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ABSTRACT

Criteria will be obtained for a linear self-adJjoint
elliptic partial differential equation to be oscillatory or
nonoscillatory in unbounded domains R of n-dimensional

Euclidean space E' . The criteria are of two main types:

(i) those involving integrals of suitable maJorants of the
coefficients,fand‘(ii) those involving limits of these major-
ants as the argument tends to infinity. ‘

Our theorems constitufe generalizations to partial
differential equations of well-known qfiteria of Hillé, Leighton,
- Potter, Moore, and Wintner for ordinary differential équations.
In general, our method provides the means for extending in this
manner any oscillation criterion for self-adjoint ordinary
differential'equations. Our resﬁlts imply Glazman's theorems

in the special.case of thé Schrodinger equation in En .

"In the derivation of the oscillation criteria it is
'assumed that R 1is either quasiconical (i.é. contains an
“infinite cone) or limit-cylindrical (i.e. contains an infinite
chinder). In the derivation of the nonoscillation criteria
no special assumptions regarding the shape of the domain are
needed., | )

Examples illustrating the theory are given. In
particular, it is shown that fthe limit criteria obtained in

the second order case are the best possible of their kind.
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INTRODUCTION

Conditions on the coefficients of certain linear
elliptic partial differential equations will be obtained
which are sufficient for the equations to be oscillatory in
unbounded domains of n-dimensional Euclidean space E",

The criteria are of two main types: (i) those involving
-integrals of suitable majorants of the ceoefficients; and
(ii) those involving limits of these majorants as the argu-
ment tends to infinity. Criteria of type (i) were obtained
by Swanson [26] for second-order equations with one variable
separable and the fundamental domain limit-cylindrical (i.e.
containing an infinite cylinder); and conditions of type
(ii) by Glazman [9].for the Schradinger operator in the case
that the domain is all of E",

Our theorems constitute generalizations to n dimen-
‘sions (i.e. partial differential equations) of wéll—known
vone-dimensional results in the literature (cf. [9], [11], [16],
(171, [19], [21], [28]). Our method provides the means for
géneralizing to n-dimensions (i.e. partial differential
‘equations) any given one—dimensioﬁal oscillation criterion. -.
The results we obtain serve to illustrate the power of the
method. |

There is an extensive 1iterature on oscillation
,theorems for ordinary differential equations.. A complete

bibliogréphy may be found in the forthcoming book of Swanson

[27]. The corresponding theory for partial differential



‘equations is not as well developed (see, however, [9], [10],.
(131, [14], [15], [26], [27]), largely because of the earlier
lack of an n-dimensional analogue of Sturm's comparison theorem.
In this work we use the recent Clark-Swanson result [4],
together with a comparison theorem of Swanson [24] for eigen-
values, as the basic tools for deriving our oscillation
criterig. |

Thé definition of an oscillatofy equation'given
below 1s closely related to the.notion of conjugacy used by
‘Kreith [14]. An equation oscillatory in our sense is often
said to have the nodal property (cf. [26]). In‘general, this
is stronger than the requirement that,avsolution exists with
a‘zero in every neighbourhood of infinity. In fact, if a
self-adjoint second-order 1inear‘elliptic equation is oscilla-
tory in our sense, every solution of the equation has a zero
in every neighbourhood of infinity. This will be seen to be
a consequence of the Clark-Swanson separation théorem [47.

In Chapter‘I, equations of the seéoﬁd order will
be considered on gquasiconical domains (i.e. domains containing
a cone). The criteria obtained are easily specialized to
all of En, and will contain thé corresponding results of )
'Glézman [9] fér the Schrodinger operator. Using the Clark-
Swanson comparison theorem, we also deri&e nonoscillation
theorems, but without making any special éssumptions regarding
the shabe of the domain (in contrast to the oscillaﬁion

theorems, where we assume that the domain is quasicorical).

‘\:4



Our results in this direction generalize well—known‘one-
dimensional theorems-of Hille [11], and Potter [21]. The
last section of Chapter I will beldevoted to examples illu-
strating the theory. In particular, we shall show that the
limit criteria obtained are the best possible of their kind.
Equations of higher order will be studied in Chapter
IT. Our apprdach is an extension of that used by Kreilth
[13] and Swanson [26] for second-order eduations. The funda-
mental domain will be 1imit—cylindrica1 (i.e. will céntain
an infinite cylinder), The results are fewer in this case,
since there are not many one-dimensional theorems extant.
Our theorems constitute generalizations of results of Glazman
f9] for two-term ordinary differentiél equations of order
2m (m any positive integer), and Leighton-Nehari [17] for
fourth-order equations. In the absence of a suitable compari-
son theorem, however, our methods will not yield nonoscillation
theorems for higher order (m 2-2) partial differential
equations. The operator we consider has a relatively éimple
form, but our methods will work for more general self-adjoint
operators of even order, since the variational principles we
use are valid for general elliptic operators (cf. [1] and )
(187]). Although we know of no one-dimensional. oscillation
criteria for such general opefators, we remark that such

criteria could be generalized by using extensions of the

Swanson comparison.theorem [24%, p.517].

o



CHAPTER I

SECOND ORDER SELF-ADJOINT EQUATIONS -

1. Definitions. and notations.

We shall obtain oscillation criteria of limit
'type and integral type for the linear élliptic partial diff-
erential equation

. n ’ .
(1.1) Iu= ¢ Di(aijDJu) +bu =0
1,J=1

in unbounded domains R in n-dimensional Euclidean space

n

E". Our theorems are, for the most part, extensions of one-

dimensional oscillation theorems of Kneser-Hille [11] (limit
type), Leighton [16], Moore [19], Potter [21], and Wintner
[28] (integral type). The remainder are the ri-dimensional

second order analogues of one-dimensional 2m-th order oscilla-

tion theorems of Glazman (91.

)

Points in ET are denoted'by X = (XqsXpseeesX,

and differentiation with respect to Xi is denoted by Di’

i=1,2,...,n. The coefficients aij are supposed to be

1
(

real and of class C(R), “and thé matrix (aij) is positive

definite in R. The'coefficient b 1is assumed to be real
and continuous on R. The domain D(L) of L is defined
to be the set of all real-valued functions on R of class

Cz(ﬁ). The conditions on the coefficients, although not the

o



weakest possible (see, for example, [U4]), are the special
‘case m =1 of those we impose in the 2m-th order case

treated in Chapter II.

Definition. A function u will be called a solution of

Iu =0 'if u e D(L) and u satisfies (1.1) everywhere in R.

Shape of the domain R. We assume that R contains the

‘origin and that R is large enough in the x, ~direction to

. n -
contain the cone Ca = {x € E" : X > |x| cos a} for some

_ . a 3

a, O < a< T, |x| being the Euclidean distance ( ) x?) .
- , i=1

The boundary dR of R 1is supposed to have a piecewise

continuous unit normal vector at each point.

We shall make use of the following notation:
. R, =Rn {xc¢ E? ¢ x| > r}; S, = {x e RUR: x| = r}.

r

Definition. A bounded domain N < R is said to be a nodal

domain of a nontrivial solution wuw of (1.1) iff u =0 on 3N.

Definition. The differentiaihequation (1,1) is said to De

oscillatory in R 1iff there exists a nontrivial solution u,.

of (1.1) with a nodal domain in R, for all r > O.

It follows from Cla#k and Swanson's n-dimensional
anélogue of Sturm's separation theorem [4] that every solution
of. an oéciilatory differential equation vanishes at some

point in 'Rr for all r > O.

Definition. The differential equation (1.1) is said to be

.
No



non-oscillatory iff there exists r > 0 such that the solutions

in Rf have no nodal domains.

2. Auxiliary results.
The basic tool for deriving our oscillation theorems
will be a recent comparison theorem of C.A. Swanson [24]. 1In

addition we shall need two well-known properties of eigenvalues.

Minimum principle. (Cf. [6, p.399]) Let Q be a bounded

domain in E®. The function u e C°(Q) which minimizes the

functional .
: n
(2.1) Jlu] f { D,uD.u - bu 2} ax
IR S RN
,
under the condition lull = 1 is an eigenfunction corresponding

to the smallest eigenvalue of the problem

(2.2) . -Iu = A in Q3 u=0 on 30 .
' 1
The norm lull is the usual I°  norm:” ful = [I |u|2dx]2

Proof. In [6] it is shown that if the minimizing function

exists and is of class 02, then it is an eigenfunction

corresponding to the smallest eigenvalue of the problem (2.2).

Let the minimum value of = J[u] be Ao+ Then the results of
[18, § 11] show that there exists a minimizing function wu_
which is a weak solution of (2.2) in the folldwing sense:

0
(L-x o> = 0, » € C(Q),



< , > being the usual LQ(Q) inner product. On account of

our conditions on the coefficients aij and b, the results
of [1, §9] imply that u, is in fact a classical solution of
(202).

Monotonicify principle for eigenvalues. For O < t <o let

G(t) be a bounded domain in R. If 0 < t; < t

1 < o0 implies

2

G(tl) c G(tg), G(tl)'¥ G(tg), then the first eigenvalue

xo(t) of the problem

-Lu =z in G(t);- u =0 on 3G(t)
is monotone decreasing in t. Moreover, if for some rs > 0,

G(t) c a(t), where q(t) = {x e E" : r_ < [x] <-r_+t}, then

0

1im A (t) = + o0 .
t-0+ ©

"Proof. The monotonicity of ko(t) may be established by

adapting the proof given in [7, pp.MOO;MOl],for the Laplace
operator,

The continuity of- aij implies that the smallest

eigenvalue AO(X) of the matrix (a, (x)) has non-zero

iJ

infimum in G(t), since G(t) ¢ R and (aij) is positive-

definite in R. 1In other words, the operator L 1s uniformly

elliptic in G(t), i.e. there exists a number 'u _(t) > O such
.

that L a,.(x)z.z.>u (t)lzl2 for all x € G(t), z e- BT,



.Since the function b is uniformly continuous on G(t),

there exists a number ko(t) > - such that

(2.3) —J bu“dx iz .ko(t)f u dx
a(t) G(t)

for all u ¢ Cl(R). Let

Iy [u] = f { LB 1 D_uDJu - bu }dx .

