that the eigenfunctibn u correéponding to A apprdaches
its maximum as |x| - « . This contradicts u e LQ(En) and

U+ 0

Let a = l'/ xi"énd define the function f = Rau - au.

Then for every ue€eqg, , f is a solution 6f the Robin problem

A
ILf =0 il’-l Da
Uf = - qUu on Ba
For, Lf = L(Rau - qu) = LR,u - alu
) =u -(1/2) \wu=0 in D,
and Uf = U(Rau - qu) = UR u - alu
R n . ) :
= O'l(x) 'Zj laij(x) DJ I'Ra(x,y)u(y)dy COS(\),Xi)
’ 1yJ= ' ' )
v > D,
+ ap(x) [ R (x,3)uly)dy - avu
D
a

Since the order of the singuiarity of the kernel functibn,

1-n
A

”Ré(x;y)_, 'is léss than |x and since u(x) is contin-

uous, the integral

szJ(Ra(XQY))u(y)dy
Da - - ,
converges uniformly and the derivative

D, £_34<x,y>u<y>dy = [ py(R,(x)uly)ay

D_ . .
exists and is. continuous, ([5], p. 50) . Hence:

Uf = I (01(x) E '_1aij(x)DjRa(x,y)’cos(v,xi)+g2(X)Ra(x,Y))u(Y)dy
Dy, 29T ' ' -aUu
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= [ (R (x;3))uly)dy - alu
D ‘
a,

= -qaUu on B, » Dy condition (1.4)

That’is, f 1is a solution of the Robin problem (1.5)
with h = -aUu and hence has the representation (1.6)',

f(y)'=‘-a I.Ré(x,y)Uude for every y e Da.'

B,

Then

lf(y)lﬁga{mSXIUul} [ r (x,7)as,
) ' a B
a

_since Ra(x;y) is non-negative and o 1is positive, and:

Ifky)l g_a{mdxlUu]} g(v) fér‘every y €>Da since g 1is
B
a .

the solution of (1.5) with h =1

Therefore

-

el = IR, u-anl, ¢ atmax [0al3 (el / lall) Tl = as,fu] lul,

Ba

In

ag, llull,

for every u € Gk .

Theorem 1. Let ) be an m-fold degnerate eigenvalue of (2)
whose correépohding eigenfunctions satisfy cbnditién (1.2)
Then there exiéts a positive number aq such that at least

m pértufbed eigenvalueé ui(a) of (1.1) are enclosed in the
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interval [x,x+pa] whenever aZao and converge to A\ as

a - ®

Proof. Since Py = ol) as a - by Lemma l;_there exlsts
an aé ‘such that Pq <1 for every ada_ and p, is well de-

fined for large a

" Let maé " be the'szspace of )+a> generated by. all the
eigenfunctions bf Ra whose eigenvalues Bi = l/pi lie in the
interval |B-a|<§‘. Let P(e) be the projection of **ak onto

L Then

lu-p(eyull, < e Mimgumanl, for every wea, by ([61, p. 33),

sincé the integral operator R is a selféadjoint linear trahs—

a
formation on ¥, .

Frbm (é.i)

(2.2) Hu-P(e)uHa ghamae'llﬂuna for every ue€g Thus, by

([61, p. 35), since R,

A
is completely continuous on %ﬁa , there

'are at least m eigéhvaiues Bi contained in the‘intervai
,Igi—a1égqg, 151,2, ceeees ,vbr, mbre precisely, the interyal
lui—iliuima . Since ﬁacEn , it follows by the minimax principle

for eigenvalues [1] that uiix for every i and

VS At e,
or | |

Mg £/ (1= g) =04 Ay, Sil-gy)

o]
for every 1 =1,2,
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Then at least m eigenvélues “i of ,(1;1) are in [x,x%pa]
" whenever azao and, since pa;o(l) as a‘Q o , converge to

