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ABSTRACT

The concept of a free group is discussed first in Chapter 1
and in Chapter 2 the tensor product of two groups for which we
write A®B is defined by 'factoring out'" an appropriate subgroup
of the free group on the Cartesian product of the two groups. The
existence of a unique homomorphism h : A®B-+H is assured by
the existence of a bilinear map f : AxB—=+H , where H is any
group (Lemma 2 = 2) and this property of the tensor product is
used extensively throughout the thesis. In Chapter 3 the complete
charactelzlzation is given for the tensor product of two arbitrary
finitely generated groups. In the last chapter we discuss the struce
ture of A®B for arbitrary groups. Essentially, the only complete
characterizations are for those cases where one of the two groups 1s
torsion, Many theorems from the theory of Abelian Groups are

assumed but some considered interesting are proved herein,
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NOTATION

The following notation will be used throughout this thesis.
If f : S—T is a function and s&S (function and map are used
interchangeably) then for the image of s under f in T we shall
write sf ; for the image of S under f we write Sf, If g : T—+W
1s another function, then the composition of the functions f and g
will be written fg : S—W, The symbols of set inclusion, C and
2 and intersection and union, N and U , are standard, as is the
symbol of summation D, . The expression <a)> will refer to the
subgroup generated by the element of a group G, The isomorphism

between two groups A and B will be written as A= B,
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CHAPTER 1: The Free Abelian Group Over a Set

The subject of this paper, the tensor product of two Abelian
groups, involves intrinsically the concept of a free group (the tensor
product in our case might better be termed the 'free bilinear product',
as by Fuchs) and so this topic will be dealt with first in its own right.

In this thesis by group we shall mean Abelian group throughout.

Let S be any set, We say a group G together with a mapping v
of S into G constitutes a free group on S providing the following condition
1s satisfied : if (Jis any other mapping from S into any other group H,
then there exists a unique homomorphism h of G into H such that the

following diagram commutes :

~

S+ &G
W

H
A
b h

The 1nitial step from this definition would naturally be to show
the existence of a free group (G, ¥ ) for an arbitrary set S, but first let
us show that if free groups on S do exist, then any two on the same set
are equal up to isomorphism :

Lemma 1 =1 Any two free groups on the same set S are isomorphic ,

in fact, between (G,¥ ) and (G’, ‘V’) there exists a unique isomorphism
, .
i : G—G suchthat WV = Y
Proof : By our definition of (G,W¥ ) and (G,, \V’) as free groups on

S we have the following doubly commutative diagram :



G Le. W'=Wh
and W = vy

Thus (Y h) n = \V«’rhl =Y | but also‘VI(1 =% | where I, is the

identity map of G,{and we conclude h h'= I,. In an entirely

analagous fashion, we also find h’ h= Id , and thus h and h'

are both 1somorphisms and h will fit the statement of the

lemma,q.e. d.

We shall now show the existence of a free group on an arbitrary
set S by actually constructing one :

Theorem 1=« 2 A free group (G,¥ ) exists for any set S.

Proof : Let Z denote the ring of integers and let F(S) =
{f ‘ f :5 —+ Z and sf=0 for all buta finite number of seS}
Define WV : S —» F(S) by s\¥Y-f,, where tf, =9, (Kroenecker
function) for teS. Then firstly F(S) formsa group under the
following rule of composition of functions :
s(f+g) = sf + sg where s¢S, f,geF(S)
Associativity and commutativity are trivial under this rule
since Z forms a group. Let f, be the zero map on S to Z
i.e. sf, = 0 for all seS ; then s(f+f)=sf+sf = sf for all se$S
and hence f+f = f4f =f i.e. there exists a neutral element
f,e F(S). For any fe F(S) define =f as follows : s(=f)= w«sf
for all se S ; then s(f+®f)=sf « sf-0=sf for all seS and

hence for any fe F(S) there exists an inverse element «f such

that f 4 (=f)= f.



We show (F(S),\W) 1s free. Let H be any group and let there be
defined amap ¥ :S ®H, If feF(S) define amap h : F(S)—*H as
follows : fh=;5£-S (sf) (s ¥ ) if £ 4 f, and f,h=g,, the neutral element of H.
We see then that such an h satisfies the requirement s€ = sY h, and 1t
remains to prove h 1s in fact a unique homomorphism. Let f, f,¢F(S) ;

then (f +f,) h = ;2:’3 s(f+ £,)(s9)

=2 (sf+sf)(s?)
SeS
= D (st Nsd) + jg (sf.)(s¥) by definition of composition
$eS Se
in F(S) and by the associativity of the group H. To show h 1s unique
suppose there is another homomorphism hl : F(S)-®» H such that
H

S ) > F©) commutes, Thus
s®~ sW¥h= sWh for all s€¢S, But then for any fe F(S) we have :

fh = ;2}5 (sf)(s¥)

"

zs (sf)(s¥h)

=4 f
2. (sf)(s¥h)

1]

= )

2 (sf)(s¥)h

seS |

= fi and we conclude h=h and thus the pair

(F(S),¥) we have constructed forms a free group.

We can now deduce a few easy lemmas to show the actual com=
position of the group F(S).

