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ABSTRACT

This thesis is a survéy-of some recent results con-
cerning torsion free abelian groups, hereafter referrgd to as
groups. The emphaslis is on countable groups,”particularly groups

of finite rank.

Section 1 contains the introduction and some notation
used throughout this thesis. We begin in section 2 by describing
the general nature of the existing characterizations for countable
groups and by describing why these characterizations do not pro-
vide satisfact&éy systéms of invariants. We include here a br{ef
description of a ciassification for groupé of arbitfary power.
Pathologies of groups are discussed in section 3. We briefiy-dis-
cuss rank one groups and completely decomposable groups and théen
'present examples to shoﬁ the vast number of indezgmposable groups
'which exist énd that a group may have two different decompositiogé-

~.

into the direct sum of ihdecombosable groups.' Quasi-isomorphisﬁ\\
qnd the ring of quasi;endomorphisms of a group are introduced iﬁ\\
section 4 and discussed briefly. We preseht the theorems which \\
establish the importance of these notions; namely that (1) quasi-\
decompositibns of ceftain groupégare unique up to quasi-isomorphisn
and (;i) _thé quaéi-decomposition theory ofﬁcertain grbups is
equivalent to the decomposition theory of the quasi-endomorphism
ring considered as a right module over itséif. Included under

‘certain groups" are the groups of finite rank.

Section 5.is devoted to rank two groups. We outline.the
development of the quasi-isomorphism invariants for rank two

groups, due to Beaumont“and Pierce, and discuss some of their
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applications. For example, conditions, in terms.of the inVariantg}
.are‘given for quasi-isomorphic rank two groups to be isomorphiék\
Type sets are reviewed in section 6. >We present both necessafy

dnd s&fficient conditions for sets pf types to be the type sets

of rank two groupsvand of groups of arbitrary finrte rank. We
devote section 7 to & brief discussion of the notion énd importance
of Quisi—essential-grbups. The ideas-of irreducibility and the
psuedo~socle are defined in section 8. . We demonstrate how these
ideas affect the st{Bcture of the quasiéendomorphism ring by

showing how they can be used to compirte the quasi-endomorphism -

ring of rank two groups.
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 INTRODUCTION

The problem of-classifying countable abelian groups by
a complete set of invariants has not yet been solved. Satisfac-
tory complete syétemSVOf invariants have Been found for some
special classes of abelian groups such as the torslon groups and
the rank one torsion free groups. However the mixed countable
abelian groups have not yet been classified. Every mixed group
can be regarded as an extension of a torsion group, namely its
torsion part, by é torsion free group. Hénce the classification

of torsion free groups plays an important part in the classifica-

‘tion of mixed groups. Certain systems of invariants _do exlist for
. ! \‘\

‘the countable torsion free abelian groups. These systeﬁs provide

schemes for the construction of such groups and the groups'obtgingd

AN

areisomorphic iff the schemes are equivalent in some sense; Tﬁé
schemes are-usuallyyin terms of matrices and tge equivalence T\\
problem for the scheﬁes is unsolved. As a copsequence,“tﬁese in- \\
variants do not proviqé é satisfactory characterization. The
purpose of this thes%s is to survey some of the work éhat has beén
done in thé study and classificatlon of torsion free abelian grdups
and to present resumeés of the main results. As a result, very

few of the theorems wifi-be proved and none wlll be proved in
detail. Complete detalls of proof cén, ofAéourse, be found in

the papers Indicated. The papers reviewed here will, for the

large part, be papers presented since the publication in 1958

of L. Fuchs book "Abelian Groups". The emphasis will be on torsion-

free abelian groups of finite rank.
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Throughout. this thesis we will use the following nota-

tion:

o

Z: +the domain of rational integers
’ \

I mez| n>0}y {»}

R: the field of rationél numbers r
Z(p?: The domain of p-adic integers
R(p?: the field of p-adic numbers

R = {% ¢ R| (b,p) =1} where p is a rational prime

[T

R ¢ an n-dimensional rational vector space

T : the set of rational primes

- . . .
[6]: the type containing the characteristic @ . '

If G’Ga are groups and x € G thén we will use

WT&GQ: the cartesian product of the Ga where a varies over some

index set.
|

hp(x,G); the p-height of " x in G

n(x,G) : the height of x in G ; i.e. h(x,G)(p) = hp(x,C—)

t(x,G) : the type of 'x in G . Where there is no chance of

confusion we will write t(x) .

T(G) : the type set of G i.e. T(G) = {t(x,G) | x € G}

Gy = {8 e G| t(g,q) > ¢t} where: t 1is a'type |
(¢) : the rank of G..



'If G 1is a torsion free abelian'group we will use
'V to denote the minimal divisible grdup containing G . V can
ne consldered as a rational ééétor spaée with dimension equal
ﬁo r(G) . Hence G is a full subgroup of V (a group A is

full subgroup of a torsion free abelian group B if B/A is

£9

a torsion_gfoup); All torsion free abelian groups with rank

r(G) can be considered as subgroups of V . If r(G) =n,

B PN

we will sometimes find it convenient to write V = R . Through-
out this thesis we will uie the word group, unless otherwise specl-
fied, to denote a torsion, free abelian group and thus a full sub-

croup of a rational veaéor space with dimension equal to the rank

, o
of the pgroup. ' ./

By a basis/bf a group we will mean a maximal linearly
independent set of glements of the group. A basis of a group G
. ‘:,II .
will also be a basls, in the usual sense, of the vector, space V .

2. Isomorphism InJ&riants for Countable Groups.

As we mentioned in the inﬁ?dduction, certain systems -
of invariants do/exist for the éoantable groﬁps. These systems
usually arisé~aé follows. A.bdsis of a coﬁntable group G 1is
selected and dsed.t% derive d scheme of invariants for the group.
Then it 1s shown that éuch schemes can be used to constrﬁct all
countable groups, in some cases of finite rank, and in other cases
of both {inite and infinite rank. However, different bases of a
group give rise to differené séhemes‘and different schemes can be
used to construct isomorphic gro@ps. To rectify this,an equiva-

lence is then defined on the schemes so that equivalent schemes

will correspond to ilsomorphic groups. The equivalence classes
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- of the schemes then form a complete system of invariants for the
groups. Since the schemes are usullly in terms ;n matrices, the
systems of invarianfs consist of certain equivaleéence claéses of
matrices, It ié here'that.the problem with these systems arises.
As Fuchs [13] ~has shoWn, it 1s possible to determine which |
équivalence classes‘of matrices_correspond to countable gréups.
However the problem of actually determining the equivalence ’
classes has not been solved. Hence these various systems do noﬁ”ﬁ
give satisfactory characterizations of the countable groups.
These systems are valuable, though, in that they provide methods
of describing the countablé groups and thus deepen our knowledge

of their structure. They have also provided methods for construct-

ing new examples of indecomposable groups.

The fifst of these systéms of invariants were provided
vy Kurosh [24] , Derry [9] , and Mal'cev [27] . Kurosh
found invariants for primitive groups of finite rank and'Derry
and Mal'cev presented invariants for arbitrary groups of finlte
rank. All three used certain equivalence classes of infinite
sequences of finite matrices of p-adic numbers to describe the -
groups. Kuroéh's classification provided the fifst examples of
indecomposable groupsjof‘arbitrary finite rank. The only previous
eﬁamples of indecomposablg groups ﬁére rank two groups found by
Levi [26] and Pontryagin [28] . The results of Kurosh, Derry -
and Mal'cev have been generaiized in Fuchs [13] to provide in-
variants in terms of infinite matrices, for all countable groups
of both finite and infinite rank. Szekeres [36] hasigiven .\

another classification for arbitrary countable groups in terms of
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ceftain.p—adic and integral invariants. However this classifica-
fion is not complete for Szekeres doeévnot study the effect of

a change in basis or determine conditions for equivaience of his
schemes. Two otﬁer systems have been developed by Campbell ([5]
and Rotman [35]', who use somewhat similar approaches. Campbell's.
invariants are for arbitrary countable groups whereas Rotman's’.
are for finite rank groups only. Campbells approach is based

on the fact that a group is determined onée the divisibility pro-
perties of a basal subgroup (a subgroup genefatéd by a basis of

a group)are known. The schemes produced are certain systems of
sequences of additive groups of sultable ordered sets of integers
and are called D-systems . The equivalencé classes of D4§ystems
under a éuitable equivalence relation are called D-types. Rotman,
instead of considering basal subgroups, considers}ordered bases

of a group with finite rank. A generalized height function is
)

defined and an equivalence relation 1s set up -on these functions.

To iilustrate we will now examine the invariants of
Szekeres, Campbell, and Rotman. Szekeres was the first to give
invariants for arbitrary_counﬁablé groups, Campbell's and
Rotman's‘invqfiants,aﬁe the most recent.ones'presented.. We will
also examine a system of invariants developed :ﬁﬁ.ErdSS [12] .
This system is not for the countable groups only but for groups
of arbitrary power.' Erdﬁs uses torsionlfree factor groups of
free abelian groups to classify groups of arbitrary power with

infinite matrices., Hence it is appropriate to consider Erdds!' .

- system here. : N . - g .
Szekeres makes use of the notions of independence and
. - "\ \
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dependence modulo pg and p“ where p e 7+ . Let EyseeesBy be

' " :
an independent set /of elements of a group G . Then we say

that gl,..}gk 'afe dependent modulo pn (n is a positive inpeger)
) . / N . - ‘ B

ir a;8; =,0 (mod p") has a solution with at least one
i=1 : / ,

(ai,p) = 1 where all. aj are integers. Otherwise gl"f‘gk»

will be called independent modulo p“ .

Now suppose that o € Z(p) has the standard representa-~

tion ¢« =‘ao + a,p + a2p2 + ees 5 Wwhere O < ay <p for all 1 ..

‘ e et (n) | ‘ ..n-1
Then we will write a''"/ = ag + ap+ .0 o, 4P . If

ve z(P) . ok
Gy seees Q)€ Z , we will writeriii?aigi

il

0 (mod p®) to indicate
that zkla§n)-gi = 0 (mod p™) 'for every n . If there exist'r;ﬁ‘
i=1 ' '

p-adlc integers QpsoeesQy s not all zero, sucb that

ik [ ] ‘ . . ‘ o
izl a;g; =0 (mod p~) , then we Wlll say that .g,...,g, -are

dependeht modulo p~-. Otherwise we will say that they are inde-
pendent modulo p® . The construqtion of the invariants employs

the‘following.lemméf

C s I : :
Lemma If 85+ 8, are independent modulo .p-and g 1s independ-

ent of ) 5+++58, modulo p® , then. g. cannot be dependent on

Byseees8y - modulo . pn for large énough n .

We now construct the invariants. Let G be d countable
group and S = {al,a2,...} be a basis of G . Choose!some

perm . Let g@i” be the first element of S that is not inde-
R - , .
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pendent modulo p” (i need not exist) . If i, exists then,

B

M

by the lemma, there is a largest ahl with a; = 0 (mod p

1
We write phlbl = a and construct lnductively

a seqguence bl’b2”" of elements that are independent modulo P ..

b has already .been constructed. Let ay be the first element

1 K

-

of S that is linearly independent of by,..., b, modulo p”® .

Then there is a greatest ~hk and uniquely defined coefficients

" | 5T hk) . Wer.

0<a,  <p = (g=l,...,k-1) with ai = £ b,(mod p
k, 4, E k {=1 .
’ - : k“l < ) .
write bk = p hk(ai - ai bL) ..
k 4=l h, s :

The b, s are constructed until all the ai's_ are

exhausted. The number, s ,  of bk's‘ 1s finite or infinite

and does not dépehd~bn'the choice of S . We call s = s{p) the

rank of G modulo p® . For all p we have 0 < s(p) < r = r(G).
Let M(p). denote the set of indices 1, = 1,(p)

< s(p)) , _and ij) denote the set of indices ‘J'¢ M(b)

P
).—J

IA
-

(L1<J<r). Then N(p) = # if s(p) = r and i, =k for

every k <r . Suppose N(p) 4 ¢ and j € N(p) . Writing i_ = O ,

— o
s4l = r + 1,  we then haye ,&k <. 3 <.lk+1 for some O < k-ﬁ s .
Now aj 1s independent of rbl.:,bk modulo» § and hence \\<\\$\.
pa, = I¥8,b, (mod p®) where B, o e 2P | Wot a1l of>
St B R U . Wwhe Bysee By, - \
) : ' . B \

\

\\

\



the B,By,...,B, are = 0 (mod p) and in particular

B L 0 (mod p) . Hence we have a, = £ a 105 (mod p%) for
| - J 74 R

~ some aji""’ajk € Z(p) and uniquely determined by a.‘j . DBecause

[l

of this last congruence there exlists an infinite sequence,

bjn(n=0,l,2,...) , of elements of G with bjo = aJ, bjﬁva.

