THE TENSOR PRODUCT OF TWO ABELIAN GROUPS

by<br>\section*{DAVID MITTON}<br>B.Sc., University of British Columbia, 1964

## A THESIS SUBMITTED $\mathbb{I N}$ PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF <br> MASTER OF ARTS <br> in the Department <br> of <br> MATHEMATICS

We accept this thesis as conforming to the required standard

## ABSTRACT

The concept of a free group is discussed first in Chapter 1 and in Chapter 2 the tensor product of two groups for which we write $A \otimes B$ is defmed by "factoring out" an appropriate subgroup of the free group on the Cartesian product of the two groups. The existence of a un1que homomorph1sm $h: A \otimes B \rightarrow H$ is assured by the existence of a bilinear map $f: A \times B \rightarrow H$, where $H$ is any group (Lemma 2-2) and this property of the tensor product is used extensively throughout the thesis. In Chapter 3 the complete characterization is given for the tensor product of two arbitrary finitely generated groups. In the last chapter we discuss the struce ture of $A \otimes B$ for arbitrary groups. Essentially, the only complete characterizations are for those cases where one of the two groups is torsion. Many theorems from the theory of Abelian Groups are assumed but some considered interesting are proved herein.

In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, l agree that the Library shall make it freely available for reference and study, I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission.

Department of MATHEMATICS
The University of British Columbia Vancouver 8, Canada

Date October, 1965

## TABLE OF CONTENTS

Page
Chapter 1: The Free Abelian Group Over a Set
Chapter 2 : The Tensor Product of Two Groups ..... 5
Chapter 3 : The Tensor Product of Finitely
Generated Groups ..... 8
Chapter 4: Structure Theory to Date of $A \otimes B$ for
Arbitrary Groups

1. Two Torsion Factors ..... 16
2. One Torsion and One Torsion Free
Factor ..... 19
3. An Arbitrary Mixed Group as the
Non- Torsion Factor ..... 22
4. The General Case ..... 25
Bibliography ..... 27

## NOTATION

The following notation will be used throughout this thesis. If $f: S \rightarrow T$ is a function and $s \in S$ (function and map are used interchangeably) then for the image of $s$ under $f$ in $T$ we shall write $s f$; for the image of $S$ under $f$ we write $S f$. If $g: T \rightarrow W$ is another function, then the composition of the functions $f$ and $g$ will be written fg $: S \rightarrow W$. The symbols of set inclusion, $\subseteq$ and $\geq$ and intersection and union, $\cap$ and $U$, are standard, as is the symbol of summation $\sum$. The expression $\langle a\rangle$ will refer to the subgroup generated by the element of a group G. The isomorphism between two groups $A$ and $B$ will be written as $A \cong B$.

## ACKNOW LEDGEMENT

I wish to sincerely thank Dr. R. Westwick for his assistance during the preparation and writing of this thesis. Not only did he suggest the topic for research, but also clarified and simplified many of the theorems used.

I am indebted also to the National Research Council of Canada for financial assistance during the summer of 1965.

The subject of this paper, the tensor product of two Abelian groups, involves intrinsically the concept of a free group (the tensor product in our case might better be termed the "free bilinear product", as by Fuchs) and so this topic will be dealt with first in its own right. In this thesis by group we shall mean Abelian group throughout.

Let $S$ be any set. We say a group $G$ together with a mapping $\psi$ of $S$ into $G$ constitutes a free group on $S$ providing the following condition is satisfied: if $\varphi$ is any other mapping from $S$ into any other group $H$, then there exists a unique homomorphism $h$ of $G$ into $H$ such that the following diagram commutes :


The initial step from this definition would naturally be to show the existence of a free group ( $G, \Psi$ ) for an arbitrary set $S$, but first let us show that if free groups on $S$ do exist, then any two on the same set are equal up to isomorphism :

Lemma $1-1$ Any two free groups on the same set $S$ are isomorphic, in fact, between $(G, \psi)$ and ( $G^{\prime}, \psi^{\prime}$ ) there exists a unique isomorphism $\mathrm{i}: G \rightarrow G$ such that $\psi^{\prime}=\psi i$

Proof: By our defination of $(G, \psi)$ and $\left(G^{\prime}, \psi^{\prime}\right)$ as free groups on $S$ we have the following doubly commutative diagram :


$$
\begin{aligned}
& \text { 1. e. } \psi^{\prime}=\psi h \\
& \text { and } \psi=\psi^{\prime} h^{\prime}
\end{aligned}
$$

Thus ( $\left.\psi^{\prime} h\right) h^{\prime}=\psi^{\prime} h_{h}^{\prime}=\Psi$, but also $\psi_{I_{G}}=\psi$, where $I_{G}$ is the identity map of $G$, and we conclude $h h^{\prime}=I_{G}$. In an entirely analagous fashion, we also find $h^{\prime} h=I_{G^{\prime}}$, and thus $h$ and $h^{\prime}$ are both isomorphisms and $h$ will fit the statement of the lemma,q.e.d.

We shall now show the existence of a free group on arbitrary set $S$ by actually constructing one :

Theorem $1=2$ A free group $(G, \Psi)$ exists for any set $S$.
Proof: Let $Z$ denote the ring of integers and let $F(S)=$
$\{f \mid f: S \rightarrow Z$ and $s f=0$ for all but a finite number of $s \in S\}$ Define $\psi: S \rightarrow F(S)$ by $s \psi=f_{s}$, where $t f_{s}=\delta_{s t}$ (Kroenecker function) for $t \in S$. Then firstly $F(S)$ forms group under the following rule of composition of functions :

$$
s(f+g)=s f+s g \text { where } s \in S, f, g \in F(S)
$$

Associativity and commutativity are trivial under this rule since $Z$ forms a group. Let $f_{0}$ be the zero map on $S$ to $Z$ i.e. $s f_{o}=0$ for all $s \in S$; then $s\left(f+f_{a}\right)=s f+s f_{o}=s f$ for all $s \in S$ and hence $f+f_{o}=f_{o} f=f$ i.e. there exists a neutral element $f_{c} \in F(S)$. For any $f \in F(S)$ define of as follows : $s(-f)=-s f$ for all $s \in S$; then $s(f+(-f))=s f \omega s f=0=s f_{0}$ for all $s \in S$ and hence for any $f \in F(S)$ there exists an inverse element $-f$ such that $f+(-f)=f_{0}$.

We show $(F(S), \Psi)$ is free. Let $H$ be any group and let there be defined a map $\varphi: S \rightarrow H$. If $f \in F(S)$ define a map $h: F(S) \rightarrow H$ as follows : fh $=\sum_{S \in S}(s f)(s \varphi)$ if $f \neq f_{0}$, and $f_{0} h=g_{0}$, the neutral element of $H$. We see then that such an $h$ satisfies the requirement $s \varphi=s \Psi \mathrm{~h}$, and it remains to prove $h$ is in fact a unique homomorphism. Let $f_{1}, f_{2} \in F(S)$; then $\left(f_{1}+f_{2}\right) h=\sum_{s \in S} s\left(f_{1}+f_{2}\right)(s \varphi)$

$$
=\sum_{s \in S}\left(s f_{1}+s f_{2}\right)(s \varphi)
$$

$$
=\sum_{s \in S}\left(s f_{1}\right)(s \varphi)+\sum_{s \in S}\left(s f_{2}\right)(s \varphi) \quad \text { by definition of composition }
$$

in $F(S)$ and by the associativity of the group $H$. To show $h$ is unique suppose there is another homomorphism $h^{\prime}: F(S) \rightarrow H$ such that

$s \varphi=s \psi_{h}=s \psi_{h}^{\prime}$ for all $s \in S$. But then for any $f \in F(S)$ we have :

$$
\begin{aligned}
f h & =\sum_{s \in S}(s f)(s \varphi) \\
& =\sum_{s \in S}(s f)(s \Psi h) \\
& =\sum_{s \in S}(s f)\left(s \Psi h^{\prime}\right) \\
& =\sum_{s \in S}(s f)(s \Psi) h^{\prime} \\
& =f h^{\prime} \quad \text { and we conclude } h=h^{\prime} \text { and thus the pair }
\end{aligned}
$$

$(F(S), \Psi)$ we have constructed forms a free group.

We can now deduce a few easy lemmas to show the actual come position of the group $F(S)$.

Lemma $1-3$ If $(F(S), \psi)$ is a free group on a set $S$, then $\psi$ is an in jection.

Proof: Let $s_{1}$ and $s_{2}$ be elements of $S, s_{1} \neq s_{2}$. Let $f_{s_{1}}: S \rightarrow Z$ be as before, and let $h$ be the homomorphism of $F(S)$ into $Z$ produced by $f_{s_{1}}$, i.e. $f_{s_{1}}=\psi h$. Then we have $s_{1} \psi_{h}=1$

$$
\text { and } s_{2} \psi h=0 ; \text { thus } s_{1} \psi_{\neq s_{2}} \psi
$$

since $h$ is well defined as a homomorphism, q.e.d.