Lemma 1«3 If (F(S),Y) 1s a free group on a set S, thenW¥ is an ine

jection.
Proof : Lets, and s, be elements of S, s+ s,. Letf :S-+ Z be
as before, and let h be the homomorphism of F(S) into Z produced

by £

s 0 1.€. fsz‘Ph. Then we have s|\\')h=1
\ !

and s,¥h=0 ; thus sW+ s,V

... /since



since h 1s well defined as a homomorphism, q.e.d.

Lemma 1-4 SWYiforms a set of generators for F(S).

Proof: Let F’(S) be the subgroup of F(S) generated by SY.

LetW' be the map of S— F,(S) such that sW’: s¥ for all seS,

'Iheh there is an £ : F(S)~+ F (S) such that Wf=\W’ Letg : F(s)sF(S)
be the injection such that xg=x for all xeF/(S). We have then the

diagram :

!
()

{
vy _v A

S — " F(&
%
Then fg : F(S) > F(S) and sWig=s¥f=s¥'= s¥ for all seS. Hence
fg 1s the identity on F(S) and therefore g 1s onto, and so

F’(S) =F(S), g.e.d.

Recalling the construction of the unique homomorphism connected

with a free group, we can now, in fact, represent any element of F(S)

in terms of the generators, feS¥ : fh=$62s (sf)(s¢P)

=;zgg (sf)(s¥h)
=3 (sf)(sW) h
€S

and thus f= 2 (sf)(sy)= 2 (sf){f). Indeed, for teS we have
S S

=50 =
t 2 (s0)(E) = 3 (s1)(tL)

= (t6) (t£,) = tf

Now suppose ?)S Msfe=1,, peZ , £S5V, and teS 1s arbitrary ;
<

o
then t fe=0
en SPZ‘SHS 5

='--=> t’\QfO

Thus there exist no relations between the generators of F(S), and hence

the use of the word 'free' to describe (F(S),W). As an example of a free

... /group
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group we might cite the direct sum of an arbitrary number of infinite
cyclic groups, which clearly forms a free group over the index set of

the direct sum.

CHAPTER 2 : The Tensor Product of Two Groups

Let A and B be "tvvo groups, let S=AXB be their Cartesian prodﬁct
and let the pair (F(A%xB),¥) be a free group over AxB. We then define
the tensor product of A and B as follows., In F(AXB) we can consider
elements of the form : (1) (a‘+ a,,b)¥e(a,,b)¥=(a,,b)W¥

(2) (a,bgb,)¥=(a,b)¥=(a,b,)¥ where a,,a,eA
and b ,b,eB. Let ) denote the subgroup of F(Ax B) generated by the set
of elements of the form (1) and (2) ; we now define the Tensor Product of

A and B to be the factor group F(Ax B), for which we write A® B, The map
O

WV : AxB -»F(AxB) given by the composition of the maps W : Ax B— F(Ax B),
<K
the free map, and VI : F(Ax B)+®F(AxB), the natural homomorphism, is
O
called the free bilinear map, or the tensor map ; for (2,b)¥Y we write a® b.

Definition 2«1 A map T : S xS ~T from the Cartesian

product of any two groups S, and S, into a third, T, (all groups
having the law of composition denoted by+) 1s called bilinear if
(Sn"' Sy > Su)f‘= (Su ’ su)f+?(slt’“‘é\)f and (S“, Syt Sn)f=(s“, Sz\)f+(s\\ ’ Sz;)f

for all S, » S,€ S‘, and s, s,&5,.

Clearly the tensor map Q : AxB—+~A®DB 1s bilinear since by

(1) (a+a,b)% -(a,b)¥ =(a,,b)}¥ = 0 (or (a+2a,)®b=2a@b+a®b)

]

and by (2) (2,b+B)W «(a,b)P =(2,b,)F = 0

(or a&@(b+b,)=a®@R+a®db,).



Lemma 2 « 2 Letf : AXB-%H be a bilinear map from the Cartesian

product of two groups A and B to a group H. Then 1Y . AxB-=A®B
is the tensor map, there exists a unique homomorphism h : A®B-*>H

such that the following diagram commutes :

H
£ °h
Ax B — + A® R

v

Proof: Let (F(AXB) ,W) be a free group on AxB and let

n' : F(AxB)—=H be the unique homomorphism associated

with (F(AxB),¥) and the map £ ;

1‘: H
/ o
W) B

Then, f being bilinear, we have (a+a',b)f =(a,b)f = (a’,b)f=0
and (a, b+b )f =(a, b)f =(a, b )=0
for all a,a'e A and b,bI&B , hence
(a+a',b)¥H -(a,b)¥h =(a!,b)¥h' =0
and (a,b+b )¥Yh' =(a,b)¥h’ = (a,b )¥h'=0
w‘hich 1mplies (ker h') 2 ) ; therefore, 1f we define, for
feF(AxB) , (f + L )h = fn’ , where f + 0} =fy the coset of
fin A® B, we have asserted the existence of a homomorphism
h which fits the lemmma. The uniqueness of such an h follows
from the requirement that the diagram in the lemma should

commute, q.e.d.

It is clear from the properties of the free group (Lemma 1l = 1)
that the tensor product A® B 1s unique up to isomorphism ; we can now

also prove the following :



Lemma 2 «3 A®B2B® A for any groups A and B.