-n k (n) |
p (a.. - Z QL b ) .
SR A o B E

\

Thus we see that each basis of G uniquely determines

@ system of invariants

M(p) = [1,(p)] , B (p) (k=1,...,5(p))

-

(1) |
ape) (3 >1,4(p))

.

for every p € T . There Systems are subject to the coﬁditions

0<sfp)'<r, hlp) 20
(1I) | | ‘

0 <y 1fo) <o <) (1 € ()
aj&(P) € Z(p)

Szekeres then demonstrates that his systems of invariants-

can be used to describe all countable groups by proving;

Theorem 2.1 The set of elements [bk(p), bjn(p)] generates the

group G and every element of G can be'ekﬁfésséd:uniqhely*f

in the form'
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: s(p) ‘
£oxa T L ¥ (e)b(p) +3 T

(p)b.,(p)
1t 7t p kel p JeN(p) .n~1 Jn - an

where 0 X yk(p)'< phk(P),’O.S Zjn(p)-< p, N e z .

C
Theorem 2.2 If, for every p € m , an arbitrary system (I)

is given, satisfying conditions (II) s then there is exactly
one group G belohging to this sytem of invariants (1.e. no two

non-imorphic groups belong to this-system).

These two theorems allow construction and characteriza-
tion of all counﬁable.groups. However, as we mentioned‘above,b'
since a basis change is not considered and no conditions for the
equivalence of two systems arevfound, the characterization is not
completeif’ . o |

N . .
The ‘classification of countable groups due to Campbell
is a complete class1§ication. In order to describe it %e Wlll
‘need the following notions. Let F denote the.eet of all row-
Tinite matrices over R ; All matrices considered will be in F .
A square matrix with an inverse will be called regular. If \\\;
A= (aij) is.an integral matrix with n columns and \\ . SN

g = (@1’g22"') is an ordered set of n elements of a group G\
then Ag will denote the ordered set (hl’hg"") where \y

hi = % aijgj . By a vector we mean a matrix with one row and by

a vector’module we mean-an dﬁditive group of vectors. If A e F R
we will denote by (A) the vector module generated by the rows

of A .

!

~Now let r be.a finitelorAcountably infinite cardinal.
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‘ Q@ will denote the quule consisting‘of all vectors with’ r
coordinates aqﬂ ‘J> ﬁill denote the submoduie of Q consisting

of the integrél vectors of Q . If M is a submodule of J
~and P is an integral square matrix of order r ‘then the

set of integral vectors ¢ with cP e M is a submodule of J
which we will denote by’ M‘: P and call the quoﬁient of Mby P .
If I is the uniﬁ matrix and P = mI (m € Z) , we will write

M:m for M : mI.

Suppose that G is a countable group and that r(G) = r

Let g = (gl,gz;...) be an ordered basls of G generating thélﬂj"

basal subgroup H . For me 2 , m >0, let f(m) 'denote.thg’ :
set of all integral vectors c¢ with cg diviéible in Gbym.

f£(m) is a submodule of J .. The function} f thus defined on.f'
the positive iﬁtegers is called the divisibility function of G

with respect to g , for it completely describes in Ga‘the

divisibility properties of the elements of H .

Theorem 2.3 The function f completely determines the group

G to within isomorphism,

Furthermore f(m) 1is the intersection of all f(q) ,
where q ranges o?er the prime power factors ofm . Hence f
is completely determined by its values at the'prime powers and
the condition f(1l) = J . This gives for each p € T a sequence
oy ' 2y - n, _
f(p") =Jd o2f(p°) 2 ...2f(p) 2...
The system of these séQuences, for all pewT , 1is called the .

divisibility system of G - with respect to g . Groups with a


http://vri.ll

1li.

common divisibility system are isomorphic. We also have that.

(o7 tp = £(e") for n=0,1,2,...

) NO"’ let A = (AO’Al, oo ,A-n, e .) . be ELn infinite

sequence of submodules of J .  We will call A ‘a Dp-sequence'

(p e ) Aif A§ = J and An%l :-p e Aﬁlfor n=0,1,2,... .  A-
system [A(p)] , ‘contéining pregisely one Dp-sequence ,
A(p) "_(Ao(p)* Ai(p), Ae(p?,...}/ for each pem, will be>called
a D-syspem.  It is clear thaﬁ/évery divisibility system is a

1

D-system. We also have f

Theorem 2.4 Ivery D-system is a divislbllity system of a suit-

/

able group G . o /

A D"SySJl-"':"m/‘{Ihich 1s a divisibility system of a Srouﬁlﬁ

G is sald to beloné/éb G . Thus we have that any given

D-system belongs to a unique group.

The deter%ination of the divisibility éystem for the
group G .depended/Ln the basls g . Thus distinct D-systems
may belong to_isomérphic groups. To complete the classification
we now look at the effect of a change of basis of G and deter-:
mine'cohditionswfor two AD-systems to be équiValent. An. ordered
basis of G 'ig/expressible in the form Pg , where P 1is an
integral squafé matrix of order r . InAfact; Pg is a basis
of G 1ff,,é is regular. ~And so, if  [A(p)] is the divisibility
system of G with :espécf to g ;~.then the.divisibility system
of G with#respect po"Pg s where P is regulaf; ié.ﬁ[A(p) : ?].-'

e
i
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/ |
Let g,g;/,be'Ordered bases of G generating the basalif‘

'subgroups H,H' réspectively. Then H 0 H is also a basal

subgroup and we mey select a basis g" of G in HNH . For

sultable regular matrices P and S we have Pg = g" = Sé' .

Suppose [A(p)] and [B( )] are the divisibilityvsystems of G

with respect,{p g,g respectively Then for all p e T

A(p) : P = B(p) : S . This relation provides the equivalence on

the D-systems., We will call two »D—s;stems LA(p)] , [B(p)]

assocliated if, for al1 p e ™ and for suiteble regular integfal

matrices P,S, independant of p , A(p) : P = B(p)

The relation of association between D-system is an
equivalence. The resulting equivalence classes are called D-types.
The set of D—systems belonglng to a given group is a D_type.‘w
Every D-type corresponds to some group and two groups are isomor-
phic iff their D-types are the same., Hence the D-types:providéw
a complete classification of the countable groups of rank r
where .r is a finite or countably infinite cardinal.

‘ The final classifieetion for countable groups that we
will discuss here is one for groups of finite rank due to Rotman.
Let G and G' be groups of"finite rank 1 . Suppose xl,...x£,'
is a basis of. G and Yys+-s¥, is a ba51s of G such that

T - r oy ‘ ' C
hp(igl mixi,G) - hp( Eﬁ‘Piyi’G ? for all prlmes. p and all
integers m; . Define a'mapping f.ieG “,G' ‘as:follcws. Let
f(xi)_= Y3 (i‘=ﬂl,2,...,r) . Suppose 0 +'x éIG . Then there

exists integers vm,ml,f;.m - with . mx = z mi i . We can assume
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that m = pk_ for some p € T and some k >0 . Thus

hp(z mixi).z %/ and there exists a unique y € G  such that
’ / : . ,
pky' = 3 miy; . Set f(x) =y.f is then a well defined isomor-

pnism. The result is:.

Theorem 2.5 If G énd G' are grdups of finite rank s then

. N |
G =G iff there exlist. bases XyseoeXy, of“G and yl,...,yr of G
with hp(E my X G) = hp(z m,% ¥ys G ) for all p e ™ and all
integers “m, .

r .

—

Let Z°' denote Il Z and 1let XyseooX

be an ordergd
i=l ' :

X
basis of G . We define a height function f : T Xx z¥ N by
f(p,ml,..;;mr) = hp(z m, X, 5 G) . Such functions describe the

groups, as theorem 2.5 indicates., But the description is not -~
" complete as different bases will yileld differenf functions. Hence

suppose that Yiseees¥y is another basis of G andiéﬁppose
further that 'yl,;..yr‘ induces a function g ¢ 7T x zr o N’.

Now, there exists a rational non-singular r x r matrix

A= (aij) with y, = 3% a4 4%y, ¢ Le?v n De the product of the

J

denomlnaﬁors of . aij . Then ng, = ? naijxj . The coefficients

na are all integers and we have

1J

s

g(p,nml,...nyf)'n £(p, Z'Ei nail,;){,z minair} é‘f(PQ‘[ml,;..,mr]nA?
This relation is'an equlvalence relation on the functfons and any ‘

two ordered bases of G will determine the Same equivalence class



14,

of functions. Hence the equivalence class in an invariant of |

G . Theorem 2.5 can now be restated as;

Theorem 2.6 Let G and G be groups of finite rank r . Then

G = G iff they have the same equivalence class of height func~

'tions.

3

Rotman then detepdines which equlvalence classes of
the functions f I Zr -+ N actually correspond to groups of

rank r .

(%

- We conclude this section with a look at a classifica-
tion for arbitrary.groups due to Erod¥s. The approach here is
through torsion free factor groups of free abelian groups. The
classification requires some resuits on these groups. The main

result needed is;

Lemma Let F/H and F'/H' be isomorphic torsion free factor groups
of the free abelian'groups F and F' . Then there exists an

isomorphisn ¢ of F onto F with He.= H 1ff r(H) = r(H) .

Here, as previously; matrices will be row finite matrices
over R , 1Ali matrices will'be square m X m matrices where m
is a cardinal. - A matrix A 1is called right regular‘iftﬁhere
exists a matrii ‘A with AA' = I . We will call two m x m
matrices A and B equivalent 1f there exist regular matrices

P and Q with PAQ = B and both Q and Q-l are integral matrices.

Theorem 2.7 Let m beée any infinite cardinal. Then'there exlsts

.

a one-to-one correspondence between all groups of cgrdinality
< m (up to isomorphism) and all right regular m x m matrices

(if we do not make distinction between equivalent matrices).

. —
»\\\ )
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Proof: Let» I be a free grou{»oﬁrank'm. Any group G of |
cardinality < m is isomorphic to a factor group of F modulo

a subgroup H of rank m . Let each subgroup H of F correspond
to the factor group F/H . Then by the lemma and the above
remark.this-establiéhes a one-to-one correspondence between all
groups of cardinality  £ m (up to isomorphism) and all pure .sub-
groups of rank m of F if ‘we do not make'disﬁinction between
subgroups of F which can be mapped onto each other by automor-

phisms of F .

¥

Let F Dbe a full subgroup of a fational vector spac?
V . The correspondence S - S N F 1s one-to-one between sub-
spaces S of V and the'pure subgropps of F . We have that
r(S) = r(SﬂF) ‘and that S; NF can be mapped onto S, nNF byl

an auvtomorphism of- F iff V has an automorphism mapping Slf

onto 82 and F onto itself. Thus our problem is equi%alen@ to

the problem of classifying all‘subspaces 6£ rahk m of V. under
the group of automorphisms of V which map F onto itself.
Now a subspace S of V has rank m iff V can be mapped onto S

by an endomorphism with a right inverse..;If ‘&1,&2: are endo-~

morphisms of V. with}fight inverses then Vi, = V&21 iff there

exists an automorphism- ¢ of V with w&l = &2 . An automorphism

¢ of V maps V4, onto Vi, iff there is an automorphism N

Pl

with @141¢. = &2 .4_The theorem follows from the.rep}esentation

of endomorphisms of V by m x m matrices. . = |~ .
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Now if G 'is'a group of cardinality < m , let G be
 represented es F/H where F  is a free group and r(F) = r(H) = m..