Then (2.3) and the uniform ellipticity of L in G(t) imply

that
(2.4) Jt[u] > uo(t)j _g (Diu)gdx + k (t)j u2dx
| a(t) =t G(t)
But )

| uldx = | u2F(r,s)drds ,

G(t) G(t)

where F(r,S) 1is the Jacobian of the transformation from

‘rectangular coordinates (xl,xg,...xn) to hyperspherical
polar coordinates (r,al,égg...,en_l) = (r,S), defined by the

relations

X, =T TT' sin @, , X, =T cos 8,
n-1 o
X, =T COS 8 .5 gIl sin ej , i=2,3,...,n-1.

We now extend .u continuously to all of the annulus Q(tf



"by requiril

is zero on

annulus Q

where

By Schwarz

[u(x)

whenever

Q(t) we o

ng it to be zero outside - G(t). 1In particular,; u

x| = r

, r_ being the inner radius of the
o o A

(t). Hence

u(x) = v(r,el,...,en_l), vy = dv/3t .

's inequality,

J

x € G(t) c a(t). Integrating this inequality over

ro+t >
| <o T (G5) e

(o]

' r 2
||l (&)
o) o)

2

r

L)

btain

'J u“dx = J uQF(r,S)drdS

where the

|~
ct
n
€
7~
a/
|
N~
o]
P
H
\s
W
SN”
0,
~
Q
n

: : 2 n-1
|grad u|2'= (%%) +
1 . i=1

I

24 f
<hi+1 38/ °

h; are certain (known) functions of r and S.
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Since u is defined to be zero outside G(t), we have
| - 2 n 2
(2.5) J u“dx < 0t J ' é (D;u)"dx
G =

Combining this with inequality (2.4) we get

7. [ul > [k () + Qo(p)/tg]j ulax .

G(t)
According to Courant's minimum principle [6, p.399],

A (t) = inf{g . [ul : “u“t =1} ,

where lul, is the L norm of u on G(t). Thus

(2.6) A (8) > k() +u (t)/6° .

Since uo(t) may be chosen to be inf{Ao(x) : x € G(t)}) ,

it cannot decrease as the domain G(t)- shrinks, and therefore
remains positive as t - O+.

Similarly, we may choose
k (t) = inf{-j bugdx/\\u“2 ; ﬁ € C(G(t)}
o . = t ?
G(t)

that is, | | -

il

k (%) inf{—j | bugdx/f >uldx : ue C(G(t))}
0 ‘ -

(t) - a(t)
since’ u 1is zero outside G(t). Now b 1is continuous in R
and is therefore a.continuous function of |x|. Thus b is a

continuous function of t 1in every interval O < t < 5,
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and is thus bounded on O < t < 6 for all & > O. Therefore

k(t) must remain bounded as t - O+. (This implies that we
could have chosen ko(t) independent of t in (2.3)). In
any event, the inequality (2.6) now implies that

lim A _(t) = +00, and the theorem is proved.
t-0+ © S

Remark. In the applications below, we actually need xo(t)

to tend continuously to +w®. To prove that xo(t) depends

IN
continuously on t, we proceed as follows:

xo(t) = inf{Jt[u] : “u“t = 1} (by Courant's principle)
= J, [u] (for some u, in the domain of J;)
~ n . . .
= J z a..b.u D.u_ - bug} ax
. 171707 J o 0
a(t) ted=l
n

= j { L a,.D,uDu_ - bugldi 5
;o1 fJTiT07gT0 of
Q(t). 3d=

by defining u, to be zero outside G(t). This is possible

because U is an eigenfunction of the problem

“Iu.= A in G(t) 3 uw =0 on 3G(t)
according to Courant's minimum principle. It is clear that
the last integral above depends continuously on t, = as may
be seen by transforming to hyperspherical polér coordinates

and considering the 1limits of the resulting multiple integral.
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Definition. Let A(x) denote the largest eigenvalue of the

matrix '(ajj(x)), x € R. A majorant of (aij) is a positive-

valued function £ e CT(0,0) such that

“f(r) > max {A(x) : x € Sr} 5 (0O < r <)
The function g defined by A
' g(r) = min {b(x) : X e Sr}, (0 < r <o0)

is called a majorant of Db(x).
Let A and B Dbe functions in G defined by the

equations A(x) = £(|x]), B(x) = g(]xl), respectively.

The comparison equation. We shall obtain oscillation theorems

for equation (1.1) by comparing it with the separable eguation

.

' n
(2.7) £ D.(AD.,v) + Bv = 0.
: Coi=1 Bt

it

As before, let r,6 ,8 denote hyperspherical polar

1280000058, 4

coordinates. By writing (2.7) in terms of these coordinates,

we find that (2.7) has solutions (in particular) of the form

(2.8) v(x) = p(r)p(e,), 0 <r <0, 0<8,<a,

1

where p and ¢ satisfy the ordinary differential equations

: a - - - - '
(2.9) S " re(r)E1 + oM g(r) - A xTr(x) e = 0,

4. n-2 dep _ .on=2 . o
(2.10) ey [sin 8, a?] + Ay ® sin 6, =0,
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respectively. We choose Xa to be the smallest number for

which (2.10) has a nontrivial solution ® on O g.el L a
satisfying ¢@(a) = 0. It is well known [5] that” Mg exists

as the smallest eigenvalue of a singular Sturm-Liouville problem.
We shall suppose, for definiteness, that the corresponding

eigenfunction has been normalized by the condition ©(0) = 1.

3, Oscillation criteria of integral type.

The theorems in this section constitute extensions
of the one-dimensional theorems of Leighton [16], Moore [19],
Potter [21] and Wintner [28]. They may be specialized to all

of E" by taking VvV = p, @

1, Ay = O

.

Theorem 1. Equation (1.1) is oscillatory in R if R contains

a cone C_ (a > 0), and (aij)’ b have majorants f,g

respectively such that:

w o~ .
= +0 and [ P Hg(r)-arC

—dr £(r)ldr = + 0.
10 f(r) T

Proof. <The hypotheses (3.1) imply that the ordinary differential

equation (2.9) is oscillatory in. O < r <o by the Leighton-

Wintner theorem [16], [28]. ILet p(r)  be a non-trivial

solution of (2.9) with zeros at r = 893565500058y 500., where
6k_T“)" If ¢ 1is an eilgenfunction of-(2.10);with boundary

condition ®(a) = O corresponding to the eigenvalue kaj - the

\'4
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function v defined by (2.8) is a solution of the comparison
equétion (2.7) with nodal domains in the form of truncated

cones

< {x| < O<a< T,

Cy = {xe E® : x> |x| cos a, &

ol n K IR

k=1,2,..., with piecewise smooth boundaries. Thus v has a

nodal domain Cak c Rp for all p > Oy for if p > 0 1is
given, choose k 1large enough so that ék > p, and clearly

x e C implies that |x]| > 5, >p and x e C < R, so that

ak

x € R_. Since
p

_; é..( Yz.z, < A(x)1212 < f(f)lzl? % A(x)[z|2, z ¢ EV
j=L ot -

1,

and b(x) > g(lx|) = B(x), equation (1.1) majorizes equation

(2.7) in the following sense:

n .
o i -
| L ‘{i,§=1(Asij a; ;)Djubu + (b B)g }dx > 0.

ak -
It then follows from a'compariSOn theorem of C.A. Swanson [24]

that the smallest eigenvalue of the problem

'LWA= pww- in  C w=0 on aCa

ak? Ik

s§tisf;es u < oi“ Let M, ={xeC  t 6 < fx|'< t},

6, <t <%

1 AL and let ul(t) denote the smallest eigenvalue

of the problem

L



s

-Lw = u(t)w in M w =0 on ‘aMakt'

akt’
By the monotonicity principle for eigenvalues, ul(t) is

monotone nonincreasing in 6, < t £ 6 and 1lim ul(t) = +00.
: =8 +

k k+1

Since < 0, there exists o number T in (8, 6k+1]

M1 (04

such that ul(T) = 0. This means'that"Ma is a nodal domain

KT

Kk C c R

of a nontr1V1a1 solution u okT c ok D

of (i.i),'and‘since M

for arbitraryv p > OA provided k 1is sufficiently large,

equation (1.1) is oscillatory.in R and the theorem is proved.
It is convenient to state the integral conditions

with the number 1 as the lower 1limit of integration, but the

 theorems remain valid if the integral conditions hold when 1

is replaced by a positive number: In fact, in the literatufe

(cf., e.g. [19], [21], [26], [27], [28]) the integral criteria

are often‘stated‘in this manner. We shall have occasion to

make use of this fact in the applications (Cf. 56, Example 4).
The first part of condition (B.I)Vréquires the function

f to grow quite slowly, and in fact does not hold for the

Schrodinger operator 4 + b(x) in three dimensions, since in

dr

. ' © _ .
this case f(r) > 1, so that J <. In such cases
. 1

the following extension of.Moore's oscillation theorem [19]

' is valid:

Theorem 2. The equation (1.1) is oscillatory in R if R.
contains a cone Ca(a > 0), and (aij), b ‘have majorants

X
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f, g, respectively, such that

' o0 : © ‘
' dr n-1 ,m -2 :
(3.2) . ———— ¢ 0 and r h (r)lg(r)-x_r “f(r)ldr
. J‘l rn—lf(r) | fl n “a
. . 0
for some number m > 1, where h (r) = J dt

rt™hoe(t)
lfzggi. According to Moore's oscillation theorem [19], the
ordinary differential equation (2.9) is oscillatory in
0 < r <% on account of the hypbtheses (3.2). The remainder
-of the proof follows that of Theorem 1 without change and“will
be omitted. - | ~

‘The criteria obtained in Theorems 1 and é may be

sharpened slightly in the Case'fhat the largest eigenvalue

A(x) of (aij)‘ is bounded in R.