Lemma 1-4 $S \Psi$ forms a set of generators for $F(S)$.
Proof: Let $F^{\prime}(S)$ be the subgroup of $F(S)$ generated by $S \psi$. Let $\psi^{\prime}$ be the map of $S \rightarrow F^{\prime}(S)$ such that $s \psi^{\prime}=s \psi$ for all $s \in S$. Then there is an $f: F(S) \rightarrow F^{\prime}(S)$ such that $\psi_{f}=\psi^{\prime}$. Let $g: F^{\prime}(S) \rightarrow F(S)$ be the injection such that $\mathrm{xg}=\mathrm{x}$ for all $\mathrm{x} \in \mathrm{F}^{\prime}(\mathrm{S})$. We have then the diagram :


Then $f g: F(S) \rightarrow F(S)$ and $s \Psi_{f g}=s \psi_{f}=s \psi^{\prime}=s \psi$ for all $s \in S$. Hence fig is the identity on $F(S)$ and therefore $g$ is onto, and so

$$
F^{\prime}(S)=F(S), \quad \text { q.e.d. }
$$

Recalling the construction of the unique homomorphism connected with a free group, we can now, in fact, represent any element of $F(S)$ in terms of the generators, $f_{s} \in S \Psi: \quad f h=\sum_{s \in S}(s f)(s \varphi)$

$$
\begin{aligned}
& =\sum_{s \in S}(s f)(s \psi h) \\
& =\sum_{s \in S}(s f)(s \psi) h
\end{aligned}
$$

and thus $f=\sum_{S \in S}(s f)(s \psi) \equiv \sum_{s \in S}(s f)\left(f_{S}\right)$. Indeed, for $t \in S$ we have $t \sum_{s \in S}(s f)\left(f_{s}\right)=\sum_{S \in S}(s f)\left(t f_{s}\right)$

$$
=(t f)\left(t f_{t}\right)=t f
$$

Now suppose $\sum_{s \in S} \mu_{s} f_{s}=f_{0}, \mu_{s} \in Z, f_{s} \in S \psi$, and $t \in S$ is arbitrary ;

$$
\begin{aligned}
& \text { then } t \sum_{s \in S} \mu_{s} f_{s}=0 \\
& \Rightarrow \sum_{s \in S} \mu_{s}\left(t f_{s}\right)=0 \\
& \Rightarrow \mu_{t}=0
\end{aligned}
$$

Thus there exist no relations between the generators of $F(S)$, and hence the use of the word "free" to describe (F(S), $\Psi$ ). As an example of a free
group we might cite the direct sum of an arbitrary number of infinite cyclic groups, which clearly forms a free group over the index set of the direct sum.

CHAPTER 2: The Tensor Product of Two Groups

Let $A$ and $B$ be two groups, let $S=A \times B$ be their Cartesian product and let the pair $(F(A \times B), \Psi)$ be a free group over $A \times B$. We then define the tensor product of $A$ and $B$ as follows. In $F(A \times B)$ we can consider elements of the form :
(1) $\left(a_{1}+a_{2}, b\right) \psi-\left(a_{1}, b\right) \psi-\left(a_{2}, b\right) \psi$
(2) $\left(a, b_{1}+b_{2}\right) \Psi-\left(a, b_{1}\right) \Psi-\left(a, b_{2}\right) \Psi \quad$ where $a_{1}, a_{2} \in A$
and $b_{1}, b_{2} \in B$. Let $\Omega$ denote the subgroup of $F(A \times B)$ generated by the set of elements of the form (1) and (2) ; we now define the Tensor Product of $A$ and $B$ to be the factor group $\frac{F(A \times B)}{\Omega}$, for which we write $A \otimes B$. The map $\bar{\psi}: A \times B \rightarrow \frac{F(A \times B)}{\Omega}$ given by the composition of the maps $\psi: A \times B \rightarrow F(A \times B)$, the free map, and $\eta: F(A \times B) \rightarrow \frac{F(A \times B)}{\Omega}$, the natural homomorphism, is called the free bilinear map, or the tensor map ; for $(a, b) \bar{\psi}$ we write $a \otimes b$.

Definition 2-1 A map $f: S_{1} \times S_{2} \rightarrow T$ from the Cartesian product of any two groups $S_{1}$ and $S_{2}$ into a third, $T$, (all groups having the law of composition denoted by + ) is called bilinear if $\left(s_{11}+s_{12}, s_{21}\right) f^{\prime}=\left(s_{11}, s_{21}\right) f+\left(s_{12},-s_{21}\right) f$ and $\left(s_{11}, s_{21}+s_{22}\right) f=\left(s_{11}, s_{21}\right) f+\left(s_{11}, s_{22}\right) f$ for all $s_{11}, s_{12} \in S_{1}$, and $s_{21}, s_{22} \in S_{2}$.

Clearly the tensor map $\bar{\Psi}: A \times B \rightarrow A \otimes B$ is bilinear since by (1) $\left(a_{1}+a_{2}, b\right) \bar{\psi}-\left(a_{1}, b\right) \psi-\left(a_{2}, b\right) \bar{\psi}=0 \quad\left(\right.$ or $\left.\left(a_{1}+a_{2}\right) \otimes b=a_{1} \otimes b+a_{2} \otimes b\right)$ and by (2) $\left(a, b_{1}+b_{2}\right) \bar{\psi}-\left(a, b_{1}\right) \bar{\psi}-\left(a, b_{2}\right) \bar{\Psi}=0$ (or $\left.a \otimes\left(b_{1}+b_{2}\right)=a \otimes q+a \otimes b_{2}\right)$.

Lemma 2-2 Let $f: A \times B \rightarrow H$ be a bilinear map from the Cartesian product of two groups $A$ and $B$ to a group $H$. Then $\operatorname{lf}^{\prime} \bar{\psi}: A \times B \rightarrow A \otimes B$ is the tensor map, there exists a unique homomorphism $h: A \otimes B \rightarrow H$ such that the following diagram commutes :


Proof: Let $(F(A \times B), \Psi)$ be a free group on $A \times B$ and let $h^{\prime}: F(A \times B) \rightarrow H$ be the unique homomorphism associated with $(F(A \times B), \psi)$ and the map $f$;


Then, $f$ being bilinear, we have $\left(a+a^{\prime}, b\right) f-(a, b) f-\left(a^{\prime}, b\right) f=0$

$$
\text { and }\left(a, b+b^{\prime}\right) f-(a, b) f-\left(a, b^{\prime}\right) f=0
$$

for all $a, a^{\prime} \in A$ and $b, b^{\prime} \in B$, hence

$$
\left(a+a^{\prime}, b\right) \psi_{h}^{\prime}-(a, b) \psi_{h}^{\prime}-\left(a^{\prime}, b\right) \psi_{h}^{\prime}=0
$$

and $\left(a, b+b^{\prime}\right) \psi_{h^{\prime}}-(a, b) \psi_{h^{\prime}}-\left(a, b^{\prime}\right) \psi_{h^{\prime}}=0$
which implies (ker $h^{\prime}$ ) $\supseteq \Omega$; therefore, if we define, for $f \in F(A \times B),(f+\Omega) h=f h^{\prime}$, where $f+\Omega=f \eta$ the coset of $f$ in $A \otimes B$, we have asserted the existence of a homomorphism h which fits the lemma. The unıqueness of such an h follows from the requirement that the diagram in the lemma should commute, q.e.d.

It is clear from the properties of the free group (Lemma 1-1) that the tensor product $A \otimes B$ is unique up to isomorphism ; we can now also prove the following :

Lemma 2-3 $A \otimes B \cong B \otimes A$ for any groups $A$ and $B$.
Proof: Define the following maps : $f: A \times B \rightarrow B \times A$ and $g: B \times A \rightarrow A \times B$ by $(a, b) f=(b, a)$

$$
\text { and }(b, a) g=(a, b)
$$

Let $\bar{\psi}: A \times B \rightarrow A \otimes B$ and $\bar{\varphi}: B \times A \rightarrow B \otimes A$ be tensor maps and we therefore have the following diagram :

$f^{\prime}$ and $g^{\prime}$ are homomorphisms whose existences are assured by the bilinearity of the compositions $f \bar{\varphi}$ and $g \bar{\Psi}$. Now fg is the 1dentity map of $A \times B$, hence $f^{\prime} g^{\prime}$ is the identity of $A \otimes B$; similarly $g^{\prime} f^{\prime}$ is the identity of $B(\mathbb{X})$, thus $A \otimes B \cong B \otimes A$, q. e. d.