Let bx and b;.(xeA) _be bases of F and H respectively. Then

' 1
the matrix A = (aku) defined by bx uék aAHHJ , A€ A,

8y, € R, is the matrix corresponding to G . Here, as with the
classifications of the countable groups, this classification does
not provide a satisfactory system of invarilants beoause of the
probleﬁ of determnining equivalent mstrices,g_ | |

[ : i

3. Indecomposability and Direct Summation

In the previous section we mentioned all the classifica-
tions of the countable and arbitrary groups that are known. ‘'We
now mention and discuss briefly one further classification, namely
the well known c1a331fication of the rank one groups by their
types. For a description of this characterization we refer o -
Fochs (13] . This is the only satisfactory characterization for
groups that exist Not only does it completely describe the
rank one groups, .but it»also completely describes the structure
of conpletely decomposable groups (groups which are direct sums

—

of rank one groups) for Baer [2] has proved

~
N

Theorem#j,l Let G be a completely decomposable group and suppose

Gmy G H where the G and H are rank one grou sT\
e, En@n _ . \ N groups:~ -

‘ . _ \
Then there exists a one-to-one correspondence between the summands
_ : : . - \

»Gx and the summands H, éuch'that-correSponding summands are \\

\

AN

isomorphic. Hence any. decomposition of a completely decomposable

group into a direct sum of rank one groups is essentially unique.



Unfortunately; the ﬁroblem of detérmining those groups which

are completely decomposable has not yet been solved. Some neées—:
safy and sufficient conditions for a group to be completely
decomposable are knovn but either thege conditions are applicgple.
oniy to restricted classes of groups or the groups with the o

" conditions have not been determined. For example, Rdtm?n [35]A
has used his invariants for finite rank groups (see the previous
section) té show that a group G of finite rank is decomposable

iff G contains & basis 'Xys...sX.s¥1s..¥g Such that, for all

p ¢ T and all mi,mj € Z, Ahp(z mX; + 3% mjyj,G} ,

= min{hp(z mixi,G), hp(z mdyj,G>} . This can obviously be used

to derive a necessary and sufficient condition for the group G

10 be completely decomébsable; However the problem of detérmining
the groups with such a basis has not been solved; More of these
conditions, along with further Information on completélj'deco@;
pésable>groups,.cah‘be found in Baer (2] ;'.Kurosh [25]%,; ‘
Fuchs . [13] , and Wang [(38] . Weiﬁonclﬁde our brief discussion
. of rank one gfoups and Compietely_deébﬁposable groupé with a
review of .some of the results on such groups that have beeéh

published recently.:

)

Baer [2] has proved that if G is a completely
decomposable group and the rank one summands of G all have the
same type then every purg.subgroup of G 1is also coﬁpletely
decomposable. Prochazha [31] haé-generalized this;result and

proved that if G = v @G

o Is a direct sum of rank one groups
adT ’ - '

whose types are inverseiy well ordered in thelnatural'partial
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order of,ﬁypes (i.e. o < B <.7 implies type GB_S type Gd)

| thén any puré subgroup of G 1is complétely decomposable.
Actually, in proving this result, Prochazka proves that any pure
| subgroup of G ‘is a'direct‘summand_of G . Hence the result is
stronger than indicated for any direct summand of G 1s com-v
pletely decomposable, Kovac [23] has shown‘thut if G 1isa group
and H asubgroup of .G with nG S}H for some positive integer 4
n and if eithef G or H is a direct sum of rank one groups
whose types are inversely well ordered in the natural partial

order of types then G & H . o

Homological méthods and the concept of regular groupg

have been employed by Harrison [17] to help throw light on thé '

. ~ \\
problem of determining those groups which are completely decom- = -
\ .,
posable and gain some insight into the number of groups ‘which are

not completely decomposable. Let G be a group. For’ p €T let
. \\
£(p,G) denote the dlmen51on of G/pG as a vector space over the

prime field of characteristic p . We will write fQG) —n- f(p’G)

If S is a pure subgroup of . G , then

£(s) . £(6/8) = £(6) (i.e. £(p,S) + £(p;6/8) = £(p,G ) for all p)
We will also write n(G' =3; ? 'Where r.= r(G) If H is any

»subgroup of G n(H . n(G/H) = n(G .
For p e m let Abp be the subgroup of . R ‘with

denominators of powers .of P .‘ We will write | |

L(p,G) = r(Hon(A ‘G)) and e(G) p e(p,G) . Then if{ H is any

subgroup of G e(G) < e(H) e(G/H) .,,These three functions are
e o / )
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used to define regular groups. For any group G, £(G) . e(G) < n@ﬂ.e
e will call a group G regular 1f r(G) is finite and | t
£(G) . e(G) =n(G) . If -G is a regular group and S 1is'a pure
subgroup of G , then both ,S and G/S are regular. All rank
one groups and all finite direct sums of rank one groups are
regular. Harrison’s results are contaimed in two theoremsg which

are;

1. A group G which is divisible for all but a finite number of

primes is a direct sum of a finite number of rank one groups .

M
G -
SN

iff it-dis regular. If S is a ‘pure subgroup of a- group
which is a flnite direct sum of rank one groups allof WthQ
are lelsible for all but a flnlte number of primes then both
S and G/S are also direct sums of rank one groups. | A
2. Let G and H Ybe groups of finite rank such that G 1is divi;
sible for all but a finite number of primes. Then the B

number of non—isomorphlc groups K which have a subgroup H
1somorph1c to H and W1th fact or group K/H isomorphic

to G is either one or the cardinality of the continuum
depending on whether or not- n(G) /f(G) is relatlvely prime
to f(H) (i.e.1whether or not elther r(G - £(p,G) = 0 or
f(p,H) ;Q:'for all pe1T ) | .

These results show the immense humber of groups which
exist even for small ranks and that only relatively few of them
~are completely decomposable, For example the number of rank two -

groups formed by puttlng Aq and/Ap (see above) together, where‘
P = qQ p,q €T, is the power of the continuum but only one of

~

them is completely decomposab}e.

/

/
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Theorem 3.1 shows that direct sums of rank one groups present no
‘irregularities for two different direct summations of rank one
{Eroups yield‘non-isomorphic"groups. It is naturally to be hoped
that‘the»property of theorem 3.1 will carry over to direct sums.

of arbitrary indecomposable groups. Unfortunately, this does not
happen. Ve will now demonstrate that, in general, direct . |
loumqations behave in a" very erratic manner., For instance,

Corner [8] , using one of hlS own results, [7], has constructed,
for any positlve integer rv,' an ‘example of a countable, reduced

- group G . with the property that 2G&5G iff m= n(mod r) .
' m n : L

Here m and n are postive integers and £ G indicates the
. / e n

direct sum of n COpiei/Of G .. In particular, there then
C

exists a group G thif/is isohorphic to the direct sum of r + 1

coples of itself but not to'the direct sum of s copies of itself

>
;

for all 1 <s<r +<1 .

The main problem in this connection is presented by
dlrect sums of 1ndecomposab1e groups, ‘not all of which are rank
one groups. It 1s/possible for two different (in the sense of
theorem 3 l) direét sums of indecomposable groups to be direct
dcconp051ulons of the same group. This problem is further .
complicated by the fact that besides the rank one groups which
are of course,/;ndecomposable, vast numbers of indecomposable
groups are nnown to exist. We will first discuss some examples
of indecempesable groups and then some-examples to indieate the

failure of theorem 3.1 in the general .sense.

Rotman ‘[35] :has-used his invariants (see previous sec-

tion) to conStruct»exampleS‘of indecomposable groups of any finite
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rank. The pure'subgreups of Z(p) yield examples of indecomposf‘

| able groups of any rank up to and ineluding )bf‘(the power of

the coﬁtinuum);de Grootfap§¥de Vrieé” [16]"heve constructed
examples of rank . fbr‘ff'ols m 5 gY= . indecomposable groups

of any rank < 2, are presented in Fuchs. [13] . The best
possible result however is the example eonstructed by Fuchs. [lh]v.

e will look at'thisvexample in some detail. Fuchs,proves

Theorem 3.2 For:every infinite cerdinalﬁ%ﬁ there exists a rigild

system of 27 groups of power m .

By a rigld system of groups we mean a set of groups,

Gi(xeA) , with the properties

(1) If X 4+ n then an(G ) = 0 for all x, n € ) .

~~

(i) For every endomorphlsm ¢ of G there exists r;Te-Rr -

such that EP = r g for all g e'G .;'Groups in/any rféid\kl
\ . "\\"
system are indecomposable and pairW1se non-lsomorphic. Ve Wlll\ "

use the follow1ng notation 1n the construction. If t is a type

\.
\

and G 1s a group, recall that we write

G, = {g ¢ G | t(gl,G _>_‘_t} . Let t = [(=,0 o,...)] and *

",'tl = [(0,0,0,0,.0.)] .
Lemna - If for some caréinal m we have a system of groups

Gl(keA) satisfying .- g f'i

N o o
1. ]G[:m 'f
o A

2 IAL=2% ! o
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A S
t o /
4 for every A e‘A/ elements g)‘,gl € G, > & 2G, , which are

[

can be selected such that

independant mod /G,
depen [
/ o
Gi = {Gk’ 2'°g{,'2'7§k} (1.e. the group generated by the direct
sum of 7GX adg the elements of the form 2‘“gx, 2’“5&, n=l, 2, .9

has the property: i1f ¢ is‘a homomorphism. of"GK into G . then
either ¢ —/O or \ = u ~and’ there exists’ r € R with g¢,= rg

ol et
. ‘.-\‘_ L

for all. g/é G ;e
Then, for any n with m<nX< 2 there exists a system of

groups H (aeA) }which also has properties 1j - 46
- Note that any system satisfying properties 1j - k4, 18
a rigid system by-property 45; The construction of the- H,

proceeds as follows; - let .Aa(aeA)A be a collection of “subsets of

A, each of power 'n:,» such that Ao e-Aa‘ for a fixed: Yo

andvevery a and'ﬂg.;'Ab implies & = b. There exists 2n

sets ’Aa with these properties and hence we may assume A héé@'

power 2" . TFor every N_let H = { ¥ G_, 2’“(@ +g'),...}';
- o _

i

! 1
(A Fags A €A, g €G) .

As the lemma'indicates the construction will yield a

rigid -system with additional properties to (i) and (ii) . The,
SR
next step in the construction is to construct a system of 2.

groups of powerllfgi.. Let G (XEA) be nan& one groups whose



types are pailrwise incomparable and incomparable with the types ~

. : 4
to,and tl . Ue may assume the index set has power '”bll . .

4 » o
We can form 25%1 subsets A (8.€A of /\ such that lAaI = ,S,l’

a fixed ), Dbelongs to_gll A, and Ah-g AL implies -a = b . =

Select g, € G, ¢ 26, and, for every Aa , . define

. " . -
Hyo= {3 G, 37(e, +g>\),-.- O Eags A €A, 8 €G) .
AEA
a _
, ] . . . ‘
gxo + g, will have type ty in Hy énd the system Ha(aeA) has
propert;es 10".40

The final step is to construct a system of groups with

properties 1, - 4, for a limit cardinal n . Let ..

f{1.= ml,me,}..,ma_,..; be the sequence of all cardinals greate??
L ote . /' : s T

than ,9‘0‘ and'lessfthan n . Suppose that for each —md there

exists a system of groups Héa?- satisfying 165— 40 . With

the G, as 1n the previous‘step,'a‘s&stem KX is cohstructed

A
for n, Such that every Kx‘ arises as the union of a sequence
(2 (@)
GXS Ha cc (b) S0 c H, ... Di.ff»erient sequences -

may produce 1somorphic K . We consider only the non-isomorphic
Kx that result.: It can then be'proved that the Kx_ihave
property 40 and that there'afé‘at least 'n non-isomorphic

groups Ky » Ther1 applying the procedure of the lemma we ob- .

tain gn_ groups of power n satisfying the conditions 1 40 .
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This completes the construction and the proof of theorem 3.2.
We remark that this result. can be used to answer problems

20, 21 and 46 in Fuchs book [13]

The first example demonstrating that different direct

—_—

sums of indecomposable groups could yield isomorphic-groéups was'

due to Jonsson .[19] . who discovered a rank 3 group that could

be decomposed into a direct sum of indecomposable groups 1n‘t§3\#\§_
different:ways. - Jesmanowicz . [18] presented another example
in answver to a problem posed by Fuchs [13, problem 22]

Fuchs asked: “If _ri(i=l,2,3,4) are positive integers with

ry + ry = ry + ry and ry f rz, Iy £ ry, , does there exlst inde-

1
composable groups G, (1=1,2,3,%) ’with' r(Gi) =.ri(i=l,233,4)

- and G' €] G = G Q-) G‘ . Jesiﬁanbv&icz’ answered this problem
afflrmatlvely and also proved a similar result for three direct~
summands. The strongest example in this connection 1s due to

Corner [6] who generalized Fuch's problem and answered it

affirmatively.