Theorem 3. Let R contain the cone Ca for some o > O,

and let A(x) be bounded in R. Suppose (aij)‘ and b have

majorants f,g, respectively. Thenﬂédﬁatiqn (1.1) is oscilla--

_tory in R for n =2 if

o . . _ 2 ) ’
rlg(r) - A Tldr = + o

b4 -

(3.3) | T

1

and for n > 3 if there exists a number 6§ > O suchAthat

(3.4) | ‘ ‘J:)rl'é[g(r) - xarigf(r)Jdr = + 00 ,

In the case n = 1, equation (1.1) is oscillatory if (3.4)

holds with &6 = 1 .(the Leighton-Wintner theorem).
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Proof. If .A(x) 1is bounded in R, say A(x) < Ays X € R,
we can choose ‘f(r)'=‘Al, O < r.<o. Then, for n =2, the
conditions (3.1) are fulfilled and hence the first'statement
' of the theorem follows from Theorem 1.

For n > 3, the first part of (3.2) is fulfilled,

and h (r) = re'n/(n-Q) Aq-

By hypothesis there exists
§ > 0 such that (3.&) holds. ILet m - 1+ 6/(n;2). Then
‘direct computation shows that condition (3.4) implies the second
~part of condition (3.2), and therefore the second statement of
the theorem follows from Theorem 2. |

| It is clear that our method enables ﬁs to generalize‘ 
““to n dimensions any sufficient Condition for a self-adjoint
- ordinary linear differential equation of the second order to f
| be oscillatory. In what follows'ﬁe sha11 therefofe generalize:' 
only a representative number of the‘existing one-dimensional”
3oscii1ation theorems.

OQur next theorem gene}alizeé Potter's refinement

[21] of Leighton's theorém.lee shall find it convenient to.“”
introduce the following notation.- Let h  be a positive

¢° function defined by _ : o -

(3.5) . In(r)172 = g(x) - A lhg + (m-1)(n-3) /4172, 0 < x <0

¢ .

Let tﬁe functigns H and H

1 o be defined by.

3 _ .1 In'(r)1® _ n
Hl(r) = n(r) - uh‘((%] + .gr-) s

1 [n'(r))° ;h”(r)

= ®(z7 ~ T 2

s
N
—~~
R
1

"
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"where primes denote differentiation with respect to r.

Theorem 4. ILet R contain the cone Ca for some a > 0,

and let A(x) be bounded in R, say A(x) < Al; X € R.

Then equation (l.l) is oscillatory in R if there exists'a

positive C2 function h satisfying (3.5) for lérge r and

.either
‘ . < dt
(3.6) f j Hy(t) dt = + o0
or
P O ) j
(3.7) | '[1 Hy(t)dt = + 00,

-

Proof. In equation (2.9) choose f(r) = A+ The normal form

of this équation, obtained by making the oscillation-preserving

transfofmétioﬁ p = r(l-n)/2 g is
o a2 ‘ - _
(3.8) N E‘g + {g(r) - Al[)\a ‘*‘. (n-1)(n-3)/41r"“}o = 0.

The hypothesis (3.6) (or (3.7)) implies that the equation
(3.8) is oscillatory by the theorem of Potter mentioned in the
remark above. Thus the equation (2.9) is also oscillatory if
(3.6) or (3.7) holds. The-remaiﬁder of the proof is similar
to tha% of Theorem 1 and will be omitted. ~

~Because qf the positiVity condition on .h, it ié
clear that Theorem 4 is in some respects less general than.

|

Theorem 3. However, in section 6 we shall exhibit an example
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' for which Theorem 4 gives information not. obtainable in any

obvious way from Theorem 3.

4, Conditions of limit type.
| The first theorem in fhis section is a generaliz§tion
of ﬁhe classical Kneser-Hille theorem [11]. Our fheorem alsd
containg Glazman's generalization [9, Th.7, p.158] for the
SbhrBdinger operator '-v2 - b(x)? X € En, .and in factiprovides
d new proof of his result. AIt will also be seen that oﬁr

. condition is sharp.

. . ° i
Theorem 5. Suppose that R contains the cone  C_ = for some

@ >0, and that A(x) is bounded in R_ for some s > O,

séy Ax) < Ay X € R,. Let D have majorant g. Then

equation (1.1) is oscillatory in R ‘if

-]

(4.1) lim inf fgg(r) > Al[ka + (n-2)2/4];
T- 00 _ - - .

Proof. The hypothesis (4.1) implies that there exist constants
r_, and Yy such that |

r2 g(r) > Y.> Alfxa + (n—2)2/4]

for all r > r . We then compare (2;9) with the Euler equation
5\ . - .

(h.2) - S a8+ (v a7 =0,

with solutions p = r", where
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- (.3) p* + (H;Q)B + (Y/Ay) - Ay = O.

Since y > Al[ka + (n—2)2/h], the quadratic equation (4.3)

" has complex roots, and therefore equation (4.2) is oscillatory

in (ro,«j). We mayvéhoose f(r). = A, and apply Sturm's

1

comparison theorem [5, p.208] on (r15d))’ (ry = max{r_,s})

to deduce that equation (2.9) is oscillatory on account of the

hypothesis

rn;l[g(r) - xar"2 £f(r)] > rn"B(y - Mg l)’

r > max{ro,s}.

!

The remainder of the proof proceeds as in Theorem 1 and will
be omitted. |

Our next theorem ié an gxtension of a well-known
theorem Qf Hille [11, Th.5]. As Hille points. out in the
paper just cited, the conditions are a réfinément of those
in Theorem 5, since integration smooths out'irregularities in

the function g.

Theorem 6, Let R contain the cone Ca for some a > O,

. and let A(x) be bounded in R, say A(x) < Ay> X € R.

Then equation (1.1) is oscillatory in R if

| v_r2 g(r) > Al[xa + (n—lf(n-})/%] for large r and either

(b.14) 1im inf rj g(t) dt > A, [x_ + (n-2)2/4]
a0 Jy S 71 a e

v
Ny
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or

| .
(4.5)  Llim sup [ g(t) at > A [n, + (n-4n+7) /4],
Y= 00 r 1 a.‘ .

where g(r) = min {b(x) : x € Sr}.
P

Proof. 1In equation (2.9) choose f(r) = A We recall that

1-
the normal form of this equation, obtained by making the
A(1-n)/2 5,

oscillation-preserving transformation p = is

. _ o ' :
(3.8) A %;% + {g(r) - Al[xa + (n-1)(n-3)/4]r“2]c = 0.

'The hypothesis (4.4) implies that the equation (3.8) is
oscillatory in O < r < o by a theorem of Hille [11, Th.5],
since : ' .

+ (n-1)(n-3)/41t"%}at

| w0
1im inf ;j {g(t)/ny - Dny

- o0 r

1 1im inf [ g(t) dt - [ i) ) /1]
A ine o] e(t) 46 - Dy ¢ (ee1)(0-3)/

> Ag + (0-2)2/4 - [A_ + (n-1)(n-3)/4] = % .

" Thus equation (2.9) is also oscillatory in 0 < r < © vif
hypothesis (4.%4) holds.

¢ If the hypothesis (%.5) holds, then eqdafion (3.8)
s oscillatory in O < r <« by the theorem Qf.Hille cited

above, since
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. @ . v ) . —2
lim sup x| (g(t)/a; - [rg + (n-1)(n-3)/4]1¢t""}at
- o0 or

1 © :
lim sup rf g(t)dt - [Xa + (n-1)(n-3)/4]
r—- o0 r

> [hy +(n®-dne7) /4] - D + (n-1)(n-3)/4] = 1.

Thus the equation (2.9) is also oscillatory in 0 & r < ©
if (4.5) holds. The remainder of the proof will be omitted,
'since it follows that of Theorem 1 without change.

In section 6 we shall show, by exhibiting a counter;
example, that the inequality‘(ﬁ.l) is sharp. Our next theorem
permits us to relax the condition (4.1) provided we impose
an additional hypothesis. This gives the second order, n-
dimensional analogue of a ém—th qQqrder, one-dimensional result
of Glazman [9, p.102]. Although this result is not the charpest
pogsible,_it is useful in the applications of the theory, as

we shall demonstrate in section 6.

" Theorem 7. Let R contain the cone Ca for some a > o,

and let A(x) be bounded in'ER, say  A(x) < Ays X € R.

Then equation (1.1) is oscillatory ir rgg(f) > Alfxa+(n—2)274]
[4

‘for large r 'and ‘ @
-\ © } > 2
(4.6) 1im sup (log r) f t{g(t)-A; [A_+(n-2)/8t"“}dt = + o .
 T= 00 r . 1" a ;
Proof. In equation (2.9) choose f(r) = A+ We then reduce



~2%-

(2.9) to normal form as -in the proof of Theorem 6:
(3.8) AL S% 4 La(r) - aplhg + (n-1)(n-3)/41r"%0 = o,

where p(r) = r(l-n)/E . By-a theorem of Glazman [9, p.102],
the equation (3.8) is oscillatory in 0 < r <0, since the
hypothesis (4.6) implies |

Lin sup (1og 7) [ t{g(t)/a; = [rgH(n-1)(n=3)/2]6"2 -1/(4t2)]at
- O r h : . ' ’

. 0 4
= All 1im sup (log r) I t{g(t) - A

~ 2 -2
[A. + (n-2)5/41t7°}dt
I 0 r 1 a

Thus the equation (2.9) is alsé dscillatory, since the traﬁs—
formation p = r(}—n)/Z o Dpreserves osdillatory'bghaviour :
En 0 < r.exi. The proof of the theorem may now‘be completed
as in Theorem 1. We thereforé omit the.details,‘

'5.‘ Nonoscillation theorems. ..

All of our ndnoscillaﬁion theorems will be proved
by contradiction, and this gives rise to an interesting feature:
since nodal domains are not constructed, no special assuﬁptions
are needed regarding the'shape of the domain R. it is not
necessgry_for R to be quasiconical (as in §§3 anﬁ 4y,
quasicyl;ndrical (as in [26]) or\quasibounded;[9]. ~There is
. no 1§§s of generality in éssuming that R contains the origin,-
. - _

Since R is connected and unbounded, S, ?is nonvoid for each r > O.