The following will give us now a set of generators for the tensor product of two groups, the sets of generators of the latter being known : Lemma 2-4 If $A_{0}$ is a set of generators for $A$ and $B_{0}$ a set for $B$, then $\left\{\alpha \otimes \beta \mid \alpha \in A_{0}\right.$ and $\left.\beta \in B_{0}\right\}$ forms a set of generators for $A \otimes B$. Proof: We know already (page 4) that any element of $F(A \times B)$ may be written as $\sum_{i=1}^{n} \lambda_{\imath}\left(a_{\imath}, b_{\imath}\right) \psi$, where $\lambda_{\imath} \in Z$ and $\left(a_{\imath}, b_{\imath}\right) \psi \in(A \times B) \psi$, and at the same time the set $7=\{(a, b) \psi \mid a \in A, b \in B\}$ generates $F(A \times B)$. Then since $\eta$, the natural map, is onto,$\{(a, b) \psi \eta \mid a \in A, b \in B\}=\{a \otimes b \mid a \in A, b \in B\}$
generates $A \otimes B$. Now $a \in A$ implies $\dot{a}=\sum \xi_{1}, \xi_{i} \in Z$ and $a_{\iota} \in A_{0}$; similarly $b \in B$ implies $b=\sum \zeta_{\jmath} b_{J}, S_{\jmath} \in Z$ and $b_{\jmath} \in B_{0}$ 。 Thus the bilinearity of the tensor product implies $\left\{\alpha \otimes \beta \mid \alpha \in A_{0}\right.$ and $\left.\beta \in B_{0}\right\}$ generates $\{a \otimes b \mid a \in A, b \in B\}$, q. e. $d_{0}$ We can now prove some easy lemmas based mainly on the bilinearity intrinsic to the tensor product. Lemma 2-5 (a) If either $a=0$ or $b=0$, then $a \otimes b=0$, the neutral element of the group $A \otimes B$.

Proof: Assume $a=0$; then $a=a+a$ and $a \otimes b=(a+a) \otimes b=a \otimes b+a \otimes b$, hence $a \otimes b=0$. Similarly $b=0$ implies $a \otimes b=0$, q. e. $d$.

2-5 (b) $(-a) \otimes b=-(a \otimes b)=a \otimes(-b)$ for any $a \in A, b \in B$.
Proof : $(-a) \otimes b+a \otimes b=(a-a) \otimes b=0$, thus $(\otimes a) \otimes b=-(a \otimes b) ;$ similarly $a \otimes(-b)=(a \otimes b), q . e . d$. Corollary : $a \otimes b=(a) \otimes(-b)$

2 - 5 (c) $n a \otimes b=n(a \otimes b)=a \otimes n b$ for any $n \in Z, a \in A$ and $b \in B$. Proof : By induction.

CHAPTER $3:$ The Tensor Product of Finitely Generated Groups

In this chapter we shall determine the structure of the tensor product of two finitely generated groups. The concept of a direct sum of Abelian groups will be used extensively and therefore a workable definition will first be formulated.

Definition 3 - 1 Let $H$ be a set and for each $\alpha \in H$, let $B_{\alpha}$ be a group. By the direct sum of the $B_{\alpha}$, for which we write $\sum_{\alpha \in H}^{\bullet} B_{\alpha}$ or $B_{1} \oplus \mathrm{~B}_{2} \oplus \cdots \oplus \mathrm{~B}_{n} \oplus \cdots$, we mean the following :

$$
\begin{aligned}
& \sum_{\alpha \in H}^{*} B_{\alpha}=\left\{f: H \rightarrow \bigcup_{\alpha \in H} B_{\alpha} \mid \alpha f \in B_{\alpha} \text { and } \alpha f \neq 0\right. \text { for at most finitely } \\
& \text { many } \alpha \in H\} \text { where addition of elements is performed } \\
& \text { as follows : let } f_{1} \text { and } f_{2} \in \sum_{\alpha \in H}^{*} B_{\alpha} ; \text { then } f_{1}+f_{2}: H \rightarrow U_{\alpha \in H} B_{\alpha} 1 s \\
& \text { defined by . } \alpha\left(f_{1}+f_{2}\right)=\alpha f_{1}+\alpha f_{2} .
\end{aligned}
$$

This definition covers the internal concept of a direct sum in which a group $G$ is said to be the direct sum of subgroups $B_{\alpha}$ if $g \in G$ implies $g=\sum_{i=1}^{n} b_{i}$ where $b_{1} \in B_{l}$ and such a representation is unique. The first main theorem, which we shall use extensively throughout this paper, is of interest in its own right :

Theorem 3-2 Let $A$ be any group and let $B=\sum_{\alpha \in H}^{*} B_{\alpha}$ be a direct sum : then $A \otimes B \cong \sum_{\alpha \in \mathcal{W}}^{\bullet}\left(A \otimes B_{\alpha}\right)$..

Proof : Consider the following diagram :

where $B_{\beta},-B_{\gamma}$ are direct summand of $\sum_{\alpha \in H}^{0} B_{\alpha}$ and the maps $\bar{\Psi}_{\beta}, \bar{\Psi}_{\gamma}, \bar{\psi}$ are the appropriate tensor maps. The maps $i_{\beta}$ and $p_{\gamma}$ are defined as follows:
$\imath_{\beta}: A \times B_{\beta} \rightarrow A \times \sum_{\alpha \in=1}^{70} B_{\alpha}$ where $(a, b) i_{\beta}=\left(a, f_{\beta}\right)$
and $\left\{\begin{array}{ll}\beta f_{\beta}=b & \\ \alpha f_{\beta}=0 & \text { if } \alpha \neq \beta\end{array}\right\} \quad$ for all $a \in A, b \in B_{\beta}$.
$P_{\gamma}: A \times \sum_{\alpha \in H}^{\prime} B_{\alpha} \rightarrow A \times B_{\gamma}$ where $(a, f) P_{\gamma}=(a, \gamma f)$ for all $a \in A$ and $f \in \sum_{\alpha \in H}^{\cdot} \cdot B_{\alpha}$. It is clear then that the compositions $i_{\beta} \bar{\psi}$ and $p_{\gamma} \bar{\psi}_{\gamma}$ are bilinear so the maps $\mu_{\beta}$ and $\eta_{\gamma}$ indicated on the diagram do exist and are in fact homomorphisms, so that $i_{\beta} \bar{\psi}=\bar{\psi}_{\beta} \mu_{\beta}$ and $P_{\gamma} \bar{\psi}_{\gamma}=\bar{\psi} \eta_{\gamma}$. Thus $(a \otimes b) \mu_{\beta}=a \otimes f_{\beta}$ for $a \in A$ and $b \in B_{\beta}$ and also $(a \otimes f) \eta_{\gamma}=a \otimes b$ for $f \in \sum_{\alpha \in H}^{0} B_{\alpha}$ arbitrary except that $\beta f=b$. Next consider the map $h: \sum_{\alpha \in+1}^{\prime \prime}\left(A \otimes B_{\alpha}\right) \rightarrow A \otimes \sum_{\alpha \in+1}^{\bullet} B_{\alpha}$ defined as follows : let $f \in \sum_{\alpha \in-1}^{P}\left(A \otimes B_{\alpha}\right)$ be an element such that $\beta f=x_{\beta} \in A \times B_{\beta}$ for all $\beta \in H$; then let fh $=\sum_{\beta} x_{\beta} \mu_{\beta}$, where $\beta$ ranges over those elements of $H$ such that $\beta \mathrm{f} \neq 0$; the sum is thus finite. (N.B. his a homomorphism ; the fact that $\left(f_{1}+f_{2}\right) h=f_{1} h+f_{2} h$ is clear from the definition, as is the fact that $0 h=0$ ). Now it is evident that $A \otimes \sum_{\alpha \in H}^{\bullet} B_{\alpha}$ is generated by :


$A \otimes \sum_{\alpha \in H}{ }^{\prime} B_{\alpha}$, so for the desired isomorphism we need only show ker $(h)=0$. Suppose, then, that ${ }^{f} f_{\uparrow}{ }^{\wedge}=0=\sum_{\beta} X_{\beta} \mu_{\beta}$; but $\eta_{\gamma}{ }^{1 s}$ a homomorphism for any $\gamma \in H$, and thus $\left(\sum_{\beta} x_{\beta} \mu_{\beta}\right) \eta_{\gamma}=0$ also. However, we know from construction that :

$$
\begin{aligned}
& i_{\beta} p_{\gamma}=\left\{\begin{array}{l}
\text { identity of } A \times B_{\beta} \text { if } \beta=\gamma \\
\text { annihilator of } B_{\beta} \text { component if } \beta \neq \gamma
\end{array}\right. \\
& \mu_{\beta} \eta_{\gamma}=\left\{\begin{array}{l}
\text { identity of } A \otimes B_{\beta} \text { if } \beta=\gamma \\
\text { zero map of } A \otimes B_{\beta} \text { if } \beta \neq \gamma
\end{array}\right.
\end{aligned}
$$

Therefore $\left(\sum_{\beta} x_{\beta} \mu_{\beta}\right) \eta_{\gamma}=0=\sum_{\beta} x_{\beta} \mu_{\beta} \eta_{\gamma}$

$$
=x_{\gamma} \mu_{\gamma} \eta_{\gamma}=x_{\gamma}
$$

and we conclude $h$ is an isomorphism , q.e.d.