Theorem 3.3 Let N,k be positive integers with. N > k . Then

there exists’a-group G of rank N such that for any partition,

/

"N =T, + T Heuut T of "N ‘into Sk

1 T2, k.

/

positive integers there exists indecomposable subgroups
. ; : :

, Gl,...,Gk of G satisfying /

7

(1) 7(6;) = ry(1=d,.00nk)

@i) G _ 'jk<)(1 | | ' A:‘A ._.. L . | o
i=1 1 'y: - L A ‘ A . )

h . . 1 ’ )

o/
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Proof: Let n=N-k . If n=0 take G to be free with
" r(G) = k =N . Hence we may assume n > 1 . Let

P> PyseeesPps ql,...fqn' be distinct primes and let

l;...,ﬁk,'xl,...,xn be a basis of RY . Let G be the group
generated by  {p mui, p xj, q (ul J)} (1<ick, 1<J<n, m>0) .

Then G 1is a subgroup of RY and r(G) = N .
Now let ry Fewot rk = N be a partition of N into k

positive integers. Set-'so = 0 and s; =Ty teoat ry - 1 (i=1,...,K).
If we write ql"'qn,“jquj‘ tpen (Ql,...,Qn) = 1 and there e

.exists ty,...5%, € 2 such thft iz? t3Q =1 . Let
K

a, = T t.Q, + Then 'y a, =1 and a; =1 (mod q,)
i s;1%<sy 99 1=l i 1 , J

If s, g < J <85 oay /O (mod qJ) otherwise. “ We now/define

b, b, € RN by:‘ '/" - ‘

IR <
w, = al 1 + a b2 + a.3b3 + see + a.kbk

1
Uy = =by %'be
N L
v ...;..............,.....,...,;5....,.. |
w = -bl ; o : oo + o, .

4 L
. §
i

These equations can be‘solGed to give"bl,.,;,bk es integral
v , b

linear combinations ‘of Upseeely o S

!
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For 1 = 1l,..0,k , [let Gi be the group generated by

- - _",
{p mbi{ pjmxj, qjlgbi+xj)} (si-l <Jj<Ls,m20) .

These Gi are the/required indecomposable groups.

Cornerzalso proves a simiiér result for the countable .-

rank care, name% H

/ : . ‘ o
Theorem 3.4 There exists a group G of countable rank such that

for any sequence >r1,ré,;.. -of positivé integers, infinitely
many of which are greater than'one, there exists indecomposable
subgroups -Gi of G satisfying

(ﬁ.),G::j"g@Gi.

4, Quasi-isomorphism and Quasi-endomorphisms.

The exampleé of section 3 indicaté that é large number.
of groﬁps e#iét which do not have unique decompositioﬁs into a -
sum of indecomposable groups. This is because the condition of -
uniqueness up to isomofphism 1é too strong. If we replace iso-
morphiSmﬂby the weaker condition of quasi-isomorphism and inde-
Fomposability by the corresponding notion of strong indecomposabil-
ity, we retain,the essehtial uniqgeness of decomposit;ons of
groups of finite rank.a In thisvséction we define and_discuss the
notion bf quési-isdmorphisﬁ and sﬁaté a theorem'anélogous to
theorem 3.1 . We will also .define and esﬁablish the #mportance
of the notions of quasi-endomofphiéms»énd'thé ring'of quasi- )

endomorphisms of ‘a group. T
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VThe definition of quasi-isomorphism is due to Jonsson

[20] and was originally given for groups in general.

Definition 4.1 Let G and H be groups.

(1) G and H are said to be quasi-isomorphic iff each 1s

isomorphie“to-a subgroup of the other, We will write

. .
: . ] toen T

G = H

(ii) G is said to be qua31-contained in H iff G = G n: H

Ve will write G E H.

(iii) G and H are sald to be quasi-equal iff G S H and H‘é;G'Q -
’ We will write G = H . | '
(iv) G is said to be quasi- decomposable iff there exist ‘non-

zero independent groups Gl and Cr2 s such that G G @ G2 .

(v) G 1is said to be strongly indecomposable 1ff 1t is not quasi-

decomposable.hA /

Other formulations of these notions, better suited to

~.

. .o \\
the case of torsion free-abelian groups are as follows. . Let

G and H be tor%ion free abelian groups. Then o V\ \\"
» ‘ \
(1) G = H if there exists subgroups G c G, H [= H and positive
integers m,n: such that’ Rl ’, nG G > and mH < H . '

Rﬁi) G c 'H if, for some positlve integer n, nG c H. :
: \
If G and H are torsion free abelian groups of finite rank

!
"

then
(1)"* G & H if there exists subgroups G cG, H'fg H such
that Gf 2 H and G and H'= haVe finite index in G and H
 respectively. Also G £ H if there ex1sts a subgroup

' B '
H € H such that H has finite index'in Hand G2 H .
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(1) - (v) are Jonséon's original definitions. As defined
by Jonsson % is an equivalence relation on the class of all
.groqps. é in general is not transitive over the claés of all
subgroups of a.group G and hence = need not bg an equiva;gpce_
relation. (i)' is from Beaumont and Pierce [3] . (ii)' TS
from Rled [33] and (1)" from Beaumont and Plerce [4] .

()" can be éeed by applyihg Theorem 2.4 of Jonsson [20] .
‘Boﬁh & and é__are equivalence relations on the class of all

torsion free abelian groups.

The definitions of quasi-isomorphism was, as we stated above;
introduced by Jonsson to‘providé the following theprem; analogous

to theorem 3.1 .
Theorem 4.2 Let Gl,ng...,Gm,.Hi,Hg,;..,Hh be strongly inde-

composable groups of finite rank such that = (@ G, & P @H, .
| W 30 P i

Then m = n and there-exists a permutation; ¢ of

{1,2,...,@} such that G, é.ﬁm(i) (i=l,«..,m? .

Actually a stronger result than this is possible if we make use’
of the ring of quasi-endomorphisms of a groﬁp._ We will give this |
presently;

[}
1

As a result of theorem 4.2 , quasi-isomorphism has come to

play an important role in the study of groups. Some properties

of groups that are invariagt under quasi—isomorphism have,been
R : L !

found and in the case of rank two groups a complete set of quasi-

isomorphism invariants have been found by'Beaumoht and Pierce [4] .
: . ) . e
We.will now review some results on quasi-isomorphlism. The invari-

i

for the rank tWo groupsvwill bevdiscussedjin énother-section;
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Beaumont énd,Pierce (3] have proved that if
'G tHand G' &K then G@G' 5 HQ | H' . It has also been pr.oved‘v
here that if G and H are groups then the following conditlons: |
~are equivalent
(i) G&H
(ii) there ekisﬁs subgréups G’ <G, i S H and a positive .
integer n . such tnat G & H , H &q' s nGc Q' and
nHc H . |
(1) Therevexisté é subgroup G':E G and a positive'integér n
 such that G & Hand nG &G . |
If G and H are quasi-isomorphic groﬁps then
r(G) = r(H) and T(G) = T(H) ([4]) . Hence rank and type

sets are quasi-isomorphic invariants..

Koehler [22] - has proved some propérties‘of.quasi-
~ isomorphic groups of finite rank. . ,/;
Ifr G and H are groups of finite rank then we can
consider them as both being subgroups of R® for some n .
‘Thenlthe foliowing conditions are eqﬁivalent.

[4

H

fee

(1) G
(ii) Lhere exists a subgroup H of H and a monomorphism %)
fron H to G such that Gc: Cp(H) and HEH .

'(iii) there exists a monomorphism ¢ from H to G such that

Géq’(chG'.j'.‘ ‘ : ’ '(.
T

(iv) there exists a subgroup G of G such that H G =G .

(v) there exists non-singular linear transformations

A shp Of R. ‘ SU.CI:I that )\l(G)_c_:H gnd AQ(H)E_;\G . o
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Another result proved by Koehler uses the notation:
G denotes the minimal divislble group containing G . Now let

G and H be quasi-isomorphic subgroups of R® , Then

(1) G, = H  for all types %t .
(1i) there existsva non-singular linear transformation L of R

such'that .L(Et) = @t' for all types t .

(111) If G = H then G, = H 3 T ;"}ft"for all types t .

Note that Et s ?% are subspaces of R" .

‘We conclude‘our discussion of-duasi-isomorphism with an‘
alternate definition proposed by Walker [37] . Walker considers
the quotiént cetegory G/n where G 1is ihe category of all
abelian groups and. 8 is the class of all bounded abelieﬁ groups.

two abelian groups - G and H are quasi- isomorphic 1f there exists

isomorphic subgroups G and H of G and H respectively with

G/G and H/H e 8., If Gand H are torsion free groups then this -

—_

is equivalent to each being isomorphic to a subgroup.of the other

with bounded quotients.' ance two torsion free groups are\duesi-
H . v ‘\
1somorphic iff they are isomorphic in a/ﬁ . Furthermore \ ~ _

\
quasi- decomposition, quasi-endomorphisms (see definltion 4.4) etc.
\become decompo;itlons, endomorphisms etc. in the quotient cate- \\
gory /8 . .Hence quasi- decomposition theory of torsion free-
groups in d is equlvalent to decompositlon theory of torsion
free _groups 1n. G/8 . Slnce quasi- isomorphlsm and quas1-decomp051-.
tlon theory are of principal Value only in the study'of torsion
free groups, Walker submlts that the proper deflnition of quasi-‘i

isomorphism should be: L ‘r
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Definitibn 4,% Two groups G and H are sald to be quasi-isomdr-»
‘ phic iff they are isomorphic in 'G/ﬁ'. :

This definition makes available for application the

homological algebra of /8 and category theory in general,
Ve now'discuss quasi~-endomorphisms.

Definition 4.4 Let G_'be a full subgroup of a rational vector

—_—

~space V . Let L(V) denote the rihg of linear transformations

of V . We define E(G) = (A € L(V) | GA S G} . If & e E(G)
we call 2\ a quasi-endomorphism of -G . If ) € L(V) 1is hogr\*;\\

singular and x,x'l € E(G) then we call ) a quasi-automorphism

~

N
of G . Hence 1\ i1s a quasi-automorphism of G iff Gy = G .
£(G) is_the rational algebra3generated by the endomorphisms of
G in L(V) = and, in particular, is a ring and the quasi-automor-

phisms are its units. ' c - ' /

E(G) plays an important part in the quasi-decomposition. '
theory of G . This has been demonstrated in two papers by
Reid [33], [34] . We willveétablish the importance of E(G)
by reviewing the pertinent.results from these papers. It is
obvious that G ;:_ G, @ G, where G =VeNG = Ge and -
G, = V(l-e) N G = G(l-¢) where e 1is an idempotent of E(G) .
Conversely if G ;’G1C9 G2 then'ﬁhere exists a uhique‘idempotent

e with G = Ge and G2~é‘G(l-e) ./fHean we have that G 1s

,:. 7 . { )
strongly indecomposable iff = E(G) contains no proper ($0,1) .
- - , A . - : ’ b N

.|‘ . e

~ idempotents.
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Now let G = @ a be & finite quasi-decomposition
o 1=1 1 »
of G. Set H= @ G, . Then G=H and E(G) = E(H) .
, i=1 o :

Hence the proJectioné"Li(i=1,.{.,n) defined‘by the decomposition
‘6f * H belong to E(G) . . Furthermore they are mutually

orthogonal idempotents iand thelr sum is ﬁhe identity of E(G) . |
| Also Gty = Gi(i=1,'--.,tn) and G = iz_:’l@ Gt . Thus any finivtg

' N

'+ quasi-decomposition of G "is quasi-equal to one of the form

G= zP ® G{,i where 1y are mutually orthogonal i.dempotent:‘s\\i
i=1 , T o N

whose sum is the identity of E(G)‘ . - A quasi-decomposition h

~of this form is said to be normalized. Next, 1f Lys=++,b

are mutuaklly orthogonal non-zero idempotents whose sum is the
identity of E(G) then E(G) has a decomposition
. : /'4

E(G) = i}::@ ¢4E(6)" into a direct sum of right ideals.

