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FERIODIC CRBITS OF THE SECOND GENUS
FOR THE
CROSSED ORBIT PROBLEN OF THE HELIUM ATOM

I. PRELIMINARY.

Bl. Introduction.

It is proposed here to construct the second genus orbits
forka,special caﬁe‘of the problem discussed by Dr. Bachanan
in his paperl) "Cragged Orbits in the Restricted Problem of
Thréa Bodies with Repulgive and Attractive Forces." The case
dealt With'is that designated in:theflatter ag Part II,

Case I. ' |

The problem considered deals with the motion of twa
infinitesimal bodieg which are attracted by a finite body
but repelled by each other, the nature of the forces involved
beihg Newtonian (iyé;;‘abejing;the‘iéverse square law). For
simplicity; the two infinitesimal bodies will be called
'"alecﬁrons" and the finite body the "nucleus". |

A particular solution of the prablém.is that in which
the‘electrons revolve in cirelesg with the nuql;us ag centre
and remainfdiametricélly oppasite-.qu types of orbit are
obtained when the electrons are displaced from their circular
motion. In part I the electrons remain diametrically opposite'
andkequidistént from the nucleus. In part II the distances of
the electrons from the nucleus are equal, their longitudes
differ by 180°, but their latitudes are the same. The

particular case which is common to parts I snd II — that in
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which the latitudes are zero — is considered in part II and
it ig designated ag case I. It is in the vicinity of these
orbits that we shall meke our construction of the second
genug orbits. |

_In.sectiona 2 and 3 a brief outline of the results ob-
tained in "Crosged Orbits...." will be made, showing the
method used in constructing the first genus orbits upon which
the work of this thesis is to be based.

g2, The Differential Equations.

Taking a rectangular gystem of axesg with origin at the
nucleus and designating the coordinates of the electrons by
Xy, Y1, %] and Xp, Yo, Zg, we have for the force function U,

of the system:

l 4 k>
= — — )
U n . (1)
‘Wwhere ' ST
k2 = ratio of repulsion to attractiaon,
) A
L
ro = (ng‘ 4 y;ﬁ + Z'LZ‘?')~‘“1

1

g : ' 2
T, = Bxl«- x5)2 4 (y1- yg)z + (21— 2zg) ]7"“
and the units of space and time have been so chosen that the
gravitational constarnt eguals unity.

The eguations of the motion are thus

( ( ) ’ l'l = (%g:\)) (c=1,2) (2)

From these equations and a consideration of the con-

‘straints on the motion of the electrons as ocutlined in the
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introduction, we obtain the two divisions of the problem, viz:

Part I: Xy = ™ Xy,
y2 = = yl) rl = rz - %‘4112’
52 = Z,l.
Part II: Xg = = X,
Jo = = Vi
Z.g = Zl.

As we are not concerned with the development of part I
we shall congider it no further,

By‘virtae of relations (3), we need consider the motion
of one electron only. On substituting these relations in
equations (2), and'transfprming the resulting equations and
the vis-viva integral to cylindrical coordinates by the sub-

stitutions: ' .

X, = ftodd | o znpenl, 2,-3

we obtain: /i”__/iﬂ'i _ ya +; L=
- (2% 2% H o g™

yA ﬂ”-;— ﬂ.ﬁ/,é,: o

144 — —_—
} M‘l’_";z} 3
' & P
the integral of (5 b) being A*4= € .

/
Uging this last relation to eliminate £ trom (5),

we get: Y A A _____,/2:,.?/ ~ /(:
/o3 0 Wl 4 A
}r- - 2
//Lz",’j?ng

Thege equations have the particular solution
c? -
/?, = //"" P } =@
where /,._;'-/— /"2/4 , o < pez !
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§3. The Equations of Displacement and their Solutions.