Proof : Define the following maps : f : AXB—% DBxA
and g : Bk A—+AxB by (a,b)f=(b,a)
and (b, a)g=(a,b)
Let W : AxB—>A®B and ® : BxA-=B® A be tensor maps

and we therefore have the following diagram :

A xR ~ = A® B
W A

/

g

S|

l
|
|
BxA = B®AN
.
L f
|

|

AxB S = AR B

[
f and g! are homomorphisms whose existences are assured by

the bilinearity of the compositions f @ and g§. Now fg 1s the
i1dentity map of AxB , hence f’g' 1s the i1dentity of A® B ;

similarly g’f, is the i1dentity of B@Q A, thus AQB=B®A , qg.e.d.

The following will give us now a set of generators for the tensor
product of two groups, the sets of generators of the latter being known :

Lemma 2« 4 If Aj1s a set of generators for A and B,a set for B, then

io(@’; \ote A, and (seBo.ﬁ forms a set of generators for A® B.
Proof: -We know already (page 4) that any element of F(Ax B)
may be written as \z\j‘. N (a,b )Y, where N\.e Z and
(aL,bL)VG(AxB)\P , and at the same time the set
1 :'{(a,b)‘l) (a(-A R beB}generates F(AxB). Then since 1
the natural map, is onto , {-(a,b)\{jv‘ \ a€A, beB}:ia@b‘aeA,beB%

e e /generates



generates A®B, Now acA implies a= J T, a_, $.<Z and
a A, ; similarly be B implies b = 2 S,b, , S,¢Z and beB,,

Thus the bilinearity of the tensor product implies

io{@fs \cxer and R;e Bog generatesi a®b ‘aeA ,beBg s Qs €eda

We can now prove some easy lemmas based mainly on the
bilinearity intrinsic to the tensor product.

Lemma 2« 5 (a) If either a=0 or b=0, then a@b=0, the neutral element

of the group A® B,
Proof: Assume a=0 ; then a=at+a and
a®b=(a+a)@db=a®b+a®b , hence a®b=0, Similarly b=0 implies

a.®b'=- 0 ? q- (51 dn

2«5 (b) (sa)®b==(a®b)=a®(=b) for any acA, beB,
Proof : (=a)@bta®b=(a=a)®b=0 , thus (ea)®b=e{a®b) ;
similarly a®@(eb)=e(a® b) , g.e.d.

Corollary : a®b=(ea)®(=b)
2e5(c) na®@b=n(a® b)=a®nb for any necZ , acA and beB,

Proof :; By induction,

CHAPTER 3 : The Tensor Product of Finitely Generated Groups

In this chapter we shall determine the structure of the tensor
product of two finitely generated groups. The concept of a direct sum of

Abelian groups will be used extensively and therefore a workable definition

will first be formulated.

Definition 3 «1 ILet H be a set and for eachxe H , let B, be a group.

By the direct sum of the B, , for which we write 2 B, or
ole

B®B® " ®B®" , we mean the following :
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P B.= {f : H—-VO‘\kJHB,‘ \ xfe B, and «f#0 for at most fimitely

e

many Xe H} where addition of elements 1s performed

as follows _: let f and f, & b3y By ; then f + f : H—+=VU B, 1s
X ! 2 e

€H

defined by . OL(f|+ f)=of, +of, .

-

This defimition covers the internal concept of a direct sum 1n which

a group G 1s said.to be the direct sum of subgroups B, i1f ge G implies
g= 2, b, where b e B, and such a representation 1s unique. The first man

theorem, which we shall use extensively throughout this paper, 1s of interest

in its own right : o

Theorem 3 - 2 Let A be any group and let B= 5" B, be a direct sum :
oleH

then A®B £ J." (A®B) .
et

Proof : Consider the following diagram

AXB = R@ BB
A ’ ‘?Y $
P L
=1°* gy o A@ 2.6‘(
g xfe.& B« \.P lc(ew
A #
i) e
> RoB

where B/g, ~By are direct summands of «TL:B“ and the maps
&

CP/, y P, kT) are the appropriate tensor maps. The maps

i/,and pyare defined as follows :



1, : AxB,—»A x 3°B_ where (a,b)l,=(a,f;)
p 2 B G

P

andi/?f,, b
d f5 <0

?,: A

and f € 2\°B,. It is clear then that the compositions i’(‘ ¥ and
oleEr

nov

% for all acA beB(s.
1f oL#p

x 2 B, AxBywhere (a, f)§,= (a, ¥f) for all ac A
odent

Py Uf)x are bilinear so the maps Mo andv)K indicated on the
diagram do exist and are in fact homomorphisms, so that
'.1(5“) =\P[3/4p and Fs@x = \‘) V’\( . Thus (a® b)[(A{; = a@f{;
for acA and be By and also (a® flyy = a®b for f e 3B,

oler
arbitrary except that (Bf =b, Next consider the map

h: 2'A®B)>A & 3’ B,defined as follows : let £¢3'(A® B)
o er oLer| et

be an element such that(’ fz)tp €A x BF for allpeH ; then let

fh = ?:_'\ Xe Mp s WhereF ranges over those elements of H ’
such that g £¥0 ; the sum is thus finite. (N. B, hisa
homomorphism ; the fact that (f‘-y- f,) h=fh+fh is clear

from the definition, as 1s the fact that Oh= 0) Now it 1s

evident that A ® J\° B, is generated by :

e
i a@f \ acA andf e 2'B,< where f has the form : for some

ol

rbc:H and bc—BF ¥ f= b ifor=p for allwe H% Thus h 1s onto
= 0 afottp

A ® Z'Bx , so for the desired i1somorphism we need only show
e
ker (h)=0. Suppose, then, that "f«,h‘.-- 0= % Xp/hp ; but7Y1s a
homomorphism for any {¢ H, and thus ( 2} % )= 0 also.
5 Xp el ]