N
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Theorem 8. Let L be uniformly elliptic in R, for some

s > 0, 1i.e. there exists a number ' Ao > 0 such that
for all x € Rs’ z‘e E?, Let

go(r) = max {b(x) : x € sr}, 0 < r <0, Then equation (1.1)

is non-oscillatory in R if

(5.1) lim sup r® g (r) < (n-Q)EA'/u,
v T 0O o - o

Proof. Suppose the conclusion of the theorem is false, i.e.

that (1.1) is oscillatory in R. Then there exists a nontrivial
t

solution u of (1.1) with a nodal domain N, c R, for all

r > 0. But the hypothesis (5.1) implies- that there exist

constants rog Yo such that '
5 5 ,
ToE(r) <y < (0-2)% ag/h, \

for.all r > r . We compare (121),with,the equation

n 5 _ o - .
(5:2)  E ADV 4y lx[TTv=0,  xeR

" Because of the hypotheses

42 LN
z (x)z.z Alz|®, xeR_,, zeE,
i,321 1 i = "o i
Y 2 g (r) > b(x) i'e S, r>r
o o 2 s r? 02 -

equation (5.2) majorizes equation (1.1) in the following sense:
. ) . : I

<
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|72 - b)ug}dx > 0,

s (a,.-A 68, .)D.uD.u + (y |x
j {i =1 ij "o iJd’ 1Ty o)

(r > max{ré,s})

and therefore the Clark-Swanson n-dimensional analogue [}4]
of Sturm's comparison theoremvimplies that every solution of
(5.2) has a zero in N, U 3N, for all r > max {ro,s}. But

the solution op = r® of the ordinary differential equation

(5.3) Ay T ™88y 4y r™ p(r) = 0

is also a solution of (5.2) (equation (5.3) being the radial

form of (5.2)), and a satisfies the quadratic equation

o + (n-2)a + YO/AO = 0,

s

This equation has real roots because Yo < (n-2)2Ao/4, and

hence the solution v = r% of (5.2) is non-zero in N,y ol

for all r > O. This‘éontradictibn establishes the theorem.
In section 6 we shall exhibit a counterexample to

- ' 2 . R ‘ '

show that the constant (n-2) Ao/4 in condition (5.1) cannot

be improved, i.e. there exist oscillatory equations for which

1im sup re go(r) = (n-2)2AO/4. i
r- o .
The theorem just ﬁrpvedﬁ together with Theorem 5
above, contains Glazman's generalization.[9, Th.7, p.158] of
Hille's results [11]. In the cases where n# 1, both the

[

result and the proof are new.

A

<
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Theorem 9. Let L be uniformly elliptic in _RS for some

s > 0, Ao being the ellipticity constant. Let 8y . be the

function defined by

g, (t) = g (t) - A(n-1)(n-3)/887

with go(r) = max {b(x) : x € .}, O < r <eo. Then equation

(1.1) is nonoscillatory in R if

w -l’. - . - .
(5.4) 1im sup rj gy (t) at < A /4,
v r- 00 r
where g{(r) = ‘max {gl(r), 0}, 0 <r <w,

Proof. Suppose the conclusion of the theorem is false, 1i.e.
that (1.1) is oscillatorylin R. * Then there exists a nontrivial
" solution. u of (1.1) with a nodal domain N.c R, for all

r > 0.

We now compare (1.1) with_the‘equation‘

N |
2 :
(5.5) Z APV + g (Ix])v.= 0, X eR.

i=1

Because of the hypotheses . : -
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equation (5.5) majorizes equation (1.1):
J { _AS. . )D.uDw + (& —b)u2}dx>0 (r>s)
=1 1' o 1’71 g 0 =77
3

and therefore the theorem of Clark and Swanson cited above

[4] implies that every solution of (5.5) has a zero in N, U 3N,

for all r > s. But we shall show that there exists a solution
of (5.5) which has no zeros in Rp for some p > 0 -and
therefore has no zeros in Rr for all r > p. To see this,

we note that the solutions of the ordinary differential equation

(5.6) Ao % [rn"l 9—9-] + -1 go(r)p =0

are also (radial) solutions of (5.5). The normal form of

(5.6), obtained by making the oscillation-preserving trans-

formatioh p = r(lfn)/g w, is \
7) 6%y + [g (r) A(n 1) (n-3)A /Mrg]w =0
(5. /\O"d—;g &, - -+ - o =

Since g{(r) is nonnegative, a well-known theorem of Hille

[11, Th.7 Cor.l] implies that the equation

d2

+ y/A =0
dr :

is nonoscillatory on account of hypothesis (5.4). ‘Moreover,

gy (T)/Ag > &y (T) /A,

= 8,(r)/A, - (n-1)(n-3) /422,
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so that Sturm's comparison theorem [5, p.208] implies tﬁat

equation (5.7) is nonoscillatory. Thus there exists a solu-
+tion w = w(r) of (5.7) which has no zeros in ‘(p,«) for
some p > O, Hence there exists a solution v = r(l_n)/2 w

of (5.5) which has no zeros in Rp for some p > O. We have

~therefore arrived at a contradiction, and the theorem is

proved.

Remark. If n =1, b(x) > 0 and all(x) = 1, this theorem

reduces to the classical theorem of Hille cited in the proof.
It is possible to regard Theorem 9 as the special
case p =0 of the following n-dimensional analogue of a

theorem of Hille [11, p.250, Th.12]:

.

Theorem 9A., The equation (1.1) is nonoscillatory in R if

there exists a positive integer p such that
o0 . . A ‘
+ 1
[ ej(vrat < A [ s (t)dt

: r v r -

for sufficiently large r, where
-2 : ‘

(r)] s Lp(X) = Lp_l(X)long, P=1,2,3544%

with

X’

Lo(x) = X, log,x = log 1ég X, 1ogpx = log logp_l

.Proof. - The proof is similar to -that of Theorem 9. We appeal

to Hille's Theorem 12 instead of the Corollary 1 to his
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1

Theoreﬁ 7T at the appropriate places. We omit the details.
Our next theorem is the n-dimensional analogue

of a 2m-th ordef ohe-dimension&l oscillation theorem of

Glazman [9, p.99, Th.10]. As will be noted below, our result

contains a well-known criterion for non-oscillation First

proved by Hille [11].

Theorem 10. Equation (1.1) is non-oscillatory in R if the

inequality

f rg{(f)dr < ©
My

holds fbr some o6 > O, where

.
Mg = {r: rggo(r)/ko Z*Lﬂlgl— -8},

and go,' g{,. Ao have ﬁhe meanings'assigned in Theorem 9.

Proof. Since we shall use the argument of Theorem 9, it suffices
to show that (5.7) is nonoscillatory. The conditions of

[9, p.99, Th.1l0] are satisfied, since
r2[go(r)/Ao - (n—l)(n-})/Hrg] 2_% -8 | -

5
details are as in Theorem 9.

for all r € M,. . Thus\(5.7) is nonoscillatory. The remaining

Corollary 1. (Cf. [11, p.237, Th;2)). If b is bounded on
0 < x < , the ordinary differential equation

(a(x)y’)" + b = i i ory it [ xbv¥(x) ax |
: y')" + b(x)y = 0 1is non-oscillatory if X b (x) dx <0,

<
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where b+(x) is the positive part of b(x), provided a(x)

is bounded below on 0O < X < aO .,

Proof. The conditions of Theorem 10 are fulfilled, in parti-

cular, if for some m > 1,

_ | i
(5.8) I pom-1 g{(r) dr < o .
o

, © - : :
If we set m =1, n =1 we obtain I X b*(x) dx <« , and’
Yo _

this is equivalent to the hypothesis of the corollary, since
b is bounded on (0,00).

Since gl(r) = go(r) when n=1 or n = 3,
Theorem 10 gives a simple criterién for non-oscillation in
EB:

g

Corollary 2. - The equation (1.1) is non-oscillatory in
if L 1is uniformly elliptic and
© +
I r,go(r) dr < «©,
o L
where g:(r) = max {go(r), 0} and go(r)'= max {b(x) : |x| = r}.

Proof. Set m=1, n=3 in (5.8). A similar result is
true for general n:

Corollary 3. Let re go(r) > Ao(n-l)(n53) for large r.

Then the equation (1.1) is non-oscillatory in E" ir
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O

f r[go(r) - Ao(n—l)(n-B)/Mrg]dr < 00 .
o .

Proof. Set m =1 in (5.8).

Remark. Bach of the corollaries to Theorem 10 might have
been deduced from the corresponding one-dimensional theorem
of Hille [11, p.257, Th.2] by using the method of Theorem 9.
It should be nqted that we have improved Hille's result even
in the one-dimensional case, since the use of the Clark-
Swanson comparison theorem enables us to remove the require-
ment that the coefficient b(k) by eventually positive, on

!

account of the inequality

g (r) > b(x), xe8, 0<r<o,

r)
)

' and the fact tﬁét the hypotheses imply the non-oscillation
of equation (5.7).>

Our next theorem, a genéralization of a remark
of Potter [21, p.468], is useful 'in the applications of the
theory. In fact, we shall use 1t to show that the estimates
in section 4 are.the best poééible of their kind. Folloﬁing

Potter, we introduce the following notation. Let ﬁA be a

positive’ 02 function defined by

(5.9)  [n(r)]72 = ATt (r) - (n-1)(n-3)/22%, 0 < r <o0 .

Let the functions G, and G, be defined by

N
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G () = =157 - "I 2
1 In(e)1® o
Go(1) = 5177 - Mi% - & ér) ’

where primes denote differentiation with respect to r.

Theorem 11, Let L be uniformly eliiptic in RS for some

s > O, Ay being the ellipticity constant. Let 'gl(r) be

the maximum of the positive part of b(x) on S, 0 <1 <.

Then equation (1.1) is non-oscillatory in R iflthére exists
a positive ¢® function n satisfying (5.9) for large T

and either:

(5.10) G (r) <0
or )
(5.11) Go(r) < 0

holds for large r.

Proof. We use the argument of Thébrem 9, exceptj£hat we
vappeal ﬁo the remark of Potter mentioned above and the Sturm
comparison theorem [5, p.208] to show that the equation (5.7)
is non-oscillatory. To see this, we note that the foilowing

ordinary differential equations are oscillatory or nonoscillatory

together:
(5.12) ° w' o+ [n(r)]™ % w =0,

(5.13) 4: ' [ne(r)v’]’ + v =0,

“
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(5.14) [n(r)z’]" + Gl(r)z - 0.