By'meahs\of the substitutions

fa:t%éwwﬁ
3= L EF)

3 Y.
t-t, = el
we obtain from equations (6) the "equations of displacement",
that is, the equations giving the displacements from the

plane orbit given by solutions (7). They are:

af

Pe(ep = Cefy[se(ee 2 T)-LE(F 2P0 ]
¥ —g-/i{wéﬁf = /ﬁ:(w&) E‘@ (5p%}3 agf‘z(éqgfgg‘%yg)% . J

The solutions of these equations will give the periodic

orbitg of the first genus of which there are three;types,
each type being characterized by its period. The periads are
determined by a consideration of the equations of variation
of (9): N N 7
prf=o Qg"{}/wug"@'

which have the three sets of generating solutions, viz:

Case I: ﬁ = Awnt B g G
Period: 27

Gase II + Eaini T

Jase : < +

T
Periodz: gﬁ’%L @;,irrational,

B

Case III:

(o)
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Corresponding to case I, a solution of equations (9)

found to exist only when §E O . This solution forms the

structed.
The first
| P= P+ FPerfe® s -

S = ferfet e

where the éj- are variables and the {; are constants.

Tl

o

of Eﬂ on each side of the resulting equation, a series of

differential equations of the forwm

0 . 4 ‘L‘:I)zj“~.&i“’
= Ry {

69:[7)2[‘__--.;

willbarise, which, when integrated sedquentially, determine
the various A . and {g .
| The initial conditions

floy =1 ,  fFl2=9

serve to evaluate the constants arising from the integrations.

The regults are:

Pz cCovz + €(%-comT -1 o5 2T }

—/—fz(‘.j %é—ami 4+ Ceom 2T +%’m3€j¢»—--~

oM LY
H i
Q

0.6 43¢ -’ -

is

"generating solution" for the second genus orbits to be cone

genus orbits for case I are obtained by setting

On substituting in equations (9) and equating coefficients

(10)

h
1
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II. THE SECOND GENUS ORBITS.
2)

]

84. Definition of Second Genus Orbits.

Suppose we have a set of differential equations

Ma’ é » 14 A '
Et‘; = -X : {/Kaq €5 ﬁ’)

&

in which the X; are analytic in the.argﬁments, do not contain
t explicitly, and are periodic with period T. The period is,
in general, a function of the parameter & ., If these equations
admit the pericdic sélutions

Ko = G (€58)
having the period T, then such solutions are said to be of the
first genus.

Now lét ]

£ = éa(i+-%)

T QJ; (¢, ;£)+%
where 530 is considered as a fixed constant and A as &
variable parameter. When these Substitutiqns are made in the
above differential equations we obtain a set in v in which
there are no terms independent of y; or ﬂ~; If this set
admits the periodic solutions

7%5 = Yol ,n;t)

heving the period
NT (14 & power Avmes o )

N being an integer, then the sclutions
“}(.(L. = @&- (€€ + Y- (¢, ;)
are said to be of the second genus. Since the %{' vanish

with A , the second genus orbits approach those of the
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first genus as A approaches zero.

85. The Differential Equations.

In equatiouns (9) make the substitutions

£ = QO(H' LS where £ occurs explicitly,
= R+# |
S5+

(1#8) = (148,00 7%)

where the zero subscript is attached to p~, f’, g, & merely
to indicate that they are the original values of these quan-
tities as given by equation (10). (Note: there are no solutions
for second genus orbits in the plaune.) |

Ve thus obtain the equations:

e (et e ]

—~(M—gj[ {% E 2 éf’ £, (1‘)\*‘)«} +iep Q(ﬁ)waku{—}‘)%
FHlbRE N -306 e x —1gf e} EIEN A /§+ﬂla[0££'+}
tp253e (en —18RE, (inT rbot £%,> (m\fﬁ
He BN T ERE (8 2L (e )y ]

4“/(/1{}{% ) 3 B 0t2)-LE E:(aﬂ)z'wa@‘fgf(nﬂ\)gﬁ
bl £ (4N B RIEE(FN) o 3 & (107§
S 36, (N ISRE (11 A ) bo 6 +AY §
%i"{f— €, (l+>)—ff‘- Pe (em) e //lj—:ﬁllég(w?i}w; -

?
gﬁ»-ﬂ-m%)ﬁ [1-3perle e ~ope

_ (S {mw e (o Ny r )
- E—M ETRATS R AN ORY " 300t Qﬂ)f ]

7(:%S§K%E—I+3PE (68 ~ RS () “Off G+2)*§
+pg } 3¢, (re ) =12 8, (iﬂ\) +30/a G } l

(11)
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the terms Independent of p and ¢ having dropped out by reason

of equations (9).