A a2as a - o

Theorem 2. Let 1 be as in Theorem 1. If'there exists a basic
eigenvalue exceeding ) , then there is a positive number
aI;?Q -such that exac?}z m perturbed eigenvalues u; are en-
closed in the interval [X,X+pé] whenever a>a;
Prpof. Let ') be the smallest basic éigenVélue‘and A' the
_smallest eigenvalﬁé exceedihg A . Then sincé wé:o(i) as
a - , there exiété a number a;>a, such that x¢a<(x'—x)/x5
for évéry aZai . 'This imﬁliéé x¥pa{x' > 8%ay . since

A+ opy = A+ e,/ (1mwy) = A/(1-9,)

< /(=T -2 /At]) = A

énd‘by Thebrem'l at least m lﬁértdrbéd.éigehvalués, My o are

éhéidééd ih the subihtérval [x,x+pa] e [t

Sihcé 1:>%: for every 1, by the‘miniﬁax:prbperty,
. = Ky ZAg ,

and . % 1is m-fold dégénéfaté vy hypothesis:

and

g €00 A+ p,] &)

2

v
o
l—‘ .
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Henée, at-most m perturbed eigenvalues, My » are in
f;,x+pa]- for aa, . Therefore exactly m are in. [x,x+§a]
whenever aZal . An easy inducti6n prdof establiéheé the same

result if x;xi is the ith distinct eigenvalue X1<X2<x3<----

i.}‘ Uniform Estimates for The Perturbed Eigehfunétibns. Let

bép(n) be a positive number satisfying 5(2);6;‘p(3);0, and

O<n—2p<4.. Because the fundamerital singularity of Ra(x,y) is

of order Ix—ylg—n for n»3, the function
" \ 1/2
2 2 :
k(%) = (\f |x-y| P RE(x,y) dy
Da
is well definéd in Da . It 1s assumed for thé next tneorem

that
mg ka(x) = o(1) as a - o (q =J(n-2p>/n)
uniformly for all xeDa .

Theorem 3. Let Uy be the drthbnbrmal éigenfunctions corres-
ponding to the m-fold degenerate eigenvalue X"of Theorem 2,

and A those corresponding to the m perturbed eigenvalues

My s i=l... , m . Then

(3.1) vi(x)-:ui(x)-fi(x)+0(cpg)ka(x?» i=l,..., m, xeD, , ada,
where f, 1is the solution of (1.5) with n, =Uu,

Proof. Let e=u-a! in (2.2) , where a=1/A,2'=1/x' . It

follows from Theorem é-that .a¢a<a(x'—x)/x' s aZalv. That is,

a D, <a (M=A)/A =a - a' = f a > a,
/ 1



TR

Thén 3$€v is m-dimensional by Theorem 2 and Hu-P(e)uHa<“ﬁHé

implies that u=0 1if P(é)uéo s UEG Therefore, m uniquely

X .

determined'iihéarly ihdependent eigenfunctions Z correéponding

4 i
to o are mapped by P(e) into the orthonormal functions v

and

i

Iz, -v, Il = o(s,)
Since, by the Schwarz ihequality

(312205 = (vpavp)al € 12l 085 - vyl + Ivglaliz - vyll,
= 0(y,) + 0(w,) = 0(o,)

Let '{ui} be the orthoﬁormai'Sequencé constructed
 by the Schmidt 6rthbﬂbrmalizaﬁibn process as linear combinations

. . m . .
of the %, . Then wu;=I. Yijzj- for some Yij€¢ , and

j=1
I 2
”ui - zi“a = “j-‘lllYiJ ZJ - zi”a
; o
= (§$1 Yig 85 - % ,.§=1 Vi 3y - 2:) 5
= O(ma) i =1, = m !by (3-é)‘
and
(3.3 lug - villy = Moy - B+ 2 -y,



- 15 -

Let u be an‘element of the set {ﬁ and v the

| )
corresponding element in {Vi} . Then, by'Thebrém 2 and (3;3)

w-r=0(p) and  Ju - v, =0(s,)

" "Hence

il --kuné'i iy “ull, + (u - ) [lall,, = 0(e,)