(5.15)" [n(r)y’ 1" + Gy(r)y = O,

for the derivative of a solution of (5.12) is a solution of

(5.13), equation (5.14) is obtained from (5.12) by the substitu-

b

tion z = In(r)] % w, and (5.15) is obtained from (5.15)_by

i

%

the substitution y = [n(r)]*

x

v. - If the hypothesis (5.10)
(or (5.11)) holds, the equation (5.14) (ér (5.15)) is non-
oscillatory by the Sturm comparison theorem [5]. Thus the
equation (5.12) is non-oscillatory, and therefore (5.7) is
also non-oscillatory. The remaining details of the proof of
this theorem are similar to those of Theorem 9 and will he

omitted.

6. Sharpness of the results.

'In this section we shall give examples to illustrate
the theory. In particular, we shall show that tﬁe limit
conditions of Kneser-Hille type in sections 4 and 5 are the
best possible of their kind.  Our Pirst example shows that the
estimates (4.1) and (4.4) are sharp for each positive integer

n, i.e. there exists a non-oscillatory equation for which

o

equélity holds in (4.1) and (4.4).

Example 1. For each positive integer n there is a non-

oscillatory equatibn for which

lim inf r° g(r) = A lrg + (n-2)2/4]
r- o0 - - ,

<
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and

1im inf rJ g(t) dt = alr, + (n-2)7/4].
L 00 r - '

Construction. Let L be the Schrddinger operator v2 + b(x),

X € En, with

(6.1) b(x) = (n-2)2/(4r?), dx| = r.

H
jay
. @
3
>
i
]
>
i
o

Simple computations show that

n
(@]

'n(r) = 2r, Gy(r)

by Theorem 11.

Thus equation (1.1) is non-oscillatory

On the other hand, since b is given by (6.1), we

have
. 2 2 2
lim inf r° g(r) = (n-2)°/4 = Al[x + (n-2)°/4].
a
Y= O
Also,
@ (n-2)2 . . 0 -2
1im inf rf g(t)dt = ~— 1lim inf rj t7C at

T O r . L O r

(n-2)%/% = nq[n+(n-2)2/0].

i

Our next example shows that the estimates (5.1) and (5.4) are
sharp for every positive integer n. In the special case

. n =1 this reduces to the example given by Hille [11].

Example 2., For each positive integer n thefe is an oscillatory

equation for which 1im sup e gs(r) = (n—2)2Ao/4.
. r- 00
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Construction. Let L ©be the Schrodinger operator v2 + b(x),

X € En,' and take

)2,

(6.2) b(x) = (n-2)2/4r2 +'y1/(r log r

where |x| = r and y; 1is a number satisfying vy, > %.

Then it is clear that

lim sup r2 g

(r) = (n-2)2/% = (n-2)%n_ /4,
r= o0 .

since No = 1 in this case. On the other hand, our equation

has particular solutions (viz. solutions depending on f
alone) of the form u = r(2-n)/2 (log r)°, where ‘s is a
‘root of the quadratic equation s2 -85 +yy = 0. Since
Yq >4%, this gquadratic equation‘has complex roots, and thus
the radial forﬁ of (1.1) is oscillatory. The argument of
.Theorem 1 therefofe Shows that eQuation (1.1) is oscillatory.
It is also clear that if the function b is defined
by (6.2), we have |

2 ¢] - .
1im sup ;f g1 (t) dat
- O r

- : © 2 | 2
= -1lim sup rf [1/4t° + yl/(t log t)“]dt
" Y00 r . :
1 ’
= -zr = /\O/l‘-,

However, we have shown that (1.1) is oscilléﬁory in this case,
-Remark.  Examples 1 and 2 have shown, in particular, that’
for the Schrddinger operator in EnA the constant (n-2)?/4

v
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is critical for each positive integer n, 1.e. there exist
both oscillatory and non-oscillatory equations for which
equality holds in the estimates (%#.1), (4.%), (5.1) and (5.4).

We shall nowvgive én example to 1llustrate the effect
of relaxing one or both of the conditions (3.1) in the n-

dimensional form of the Leighton-Wintner theorem.

Example 5. Thereé exists a nonoscilllatory equation for which

<00 BT B s _
J ~5TI92——~ < and I. -1 [g(r) - A T 2f(r)]dr"zoo
. 1 v

1r f(r)

There also exists a nonoscillatory equation for which

0 ) .
dr n-1 -2, ]
[ L N EE R LS IR

.

Construction. Let L Dbe the Schrddinger operator v2 + b(x),

x ¢ E7, 4dnd take

(6.3) b(x) = e ¥ + (n-2)2/(4r%), . |x| = r.
Then we may take f(r) = 1 (s;nce a5 = 6ij) and A =0
(since R = E7),.
o
If n > 3, then J —57%5———— <o and
' 1r £(r) .

o0

J

On the other hand, a straightforward computation shows that

" g(r) - a
'l B

“



(in the notation of Theorem 11) Gl(r) < 0 for large r, SO

that equation (1.1) is nonoscillatory by Theorem 11l.

o .
If n < 2, then I nair = @ and
" 1r ™ f(r):
© n-1 -2 © n-l;_-r 2, 5.2
f r (g(r) - AT f(r)ldr = f r " [e™ + (n-2)7/(4r%)Jdr <0 .

1 , 1

However, since [n(r)]"2 = e ' 4 l/(4r2); a routine computation
shows that Gl(r) < 0 for large r, and therefore equation

(1.1) is nonoscillatory if b is given by (6.3) and ay4 = 6ij'

Remark. This example also throws some light on the oscillatory
behaviour of the one-dimensional ‘equation [a(x)u’]’ + b(x)u = 0.

In particular, the equation

-

(xSu’)’ + x°[e™ 4 (s~1)2/(4x2)]u = 0,

(s a nonnegative integer), is nonoscillatory on 0 < x < o
We continue our inspéctiqn of the hypotheses of the

theorems in this chapter with the following
Remark. Example 1 provides us with a honoscillaﬁory equation

oQ . -
for which .J E%%T = o (Potter's condition). This illustrates
1.

the effect of relaxing one of* the conditions (3.6); In fact,

_ © 4.
if b 1is given by (6.1), then h(r) = 2r, so that J %%t) =
| ; kS

‘ ) -
However, H.(r) = O, so that J H.(t) dt < oQ .
' S 1 0

v



In the remark following Theorem 4 (the n-dimenzional
form of a result of Potter [21]) we noted that the regquirement
that the function h be positive was in general more restrictive
than the Corresponding conditions in Theofem ) (the n-dimensional
form of the Leighton-Moore-Wintner Theorem). However? our
next example Shows.that there are equations for which Theorem 4

givés information not immediately obtainable from Theorem 3.
Example 4. The differential equation
e 2) + 1/(4r2 log r)Ju = 0O

(6.1) vau + [(n-2)2/(4r

is oscillatory on En, even though condition (3.4) does not
hold.

To see this, we note that (with the notation of

.

Theorem. 4)

_[h(r)]_2 = 1/(4r2)_+ 1/(41"2 log r).

A routine computation shows that H2(r) = O(r"l) for large

Q . :
r, and therefore J He(r)dr = (s > 1). Thus equation
s -

(6.4%) is oscillatory on account of Theorem 4 and the remark
following Theorem 1 regarding the limits of integration.
Excepf in the case n = 2, this cannot be concluded in an

obvious way from Theorem 3, since (for s > 1)

f Tlfé [g(r) - A r=2 f(r)ldr = J rl"é[ 12 + 21 ldr <o
S e “'s by br“log r

for each & > O,

~
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Equation (6.4) also satisfies the conditions of

Theorem 7. In fact, in this example A = 1, Ny = 0, =o
_that
g(t) - aglhy + (n-2)5/41672 = 1/(4%% 1og t).
Thus
flo t{g(t) - Ay [h, + (.n.~2)2/ll<]t".2}dt - O:Et—%ﬂ .

This shows that we might have used Theorem 7 instead of Theorem 4

to show that equation (6.4) is oscillatory.

N
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CHAPTER II
EQUATIONS OF ARBITRARY EVEN ORDER

Te Preliminaries.

The definition of an oscillatory equation given
here reduces to Glazman's in the case of ordinary equations
of order 2m (m = 1, 2, ...)(cf. [9, p. 40]). The criteria
obtained below for 2m;th order-  partial differential
equations aré diréct generalizations of corresponding re-

sults of Glazman [9] for the ordinary differential equation

E M _pxlu=0,0<x< ® .

s

. We also~obtain for fourth4order partial differen-
tial equations criteria extending those obtained by Leigh-
ton and Nehari [17] for the ordinary differential equation

d2

2 ' ‘
——5-[a(x) g—%] -b(x)u=0, a(x)>0.
dx dx '

Most of our theorems are proved by appealing to
their one-dimensional forms. * An exception is Theorem 20,

which is proved by investigating'direcﬁly the solutions of
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the comparison equation.

8. Definitions and notation.

We shall consider the linear elliptic differen-

tial operator L defined by

. m m 1m
(8.1) Iu = (-1) y (aij o]

D

u) - bu., a.,=a
=1 ’

iJ Ji 2

<, M3

on unbounded domains R in n-dimensional Euclidean space
E" . We shall use the notations of Chapter I, except where
otherwise indicated. The coefficients aij ‘are assumed %o
be real and of elass C™ in R U 3R and the matrix (aij)
is positive definite in R . The coefficient b is
assumed to be real and continuous on R U 3R . The domain
D(L) of L is defined to be the set of all real-valued

functions on R U 3R of class ce™E) .

Definition. A solution of the equation ILu = O 15
a function wu € D(L) which saﬁisfies the equation every-
where-iﬁ R .

We assume that R contains a cylinder of the

form

G x [xn 0 x < o} ,
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where G is a bounded (n-1)-dimensional domain. The

following notation will be used:

R,=Rn(xe E” [x[ >r} .

- Definition. " A bounded domain N c R is saild to be

a nodal domain of a nontrivial solution u of Lu =0 iff

u and its partial derivatives of order -< m-l1 vanish on

N .

Definition. The differential equation ILu = O 1is

said to be oscillatory in R 1iff there exists a nontrivial

solution u, of Lu =0 with a nodal domain in R, for

all r > 0 .