Corollary 3-3 $\sum_{\alpha \in+1}^{0} A_{\alpha} \otimes \sum_{\beta \in J}^{0} B_{\beta} \cong \sum_{\substack{\alpha \in+1 \\ \beta \in J}}^{0}\left(A_{\alpha} \otimes B_{\beta}\right)$
Now let G be a finitely generated group; then it 1 s well known that $G \cong T \oplus F$ where $T$ is the torsion subgroup of $G$ and $F$ is torsion free. With this information, then, we know that : $G_{1} \otimes G_{2} \cong$ $\left(T \oplus F_{1}\right) \otimes\left(T_{2} \oplus F_{2}\right) \cong\left(T_{1} \otimes T_{2}\right) \oplus\left(T_{1} \otimes F_{2}\right) \oplus\left(F_{1} \otimes T_{2}\right) \oplus\left(F_{1} \otimes F_{2}\right)$ where $G_{1}, G_{2}$ are finitely generated groups and $G_{\downarrow} \cong T_{\downarrow} \uplus F_{\checkmark}$ describes the decomposition into torsion and torsion free summands.

To completely describe the tensor product we must analyze each of the four direct summands above; the second and third are essentally the same $(A \otimes B \cong B \otimes A)$ so that it remains to examine three classes of tensor products. The first class is merely the restricted case where finitely generated is replaced with finite, since finitely generated torsion and finite are synonomous.

Definition 3-4 A torsion group T is called a p-group of every element has order $p^{\alpha}$ for some $\alpha \in Z$, where $p$ is a prime.

There is the basic theorem for the decomposition of an arbitrary torsion group into its p - subgroups as follows :

Theorem 3-5 A torsion group $T$ is isomorphic to the direct sum of its $p$ - subgroups, where $p$ ranges over all primes.

Proof: Let $T_{p}=\left\{t \in T \mid t\right.$ has order $p^{\alpha}$, some $\left.\alpha \in Z\right\}$. Then $T_{p} \subseteq T$ is a subgroup, for if $a, b \in T_{p}$ then $p^{\alpha} a=p^{\beta} b=0$. for some $\alpha, \beta \in Z$ whence $p^{\max (\alpha, \beta)}(a-b)=0$. Now $T_{p} \cap \sum_{q \neq p} T_{q}=0$ since any element of this intersection must have orders $p_{1}$ and $p_{2}$,
two relatively prime numbers and the neutral element is the only such element. Thus the sum $\sum_{p} T_{p}$ is direct and to complete theorem 3-5 we need the following : Lemma 3-6 Let $x \in T$ have order $n=n_{1} \cdot n_{2} \cdot \ldots \cdot n_{n}$ where the $n_{1}$ are relatively prime in pairs ; then $x$ has a representation as $x=x_{1}+x_{2}+\cdots+x_{k}$ where (order $\left.x_{i}\right)=n_{i}$,

Proof: We prove the lemma for the case $k=2$, the induction to general $k$ being easy. We then know there exist integers $a, b$ such that $a n_{1}+b n_{2}=1$ and hence $x=a n_{1} x+b n_{2} x$. If we let $x_{1}=b n_{2} x$ and $x_{2}=a n_{1} x$ then it is easily seen that (order $\left.x_{1}\right)=n_{1}^{\prime}$ and (order $x_{2}$ ) $=n_{2}^{\prime}$, where $n_{1}^{\prime} \mid n_{1}$ and $n_{2}^{\prime} \mid n_{2}$, ( $s$ |t means, as usual, $t=s s_{1}$ for some $s_{1}$ ) and also that $x=x_{1}+x_{2}$. But $n_{1}^{\prime} n_{2}^{\prime} x=n_{1}^{\prime} n_{2}^{\prime} x_{1}+n_{1}^{\prime} n_{2}^{\prime} x_{2}=0$ which implies $n_{1} n_{2} \mid n_{1}^{\prime} n_{2}^{\prime}$, and thus $n_{1}=n_{1}^{\prime}$ and $n_{2}=n_{2}^{\prime}$, q.e.d. Now any $x \in T$ must have order $n=p_{1}^{a_{1}} \cdot p_{2}^{a_{2}} \cdot \ldots \cdot p_{k}^{a_{k x}}$ where $k, a_{1} \in Z$ so by the lemma there exist $x_{1}, \cdots, x_{1 c} \in T$ such that $x=\sum_{i=1}^{k} x_{i}$, $x_{\imath} \in T_{P_{2}}$, and the theorem is proved.

Let $T_{1}$ and $T_{2}$ be as before ; then $T_{1} \otimes T_{2} \cong \Sigma_{1}^{\circ} T_{p}^{\prime} \otimes \sum_{1}^{0} T_{q}^{2}$ where each $T_{p}^{\prime}$ and $T_{q}^{2}$ is a prime $p$ agroup and $q$ - group respectively. Hence by corollary $3-3 T_{1} \otimes T_{2} \cong \Sigma_{1}^{\prime}\left(T_{p}^{1} \otimes T_{q}^{2}\right)$. The following lemma will enable us to eliminate many of the cross tensor products in this expression :

Lemma $3-7$ If $A$ is a $p-g r o u p$ and $B$ is a $q$ - group for $p \neq q$ primes, then $A \otimes B=0$.

Proof : Consider a generator of $A \otimes B$ of the form $a \otimes b$, any $a \in A, b \in B$. Since $A \otimes B$ is generated by $\{a \otimes b \mid a \in \prime A, b \in B\}$

It suffices to show that $a \otimes b=0$; but $p^{\alpha} a=q^{\beta} b=0$ for some $\alpha, \beta \in Z$ and since $p^{\alpha}$ and $q^{\beta}$ have g.c.d. equal to 1 , there exist integers $s, t$ such that $s p^{\alpha}+\mathrm{tq}^{\beta}=1$. Then

$$
\begin{aligned}
a \otimes b & =\left(s p^{\alpha}+t q^{\beta}\right)(a \otimes b) \\
& =\left(s p^{\alpha}+t q^{\beta}\right) a \otimes b \\
& =t q^{\beta} a \otimes b \\
& =a \otimes t q^{\beta} b=0, \text { q. e.d. }
\end{aligned}
$$

Therefore, in the tensor product $\sum_{1}^{\circ}\left(T_{p}^{\prime} \otimes T_{q}^{2}\left({ }^{\prime}\right)=T_{1} \otimes T_{2}\right.$ we need consider only those summand of the form $T_{p}^{1}(\otimes) T_{p}^{2}$ for the same prime p. Now each finite p \& group may be written as a direct sum of cyclic groups of order $p^{\alpha}$, say $T_{p}^{\prime} \cong \sum_{1}^{0} C_{p^{\mu}}^{i}, i=1,2$, and thus $T_{p}^{\prime} \otimes T_{p}^{2} \cong \Sigma^{0} C_{p^{\beta}}^{1} \otimes \Sigma_{1}^{0} C_{p \gamma}^{2}$

$$
\cong \sum_{i}\left(C_{p^{i}}^{1} \otimes C_{p}^{2} r\right) .
$$

We shall now prove that any summand of the latter can be further simplified :

Lemma $3-8 \quad C_{p^{\beta}} \otimes C_{p^{\gamma}} \cong C_{p} \min (\beta, \gamma)$ where $C_{p^{\alpha}}$ are cyclic groups of order $p^{\alpha}, p$ prime.

Proof: Let $C_{p \beta}=\langle a\rangle$ and $C_{p \gamma}=\langle b\rangle$ and assume without loss of generality that $\beta<\gamma$. Consider the following diagram :

where $f: \quad C_{p^{\beta}} \times C_{p^{\gamma}} \rightarrow C_{p^{\beta}}$ is defined by (na, mb)f=nma, $n, m \in Z$.

Then (1) f is well defined : suppose $n_{1} \equiv n\left(p^{\beta}\right)$ and $m_{1} \equiv m\left(p^{\gamma}\right)$
i. e. $\quad n_{1}=n+s p^{\beta}$ and $m_{1}=m+t^{\gamma}$ for some $s, t \in Z$.