86. The Equationg of Variation and Their Solutions.

The equations of variation of (1l1) are obtained by

equating to zero the eft side:
+¢L/ﬁ/ bern) + € (B*écﬂwwzfﬁwm%f“" ]
ﬁ[l,fg(jc@z}f—g (’--;3%@7: %-%LY_)%- j (12)

Since these two equations are independent, their
solutions ﬁill be congidered separately.

Consider first, equation (12,2). By the theory of linear
differential eguations with periodic coefficients?S)We may
get particular solutions to this equation by differentiating
partially its generating solution (lO,a)’with regpect to the
arbitrary constants which are contained in the latter but
which do not appear in the original d&fferential equation,
In this case, two such arbitrariss occur: t, and &

The two particular solutions are
9{:0 (QP} and 2¢

Now, since

@ {f"mw L(% %o)j

then 2 (€p) = D(EW %\ %—*(ng - {‘g @W{T‘W‘)}X (QF)

Al | — (€f) = — AT .g.(fg/lut 4 o at) " g
80, Dt { ,ﬁ,mz_’ y—.QMxE.t—f-gi,wgt) ¢ £---



We therefore obtain
7&)_[” 2T (2T Fiin 2T ) E

T} = (carates 2
i Q p =~ y i y I .. o
—~ (G 2T raen T «s—gzbm:'ft) €+ }7

This being a particular solution, we may disregard the con-
stant factor, since Cfi('@?} will be multiplied by an undetermined

constant later, and take
T F (T P 2T) €
¢(t)=[— ﬂ’””’*; (/” RPN ) ) . N
*(?W‘t+ﬁ Lo ‘ﬂ’t’«*f’g/@mgt}g i _} (13.1)
ag our particular solution corresponding to %(EM .
(2]

The other particular solution of (12,a) will consist of
a periodic function plus T timesg another periodic function.
For, since € enters into / Dboth explicitly and implicitly

(in T by & ), we have 3¢ 2§

2 | -424- cP) . — ' T
JE |
where the brackeis enclosing 23(&")& denote explicit dif-
ferentiation only.
On performing the indicated differentiations, this

solution becomes:

Yie) + Ac-BE .
where (/(t) is given by
W(Tj - [Qj%(ﬁﬂ)]: Coo T +g[3—;c<mc - Coo2T)
| -z-g?‘(/—f%;fmfﬂﬂ%zc +§m3z}
(13.3 )

Looo- .-
and T appears in the differentiation
& L (4t - £(#5) % = (conatact) x T
25  c*
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In order that (13.1) and (13.2) may comstitute a funda-
mental set of solutions %)of equation (12,a), that is, in

order that the general solution of (12,a) shall be

K@ +K [ v+ ac @]
Ky and Ko being arbitrary constants, the fundamental deter-
minant of the set must not be zero.
This determinant is:

P ) Y™ + AT . P
D=

Py YA + AT-PE)
5)

Now 1t has been shown that the value of the determinant
of guch a fundamental sef is constant. We can therefore

-compute the value of D most conveniently by setting T equal

to zero.
Thus
%{0) 47})[@/) O -
P = = = 1 =
@(’0) W(oy+APE) =+ O ‘ilﬁi,w o~ &

It therefore follows that the most general solution of equation

(12,a) is :
f= K PO K, W+ AT 4o ] (15.4)

qb and 90 being , of course, periodic ( 2m).