Theorem 4.5 The correspondence G = I° + Gt -"E(G) = % + 1, E(Q)
. o , , i : i
| ‘ L 1=1 1=1 L
1s one-to-one between normalized finite quasi-decompositions of
G and finite deco'mposition's' of the E(G)-module E(G) .

-. Also" ‘E(G{,i)- = f,iE(G,)z,i (i=1,-..,n) and 'GL-i_ is strongly

indecomposable iff _.c,iE(G)' is é,n-irideé‘omposable E(G)-module.
If e and. f are any.-‘idempotents of E(G) then Ge = Gf

N ) B . . ) "./ K ' . : .
- 1ff eE(G) and fE(G) are isomorphic E('G)-modulesf'.
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Theorem 4.5 shows that the quasi- decompositlon theory of G 1s
" equivalent to the decomposition theory of E(G) as a (right
module over itself., As a result of this theorem we have the

following generalization of theorem 4,2:

Theorem 4.6 Let E(G) have descending chain condition on right

ideals. Then any quasi-decomposition of G has only finitely

many summands. If zm@G G L gn@ , where all Gi’HJ
1=1 - =1

are strongly indecomposable, then m =n and for some permuta-

tion CP Of {l,;... ,m‘}, Gi é H (i) (i‘l, LI ] o’m) [

If G has finite rank then E(G) is a finite dimensional .

rational algebra and. so has descending chain condition on right
ideals. There also exlsts groups of infinite rank with E(G)
satisfying the descending chain condition. Hence theorem 4.6 is

a stronger result than theorem 4, 2. . ' o -

/.

A ring E xwithrradical N ”is éaid'to be connletely
primary if E/N is a division ring. It is sald to be semi-
primary if E/N has descending chain condition on rightﬂideals.;
Now suppose that E(G).'has déscending chain condiﬁion on right
ideals. Then the foliowing are true, as Reid [34] has proven..
(i) Ir l‘e E(G) then there exists a quasi- decomp051t10n

‘ G %G @G, such that %x 1nduces a quasi--automorphism‘on

Gl and'a nilpotent quasi—endbmorphism on G2 .

(1i) G is strongly indecomposable iff E(G) is .completely .

primary. : f

i

It is also true that if E(G is semi-pr{nary\With nil

radical, then G has a quasi decomposition into a finite

N
number of strongly indecomposablelsummands whose *\ T~

. . ‘:\ .
: N4
L . \\
.. - ' . N
. : - v C ’ v ’ :

5\
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Quasi-endomorphism rings are completely primaryf‘ Any two such

quasi-decompositions of G are equivalent in the sense of

theorem 4.6 .

We conclude this section by remarklng that E(G) is a
quasi-isomorphism invariant. In fact if G H then

E(G) = E(H) and if G & H then E(G) & E(H) .

5. Rank Two Groups

Considerable effort has been devotéd to the study‘of
rank two groups; The reason for this is two fold; to help |
develop a complete picture of rank two grdups;Aand, since‘ranKT'
two groups are relatively easy to work with and -'éxhibip-much of the
pathology of groups of higher~fank, to provide a basis for
conjectures concérning groups of arbitrary finite rank. Beaumont
and Pierce [4] have ciassified'the rank two groups up to quasi- o
isomorphism and used-their invariants to detérmine conaitions
for rank two groups to be quasi:decomposable and fog\guasi-isomorr =
phic rank two groups to be isomorphic. They have‘alssiemployed |
their invariants in determing E(G - for rank two groups and in\\.

N,

~ determing both necessary and sufflclent condltions for a set of

has\\
A

‘provided another approach to»detefming E(G) for rank two groups \j,

types to be the type set of a rank two group. Reid [34]

and Dubols has devoted two papers, - [10] and [ll] st

~determing typé'Sets of.rang two groups. This sectioﬁ will be
devoted ﬁp,reviewing and discussing'some'of_the reéu#ts of

Beaumont and Pierge. The others will' be présenﬁed ié'the fo11ow- f

ing sections.
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- We start by outlining the development of the quasi- .
'isomorphism invariants for rank two group of Beaumont and Pierce.-
We will employ the following notation. (G,xl,xe) will be used

to denote a full subgroup, G , of a two-dimensional rational

vector space, V 4, with xl,xe' forming a basis of G . If
x ¢ V then hg(x) will denote 'sup{kl(c/pk)x € G, (c,p) =1, ce2}.
If xe G then hg(x) = hp(x,G) . hb' will denote the ordinary
logarithmic p-adic valuation on R and R(p?

‘Given (G;xl,xz) s if H; and H, are the pure subgroups

of G generated by xl‘and X, respectively, then G/(H%@HQ)

i1s either O .or a torsion group. Hence we can make the following

definition.

Definition 5.1 Let E be the characteristic (1.e. a function ~-
from T to N) satisfying G/(Hf:Hz) z Z(pz(p)) We will
_ CPET o LT .

write (G; xl,xe) -7 .
Now define A = {(a,B) | a,8 € TT Z(p)} and let 6
peT S
be a characteristic; A pair (a,B) € A 1is sald to be

e-equivalent to - 0;555 € A if
(1) h(alp)) = hy(a (p)) s hp(ﬁ(p)) = hp(ﬁ (p)) for all p .

(1) (a(e)s'(e) - o '(s) 5(6)) 2 9(p) + my(a(e)) + 1 (B(p)
| o — o | for all P ;
We will write (a,B) ~g (agB') . | §
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”e is an equivalence relation on A . Furthermore if

(a,p) € A, (a’,ﬂ') e_A and if for all p e T (a(p),a(p)) and
(a'(p),s'(p)) satisfy the following conditions with (al,Bl) a

pair of p-adic numbers.,
G
(a) hp(al' % xg) = U and %(51) = %(xl) = |
(b) If O< Kk __tE(p) ‘and if m,n are integers with hp(m) =u ,
- k+u+v v
vhp(n) =V then p ( } (mxlfnxQ) e G 1iff hp(mal*n“l)
2k +u + Vo,

then (a,B) ~s (o 58 ) +» This result leads to

Definition 5.2 Let (G;xl,x

2) - ¢ and let (a,B) € A with
(a(p) a(p)) satisfying conditions (a) and (b above for all p .
We define X = [(a,B)] to be the zrequnmlenceciass ulA.containing

(a,B) We call (z,x) the pair of invariants determined by
(G;xl,x2)~ and write ;(G;xl,x2)~~ (z,X) REE

Now assume that zﬂp) £ 0 " and that a(p) = 0 . Then!

hp(a(p)) = » and so also h (x ) = o . But this implies that

#(p) = O . Hence a(p) EO . Also B(p)‘# 0 . Thus‘we have if
12(p) £ O then both a(p) and B(p) are non-zero and so for
all (a ,8') € X if z(p) # O then & (p) £ 0 and B (p) 0. it

\
1s then possible to prove .i
S

Theorem 5.3

~

(1) Let 'xl,xz be an independent pair in Y;_and (z,X) a

-~

\.
pair consisting of a characteristic T and a y=equivalence
NS



class X - such that for all p ¢ T and (a,B) e X, 1if
"z(p) £ 0 then a(p) .0 and B(p) + O . Then there exists a

full subgroup G of V , such that XysX, € G and (G;xl,x2)rt(z,x) .

(i1) Let (G;xll,xg)- - (5X) and (H;yi,y,) ~ (LX) « Then the :

non-singular linear transformation ¢ of V taking x;

to y; and x, to y, satisfies o(G) = Hiff T =T and X = X .

From now on a pair (z;X) will be a pair such as in

theorem 5.3 (1) . As a result of this theorem, the correspondence

between the full;sﬁbgroups (G;xl,xe) of V and the pairs (35,X) ,;'

is one-to-dne, for an independent pair Xy 9%y inV .

" The next step in the development'is~to determine condi- ~;AE

tions, in terms of the invariants, for grbups to»be‘qugsi-isomor-
phic, If gland ¢éi~afe functions from T to Z U {»} ‘we define
¢ < @ 1f @ (p) £ ¥y(p) for almost all 'p , including all p
with cpl(p) =e . @ ¥ @, if @ <9,and P, <@ .
Now for a € T R(P? ‘we define a function K(a)
T peT ' -
from T to 2 U {=) by K(a)(p) = hp(a(p)) " We use this function

to define an equivalence on the set of invafainzs (z,X) &

~

Definition 5.4 Let (G;x;x,) -~ (=,X) and (Hsyyovp) ~ (%) with =
ST o S L U

(a,B) € X , (a,B) € X . We define " (5,X) ~ (T,X) if{ Lo~y
. ' " ‘ A\\d\. A‘ S

K(a) ~ K(3) , K(8) ~K(B) and I+ K(a) + K(B) < K(@saP). .

‘ . .

| If G and H are full subgroups of - V. and fi,xe is

.
AV
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an independent pair in G A H- and if (ijl,xg) -+ (Z,X)
(H;x)s%,) = (E,X) , then G =H iff (£,X) ~ (,X) . Making

use of this result and}theorem 5.5 we have : ,

Theorem 5.5 Let G and H be full subgroups of V , Xy,X5

an independent pair in G and let (G;xl,xe) - (Z,X) . Then
G = H 4iff there is an independent pair ~yl,y2 in H with

(H;yl,yz) - (¥,X) such that (Z,X)% (Z,X) .

If we have (G;xl,xz) - (E,X) then the pair (Z,X) |
depends upon the basis X; 5%, of G . The final step in-the

development of the invariants is to determine the effect on

(£,X) of a change in basis; ~i.e. 1If (G;xq,%,) - (Z,X) and -
yl,ye' is another independent pair in G to determine (T,X) __
where (G;ys¥,) * (¥,X). Aong with this goes the problem of

strengthening theorem 5.5 by determining strictly in terms of
the invariants,'a condition for two groups to be quasi-isomorﬁhic.

regardless of the basis choeen. A condition for them to be

—_—

isomorphic has not been found.: ' .

~

~
Let xi,xa , ¥,s¥, be independent pairs in G'; 
. Then there exists rl,fé s sl,szeR' such that 'yi = rixl + ;;xz §; 
(i=1,2) . Suppose (G xl,xe) (Z,X) "with .(a,s)ex . (5;5)21.41;\
-It is possible to determine "Z(p), a(p), B(p) for élmost allJ \\f~§
h‘G’(yg ,"V(p) ='hg(yl) f Then

i -

primes p . Let u(p)

we define - f“,<*] o ) "1A\
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7
/s

5(6) = 0 12 ny(s0(2) = 1yR(p)) ¥ B(ea(e) - xB(p))

2 5(p) +hy(alo)) + By(8(6))

S0 + la(e)) + RP()) = (ale) + V(o)) prremvise -

it

o

I

- /,. - o R
/ . Ty, .
/

a@);Oﬁu@j=a,/ |
p*(P) 1r u(p) £ = ana E(p) = 0
= -sea(p? + rzﬁép} if E(p? >0
5(9? = 0.if V(p)' = [ |
- pV(P) 4¢ v(i/)) <eand E(p) =0 .

- 5,0(p) - r£a<p) § Xp) > 0.

Then, if X = d/ B)] is the I equivalence class coﬂtaining‘“
(a,ﬁ s (Z;Y) ‘/(z,x . The final result, which demonstrates that'
the pairs (égX) can be used to provide a complete quasi-

isomorphism/claSSification,for the rank two groups, is;

Theorem 5.6 Let (G xl,x2) -. (z,x) and (H,yl,yz) - (>: Y)
Then G & H iff o I

{@) z+xm)+mm~§+xﬁffmth"
(1) K(a) 0 I~<(r’:3) ~ Ii{'(?i) n K('B'). o i

(111} there ex1st rrrz, 31’52 € R - such that rys, - r2 1 # 0 and

K(a(s a- 1‘3) + ﬁ(s o1 2ga)) > T + K(a) + K(B)



_We note that the development of these invariants ‘g:\eg

- follows the general lines of the developments described in- .\\ ;»f*#
section 2. A basis is chosen‘and the invariants are developed.\x?iigj
}Lhe effect: of a change in basis is determined and an equlvalence -

‘15 defined on the system of invariants. Here, as in section 2,

the problem of determiping the‘equivalence classes péevents the
invafiants from being a really safisfactory classification. ;

However the-invaraints’of Beaumont and‘Pierce are amenable to
computetion and ihus ao-have several useful applications as we.

mentioned previouslj.