Then $(n, a, m, b) f=n_{1} m_{1} a=\left(n+s p^{p}\right)\left(m+t p^{\gamma}\right) a$

$$
\begin{aligned}
& =\left(n m+n t p^{\gamma}+s m p^{\beta}+\operatorname{stp}^{\beta} p^{\gamma}\right) a \\
& \equiv n m a\left(p^{\beta}\right)
\end{aligned}
$$

N. B. If we had defined $f^{\prime}: \quad C_{p \beta} \times C_{p^{\gamma}} \rightarrow C_{p \gamma}$ in the same fashion, the map $f^{\prime}$ would not be well defined here!
(2) $f$ is bılınear : $\left(n a+n^{\prime} a, m b\right) f=\left(\left(n+n^{\prime}\right) a, m b\right) f$

$$
=\left(n+n^{\prime}\right) m a
$$

$$
=n m a+n^{\prime} m a
$$

$$
=(n a, m b) f+\left(n^{\prime} a, m b\right) f
$$

Similarly, $\left(n a, m b+m^{\prime} b\right) f=(n a, m b) f+\left(n a, m^{\prime} b\right) f$ and thus the homomorphism $h: C_{p^{\beta}} \otimes C_{p^{\gamma}} \rightarrow C_{p^{\beta}}$ exists.

We must show now (1) $h$ is onto : clear, since (na, b) $h=n a$, a general element of $C$.
(2) $h$ is one to one : Let $\sum_{i=1}^{n}\left(n_{i} a \otimes m_{i} b\right)$ represent an arbitraxy element of $C_{p^{p}} \otimes C_{p}$; but then

$$
\begin{aligned}
\sum_{i=1}^{n} n_{i} a \otimes m_{i} b=\sum_{i=1}^{n} a \otimes n_{i} m_{i} b & =a \otimes \sum_{i=1}^{n} n_{i} m_{i} b \\
& =N a \otimes b, \text { some } N \in Z
\end{aligned}
$$

Suppose therefore $(\mathrm{Na} \otimes \mathrm{b}) \mathrm{h}=0=\mathrm{Na}$; hence
$N \equiv O\left(p^{\beta}\right)$ and $N a \otimes b=0$, and $h$ is an isomorphism, q.e.d.

We finally have, then, $T_{1} \otimes T_{2} \cong \mathcal{\Sigma}_{1}{ }^{\prime} \mathrm{T}_{p}^{\prime} \otimes \Sigma_{i}{ }^{\prime} \mathrm{T}_{q}^{2}$

$$
\begin{aligned}
& \cong \Sigma_{1}^{0}\left(T_{p}^{1} \otimes T_{q}^{2}\right) \\
& \cong \Sigma_{i}^{\prime}\left(T_{p}^{1} \otimes T_{p}^{2}\right) \\
& \cong \Sigma_{1}^{0}\left(C_{p}^{1} \otimes C_{p y}^{2}\right) \\
& \cong \Sigma_{i}^{0} C_{p}^{\alpha 1 .} \text { e. a finite direct sum }
\end{aligned}
$$

of cyclic groups of prime power order.

The second class of tensor product to examine is of the form $T_{\imath} \otimes F_{\jmath}, i, j=1,2, i \neq j$. Now any finitely generated torsion free group
may be represented as a finite direct sum of copies of the integers, and thus $T_{L} \otimes F_{J} \cong T_{\imath} \otimes \Sigma_{i}^{\cdot} Z \cong \bar{Z}_{i}{ }^{\prime}\left(T_{i} \otimes Z\right)$. We need at this point the following lemma :

Lemma 3-9 $G \otimes Z \cong G$ for any group $G$.
Proof : We may again prove this by the basic lifting property of the tensor product ; consider the following diagram :

where $f_{1}: G \times Z \rightarrow G$ is defined by $(g, n) f_{i}=n g$ and $f_{2}: G \rightarrow G \times Z$ by $\mathrm{gf}_{2}=(\mathrm{g}, \mathrm{l}), \bar{\Psi}$ is the tensor map and $I: G \rightarrow G$ is the identity map. Now the existence of the homomorphisms $\hat{f}_{1}, \hat{f}_{2}$ is assured by the bilinearity of the composites $f_{1} I$ and $f_{2} \bar{\psi}$. Let $(g, n) \in G \times Z$; then $(g, n) f_{1} f_{2}=(n g, 1)$ so that $(g \otimes n) \hat{f}_{1} \hat{f}_{2}=n g \otimes 1=g \otimes n$. Hence $\hat{f}_{1} \hat{f}_{2}$ 1s the rdentity of $G \otimes Z$ and similarly $\hat{f}_{2} \hat{f}_{\text {, the identity of } G \text {, }}$, which shows $G \otimes Z \cong G$, q.e.d.

We have now, then, that $T_{i} \otimes F_{j} \cong T_{i} \otimes \Sigma_{i}{ }^{\circ} Z$

$$
\begin{aligned}
& \left.\cong \Sigma_{1}^{\circ}\left(T_{i} \otimes\right) Z\right) \\
& \cong \Sigma_{1}^{\prime} T_{i}
\end{aligned}
$$

The final class was typified by $F_{1}\left(\otimes F_{2}\right.$, the tensor product of two finitely generated torsion free groups, which can now easily be exe pressed as $\quad \bar{Z}^{\circ} Z \otimes \bar{\Sigma}_{1}^{\circ} Z$

$$
\begin{aligned}
& \cong \bar{z}_{1}^{\cdot}(z \otimes z) \\
& \cong \Sigma_{i}^{\cdot} z
\end{aligned}
$$

We have thus shown that the tensor product of two finitely generated groups can be expressed as a direct sum of cyclic groups. The latter may be explicitly calculated by determining the decomposition factors of the two given groups.

CHAPTER 4 : Structure Theory to Date of $A \otimes B$ for Arbitrary Groups

We now turn to the examination of the structure of the tensor product of two groups at least one of which is a torsion group (not necessarily finitely generated).
$\oint$ l. Let us first deal with the case of two torsion groups. By Corollary 3 - 3 and Theorem 3 - 5, there is no restriction of geno erality in considering the tensor product of two p - groups, and, in fact, p-groups for the same prame p, by Lemma 3-7. However, we are not restricting ourselves to finately generated groups, so that we may not, in general, represent them as direct sums of cyclic groups. To circume vent this problem we introduce the concept of a basic subgroup which is, amongst other things, the direct sum of cyclic groups, and prove evente ually that the tensor product of two pagroups is essentially the tensor product of their respective basic subgroups.

Definition 4-1 A subgroup $G_{0}$ of a group $G$ is said to be a pure subgroup if $x \in G_{0}$ and $x=n x_{1}$ for some $x_{1} \in G$ and $n \in Z$, then $\mathrm{x}=\mathrm{n} \mathrm{x}_{0}$ for some $\mathrm{x}_{0} \in \mathrm{G}_{0}$; symbolically we may express this by the equation $n G_{0}=G_{0} \cap_{n} G$.

Definition 4-2 A group $G$ is divisible if for every $x \in G$ and $n \in Z, x=n x_{n}$ for some $X_{n} \in G$.

Definition 4-3 A subgroup B of $G$ is said to be a BASIC subgroup if the following three conditions are satisfied :
(1) B is a direct sum of cyclic groups.
(2) $B$ is a pure subgroup of $G$.
(3) The factor group G/B is divisıble.

A fundamental theorem for basic subgroups of $p$ - groups is the following of Kulikov ; the proof will only be sketched here and it may be found in detail in Fuchs, Abelian Groups, Chapter 5.

Theorem 4-4 Every p-group contains a basic subgroup.
Proof : A pure independent subset $\left\{x_{\lambda}\right\}_{\lambda \in \Lambda}$, that is an independent subset which generates a pure subgroup of $G$, exists and may be extended to a maximal set in G by Zorn,'s lemma. Then if $B$ is the subgroup generated by the maximal pure independent set $\left\{x_{\lambda}\right\}_{\lambda \in \Lambda}$, (2) in the above definition is true and (1) is an easy consequence of independence, requires the maximality of the independent $\operatorname{set}\left\{x_{\lambda}\right\}_{\lambda \in \Lambda}$.

Now if $A_{1}$ and $B$, are subgroups of $A$ and $B$ respectively then it is not generally true that $A_{1} \otimes B_{1}$ forms a subgroup of $A \otimes B$ but merely that the subgroup of $A(X) B$ generated by $\left\{a \otimes b \mid a \in A_{1}, b \in B_{1}\right\}$ is a homomorphic image of $A_{1}(x) B_{1}$. If, however, $A_{1}$ and $B_{1}$ are pure subgroups we have the following :

Theorem $4-5$ If $A$, and $B$, are pure subgroups of $A$ and $B$ respecto ively then the subgroup $\left(\pi\right.$ of $A \otimes B$ generated by the set $\left\{a \otimes b \mid a \in A_{1}, b \in B_{1}\right\}$ is isomorphic to $A_{1} \otimes B_{1}$.