The above method cannot be used in the solution of

equation (12,b) because of the absence of a generating solution,


http://~x.Tr
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or rather, because its generating solution is identically
zero. Thig.equation, a form of Hill's equation, )w1ll be

solved by making the standard transformation

- &
£ - et
(14.1)
i hi T
in which - i %7@ ¢ f/é,él PRSP
-
2
S A
The various /6; and ﬂ%} will be determined so as to fulfill
the following two conditions:
(i) The periodicity condition
Y (0~ (2757 =0
(14.2)

(ii) The initial-value condition:
Gile)=r ; MelI= 0, it

The substitution of (14.1) in equation (12,b) yields:

2
-

4;’-9-;2 d‘/ﬁfb;“—/#‘f/@" %ﬁf’z’"[/%ﬁ(/“u?%’m’/efga(’;#—imz fz—'zc@&r}%‘.j

' i : ? ‘ “” 2 . T
e 1 i ? . k. N
T (A ) R Al G E T E +")(/,//:;+f?2£*iﬂz“)
3
z L _ =etpmT &
”’(/f%*f/@ff"“%ifw;}[/” §
L/ Z 43 —f—?cgmzﬂt/}'ézf-"‘ =d
4%fpgé—v~ aoT #3 =
As before, we equate to zero the coefficients of £7.

Each such equation will have for its complementary function

the solution of

¥

L4
Coefficient of € :

¢ { L

Y 42t = M =0
;T

1)}

q;» + 2 ~;éf'ﬂ%’ Z o0



~12-

,Whende'

, , SR —f
Vg, = (;-+'6L e U
Applying conditionsk(lé;zj‘ ‘we get , v
R L : o T
C,rC =1 c(,- "“)-_o

"8ince 77— , in general, is not rational, we must have
; : %;: : : ;
G'g = 0, :
Therefore

Coefficient of € . ‘ | k T '
A 42 (492 A ) (54: "’/ﬁ")*(fﬁ ' /) |

e : 2 | ) cr D 4
CEAT i;(f e )

A a Z
ST e
Now in order to introduce no terms proportlonal to T

oxr

1

‘1nto our solutlon 1t is ev1dent‘thgﬁ the,constant term on
the right 51de of thié equatioh nust vanish. That is,

AT

~Integration gives

; . _ Fl—(:t 3 . N e— l:t—_ |‘ e L"C
- 81*636 o LAPY>) PR

and app]ylng initial and perlodlc condltlons we obtaln

G ().

whence, €z = 0, and Cgq = -

Therefore

iF
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=z
Coefficient of &

/y";’+9~c‘(@%,5z+/”’fﬁﬂ /z;»j (U}- wzr, u;,i 'v*)

A 2 4 -
+.fqu'( 30z + qnzzj /A-AT = o
Substitution for /3 Ay . @7 ylelds
.e R ._.L 3 3 cT < __.L‘C 7 < i -2 T
’Z_ — —_— —_— —
Vv +~ ==V = - 2732 ¢ . =€t € ¥
2 Qj)} P

‘ 4 ¥
| e T
-3 2, [——e _ _ e /)
P fﬂ-q 26; 2'@& 2 +if e
To ensure that Vo shall have no non-periodic terms, we

cause the constant terms on the right side of this last

equation to vanish. That is,

=5 - = L =0
Ipe 17 ape  pey

whence 3 C#_+?)
/gm' ) ‘Z)L/"“ (/’;L—
Then a ' {
_ =it 3 V-t ¢ 3 -3 ) -z
= O+l e " e ) oo, 20 ERIVAE,
2 2pe (2+gp ) : %f“(l 4—)
+ 0 eﬂ&— j__@ éth
16 (1 405 16 (1)

As before, it can be shown that C4 = 0, end that ¢,

frJ

hes the wvalue

mn

33 4% —26au® 4 26apm 4 288
B AL (L= po) (4= )

. X )S : ’5
In similar fashion we can find as many more /% anq‘%f

GS =
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ag wlll determine /3 and ¥ to any desired degree of approx-

imetion.