Definition. A function u is said to be oscilla-

tory in R iff u has a zero in Rr for all o > O .

We shall also use the standard notation

Our oscillation criteria in §10 will be proved under the
assumption that the 1argestvéigenjalue A(x) of <aij) is
bounded: For some s > O there exists Ai such that

A(x) i A |

1 > for all x € RS .

Let n be the smallest eigenvalue of the problem

<
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- n ‘
(T E 0y D" 0) = e in G

i
(8.2)

Dacp = O on aG K} lal = O’ 1, LI Y m—l .

Let the function g e¢ C(0,m®) be such that g(xn) < b(x)
on each bounded subdomain of R . (For example, on a

bounded domain G, € R we might set

g(t) = min {b(x) : x € G

o and x = t} )

9. Auxiliary results.

As in Chapter I, we shall make use of a monotoni-
city principle for eigenvalues, which we shall deduce from

. / . .
a form of Poincare's inequality.

Definition. We shall say that a domain Q has

bounded width < d iff there is a line ¢ such that each

line parallel to ¢ intersects'.ﬂ' in a set whose diameter
is no greater than d ;

For example, the truncated cone Mot dfvsection
3 has bounded width < t sec a , and the (open) cylinder B

G.(t) of section 10 has bounded width < t .

Lemma (Poincaré's inequality). If a domain Q has bound-

ed width £ d , then

<
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(9-1) lcﬂj’QiY d ICPIm Q

2

for.all 0 € C?(Q) , 0< j<m-1, where Yy 1is a constant

depending only on m and n , and

Proof.: This is given on pp. 73-75 of [1].

We shall state our next result for the simplest
boundary value problem, but the method clearly works for
general boundary conditions of the kind given in [24]. On
account of the form of the Poincaré inequality here cited,
the result (a monotonicity principle for eigenvalues) will
' be obtained for a more general operator than (8.1).
| Let the linear elliptic differential opérator M

be defined by

(9.2) Mu = (-1)° pX D (a

p1Talon © WPoa D7) - B

p

where p = (pl, cee, pn) , q = (ql, con, qn) are multi-
indices with integral nonnegative components. As usual,

o n D L pi
|lp] = £ p. . For each z ¢ E' we write z° = || z, .
~ =1 * B i=1 *

1

The coefficients qu(x) are supposed to be bf.claSS Cm(ﬁ)

c



and symmetric in the indices. Following Browder [3], we call
M elliptic if the following two conditions are fulfilled:

A (x) zP* 35 positive

‘The f
(a) e form ba

PX
lpl=]a]=m
definite at each point x e R .

(b)  For each bounded domain G with G € R there

exists a number uO(G) > O such that

for all u e C™(R) .

We note that condition.(a).is the usual ellipticity
condition.

If the operator M is‘of the form (8.1), theh
condition (b) is redundant, and in fact is a consequencé of

condition-(a). To see this, we note that if M has the

form (8.1), then

a;: if p= (me;) and q = (mej) ,

0 otherwise,
where (mei) i the vector in E” with m in the i-th

. place and zeros elsewhere. If condition (a) holds, then

there exists a number uO(G) > 0 such that

w
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(x) z,™ 2z = (G),

n.
inf inf Z a,
:j=l +J

xeG |zi=1 1
since G is compact and the coefficients aij are con-
tinuous. Hence

n

= a; ., 2
i,j=1.1J

m , M
i 7J

uo(G)lzlgm_, z ¢ BV .

v

This implies

n
T oa, .z, z > u (6)
1,3=1 ij "1 J o/

2m

v
Il M3
N

i=1

This may be written in the form

2

. n
(*) 25 a5 81 85 2 uo(0) izl £.° ,

o M3

wheré £ is the vector ‘(izim) , the signs being the same
as those of the corresponding components in the vector z .
Every vector £ € E' may be written in the above form; .
therefore condition (¥*) implies

= - 2 n
? a..€i§JZHO(G).Z§i L] € ¢ E ’

=1 T 1=1

and this implies condition (b).

“~



Monotonicity Principle. For O < & <o let G, be a
domain contained within a domain Q of bounded width < ©.

If 0<r < s < oo implies Gr c GS s Gr #£ GS , then the

first eigenvalue ko(t) of the problem

Mu=uin G, ; Du =0 on 3G , |a] =0, 1,..,m-1

v

is monotone decreasing in £ , and lim ~ko(t) = 4+ 0
£-0+

Proof. For the first part we may adapt the argument in
[7, pp. 400-401]. For the second part we note that since B
is uniformly continuous on G , there exists a constant

k, > -0 such that —g Bufax > k, | vfax for all w e C"(R).
. ' ! »

Let the Euler-Jacobl functional corresponding to M De

defined by

Il = j ( 5 quDpu'dqu - Bu} dx .
¢ |pl=|al=m

Then condition (b) implies that

(9:3) Fglu] ;_uo<e) IG‘,lp%_m(Dpu)gdx . kOIG wlax .

o)

Extend u continuously to all of Q by setting u

<«
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outside G . Apply Poincaré's inequality with Jj = 0 in
"(9.1) to obtain

[ wiax ¢ Y3 ([ T [DPul® ax] .
Q Q |p|=m

Hence

f u2dx < Y2t2m [f z (Dpu)2 di] .
G G |pl=m " .

Combining this with inequality (9.3) we get

Jglul > (k + u_(6) /4% Qm)j v oax ..

The remainder of the proof is as in section 2. (We note

that y > 0 , since |lull,#0 .)

10. Oscillation criteria.

In this section we obtain oscillation theorems»

under the hypothesis that the largest eigenvalue of (aij>

is bounded. Our theorems generalize'results‘of Glazman

[9] for one dimension to the n-dimensional case. They may

be specialized to all of E” by taking ® =1 , 4 =0
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THEOREM 10. The differential equation

n
(10,1) ILu = (-1)™ ? Dim (ay 5 Djmu) -bu =0

is oscillatory in R 1f for some s > O +there exists a
number Ay > O such that A(x) £ A, , for all x e Rg ,

and if

00 :
(10.2) fo [g(t) + 1u] dt = + © ,

where H and g are defined above in section 8.

Proof . We compare (8.1) with the separable equation
mn o m m
(10.3) (-1)" = D; (/\141):.L v) = b*v = 0 .,

: ‘ i=1

where b*(x) = g(xn) . The hypothesis(lO.E) implies that

the ordinary differential equation
: 0

'(10.4) (-1)™ A Dngmw - [g(xn) 4+ ulw =0

is oscillatory on account of dlazman's generalization (9,

p. 10%, Th. 13] of the theorem of Leighton [16] and

.Q,
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lWintner [28]. Let r > O be given. Then there exists a
solution w of (10.4) with zeros of order m at

x, = 6y, 85, , where &, > 8 > max {(r,s} . If o© is an
Aeiéehfunction of (8.2) corresponding to the eigenvalue u ,
then the function Vv defined by v(x) = w(xn)m(i) , where
X = (%15 Xps ooy X, 1) 5 15 2 solution of'(10.3)bby direct
calculation, with a nodal domain

G, = G X [xn : 6, K< Xy < 62} .

1 1

In fact, if a = (o, 0y, «oe, an) = (a,an) » then

. Q- - '
Q n - n a /=
Dv=D " Dvs=D '_W(Xn)D m(x} .
Hence D% = O on 3G, for [@a] =0, 1, ..., m~1, since

61 and 62 are m-fold zeros of. w(xn) and ® has nodal
domain G . Thus v has a nodal domain Nr = Rf for all
r >0 . In fact, X e G

implies |x| > Ixn[ > 6. >r

1 1
hence x e R, . Thus (10.3) is oscillatory. We now apply

a theorem of Swanson [24, Th. 4]. The inequality

n ' :
» -

(£ (A, 6,,.-a,.)D,"v D, + (b - b*)v"} dx > O
IGI i,3=1 1 1ij i3 .i J a

holds whenever G1 c Rs » on account of the hypotheses

\.J



a x)z,z, < A Z Xx € R z € E
1,3=1 ij i3 1 1ol i s ?
b*(x) = g(xn) g_b(x) , X E'Gl .

Hence the eigenvalue problem

Iu=2Au in G, ; D%u =0 on 3G, la] =0, 1, ..., m=1

1

has at least one (in particular, the smalleét) eigenvalue

less than or equal to zero. Let

Il

G(t) = G x [x, 3 6] < x <t} , 6, <t L6

1 n 2 ?

and let Xo(t) denote the smallest eligenvalue of the pro-

blem
Lu = A(t)u in G(t) ; D®u =0 on 3G(t) , |a = 0,1,...,m-1.

By the monotonicity principle in section 9, Xo(t) is mono-

toné nonincreasing in 6, < t £ & and 1lim X _(t) = + o© &
. i 1 = 2 t~6. + © '
1+ _

Since 10(62) <0, there_exists.a number T in (61,62]

such that A _(T) = O . This means that G(T) 1is a nodal

-
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domain of a nontrivial solution of (10.1l), and since

G(T) = G, < R, for arbitrary r > 0 , equation (10.1) is

1
oscillatory in R . Thils completes the proof of the |
theorem. '

This.theorem contains Glazman's generalization
(9, p. 104] of ﬁhe Léighton—Wintner theorem. To see this,
set n =1 ahd all(x) = 1 , and recall that fof R = E"
we may take o =1 , u‘= o .

Our next theorem extends to n dimensions
'Glézman's generalization [9, p. 100] of a result of Hille
[11, Th. 5]. Glazman's result.is the special case R = o ,

n=1, all(x) = 1 of our theorem.

THEOREM 11. Let A(x) be‘bounded, i.e. for some

s > O there exists A, > O such that A(x) $A ,XeRg .

If g(xn)‘+ H >0 for large x, and

00 o .2
lim sup pem-1 j [g(t)+m]dt > ALAL
- r = o0 r :
- where . ‘ ‘ -
‘ o k-1,m-1
PR B (-1)" (1)

m ~ (m-1)! k=1 - 2m - k ?

then the equation (10.1) is oscillatory.

e
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Proof. As in the proof of Theorem 10, we comparé (10.1)
with (10.3), quoting Glazman's generalization [9, p. 100]
of a theorém of Hille [11l, Th. 5] to show that (l0.4) is
oscillatory. The remainder of the proof foliows that of
Theorem 10 without change.