One of these applieations is that the invariants provide..f
necessary and~sufficient cohditions for a rank two group to be g
directlyﬁdecomposable and forea'rankAtwo group to be qﬁasi-
decomposable. Two sufficient conditions for a rank two group tq
‘be strongly indeeomposable are elso7grovided. Clearly’a?rank Gio - .

group G is decomposable m‘co the direct sun of Wo rank onei groups 1ff G

contalns a basis x;,X, such that (G xl,x - (Z,X) where

L= 0 .' Hence a rank two groqp G is qua31-decomposablefiff
N ! ' ’

G contains a basis Xq,X, sﬁethhat (G;xlgxg) a,(Z,X)'_where

£~ 0. This may be restated as: If '(G;xl,xz) - (Z,X), (a,B) € X
‘\ . . ) / . ' . * - - .,

_Ethen G is quasi-decomposable iff there'eXist resTos ei,s2 € R'

with rlszfe‘rzsl * g/}and K(sla-ria? * K(seaerga) ? z +'K(a) + K(g
Application of the above statement results,ln the two

suffic1ent condltlons for a rank two group to be strongly
indecomposable. Let (G,xl,xe) - (T,X) s (G,B)EG,X . Then G
is strongly indecdmposable_if'either,forusome Ps Z(p) = o
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and B(p)/'oa(p /is irratlonal or three distinct primes, pl,pe,pz,f:.v

exist with Z:(pl = }_.(p2 = E(pB) = « and 6(p1)/dP

5(92 /a(p ) B(PB‘/'a('pB)' all distinct. There results are fromv;z,

Beaumont and Plerce (4]

It is éppropriate to mention here that Beaumént and
Pierce's in&ariantslare not the only ones_that are amenable to
computation. .Mal'cév}s‘invariants have been employed by |
Prochazha [30] +to find conditions for rank'twov groups to be ‘

dlrectly decomposable.' We will not go into his results here ‘but

will just say that he has dlscovered criteria for direct decom-t;i;fﬁ

posability of a rank two group. He has also found two suffic;ent,7;

3

conditions for a rank two group to be indecomposable, which are
analogous to.the conditions for strong indecomposability givgn

above. o R . | | y . o

The ring of quasi-endomorphisms E(G) of a group G
is a quasi-isomorphism invariant'and hence 1t is desifable to
determine E(G) . Beaumont and Pierce have used their invariants -
to do this for rank two groups. Let the type number of group G
be the cardlnallty of T(G) Roughly their approach is as

. follows: If G is a rank two group then the type number of G
?is either one, two, or greater than two. In each case the
invariants must satisfy one of two or three mutually exclusive,
exhaustive conditions;f E(G) is then determined in ?ach'case. '
The result is that E(G) must be (isomorphic to) one of R ; |
R + R (ring direct sum) a quadratic field over R E the ring

of all 2 x 2 -triangu;ar matrices in . R,;..the'ring of all
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‘2 X 2 triangular'matricés in R With equal diagonal elements;

. the ring of all 2 x 2 matrices in R . Examp;eS'are presented'
in each case. Another method of determinihg E(G) for rank two -
groups, due to Reid [34] ,- will be presented in section 8 .

Reids end results are exactly the same as those of Beaumont and

Pierce,

. The quéstion of when quasi-isomorphism implies isomor-
phism is of obvious importance. In the rank two case Beaumont
and Pierce's invariants provide an answer. Use is made of a

result by Baer [2] s namelys; if _G = Gl(E)Gg Where Gl and G2

are rank one groups of comparable types then any finite extension
of G is isomorphic to G (i.e. any group quasi-isomorphic to
G 1is isomorphic to G ). Application of this result and the

above mentioned determination of E(G) 1leads to the following

~

result.

- . , . . J .
Theorem 5.7 Let (G;xl,xe) - (5,X) 3 (as8) € X ¢ Then G has ~

the property that G & H implies G = H iff either
z(p) + hp(a(p)) +'hp(a(p)) = o for all primes p or G is

quasi-isOmorphic:to a direct sum of two rank one groups of
comparable typés;. | .

: - |

) | ~ While We are speaking of conditions for QuaSi-isomorphic,
groups to be isomorphic we should leave rank two groups.for a | |
moment and mention a cohjecturé of Beaumont andﬂPiercp-concerning

groups of arbitrary finite rank which'goes as followé: If G 1is

A o X S S
a group of rank n containing a free -subgroup  F of rank n h
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such that for each p'#, the divi’éible part of the p-primary

| component of G/F has rank at 1ea.st n-1, and if H & G
then H 2 G . That this is in,fact true has been proved by
Prochazha [32] . His proof makes use of Mal'cev's invariants. N
In anothér paper [29], Prochazha has proved that we may replace‘ﬁ:
the constlon that for eaéh P s the divisible part of the
p-primary componept of /G/F has rank at leas£ n -1 Dby the
condition that for each p , the p-rank of G/F Aisvat.least

n-l .

/

Discussion of the type sets of rank two groups will be
prcsented in the n?xt section along with some results on type
sets of groups of Arbltrary flnlte rank. Relds computation ef :
E(G) for rank two groups.wi;l be described in the. final sectiQn‘
to demonsﬁrate how the notions of iffeducable'groups and the ;
psuedo-socle éfﬁéct‘the structure of ﬁ(G) - /k;_ T
C. nge Sets,/The.ﬁypéiset of ajgfbup-is}aiquasi-isomorphism
invariant. As a result it would be helpful to have a neceSsary
and suffiCient‘conditionAfoan sét-of types»to be the type set of :
a group of‘finite rank., However no sugh condition is Yetvkhown;
Some necessary cbnditioné and some sufficient conditions are
tknown. Beaumont and Piérce‘have used their invariants to’deterﬁgff[:
mine conditions for ﬁﬁé”fdnk two case. Dubois [10],'[11] has
applied analytic numbér theofj to the same case. The caSe'of_
arbitrary finite rank has been examined by Koehler. [22] from

a lattice theoretical point of view.'
. |

When we say.that T(G) is a quasi-iSOmorphism inVariant ‘}

we mean that if G‘é;Hifpben' T(G)‘Q,T(H)..u$he converse, however, -

-
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is not true in general. We demonstrate this by presenting a
| theerem and an example'from Beaumont and Pierce. The theorem

determines T(G) 4in terms of the invariants: (Z,X) . For

5! ejgnR(p) we_éefine aicharacteristic' a(B) by A(é)(p) = 0
1f B(p) # O and A(a)(p) ==if B(p) = 0. If (G3x),xp) -
(Z,X) (a,B) e X, we define o€ D R(p) by o(p) = a(p)/d(p

- if hp(B(p)) = h (a(p)) < e R o(p) = O otherwise,

Theoremn 6.1 Let (G xl,x ) - (Z,X ) s (a,ﬁ) € X . Then

(G) = {{zn (K(o-s)+A(s—sa)) + (K(a)NK(B))] | seR, s$0}
U {[K(a ]: [K(ﬁ)]}

- Example 6 2 Choose a fixed prime p and let % be an irrational

element of R(p with h (c ) = 0 , Now define:

a(q) =1 _for all q ¢ ?r : B(q) =11f q+p, B(p) =op $

E(Q) = 01f q+=p, z(p) =e.
Then there exlsts a group G W1th e ; L S

a basis xl,x' such that (G 3%) 5% ) - (2 X), (a,B) € X ._‘Theorem

2
6.1 can be used to show that T(G) consists of the zero type
alone, Furthermore it is possible to ‘show that G 1s strongly

iindecomposable, Let H ‘be a rank two free group., ‘Then ’ﬂi}tﬁ':'f

T(H) =T(G) but G & H .

Before proceedingAfurther with the discuseion of type
sets we define to notion of a quotient divisible (q;d.) group.' .
Such groups are important in the study of'torsion free rings . .

(c.f. Beaumont and Pierce [3]) We define them here because
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many of the results and examples involve them.

Definition 6L3 A/;roqu is saidféo be a g.d. group if G-‘;.
contains a full jsubgroup F, with F free, such that G/F is'}

the direcf Sum/éf,a divisibie group and a grodp of bounded order.
/i} G has finite rank then the group of bouﬁ@ed |

/
order is finite,

We note that

The foilowing properties of ¢q.d. groups are.provéd
in Beaumont and Piercé (3] . If G is q.d. Aand G 2 H ﬁhen_
H is q.d. ’Thué the property of being a gq.d. group is a L
quasi-isomorphic invafiant. If G is qg.d. then G has a -
free sﬁbgroup F such thatv G/F 1is divisible. We will also . .
need the notion of a non-nil type.‘ A characteristic is said to
be non—nillif if 1s almost evewahere Oor ., A type is séidﬁg'
to be non-nil if it contains a non-nil characteristic. If ¢t 1s
a non-nil type then there exists a unique 0.¢t such{tﬁat
8(p)=0 or « for all P o | |
Beaumont and Pierce l[4] have used thelr invariants for

rank two groups to characterize the rank two gq.d.. groups. The

result is that if .(G;xi,xz)lﬂ (2,X), (a,B) ¢ X then G 1s a

g.d. group iff I + K(a) + K(B) and K(a) A K(B) are non-nil:
(as a consequence the group G of example 6.2 is q.d.)

In our discuésionlwé Will>alép use the follbwing defini-
tions and notions, For any group.G , the-type number-of G :is
the cardinality of T(G) and. G denotes the minimal”divisible group

containing G .
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Let C(G) = T(G) U {all finite intersections of
members of T(G)} . Then we W111 write P(G) = {G, | t e C(G)}

is a

and Q(G) = (G, | t e C(G'] .. We note that ([13]) cr,c

pure subgroup of G for all types t and that if G has finite |
rank then P(G) is countable, If there is no possibility of ‘

confusion we will sometimes write G, to denote ‘Qti-.‘
““k

NS

~

A group G 1is sald to be completely anisotropic 1if
™

no two. independent eléments of G "'have the same type.

- , L \\\ o
The remalining definitions and notions are from Duboisg T"\\'
‘ N

[10] and [11] . Lef -C denote the set of all coprime brdered” -',[
pairs of iﬁtegers ,(a,b) with 0 < a . Well order jC 'By the \\\"
relation: if max {a,|b|} < max {c,|d|} then (a,b) precedes (c;df. 
With this well order we will call C the standard list;« L

Suppose that t is a type, T a set of types," ’,
S tl,tg,...‘ a sequence of types and G 1s a group.4 T is.

said to be a t -set if for t it et v + £t Nt = ty

S 1is said to be & t_-sequence if, for 0 <_i < J s by Nty = toe

S 1is said to be a type sequence of G if, for x and y

'indépendent in G, C can be indexed so-that t(anx+bny,G) =t
for all n . If S 1is a type seqﬁencé of a rank two group AG1 
then T(G) = {ti;I i =31,2,,b,} oo o ; ‘

- ,'/ .
.

Next, let' -8 ¢ ty,t,,.s. be & t_-sequence with
o /o !

6; € (1=O 1,2,.44) o We write D(i,J,p) to represent the > ..

propos1tlon ° (p) < Gi(p < e (p - c,.flIf‘zeij.is a term of .
g /,*‘~_a e SR
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and §' is a subsequence of S then ei is sald to be a

[€2]

" snarl of .S if there exists a subsequence S of S say‘

1 ' : o
S : 6 4,6 se.., such that for every Kk there ls a prime Py
S M - |

with D(i,nk,pk) . éj is said to be a snarl if i1t is a snarl of

some subsequence. A subsequence with no snarls is sald to be

free.

Finally, let’ T be a to-set' with € et . A type

[6] ¢ T 1is a snarl of the subset T’ c T if T' ' contains an
L o n : '

infinite subset T such that for every [6"] in T there
‘ | 4 .

isa peTm with eo(p) < 8(p) < ©(p) == . A subset T of T

is said to be free if it has no snarls.