Define‘

, C 0N
(%) e | =2D) ofy 2
wy(x) = <f |x-y| "Rl uv(y) - aly)] dy)l/2
| | Da o
20y e | 2D -y \12
w(x) =[xy TP uv(y) - auly) | ey
Da—ds ‘ '
e _op. 5.
+ [y 7P lavy) - aaly) | ey
. 66 " ' |
- TN - (n-1
< 872 v - xuf2 4 o(s72P Hn-1)+l,
where d6 is the n-disk with centre x and radius 6 . If
we choose 8 = ma?/n we obtain the uniform estimate wé(x) =

O(@aq) ., where O<Q=(n-2p)/n<4/n . In particular, w_(x) =

'O(wa) if n=2. or 3 .

It 1s asserted that xRau(X) gives a uniform estimate

for- v(x) since

[v(x) -ARgu(x)| = |R (uv(x) - aw(x))|
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= | [ By(x,y) |x-y| ¥ GV(y') - xu(y)) ay
2 |
.

=1 @y IxylP L (wo(y) - () |-y [P,

R ey lPl, @) - ) eyl P,

: : 5 /2 | o N 2
= ( [ rxy) Ix31%Pay | - (] luv(y) = way) Py ay)
D, | | Da ‘ ' P

a0 w0 = 0(ed) K,(x)

aﬁd. . _
(3. [v(x) = A Rgu(x)| = 0(od) k,(x) .
Define the function
(3.5)  4(x) = A Rpu(x) - u(x) + £(x).

Then, f&(%) is thé,éoiutibh of the Robin prébleﬁ

Ly =0 . 1in D,

(3.6)
Uy = 0 on B,
Faf, Li = L(AR u(x) - u(x) + £(x))

‘xpaaa(x‘) - Lu(x) + Lf(x)

-

xu(x)A-‘ﬂu(x) =0 in D, ,

and Uy = UGR(K) - Vu(x) + UE(x)

=0 .-Uu(X)'+ Uu(k)'= 0 on 'Ba .
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By ([5], p. 97) , the operator L 1is positive definite on the
domain D, which is dense in ¥_<L%(D,) . That is, (Lv,v), >
62f”§ﬂi for every vep, and for some positive real.nﬁmber 5.

Now m{k)etg; since ¢ 1is a solution of (3.6) , hence
(Lx};,ﬁ;)a =0 = § Hvlyua

and § =0 in D_ .
Therefore, combining (3*4)'and'(3.5) we obtain

v(x) = u(X)'-‘f(x) + d(mg)ka(x) a Z él » xeD_ .

Since u(x) was an arbitrary element of the set fu;} the

theorem is proved.

'I.}4 Asymptotic Hormulae for'DhetEefturbed'EigehvéluéSZ

Let. u and v be as described in Theorem 3. The
folibwihg as&mbtotic estimate will be based on Greeh's sym-

metric identity ([5], p. 76) ,

S, n - ~n o o
'{Lu,v)a—(q,Lv)a=£;u§’J=laiJDJ v c§s(v,xi)-v.§,j=iaiJDJu cos( v,%)ds.
“a,

In view of the boundary condition (1) and the condition

gl(x)+02(x)502>o for some real number c, , we can put
: 7 /6,)7 B
rya aiijv gos(v,xi) = -(01/05)v on By

whefe By is the set of all points of Ba on which
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ol(x)>02/2 , and
= -(01/02) z oy 2 4 DJ v cos(v,xi) on B,
, .
where B, 1s the set of all points of B, on which gé(k) >
cé/é . Clearly B,=B,UB, because of the above inequality and

we can wrlte Greeh;é'identity;in the fofm
(4.1) - (Lu,v)a-(u,Lv)a

J(l/oz)z '_iaiJDJG‘Cbs(V;xi))Uu dS-f.(ﬁ/di)Uu'dS = {uV’}a
BaBy i o By

Since u and v are as in Theorem 3,

(4§é)- {u,v}é=X(u,V) ~u(u,v) =(a- u) (u, V)