THEOREM 12. If the inequality

(10.5) g(x, )+ > Ay o x " (a_ = (em-1)11/2").

holds for suffilciently large X, ~and

2,.-2m

00
2m=1 1,7 at = @,

(10.6) 1lim sup (log r)| ¢ lg(6)+u-A

then equation (10.1) is oscillatory in R .
Proof. The hypotheses imply that the ordinary differen-
tial equation (10.4) is oscillatory on account of a- theorem
of Glazman [9, p. 102]. The remainder,of the proof is simi-
lar to that of .Theorem 10 and will be omitted.
Corollary. - Let the largest eigenvalue ‘A(x) of

(aij) be bounded in R, for some s 50 : Ax) <Ay,

for all X € Rs and some /\1

"> 0 . Then (10.1) is oscilla-
tory in R 1f for sufficiently large Xn énd some & > O

<



the inequality

is satisfied.

Proof. The first hypothesis (10.3) ‘of Theorem 12 is
clearly fulfilled. DMoreover, since g(t) + u - Alam2t—2m

> A, 8t for large t , the second hypothesis (10.6) of

1
Theorem 12 is also satisfied.

Remark. This result generalizes fhe claséical Knesér-
- Hille theorem [11] in four directions:.(i) to equations
of arbitrary even order, (ii) to équationé with variable
leading coefficients, (1ii) to n diménsiéns, (iv) to
equations not defined on ail of E" (i.e. on 1imit;
cylindrical domains).

| It is possible'to prove this corollary by com-
paring (10.1) with (10.3), citing Glazman's generalization
[9, Th. 9, p; 96] of the-Kneser—Hille theorem [11] to show
that the ordinary differential equation (10.4) is oscilla-
tory. ‘ | '

It should be noted that the result of Glazman

Jusﬁ cited [9, Th. 9, p. 96] is the special case R =.En s



...55.-

n=1, all(x) = 1 of our corollary.

il. Equations with one variable separable.

In this section we shall consider the equation

B n-1 C , '
(11.1? D mu+i §=1Dim[aij(x)Djmu] -»(-1)mb(xn)u =0,

3

. Wwhere X = (xl, Xps eees xn—l)'. Following Swanson [26] we

let p¥* be the smallest elgenvalue of the problem

: n-1 _
(—1)m 1 Z Dim[aij(X)DJ.me] = H*Cp in G
’ i:J=1 :

(11.2) g
- \UDp=0 on 3G, |a] =0, 1, .., m-1,

where G is as in section 8,

~Each of the theorems of the preceding section

has an analogue in this case, but without the assumption

that A(x) is bounded. As an example we state and prove

~ the followlng analogue of Theorem 10:

THEOREM 10A. The differential equation

‘n-1 . .
(12.3) (-1)m[Dn2?u + i,§=lni?[aij(z)bjmu]} - b(xy)u = 0

<



iS’bscillatory in R if

« 00
(11.4) fd [b(t)+u*] dt = + 00 .

Proof. The hypothesis (11.4) implies that the ordinary
differential equation

(11.5) (-1)", %™ - [b(x,)+u*] v = 0

~ 1s oscillatory on account of Glazman's generalization
[9, p. 104] of the theorem of Leighton [16] and Wintner [28].
Let r > O be given. Then there exists a solution v of

- (11.5) with zeros of order m at x, = 58,,8, , where

Aéé > 51,2.T-- If o is an eigenfunction of (11.2) corres-
ponding to elgenvalue W* , then the function u defined

by u(x) = v(xn)m(f) is a solution of (11.3) by direct cal-
‘culation, with a nodal domain

G = {x:xeG, 6, <x <85} . Thus there exists u with a

nodal domain G, € R, for arbitrary r > O , since. X € Gy

implies |x| > N 8, 2 r , so that x ¢ R, . Hence
‘equation (11.3) is oscillatory.
' " The analogues of Theorems 1l and 12 for equation

(11;3) are proved similarly. We state them without proof.

7

N



- 57 -

THEOREM 114. Ir b(xn) + W¥ > 0 for large x, and

lim sup oM 1J (£)+p*] at > Am2 ,

r -
then the equation (11.3) is oscillatory in R .

THEOREM 12A. The equation (11.3) is oscillatory in

'R if the inequality b(xh) 4+ ¥ 2_am2 Xn-2m holds for

large Xn and.

1im sup (log r)j £2m- 1Ib(t )+u¥-a 2t ~em
r - 00

[ dt = oo .

Remark. Swanson [23] has obtained osecillation criteria for
. the second order separable equation
n-1

Dn[a(xn)Dnu] + . §=1D NN (E)Dju],+ b(xn)u =0 .

. Lack of suitable-one-dimensibnal oscillation theorems has
restricted us to equations with a(xn)‘s 1 in the general _

even order case.

12. Fourth-order equations on limit-cylindrical domains.

in this section we shall derive oscillation cri-

e



teria for the equation

n-1

(12.1) D_*[a(x_)D_ u]+ £ D 2[ (x)D, 2u] - b(x Ju=0,
n 13
where the coefficients a , aij s satisfy the conditions

in section 8. We also suppose that a(x ) and b(x )+u*
are positive for large xn_. Our theorems constitute ex-

tensions of well-known results of Leighton and Nehari (171].

THEOREM 13. ~ Let o be an arbitrary real constant,

and let a(xn) >0, b(xn)+u* > 0 for sufficiently large

x, - Then equation (12.1) is oscillatory in R if

.1im sup t 2 %(t) < 1
t - o0 : '

(12;25

lim inf £ %[b(t)+u*] >
t - © '

where WM¥ is given by (11.2).

Proof. The hypotheses (12.2) imply that the ordinary

differential equation.

(12.3) D.°

h - a(Xn)DnQV] - [b(xn)_+ M*] v = O.

V
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has an oscillatory solution, i.e. has "a solution with in-
finitely many zeros, on account of a theorem of Leighton
and Nehari [17, Th. 6.2]. Let r > O be given. By another
theorem in the paper Jjust cited [17, Th. 3.6] there exists
a solution v of (12.3) wifh double zeros at x = 8;, &, ,
where 61 > 52 2 r . The remainder of thebproof follows
- that of Theorem 10A without change and will be omitted.

This result extends to n-dimensions part of the
one-dimensional theorem of Leighton and Nehari [17, Th. 6.2]
Just cited.

In the case that a(xn) = 1 , another part of

[17, Theorem 6.2] shows that the conclusion of Theorem 13

holds if the hypotheses (12.2) are replaced by

lim inf t”[b(t) + u*¥] > 9/16 .
.t_.oo . )

" THEOREM 14. The equation (12.1) is oscillatory in

R if there exists a > O such that

(o) : 00 C
(12.4) [ v -0 ana [ t%[p(6) + u*] at = o .
’ 04 ) Q

Proof. The hypotheses (12.4) imply that the equation

(12.3) has an oscillatory solution, on account of a theorem

N



- 60 -

. of Leighton and Nehari [17, Th._6.il]. The remaining

details of the proof follow familiar lines and will be
omitted. |
‘ In the case a(xn) = 1 , the above result takes

“the following form:

THEOREM 15. The equation

b M+ b 2la, ((X)D.%u] - b(x_ )u = O
n 1,3=1 i iJ J n .

is oscillatory‘in R 1f there exists a > O such that

o0
I tT[b(t) + Wu*] dt = oo
a .

holds forfsome r < 3 .

Proof. ~ Since we shall use the argument of Theorem 13, we
need only show that (12.3) has an oscillatory solution.
This fact is a consequence of a result of Leighton and
Nehari [17, Cor. 6.10]. We omit the remalning details of
the proof. | |

Our next two theorems give oscillation criteria

- for a special case of (12.1), namely

w
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(12.5) D_°[a(x_)D_“u] D
. alx ulj+ .
n n’“n 1,3=1 %

’ =

2[aij(J_f)ngu]+c(xn)p =0,

where the coefficient ¢ 1is real and continuous on R ,

and the following inequalities hold for large Xo ¢

(12.6) a(xn) > 0 ,~ c(xn) - u* >0 .

THEQOREM 16. Let s be an arbitrary real constant,

and suppose that the inequalities (12.6) hold for suffi-
ciently large xn'. _Then equation (12.5) has a solution

. oscillatory in R if

1im sup t 278 a(t) <1
t = o0

ahd

lim inf £°°S [c(t) - u*] > 52/,
t - o

where u¥* 1is given by (11.2). In the case a(xn) =1,

" the conclusion remains valid if (12.6) holds and

lim inf ¢ [c(t) ="u*] > 1 .
t - ©

<
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Proof. The hypotheses imply that the ordinary differen-

tial equation

2
[

(12.7) D

N a(xn)Dn2v] + [c(xn) - u*l v =0

’

has an oscillatory solution, on account of a result of
Leighton and Nehari [17, Th. 11.1]. Lét r >0 be given.
Then there exiéts a solution v of (l2.f) with a zero in
Rr . 'If ® 1s an'eigenfunctioﬁ of (11.2) corresponding to
the eigenvalue ¥ , then ﬁhé’funCtion u defined by
u(x) = V(XH)W(E) is a solution of (12.5) by direct compu-
tation, with a zero in Rr . Since r 1is arbitrary, this
'1mp11es that u is osciilatqry in R , and the theorem is

proved{

THEOREM 17. Let (12.6) hold for sufficiently

]

large X and suppose a(xn) -1+« Then equatidn (12.5)

has a solution oscillatory inl R if fthere exists a >0

such that

IOO‘G‘?[C(t)'- M*] = o .
a

Proof . The proof is similar to that of Theorem 16, and

appeals to a criterion of Leighton and Nehari-[17, Th. 11}4]

.
A VAR
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to show that (12.7) has an oscillatory solution. We omit

the details.

13. Fourth order equations on all of E- .

The equation to be consldered 1s the special case
m = 2 of (10.1), namely

n 7) 2
(13.1) Iu = §= Dy (aij Dy u) - bu = 0"

i,Jj=1
The general conditions on L are as in section 8, except
that the domain R will be all of E" . The nodal domains
of the comparison equation will be annuli of the form

{x + ry < x| <'r,} , hence we need a slight extension of

1
the monotonicity principle proved in Chapter I. We shall
say that an annulus of the form [x : r; < |x| < r,+t} has

| thickness &t . Even though this annulus has bounded width,

" the latter does not approach zero as ..t = O+ , so that the
form of the monotonicity principle in §9 is inapplicable

here.