However, we know from construction that

identity of Ax B(,) if p=

\

annihilator of BP component if (51:!

identity of A® B if (5:‘6

" and thus =
M zero map of A®B

’ if /5*24
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-
Therefore ( X XPIM(' )rh = 0= 2 x’,/u,,, Ny
It ¢
= Xy py gy = Xy
and we conclude h 1s an isomorphism , q.e.d,

Corollary 3«3 2 A, ® J'B, & I (A® By)

) fed et
pc-r
Now let G be a finitely generated group ; then 1t 1s well known that
G¥T®F where T 1s the torsion subgroup of G and F is torsion free.
With this information, then, we know that : G®G, =
(TO E)® (TEE)S(TRT)D(T® E)® (FERT)D (F®E) where G, G, are

finitely generated groups and G =T &) F describes the decomposition

into torsion and torsion free summands,

To completely describe the tensor product we must analyze each
of the four direct summands above ; the second and third are essentially
the same (A® B2 B® A) so that it remains to examine three classes of
tensor products, The first class 1s merely the restricted case where
finitely generated is replaced with finite, since finitely generated torsion

and finite are synonomous.

Definition 3 « 4 A torsion group T 1s called a p = group 1f every

ol
element has order p for some«eZ , where p 1s a prume,

There 1s the basic theorem for the decomposition of an arbitrary
torsion group into its p = subgroups as follows :

Theorem 3 = 5 A torsion group T 1s isomorphic to the direct sum of

its p » subgroups, where p ranges over all primes,
Proof : Let T, ={teTt t has order p* , somexe Z.f.

Then TPE T 1s a subgroup , for if a, be Tp then puaz pﬁb= 0

for somed , (;(-Z whence pm\x(o"e)

(a=b) 20, Now Tp N 2, Tq=0
q+P

simce any element of this intersection must have orders P, and P, »
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two relatively prime numbers and the neutral element 1s the
only such element, Thus the sum 2 T, is direct and to

P
complete theorem 3 = 5 we need the following :

Lemma 3«6 LetxeT have order n=ngn,-«w -n,where the n,

are relatively prime in pairs ; then X has a representation as
X=X 4 X,+w X, Where (order x;)= n{,
Proof: We prove the lemma for the case k=2,
the induction to general k being easy. We then
know there exist integers a,b such that an +bn,=1
and hence x = anx~+bn,x . If we let x,= bn,x and
x,=anx then it is easily seen that (order x )= n:
‘ /
and (order x,)=n, , where n‘| n, and n’I_lnz s
(s \t means, as usual, t=ss for some s,) and also
that x=x+x, . But n'| n',_ X =nn.x +n n,x,=0 which
implies n n,| n/n, , and thus n=n! and n,=n!, q.e.d.
Now any xe¢T must have order n=p?' . p:". . p:“ where k,a, €eZ
R
so by the lemma there exist x AR x€T such that x = S Xy,

[ea ]

x, e Tp , and the theorem is proved.

L

Let Ty and T, be as before ; then T® T, = S‘.Tr" ® 2‘ T{
where each T", and To: is a prime p egroup and q = group respectively,
Hence by corollary 3 =3 T, T, = 27 (T, ® T ). The following lemma
will enable us to eliminate many of the cross tensor products in this

expression @

Lemma 3«7 IfAisap=group and B is a q - group for p+q primes ,

then A®B= 0,
Proof : Consider a generator of A® B of the form a®b,any

acA , beB, Since A®B 1s generated byi a®b| acA, beBg
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it suffices to show that a®b=0 ; but p- a = q"b=0 for some
<, (36: Z and since p" and q‘; have g.c.d. equal to 1, there
ex1ist integers s, t such that sp*+tq®=1. Then
a®b= (sp*+ tq") (a®b)
= (sp*+ t¢®) a®b
= tqpa@)b

:a@tq‘zb =0 , q.e.d.

Therefore, in the tensor product 2' (T; ® T{q) =TT,

we need consider only those summands of the form T;,@ T; for the

same prime p . Now each finite p = group may be written as a direct

sum of cyclic groups of order p* , say T(: QE‘C;}. , L=1, 2, and
thus T:,@ T;’ = E.C:,ﬂ @?JC?;
x 3'..'((:“,(169 Ce).