1

Frem (313)'and'eppliCation of the Schwarz 1neqqality'We obtain

[(0,v)y = (79,1 = [(a-v,v), ] < lusvly - Dol
= lu-vil, = o(e,)

and (u;v)a = 1+O(¢a) . Then, using (4,2),M
(523) A - w = {a,vl, / (w,v), = (u,v], / (140(w,))
| = {uv], [40(w,)] .
:'Leﬁ £ be-a solufien of the Robin problem (i;é)
‘ with h Uu ;"Apbiication of (4.1) to\the differential
equatienq' ILf =0 , Lv é‘uv'fandf Lf =0, Lu = AU yieids,

respectively,

(5.4) (L£,v), = (£,Lv), = - w(£,v), = {£,v), = fv}
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and
a:

(h5) (Lew), - (£,1u), = - A(£.), = (ful,

It follows ffbm (4.3) and (4.4) and the fact that g=x+0(¢a),
that | o

A= u o= A(£,v), [140(e,) ]
In addition, application of (3.1) and (k.5) gives
A- o= - A, uet 4 0(el)ky), [140(w,) ]

(A(£,m), + M(£,8), - 20(e]) (£,K,),) + [140(w,) ]
({rul, + A(£.0),) * [140(p,) ] + (o) (£.ka),

it

. In some cases‘thé first term dominates the others and we obtain

the asymptotic formula
g(g) - ? ~ {ful, " as a - = .

.Thé'résﬁlts?of'Theorém 1-3 are then sharpéned acCordingiy.

I.5 A Typical Exahbie.

Consider the éiiiptic operator in E2 defined by
Lu = - Au + (x§+xg¥2)u

L is énxbperator of the Schrgdingér type with the potential
function vV = (x2+y2+2) and satisfies all the requiremehts

stated in the ihtfdduction, The basic eigenvalue‘pfoblem tb be
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considefédvis

-Lu = \u
(5.1) '
2

el 2)
and the basic spectrum is éntiréiy discrete since the potentiai
function V tends to infinity as (x§+xg) -~ o, ([9], p. 150).

The perturbed eigenvalue problem is

_ Lv = uv ‘in Da
(5.2)

dv/dy + v = 0 on B,
Vw@ere D, = {(xl,xz)l_(x1 + X,) <a, a*} , and
Ba={(x1,x2)| (x§+xg)' =a} . That is, we are considering the

special case digl s 02?1 for (1)

 In order to appiy the results of this chapter it must
be shown that there éxists‘at.least éne eigenvalue A of (5.,1)-
whose cbrrespbﬁdihg'eigenfunctions satisfy condition (1.2)
In fact, vit wiil'be shown for thié’examplé that every eigen-
value has mdltiplicity'tﬁb and’ every eigenfuhction'satiSfies

(1.2)' .

Since' (5;1) is'éeparable we obtain, by thé method
of separation of variables, the orthonormal eigenfunctiohé

' | ' ‘~ /2, .
(5.3) u__ = (mn ! m! oty - 'exp[—(x$+yg)/2] Hn(xI)Hm(xg)

nm
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cqrrespbnding to the eigenvalués r=2(n+m)+4 (h;m:O,l;é,...) s

" where Hn(xl) denbteé the Hermite'pdljnomial of degree h in Xy
N R I TR - W ' 29y (T :
Hn(xl) = (-1) exp[xll d /dx? (exg[-xl]) (lxl, p. 375).

Then every'eigénVéiue has multiplicity two and

(5.4 | <1 for every a and all mand n .

uhm"a /

The "L-measure" g defined by (1.3) is 2 solution of

Lg = 0 1in Da

dg/dy + g =1 on'Ba

After a routine transformdtion to“polar.COOrdinates (r,o) and
'éebaratibnvof Vafiableé wéﬂobtaiﬂ the uhique'solution
g(r,8) = (a+l) exp[(F-a’)/2]
and it follows easily that
f /2
(5.5) 'Hgﬂa <7 (a+l)” for every a .