Having now obtained the particular solution g of (l4.1),

the other particular solution is obtained by replacing ¢ by
a.ggm

-z in ¥ and & » that is, the conjugate of ¢ is also a

particular golution 7)&

Thus, the general solution of equation (12,0) is

CAT '
where | 3}0/;{/ .g,g;;%

o
@: g/j/;— + 0.8 + %(/@wé}{/p

@,ﬁa& .b)

£

2 ¢ -
/@,_,(’}: /7‘/,&-»‘% f{&—fwtj f;/}:/f:—/é sz.ﬁ
- 2/{1 . 3{/&”—7)«'#»}@5, 7 oo at
3 = (4744_)2‘ g{’?"") .
e G99 [ s o T ;sz«a’*
S (#me)® g Oz
7!- ©  e.

and v(g) differs from v(l) only in the gign of ¢ .-

If the signs of both & and ¢ are changed in (l4.4),
q does not change. Therefore, because of the parity of cos T
and sin T, it must be evident that the coefficients of the
cosine terms in v(l) are always real and those of the sine
terms always purely imaginary.

The fundamental determinant of this set of solutions

will be computed for later use. It is :



&'ﬂz ! -— " {4 (Y
e’ " g Pt } v

'zx = (o)

¢ T, T %ﬁt NS .
C (cprs) €TCHTEVT s st

Z& being constant in value, its evaluation will be most easily
effected by setting T = O.‘
Now (o) = v(B)(0) = 1, by equation (14.2), ii,
ana #(M(0) = — ¥ 0) 0 Bl (ev  Lete o
by equation (14.4). |

Hence

ZX = - iéi‘é </f' a power serieskin"g‘} (14.5)

Thig completes the solutions of the equations of
variationf(lz). Thegse solutions arefthe complementary functions
of équations (11) whose particulér integrals are next to be
determined as power series in A .

87. Notation

As the algebraic expressions become too unwieldy and
so obscure the methods of attaining certain results in the
subsequent constructions, we shall employ the "foundation-
letter® notation of Dr,’Buchanan 8).

The notation consists of symbols of the form

(7<’, ) ] \57 ¢, 00
and represents power series in N having for their coefficients

sums of cosines or sines respectively. Of the two parentheses
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in the superscripts , the first has two entries: an integer
0, 1, 2, ..., followed by the letter e or a. The integer
designates both the lowest power of & in the series and the
parity in &, while the letter e or o denotes that the
arggments of the cosihes or gines are even or odd multiples
of G respectively; The second parenthesis containg an integer
which denotes the amount by which the highest multiple'of

in the arguments of the trigoanometriec terms occurring in the
coefficient of any power of & exceeds that power.

In the following work we shall use the modified notation
obtained by deleting the letters e and o 1in the first
parenthesis since in our case the arguments of the sines and
¢ogineg are neither exciusively even norlexclusively odd
multipleg of T . |
» Ve may have occasion also to adjoin a aubscript to a
given foundation leﬁter, in which cése we understand that we
are considering a particular series of that type.

An Example. |

.@m(o): E( 6 mt),}»g (C

&('
o0 Z G, COORT + -

K=zo

i
zi; C CMﬂﬁgﬁ - &

=y <=0

(2}
(» CoaT %(3 CZDLt)'f

For future reference, we may note that in this notation,

(oL} ,
s =7 wo = C

(o)}
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8. The Period of The Orbiis of the Second Genus.

For the first genus orbits, the period is W in T
c? L
which is am. p(ﬂ*—g) =T

. in ©.
The period of the second genus orbits is to be,by

definition,

N-T,

( i + a power series in % )

N being integral. Now the périod of the solution q ig 2F

o

Therefore in order that our final solutions be periadic ( 2W)

in © , we must have the period

= c? (ﬂtg)z’ S i in {5
= n. p R . 1n
3 3 2 2 .
:,m-E;@ﬁfk J—nj.ﬂr=%-ﬁp“*§@+w*“‘§ww
N | I*

= ﬁ%.‘{; {1 + a power series in %/)
as requifed by definition. All values of & for which this

does not hold are excluded.