We shall now prove that any summand of the latter can be further

sumplified

Lemma 3 = 8 C‘,(a@ C\,x B Cemintes) where C p* are cyclic groups of
order p*, p prime.
Proof: Let CP(;=<a> and Cpz=<b>and assume without loss

of generality that /3< ¥ ., Consider the following diagram
CP(‘
£ )
 h
|
|

CF@ XCPa \T) L\_Cr(s@C_()x

where f Cpsx C‘,,—> C‘,(, 1s defined by (na, mb)f =nma ,
n,mes .
Then (1) fis well defined : suppose n.=zn (r@)

and m =z m (P¥)

i,e. n=n+ sr"and m‘=m1-tpx for some s,teZ,



a]_4 @

Then (na, mb)f=nm a= (n«-spo)(m«r tﬁ‘) a
= (nm+ ntpf + smp®+ stp’p¥) a
=nma (p%)
N.B., If we had defined f ! : CP(;% C(,, —» C‘)x in the same
fashion , the map f ’would not be well defined here!
(2) £ is bilinear : (na+n’a, mb)f = ((nm'ya, mb)f
=(n+n') m a

1}
= nma ¢+ n ma

(na, mb)f+(n’a, mb)f
Similarly, (na, mb+m'b)f= (na, mb)f+(na, m’b) f and thus the
homomorphism h : CPf;@ Cpt = Cop exists.

We must show now (1) his onto : clear , since (na,b)h=na,

a general element of C ,

(2) h1s one to one : Let T‘ (nta®m;b)

=t

represent an arbitrary element of CP9® C,s but then

e ;

= 3 ”
- _ N
Z_“ n‘a®mtb = 2:a® nmb=a® Z_' nm;b

= Na@b , some NeZ
Suppose therefore (Na@b)h = 0 = Na ; hence

NzO0 (pl’) and Na®b =0, and h 1s an isomorphism, q.e.d.

We finally have, then, T,® T, x —21.' T;, & 2.'1';

14

L(ne 1)

20 (T, ® T)

e

= 2.((:‘90@ C;x )

11¢

e
2( C(,u i, e, a finite direct sum

of cyclic groups of prime power order,

The second class of tensor product to examine is of the form
T;@ FJ , '\,,:)zl, 2, 'L?:) . Now any finitely generated torsion free group

.../may be
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may be represented as a finite direct sum of copies of the integers,
and thus TOFE, = T,® %°Z & 2,'(T;:®2. We need at this point the
following lemma

Lemma 3« 9 G® Z = G for any group G.

Proof : We may again prove this by the basic lifting

property of the tensor product ; consider the following

diagram : Gx Z, — G Z
¥ b

{,

|

|

|

|

G =
A

|

!

i

:
I
{, ﬁ‘
Gx2z v =QG®Z

where f : GxZ~-—»>G 1s defined by (g, n)f, = ng and
f,: G-»GxZ by gf,=(g,1) , & 1s the tensor map and
I * G~G 1s the identity map. Now the existence of
the homomorphisms If‘, f, 1s assured by the bilinearity of
the composites f, I and f,¥ . Let (g,n)¢GxZ ; then
(g, n)f, f,=(ng,1} so that (g®n) %,f,_:ng@ l= g®n, Hence f‘ fz
1s the i1dentity of G® Z and similarly %zf‘ the identity of G,
which shows G® Z = G, q.e.d.
We have now, then, that T®F, = T, & pIRY
x 3. 2)

= A'T,

The final class was typified by F.QO F, , the tensor product of
two finitely generated torsion free groups, which can now easily be ex=

pressed as Z'Z ®2.Z

t”
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= 2 (z® 2)

>~ 2z

We have thus shown that the tensor product of two finitely gen~
erated groups can be expressed as a direct sum of cyclic groups. The
latter may be explicitly calculated by determining the decomposition

factors of the two given groups.

CHAPTER 4 : Structure Theory to Date of A®B for Arbitrary Groups

We now turn to the examaination of the structure of the tensor
product of two groups at least one of which 1s a torsion group (not

necessarily finitely generated).

§ I, Let us first deal with the case of two torsion groups. By
Corollary 3 = 3 and Theorem 3 « 5, there is no restriction of gen=
erality in con51der1né the tensor product of two p @ groups, and, in fact,
p = groups for the same prime p, by Lemma 3 =« 7 , However, we are
not restricting ourselves to finitely generated groups, so that we may not,
in general, represent them as direct sums of cyclic groups., To circume
vent this problem we introduce the concept of a basic subgroup which is,
amongst other things, the direct sum of cyclic groups, and prove events
ually that the tensor product of two p = groups 1s essentially the tensor

product of their respective basic subgroups,

Definition 4 - 1 A subgroup G, of a group G is said to be a

pure subgroup i1f x¢G, and x=nx, for some x,¢ G and neZ , then
xX=nxX, for some x,e G, ; symbolically we may express this by

the equation nG,= GAnG.
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Definition 4 « 2 A group G 1s divisible if for every xe G and

neZ , x=nx, for some x,€G.

Definition 4 « 3 A subgroup B of G is said to be a BASIC

subgroup if the following three conditions are satisfied
(I) B is a direct sum of cyclic groups.
(2) B is a pure subgroup of G,

(3) The factor group G/B is divisible.

A fundamental theorem for basic subgroups of p =« groups is the
following of Kulikov ; the proof will only be sketched here and it may be

found in detail in Fuchs, Abelian Groups, Chapter 5.

Theorem 4 « 4 Every p = group contains a basic subgroup.