. Theilast'of our preperatory notions is the construc-
tion, due to DubOis [11] s of groups R(S, x)- which are useful-
in type consideratidns. S is an independent set of reals in
the open interval (O, 1) and x -is a function-from S into

~

1;-4(p- such that, for s e S, x(s) is a function on- v<.whose

value at p is a p-adic integer. We write. x(s)(p = x(s,pY\
e define R(S,x)_ to be the set of all finite rational combina- f?\ﬂ,

tions z.rés eréa), such that for every p, I r_x(s,p) e_Z(p?/.

Then R(S,x) is a group with rank |S| such that
hp(E r s, R(S,x?? = hp(z rsx(s,p?? and for every p# the cor-
respondence X r gS = Zr x(s,p) is a p-height preserving

homomorphlsn with kernel equal to the set of all members of

R(S?x) with 1nfinite p-helght and a p-pure image in Z(p) . o

- ”"



‘In the case. where S = {x,y} s, we denote the func-
| tions by u and v and the group by R(x,y,u,v) Then
R(x,J,u v) is the group of all rational combinations exf+ by

where for all p au(p) + bv(p) € Z(p .

Ue now present necessary conditions on a type. set to
be the type set of a group G + Beaumont and Pierce [4] have
used their invariants to examine the rank two case. Let' G be;<
s.a rank two group and suppose‘that XX, is a basis of G and

(Gixl:xz) - (Z,X)’ (asB) € X . Then ‘t(xl,G) n t(xg:G) =
[K(a) nK(p)] . : |

Theorem 6,4 If G is a rank two,group'there is a unique type‘taf?‘i

such that if tl,t € T(G) R AZY “then tl n t2 ty e
If x and y are non-zero elements of G with t(x) = t(y) £ty

then x and y are dependant. If T(G) is finite thenl:t € T(G)
If r(G) = 2 and G - has finite type number then G is - .
not completely anisotropic. Thus by theorem 6.4 if t, & T(6)

then G is completely anisotropic. -

Note that theorem 6.4 can be restated as: if r(G) 2 then T(G)
‘\ .

is a t,-set, Dubois [10] has also obtained this result along
with: every type Sequenee of G is a to-sequence.;_Actually

he has provided a stronger necessary condition. Employing

e

some ideas from anelytic number thedry hefproves g
Theorem 6.5 If G is a rank two group then the type sequence

of G has an infinite free subsequence.a If G is completely
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anisotropic then T(G) contains an infinite free subset,

An example will demenstrate that the necessary condi-
tion of this theorem is stronger than that of the preceding one. .
The same example also provides a strong negative answer to a
qucs°ion posed by Beaumont and Pierce, namely. Given a count- -
ably infinite set. T of distinct types such that T 'is a t -set
does there exist a rank two group G with T(G) =T.? ‘

Example 6.6 [loj‘ Suppose the infinite sets PysPyse.. partition

T . Ve define el(p)‘= 1l if p € Py s el(p) = O elsewhere and,

forn = 2,3,... , 6(p) =« if > is. the nth member of P, for -

some. . i<n, @ (p)'a 1 if peP,, © (p) = 0; othemﬁse._Then j,'
= {[6 ], (e, ],...} is a t -set where t, . 1s the zero type

!
and, by theorem 6 5 41f T is any subset of T , then T is™

not the type set of_any completely anisotrop;c rank two’group.

Dubois has also applied the notion_df groups of the
form R(x,y;u,?)‘ to find a necessary and sufficient condition

for a t_-sequence to be the type sequence of a group. In [11] =

an example is constructed to prove that every type seQuence of
a rank two groupf is a type sequence of some rank two group
R(X,y73;u,v) . . Examinatioh of type sequences of arbitrary groups

R(x,y;u,v) - will yield;'

e

Theorem 6.7 A té-sequenCe is a type sequence of a rank two group
iff the zero sequence obtalned by subtracting <to¢'fr6m every te}m'.;;

e

is likewise a type sequence of a rank two group. . -
) . )
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Koehler [22] has obtained necessary conditions on type sets‘;_
of groups of finite rank. His approach is to show that the
type set of a finite rank group has certaln lattices of types ”
and of pure subgroups associated with 1t. His‘first result 1s
to prove that, if r(G) = n, then C(G) forms & lattice of
length at most n in which 1att1ce meet 15 type intersection
and C(G) has a minimum type t_ where t_ = t(x, )ﬂ cee N t(x )
' for any basis XysXpye e sX of G . '
The set of all types under the relation < and the
operations. N and U forms a distributive lattice.in whieh'
meet and Join are N and U respectiVely. If G has finite
rank then the above remark tells us that C(G) 1is also a'
lattice. However it need nop be a sublattice of the lattice

I4

of all types (example 6 15) .

Note that this remark 1s a generalization of theorem -
6.4 . This remark also provides an affirmative answer to ‘
another question posed by Beaumont and Pierce [4] : If r(G) =Anip'
is the intersectioh of the types ef elements of a given basis . .
the same for all basesé Furthermore, suppose G 1is a finite ‘_
rank q.d. ‘group-gnd that .t  1is the minimum type in C(G) |
Then ([11] or [22])Aeto is nen-nil.‘ In this,COnnectionjwe
also have ([11]) that the type,sep of‘rank two group G 1is
the type set of some 'q}d.l group iff tév, the minimal type

i

in C€(G) , 1is non-nil.’

7~

. A S
Theorem 6.8 If G 1s a group of finite rank n , ~‘,';then G = R"
and A { ‘
(1) P(G) forms a lattice of pure subgroupsnof. G > -Q(G) formé:“
a lattice of subspaces of ‘Rn and as lattices,‘ P(G): 18

isomorphiC'td,‘Q(G); and both are

|
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dually isomorphic to C(G)

(i1) In the lattices P(G) and Q(G) 1f Aand v denote lattice .

meet and Join respectively then, for

¢ P(G) G NG, =G NG, ;T A T, =T nT

G g Gy o=y NS ; Eiale M I

i’G

J

Gy VGJDG +GJ,31V§J331+'GJ

This theorem, due to Koehler , can be used to prove that if T(G)
is finite then T(G) = C(G) and thene are r(G,) independenté |
»elements of type t in G for every ¢t € T(Q), For an examp1e~;

of a group of finite rank and infinite type set T(G) such tpet'

T(G) & C(G) see Beaumont and Pierce (4, pg. 29]

This concludes our review of necessary conditions on R
a type set to be the type set of a group of finite rank. We g
now turn,to the problem of finding sufficient conditions, Asg_w;fc
with the necessary Conditiono.Weffirst turnvour'attenéionito
the rank two case;' ih the case of finiﬁe t&pe'sets we.have a

complete answer. _ : . - =

-0

Theorem 6.9 Let T = [& ,tlg..,,t } be a finlte t_-set. Then.

.\‘

their exists a rank two group ¢ with T(G) =T, \\\ | | »'L,
Both Beaumont and Pierce [4] and Dubois [(10] haye\\

constructed examples to prove this result.‘ As a result of \\ \Q;

theorem 6. 4 and 6.9 we have : - B 5

Corollary '6.10 A finite type set T is’ the type set of rank %

i .

two group 1ff T is a t -set containing t e »vb i o e
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Suppose T is a finite to-set containiqg to and to

is non-nil. Then does there exists a q.d. rank two group G
vith T(G) =T ? Th184Question was posed by Beaumont and’

Pierce [4] . 1If (G;xl,x2) ~ (Z,X), (a@,8) € X then G 18 - q.d.

iff £+ K(B) + K(a) and K(a) N K(B) are non-nil. In the

question as posed t = [K(a) N K(B)] 1s given as non-nil and

so to answer the question, a group G must be found with

T(G) = T such that G contains a basls Xxy,X, with (G3xy,%5) ~A'

(£,X) where I is non-nil and Z(p) = » for all but a finite

number of primes:'p such that 0 < hp(a(p)) { wand O (»hp(B(p))v<w

whenever (a,B) € X .  That such a group does exist has been proved'f
by Koehler [21] . This question has also been answered by

Dubois [10] who has construced an example to prove'that: A

free td—seqUence,,with s non-nil, is the type'sequencé of a

q.d. Trank two group. -

~ In the case .of countably infinite type sets Beaumont
and Plerce were only able to achieve partial‘results. They have
constructed an example of a completely.anisotropic rank two group
AG' with type‘set-:T<G) E-{[Go]’[ellé[GQJ{"'} wheré {8,56158,54+ 1}
{ , : : o
is an infinite set of inequivalent characteristics with, for

i 43,0 N6, =6, andused it to prove: If—T 1is an infinite

~ul
RN

t _-set containing to: and each type in ‘T is finiée‘thén-there t

o | .

is a completely'anisotrOpic fank two gréup} G SQCh-that BN .'v&{;
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Koehler [21] has developed a new method of con-

' structing rank two groaps with infinite type sets which enables

 him tovpfové some paftial results similar to those abdve,inamely:

If T = {toitl’tQ""} zis_a io-set ‘then there exlsts a to:fgfz o
: P ) ‘ ' ' , S N

T e {to,tl?tz,...}' with t, <t 1f 1 2 1 and a rank twg -\\\.J:‘\

. group G with T'.E T(G) . If T = {to,tl,tQ,.,.} is a to-séﬁ\’”;

such that for at'mqst‘finitelyjmany i ei(p) = » occurs.where |

6, ¢t then there exists a rank two group G with T < T(G) .- -

In some cases Koehler's construction'yields'good results. ‘For .

instance, if we defing'.eo(p)'m ® for all p 3 Sl(p)‘= 1 'foé_-:l';
all pF; ek(pk-l) = =, GR(P) =0 fpr all o#her p , then

T ;.{[GOJ,[Gl],[GQ],...} is a [90] ‘set.énd thé rank two group -

G resultiné”fiom-ﬁhe'cbnstrﬁctiqn has type set ‘T(G) -T . |

/

Dubois has obtained some precise results in determining N

P

I

sufficient conditions for a type set to be the type set of a

rank two group. In [10] an’ example is given which proves;

" Theorem 6.11 B //
(1) If S is a free t_-sequence then § 1is a type sequence

\ of some rank two group./

(i) If T is an infinite ‘¢ -set whose ‘members are infinite

 on1y where to' is,infinite then' T .is the type set of a

! v ’ i
/

rank two group. | ~ : : !

We now présght an example due .to Duboié whichhdemons-\

trates that the sufficient condition of theorem 6.11 is not

i
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necessarye. ,This,example will also'provide a negative answer to
another qﬁestion poéed by Beaumont and Piéfce (4] If G 1is
a group with infinite Lype set does there exists a completely
anisotropic group H with T(H = T(G) We define for

n=0,1,2,... ¢ 6, (p) ) =0 for all p ; 1(p) =1 for all p ;

for n>1, Gén+l(p) = 0 for p # pn, 02n+1(Pn?,=f?‘.% Theg :: ffi
s : (6], [6,],e00 isa [e,]-sequence and, if

T=([6]1] 1= 1,2,;..} > [6;] 1s a snarl of every infinite -

subset of T . Hence ‘T is not the type set of a completely )
anisotropic rank two group. Also neither 'S nor T 1is free, o

Now let ¢y = (1,0), cé._:(o,p « For n21 let cpyy = _(1,-%} |

and Conen equal to the firSthpair in the standard list notibrg: '
viously selected.: We write c, = (an,b ) Choose" independent\ A

real numbers x and Y and let G = {ax+by l a,beR, ap + beZ(p) \\

- PO

' ’ for all p}
Then G is a rank two group., Note that if x,y € (0,1) thqn > »:?

G is a group of the form R(x,y,u v) where u(p) = p and

v(p) =1 for all p .[ We also have, for all k = 1,2,...

(6]

i

t(akx+bﬁy,G)f.“ Hence S 1is the type sequence of G and

In [11]‘, Dubois strengthens the sufficient condition 1_r

of theorem 6.11. A_charactéristic is sald to be-verﬁ large if it ;'
is infinite at infinitely many primes. - f

Theorem 6.12 If a tofsequenée,?;ng has.an'infinitq free

- s

' ) . . . 4 l
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subsequence and if the set of all snarls and very large elements -

" of S is free then S .is a type sequence of a rank two group.

The group constructed to prove theorem 6,12 1s a group
of the form R(x,y,u v) Dubois has constructed another group -
?(x,y,u v) which demonstrates that the condition that the set

‘of all very large elements be free is not necessary.