89. The Solutions of Equation (11).

‘After substituting for the value of £ (eauation (10)).

in equation (11), we'arrive at the following:

V)}C‘»‘—ufs Ejﬂ =(w5?j§ %%ﬁﬁ?&ﬁﬁ b %%?{?gu PN Pe -y
T A R § -?rg“{Q%mQN-;- -5

ﬂ(wgm AT fr PR P T

s Pt §H 180 en &, “‘"H (15]

%M@ FOO4 120, 0 f b 180T ]
#;.?(6-455%%%@@@@"%.%Woé 8.+ J



e et

-18~

where

P = 1r8Ctent) £ (3vbapctrzanae) 4 - -
| + Q("ﬂm'c).{_ 2%(% +3ComT -5——3607?;&}7& -
—Comr r E(CnT+2em2T) ¥ESC 3+ - -

£(Zriemmyet e
az(-3¢%gt'#%m3t)?"""

g0 §U
1

]

b
P = Z:(é<%n>€)-+ 2?-(’?’%écaaz — 2t con2T ) f- .
_P | &(3) + %z(-/gfcm’—cﬁ ~ -

4

zZ - .
'P = —J —/aZ{éCUD'E)‘/‘L%(g "(amﬁ‘—'&%w)”‘"
! 3 2 ..l - ey ..
S EvO R Go 7we) = -
| ~3emT ~Danzt) -

i

1

~; 3
g (8cosr ) rﬁfé“?
an - .-..g% 5;4(/3007}'@/9 " C’&% {_g “3&WT‘ZWLZ) gt
4\1”’”"“ g{3)+ e3(-72 Coo) + - -
< .

In order to integrate equations (15) as a power series

in A , we put

= . ”j 7& “Ei
o= 20BN G2 BN Y 30

s 4= &=

¢

On equating coefficients of like powers of % in the
resulting equation we obtain a series of differential equations
in Pj and qj having for their complementary functions the
solutions (13.4) and (14.4) respectively. It will be shown
that the - and the constants of integration will be so

d

determined that D and qj willk have the period To.

‘We proceed then as indicated.

Coefficient of A .




-19-

e

ffi +}7é [7{7 ==(7f§j [73/%_%,72>} _ ffjﬁd
friplay=e

Knowing the cowmplementary function for the first of
these equations, we may solve it completely by the method of

variation of parameters. Thus,

o o W%AE%
(e
L7 = Yy 4,

‘ P YrATP +Ad¢

= —(1+8) (¢rATP) [ 72,0+ 72, ]

¢t o
Q% ;¢7ﬂ}

il

, "{’
DL - 0) PR, ey ]

where the arbiltraries have been assigned the superscripts 1
bin order to associate them with Py and 4y - In general kia)

and kéJ) will be associated with the solutions of B, and

Sk

Here D 1s the fundamental determinant of 8 6 and has

the value

D = constant = 1 4 a power series in &

Employing the foundation~-letter notation, these equations

may be written:
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| 108 } /o)/z} {,)/z) Lol

2 ~_[ & (S 5]
(,}} (’}{’) }/ (o>

/ﬂ? / > S; j ’

whence, upon integration,

:j [ﬂ//’} i/"} )/ {/4(} S(‘:/ﬁ)’/})’/,)]

3 ,
/4 y [’z ﬂ 5/)/4 /oy(jp e j//-/j('fy Mj" > e j

>, 3¢5
— ém [(5/” /w} dz

the d's representing power series in & with constant coef-

ficients.
Substitution of these expressions in the complementary

function yields

J _ “3&/{{5{” q//zi} - g) ’)/”) (v)ﬂ)}{

/%5
A { f (S™%y w{}j Az / ///Sv/w g"”"’*’ s } jz/
FAT. ¢[[/§”” /”Mjoz‘f?(
# / . //” / gﬂ}ﬁ}; y §; mwj P JZ