Application of (5.3), (5.4) and (5.5) gives

(5.6) max | aup, / av + upy |3 fell/lu
a

< (2a)0*™ exp[-éé/Q] (a.+1)"l

nla

= o(i) as a -
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and every basié éigenfunction éatisfies condition (1.2]
Hence, by Tﬁéorem 2, exactly two berfurbed éigenvalues‘ n of (5.2)

converge to éach eigenvalue of (5.1) 88 a = o ,

inlbrder.to obtain ‘the uniform estimates for the per-

turbed eigerfunctions,it is assumed that
v, K (x1,%,) = o(1) as a -+,

uhiformly fbr'éli xeDa ; where ka(x) is defined in'.séctibn
1.3 and-
o, = sup 0, [u] < (2a)+® (a+l)"l exp[—a2/2]  (udo)
ue.CtX ‘ |
‘by (5.6) and Lemma 1 . Let £ m De the solution of

Lfnm =0 1in D& a

dfnm/dv + fnm = dunm/dv + unm on Ba .

Since fnm attalns its maximum on Ba and at those points

caf /dv > 0, ([1], p. 326) ,

£ < max | du  /dv + u

o | for all xeD, and by (5.6)

nt B
a
fom = O(e,) [a+1] for all xeD,.
Let v be the orthonormal eigenfunctions corresponding to

nm
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the perturbed elgenvalues of (5.2) . Then from Theorem

Hnm
> we have the uniform estimate

2

. 1/ . . . "
P =2 expl-(x24x2) /2] B (x))H_(x,)

vnm(xl,xg)'='(v;n! m! 2

+ O(wa) [ka(xl>x2) - (a+1)]

for all 'x=(xl,x2)'e D, , for all 'n and m and for every a

for which
(22)™™ (n4m+3) (a+1)'1 exp{—ée/E] <1,

Similarly, one can obtaln sharper estimates for the

perturbed eigenvalues using the results of sesction I.4
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CHAPTER IT

THE PERTURBATION OF H" TO S,

II.1 Intrbductibn.‘ Our purpose here is to obtain variational
f§fmulae.for the eigenvalues~ahd eigenfuncpions of L when g |
is ﬁerturped'to s, and cbnditiqn (1) 1is adjoined on thé
'bounding surface, aSa . Sl is the u?per half-space of o s
B = {x]x=(x1, :;xn) € En;;xn>O}_. Saé{xfxeDan Hn} and

asa can be expressed és the union of two disjoiht sets, Aé
and C_ , where Aé:{xlern,xﬁ=O , |x' < a} and C, = -
{X|#6Ban-Hn} . For example, in the plane’ E° H?"is the
upper half-plane and ,Sa is the upper half:of the disk centred
at the origin and having radius. a .

) It may bé_noted that 1t is not necessary to regtrict
the domains to half;gpaces and‘halffdisks. It canleasily.be“
verified that the results obtained in thié chapter wou}d also
apply to any solid n-cone, c¢? in EP s 1perturbed to thé solid

. n _
spherical cone Cancn n'Da .

The perturbed eigenvalue problem to be considered

- here is-

Lw = YW
(6.1)
- weD

8
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-and the perturbed domain, I)s s 1s defined as the set of all

compiex valued functions. w which satisfy

(1) w 1is twice cbntinuously differentiable in S, .

(i1) w“and w' are continuous at thoseApoihté‘of 38, at

whiqh 0y ahd o are continuous.:

-
(111) w 8atisfies condition (1) on asa .