Proof : A pure independent subset { X’“‘ixe/\’ that 1s an
independent subset which generates a pure subgroup of G,
exists and may be extended to a maximal set 1n G by Zorn's
lemma. Then if B is the subgroup generated by the maximal
pure independent set {xxixﬂ\_ , (2) in the above definition is
true and (1) 1s an easy consequence of independence , (3)

requires the maximality of the independent set {xx}

e A °

Now if A, and B, are subgroups of A and B respectively then it
1s not generally true that A, ® B, forms a subgroup of A®B but merely
that the subgroup of A®B generated by { a® b\ aeA‘,beB‘g 1s a homoe
morphic 1mage of A/® B,, If, however, A, and B, are pure subgroups
we have the following

Theorem 4 = 5 If A and B, are pure subgroups of A and B respect=

ively then the subgroup 0[ of A®B generated by the set{ a® blaeA‘ s bc—B.g

is isomorphic to A ®B,.
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Proof : Consider the diagram

A xB, o L\A|® 8,

where (a,,b,)f=2a,®b, , then h 1s a homomorphism such
that f =P$h . Thus we need to show that if an element

)

2 a®b, a.eA, ,beB, , of A® B vanishes then 1t also

iz

vanishes as an element of A ® B,. We need the following

[
Lemma 4 =« 6 If 3, a ®b =0 1n A®B then there exist

a, @b,

Mis

finitely generated subgroups A% and B* such that

(&

]

t

vanishes as an element of A*® B* ,
Proof : ?%'_‘\ a,®b =0 only if :5;. (a,b)¥ belongs
to the subgroup ) generated by elements of the
form (1) (a,+ a,,b)¥ =(a,,b)¥ =(a,,b)¥
and (2) (a,bab,)¥ =(a,b)¥ =(a,b,)W¥.
Define A% to be the subgroup of A generated by
a,,a,, --- , a, and all a, occurring in the expression

La)

of 2‘ (a;,b,) Y by means of elements of the forms
(1) and (2) above. Describing B* similarly, we have
the desired results,
We can now see that -2‘1_\‘_‘ a,®b, vanishes as an element of
A @ﬁ where A is that subgroup of A generated by the pure
subgroup A, and the finitely generated subgroup A% (]AS is
defined analagously) ; but it 1s known that since A% and B*
are finitely generated and A, and B, are pure, the latter are

A
direct summands ofA and B and hence by Corollary 3 « 3

n
2, a,® b, vanishes as an element of A ® B, , q.e.d,

L=t
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Thus A ® B, may be considered a subgroup of A®@ B and this

. prepares us to prove the following

Theorem 4-7 If A, and B, are basic subgroups of the p- groups A

and B, then A® B, = A®B.
Proof : Since A® B & A®B we need only show any element
of A@B of the form a®b belongs to A ®B, . Now ae A implies
a=azt phx where aje A , keZ and xeA , since A/A, divisible
implies az px (mod A)) ; stmilarly b=1b+ ply , where
b,e B, Rez | y€ B. Now choosing p\??_(order b) and
pﬂz(order a,) we have a®b= (a, + phx)®b= a,®b
=‘a, Q@ (b,+ py)
=a ®b,
This shows A®B < A ® B, and the proof 1s complete.
We are now 1n a position to prove the main theorem of tensor products
for two torsion groups

Theorem 4 - 8 The tensor product of two torsion groups 1s a direct

sum of prime power order cyclic groups.
Proof : DBy the last theorem 1t suffices to prove the proposition
for the tensor product of the basic subgroups of two p - groups ,
but these are direct sums of cyclic groups and thus by Corollary 3-3

and Lemma 3-8 the statement of the theorem 1s true.

§2. The case when one of the factors 1s a torsion group and the

other 1s torsion free we shall examine now. Again we may assume the

torsion group T 1s a p- group, and let F be any torsion free group,
l.e. for any geF , ng=0 implhies n=0 , neZ . Choose a maximal independent

set in F modulo pF , say}x,\k“_}\_

Lemma 4 - 9 Sucha set {,XJ forms a basis of F modulo p'F

e A

n=1,2,3,---
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Proof : First if {x;( 1s a maximal independent set in F/pF
then for any xeF, x¢pF we must have

mx+n X+ 0,3+ +nx =0 (mod pF) for m,n_e Z not all zero.
Now p‘m implies i nx = 0 {mod pF) and not all n_ zero, which

o=

contradicts the independence of the x _, hence (p,m)=1and there

exist integers a,b such that ap+bm=1. But bmx = n:x‘+ T n:xt(mod pF)
and bmx =(l-ap)x = x (mod pF) and thus x=n/x+ - + n;x4° (mod pF).
Consider an element y(—.p‘zF , yfpk”F. We have then that y:p‘f,

f€F but f{¢pF and thus f = i‘ n x, (mod pF) which implies y= é m X,
(mod p\M F). Note also that 1f an element y of F has finite height k

then y has a representation ys= 2 m;xx (mod p'QF) for arbltrarylﬂ(,

S
for let y= ?, m,x, (mod pkﬂF) be the representation already proved.

5
Then suppose , without loss of generality, that y - 2, mxx&_ ph"F.
AsL

s t
= Re2
But then (y - g: mx ) - ;‘ nx, ep F for some n,€Z, thus

y - :2_;‘ m’xx» = 0 (mod p\mF) and 1n general the congruence

v - 2 mx, =0 (mod pKF) 1s solvable for arbitraryf>k, q.e.d.