On reducing, and noting that the terms in Az cancel off,

D=l A+ Oy 0

we have

)

The complete solution at this stage will now be
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; ’ (1} Gy
+ =K P+ K (prAcdy
2 ) o)) o)z ) (17
+¢(&rf{'%%0{f).7f6 L2 O )

In order that p; be periodic, terms containing T as a factor

must be eliminated. That is,

6 63 ¢) - A
ARD+d +rd,"~ =0 (18)
Therefore the periodic solutions for Py and q; are
- () Gy (1}(3) (oi(3)
~ﬁ% B %<n‘¢ + K Y + C , T ?;(f
) 8T (v o) ~eBT 2
2, K, ¢ P kP e 2
: 54
The arbitrary coustants K§l) may be evaluated by the
use of the initial conditiong
(19)

?3-{0) =0 o) =0

Applying these conditions to the above equations it iIs found

The periodic solutions thug become

(o)(3)

% _ Kw W%‘"C(W{B}% % ‘ |
(20)

b=

(3 8T , (1 C) L-eBT 4
Z - K, e — K€

In equation (18) we have a linear relation connecting

Kél) and ); . Another such relationship will be found in

the process of integrating Py and o which will uniguely

determine these two constants and hence further simplify (20).
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. 2
Coefficient of A We obtain the set:

e
ﬁ%%@ [/] - P{L) (21)
LRlQ] = 9T,

in which

IDW= (1758 [@l P+ R, + 2, & 7, P ALY 7?@]'
2 ; q..
4”:——,1%('%@[%@, 148 Dot 1§ G ]

Upon varying the perameters, there result
; re
E %{suj = — ( W)‘i‘ AC C/P’} : /
o [’;ﬂ ’
(2} I-
D ki ¢ (22)

- Lt () o (=)
A \&m - — € A
5 =

. ) ()
%((?ﬁ) _ @K’/M:@/” &
5_9_ - J

]

D and A being the determinants given in 86.

- Congider the last two of these equations. We shall
infestigate those parts of Q(g) which contain Kél) and
7{ , with the view to obtaining a supplementary relation

to (18).

(3l
(o¥o) ()(o) (2 C fo)lo) .
’ 4 = _ & iy

/y..( J - C + & S, y’ ¥ g

2

AT () ¢ 2
r»y _L(ML@J[ 2 4’2,,+g % +C%y, (%)ﬁf{@) #ou ke € L 2 Qo
A RO P RO T R ]

The terms of Q(g) in which we are interested are those



TR g et

. 0

-0%a
l-;/st ~¢73E

cbntaining € and & , and are shown in the following
table '
Coefficient of}ﬁﬁf@ e Coefficient of lﬂﬁf® e
o w6 (J3) (e}f3) () ) (w o))
KK % €l K [K e C% v ™) @,
I3 {v [L
—Q—K;)ﬂy/}y, Qwa "'R )}’ g)@oo
() [ 3 sty - QCH)
KO ™ S }
()= - o (36) s
Y, (CT7+ ST Comgog =t
) - (390
_fc(N)+L S‘3

Our two equations may now be written

A li;{n) _ e ‘/ng (z)- /ﬁ (/7‘5,9 m(ﬂ}(j('ﬁ[/ﬁ[’]/{/i/o} Sﬁ‘w"))
yﬁ [C(o;(:).#; (3/(2))_/‘ (C/z}{wj g{ﬂi’w ) T{

a :»(") ) ; az,'."
i - 7 5005 Lo

. |
QJ{B) and Qé%) being those parts of Q( ) hot included

s

- in the above table. -

Removal of constant terms gives

0} ) N (2 2)
K} };KL ﬁ{o)—f'yya(z)'f‘af{g( =0

KEAT+ v d+ 47 =0
2
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gince Kél) qh' 0, otherwise we would have the case for
analyticai continuation of the first genus orbits. BEvidently

we must exclude all values of & for which the determinant

() (45}
d, 4,

%% Ci(q (24)

of equations (18) and (23) is equal to zero.