Proof : Consider the diagram :

where $\left(a_{1}, b_{1}\right) f=a_{1} \otimes b_{1}$, then $h$ is a homomorphism such that $\mathrm{f}=\bar{\Psi} \mathrm{h}$. Thus we need to show that if an element $\sum_{i=1}^{n} a_{i} \otimes b_{i}, a_{i} \in A_{1}, b_{i} \in B_{1}$, of $A \otimes B$ vanishes then it also vanishes as an element of $A_{1} \otimes B_{1}$. We need the following : Lemma $4-6$ If $\sum_{i=1}^{n} a_{1} \otimes b_{1}=0$ in $A \otimes B$ then there exist finitely generated subgroups $A *$ and $B *$ such that $\sum_{i=1}^{n} a_{1} \otimes b_{1}$ vanishes as an element of $A * \otimes B^{*}$.

Proof: $\sum_{i=1}^{n} a_{l} \otimes b_{l}=0$ only if $\sum_{i=1}^{n}\left(a_{1}, b_{l}\right) \Psi$ belongs to the subgroup $\Omega$ generated by elements of the form (1) $\left(a_{1}+a_{2}, b\right) \psi-\left(a_{1}, b\right) \psi-\left(a_{2}, b\right) \psi$ and (2) $\left(a, b_{1}+b_{2}\right) \psi-\left(a, b_{1}\right) \psi-\left(a, b_{2}\right) \psi$.

Define $A *$ to be the subgroup of $A$ generated by $a_{1}, a_{2}, \ldots, a_{n}$ and all $a_{\jmath}$ occurring in the expression of $\sum_{i=1}^{n}\left(a_{i}, b_{i}\right) \psi$ by means of elements of the forms (1) and (2) above. Describing $B *$ similarly, we have the desired results.

We can now see that $\sum_{i=1}^{n} a_{،} \otimes b_{1}$ vanishes as an element of $\hat{A} \otimes \hat{B}$ where $\hat{A}$ is that subgroup of $A$ generated by the pure subgroup $A$, and the finitely generated subgroup $A *$ ( $\hat{B}$ is defined analagously) ; but it is known that since $A *$ and $B *$ are finitely generated and $A_{1}$ and $B_{1}$ are pure, the latter are direct summand of $\hat{A}$ and $\hat{B}$ and hence by Corollary $3-3$ $\sum_{i=1}^{n} a_{l} \otimes b_{l}$ vanishes as an element of $A_{1} \otimes B_{1}$, q.e.d.

Thus $A, \otimes B$, may be considered a subgroup of $A \otimes B$ and this prepares us to prove the following :

Theorem 4-7 If $A$, and $B$, are basic subgroups of the $p-g r o u p s A$ and $B$, then $A_{1} \otimes B_{1} \cong A \otimes B$.

Proof : Since $A_{1} \otimes B_{1} \subseteq A \otimes B$ we need only show any element of $A \otimes B$ of the form $a \otimes b$ belongs to $A, ~ B$, . Now $a \in A$ implies $a=a_{1}+p^{k} x$ where $a_{1} \in A_{1}, k \in Z$ and $x \in A$, since $A / A_{1}$ divisible implies $a \equiv p^{k} x\left(\bmod A_{1}\right) ;$ similarly $b=b_{1}+p^{l} y$, where $b_{1} \in B_{1}, l \in \mathbb{Z}, y \in B$. Now choosing $p^{k} \geq$ (order $b$ ) and $p^{\ell} \geq\left(\right.$ order $\left.a_{1}\right)$ we have $a \otimes b=\left(a_{1}+p^{k} x\right) \otimes b=a_{1} \otimes b$

$$
\begin{aligned}
& =a_{1} \otimes\left(b_{1}+p^{\ell} y\right) \\
& =a_{1} \otimes b_{1}
\end{aligned}
$$

This shows $A \otimes B \subseteq A_{1} \otimes B_{1}$ and the proof is complete.
We are now in a position to prove the main theorem of tensor products for two torsion groups :

Theorem 4-8 The tensor product of two torsion groups is a direct sum of prime power order cyclic groups.

> Proof : By the last theorem it suffices to prove the proposition for the tensor product of the basic subgroups of two p-groups, but these are direct sums of cyclic groups and thus by Corollary 3-3 and Lemma 3-8 the statement of the theorem is true.
§2. The case when one of the factors is a torsion group and the other 1 s torsion free we shall examine now. Again we may assume the torsion group $T$ is a p -group, and let $F$ be any torsion free group, 1.e. for any $g \in F, n g=0$ implies $n=0, n \in Z$. Choose a maximal independent set in $F$ modulo $p F$, say $\left\{x_{\lambda}\right\}_{\lambda \in \Lambda}$
Lemma 4-9 Such a set $\left\{x_{\lambda}\right\}_{\lambda \in \Lambda}$ forms a basis of $F$ modulo $p^{n} F$ $\mathrm{n}=1,2,3, \cdots$

Proof : First if $\left\{\mathrm{x}_{\lambda}\right\}$ is a maximal independent set in $\mathrm{F} / \mathrm{pF}$ then for any $x \in F, x \notin p F$ we must have $m x+n_{1} x_{1}+n_{2} x_{2}+\cdots+n_{t} x_{t} \equiv 0(\bmod p F)$ for $m, n_{\imath} \in Z$ not all zero. Now $p \mid m$ implies $\sum_{i=1}^{n} n_{i} x_{i} \equiv 0(\bmod p F)$ and not all $n_{i}$ zero, which contradicts the independence of the $x_{1}$, hence $(p, m)=1$ and there exist integers $a, b$ such that $a p+b m=1$. But $b m x \equiv n_{1}^{\prime} x_{1}+\cdots+n_{t}^{\prime} x_{t}(\bmod p F)$ and $b m x=(1-a p) x \equiv x(\bmod p F)$ and thus $x \equiv n_{1}^{\prime} x_{1}+\cdots+n_{t}^{\prime} x_{t}(\bmod p F)$. Consider an element $y \in p^{k} F, y \notin p^{k+1} F$. We have then that $y=p^{k} f$, $f \in F$ but $f \notin p F$ and thus $f \equiv \sum_{\lambda=1}^{S} n_{\lambda} x_{\lambda}(\bmod p F)$ which implies $y \equiv \sum_{\lambda=1}^{S} m_{\lambda} x_{\lambda}$ $\left(\bmod p^{k+1} F\right)$. Note also that if an element $y$ of $F$ has finite height $k$ then $y$ has a representation $y \equiv \sum_{\lambda=1}^{S} m_{\lambda}^{\prime} x_{\lambda}\left(\bmod p^{l} F\right)$ for arbitrary $l>k$, for let $y \equiv \sum_{\lambda=1}^{5} m_{\lambda} x_{\lambda}\left(\bmod p^{k+1} F\right)$ be the representation already proved. Then suppose, without loss of generality, that $y-\sum_{\lambda=1}^{s} m_{\lambda} x_{\lambda} \notin p^{k+2} F$. But then $\left(y-\sum_{\lambda=1}^{s} m_{\lambda} x_{\lambda}\right.$ ) $-\sum_{\mu=1}^{t} n_{\mu} x_{\mu} \in p^{k+2} F$ for some $n_{\mu} \in Z$, thus $y-\sum_{\lambda=1}^{s} m_{\lambda}^{\prime} x_{\lambda} \equiv 0\left(\bmod p^{k+2} F\right)$ and in general the congruence $y-\sum m_{\lambda} x_{\lambda} \equiv 0\left(\bmod p^{\ell} F\right)$ is solvable for arbitraryl $>k, q \cdot e . d$.

Consider now any $t \in T$ and any $x \in F$ of height $k$. Note that if $f \in F$ has infinite height (i.e. $p^{n} \mid f$ for every $n \in Z$ ) then $t \otimes f=0$. There exists the relation $x=n_{1} x_{1}+\cdots+n_{s} x_{s}+p^{\ell} f$ for $x_{i} \in\left\{x_{\lambda}\right\}$ and arbitrarily large $\ell \in Z$, choosing $\mathrm{p}^{l} \geq$ (order t ) we obtain :

$$
\begin{aligned}
t \otimes x & =\sum_{i=1}^{s} t \otimes n_{\imath} x_{\imath}+t \otimes p^{l} f \\
& =\sum_{i=1}^{s} t_{1} \otimes x_{\imath} \quad \text { where } t_{\imath}=n_{1} t
\end{aligned}
$$

We see therefore that an arbitrary element of $T \otimes F$, being a finite sum of generators of the form $t \otimes x$, may be written also as a finite sum $\sum_{i=1}^{n} t_{i} \otimes x_{l}$
for $t_{\imath} \in T$ and different $x_{\text {, }}$ selected from the independent set $\left\{x_{\lambda}\right\}_{\lambda \in \Lambda^{\prime}}$, since addition in the generators may be carried out on the $t \in T$.