Consider now any teT and any x€F of height k. Note that if fe F
has infinite height (1.e. p"’f for every ne Z) then t®f =0. There exists

the relation x=nx+ - +nx + p’Qf for x;e {xx} and arbitrarily large QeZ ,

choosing plz(order t) we obtain

S
tox = 2, t®ntxt+t®p2f
L=t

5
2t ox, where t = nt

=it

We see therefore that an arbitrary element of T®F , being a fimite sum

of generators of the form t®x , may be written also as a finite sum 2, t &x_

=t
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for te T and different x selected from the independent set {X*i R
pX 3

since addition in the generators may be carried out on the t e T.

Suppose next that a sum such as 2, t ® x, vanishes as an element

[

of T® F. We shall show that this implies t =0, 1=1,. ,n , and a general
element of T®F may be expressed as an element of a direct sum of

copies of T. By Lemma 4 - 6 bY t ® x, vanishes also as an element of

L=y

T ®F' where F, 1s finitely generated torsion free and contains x ,.-+,X;

but this means F, 1s a finite direct sum of infinite cyclic groups greater

than or equal to n i1n number. However, X, »X, being independent, F,
/
must contain a direct summand F containing x,, +*+,x, of rank n and then

Al

3. t.® x_must vanish also 1n T®F\/ (Theorem 3 - 2). Suppose, then,

(S 2

F = £av® {a,D>® - ®La,y . This means x; =, m,a, and thus

=1

(2 m,t ®a )= 0 holdin the tensor

=1 1 x4

s

t®x, =% t &% m a,-

=l o=

M

Py
¢

.

L2

A
product T @E/whlch immplies ;2__':. mtst‘e a, =0 ; this in turn, by Lemma
3 - 9 implies 2, m,t =0.

i=

Let A be the matrix (rnu) If A 1s a singular matrix (mod p) then

=t -
’:I - 4y
R,
there exist /i;eZ not all zero such that J, (Lrnt‘)
w, €

:2 (2 p.m,)a = 0(mod p). But i (2 /! rnu)aJ

i

0 (mod p), and therefore

1t

R, [ad 2,
S J _ S
SpEmeed g

Jse (-1 =

%,
and thus 3, p.x.z 0 (mod p). This,however, contradicts the independence

of the x , and hence (p,det A)=1. Let det A= K and the matrix (F'J )H_ ”

“ TR
be defined as K - A_‘ . Now 3, mut‘ = 0 for each )= 1, ,n mmplies
iz
P -);'_.‘ m, t = 0 for eachk=1,+,n which in turn implies
_5:‘ (glh 2:‘| ms“tt =

)
( "2_: m\J FJR )t(«

M EM ©

(K S, )¢,

4
v

n

Kt, =0 which implies t, = 0.
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We have thus proved the following :

Theorem 4 =10 If T 1s a p = group and F 1s torsion free, then

TOF = E'T , where m denotes the rank of the factor group F/pF

A
§ 3 Let us now consider the case when the non=torsion factor
is an arbitrary mixed group M., We may assume the torsion group T 1s
a p e group, and by the following lemma it 1s sufficient to assume the
torsion subgroup of M is a p « group for the same prime p.

Lemma 4 « 1l. Let A, and B, be subgroups of A and B respectively ,

then A o B A A®B_  where (A, B,)SA®B 1s ted by { men| meA
Q= & o B )& generated by m@n| meA_ or
K(c: Bo F(AD)B°) ° neB°‘§
Proof : Letyy: AQB--A®DB be the natural homomorphism,

Y‘ (‘A’ojBo)
Then (a,b)f = (2@ b)vl 1s a bilinear map vanishing whenever

a€ A ,or beB, ; this means f depends only on A and B

— ?
A, B
1.e, T ¢ éxB/__‘bA®B is bilinear , clearly
A, B, T(A,, Bo)
{(a @b)vl aedeh , bel_oeB/ggenerates A®B and thus there
Ao BO V(Ao’ Bo)
exists a homomorphism h from é(@; onto A®B
Ao Bo Y‘(Ao:Bo)
A®R
I (A8
L h
\
AoB ~h el
= = v B,
Kox 6" \P (\0

ie. (a®by= (2,5)¥Y h.
Now ( 2)(,,5)¥)h=0only 1f D a®b e« '(4,,B,) 1e. 3 a@®b,
belongs to the subgroup of A@B generated by all a®@b where either
3=0 or b=0 N,B, ForxeA X denotes the coset x+ A, ,
then certainly D} (5‘,13”)\? = 0 and h 1s indeed an isomorphism

g.e.d.
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)

This lemma shows, using A=T , A_ = § 015 » B=M and B_=(sum of

q - subgroups of M for all primes q+p) , that T® M/B, £ T®M ,since

" (Aa,,B,) = {Oi , and M/B, has only a p - group as torsion subgroup.