We have, the;efore,
K_(Vl) - d(l) and Yg - d(l)
which gives for equations (20),
jjﬁq - g@w &g} + AC(DHgJ
%F N K;; g‘hmé/“('}» Ka(lyﬁfbvﬂz'@”{z

When these values have been substituted in P(Q) and

Q(g), there result:

/o)!/u

(aj) [ wﬁz (5[0/( §/"I/o} iy - 2087 /177 Al j Cg/a//{s} 4

QoL [E P, S e gy

Thé coefficient of 7€_here is the same as that of i% in
the coefficient of A . The significance of this fact will
be apparent in the later development.

Ve shall now complete the integrations of the last pair

of equations (22). They are of the form:
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03(3) ,S('ﬂ]*j oa_a ‘C

AE@M “[C( + ¢ + Z (nguﬁuz)]
Aé;;” 3 [@uﬁt<£mm ; ”Mj (Wu}w&}j

on integrating,

. (= (vj(w} (oM'B) - 23T s . o
Eﬂ V_ g (CL(D} /i (o29)

3

M

o

L%/MC [;)M@!} . [MUM [M(B) . SUW”U (25)
(00§ o 02 S,

@L(19

Substituting these results in the complementary function

we arrive at the particular integral
‘ - CBTS o)) /oﬂj "J/”T o
g = e ST)r €T (cogip ™
Thus the completeksolutionrfor do ist
. _ ['n,y & T \ [U o

Jo® Ky €y, )7 0 -FC 40 |

_ AT ¥
e P ) P e

(26)

Congider now the first pair of equations (22). They will

yield, on solution, a relation involving ¥ . We have,
’Diﬁﬁ —@le™ ™, “§) ve "‘ﬂf(my gty
—W[Clg/{jf-’}/ C{w{»J /:M:gé [P/w—]
4177

i1

@
D 4

‘2
Integration gives

DA - /"P”’ﬁ'z fe (] PO <6y 40T
DA - /95[7)"”]%@

]
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The particular integral is, therefore,
Pz Pl . d)c —A [ [Pz v [P |
~(YrAcd) | [4 [PaT],

axr

For L 2L 0 [ o 2L 45

and we get for the general solution:

22 KO + K2 (Y tAcd)+ #(@Pr 0 7)<

. 0 (27)
=) ‘ = (o
f_qé;//7§) T+ QQL//igéZ(?D ,f7éz,
The condition for periodicity will give the relation
(2_) . (') (3)

A gecond similer relation which, with (28)3 will unique-

ly determine Kég) and }; , will arise in the next integration
in the same manner as did equation’(23). Woreover, the coef-
ficients of K 2) and Y, will be the same as those of K\ L)

, 2 2 ’ 2
and ){ in (23). Therefore the functional determinant of these

two equations will be the determinant (24).

Thus we have

KéZ) = ngI and %_ = diz)

Completing the integrations in (27), we finally arrive
at the general solutions for Py and e PN

%}: K{ﬂd?vb uﬂt( (,)M S(Mj o %m(%ufm)

cer(?)

+ C
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: () c BT 2 (2) -3z 3
%:}{3 6/3/9")7‘—/4‘{,7,((/5%’() (29)
(4T (oXY) L oloi) -¢f3T , ‘
%gﬁ((p +¢ j-/-@ ﬁ((j&zyat/‘@ .
On imposing initial conditions in equations (29), the

integration constants may be evaluated.

Proceading similarly, we can continue the process of
determining +the succeeding ~pj and qj , the two unknowns

KéJ) andy ?2 being determined by twa relations similar to

those of equations (18) and (23). Moreover, the functional

determinant will be (24).

—
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