Lemma (Poincaré's inequality for annuli). If an annulus

Q has thickness ¢t , then
(13.2) lulg o €% July o
‘ 0,0 = 2,0

for all "u € Ce(ﬂ) , where

‘(J
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Iulk’Q = [fﬂ loc|2=k(Dau)2 dx]l/2

Proof. In the course of proving the monotonicity prin-
ciple for eigenvalues in the second order case for annular

domains, we showed (ef. (2.5)) that
2 2 2
(13.3) lulg,q & tluly o -

Applying this inequality to the first'partial derivatives’

Diu , we obtain

> 2 2
IDjulg,q < 7 [D3ul7 g

= [ = (0%,u)? ax (by definition)

0 |al=1 a
2 2 2 ‘
= % I z <DjDiu) dx , i=1,2,...,n .
Q =1
Hence
Iuli Q= f z (Diu)2 ax = % |D.u|g a
s Q 1=1 =1 * Y



Combining this with (13.3) we obtain

. 2 by 42
_ Iu‘o,g £t |u|2,04

from which (13.2) follows immediately.

We now state the required form of the monotonicity

- principle for eigenvalues. In view of the form of Poincaré's

inéquality proved here, we state the result for the more

general operator

- (13.%)  Mu = z P (a
~ * 7 pl=lal=e P

p%u) - bu
The principle will then be. true for the operator

L , since L 1is a special case of M (cf. section'9).

~ We note that the operator in (13.4) is the special
case m = 2 of (9.2). We shall accordingly suﬁpose that
conditions (a) and (b) of section 9 are satisfied. As noted
~in section 9,‘however, when we apply the monotonicity prin-
ciple for the operator L , its ellipfticify alone (i.e; con-
dition (a)) is enough to guérantee the truth of the principie,

since condition (a) implies condition (b) in this case.

Monotonicity Principle (Annular Domains). Let Q(t) be

an annu;ué of thickness ¢ . Then the first'éigenvalue

«
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Xo(t) of the problem

Mu = Au in Q(8) ; D% =0 on 23Q(t), |a] =0, 1

is monotone nonincreasing (for ¢ > 0) and 1lim ho(t) = +00
| ‘ . =0+

Proof. The proof is simllar to that of the corresponding

result in section 9 and will be omitted.

‘14, Oscillation theorems.

[4

The main result of this section is a theorem of
the Kneser-Hille type for equation (13.1). It contains
the corresponding result of Leighton and Nehari [17] for the

Vol bu =0

fourth order ordinary differential equation u
and extends the analogous theorem of Glazman [9] for an
operator with harmonic leading term to one with (in parti-
cular)  biharmonic leading term.

. - First we need a few technical lemmas of an

~ elementary character. We shall compare equation (13.1) with

the separable equation
. 2 ' -
(1%.1) A &%V -Bv =0 ,

)

where - A, 1is an upper bound on the largest eigénvalue"'A(x)i'

\'4



 of the matrix (aij(x)) ; 1.e. there exists a number Ay
such that A(x) < Ay - The continuous function B is

such that there exists a function g, satiéfying

Notation. Let F(s,n’ be the polynomial of degree four in

-8 defined by

F(s,n) = s(s-2)(s+n-2) (s+n-4) .

As in Chapter I, we introduce spherical polar
coordinates r , 8, , 8, , ..., O . . By writing (14.1)
in terms of these coordinates; we find that (14.1) has so-

lutions (in particular) of the form
v(x) =p(r) , 0&r< o s
whefe p satisfles the ordinary differential equation

| (14.2) A A2p - go(r)p = 0 .

Proposition 18. The polynomial F(s,n) has a relative

maximum at s = 2-n/2 .

w
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Proof. If s =2-n/2 is a zero of F(s,n) , then it
must be a repeated zero, since F(s,n) is symmetrical
about s = 2-n/2' . Moreover, since F(s,n) is a poiy-
nomial ofvdegree four with positive léading coefficient
and at least two distinct real zeros, a consideration of
the shape of its graph shows that the repeated zero at
s = 2-n/2 1is a maximum point.

If s =2-n/2 is not a zero of F(s,n) , we

use logarithmic differentiation to show that

1.1 1,2
s s+n-2 © s+n-4 e

where the prime denotes differentiation with respect to s ,
and the formula (14.3) holds except at zeros of F(s,n) .

Thus

Ft'(2-n/2,n) ; o .

Differentiation of (14.3) yields

1 + 1 1

" » = -F(s, L
(s n? (s n)[s2 ¥ (s-2)°  (s+n-2)2 ’ (s+n-4)2

=

1 1

1
g ~2 f’s%n-e + s+n4h] ‘

+ F'(s,n)[g +

1

'

It follows that when F'{(s,n) =0 (in particuiar,‘when

<
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s = 2-n/2) , F"(s,n) has sign opposite to that of F(s,n).
But

F(2-n/2,n) = (2-n/2)%(n/2)% 5> 0 ,

since by hypothesis F(2-n/2,n) # 0 . Hence F"(2-n/2,n)<0

and the proposition is proved.

Propogition 19. If the inequality

(1.4)  w> A nf(n - )26

holds, then the equation

by

(14.5) - A F(s,n) - w ="0

“has at least one pair of complex roots.

fgggg. By Proposition 18, the polynomial F(s,n) has a
nonnegative relative maximum»at S = 2-n/2'. Hence the
polynomial F(s,n) - w / Ay has a local maximum at

s = 2-n/2 . Condition (14.4) implies that

F(2-n/2,n) -vw/hl = ng(n-4)2/16 - w/%l < O . Thus the re- .

lative maximum of the polynomial F(s,n) - w/hl at
\ : : R

s = 2-n/2 is negative. Hence equation (1%.5) has at least
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one pair of complex roots. We are now in a position to

state and prove the main result of this section.

THEOREM 20. . Suppose that the largest eigenvalue

A(x) of (aij(x)) is bounded in E" (or at least out-

side some hypersphere), say A(x) <Ay . Then equation

(13.1) is oscillatory in E% ir

(14.6) lim inf rug(r) > A nQ(n-4)2/16 ,.
r - oo 1 4

where

g(r),=.min (b(x) ;-le = 1} .

Proof. The hypothesis (14.6) implies that these exist

constants ‘ro and w such that

| r4 g(r) > w > A n2(n~4)2/i6

for all r > T,

. We then compare (13.1) with the equation

(1%.7) | A, AV = wr v =0 ,

which is the special case B(x) = wlxl'4 of (14.1). The
radlal form of equation (14.7) is of Euler type and thus
(14.7) has solutions (in particuléf) of the form v(x) = |x[s,

2

\'J
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where s satisfies (14.5)._ This is easily seen by noting:

that

ar® = s(s+~n—2)3c's‘—2

and
4°r° = s(sin-2)ar® 2

= s(s-f—.n-z)(s-—2)(s+~n-4')r's"1‘L .

Since w > A ng(n-4)2/16 , hypothesis (14.4) of Proposi-
tion 19 is fulfilied, and therefore equation.(14.5) has

at least palr of one complex roots. This implies that
thére eXists an oscillatory solution of the radiai form

of (14.7), i.e. a solution with infinitely many zeros.

Let a > O be given. Then a theorem of Leighton and
Nehari [17, Th. 3.6] impliesAthaf there exists a solution

p of the ordinary differential equation.

(14.8) A 82 - wr™p =0

wit@ double zeros at r = 8, 62 , Where 62 > 61 > max {ro,a},

since Aep(r)‘= (rn-lp”)“ + [(1-ﬁ)rn—3p']' , So that (14.8)
"may be transformed into the form considered in [17,Th. 3.6].
(Note that (1-n)rn_3'g 0 for all positive integers n °,

v



- 72 -

‘and see the remark following [17, Th. 12.1]). It follows
that the function v defined by v(x) = p(x) 1is a solu-
tion of (14.7) with a nodal domain

N = {x : 51 < |x] <‘62} .

In fact,

and the right side is zero on r = 8 , r =25, . Thus
for any a > O there exists a solution v with a nodal
domain in the region (x : |x| > a} , since x e N im-

plies |x| > 6, > a . Hence (14.7) i1s oscillatory.

1

We now .apply a theorem [24, Th. 4] of C. A.

Swansoh; Because of the hypotheses -

n
z
1:J=,1

wr™ < glr) <o(x), Ix| >z, ,

we have

no NI g2y
IN(1,§=1(A16ij ay 4)D;%u D% + h(b - w|x] )uf) ax >0 .

\ | 2 2 . ) | n
aij(x)zizj < A(x)|z]° < Allzl , X suff. large, z ¢ E E

<
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Hence the eigenvalue problem

Iu=x iIn N; u=Du=0 on 93N ,1i=1,2, ..., n

. has at least one eigenvalue (in particular, the smallest)

less than zero. Let

N(t)

i
~—
~
(o]
-
A
o}
/AN
ot
—
-
On

‘and let Xo(t) denote the smallest eigenvalue of the pro-

blem

Iu = Au in N(t) ; u=Du=0 on 3N(t),1=1,2, ..., n.

- By the monotoniclty principle of section 13, ~lo(t) is

monotone nonincreasing in 61 < t 5‘62 and 1lim Xo(t) = 40 .

t~61+

Since lo(éz) < 0, there exists a number T in (61,62]
such that A_(T) = O . Thus N(T) is a nodal domain of a
nontrivial solution of (13.1). Moreover, |

N(T) e Nc {x : |x] >a} and o dis arbitrary, therefore
" equation (13.1) is oscillatory in E" .

Corollary (Leighton and Nehari [17, part.of Th. 6.2]). The

ordlnary differential equation

utv o b(x)u =0

-



is oscillatory if

(14.9)

Proof.

n =A1

lim inf x”b(x) > 9/16 .
X = 00

This corollary is the special case a.

ijJ ™

of Theorem 20.'

6

i3’

(J
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