CFor. m>1 1in this,domain‘perturbation it is not
poséiblé to characterize the condition on the basic elgenfunc-
tions, u, in terms of the "L-measure" ‘(1{3) since Uu=0 on
the (n-1) 'hybéfpléne P . That ié, the "L-measure" would

have to be the solution bfl'Lgao in- 8 Ug=1 on C

a ’ a-’
Ug=0 on: Aa< and hence would have to satiéfy discontinuous
bdundary‘conditions. Therefore, it 1s aésumed here that there
exists at ieast one elgenvalue’ x of the basic problem (3)

whose éorresponding éigénfunctibné;satisfy

(6.2) Iml/lul, =of1) as a-e

where h 1is the solution of

N Lh =0 in §,
(6.3) Un =Uu on C,

Uh =0 on Aa

As 1n Chapter I, it 1s known 4[5],.[4]_ that for the
perturbedxpfoblem‘ (6;1) there ékists a dénumerabie sequencé

of eigenValues, Yy s O<Yliyé$Y3$.....,  and a complete ortho-



normal sequence of eigenfunctions {Wi} such that‘for some
Robin function, Rs(xgy)>,

-in“(yA) = Yi .RS Wi(Y)";': Y5 J‘ Ré(x:Y) Wi(x)dx

Sa

anq every basic gigenfunctinn satisfies : LRSu=u in S-a
Here Rg denotes the integral operator'whdse kernel is 'Ré(x;y),'

yeSa

II.2 Enclnsnré_ghebfemé and Rgprééenfatidnal Formulae.

The following notation will be used

wglul = nllg / luly - (uso)
%, = sup oglul
s 3R ol

og = nog / (1)
where Q; 18 the eigénénaée_associated with tné basic e;gen—
“value % of (3) . It is easily verified that ¢S=o(l) and

_ps#d(l)- as a - o -and that for r=1/x
(?.i) NRgu = rull 5#7 oy Nl g for every ueq,

"Tnéorem 4, Let * Dbe the eigenvalue‘of multiplicity m 6f'(5)
whose cbrreébonding eigenfunctioné satiéfy condition (6.2)
_Thén there existé'éprsitive number 85 sucn that at least

m pertﬁrbed eigenvalues 'Yita) of (6.1) are enclosed in the

interval [u,n+ps] whenever aZaz and converge to u as a = =,
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Proof. This follows directly from the proof of Theorem 1 in
Chapter T and (7.1) .

Theorem 5 Let u' be as‘in Theorem 1 . If there exists a
basic eigenvalue exceeding Koy then there is a positive
number, 32a° such that’ exactly m perturbed eigenvalues Yi?i

‘are enclosed in the interval [n,n+pé] whenever az_a3 .

‘Proof The proof follows almost without change from that of
Theorem 2 in Chapter I .

. As before, the fundamental singularity of R (x,y)

18 of order lx y|2 n for n>3 , the function

Sa

ks(X) = | (I Rg(ix;Sr) | x-y] 2pdy | 1/2
1s well defined in S, , and 1t is assuned that

ol k(%) = o(1) as a <o (a=(n-sp/n))
uniformly for all kesa .

Theorem 6. Let u, Dbe the orthonormal eigenfunctionslcorres- N
'iponding to the m—fold'degenerate eigenvalue ﬁ, of Theorem 2,
and Wy those correspondingito}the‘ m perturbed eigenvalues

, 1=1 ," ..... ,m . Then

a (%) - (%) + O(wd)k, (x)

=
P. N
»
il

i 1, , m s X Sa s aZ_a3
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where hi(x) is the solution of

,L?i.= O#‘ %n Sa
'Uhi = Uui ?Q.Ca
Ch, =0 on Aa

:II.B Asymbtotic Formﬁlae.

AS in séctién I.4 of Chapter'I R Greer»ln'ws\“'sym.metric

identify has the férm

(Lw,w) g = (wIw), = [ [(1/oy) T

.;1aij Dj w cos(v,xi)]Uu ds
| Caaﬂ

i,J
1

-'J (#/0,)Uu A4S = {ua}

¢

for u aﬁd w as in'Théorém 3 . Here C1 ié thé sét df all
points of Ca..onIWhiCh‘ dl(x)>02/2 . The asympfétic formula

obtained is

Hy(a) -y~ {hujs as a_aé .
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