We now state and prove the main theorem of this section :

Theorem 4 - 12 Let T be a p - group and M a mixed group whose tor-

sion subgroup Mgy1s a p - group. Let B be a basic subgroup of T which 1s

represented by 3 2
m‘

=t

C(pl) where C(p:) are prime power order cyclic groups.
g . ™M
Then T®M & X2 T/pT ® X' T ,where ' denotes the rank of M/y/)

I r P( ™My

Proof : Let {ax}xeA be a basis of the basic subgroup B and
{iﬁ}/\e

1s a basis of T/ka for every k2l , since T/'B divisible implies

Ma,
ny be a maximal independent set 1n m\ . Then {ax}x.eA

t= pktk* b for any keZ and some beB ; also{if‘})‘mls a basis of
™
%‘3 for every kz1l as we know from § 2. Hence 1f x/“e ;‘;u

1s an arbitrary element for allf.te N, then the set {ax,x*} e A

MeN
forms a basis for M/pkM for allkzl. Agam, as 1n§ 2 , we need

only consider elements of M of finite height k, so 1f ve M 1s such

an element there exists the equation :
S L
v= 2, ma, + 2, nx,t pnv',where m_, n/“eZ and >k 1s arbitrary

g X Mo M M
m Z, and veM. Choosing L appropriately large , we have :
tov-Stoma,+ 3 tonx.rtepv’
Q =
=2t ®a, v+2 tf.@X}.
Thus again an arbitrary element of T® M may be written as

S, t,®a, +32 t/h®x)u since addition may be carried out on the

t, and t,, using the bilinearity of the tensor product. We must

show that such an element of T® M may be written as an element

w (]
of a direct sum, 1.e. 1f§'\t>‘® a, * M

t®x = 0 then each summand
A=) ,h:- f »

vanishes also. But any finite direct summand of B , <a>® »+ ®a. 9,

1s a direct summand also of M since
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B S M ;say M= <a.‘>® @ <any® M'; by the choice of the § a}s
and {X/‘}S , MI may be assumed to contamn x , » ,x,. Therefore
by Lemma 3 - 2 each t,®a, =0 and from §2 t/“® Xp = 0 and
thus f,f 0 for each/“ . The above shows that |
TOM ¥ E,A(T ® (a,>)® —%.T . We give the following lemma
which completes the proof of Theorem 4 - 12 , since the <a, >

are finite cyclic groups :

Lemma 4 - 13 If C(n) represents a cyclic group of order n' and

V 1s any group, then C(n)®V =V /nV ,

Proof : Consider the diagram

/4

Cny x V —5 C(m@V

Let C(n) =<a>

where f 1s defined as follows : (ka,v)f= kv+ nV for

keZ , veV ., Then f 1s clearly bilinear so that the map h
exists and 1s a homomorphism satisfying f=%h . h 1s
onto all of V/nV , for 1f v+ nV 1s a general element

of V/nV , then (a®@v)h=v+nV ; h 1s one to one for if

?‘ k. a® v, represents an element of C(n)®V such that"
(S ka®v,)h=0, then (a®@ v/ )h =0 (where v'=3 kv eV)
which implies (a,v)¥Ph=0=(a,v')f=v'+ nV ; this 1n turn

implies v'enV , and thus a@v'= 0 and the isomorphism

1s established.

We can now state a corollary of Th2orem 4 - 12 based on the

information derived in § 1l and §2
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Corollary 4 « 14 If T is a torsion group and M a mixed group whose

torsion subgroup is denoted by M, then TeM=TeM _gTOM,
o

§4 In the general case, when we consider the tensor product
of two arbitrary groups, very little can be said., We can,however,
determine the structure of the torsion subgroup of the tensor product
of two arbitrary groups M and N with the knowledge of Lemma 4 = 1l.
Let M and N, be the torsion subgroups of M and N respectively. Now
the fact that the subgroup {*(M,,N,) in M®N is a torsion subgroup is
clear ; the following lemma will show that (° (M,,N,) is the maximal
torsion subgroup of M®N :

Lemma 4 <« 15 A®B is torsion free if both A and B are,

Proof : The proof is clear when it is noted that if a generator
a®b=0, acA, beB, in A®B then a®b=0 also in A®B, where
A, and B, are finitely generated ; the decomposition of finitely
generated torsion free groups into direct sums of infinite

cyclic groups and Lemma 3 = 9 are used for the final result,

We note next that M, and N,are pure subgroups of M and N and thus,
as in Theorem 4 =5, M®N and M®N; form subgroups of M®N ;
they clearly generate [* (M,,Ng}. By the decomposition of M, and N,
into their pesummands we also see that the pecomponent of ) (M,, N,)
is generated by the subgroups MOP®N and M@N‘,?of M®N., It
suffices to consider the case, then, when the torsion subgroups of M

and N are pegroups for the same prime p. The theorem is as follows :

Theorem 4 = 16 Let M and N, the torsion subgroups of two arbitrary

groups M and N, be pegroups for the same prime p; let B= 2' ?;C(p")

\=¢ i
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N M
. Nﬂ Mo
be a basic subgroup of N, and denote the ranks of _>" and —
P(%\ [’(/Mo\

by & and {l respectively. Then the maximal torsion subgroup of

M®N is isomorphic to z' ?;;Mo/p“Mo @Z..MO ® %"No
Proof : The proof parallels that of Theorem 4 - 12 so will not
be given here. It will be noted that the torsion subgroup of M®N
is generated by tensor products of the exact type dealt with in§ 3.

This theorem obviously tells nothing of the tensor product of

two arbitrary torsion free groups , and, indeed, very little of the nature

of this type of tensor product is known to date.
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