Suppose next that a sum such as $\sum_{i=1}^{n} t_{i} \otimes x_{4}$ vanishes as an element of $T \otimes F$. We shall show that this implies $t_{1}=0,1=1, \cdots, n$, and a general element of $T \otimes F$ may be expressed as an element of a direct sum of copies of T. By Lemma 4-6 $\sum_{i=1}^{n} t_{\imath} \otimes x_{\imath}$ vanishes also as an element of $T \otimes F_{1}$ where $F_{1}$ is finitely generated torsion free and contains $x_{1}, \ldots, x_{n}$; but this means $F_{1}$ is a finite direct sum of infinite cyclic groups greater than or equal to $n$ in number. However, $x_{1}, \ldots, x_{n}$ being independent, $F_{1}$ must contain a direct summand $F_{1}^{\prime}$ containing $x_{1}, \cdots, x_{n}$ of rank $n$ and then $\sum_{i=1}^{n} t_{1} \otimes x_{1}$ must vanish also in $T \otimes F_{1}^{\prime}$ (Theorem 3-2). Suppose, then, $F_{1}^{\prime}=\left\langle a_{1}\right\rangle \oplus\left\langle a_{2}\right\rangle \oplus \cdots \oplus\left\langle a_{n}\right\rangle$. This means $x_{i}=\sum_{j=1}^{n} m_{1 s} a_{j}$ and thus $\sum_{i=1}^{n} t_{i} \otimes x_{i}=\sum_{i=1}^{n} t_{i} \otimes \sum_{j=1}^{n} m_{i j} a_{j}=\sum_{j=1}^{n}\left(\sum_{i=1}^{n} m_{i j} t_{i} \otimes a_{j}\right)=0^{j=1}$ hold in the tensor product $T \otimes F_{1}^{\prime}$ which implies $\sum_{i=1}^{n} m_{i s} t_{i} \otimes a_{j}=0$; this in turn, by Lemma 3-9 implies $\sum_{i=1}^{n} m_{i s} t_{i}=0$ 。
Let $A$ be the matrix $\left(m_{\substack{c z 1, n \\ j=1-n}}\right.$. If $A$ is a singular matrix (mod $p$ ) then the re exist $\beta_{i} \in Z$ not all zero such that $\sum_{i=1}^{R_{1}} \beta_{i} m_{i j} \equiv 0(\bmod p)$, and therefore $\sum_{j=1}^{n}\left(\sum_{i=1}^{k_{1}} \beta_{i} m_{i j}\right) a_{j} \equiv 0(\bmod p)$. But $\sum_{j=1}^{n}\left(\sum_{i=1}^{k_{1}} \beta_{i} m_{i j}\right) a_{j}=\sum_{i=1}^{K_{i}} \beta_{i}\left(\sum_{j=1}^{n} m_{i j} a_{j}\right)=\sum_{i=1}^{n_{i}} \beta_{i} x_{i}$ and thus $\sum_{i=1}^{k_{1}} \beta_{1} x_{i} \equiv 0(\bmod p)$. This, however, contradicts the independence of the $x_{s}$, and hence $(p, d$ et $A)=1$. Let $\operatorname{det} A=K$ and the matrix $\left(\beta_{\cdot j}\right)_{\substack{t=1, n \\ j=1-n}}$ be defined as $K \cdot A^{-1}$. Now $\sum_{i=1}^{n} m_{i,} t_{i}=0$ for each $J=1, \cdots, n$ implies $\beta_{j k} \sum_{k=1}^{n} m_{\cdot j} t_{i}=0$ for each $k=1, \cdots, n$ which in turn implies $\sum_{j=1}^{n} \beta_{j 2} \sum_{i=1}^{n} m_{i j} t_{i}=0$
$=\sum_{i=1}^{n}\left(\sum_{j=1}^{n} m_{i j} \beta_{j 12}\right) t_{i}$
$=\sum_{i=1}^{n}\left(K \quad \delta_{i k}\right) t_{i}$
$=K t_{k}=0$ which implies $t_{k}=0$.

We have thus proved the following :
Theorem 4-10 If T is a p - group and F is torsion free, then $T \otimes F \cong \sum_{m} T$, where $m$ denotes the rank of the factor group $F / p F$
§ 3 Let us now consider the case when the non-torsion factor is an arbitrary mixed group M. We may assume the torsion group T is a $p$ • group, and by the following lemma it $1 s$ sufficient to assume the torsion subgroup of $M$ is a $p$ group for the same prime $p$.

Lemma 4 - 11 . Let $A_{0}$ and $B_{0}$ be subgroups of $A$ and $B$ respectively, then $\frac{A}{A_{0}} \otimes \frac{B}{B_{0}} \cong \frac{A \otimes B}{\Gamma\left(A_{0}, B_{0}\right)}$ where $\Gamma\left(A_{0}, B_{0}\right) \subseteq A \otimes B$ is generated by $\left\{\operatorname{m\otimes n} \mid m \in A_{0} \xlongequal{o r} n_{\left.n \in B_{0}\right\}}\right.$

Then $(a, b) f=(a \otimes b) \eta$ is a bilinear map vanishing whenever $a \in A_{0}$ or $b \in B_{0}$; this means $f$ depends only on $\frac{A}{A_{0}}$ and $\frac{B}{B_{0}}$, 1.e. $f: \frac{A}{A_{0}} \times \frac{B}{B_{0}} \rightarrow \frac{A \otimes B}{\Gamma\left(A_{0}, B_{0}\right)}$ is bilinear, clearly $\left\{(a \otimes b) \eta \left\lvert\, a \in \bar{a} \in \frac{A}{A_{0}}\right., b \in \bar{b} \in \underset{B_{0}}{B_{0}}\right\}$ generates $\frac{A \otimes B}{\Gamma\left(A_{0}, B_{0}\right)}$ and thus there exists a homomorphism $h$ from $\frac{A}{A_{0}} \otimes \frac{B}{B_{0}}$ onto $\frac{A \otimes B}{\Gamma\left(A_{0}, B_{0}\right)}$ :


Now $\left(\sum_{1}\left(\bar{a}_{1}, \bar{b}_{c}\right) \bar{\psi}\right) h=0$ only if $\sum_{1} a_{c} \otimes b_{i} \in \Gamma\left(A_{0}, B_{0}\right)$ i. e. $\sum_{1} a_{i} \otimes b_{c}$ belongs to the subgroup of $A \otimes B$ generated by all $a \otimes b$ where either $\overline{\mathrm{a}}=0$ or $\overline{\mathrm{b}}=0$ N. B. For $\mathrm{x} \in \mathrm{A} \overline{\mathrm{x}}$ denotes the coset $\mathrm{x}+\mathrm{A}_{0}$, then certainly $\bar{Z}_{i}\left(\bar{a}_{1}, \bar{b}_{l}\right) \bar{\psi}=0$ and $h$ is indeed an isomorphism q.e.d.

This lemma shows, using $A=T, A_{0}=\{0\}, B=M$ and $B_{0}=$ (sum of $q$ - subgroups of $M$ for all primes $q \neq p)$, that $T \otimes M / B_{0} \cong T \otimes M$, since $\Gamma\left(A_{0}, B_{0}\right)=\{0\}$, and $M / B_{0}$ has only a $p-g r o u p$ as torsion subgroup.