/

The various. sufficiency“theorems of Dub01s, especially ‘
theoren 6.7 and the remark immediately preceeding it, suggest the
- following formulation of the groblem of determining . necessary
. . / .

and sufficient conditions in'the rank‘two case. Let e : 9 62,... :

be a sequence of characteristics with the correspondlng sequence 'n
of types, S, a zero-sequence. Such a sequence © rs sald to

be solvable if there éxists an 1ndexing-of'the elements (a,b) of

C so that for ever%/ i there existszank m such that/ for all——‘ -

pem and.n>m,[ if 6 (p ,= ® then hp(alb -anbi) = O (p . s‘

Then, w1th S and & as above

Theorem 6.13 S 1s a type'sequence of a rank two group iff © -

is a solvable_sequence}7

Koehler has found a sufficient,COnditicn for a finite
type set tovbe/the type-set}of affinite'rank groﬁp.'lLet Tty be
the type gre7ter than all types. . ‘ | {

Theorem 6.14 Let T = {t 909 1,..., Ty ) be a set of dlstinct

!

types forming a lattice under A and v where ty A ty = ti n tJ

a

and t; v t; is the.'l.u.‘b. ;n T . Let L =‘ {0 5G 5T ,...;:-N} e

T



. a lattice of subspaces of R® = G; under A and v 'where nE

Eif\ U} = Eﬁ N Gﬁ/and v is the 1l.u.b. in L . Suppose that, as

lattices, T %e~dually isomorphic to L . Then there.exlsts a -

/

rank n group G with T(G) =T and Q(G) =1L .

The results of theorems 6.8 and 6.14° indicate that.
the problem of flnding 2ll finite type sets which are type sets
of a group of finite rank n is equivalent to the problem of
finding all pos51b1e finite lattices, under the operations Ae;',
and v, of subspaces of . R . ?hls latter problem is as yet |

unsolved.
\

4

Example 6.15 We define eo(p) = 0 for all p 3 91(2)'= ®

el(p} = 0 ooherwise; 92(3) =:w, ez(p) = 0 .otherwise;

0.(2) =6(3) = 06,(5) =w 5 O,(p) =0 otherwise . If .we set_

= [ei] then by_fheorem' 6.1%, since the;doal of thée lattice
of types 1s realizable in R3', thefe~exists‘a rank‘ 3  group.
G with T(G? - C(G? = {t&,to,ti,tggng'.' Henoe C(G) forms a

lattlce in whlch, ty Vb, = t3 > tl U tg . - }.

Hence  C(G) is not'a_sublattice of the lattice of types.

X Ve conclude our dlscuss1on of type sets with the

lollow1ng result from Dub01s *[ll] .. : l
i , L ' i .
Theorem 6.16 If T is a set of types with the property that
[

1 1

Lo, €. T implies t ﬂ T €T then T- is the type set of

a group R(S x) of rank |T|
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. // . .
-T. OQuasi Essential Groups We devote this section to a brilef

discussion on the notion, due to Koehler [22] , of quasi-
essential groups. AsAwe/willAsee these groups can be used to
suggest a possible apgrcach to the problem of finding quasi~
isomorphic invariants/for'groups of finite rsnk wlth finlte type
sets. The definitidn follows the construction-of the group of
theorem 6.14 and heéce provides some idee of the method emplcyed

Definition 7.1 Let G be a group and let B = {xl,...xn} be

any finite set of independent elements of G . Let FB denote

the free subgroup of G generated by B, An element x €G

1s said to be . /%—reduced iIf xe FB and h (x, ) = 0 for all
Cew . // | |

/ : o
Definition 7.2 A group G of finite rank is said tO/be an essen-‘5

tial group if it has for a set of generators, the set

{p "k | pev, 0 < sk(p) < ek(p)+l k=0 l,...,N i=l 2,...,nk}
where , ‘ .
(1) . ® ,el,...,eN ‘are characteristics with i = [e ] such
thatkif -ti < tj-‘then vei_i OJ and if ti n tJ = T
then ei'ﬂ'.‘e.j = ek'.: e 1,5,k XN -
’ " ’ SRR
(1) £y =50 )(=(8) 5 k= 0Lt
. . ’ " ‘4 ‘— . . }
(11i) = {yl,ye,...,y } 1s a basis of G such that yg»é‘ﬁk s

No
N i ’ S
1<k<N,1<i<n . | o '*
(iv) for e | | k koo |
or each k = 1,2,.,..,N , {yl,yz,...,yn } is a basis

.
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| o ko, ' Lk . T
jof Gy such‘tuat- yy 1s Bj-reduced and y; ¢'Gs 1f'Gﬁ'_ [

A group H is éuid.to be a éuasi-essential (q.e)
group if it,isAquasi-isomorphic to some.essential group G .
.Suppose that 'yk'e R ”and that Gl' are characteristiég ';
(reA) ; Bj the notation G = {(y ,e ) | xeA} we will mean the
group G generated by the set X(p X<|’pe# 3 0< s*(p)
£ 8,(p) +1 ;5 €A} . Hence 1if .G is the group of dgfinition;;

7.2 then G = {(yg,ek)}. Furthermore T(G) u-{tm,to,tl;...,ﬁN}

Definition 7.3 Let G' De anressential (q.e.) _subgroup of a

group - G. G is sald to be a maximal essential i(q.e) sub-
group if Gj‘é Hc G whefe> H 1is an essential (q.e)/ subgréup“

of G then G & H.,

e e ey

The principal result on these grdups,‘fbr our purposes,

is the following:

Theoren 154 'Let  G bé-a finite rdnk group with finite type set. T
Then ' | o -
ki) G has a maximal essential subgroué: Gf_,  unique up to
| quasi-equallty, with T(G T(GL “and Q(G) = Q(G ) .

(11) If xe G there is a maximal ‘essential subgroup ¢ of G

ﬁuth XxeG' .". f S 'i‘ - .$
(iii) G is q.e. iff_ G/G' i§~é finite group'for;eﬁeny maxigal"
éssential.subgroup G’ of G - | |

o ‘ . ‘

(1v) If G is a maximal essential subgroup of G then
1 . . - .

G/G is a tor51on group." '
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‘Proof- We will prove .(i) and (ii)i.. Let erG, = n and

'T(G) {t_st ,tl,..., N} with t the minimalltype in T(G).

There is_an independent.set {x,yg,...,y } with t(yi) ' ty e

If t(x) =.to let yi = x . Otherwise let S be the pure sub- -

group of 'G"geherated vy {%ﬁyg] . Now.rt(y,s) = t(y,G) for

" all y € S and’ t(yg,s) = to‘.» For some .m € Z t(ftmyg,s) =t, = ‘ﬁ
.t(x+myg,G) . Let‘ ygie x + myg'and Bé aiyg,yg,}r.;yg} .:'Then

X is Bo-reduced.”

For each %, € T(G? s b oty we can find ny = r(GK)‘
. : n . Kk k-
independent B o-reduced elements of type_ t, in G, yl’yQ”"’ynk.f~'

Define eK h(yJ,G) for k = 0 1,...,N’. It is possible to

fihd characteristics 9 el,...,eé such that, for 0.£1,3,J <N

[
~-

Ve

: : ' . f‘, | -“*"iv‘-"' » . =
6, <6, 3 ;9 ~ 9, 5 1if 'ti S.tj then“ei.sf?j if ti N tJ tk )
: ! R a } '
then Gi N GJ = ek .

v
—_

, ' Lk oty : . L |
Let : G‘ = {&.,ek) I k L O l,ooo,N';"«’ i = 1 2,ooo,nk}
[Gr is an essential subgroup of G and T(G ) = T(G) s Q(G ) = Q(G)
Furthermore G is maximal essential, contains x and is \\\\\\ ‘5
o N

unique up to quasi equallty. EEE S : ‘ N

The results of this theorem suggest that the problem
we mentioned in the opening paragraph of this sectlon could poss14\ f
.\

bly be solved by examining the ‘groups of” the form G/G ‘ where

‘G has finite rank Ny is a maximal essential subgroup of G . |
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(1) G is irreducible.

(ii) G = £1C)Gi where each - G, 1is strongly'ipdeqomposable;'":

irreducible, and Gy & GJ for all i,J .
(i1i) E(G) = A, where A is a division algebra, n 1is the’"s

number of‘strdngly indecomposable summands in a quasi- _'

decomposition of G and n[A:R] = r(G)

An irreducible group of finite rank'is strongly
indecomposable iff E(G) is a division ring.
An irreducible group of prime rank is either strongly .

indecomposable or a direct sum of isomorphic rank one groups.

If B(G | has descending chain condition on right ideals,
then P is non-zero.‘ Also if G 1s strongly indecomposable )

and N denotes the radical of E(G) then.as groups /.

r(H) = r(H) = [E(G)/N:R] , where H is a minimal non-zero pure

fully iuVariant subgroup of G .

If E(G) has descending chain’ condition on right
ideals then E(G) is semi-simple iff G ng'.‘
\ If G has finite rank and G & P then for x' e G ,
'x ¢ S there exists an endomorphism A of G with 0% x\ €8S o
Now suppose that G 1is a rank two group. : Then G
must satlsfy one of three mutually ‘exclusive exhaustive condltions, '

namely;. G .is irreducible, G is not irreducible but G =P,

G & P. Suppose G,'is irreducible; If G is.strongly indecom~
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posable then E(G) is a division ring A . Furthermore
[A:R] =2, If B 1is the center of A then .[A:B] - x°
where X is a positlve 1nteger,j'Now [A:R] = [A:B][B:B]v and
so (A:B] =1 .‘ Hence A 18 equal to its center and is thus a
quadratic field overv R. If G “is not strongly indecomposable

then G = Gl® G, where G, and G, are isomorphic rank one groups.‘~
In this case E(G) =‘A2'where A 1is-a division algebra and
E(Gi) = A (i=1,2) . Since G, has rank one, A =R, and

E(G) = R. the ring of all 2 x 2 matrices in R .

5 s

‘Next supbdse that G 1s not irreducible and G =P .
If G 1is strongly indecomposable, then 'E(G). is a division
algebra. Also G contains a minimal ﬁon zefo pure fully invari-
ant subgroup of rank one. Hence [E(G):R] = 1, i.e. E(G) .= R . |
If G is quasi=- decomposable then E(G) is a semi-simple.ring*#~
that is not a diV1sion ring. If E(G) were“simple then G

would be 1rredu01ble. Hence E(G) = El ¥ E2 (ring direct sum)

where the Ei are simple ideals with central idempotent gener-

ators. Correspondlng to this decompos1tion E(G) = E; + E,
we have a quasi- decomp031tion G = G ()(3 'where the _Gi are
rank one groups of'lncomparable types. Also E(G Ei and

therefore E; = R (i-_:I,Q) . _Thus E(G) =R +R .

‘Finally suppose that G # P . Assume G is strongly

indecomposable. Choose O # X) €P ; ;xa e G ¢ P . Then

N
L

{x;5%,} is a basis of V Wthh is an E(G)-module in a natural
. | | 0
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way., P is an E(G)-submodule of V and so the matrix repre-

" sentation of E(G) given by A{xl,xg} consists™of triangular
. “\‘

matrices. 'N', the radical of E(G) , 1is non-zero and is a

rational algebra. Hence N = {(o o) | .reR} . We also have that. .
, . NoNG

E(¢ )/N &R, .Let F denote the subalgebra of E(G) generate;\\‘ :
by the unit matrix. Then N A F = O . Under the netural map \\ .
I' goes onto AE(G)/N‘and so E(G) =N + F , Hence E(G) is the |
ring of_triangular matrices in .R with equal diagonal elements. -
If G isiquasi-decomposable then G é‘P(>i” for some P' .
Furthermore the type ef p' is less than the type of P . As
before a trlangular representation of E(G) can be obfained. |
The radical N 1is one- dimensional over R . Hence 44(G)/N' is

a Lwo-dlmen51onal seml-simple rational algebra that 1s not a
division algebra. This. implies E(c')/l\l = R + R and hence E(G)

1s the ring of all .2 x 2 triangular matrices in R .(_*

/- "_‘l .
We note in conclusion'that thege are the same end

results at which Beaumont and Pierce/'[4]'“arfived‘ipvtheir

computation of E(G) for rank two groups. -
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