We now state and prove the main theorem of this section : Theorem 4-12 Let $T$ be a p-group and $M$ a mixed group whose torsion subgroup $M_{0}$ is a $p$ - group. Let $B$ be a basic subgroup of $T$ which is represented by $\sum_{i=1}^{\infty} \cdot \sum_{m_{1}} C\left(p^{i}\right)$ where $C\left(p^{i}\right)$ are prime power order cyclic groups.
 Proof : Let $\left\{a_{\lambda}\right\}_{\lambda \in \Lambda}$ be a basis of the basic subgroup $B$ and $\left\{\bar{x}_{\mu}\right\}_{\mu \in N}$ be a maxımal independent set in $\frac{\frac{M}{M_{0}}}{p\left(\frac{\mu}{M_{0}}\right)} . \operatorname{Then}\left\{a_{\lambda}\right\}_{\lambda \in \Lambda}$ is a basis of $T / p^{k} T$ for every $k \geq 1$, since $T / B$ divisible implies $t=p^{k} t_{k}+b$ for any $k \in Z$ and some $b \in B$; also $\left\{\bar{x}_{\mu}\right\}_{\mu \in N^{1 s}}$ a basis of $\frac{\frac{\mu}{\mu_{0}}}{p^{k}\left(\frac{\mu}{\mu_{0}}\right)}$ for every $k \geq 1$ as we know from $\oint 2$. Hence if $x_{\mu} \in \bar{x}_{\mu}$ is an arbitrary element for all $\mu \in N$, then the $\operatorname{set}\left\{a_{\lambda}, x_{\mu}\right\}_{\substack{\lambda \in \lambda}}$ forms a basis for $M / p^{k} M$ for all $k \geq 1$. Again, as in $\oint 2$, we need only consider elements of $M$ of finite height $k$, so if $v \in M$ is such an element there exists the equation :
$v=\sum_{\lambda=1}^{s} m_{\lambda} a_{\lambda}+\sum_{\mu=1}^{t} n_{\mu} x_{\mu}+p^{l} v^{\prime}$, where $m_{\lambda}, n_{\mu} \in Z$ and $l>k$ is arbitrary in $Z$, and $v^{\prime} \in M$. Choosing $\ell$ appropriately large, we have : $t \otimes v=\Sigma t \otimes m_{\lambda} a_{\lambda}+\Sigma t \otimes n_{\mu} x_{\mu}+t \otimes p^{l} v^{\prime}$ $=\Sigma t_{\lambda} \otimes a_{\lambda}+\Sigma_{\lambda} t_{\mu} \otimes x_{\mu}$

Thus again an arbitrary element of $T \otimes M$ may be written as $\Sigma t_{\lambda} \otimes a_{\lambda}+\sum t_{\mu} \otimes x_{\mu}$ since addıtion may be carried out on the $t_{\lambda}$ and $t_{\mu}$, using the bilinearity of the tensor product. We must show that such an element of $T \otimes M$ may be written as an element of a direct sum, i.e. if $\sum_{\lambda=1}^{n} t_{\lambda} \otimes a_{\lambda}+\sum_{\mu=1}^{m} t_{\mu} \otimes x_{\mu}=0$ then each summand vanıshes also. But any finıte direct summand of $\left.B,\left\langle a_{1}\right\rangle \oplus \cdots \oplus<a_{n}\right\rangle$, is a direct summand also of $M$ since
$\dot{B} \subseteq M$, say $M=\left\langle a_{1}\right\rangle \oplus \cdots \oplus\left\langle a_{n}\right\rangle \oplus M^{\prime}$; by the chorce of the $\left\{a_{n}\right\}$ and $\left\{x_{\mu}\right\}, M^{\prime}$ may be assumed to contain $x_{1}, \cdots, x_{n}$. Therefore by Lemma 3-2 each $t_{\lambda} \otimes a_{\lambda}=0$ and from $\oint 2 \quad t_{\mu} \otimes x_{\mu}=0$ and thus $t_{\mu}=0$ for each $\mu$. The above shows that
$T \otimes M \cong \sum_{\lambda \in \Lambda}^{0}\left(T \otimes\left\langle a_{\lambda}\right\rangle\right) \oplus \sum_{r}^{\circ} T$. We give the following lemma which completes the proof of Theorem 4-12, since the $\left\langle a_{\lambda}\right\rangle$ are finite cyclic groups :

Lemma 4-13 If $C(n)$ represents a cyclic group of order $n$ and V is any group, then $\mathrm{C}(\mathrm{n}) \otimes \mathrm{V} \cong \mathrm{V} / \mathrm{nV}$.

## Proof : Consider the diagram



Let $C(n)=\langle a\rangle$
where $f$ is defined as follows : (ka,v)f $=k v+n V$ for $k \in Z, v \in V$. Then $f$ is clearly bilinear so that the map $h$ exists and is a homomorphism satisfying $f=\bar{\psi}_{h} . h$ is onto all of $\mathrm{V} / \mathrm{nV}$, for if $\mathrm{v}+\mathrm{nV}$ is a general element of $V / n V$, then $(a \otimes v) h=v+n V ; h$ is one to one for if $\sum_{i=1}^{n} k_{\imath} a \otimes v_{c}$ represents an element of $C(n) \otimes V$ such that $\left(\Sigma_{1} k_{\mathrm{L}} a \otimes v_{\mathrm{l}}\right) h=0$, then $\left(\mathrm{a} \otimes \mathrm{v}^{\prime}\right) \mathrm{h}=0 \quad\left(\right.$ where $\left.\mathrm{v}^{\prime}=\Sigma_{\mathrm{l}} \mathrm{k}_{\mathrm{L}} \mathrm{v}_{\mathrm{L}} \in \mathrm{V}\right)$ which implies $\left(a, v^{\prime}\right) \bar{\psi}_{h}=0=\left(a, v^{\prime}\right) f=v^{\prime}+n V$; this in turn implies $v^{\prime} \in n V$, and thus $a \otimes v^{\prime}=0$ and the 1 somorphism is established.

We can now state a corollary of Theorem 4-12 based on the information derived in $\oint 1$ and $\oint 2$ :

Corollary 4-14 If $T$ is a torsion group and $M$ a mixed group whose torsion subgroup is denoted by $M_{0}$, then $T \otimes M \cong T \otimes \frac{M}{M_{0}} \oplus T \otimes M_{0}$
$\oint 4$ In the general case, when we consider the tensor product of two arbitrary groups, very little can be said. We can,however, determine the structure of the torsion subgroup of the tensor product of two arbitrary groups $M$ and $N$ with the knowledge of Lemma 4 - ll. Let $M_{0}$ and $N_{0}$ be the torsion subgroups of $M$ and $N$ respectively. Now the fact that the subgroup $\Gamma\left(M_{0}, N_{9}\right)$ in $M \otimes N$ is a torsion subgroup is clear ; the following lemma will show that $\Gamma\left(M_{0}, N_{0}\right)$ is the maximal torsion subgroup of $M \otimes N$ :

Lemma $4-15 \quad \mathrm{~A} \otimes \mathrm{~B}$ is torsion free if both A and B are.
Proof : The proof is clear when it is noted that if a generator $a \otimes b=0, a \in A, b \in B$, in $A \otimes B$ then $a \otimes b=0$ also in $A_{1} \otimes B_{1}$ where $A_{1}$ and $B_{1}$ are finitely generated; the decomposition of finitely generated torsion free groups into direct sums of infinite cyclic groups and Lemma 3-9 are used for the final result.

We note next that $M_{0}$ and $N_{o}$ are pure subgroups of $M$ and $N$ and thus, as in Theorem 4-5, $M_{0} \otimes N$ and $M \otimes N_{0}$ form subgroups of $M \otimes N$; they clearly generate $\Gamma\left(\mathrm{M}_{0}, \mathrm{~N}_{0}\right)$. By the decomposition of $\mathrm{M}_{0}$ and $\mathrm{N}_{0}$ into their p-summands we also see that the pecomponent of $\Gamma\left(\mathrm{M}_{0}, \mathrm{~N}_{0}\right)$ is generated by the subgroups $M_{o_{p}} \otimes N$ and $M \otimes N_{o p}$ of $M \otimes N$. It suffices to consider the case, then, when the torsion subgroups of $M$ and N are pegroups for the same prime p . The theorem is as follows :

Theorem 4-16 Let $M_{0}$ and $N_{o}$, the torsion subgroups of two arbitrary groups $M$ and $N$, be pegroups for the same prime $p$; let $B=\sum_{i=1}^{\infty} \cdot \sum_{m_{i}}^{0} C\left(p^{i}\right)$
be a basic subgroup of $N_{0}$ and denote the ranks of $\frac{\frac{N}{N_{0}}}{P\left(\frac{N}{N_{0}}\right)}$ and $\frac{\frac{M}{M_{0}}}{P\left(\frac{M}{M_{0}}\right)}$ by $\alpha$ and $\beta$ respectively. Then the maximal torsion subgroup of $M \otimes N$ is isomorphic to $\sum_{i=1}^{\infty} \sum_{m_{i}}^{1} M_{0} / p^{i} M_{0} \oplus \sum_{\alpha}^{0} M_{0} \oplus \sum_{\beta}^{0} N_{0}$

Proof : The proof parallels that of Theorem 4-12 so will not be given here. It will be noted that the torsion subgroup of $M \otimes N$ is generated by tensor products of the exact type dealt with in $\oint 3$. This theorem obviously tells nothing of the tensor product of two arbitrary torsion free groups, and, indeed, very little of the nature of this type of tensor product is known to date.

## BIB LIOGRAPHY

1. L. Fuchs, Abelian Groups, Budapest, Hungarian Academy of Sciences, 1958
2. H. Whitney, The Tensor Product of Abelian Groups, Duke Mathematical Journal , Vol. 4, 1938 , pp. 495-528
3. L. Fuchs , Notes on Abelian Groups, I, Budapest University Annales, T. 1-4, pp. 6-14
